1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/blkdev.h> 9 #include <linux/list_sort.h> 10 #include <linux/iversion.h> 11 #include "misc.h" 12 #include "ctree.h" 13 #include "tree-log.h" 14 #include "disk-io.h" 15 #include "locking.h" 16 #include "print-tree.h" 17 #include "backref.h" 18 #include "compression.h" 19 #include "qgroup.h" 20 #include "inode-map.h" 21 #include "block-group.h" 22 #include "space-info.h" 23 24 /* magic values for the inode_only field in btrfs_log_inode: 25 * 26 * LOG_INODE_ALL means to log everything 27 * LOG_INODE_EXISTS means to log just enough to recreate the inode 28 * during log replay 29 */ 30 enum { 31 LOG_INODE_ALL, 32 LOG_INODE_EXISTS, 33 LOG_OTHER_INODE, 34 LOG_OTHER_INODE_ALL, 35 }; 36 37 /* 38 * directory trouble cases 39 * 40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 41 * log, we must force a full commit before doing an fsync of the directory 42 * where the unlink was done. 43 * ---> record transid of last unlink/rename per directory 44 * 45 * mkdir foo/some_dir 46 * normal commit 47 * rename foo/some_dir foo2/some_dir 48 * mkdir foo/some_dir 49 * fsync foo/some_dir/some_file 50 * 51 * The fsync above will unlink the original some_dir without recording 52 * it in its new location (foo2). After a crash, some_dir will be gone 53 * unless the fsync of some_file forces a full commit 54 * 55 * 2) we must log any new names for any file or dir that is in the fsync 56 * log. ---> check inode while renaming/linking. 57 * 58 * 2a) we must log any new names for any file or dir during rename 59 * when the directory they are being removed from was logged. 60 * ---> check inode and old parent dir during rename 61 * 62 * 2a is actually the more important variant. With the extra logging 63 * a crash might unlink the old name without recreating the new one 64 * 65 * 3) after a crash, we must go through any directories with a link count 66 * of zero and redo the rm -rf 67 * 68 * mkdir f1/foo 69 * normal commit 70 * rm -rf f1/foo 71 * fsync(f1) 72 * 73 * The directory f1 was fully removed from the FS, but fsync was never 74 * called on f1, only its parent dir. After a crash the rm -rf must 75 * be replayed. This must be able to recurse down the entire 76 * directory tree. The inode link count fixup code takes care of the 77 * ugly details. 78 */ 79 80 /* 81 * stages for the tree walking. The first 82 * stage (0) is to only pin down the blocks we find 83 * the second stage (1) is to make sure that all the inodes 84 * we find in the log are created in the subvolume. 85 * 86 * The last stage is to deal with directories and links and extents 87 * and all the other fun semantics 88 */ 89 enum { 90 LOG_WALK_PIN_ONLY, 91 LOG_WALK_REPLAY_INODES, 92 LOG_WALK_REPLAY_DIR_INDEX, 93 LOG_WALK_REPLAY_ALL, 94 }; 95 96 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 97 struct btrfs_root *root, struct btrfs_inode *inode, 98 int inode_only, 99 const loff_t start, 100 const loff_t end, 101 struct btrfs_log_ctx *ctx); 102 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 103 struct btrfs_root *root, 104 struct btrfs_path *path, u64 objectid); 105 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 106 struct btrfs_root *root, 107 struct btrfs_root *log, 108 struct btrfs_path *path, 109 u64 dirid, int del_all); 110 111 /* 112 * tree logging is a special write ahead log used to make sure that 113 * fsyncs and O_SYNCs can happen without doing full tree commits. 114 * 115 * Full tree commits are expensive because they require commonly 116 * modified blocks to be recowed, creating many dirty pages in the 117 * extent tree an 4x-6x higher write load than ext3. 118 * 119 * Instead of doing a tree commit on every fsync, we use the 120 * key ranges and transaction ids to find items for a given file or directory 121 * that have changed in this transaction. Those items are copied into 122 * a special tree (one per subvolume root), that tree is written to disk 123 * and then the fsync is considered complete. 124 * 125 * After a crash, items are copied out of the log-tree back into the 126 * subvolume tree. Any file data extents found are recorded in the extent 127 * allocation tree, and the log-tree freed. 128 * 129 * The log tree is read three times, once to pin down all the extents it is 130 * using in ram and once, once to create all the inodes logged in the tree 131 * and once to do all the other items. 132 */ 133 134 /* 135 * start a sub transaction and setup the log tree 136 * this increments the log tree writer count to make the people 137 * syncing the tree wait for us to finish 138 */ 139 static int start_log_trans(struct btrfs_trans_handle *trans, 140 struct btrfs_root *root, 141 struct btrfs_log_ctx *ctx) 142 { 143 struct btrfs_fs_info *fs_info = root->fs_info; 144 int ret = 0; 145 146 mutex_lock(&root->log_mutex); 147 148 if (root->log_root) { 149 if (btrfs_need_log_full_commit(trans)) { 150 ret = -EAGAIN; 151 goto out; 152 } 153 154 if (!root->log_start_pid) { 155 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 156 root->log_start_pid = current->pid; 157 } else if (root->log_start_pid != current->pid) { 158 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 159 } 160 } else { 161 mutex_lock(&fs_info->tree_log_mutex); 162 if (!fs_info->log_root_tree) 163 ret = btrfs_init_log_root_tree(trans, fs_info); 164 mutex_unlock(&fs_info->tree_log_mutex); 165 if (ret) 166 goto out; 167 168 ret = btrfs_add_log_tree(trans, root); 169 if (ret) 170 goto out; 171 172 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 173 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 174 root->log_start_pid = current->pid; 175 } 176 177 atomic_inc(&root->log_batch); 178 atomic_inc(&root->log_writers); 179 if (ctx) { 180 int index = root->log_transid % 2; 181 list_add_tail(&ctx->list, &root->log_ctxs[index]); 182 ctx->log_transid = root->log_transid; 183 } 184 185 out: 186 mutex_unlock(&root->log_mutex); 187 return ret; 188 } 189 190 /* 191 * returns 0 if there was a log transaction running and we were able 192 * to join, or returns -ENOENT if there were not transactions 193 * in progress 194 */ 195 static int join_running_log_trans(struct btrfs_root *root) 196 { 197 int ret = -ENOENT; 198 199 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state)) 200 return ret; 201 202 mutex_lock(&root->log_mutex); 203 if (root->log_root) { 204 ret = 0; 205 atomic_inc(&root->log_writers); 206 } 207 mutex_unlock(&root->log_mutex); 208 return ret; 209 } 210 211 /* 212 * This either makes the current running log transaction wait 213 * until you call btrfs_end_log_trans() or it makes any future 214 * log transactions wait until you call btrfs_end_log_trans() 215 */ 216 void btrfs_pin_log_trans(struct btrfs_root *root) 217 { 218 mutex_lock(&root->log_mutex); 219 atomic_inc(&root->log_writers); 220 mutex_unlock(&root->log_mutex); 221 } 222 223 /* 224 * indicate we're done making changes to the log tree 225 * and wake up anyone waiting to do a sync 226 */ 227 void btrfs_end_log_trans(struct btrfs_root *root) 228 { 229 if (atomic_dec_and_test(&root->log_writers)) { 230 /* atomic_dec_and_test implies a barrier */ 231 cond_wake_up_nomb(&root->log_writer_wait); 232 } 233 } 234 235 static int btrfs_write_tree_block(struct extent_buffer *buf) 236 { 237 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 238 buf->start + buf->len - 1); 239 } 240 241 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 242 { 243 filemap_fdatawait_range(buf->pages[0]->mapping, 244 buf->start, buf->start + buf->len - 1); 245 } 246 247 /* 248 * the walk control struct is used to pass state down the chain when 249 * processing the log tree. The stage field tells us which part 250 * of the log tree processing we are currently doing. The others 251 * are state fields used for that specific part 252 */ 253 struct walk_control { 254 /* should we free the extent on disk when done? This is used 255 * at transaction commit time while freeing a log tree 256 */ 257 int free; 258 259 /* should we write out the extent buffer? This is used 260 * while flushing the log tree to disk during a sync 261 */ 262 int write; 263 264 /* should we wait for the extent buffer io to finish? Also used 265 * while flushing the log tree to disk for a sync 266 */ 267 int wait; 268 269 /* pin only walk, we record which extents on disk belong to the 270 * log trees 271 */ 272 int pin; 273 274 /* what stage of the replay code we're currently in */ 275 int stage; 276 277 /* 278 * Ignore any items from the inode currently being processed. Needs 279 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in 280 * the LOG_WALK_REPLAY_INODES stage. 281 */ 282 bool ignore_cur_inode; 283 284 /* the root we are currently replaying */ 285 struct btrfs_root *replay_dest; 286 287 /* the trans handle for the current replay */ 288 struct btrfs_trans_handle *trans; 289 290 /* the function that gets used to process blocks we find in the 291 * tree. Note the extent_buffer might not be up to date when it is 292 * passed in, and it must be checked or read if you need the data 293 * inside it 294 */ 295 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 296 struct walk_control *wc, u64 gen, int level); 297 }; 298 299 /* 300 * process_func used to pin down extents, write them or wait on them 301 */ 302 static int process_one_buffer(struct btrfs_root *log, 303 struct extent_buffer *eb, 304 struct walk_control *wc, u64 gen, int level) 305 { 306 struct btrfs_fs_info *fs_info = log->fs_info; 307 int ret = 0; 308 309 /* 310 * If this fs is mixed then we need to be able to process the leaves to 311 * pin down any logged extents, so we have to read the block. 312 */ 313 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 314 ret = btrfs_read_buffer(eb, gen, level, NULL); 315 if (ret) 316 return ret; 317 } 318 319 if (wc->pin) 320 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start, 321 eb->len); 322 323 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { 324 if (wc->pin && btrfs_header_level(eb) == 0) 325 ret = btrfs_exclude_logged_extents(eb); 326 if (wc->write) 327 btrfs_write_tree_block(eb); 328 if (wc->wait) 329 btrfs_wait_tree_block_writeback(eb); 330 } 331 return ret; 332 } 333 334 /* 335 * Item overwrite used by replay and tree logging. eb, slot and key all refer 336 * to the src data we are copying out. 337 * 338 * root is the tree we are copying into, and path is a scratch 339 * path for use in this function (it should be released on entry and 340 * will be released on exit). 341 * 342 * If the key is already in the destination tree the existing item is 343 * overwritten. If the existing item isn't big enough, it is extended. 344 * If it is too large, it is truncated. 345 * 346 * If the key isn't in the destination yet, a new item is inserted. 347 */ 348 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 349 struct btrfs_root *root, 350 struct btrfs_path *path, 351 struct extent_buffer *eb, int slot, 352 struct btrfs_key *key) 353 { 354 int ret; 355 u32 item_size; 356 u64 saved_i_size = 0; 357 int save_old_i_size = 0; 358 unsigned long src_ptr; 359 unsigned long dst_ptr; 360 int overwrite_root = 0; 361 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 362 363 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 364 overwrite_root = 1; 365 366 item_size = btrfs_item_size_nr(eb, slot); 367 src_ptr = btrfs_item_ptr_offset(eb, slot); 368 369 /* look for the key in the destination tree */ 370 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 371 if (ret < 0) 372 return ret; 373 374 if (ret == 0) { 375 char *src_copy; 376 char *dst_copy; 377 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 378 path->slots[0]); 379 if (dst_size != item_size) 380 goto insert; 381 382 if (item_size == 0) { 383 btrfs_release_path(path); 384 return 0; 385 } 386 dst_copy = kmalloc(item_size, GFP_NOFS); 387 src_copy = kmalloc(item_size, GFP_NOFS); 388 if (!dst_copy || !src_copy) { 389 btrfs_release_path(path); 390 kfree(dst_copy); 391 kfree(src_copy); 392 return -ENOMEM; 393 } 394 395 read_extent_buffer(eb, src_copy, src_ptr, item_size); 396 397 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 398 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 399 item_size); 400 ret = memcmp(dst_copy, src_copy, item_size); 401 402 kfree(dst_copy); 403 kfree(src_copy); 404 /* 405 * they have the same contents, just return, this saves 406 * us from cowing blocks in the destination tree and doing 407 * extra writes that may not have been done by a previous 408 * sync 409 */ 410 if (ret == 0) { 411 btrfs_release_path(path); 412 return 0; 413 } 414 415 /* 416 * We need to load the old nbytes into the inode so when we 417 * replay the extents we've logged we get the right nbytes. 418 */ 419 if (inode_item) { 420 struct btrfs_inode_item *item; 421 u64 nbytes; 422 u32 mode; 423 424 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 425 struct btrfs_inode_item); 426 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 427 item = btrfs_item_ptr(eb, slot, 428 struct btrfs_inode_item); 429 btrfs_set_inode_nbytes(eb, item, nbytes); 430 431 /* 432 * If this is a directory we need to reset the i_size to 433 * 0 so that we can set it up properly when replaying 434 * the rest of the items in this log. 435 */ 436 mode = btrfs_inode_mode(eb, item); 437 if (S_ISDIR(mode)) 438 btrfs_set_inode_size(eb, item, 0); 439 } 440 } else if (inode_item) { 441 struct btrfs_inode_item *item; 442 u32 mode; 443 444 /* 445 * New inode, set nbytes to 0 so that the nbytes comes out 446 * properly when we replay the extents. 447 */ 448 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 449 btrfs_set_inode_nbytes(eb, item, 0); 450 451 /* 452 * If this is a directory we need to reset the i_size to 0 so 453 * that we can set it up properly when replaying the rest of 454 * the items in this log. 455 */ 456 mode = btrfs_inode_mode(eb, item); 457 if (S_ISDIR(mode)) 458 btrfs_set_inode_size(eb, item, 0); 459 } 460 insert: 461 btrfs_release_path(path); 462 /* try to insert the key into the destination tree */ 463 path->skip_release_on_error = 1; 464 ret = btrfs_insert_empty_item(trans, root, path, 465 key, item_size); 466 path->skip_release_on_error = 0; 467 468 /* make sure any existing item is the correct size */ 469 if (ret == -EEXIST || ret == -EOVERFLOW) { 470 u32 found_size; 471 found_size = btrfs_item_size_nr(path->nodes[0], 472 path->slots[0]); 473 if (found_size > item_size) 474 btrfs_truncate_item(path, item_size, 1); 475 else if (found_size < item_size) 476 btrfs_extend_item(path, item_size - found_size); 477 } else if (ret) { 478 return ret; 479 } 480 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 481 path->slots[0]); 482 483 /* don't overwrite an existing inode if the generation number 484 * was logged as zero. This is done when the tree logging code 485 * is just logging an inode to make sure it exists after recovery. 486 * 487 * Also, don't overwrite i_size on directories during replay. 488 * log replay inserts and removes directory items based on the 489 * state of the tree found in the subvolume, and i_size is modified 490 * as it goes 491 */ 492 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 493 struct btrfs_inode_item *src_item; 494 struct btrfs_inode_item *dst_item; 495 496 src_item = (struct btrfs_inode_item *)src_ptr; 497 dst_item = (struct btrfs_inode_item *)dst_ptr; 498 499 if (btrfs_inode_generation(eb, src_item) == 0) { 500 struct extent_buffer *dst_eb = path->nodes[0]; 501 const u64 ino_size = btrfs_inode_size(eb, src_item); 502 503 /* 504 * For regular files an ino_size == 0 is used only when 505 * logging that an inode exists, as part of a directory 506 * fsync, and the inode wasn't fsynced before. In this 507 * case don't set the size of the inode in the fs/subvol 508 * tree, otherwise we would be throwing valid data away. 509 */ 510 if (S_ISREG(btrfs_inode_mode(eb, src_item)) && 511 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 512 ino_size != 0) 513 btrfs_set_inode_size(dst_eb, dst_item, ino_size); 514 goto no_copy; 515 } 516 517 if (overwrite_root && 518 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 519 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 520 save_old_i_size = 1; 521 saved_i_size = btrfs_inode_size(path->nodes[0], 522 dst_item); 523 } 524 } 525 526 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 527 src_ptr, item_size); 528 529 if (save_old_i_size) { 530 struct btrfs_inode_item *dst_item; 531 dst_item = (struct btrfs_inode_item *)dst_ptr; 532 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 533 } 534 535 /* make sure the generation is filled in */ 536 if (key->type == BTRFS_INODE_ITEM_KEY) { 537 struct btrfs_inode_item *dst_item; 538 dst_item = (struct btrfs_inode_item *)dst_ptr; 539 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 540 btrfs_set_inode_generation(path->nodes[0], dst_item, 541 trans->transid); 542 } 543 } 544 no_copy: 545 btrfs_mark_buffer_dirty(path->nodes[0]); 546 btrfs_release_path(path); 547 return 0; 548 } 549 550 /* 551 * simple helper to read an inode off the disk from a given root 552 * This can only be called for subvolume roots and not for the log 553 */ 554 static noinline struct inode *read_one_inode(struct btrfs_root *root, 555 u64 objectid) 556 { 557 struct inode *inode; 558 559 inode = btrfs_iget(root->fs_info->sb, objectid, root); 560 if (IS_ERR(inode)) 561 inode = NULL; 562 return inode; 563 } 564 565 /* replays a single extent in 'eb' at 'slot' with 'key' into the 566 * subvolume 'root'. path is released on entry and should be released 567 * on exit. 568 * 569 * extents in the log tree have not been allocated out of the extent 570 * tree yet. So, this completes the allocation, taking a reference 571 * as required if the extent already exists or creating a new extent 572 * if it isn't in the extent allocation tree yet. 573 * 574 * The extent is inserted into the file, dropping any existing extents 575 * from the file that overlap the new one. 576 */ 577 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 578 struct btrfs_root *root, 579 struct btrfs_path *path, 580 struct extent_buffer *eb, int slot, 581 struct btrfs_key *key) 582 { 583 struct btrfs_fs_info *fs_info = root->fs_info; 584 int found_type; 585 u64 extent_end; 586 u64 start = key->offset; 587 u64 nbytes = 0; 588 struct btrfs_file_extent_item *item; 589 struct inode *inode = NULL; 590 unsigned long size; 591 int ret = 0; 592 593 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 594 found_type = btrfs_file_extent_type(eb, item); 595 596 if (found_type == BTRFS_FILE_EXTENT_REG || 597 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 598 nbytes = btrfs_file_extent_num_bytes(eb, item); 599 extent_end = start + nbytes; 600 601 /* 602 * We don't add to the inodes nbytes if we are prealloc or a 603 * hole. 604 */ 605 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 606 nbytes = 0; 607 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 608 size = btrfs_file_extent_ram_bytes(eb, item); 609 nbytes = btrfs_file_extent_ram_bytes(eb, item); 610 extent_end = ALIGN(start + size, 611 fs_info->sectorsize); 612 } else { 613 ret = 0; 614 goto out; 615 } 616 617 inode = read_one_inode(root, key->objectid); 618 if (!inode) { 619 ret = -EIO; 620 goto out; 621 } 622 623 /* 624 * first check to see if we already have this extent in the 625 * file. This must be done before the btrfs_drop_extents run 626 * so we don't try to drop this extent. 627 */ 628 ret = btrfs_lookup_file_extent(trans, root, path, 629 btrfs_ino(BTRFS_I(inode)), start, 0); 630 631 if (ret == 0 && 632 (found_type == BTRFS_FILE_EXTENT_REG || 633 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 634 struct btrfs_file_extent_item cmp1; 635 struct btrfs_file_extent_item cmp2; 636 struct btrfs_file_extent_item *existing; 637 struct extent_buffer *leaf; 638 639 leaf = path->nodes[0]; 640 existing = btrfs_item_ptr(leaf, path->slots[0], 641 struct btrfs_file_extent_item); 642 643 read_extent_buffer(eb, &cmp1, (unsigned long)item, 644 sizeof(cmp1)); 645 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 646 sizeof(cmp2)); 647 648 /* 649 * we already have a pointer to this exact extent, 650 * we don't have to do anything 651 */ 652 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 653 btrfs_release_path(path); 654 goto out; 655 } 656 } 657 btrfs_release_path(path); 658 659 /* drop any overlapping extents */ 660 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1); 661 if (ret) 662 goto out; 663 664 if (found_type == BTRFS_FILE_EXTENT_REG || 665 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 666 u64 offset; 667 unsigned long dest_offset; 668 struct btrfs_key ins; 669 670 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && 671 btrfs_fs_incompat(fs_info, NO_HOLES)) 672 goto update_inode; 673 674 ret = btrfs_insert_empty_item(trans, root, path, key, 675 sizeof(*item)); 676 if (ret) 677 goto out; 678 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 679 path->slots[0]); 680 copy_extent_buffer(path->nodes[0], eb, dest_offset, 681 (unsigned long)item, sizeof(*item)); 682 683 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 684 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 685 ins.type = BTRFS_EXTENT_ITEM_KEY; 686 offset = key->offset - btrfs_file_extent_offset(eb, item); 687 688 /* 689 * Manually record dirty extent, as here we did a shallow 690 * file extent item copy and skip normal backref update, 691 * but modifying extent tree all by ourselves. 692 * So need to manually record dirty extent for qgroup, 693 * as the owner of the file extent changed from log tree 694 * (doesn't affect qgroup) to fs/file tree(affects qgroup) 695 */ 696 ret = btrfs_qgroup_trace_extent(trans, 697 btrfs_file_extent_disk_bytenr(eb, item), 698 btrfs_file_extent_disk_num_bytes(eb, item), 699 GFP_NOFS); 700 if (ret < 0) 701 goto out; 702 703 if (ins.objectid > 0) { 704 struct btrfs_ref ref = { 0 }; 705 u64 csum_start; 706 u64 csum_end; 707 LIST_HEAD(ordered_sums); 708 709 /* 710 * is this extent already allocated in the extent 711 * allocation tree? If so, just add a reference 712 */ 713 ret = btrfs_lookup_data_extent(fs_info, ins.objectid, 714 ins.offset); 715 if (ret == 0) { 716 btrfs_init_generic_ref(&ref, 717 BTRFS_ADD_DELAYED_REF, 718 ins.objectid, ins.offset, 0); 719 btrfs_init_data_ref(&ref, 720 root->root_key.objectid, 721 key->objectid, offset); 722 ret = btrfs_inc_extent_ref(trans, &ref); 723 if (ret) 724 goto out; 725 } else { 726 /* 727 * insert the extent pointer in the extent 728 * allocation tree 729 */ 730 ret = btrfs_alloc_logged_file_extent(trans, 731 root->root_key.objectid, 732 key->objectid, offset, &ins); 733 if (ret) 734 goto out; 735 } 736 btrfs_release_path(path); 737 738 if (btrfs_file_extent_compression(eb, item)) { 739 csum_start = ins.objectid; 740 csum_end = csum_start + ins.offset; 741 } else { 742 csum_start = ins.objectid + 743 btrfs_file_extent_offset(eb, item); 744 csum_end = csum_start + 745 btrfs_file_extent_num_bytes(eb, item); 746 } 747 748 ret = btrfs_lookup_csums_range(root->log_root, 749 csum_start, csum_end - 1, 750 &ordered_sums, 0); 751 if (ret) 752 goto out; 753 /* 754 * Now delete all existing cums in the csum root that 755 * cover our range. We do this because we can have an 756 * extent that is completely referenced by one file 757 * extent item and partially referenced by another 758 * file extent item (like after using the clone or 759 * extent_same ioctls). In this case if we end up doing 760 * the replay of the one that partially references the 761 * extent first, and we do not do the csum deletion 762 * below, we can get 2 csum items in the csum tree that 763 * overlap each other. For example, imagine our log has 764 * the two following file extent items: 765 * 766 * key (257 EXTENT_DATA 409600) 767 * extent data disk byte 12845056 nr 102400 768 * extent data offset 20480 nr 20480 ram 102400 769 * 770 * key (257 EXTENT_DATA 819200) 771 * extent data disk byte 12845056 nr 102400 772 * extent data offset 0 nr 102400 ram 102400 773 * 774 * Where the second one fully references the 100K extent 775 * that starts at disk byte 12845056, and the log tree 776 * has a single csum item that covers the entire range 777 * of the extent: 778 * 779 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 780 * 781 * After the first file extent item is replayed, the 782 * csum tree gets the following csum item: 783 * 784 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 785 * 786 * Which covers the 20K sub-range starting at offset 20K 787 * of our extent. Now when we replay the second file 788 * extent item, if we do not delete existing csum items 789 * that cover any of its blocks, we end up getting two 790 * csum items in our csum tree that overlap each other: 791 * 792 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 793 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 794 * 795 * Which is a problem, because after this anyone trying 796 * to lookup up for the checksum of any block of our 797 * extent starting at an offset of 40K or higher, will 798 * end up looking at the second csum item only, which 799 * does not contain the checksum for any block starting 800 * at offset 40K or higher of our extent. 801 */ 802 while (!list_empty(&ordered_sums)) { 803 struct btrfs_ordered_sum *sums; 804 sums = list_entry(ordered_sums.next, 805 struct btrfs_ordered_sum, 806 list); 807 if (!ret) 808 ret = btrfs_del_csums(trans, 809 fs_info->csum_root, 810 sums->bytenr, 811 sums->len); 812 if (!ret) 813 ret = btrfs_csum_file_blocks(trans, 814 fs_info->csum_root, sums); 815 list_del(&sums->list); 816 kfree(sums); 817 } 818 if (ret) 819 goto out; 820 } else { 821 btrfs_release_path(path); 822 } 823 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 824 /* inline extents are easy, we just overwrite them */ 825 ret = overwrite_item(trans, root, path, eb, slot, key); 826 if (ret) 827 goto out; 828 } 829 830 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, 831 extent_end - start); 832 if (ret) 833 goto out; 834 835 inode_add_bytes(inode, nbytes); 836 update_inode: 837 ret = btrfs_update_inode(trans, root, inode); 838 out: 839 if (inode) 840 iput(inode); 841 return ret; 842 } 843 844 /* 845 * when cleaning up conflicts between the directory names in the 846 * subvolume, directory names in the log and directory names in the 847 * inode back references, we may have to unlink inodes from directories. 848 * 849 * This is a helper function to do the unlink of a specific directory 850 * item 851 */ 852 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 853 struct btrfs_root *root, 854 struct btrfs_path *path, 855 struct btrfs_inode *dir, 856 struct btrfs_dir_item *di) 857 { 858 struct inode *inode; 859 char *name; 860 int name_len; 861 struct extent_buffer *leaf; 862 struct btrfs_key location; 863 int ret; 864 865 leaf = path->nodes[0]; 866 867 btrfs_dir_item_key_to_cpu(leaf, di, &location); 868 name_len = btrfs_dir_name_len(leaf, di); 869 name = kmalloc(name_len, GFP_NOFS); 870 if (!name) 871 return -ENOMEM; 872 873 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 874 btrfs_release_path(path); 875 876 inode = read_one_inode(root, location.objectid); 877 if (!inode) { 878 ret = -EIO; 879 goto out; 880 } 881 882 ret = link_to_fixup_dir(trans, root, path, location.objectid); 883 if (ret) 884 goto out; 885 886 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name, 887 name_len); 888 if (ret) 889 goto out; 890 else 891 ret = btrfs_run_delayed_items(trans); 892 out: 893 kfree(name); 894 iput(inode); 895 return ret; 896 } 897 898 /* 899 * helper function to see if a given name and sequence number found 900 * in an inode back reference are already in a directory and correctly 901 * point to this inode 902 */ 903 static noinline int inode_in_dir(struct btrfs_root *root, 904 struct btrfs_path *path, 905 u64 dirid, u64 objectid, u64 index, 906 const char *name, int name_len) 907 { 908 struct btrfs_dir_item *di; 909 struct btrfs_key location; 910 int match = 0; 911 912 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 913 index, name, name_len, 0); 914 if (di && !IS_ERR(di)) { 915 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 916 if (location.objectid != objectid) 917 goto out; 918 } else 919 goto out; 920 btrfs_release_path(path); 921 922 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 923 if (di && !IS_ERR(di)) { 924 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 925 if (location.objectid != objectid) 926 goto out; 927 } else 928 goto out; 929 match = 1; 930 out: 931 btrfs_release_path(path); 932 return match; 933 } 934 935 /* 936 * helper function to check a log tree for a named back reference in 937 * an inode. This is used to decide if a back reference that is 938 * found in the subvolume conflicts with what we find in the log. 939 * 940 * inode backreferences may have multiple refs in a single item, 941 * during replay we process one reference at a time, and we don't 942 * want to delete valid links to a file from the subvolume if that 943 * link is also in the log. 944 */ 945 static noinline int backref_in_log(struct btrfs_root *log, 946 struct btrfs_key *key, 947 u64 ref_objectid, 948 const char *name, int namelen) 949 { 950 struct btrfs_path *path; 951 int ret; 952 953 path = btrfs_alloc_path(); 954 if (!path) 955 return -ENOMEM; 956 957 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 958 if (ret < 0) { 959 goto out; 960 } else if (ret == 1) { 961 ret = 0; 962 goto out; 963 } 964 965 if (key->type == BTRFS_INODE_EXTREF_KEY) 966 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 967 path->slots[0], 968 ref_objectid, 969 name, namelen); 970 else 971 ret = !!btrfs_find_name_in_backref(path->nodes[0], 972 path->slots[0], 973 name, namelen); 974 out: 975 btrfs_free_path(path); 976 return ret; 977 } 978 979 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 980 struct btrfs_root *root, 981 struct btrfs_path *path, 982 struct btrfs_root *log_root, 983 struct btrfs_inode *dir, 984 struct btrfs_inode *inode, 985 u64 inode_objectid, u64 parent_objectid, 986 u64 ref_index, char *name, int namelen, 987 int *search_done) 988 { 989 int ret; 990 char *victim_name; 991 int victim_name_len; 992 struct extent_buffer *leaf; 993 struct btrfs_dir_item *di; 994 struct btrfs_key search_key; 995 struct btrfs_inode_extref *extref; 996 997 again: 998 /* Search old style refs */ 999 search_key.objectid = inode_objectid; 1000 search_key.type = BTRFS_INODE_REF_KEY; 1001 search_key.offset = parent_objectid; 1002 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 1003 if (ret == 0) { 1004 struct btrfs_inode_ref *victim_ref; 1005 unsigned long ptr; 1006 unsigned long ptr_end; 1007 1008 leaf = path->nodes[0]; 1009 1010 /* are we trying to overwrite a back ref for the root directory 1011 * if so, just jump out, we're done 1012 */ 1013 if (search_key.objectid == search_key.offset) 1014 return 1; 1015 1016 /* check all the names in this back reference to see 1017 * if they are in the log. if so, we allow them to stay 1018 * otherwise they must be unlinked as a conflict 1019 */ 1020 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1021 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 1022 while (ptr < ptr_end) { 1023 victim_ref = (struct btrfs_inode_ref *)ptr; 1024 victim_name_len = btrfs_inode_ref_name_len(leaf, 1025 victim_ref); 1026 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1027 if (!victim_name) 1028 return -ENOMEM; 1029 1030 read_extent_buffer(leaf, victim_name, 1031 (unsigned long)(victim_ref + 1), 1032 victim_name_len); 1033 1034 ret = backref_in_log(log_root, &search_key, 1035 parent_objectid, victim_name, 1036 victim_name_len); 1037 if (ret < 0) { 1038 kfree(victim_name); 1039 return ret; 1040 } else if (!ret) { 1041 inc_nlink(&inode->vfs_inode); 1042 btrfs_release_path(path); 1043 1044 ret = btrfs_unlink_inode(trans, root, dir, inode, 1045 victim_name, victim_name_len); 1046 kfree(victim_name); 1047 if (ret) 1048 return ret; 1049 ret = btrfs_run_delayed_items(trans); 1050 if (ret) 1051 return ret; 1052 *search_done = 1; 1053 goto again; 1054 } 1055 kfree(victim_name); 1056 1057 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 1058 } 1059 1060 /* 1061 * NOTE: we have searched root tree and checked the 1062 * corresponding ref, it does not need to check again. 1063 */ 1064 *search_done = 1; 1065 } 1066 btrfs_release_path(path); 1067 1068 /* Same search but for extended refs */ 1069 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, 1070 inode_objectid, parent_objectid, 0, 1071 0); 1072 if (!IS_ERR_OR_NULL(extref)) { 1073 u32 item_size; 1074 u32 cur_offset = 0; 1075 unsigned long base; 1076 struct inode *victim_parent; 1077 1078 leaf = path->nodes[0]; 1079 1080 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1081 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 1082 1083 while (cur_offset < item_size) { 1084 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1085 1086 victim_name_len = btrfs_inode_extref_name_len(leaf, extref); 1087 1088 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1089 goto next; 1090 1091 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1092 if (!victim_name) 1093 return -ENOMEM; 1094 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, 1095 victim_name_len); 1096 1097 search_key.objectid = inode_objectid; 1098 search_key.type = BTRFS_INODE_EXTREF_KEY; 1099 search_key.offset = btrfs_extref_hash(parent_objectid, 1100 victim_name, 1101 victim_name_len); 1102 ret = backref_in_log(log_root, &search_key, 1103 parent_objectid, victim_name, 1104 victim_name_len); 1105 if (ret < 0) { 1106 return ret; 1107 } else if (!ret) { 1108 ret = -ENOENT; 1109 victim_parent = read_one_inode(root, 1110 parent_objectid); 1111 if (victim_parent) { 1112 inc_nlink(&inode->vfs_inode); 1113 btrfs_release_path(path); 1114 1115 ret = btrfs_unlink_inode(trans, root, 1116 BTRFS_I(victim_parent), 1117 inode, 1118 victim_name, 1119 victim_name_len); 1120 if (!ret) 1121 ret = btrfs_run_delayed_items( 1122 trans); 1123 } 1124 iput(victim_parent); 1125 kfree(victim_name); 1126 if (ret) 1127 return ret; 1128 *search_done = 1; 1129 goto again; 1130 } 1131 kfree(victim_name); 1132 next: 1133 cur_offset += victim_name_len + sizeof(*extref); 1134 } 1135 *search_done = 1; 1136 } 1137 btrfs_release_path(path); 1138 1139 /* look for a conflicting sequence number */ 1140 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1141 ref_index, name, namelen, 0); 1142 if (di && !IS_ERR(di)) { 1143 ret = drop_one_dir_item(trans, root, path, dir, di); 1144 if (ret) 1145 return ret; 1146 } 1147 btrfs_release_path(path); 1148 1149 /* look for a conflicting name */ 1150 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 1151 name, namelen, 0); 1152 if (di && !IS_ERR(di)) { 1153 ret = drop_one_dir_item(trans, root, path, dir, di); 1154 if (ret) 1155 return ret; 1156 } 1157 btrfs_release_path(path); 1158 1159 return 0; 1160 } 1161 1162 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1163 u32 *namelen, char **name, u64 *index, 1164 u64 *parent_objectid) 1165 { 1166 struct btrfs_inode_extref *extref; 1167 1168 extref = (struct btrfs_inode_extref *)ref_ptr; 1169 1170 *namelen = btrfs_inode_extref_name_len(eb, extref); 1171 *name = kmalloc(*namelen, GFP_NOFS); 1172 if (*name == NULL) 1173 return -ENOMEM; 1174 1175 read_extent_buffer(eb, *name, (unsigned long)&extref->name, 1176 *namelen); 1177 1178 if (index) 1179 *index = btrfs_inode_extref_index(eb, extref); 1180 if (parent_objectid) 1181 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1182 1183 return 0; 1184 } 1185 1186 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1187 u32 *namelen, char **name, u64 *index) 1188 { 1189 struct btrfs_inode_ref *ref; 1190 1191 ref = (struct btrfs_inode_ref *)ref_ptr; 1192 1193 *namelen = btrfs_inode_ref_name_len(eb, ref); 1194 *name = kmalloc(*namelen, GFP_NOFS); 1195 if (*name == NULL) 1196 return -ENOMEM; 1197 1198 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); 1199 1200 if (index) 1201 *index = btrfs_inode_ref_index(eb, ref); 1202 1203 return 0; 1204 } 1205 1206 /* 1207 * Take an inode reference item from the log tree and iterate all names from the 1208 * inode reference item in the subvolume tree with the same key (if it exists). 1209 * For any name that is not in the inode reference item from the log tree, do a 1210 * proper unlink of that name (that is, remove its entry from the inode 1211 * reference item and both dir index keys). 1212 */ 1213 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, 1214 struct btrfs_root *root, 1215 struct btrfs_path *path, 1216 struct btrfs_inode *inode, 1217 struct extent_buffer *log_eb, 1218 int log_slot, 1219 struct btrfs_key *key) 1220 { 1221 int ret; 1222 unsigned long ref_ptr; 1223 unsigned long ref_end; 1224 struct extent_buffer *eb; 1225 1226 again: 1227 btrfs_release_path(path); 1228 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1229 if (ret > 0) { 1230 ret = 0; 1231 goto out; 1232 } 1233 if (ret < 0) 1234 goto out; 1235 1236 eb = path->nodes[0]; 1237 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 1238 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]); 1239 while (ref_ptr < ref_end) { 1240 char *name = NULL; 1241 int namelen; 1242 u64 parent_id; 1243 1244 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1245 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1246 NULL, &parent_id); 1247 } else { 1248 parent_id = key->offset; 1249 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1250 NULL); 1251 } 1252 if (ret) 1253 goto out; 1254 1255 if (key->type == BTRFS_INODE_EXTREF_KEY) 1256 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot, 1257 parent_id, name, 1258 namelen); 1259 else 1260 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, 1261 name, namelen); 1262 1263 if (!ret) { 1264 struct inode *dir; 1265 1266 btrfs_release_path(path); 1267 dir = read_one_inode(root, parent_id); 1268 if (!dir) { 1269 ret = -ENOENT; 1270 kfree(name); 1271 goto out; 1272 } 1273 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 1274 inode, name, namelen); 1275 kfree(name); 1276 iput(dir); 1277 if (ret) 1278 goto out; 1279 goto again; 1280 } 1281 1282 kfree(name); 1283 ref_ptr += namelen; 1284 if (key->type == BTRFS_INODE_EXTREF_KEY) 1285 ref_ptr += sizeof(struct btrfs_inode_extref); 1286 else 1287 ref_ptr += sizeof(struct btrfs_inode_ref); 1288 } 1289 ret = 0; 1290 out: 1291 btrfs_release_path(path); 1292 return ret; 1293 } 1294 1295 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir, 1296 const u8 ref_type, const char *name, 1297 const int namelen) 1298 { 1299 struct btrfs_key key; 1300 struct btrfs_path *path; 1301 const u64 parent_id = btrfs_ino(BTRFS_I(dir)); 1302 int ret; 1303 1304 path = btrfs_alloc_path(); 1305 if (!path) 1306 return -ENOMEM; 1307 1308 key.objectid = btrfs_ino(BTRFS_I(inode)); 1309 key.type = ref_type; 1310 if (key.type == BTRFS_INODE_REF_KEY) 1311 key.offset = parent_id; 1312 else 1313 key.offset = btrfs_extref_hash(parent_id, name, namelen); 1314 1315 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0); 1316 if (ret < 0) 1317 goto out; 1318 if (ret > 0) { 1319 ret = 0; 1320 goto out; 1321 } 1322 if (key.type == BTRFS_INODE_EXTREF_KEY) 1323 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 1324 path->slots[0], parent_id, name, namelen); 1325 else 1326 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0], 1327 name, namelen); 1328 1329 out: 1330 btrfs_free_path(path); 1331 return ret; 1332 } 1333 1334 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1335 struct inode *dir, struct inode *inode, const char *name, 1336 int namelen, u64 ref_index) 1337 { 1338 struct btrfs_dir_item *dir_item; 1339 struct btrfs_key key; 1340 struct btrfs_path *path; 1341 struct inode *other_inode = NULL; 1342 int ret; 1343 1344 path = btrfs_alloc_path(); 1345 if (!path) 1346 return -ENOMEM; 1347 1348 dir_item = btrfs_lookup_dir_item(NULL, root, path, 1349 btrfs_ino(BTRFS_I(dir)), 1350 name, namelen, 0); 1351 if (!dir_item) { 1352 btrfs_release_path(path); 1353 goto add_link; 1354 } else if (IS_ERR(dir_item)) { 1355 ret = PTR_ERR(dir_item); 1356 goto out; 1357 } 1358 1359 /* 1360 * Our inode's dentry collides with the dentry of another inode which is 1361 * in the log but not yet processed since it has a higher inode number. 1362 * So delete that other dentry. 1363 */ 1364 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key); 1365 btrfs_release_path(path); 1366 other_inode = read_one_inode(root, key.objectid); 1367 if (!other_inode) { 1368 ret = -ENOENT; 1369 goto out; 1370 } 1371 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode), 1372 name, namelen); 1373 if (ret) 1374 goto out; 1375 /* 1376 * If we dropped the link count to 0, bump it so that later the iput() 1377 * on the inode will not free it. We will fixup the link count later. 1378 */ 1379 if (other_inode->i_nlink == 0) 1380 inc_nlink(other_inode); 1381 1382 ret = btrfs_run_delayed_items(trans); 1383 if (ret) 1384 goto out; 1385 add_link: 1386 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 1387 name, namelen, 0, ref_index); 1388 out: 1389 iput(other_inode); 1390 btrfs_free_path(path); 1391 1392 return ret; 1393 } 1394 1395 /* 1396 * replay one inode back reference item found in the log tree. 1397 * eb, slot and key refer to the buffer and key found in the log tree. 1398 * root is the destination we are replaying into, and path is for temp 1399 * use by this function. (it should be released on return). 1400 */ 1401 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1402 struct btrfs_root *root, 1403 struct btrfs_root *log, 1404 struct btrfs_path *path, 1405 struct extent_buffer *eb, int slot, 1406 struct btrfs_key *key) 1407 { 1408 struct inode *dir = NULL; 1409 struct inode *inode = NULL; 1410 unsigned long ref_ptr; 1411 unsigned long ref_end; 1412 char *name = NULL; 1413 int namelen; 1414 int ret; 1415 int search_done = 0; 1416 int log_ref_ver = 0; 1417 u64 parent_objectid; 1418 u64 inode_objectid; 1419 u64 ref_index = 0; 1420 int ref_struct_size; 1421 1422 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1423 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 1424 1425 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1426 struct btrfs_inode_extref *r; 1427 1428 ref_struct_size = sizeof(struct btrfs_inode_extref); 1429 log_ref_ver = 1; 1430 r = (struct btrfs_inode_extref *)ref_ptr; 1431 parent_objectid = btrfs_inode_extref_parent(eb, r); 1432 } else { 1433 ref_struct_size = sizeof(struct btrfs_inode_ref); 1434 parent_objectid = key->offset; 1435 } 1436 inode_objectid = key->objectid; 1437 1438 /* 1439 * it is possible that we didn't log all the parent directories 1440 * for a given inode. If we don't find the dir, just don't 1441 * copy the back ref in. The link count fixup code will take 1442 * care of the rest 1443 */ 1444 dir = read_one_inode(root, parent_objectid); 1445 if (!dir) { 1446 ret = -ENOENT; 1447 goto out; 1448 } 1449 1450 inode = read_one_inode(root, inode_objectid); 1451 if (!inode) { 1452 ret = -EIO; 1453 goto out; 1454 } 1455 1456 while (ref_ptr < ref_end) { 1457 if (log_ref_ver) { 1458 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1459 &ref_index, &parent_objectid); 1460 /* 1461 * parent object can change from one array 1462 * item to another. 1463 */ 1464 if (!dir) 1465 dir = read_one_inode(root, parent_objectid); 1466 if (!dir) { 1467 ret = -ENOENT; 1468 goto out; 1469 } 1470 } else { 1471 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1472 &ref_index); 1473 } 1474 if (ret) 1475 goto out; 1476 1477 /* if we already have a perfect match, we're done */ 1478 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), 1479 btrfs_ino(BTRFS_I(inode)), ref_index, 1480 name, namelen)) { 1481 /* 1482 * look for a conflicting back reference in the 1483 * metadata. if we find one we have to unlink that name 1484 * of the file before we add our new link. Later on, we 1485 * overwrite any existing back reference, and we don't 1486 * want to create dangling pointers in the directory. 1487 */ 1488 1489 if (!search_done) { 1490 ret = __add_inode_ref(trans, root, path, log, 1491 BTRFS_I(dir), 1492 BTRFS_I(inode), 1493 inode_objectid, 1494 parent_objectid, 1495 ref_index, name, namelen, 1496 &search_done); 1497 if (ret) { 1498 if (ret == 1) 1499 ret = 0; 1500 goto out; 1501 } 1502 } 1503 1504 /* 1505 * If a reference item already exists for this inode 1506 * with the same parent and name, but different index, 1507 * drop it and the corresponding directory index entries 1508 * from the parent before adding the new reference item 1509 * and dir index entries, otherwise we would fail with 1510 * -EEXIST returned from btrfs_add_link() below. 1511 */ 1512 ret = btrfs_inode_ref_exists(inode, dir, key->type, 1513 name, namelen); 1514 if (ret > 0) { 1515 ret = btrfs_unlink_inode(trans, root, 1516 BTRFS_I(dir), 1517 BTRFS_I(inode), 1518 name, namelen); 1519 /* 1520 * If we dropped the link count to 0, bump it so 1521 * that later the iput() on the inode will not 1522 * free it. We will fixup the link count later. 1523 */ 1524 if (!ret && inode->i_nlink == 0) 1525 inc_nlink(inode); 1526 } 1527 if (ret < 0) 1528 goto out; 1529 1530 /* insert our name */ 1531 ret = add_link(trans, root, dir, inode, name, namelen, 1532 ref_index); 1533 if (ret) 1534 goto out; 1535 1536 btrfs_update_inode(trans, root, inode); 1537 } 1538 1539 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; 1540 kfree(name); 1541 name = NULL; 1542 if (log_ref_ver) { 1543 iput(dir); 1544 dir = NULL; 1545 } 1546 } 1547 1548 /* 1549 * Before we overwrite the inode reference item in the subvolume tree 1550 * with the item from the log tree, we must unlink all names from the 1551 * parent directory that are in the subvolume's tree inode reference 1552 * item, otherwise we end up with an inconsistent subvolume tree where 1553 * dir index entries exist for a name but there is no inode reference 1554 * item with the same name. 1555 */ 1556 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot, 1557 key); 1558 if (ret) 1559 goto out; 1560 1561 /* finally write the back reference in the inode */ 1562 ret = overwrite_item(trans, root, path, eb, slot, key); 1563 out: 1564 btrfs_release_path(path); 1565 kfree(name); 1566 iput(dir); 1567 iput(inode); 1568 return ret; 1569 } 1570 1571 static int insert_orphan_item(struct btrfs_trans_handle *trans, 1572 struct btrfs_root *root, u64 ino) 1573 { 1574 int ret; 1575 1576 ret = btrfs_insert_orphan_item(trans, root, ino); 1577 if (ret == -EEXIST) 1578 ret = 0; 1579 1580 return ret; 1581 } 1582 1583 static int count_inode_extrefs(struct btrfs_root *root, 1584 struct btrfs_inode *inode, struct btrfs_path *path) 1585 { 1586 int ret = 0; 1587 int name_len; 1588 unsigned int nlink = 0; 1589 u32 item_size; 1590 u32 cur_offset = 0; 1591 u64 inode_objectid = btrfs_ino(inode); 1592 u64 offset = 0; 1593 unsigned long ptr; 1594 struct btrfs_inode_extref *extref; 1595 struct extent_buffer *leaf; 1596 1597 while (1) { 1598 ret = btrfs_find_one_extref(root, inode_objectid, offset, path, 1599 &extref, &offset); 1600 if (ret) 1601 break; 1602 1603 leaf = path->nodes[0]; 1604 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1605 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1606 cur_offset = 0; 1607 1608 while (cur_offset < item_size) { 1609 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1610 name_len = btrfs_inode_extref_name_len(leaf, extref); 1611 1612 nlink++; 1613 1614 cur_offset += name_len + sizeof(*extref); 1615 } 1616 1617 offset++; 1618 btrfs_release_path(path); 1619 } 1620 btrfs_release_path(path); 1621 1622 if (ret < 0 && ret != -ENOENT) 1623 return ret; 1624 return nlink; 1625 } 1626 1627 static int count_inode_refs(struct btrfs_root *root, 1628 struct btrfs_inode *inode, struct btrfs_path *path) 1629 { 1630 int ret; 1631 struct btrfs_key key; 1632 unsigned int nlink = 0; 1633 unsigned long ptr; 1634 unsigned long ptr_end; 1635 int name_len; 1636 u64 ino = btrfs_ino(inode); 1637 1638 key.objectid = ino; 1639 key.type = BTRFS_INODE_REF_KEY; 1640 key.offset = (u64)-1; 1641 1642 while (1) { 1643 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1644 if (ret < 0) 1645 break; 1646 if (ret > 0) { 1647 if (path->slots[0] == 0) 1648 break; 1649 path->slots[0]--; 1650 } 1651 process_slot: 1652 btrfs_item_key_to_cpu(path->nodes[0], &key, 1653 path->slots[0]); 1654 if (key.objectid != ino || 1655 key.type != BTRFS_INODE_REF_KEY) 1656 break; 1657 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1658 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 1659 path->slots[0]); 1660 while (ptr < ptr_end) { 1661 struct btrfs_inode_ref *ref; 1662 1663 ref = (struct btrfs_inode_ref *)ptr; 1664 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1665 ref); 1666 ptr = (unsigned long)(ref + 1) + name_len; 1667 nlink++; 1668 } 1669 1670 if (key.offset == 0) 1671 break; 1672 if (path->slots[0] > 0) { 1673 path->slots[0]--; 1674 goto process_slot; 1675 } 1676 key.offset--; 1677 btrfs_release_path(path); 1678 } 1679 btrfs_release_path(path); 1680 1681 return nlink; 1682 } 1683 1684 /* 1685 * There are a few corners where the link count of the file can't 1686 * be properly maintained during replay. So, instead of adding 1687 * lots of complexity to the log code, we just scan the backrefs 1688 * for any file that has been through replay. 1689 * 1690 * The scan will update the link count on the inode to reflect the 1691 * number of back refs found. If it goes down to zero, the iput 1692 * will free the inode. 1693 */ 1694 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1695 struct btrfs_root *root, 1696 struct inode *inode) 1697 { 1698 struct btrfs_path *path; 1699 int ret; 1700 u64 nlink = 0; 1701 u64 ino = btrfs_ino(BTRFS_I(inode)); 1702 1703 path = btrfs_alloc_path(); 1704 if (!path) 1705 return -ENOMEM; 1706 1707 ret = count_inode_refs(root, BTRFS_I(inode), path); 1708 if (ret < 0) 1709 goto out; 1710 1711 nlink = ret; 1712 1713 ret = count_inode_extrefs(root, BTRFS_I(inode), path); 1714 if (ret < 0) 1715 goto out; 1716 1717 nlink += ret; 1718 1719 ret = 0; 1720 1721 if (nlink != inode->i_nlink) { 1722 set_nlink(inode, nlink); 1723 btrfs_update_inode(trans, root, inode); 1724 } 1725 BTRFS_I(inode)->index_cnt = (u64)-1; 1726 1727 if (inode->i_nlink == 0) { 1728 if (S_ISDIR(inode->i_mode)) { 1729 ret = replay_dir_deletes(trans, root, NULL, path, 1730 ino, 1); 1731 if (ret) 1732 goto out; 1733 } 1734 ret = insert_orphan_item(trans, root, ino); 1735 } 1736 1737 out: 1738 btrfs_free_path(path); 1739 return ret; 1740 } 1741 1742 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1743 struct btrfs_root *root, 1744 struct btrfs_path *path) 1745 { 1746 int ret; 1747 struct btrfs_key key; 1748 struct inode *inode; 1749 1750 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1751 key.type = BTRFS_ORPHAN_ITEM_KEY; 1752 key.offset = (u64)-1; 1753 while (1) { 1754 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1755 if (ret < 0) 1756 break; 1757 1758 if (ret == 1) { 1759 if (path->slots[0] == 0) 1760 break; 1761 path->slots[0]--; 1762 } 1763 1764 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1765 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1766 key.type != BTRFS_ORPHAN_ITEM_KEY) 1767 break; 1768 1769 ret = btrfs_del_item(trans, root, path); 1770 if (ret) 1771 goto out; 1772 1773 btrfs_release_path(path); 1774 inode = read_one_inode(root, key.offset); 1775 if (!inode) 1776 return -EIO; 1777 1778 ret = fixup_inode_link_count(trans, root, inode); 1779 iput(inode); 1780 if (ret) 1781 goto out; 1782 1783 /* 1784 * fixup on a directory may create new entries, 1785 * make sure we always look for the highset possible 1786 * offset 1787 */ 1788 key.offset = (u64)-1; 1789 } 1790 ret = 0; 1791 out: 1792 btrfs_release_path(path); 1793 return ret; 1794 } 1795 1796 1797 /* 1798 * record a given inode in the fixup dir so we can check its link 1799 * count when replay is done. The link count is incremented here 1800 * so the inode won't go away until we check it 1801 */ 1802 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1803 struct btrfs_root *root, 1804 struct btrfs_path *path, 1805 u64 objectid) 1806 { 1807 struct btrfs_key key; 1808 int ret = 0; 1809 struct inode *inode; 1810 1811 inode = read_one_inode(root, objectid); 1812 if (!inode) 1813 return -EIO; 1814 1815 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1816 key.type = BTRFS_ORPHAN_ITEM_KEY; 1817 key.offset = objectid; 1818 1819 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1820 1821 btrfs_release_path(path); 1822 if (ret == 0) { 1823 if (!inode->i_nlink) 1824 set_nlink(inode, 1); 1825 else 1826 inc_nlink(inode); 1827 ret = btrfs_update_inode(trans, root, inode); 1828 } else if (ret == -EEXIST) { 1829 ret = 0; 1830 } else { 1831 BUG(); /* Logic Error */ 1832 } 1833 iput(inode); 1834 1835 return ret; 1836 } 1837 1838 /* 1839 * when replaying the log for a directory, we only insert names 1840 * for inodes that actually exist. This means an fsync on a directory 1841 * does not implicitly fsync all the new files in it 1842 */ 1843 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1844 struct btrfs_root *root, 1845 u64 dirid, u64 index, 1846 char *name, int name_len, 1847 struct btrfs_key *location) 1848 { 1849 struct inode *inode; 1850 struct inode *dir; 1851 int ret; 1852 1853 inode = read_one_inode(root, location->objectid); 1854 if (!inode) 1855 return -ENOENT; 1856 1857 dir = read_one_inode(root, dirid); 1858 if (!dir) { 1859 iput(inode); 1860 return -EIO; 1861 } 1862 1863 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 1864 name_len, 1, index); 1865 1866 /* FIXME, put inode into FIXUP list */ 1867 1868 iput(inode); 1869 iput(dir); 1870 return ret; 1871 } 1872 1873 /* 1874 * take a single entry in a log directory item and replay it into 1875 * the subvolume. 1876 * 1877 * if a conflicting item exists in the subdirectory already, 1878 * the inode it points to is unlinked and put into the link count 1879 * fix up tree. 1880 * 1881 * If a name from the log points to a file or directory that does 1882 * not exist in the FS, it is skipped. fsyncs on directories 1883 * do not force down inodes inside that directory, just changes to the 1884 * names or unlinks in a directory. 1885 * 1886 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 1887 * non-existing inode) and 1 if the name was replayed. 1888 */ 1889 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1890 struct btrfs_root *root, 1891 struct btrfs_path *path, 1892 struct extent_buffer *eb, 1893 struct btrfs_dir_item *di, 1894 struct btrfs_key *key) 1895 { 1896 char *name; 1897 int name_len; 1898 struct btrfs_dir_item *dst_di; 1899 struct btrfs_key found_key; 1900 struct btrfs_key log_key; 1901 struct inode *dir; 1902 u8 log_type; 1903 int exists; 1904 int ret = 0; 1905 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY); 1906 bool name_added = false; 1907 1908 dir = read_one_inode(root, key->objectid); 1909 if (!dir) 1910 return -EIO; 1911 1912 name_len = btrfs_dir_name_len(eb, di); 1913 name = kmalloc(name_len, GFP_NOFS); 1914 if (!name) { 1915 ret = -ENOMEM; 1916 goto out; 1917 } 1918 1919 log_type = btrfs_dir_type(eb, di); 1920 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1921 name_len); 1922 1923 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1924 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1925 if (exists == 0) 1926 exists = 1; 1927 else 1928 exists = 0; 1929 btrfs_release_path(path); 1930 1931 if (key->type == BTRFS_DIR_ITEM_KEY) { 1932 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1933 name, name_len, 1); 1934 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1935 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1936 key->objectid, 1937 key->offset, name, 1938 name_len, 1); 1939 } else { 1940 /* Corruption */ 1941 ret = -EINVAL; 1942 goto out; 1943 } 1944 if (IS_ERR_OR_NULL(dst_di)) { 1945 /* we need a sequence number to insert, so we only 1946 * do inserts for the BTRFS_DIR_INDEX_KEY types 1947 */ 1948 if (key->type != BTRFS_DIR_INDEX_KEY) 1949 goto out; 1950 goto insert; 1951 } 1952 1953 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1954 /* the existing item matches the logged item */ 1955 if (found_key.objectid == log_key.objectid && 1956 found_key.type == log_key.type && 1957 found_key.offset == log_key.offset && 1958 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1959 update_size = false; 1960 goto out; 1961 } 1962 1963 /* 1964 * don't drop the conflicting directory entry if the inode 1965 * for the new entry doesn't exist 1966 */ 1967 if (!exists) 1968 goto out; 1969 1970 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di); 1971 if (ret) 1972 goto out; 1973 1974 if (key->type == BTRFS_DIR_INDEX_KEY) 1975 goto insert; 1976 out: 1977 btrfs_release_path(path); 1978 if (!ret && update_size) { 1979 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2); 1980 ret = btrfs_update_inode(trans, root, dir); 1981 } 1982 kfree(name); 1983 iput(dir); 1984 if (!ret && name_added) 1985 ret = 1; 1986 return ret; 1987 1988 insert: 1989 /* 1990 * Check if the inode reference exists in the log for the given name, 1991 * inode and parent inode 1992 */ 1993 found_key.objectid = log_key.objectid; 1994 found_key.type = BTRFS_INODE_REF_KEY; 1995 found_key.offset = key->objectid; 1996 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len); 1997 if (ret < 0) { 1998 goto out; 1999 } else if (ret) { 2000 /* The dentry will be added later. */ 2001 ret = 0; 2002 update_size = false; 2003 goto out; 2004 } 2005 2006 found_key.objectid = log_key.objectid; 2007 found_key.type = BTRFS_INODE_EXTREF_KEY; 2008 found_key.offset = key->objectid; 2009 ret = backref_in_log(root->log_root, &found_key, key->objectid, name, 2010 name_len); 2011 if (ret < 0) { 2012 goto out; 2013 } else if (ret) { 2014 /* The dentry will be added later. */ 2015 ret = 0; 2016 update_size = false; 2017 goto out; 2018 } 2019 btrfs_release_path(path); 2020 ret = insert_one_name(trans, root, key->objectid, key->offset, 2021 name, name_len, &log_key); 2022 if (ret && ret != -ENOENT && ret != -EEXIST) 2023 goto out; 2024 if (!ret) 2025 name_added = true; 2026 update_size = false; 2027 ret = 0; 2028 goto out; 2029 } 2030 2031 /* 2032 * find all the names in a directory item and reconcile them into 2033 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 2034 * one name in a directory item, but the same code gets used for 2035 * both directory index types 2036 */ 2037 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 2038 struct btrfs_root *root, 2039 struct btrfs_path *path, 2040 struct extent_buffer *eb, int slot, 2041 struct btrfs_key *key) 2042 { 2043 int ret = 0; 2044 u32 item_size = btrfs_item_size_nr(eb, slot); 2045 struct btrfs_dir_item *di; 2046 int name_len; 2047 unsigned long ptr; 2048 unsigned long ptr_end; 2049 struct btrfs_path *fixup_path = NULL; 2050 2051 ptr = btrfs_item_ptr_offset(eb, slot); 2052 ptr_end = ptr + item_size; 2053 while (ptr < ptr_end) { 2054 di = (struct btrfs_dir_item *)ptr; 2055 name_len = btrfs_dir_name_len(eb, di); 2056 ret = replay_one_name(trans, root, path, eb, di, key); 2057 if (ret < 0) 2058 break; 2059 ptr = (unsigned long)(di + 1); 2060 ptr += name_len; 2061 2062 /* 2063 * If this entry refers to a non-directory (directories can not 2064 * have a link count > 1) and it was added in the transaction 2065 * that was not committed, make sure we fixup the link count of 2066 * the inode it the entry points to. Otherwise something like 2067 * the following would result in a directory pointing to an 2068 * inode with a wrong link that does not account for this dir 2069 * entry: 2070 * 2071 * mkdir testdir 2072 * touch testdir/foo 2073 * touch testdir/bar 2074 * sync 2075 * 2076 * ln testdir/bar testdir/bar_link 2077 * ln testdir/foo testdir/foo_link 2078 * xfs_io -c "fsync" testdir/bar 2079 * 2080 * <power failure> 2081 * 2082 * mount fs, log replay happens 2083 * 2084 * File foo would remain with a link count of 1 when it has two 2085 * entries pointing to it in the directory testdir. This would 2086 * make it impossible to ever delete the parent directory has 2087 * it would result in stale dentries that can never be deleted. 2088 */ 2089 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) { 2090 struct btrfs_key di_key; 2091 2092 if (!fixup_path) { 2093 fixup_path = btrfs_alloc_path(); 2094 if (!fixup_path) { 2095 ret = -ENOMEM; 2096 break; 2097 } 2098 } 2099 2100 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2101 ret = link_to_fixup_dir(trans, root, fixup_path, 2102 di_key.objectid); 2103 if (ret) 2104 break; 2105 } 2106 ret = 0; 2107 } 2108 btrfs_free_path(fixup_path); 2109 return ret; 2110 } 2111 2112 /* 2113 * directory replay has two parts. There are the standard directory 2114 * items in the log copied from the subvolume, and range items 2115 * created in the log while the subvolume was logged. 2116 * 2117 * The range items tell us which parts of the key space the log 2118 * is authoritative for. During replay, if a key in the subvolume 2119 * directory is in a logged range item, but not actually in the log 2120 * that means it was deleted from the directory before the fsync 2121 * and should be removed. 2122 */ 2123 static noinline int find_dir_range(struct btrfs_root *root, 2124 struct btrfs_path *path, 2125 u64 dirid, int key_type, 2126 u64 *start_ret, u64 *end_ret) 2127 { 2128 struct btrfs_key key; 2129 u64 found_end; 2130 struct btrfs_dir_log_item *item; 2131 int ret; 2132 int nritems; 2133 2134 if (*start_ret == (u64)-1) 2135 return 1; 2136 2137 key.objectid = dirid; 2138 key.type = key_type; 2139 key.offset = *start_ret; 2140 2141 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2142 if (ret < 0) 2143 goto out; 2144 if (ret > 0) { 2145 if (path->slots[0] == 0) 2146 goto out; 2147 path->slots[0]--; 2148 } 2149 if (ret != 0) 2150 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2151 2152 if (key.type != key_type || key.objectid != dirid) { 2153 ret = 1; 2154 goto next; 2155 } 2156 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2157 struct btrfs_dir_log_item); 2158 found_end = btrfs_dir_log_end(path->nodes[0], item); 2159 2160 if (*start_ret >= key.offset && *start_ret <= found_end) { 2161 ret = 0; 2162 *start_ret = key.offset; 2163 *end_ret = found_end; 2164 goto out; 2165 } 2166 ret = 1; 2167 next: 2168 /* check the next slot in the tree to see if it is a valid item */ 2169 nritems = btrfs_header_nritems(path->nodes[0]); 2170 path->slots[0]++; 2171 if (path->slots[0] >= nritems) { 2172 ret = btrfs_next_leaf(root, path); 2173 if (ret) 2174 goto out; 2175 } 2176 2177 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2178 2179 if (key.type != key_type || key.objectid != dirid) { 2180 ret = 1; 2181 goto out; 2182 } 2183 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2184 struct btrfs_dir_log_item); 2185 found_end = btrfs_dir_log_end(path->nodes[0], item); 2186 *start_ret = key.offset; 2187 *end_ret = found_end; 2188 ret = 0; 2189 out: 2190 btrfs_release_path(path); 2191 return ret; 2192 } 2193 2194 /* 2195 * this looks for a given directory item in the log. If the directory 2196 * item is not in the log, the item is removed and the inode it points 2197 * to is unlinked 2198 */ 2199 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 2200 struct btrfs_root *root, 2201 struct btrfs_root *log, 2202 struct btrfs_path *path, 2203 struct btrfs_path *log_path, 2204 struct inode *dir, 2205 struct btrfs_key *dir_key) 2206 { 2207 int ret; 2208 struct extent_buffer *eb; 2209 int slot; 2210 u32 item_size; 2211 struct btrfs_dir_item *di; 2212 struct btrfs_dir_item *log_di; 2213 int name_len; 2214 unsigned long ptr; 2215 unsigned long ptr_end; 2216 char *name; 2217 struct inode *inode; 2218 struct btrfs_key location; 2219 2220 again: 2221 eb = path->nodes[0]; 2222 slot = path->slots[0]; 2223 item_size = btrfs_item_size_nr(eb, slot); 2224 ptr = btrfs_item_ptr_offset(eb, slot); 2225 ptr_end = ptr + item_size; 2226 while (ptr < ptr_end) { 2227 di = (struct btrfs_dir_item *)ptr; 2228 name_len = btrfs_dir_name_len(eb, di); 2229 name = kmalloc(name_len, GFP_NOFS); 2230 if (!name) { 2231 ret = -ENOMEM; 2232 goto out; 2233 } 2234 read_extent_buffer(eb, name, (unsigned long)(di + 1), 2235 name_len); 2236 log_di = NULL; 2237 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 2238 log_di = btrfs_lookup_dir_item(trans, log, log_path, 2239 dir_key->objectid, 2240 name, name_len, 0); 2241 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 2242 log_di = btrfs_lookup_dir_index_item(trans, log, 2243 log_path, 2244 dir_key->objectid, 2245 dir_key->offset, 2246 name, name_len, 0); 2247 } 2248 if (!log_di || log_di == ERR_PTR(-ENOENT)) { 2249 btrfs_dir_item_key_to_cpu(eb, di, &location); 2250 btrfs_release_path(path); 2251 btrfs_release_path(log_path); 2252 inode = read_one_inode(root, location.objectid); 2253 if (!inode) { 2254 kfree(name); 2255 return -EIO; 2256 } 2257 2258 ret = link_to_fixup_dir(trans, root, 2259 path, location.objectid); 2260 if (ret) { 2261 kfree(name); 2262 iput(inode); 2263 goto out; 2264 } 2265 2266 inc_nlink(inode); 2267 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 2268 BTRFS_I(inode), name, name_len); 2269 if (!ret) 2270 ret = btrfs_run_delayed_items(trans); 2271 kfree(name); 2272 iput(inode); 2273 if (ret) 2274 goto out; 2275 2276 /* there might still be more names under this key 2277 * check and repeat if required 2278 */ 2279 ret = btrfs_search_slot(NULL, root, dir_key, path, 2280 0, 0); 2281 if (ret == 0) 2282 goto again; 2283 ret = 0; 2284 goto out; 2285 } else if (IS_ERR(log_di)) { 2286 kfree(name); 2287 return PTR_ERR(log_di); 2288 } 2289 btrfs_release_path(log_path); 2290 kfree(name); 2291 2292 ptr = (unsigned long)(di + 1); 2293 ptr += name_len; 2294 } 2295 ret = 0; 2296 out: 2297 btrfs_release_path(path); 2298 btrfs_release_path(log_path); 2299 return ret; 2300 } 2301 2302 static int replay_xattr_deletes(struct btrfs_trans_handle *trans, 2303 struct btrfs_root *root, 2304 struct btrfs_root *log, 2305 struct btrfs_path *path, 2306 const u64 ino) 2307 { 2308 struct btrfs_key search_key; 2309 struct btrfs_path *log_path; 2310 int i; 2311 int nritems; 2312 int ret; 2313 2314 log_path = btrfs_alloc_path(); 2315 if (!log_path) 2316 return -ENOMEM; 2317 2318 search_key.objectid = ino; 2319 search_key.type = BTRFS_XATTR_ITEM_KEY; 2320 search_key.offset = 0; 2321 again: 2322 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 2323 if (ret < 0) 2324 goto out; 2325 process_leaf: 2326 nritems = btrfs_header_nritems(path->nodes[0]); 2327 for (i = path->slots[0]; i < nritems; i++) { 2328 struct btrfs_key key; 2329 struct btrfs_dir_item *di; 2330 struct btrfs_dir_item *log_di; 2331 u32 total_size; 2332 u32 cur; 2333 2334 btrfs_item_key_to_cpu(path->nodes[0], &key, i); 2335 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2336 ret = 0; 2337 goto out; 2338 } 2339 2340 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); 2341 total_size = btrfs_item_size_nr(path->nodes[0], i); 2342 cur = 0; 2343 while (cur < total_size) { 2344 u16 name_len = btrfs_dir_name_len(path->nodes[0], di); 2345 u16 data_len = btrfs_dir_data_len(path->nodes[0], di); 2346 u32 this_len = sizeof(*di) + name_len + data_len; 2347 char *name; 2348 2349 name = kmalloc(name_len, GFP_NOFS); 2350 if (!name) { 2351 ret = -ENOMEM; 2352 goto out; 2353 } 2354 read_extent_buffer(path->nodes[0], name, 2355 (unsigned long)(di + 1), name_len); 2356 2357 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2358 name, name_len, 0); 2359 btrfs_release_path(log_path); 2360 if (!log_di) { 2361 /* Doesn't exist in log tree, so delete it. */ 2362 btrfs_release_path(path); 2363 di = btrfs_lookup_xattr(trans, root, path, ino, 2364 name, name_len, -1); 2365 kfree(name); 2366 if (IS_ERR(di)) { 2367 ret = PTR_ERR(di); 2368 goto out; 2369 } 2370 ASSERT(di); 2371 ret = btrfs_delete_one_dir_name(trans, root, 2372 path, di); 2373 if (ret) 2374 goto out; 2375 btrfs_release_path(path); 2376 search_key = key; 2377 goto again; 2378 } 2379 kfree(name); 2380 if (IS_ERR(log_di)) { 2381 ret = PTR_ERR(log_di); 2382 goto out; 2383 } 2384 cur += this_len; 2385 di = (struct btrfs_dir_item *)((char *)di + this_len); 2386 } 2387 } 2388 ret = btrfs_next_leaf(root, path); 2389 if (ret > 0) 2390 ret = 0; 2391 else if (ret == 0) 2392 goto process_leaf; 2393 out: 2394 btrfs_free_path(log_path); 2395 btrfs_release_path(path); 2396 return ret; 2397 } 2398 2399 2400 /* 2401 * deletion replay happens before we copy any new directory items 2402 * out of the log or out of backreferences from inodes. It 2403 * scans the log to find ranges of keys that log is authoritative for, 2404 * and then scans the directory to find items in those ranges that are 2405 * not present in the log. 2406 * 2407 * Anything we don't find in the log is unlinked and removed from the 2408 * directory. 2409 */ 2410 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 2411 struct btrfs_root *root, 2412 struct btrfs_root *log, 2413 struct btrfs_path *path, 2414 u64 dirid, int del_all) 2415 { 2416 u64 range_start; 2417 u64 range_end; 2418 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 2419 int ret = 0; 2420 struct btrfs_key dir_key; 2421 struct btrfs_key found_key; 2422 struct btrfs_path *log_path; 2423 struct inode *dir; 2424 2425 dir_key.objectid = dirid; 2426 dir_key.type = BTRFS_DIR_ITEM_KEY; 2427 log_path = btrfs_alloc_path(); 2428 if (!log_path) 2429 return -ENOMEM; 2430 2431 dir = read_one_inode(root, dirid); 2432 /* it isn't an error if the inode isn't there, that can happen 2433 * because we replay the deletes before we copy in the inode item 2434 * from the log 2435 */ 2436 if (!dir) { 2437 btrfs_free_path(log_path); 2438 return 0; 2439 } 2440 again: 2441 range_start = 0; 2442 range_end = 0; 2443 while (1) { 2444 if (del_all) 2445 range_end = (u64)-1; 2446 else { 2447 ret = find_dir_range(log, path, dirid, key_type, 2448 &range_start, &range_end); 2449 if (ret != 0) 2450 break; 2451 } 2452 2453 dir_key.offset = range_start; 2454 while (1) { 2455 int nritems; 2456 ret = btrfs_search_slot(NULL, root, &dir_key, path, 2457 0, 0); 2458 if (ret < 0) 2459 goto out; 2460 2461 nritems = btrfs_header_nritems(path->nodes[0]); 2462 if (path->slots[0] >= nritems) { 2463 ret = btrfs_next_leaf(root, path); 2464 if (ret == 1) 2465 break; 2466 else if (ret < 0) 2467 goto out; 2468 } 2469 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2470 path->slots[0]); 2471 if (found_key.objectid != dirid || 2472 found_key.type != dir_key.type) 2473 goto next_type; 2474 2475 if (found_key.offset > range_end) 2476 break; 2477 2478 ret = check_item_in_log(trans, root, log, path, 2479 log_path, dir, 2480 &found_key); 2481 if (ret) 2482 goto out; 2483 if (found_key.offset == (u64)-1) 2484 break; 2485 dir_key.offset = found_key.offset + 1; 2486 } 2487 btrfs_release_path(path); 2488 if (range_end == (u64)-1) 2489 break; 2490 range_start = range_end + 1; 2491 } 2492 2493 next_type: 2494 ret = 0; 2495 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 2496 key_type = BTRFS_DIR_LOG_INDEX_KEY; 2497 dir_key.type = BTRFS_DIR_INDEX_KEY; 2498 btrfs_release_path(path); 2499 goto again; 2500 } 2501 out: 2502 btrfs_release_path(path); 2503 btrfs_free_path(log_path); 2504 iput(dir); 2505 return ret; 2506 } 2507 2508 /* 2509 * the process_func used to replay items from the log tree. This 2510 * gets called in two different stages. The first stage just looks 2511 * for inodes and makes sure they are all copied into the subvolume. 2512 * 2513 * The second stage copies all the other item types from the log into 2514 * the subvolume. The two stage approach is slower, but gets rid of 2515 * lots of complexity around inodes referencing other inodes that exist 2516 * only in the log (references come from either directory items or inode 2517 * back refs). 2518 */ 2519 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2520 struct walk_control *wc, u64 gen, int level) 2521 { 2522 int nritems; 2523 struct btrfs_path *path; 2524 struct btrfs_root *root = wc->replay_dest; 2525 struct btrfs_key key; 2526 int i; 2527 int ret; 2528 2529 ret = btrfs_read_buffer(eb, gen, level, NULL); 2530 if (ret) 2531 return ret; 2532 2533 level = btrfs_header_level(eb); 2534 2535 if (level != 0) 2536 return 0; 2537 2538 path = btrfs_alloc_path(); 2539 if (!path) 2540 return -ENOMEM; 2541 2542 nritems = btrfs_header_nritems(eb); 2543 for (i = 0; i < nritems; i++) { 2544 btrfs_item_key_to_cpu(eb, &key, i); 2545 2546 /* inode keys are done during the first stage */ 2547 if (key.type == BTRFS_INODE_ITEM_KEY && 2548 wc->stage == LOG_WALK_REPLAY_INODES) { 2549 struct btrfs_inode_item *inode_item; 2550 u32 mode; 2551 2552 inode_item = btrfs_item_ptr(eb, i, 2553 struct btrfs_inode_item); 2554 /* 2555 * If we have a tmpfile (O_TMPFILE) that got fsync'ed 2556 * and never got linked before the fsync, skip it, as 2557 * replaying it is pointless since it would be deleted 2558 * later. We skip logging tmpfiles, but it's always 2559 * possible we are replaying a log created with a kernel 2560 * that used to log tmpfiles. 2561 */ 2562 if (btrfs_inode_nlink(eb, inode_item) == 0) { 2563 wc->ignore_cur_inode = true; 2564 continue; 2565 } else { 2566 wc->ignore_cur_inode = false; 2567 } 2568 ret = replay_xattr_deletes(wc->trans, root, log, 2569 path, key.objectid); 2570 if (ret) 2571 break; 2572 mode = btrfs_inode_mode(eb, inode_item); 2573 if (S_ISDIR(mode)) { 2574 ret = replay_dir_deletes(wc->trans, 2575 root, log, path, key.objectid, 0); 2576 if (ret) 2577 break; 2578 } 2579 ret = overwrite_item(wc->trans, root, path, 2580 eb, i, &key); 2581 if (ret) 2582 break; 2583 2584 /* 2585 * Before replaying extents, truncate the inode to its 2586 * size. We need to do it now and not after log replay 2587 * because before an fsync we can have prealloc extents 2588 * added beyond the inode's i_size. If we did it after, 2589 * through orphan cleanup for example, we would drop 2590 * those prealloc extents just after replaying them. 2591 */ 2592 if (S_ISREG(mode)) { 2593 struct inode *inode; 2594 u64 from; 2595 2596 inode = read_one_inode(root, key.objectid); 2597 if (!inode) { 2598 ret = -EIO; 2599 break; 2600 } 2601 from = ALIGN(i_size_read(inode), 2602 root->fs_info->sectorsize); 2603 ret = btrfs_drop_extents(wc->trans, root, inode, 2604 from, (u64)-1, 1); 2605 if (!ret) { 2606 /* Update the inode's nbytes. */ 2607 ret = btrfs_update_inode(wc->trans, 2608 root, inode); 2609 } 2610 iput(inode); 2611 if (ret) 2612 break; 2613 } 2614 2615 ret = link_to_fixup_dir(wc->trans, root, 2616 path, key.objectid); 2617 if (ret) 2618 break; 2619 } 2620 2621 if (wc->ignore_cur_inode) 2622 continue; 2623 2624 if (key.type == BTRFS_DIR_INDEX_KEY && 2625 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2626 ret = replay_one_dir_item(wc->trans, root, path, 2627 eb, i, &key); 2628 if (ret) 2629 break; 2630 } 2631 2632 if (wc->stage < LOG_WALK_REPLAY_ALL) 2633 continue; 2634 2635 /* these keys are simply copied */ 2636 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2637 ret = overwrite_item(wc->trans, root, path, 2638 eb, i, &key); 2639 if (ret) 2640 break; 2641 } else if (key.type == BTRFS_INODE_REF_KEY || 2642 key.type == BTRFS_INODE_EXTREF_KEY) { 2643 ret = add_inode_ref(wc->trans, root, log, path, 2644 eb, i, &key); 2645 if (ret && ret != -ENOENT) 2646 break; 2647 ret = 0; 2648 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2649 ret = replay_one_extent(wc->trans, root, path, 2650 eb, i, &key); 2651 if (ret) 2652 break; 2653 } else if (key.type == BTRFS_DIR_ITEM_KEY) { 2654 ret = replay_one_dir_item(wc->trans, root, path, 2655 eb, i, &key); 2656 if (ret) 2657 break; 2658 } 2659 } 2660 btrfs_free_path(path); 2661 return ret; 2662 } 2663 2664 /* 2665 * Correctly adjust the reserved bytes occupied by a log tree extent buffer 2666 */ 2667 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start) 2668 { 2669 struct btrfs_block_group *cache; 2670 2671 cache = btrfs_lookup_block_group(fs_info, start); 2672 if (!cache) { 2673 btrfs_err(fs_info, "unable to find block group for %llu", start); 2674 return; 2675 } 2676 2677 spin_lock(&cache->space_info->lock); 2678 spin_lock(&cache->lock); 2679 cache->reserved -= fs_info->nodesize; 2680 cache->space_info->bytes_reserved -= fs_info->nodesize; 2681 spin_unlock(&cache->lock); 2682 spin_unlock(&cache->space_info->lock); 2683 2684 btrfs_put_block_group(cache); 2685 } 2686 2687 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2688 struct btrfs_root *root, 2689 struct btrfs_path *path, int *level, 2690 struct walk_control *wc) 2691 { 2692 struct btrfs_fs_info *fs_info = root->fs_info; 2693 u64 bytenr; 2694 u64 ptr_gen; 2695 struct extent_buffer *next; 2696 struct extent_buffer *cur; 2697 u32 blocksize; 2698 int ret = 0; 2699 2700 while (*level > 0) { 2701 struct btrfs_key first_key; 2702 2703 cur = path->nodes[*level]; 2704 2705 WARN_ON(btrfs_header_level(cur) != *level); 2706 2707 if (path->slots[*level] >= 2708 btrfs_header_nritems(cur)) 2709 break; 2710 2711 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2712 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2713 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]); 2714 blocksize = fs_info->nodesize; 2715 2716 next = btrfs_find_create_tree_block(fs_info, bytenr); 2717 if (IS_ERR(next)) 2718 return PTR_ERR(next); 2719 2720 if (*level == 1) { 2721 ret = wc->process_func(root, next, wc, ptr_gen, 2722 *level - 1); 2723 if (ret) { 2724 free_extent_buffer(next); 2725 return ret; 2726 } 2727 2728 path->slots[*level]++; 2729 if (wc->free) { 2730 ret = btrfs_read_buffer(next, ptr_gen, 2731 *level - 1, &first_key); 2732 if (ret) { 2733 free_extent_buffer(next); 2734 return ret; 2735 } 2736 2737 if (trans) { 2738 btrfs_tree_lock(next); 2739 btrfs_set_lock_blocking_write(next); 2740 btrfs_clean_tree_block(next); 2741 btrfs_wait_tree_block_writeback(next); 2742 btrfs_tree_unlock(next); 2743 ret = btrfs_pin_reserved_extent(trans, 2744 bytenr, blocksize); 2745 if (ret) { 2746 free_extent_buffer(next); 2747 return ret; 2748 } 2749 } else { 2750 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2751 clear_extent_buffer_dirty(next); 2752 unaccount_log_buffer(fs_info, bytenr); 2753 } 2754 } 2755 free_extent_buffer(next); 2756 continue; 2757 } 2758 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key); 2759 if (ret) { 2760 free_extent_buffer(next); 2761 return ret; 2762 } 2763 2764 if (path->nodes[*level-1]) 2765 free_extent_buffer(path->nodes[*level-1]); 2766 path->nodes[*level-1] = next; 2767 *level = btrfs_header_level(next); 2768 path->slots[*level] = 0; 2769 cond_resched(); 2770 } 2771 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2772 2773 cond_resched(); 2774 return 0; 2775 } 2776 2777 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2778 struct btrfs_root *root, 2779 struct btrfs_path *path, int *level, 2780 struct walk_control *wc) 2781 { 2782 struct btrfs_fs_info *fs_info = root->fs_info; 2783 int i; 2784 int slot; 2785 int ret; 2786 2787 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2788 slot = path->slots[i]; 2789 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2790 path->slots[i]++; 2791 *level = i; 2792 WARN_ON(*level == 0); 2793 return 0; 2794 } else { 2795 ret = wc->process_func(root, path->nodes[*level], wc, 2796 btrfs_header_generation(path->nodes[*level]), 2797 *level); 2798 if (ret) 2799 return ret; 2800 2801 if (wc->free) { 2802 struct extent_buffer *next; 2803 2804 next = path->nodes[*level]; 2805 2806 if (trans) { 2807 btrfs_tree_lock(next); 2808 btrfs_set_lock_blocking_write(next); 2809 btrfs_clean_tree_block(next); 2810 btrfs_wait_tree_block_writeback(next); 2811 btrfs_tree_unlock(next); 2812 ret = btrfs_pin_reserved_extent(trans, 2813 path->nodes[*level]->start, 2814 path->nodes[*level]->len); 2815 if (ret) 2816 return ret; 2817 } else { 2818 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2819 clear_extent_buffer_dirty(next); 2820 2821 unaccount_log_buffer(fs_info, 2822 path->nodes[*level]->start); 2823 } 2824 } 2825 free_extent_buffer(path->nodes[*level]); 2826 path->nodes[*level] = NULL; 2827 *level = i + 1; 2828 } 2829 } 2830 return 1; 2831 } 2832 2833 /* 2834 * drop the reference count on the tree rooted at 'snap'. This traverses 2835 * the tree freeing any blocks that have a ref count of zero after being 2836 * decremented. 2837 */ 2838 static int walk_log_tree(struct btrfs_trans_handle *trans, 2839 struct btrfs_root *log, struct walk_control *wc) 2840 { 2841 struct btrfs_fs_info *fs_info = log->fs_info; 2842 int ret = 0; 2843 int wret; 2844 int level; 2845 struct btrfs_path *path; 2846 int orig_level; 2847 2848 path = btrfs_alloc_path(); 2849 if (!path) 2850 return -ENOMEM; 2851 2852 level = btrfs_header_level(log->node); 2853 orig_level = level; 2854 path->nodes[level] = log->node; 2855 atomic_inc(&log->node->refs); 2856 path->slots[level] = 0; 2857 2858 while (1) { 2859 wret = walk_down_log_tree(trans, log, path, &level, wc); 2860 if (wret > 0) 2861 break; 2862 if (wret < 0) { 2863 ret = wret; 2864 goto out; 2865 } 2866 2867 wret = walk_up_log_tree(trans, log, path, &level, wc); 2868 if (wret > 0) 2869 break; 2870 if (wret < 0) { 2871 ret = wret; 2872 goto out; 2873 } 2874 } 2875 2876 /* was the root node processed? if not, catch it here */ 2877 if (path->nodes[orig_level]) { 2878 ret = wc->process_func(log, path->nodes[orig_level], wc, 2879 btrfs_header_generation(path->nodes[orig_level]), 2880 orig_level); 2881 if (ret) 2882 goto out; 2883 if (wc->free) { 2884 struct extent_buffer *next; 2885 2886 next = path->nodes[orig_level]; 2887 2888 if (trans) { 2889 btrfs_tree_lock(next); 2890 btrfs_set_lock_blocking_write(next); 2891 btrfs_clean_tree_block(next); 2892 btrfs_wait_tree_block_writeback(next); 2893 btrfs_tree_unlock(next); 2894 ret = btrfs_pin_reserved_extent(trans, 2895 next->start, next->len); 2896 if (ret) 2897 goto out; 2898 } else { 2899 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2900 clear_extent_buffer_dirty(next); 2901 unaccount_log_buffer(fs_info, next->start); 2902 } 2903 } 2904 } 2905 2906 out: 2907 btrfs_free_path(path); 2908 return ret; 2909 } 2910 2911 /* 2912 * helper function to update the item for a given subvolumes log root 2913 * in the tree of log roots 2914 */ 2915 static int update_log_root(struct btrfs_trans_handle *trans, 2916 struct btrfs_root *log, 2917 struct btrfs_root_item *root_item) 2918 { 2919 struct btrfs_fs_info *fs_info = log->fs_info; 2920 int ret; 2921 2922 if (log->log_transid == 1) { 2923 /* insert root item on the first sync */ 2924 ret = btrfs_insert_root(trans, fs_info->log_root_tree, 2925 &log->root_key, root_item); 2926 } else { 2927 ret = btrfs_update_root(trans, fs_info->log_root_tree, 2928 &log->root_key, root_item); 2929 } 2930 return ret; 2931 } 2932 2933 static void wait_log_commit(struct btrfs_root *root, int transid) 2934 { 2935 DEFINE_WAIT(wait); 2936 int index = transid % 2; 2937 2938 /* 2939 * we only allow two pending log transactions at a time, 2940 * so we know that if ours is more than 2 older than the 2941 * current transaction, we're done 2942 */ 2943 for (;;) { 2944 prepare_to_wait(&root->log_commit_wait[index], 2945 &wait, TASK_UNINTERRUPTIBLE); 2946 2947 if (!(root->log_transid_committed < transid && 2948 atomic_read(&root->log_commit[index]))) 2949 break; 2950 2951 mutex_unlock(&root->log_mutex); 2952 schedule(); 2953 mutex_lock(&root->log_mutex); 2954 } 2955 finish_wait(&root->log_commit_wait[index], &wait); 2956 } 2957 2958 static void wait_for_writer(struct btrfs_root *root) 2959 { 2960 DEFINE_WAIT(wait); 2961 2962 for (;;) { 2963 prepare_to_wait(&root->log_writer_wait, &wait, 2964 TASK_UNINTERRUPTIBLE); 2965 if (!atomic_read(&root->log_writers)) 2966 break; 2967 2968 mutex_unlock(&root->log_mutex); 2969 schedule(); 2970 mutex_lock(&root->log_mutex); 2971 } 2972 finish_wait(&root->log_writer_wait, &wait); 2973 } 2974 2975 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 2976 struct btrfs_log_ctx *ctx) 2977 { 2978 if (!ctx) 2979 return; 2980 2981 mutex_lock(&root->log_mutex); 2982 list_del_init(&ctx->list); 2983 mutex_unlock(&root->log_mutex); 2984 } 2985 2986 /* 2987 * Invoked in log mutex context, or be sure there is no other task which 2988 * can access the list. 2989 */ 2990 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 2991 int index, int error) 2992 { 2993 struct btrfs_log_ctx *ctx; 2994 struct btrfs_log_ctx *safe; 2995 2996 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { 2997 list_del_init(&ctx->list); 2998 ctx->log_ret = error; 2999 } 3000 3001 INIT_LIST_HEAD(&root->log_ctxs[index]); 3002 } 3003 3004 /* 3005 * btrfs_sync_log does sends a given tree log down to the disk and 3006 * updates the super blocks to record it. When this call is done, 3007 * you know that any inodes previously logged are safely on disk only 3008 * if it returns 0. 3009 * 3010 * Any other return value means you need to call btrfs_commit_transaction. 3011 * Some of the edge cases for fsyncing directories that have had unlinks 3012 * or renames done in the past mean that sometimes the only safe 3013 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 3014 * that has happened. 3015 */ 3016 int btrfs_sync_log(struct btrfs_trans_handle *trans, 3017 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 3018 { 3019 int index1; 3020 int index2; 3021 int mark; 3022 int ret; 3023 struct btrfs_fs_info *fs_info = root->fs_info; 3024 struct btrfs_root *log = root->log_root; 3025 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 3026 struct btrfs_root_item new_root_item; 3027 int log_transid = 0; 3028 struct btrfs_log_ctx root_log_ctx; 3029 struct blk_plug plug; 3030 3031 mutex_lock(&root->log_mutex); 3032 log_transid = ctx->log_transid; 3033 if (root->log_transid_committed >= log_transid) { 3034 mutex_unlock(&root->log_mutex); 3035 return ctx->log_ret; 3036 } 3037 3038 index1 = log_transid % 2; 3039 if (atomic_read(&root->log_commit[index1])) { 3040 wait_log_commit(root, log_transid); 3041 mutex_unlock(&root->log_mutex); 3042 return ctx->log_ret; 3043 } 3044 ASSERT(log_transid == root->log_transid); 3045 atomic_set(&root->log_commit[index1], 1); 3046 3047 /* wait for previous tree log sync to complete */ 3048 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 3049 wait_log_commit(root, log_transid - 1); 3050 3051 while (1) { 3052 int batch = atomic_read(&root->log_batch); 3053 /* when we're on an ssd, just kick the log commit out */ 3054 if (!btrfs_test_opt(fs_info, SSD) && 3055 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 3056 mutex_unlock(&root->log_mutex); 3057 schedule_timeout_uninterruptible(1); 3058 mutex_lock(&root->log_mutex); 3059 } 3060 wait_for_writer(root); 3061 if (batch == atomic_read(&root->log_batch)) 3062 break; 3063 } 3064 3065 /* bail out if we need to do a full commit */ 3066 if (btrfs_need_log_full_commit(trans)) { 3067 ret = -EAGAIN; 3068 mutex_unlock(&root->log_mutex); 3069 goto out; 3070 } 3071 3072 if (log_transid % 2 == 0) 3073 mark = EXTENT_DIRTY; 3074 else 3075 mark = EXTENT_NEW; 3076 3077 /* we start IO on all the marked extents here, but we don't actually 3078 * wait for them until later. 3079 */ 3080 blk_start_plug(&plug); 3081 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); 3082 if (ret) { 3083 blk_finish_plug(&plug); 3084 btrfs_abort_transaction(trans, ret); 3085 btrfs_set_log_full_commit(trans); 3086 mutex_unlock(&root->log_mutex); 3087 goto out; 3088 } 3089 3090 /* 3091 * We _must_ update under the root->log_mutex in order to make sure we 3092 * have a consistent view of the log root we are trying to commit at 3093 * this moment. 3094 * 3095 * We _must_ copy this into a local copy, because we are not holding the 3096 * log_root_tree->log_mutex yet. This is important because when we 3097 * commit the log_root_tree we must have a consistent view of the 3098 * log_root_tree when we update the super block to point at the 3099 * log_root_tree bytenr. If we update the log_root_tree here we'll race 3100 * with the commit and possibly point at the new block which we may not 3101 * have written out. 3102 */ 3103 btrfs_set_root_node(&log->root_item, log->node); 3104 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item)); 3105 3106 root->log_transid++; 3107 log->log_transid = root->log_transid; 3108 root->log_start_pid = 0; 3109 /* 3110 * IO has been started, blocks of the log tree have WRITTEN flag set 3111 * in their headers. new modifications of the log will be written to 3112 * new positions. so it's safe to allow log writers to go in. 3113 */ 3114 mutex_unlock(&root->log_mutex); 3115 3116 btrfs_init_log_ctx(&root_log_ctx, NULL); 3117 3118 mutex_lock(&log_root_tree->log_mutex); 3119 3120 index2 = log_root_tree->log_transid % 2; 3121 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 3122 root_log_ctx.log_transid = log_root_tree->log_transid; 3123 3124 /* 3125 * Now we are safe to update the log_root_tree because we're under the 3126 * log_mutex, and we're a current writer so we're holding the commit 3127 * open until we drop the log_mutex. 3128 */ 3129 ret = update_log_root(trans, log, &new_root_item); 3130 if (ret) { 3131 if (!list_empty(&root_log_ctx.list)) 3132 list_del_init(&root_log_ctx.list); 3133 3134 blk_finish_plug(&plug); 3135 btrfs_set_log_full_commit(trans); 3136 3137 if (ret != -ENOSPC) { 3138 btrfs_abort_transaction(trans, ret); 3139 mutex_unlock(&log_root_tree->log_mutex); 3140 goto out; 3141 } 3142 btrfs_wait_tree_log_extents(log, mark); 3143 mutex_unlock(&log_root_tree->log_mutex); 3144 ret = -EAGAIN; 3145 goto out; 3146 } 3147 3148 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 3149 blk_finish_plug(&plug); 3150 list_del_init(&root_log_ctx.list); 3151 mutex_unlock(&log_root_tree->log_mutex); 3152 ret = root_log_ctx.log_ret; 3153 goto out; 3154 } 3155 3156 index2 = root_log_ctx.log_transid % 2; 3157 if (atomic_read(&log_root_tree->log_commit[index2])) { 3158 blk_finish_plug(&plug); 3159 ret = btrfs_wait_tree_log_extents(log, mark); 3160 wait_log_commit(log_root_tree, 3161 root_log_ctx.log_transid); 3162 mutex_unlock(&log_root_tree->log_mutex); 3163 if (!ret) 3164 ret = root_log_ctx.log_ret; 3165 goto out; 3166 } 3167 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 3168 atomic_set(&log_root_tree->log_commit[index2], 1); 3169 3170 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 3171 wait_log_commit(log_root_tree, 3172 root_log_ctx.log_transid - 1); 3173 } 3174 3175 /* 3176 * now that we've moved on to the tree of log tree roots, 3177 * check the full commit flag again 3178 */ 3179 if (btrfs_need_log_full_commit(trans)) { 3180 blk_finish_plug(&plug); 3181 btrfs_wait_tree_log_extents(log, mark); 3182 mutex_unlock(&log_root_tree->log_mutex); 3183 ret = -EAGAIN; 3184 goto out_wake_log_root; 3185 } 3186 3187 ret = btrfs_write_marked_extents(fs_info, 3188 &log_root_tree->dirty_log_pages, 3189 EXTENT_DIRTY | EXTENT_NEW); 3190 blk_finish_plug(&plug); 3191 if (ret) { 3192 btrfs_set_log_full_commit(trans); 3193 btrfs_abort_transaction(trans, ret); 3194 mutex_unlock(&log_root_tree->log_mutex); 3195 goto out_wake_log_root; 3196 } 3197 ret = btrfs_wait_tree_log_extents(log, mark); 3198 if (!ret) 3199 ret = btrfs_wait_tree_log_extents(log_root_tree, 3200 EXTENT_NEW | EXTENT_DIRTY); 3201 if (ret) { 3202 btrfs_set_log_full_commit(trans); 3203 mutex_unlock(&log_root_tree->log_mutex); 3204 goto out_wake_log_root; 3205 } 3206 3207 btrfs_set_super_log_root(fs_info->super_for_commit, 3208 log_root_tree->node->start); 3209 btrfs_set_super_log_root_level(fs_info->super_for_commit, 3210 btrfs_header_level(log_root_tree->node)); 3211 3212 log_root_tree->log_transid++; 3213 mutex_unlock(&log_root_tree->log_mutex); 3214 3215 /* 3216 * Nobody else is going to jump in and write the ctree 3217 * super here because the log_commit atomic below is protecting 3218 * us. We must be called with a transaction handle pinning 3219 * the running transaction open, so a full commit can't hop 3220 * in and cause problems either. 3221 */ 3222 ret = write_all_supers(fs_info, 1); 3223 if (ret) { 3224 btrfs_set_log_full_commit(trans); 3225 btrfs_abort_transaction(trans, ret); 3226 goto out_wake_log_root; 3227 } 3228 3229 mutex_lock(&root->log_mutex); 3230 if (root->last_log_commit < log_transid) 3231 root->last_log_commit = log_transid; 3232 mutex_unlock(&root->log_mutex); 3233 3234 out_wake_log_root: 3235 mutex_lock(&log_root_tree->log_mutex); 3236 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 3237 3238 log_root_tree->log_transid_committed++; 3239 atomic_set(&log_root_tree->log_commit[index2], 0); 3240 mutex_unlock(&log_root_tree->log_mutex); 3241 3242 /* 3243 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3244 * all the updates above are seen by the woken threads. It might not be 3245 * necessary, but proving that seems to be hard. 3246 */ 3247 cond_wake_up(&log_root_tree->log_commit_wait[index2]); 3248 out: 3249 mutex_lock(&root->log_mutex); 3250 btrfs_remove_all_log_ctxs(root, index1, ret); 3251 root->log_transid_committed++; 3252 atomic_set(&root->log_commit[index1], 0); 3253 mutex_unlock(&root->log_mutex); 3254 3255 /* 3256 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3257 * all the updates above are seen by the woken threads. It might not be 3258 * necessary, but proving that seems to be hard. 3259 */ 3260 cond_wake_up(&root->log_commit_wait[index1]); 3261 return ret; 3262 } 3263 3264 static void free_log_tree(struct btrfs_trans_handle *trans, 3265 struct btrfs_root *log) 3266 { 3267 int ret; 3268 struct walk_control wc = { 3269 .free = 1, 3270 .process_func = process_one_buffer 3271 }; 3272 3273 ret = walk_log_tree(trans, log, &wc); 3274 if (ret) { 3275 if (trans) 3276 btrfs_abort_transaction(trans, ret); 3277 else 3278 btrfs_handle_fs_error(log->fs_info, ret, NULL); 3279 } 3280 3281 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1, 3282 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT); 3283 extent_io_tree_release(&log->log_csum_range); 3284 btrfs_put_root(log); 3285 } 3286 3287 /* 3288 * free all the extents used by the tree log. This should be called 3289 * at commit time of the full transaction 3290 */ 3291 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3292 { 3293 if (root->log_root) { 3294 free_log_tree(trans, root->log_root); 3295 root->log_root = NULL; 3296 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 3297 } 3298 return 0; 3299 } 3300 3301 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3302 struct btrfs_fs_info *fs_info) 3303 { 3304 if (fs_info->log_root_tree) { 3305 free_log_tree(trans, fs_info->log_root_tree); 3306 fs_info->log_root_tree = NULL; 3307 } 3308 return 0; 3309 } 3310 3311 /* 3312 * Check if an inode was logged in the current transaction. We can't always rely 3313 * on an inode's logged_trans value, because it's an in-memory only field and 3314 * therefore not persisted. This means that its value is lost if the inode gets 3315 * evicted and loaded again from disk (in which case it has a value of 0, and 3316 * certainly it is smaller then any possible transaction ID), when that happens 3317 * the full_sync flag is set in the inode's runtime flags, so on that case we 3318 * assume eviction happened and ignore the logged_trans value, assuming the 3319 * worst case, that the inode was logged before in the current transaction. 3320 */ 3321 static bool inode_logged(struct btrfs_trans_handle *trans, 3322 struct btrfs_inode *inode) 3323 { 3324 if (inode->logged_trans == trans->transid) 3325 return true; 3326 3327 if (inode->last_trans == trans->transid && 3328 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) && 3329 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags)) 3330 return true; 3331 3332 return false; 3333 } 3334 3335 /* 3336 * If both a file and directory are logged, and unlinks or renames are 3337 * mixed in, we have a few interesting corners: 3338 * 3339 * create file X in dir Y 3340 * link file X to X.link in dir Y 3341 * fsync file X 3342 * unlink file X but leave X.link 3343 * fsync dir Y 3344 * 3345 * After a crash we would expect only X.link to exist. But file X 3346 * didn't get fsync'd again so the log has back refs for X and X.link. 3347 * 3348 * We solve this by removing directory entries and inode backrefs from the 3349 * log when a file that was logged in the current transaction is 3350 * unlinked. Any later fsync will include the updated log entries, and 3351 * we'll be able to reconstruct the proper directory items from backrefs. 3352 * 3353 * This optimizations allows us to avoid relogging the entire inode 3354 * or the entire directory. 3355 */ 3356 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3357 struct btrfs_root *root, 3358 const char *name, int name_len, 3359 struct btrfs_inode *dir, u64 index) 3360 { 3361 struct btrfs_root *log; 3362 struct btrfs_dir_item *di; 3363 struct btrfs_path *path; 3364 int ret; 3365 int err = 0; 3366 int bytes_del = 0; 3367 u64 dir_ino = btrfs_ino(dir); 3368 3369 if (!inode_logged(trans, dir)) 3370 return 0; 3371 3372 ret = join_running_log_trans(root); 3373 if (ret) 3374 return 0; 3375 3376 mutex_lock(&dir->log_mutex); 3377 3378 log = root->log_root; 3379 path = btrfs_alloc_path(); 3380 if (!path) { 3381 err = -ENOMEM; 3382 goto out_unlock; 3383 } 3384 3385 di = btrfs_lookup_dir_item(trans, log, path, dir_ino, 3386 name, name_len, -1); 3387 if (IS_ERR(di)) { 3388 err = PTR_ERR(di); 3389 goto fail; 3390 } 3391 if (di) { 3392 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3393 bytes_del += name_len; 3394 if (ret) { 3395 err = ret; 3396 goto fail; 3397 } 3398 } 3399 btrfs_release_path(path); 3400 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3401 index, name, name_len, -1); 3402 if (IS_ERR(di)) { 3403 err = PTR_ERR(di); 3404 goto fail; 3405 } 3406 if (di) { 3407 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3408 bytes_del += name_len; 3409 if (ret) { 3410 err = ret; 3411 goto fail; 3412 } 3413 } 3414 3415 /* update the directory size in the log to reflect the names 3416 * we have removed 3417 */ 3418 if (bytes_del) { 3419 struct btrfs_key key; 3420 3421 key.objectid = dir_ino; 3422 key.offset = 0; 3423 key.type = BTRFS_INODE_ITEM_KEY; 3424 btrfs_release_path(path); 3425 3426 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 3427 if (ret < 0) { 3428 err = ret; 3429 goto fail; 3430 } 3431 if (ret == 0) { 3432 struct btrfs_inode_item *item; 3433 u64 i_size; 3434 3435 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3436 struct btrfs_inode_item); 3437 i_size = btrfs_inode_size(path->nodes[0], item); 3438 if (i_size > bytes_del) 3439 i_size -= bytes_del; 3440 else 3441 i_size = 0; 3442 btrfs_set_inode_size(path->nodes[0], item, i_size); 3443 btrfs_mark_buffer_dirty(path->nodes[0]); 3444 } else 3445 ret = 0; 3446 btrfs_release_path(path); 3447 } 3448 fail: 3449 btrfs_free_path(path); 3450 out_unlock: 3451 mutex_unlock(&dir->log_mutex); 3452 if (ret == -ENOSPC) { 3453 btrfs_set_log_full_commit(trans); 3454 ret = 0; 3455 } else if (ret < 0) 3456 btrfs_abort_transaction(trans, ret); 3457 3458 btrfs_end_log_trans(root); 3459 3460 return err; 3461 } 3462 3463 /* see comments for btrfs_del_dir_entries_in_log */ 3464 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3465 struct btrfs_root *root, 3466 const char *name, int name_len, 3467 struct btrfs_inode *inode, u64 dirid) 3468 { 3469 struct btrfs_root *log; 3470 u64 index; 3471 int ret; 3472 3473 if (!inode_logged(trans, inode)) 3474 return 0; 3475 3476 ret = join_running_log_trans(root); 3477 if (ret) 3478 return 0; 3479 log = root->log_root; 3480 mutex_lock(&inode->log_mutex); 3481 3482 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 3483 dirid, &index); 3484 mutex_unlock(&inode->log_mutex); 3485 if (ret == -ENOSPC) { 3486 btrfs_set_log_full_commit(trans); 3487 ret = 0; 3488 } else if (ret < 0 && ret != -ENOENT) 3489 btrfs_abort_transaction(trans, ret); 3490 btrfs_end_log_trans(root); 3491 3492 return ret; 3493 } 3494 3495 /* 3496 * creates a range item in the log for 'dirid'. first_offset and 3497 * last_offset tell us which parts of the key space the log should 3498 * be considered authoritative for. 3499 */ 3500 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3501 struct btrfs_root *log, 3502 struct btrfs_path *path, 3503 int key_type, u64 dirid, 3504 u64 first_offset, u64 last_offset) 3505 { 3506 int ret; 3507 struct btrfs_key key; 3508 struct btrfs_dir_log_item *item; 3509 3510 key.objectid = dirid; 3511 key.offset = first_offset; 3512 if (key_type == BTRFS_DIR_ITEM_KEY) 3513 key.type = BTRFS_DIR_LOG_ITEM_KEY; 3514 else 3515 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3516 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3517 if (ret) 3518 return ret; 3519 3520 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3521 struct btrfs_dir_log_item); 3522 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 3523 btrfs_mark_buffer_dirty(path->nodes[0]); 3524 btrfs_release_path(path); 3525 return 0; 3526 } 3527 3528 /* 3529 * log all the items included in the current transaction for a given 3530 * directory. This also creates the range items in the log tree required 3531 * to replay anything deleted before the fsync 3532 */ 3533 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 3534 struct btrfs_root *root, struct btrfs_inode *inode, 3535 struct btrfs_path *path, 3536 struct btrfs_path *dst_path, int key_type, 3537 struct btrfs_log_ctx *ctx, 3538 u64 min_offset, u64 *last_offset_ret) 3539 { 3540 struct btrfs_key min_key; 3541 struct btrfs_root *log = root->log_root; 3542 struct extent_buffer *src; 3543 int err = 0; 3544 int ret; 3545 int i; 3546 int nritems; 3547 u64 first_offset = min_offset; 3548 u64 last_offset = (u64)-1; 3549 u64 ino = btrfs_ino(inode); 3550 3551 log = root->log_root; 3552 3553 min_key.objectid = ino; 3554 min_key.type = key_type; 3555 min_key.offset = min_offset; 3556 3557 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 3558 3559 /* 3560 * we didn't find anything from this transaction, see if there 3561 * is anything at all 3562 */ 3563 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { 3564 min_key.objectid = ino; 3565 min_key.type = key_type; 3566 min_key.offset = (u64)-1; 3567 btrfs_release_path(path); 3568 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3569 if (ret < 0) { 3570 btrfs_release_path(path); 3571 return ret; 3572 } 3573 ret = btrfs_previous_item(root, path, ino, key_type); 3574 3575 /* if ret == 0 there are items for this type, 3576 * create a range to tell us the last key of this type. 3577 * otherwise, there are no items in this directory after 3578 * *min_offset, and we create a range to indicate that. 3579 */ 3580 if (ret == 0) { 3581 struct btrfs_key tmp; 3582 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3583 path->slots[0]); 3584 if (key_type == tmp.type) 3585 first_offset = max(min_offset, tmp.offset) + 1; 3586 } 3587 goto done; 3588 } 3589 3590 /* go backward to find any previous key */ 3591 ret = btrfs_previous_item(root, path, ino, key_type); 3592 if (ret == 0) { 3593 struct btrfs_key tmp; 3594 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3595 if (key_type == tmp.type) { 3596 first_offset = tmp.offset; 3597 ret = overwrite_item(trans, log, dst_path, 3598 path->nodes[0], path->slots[0], 3599 &tmp); 3600 if (ret) { 3601 err = ret; 3602 goto done; 3603 } 3604 } 3605 } 3606 btrfs_release_path(path); 3607 3608 /* 3609 * Find the first key from this transaction again. See the note for 3610 * log_new_dir_dentries, if we're logging a directory recursively we 3611 * won't be holding its i_mutex, which means we can modify the directory 3612 * while we're logging it. If we remove an entry between our first 3613 * search and this search we'll not find the key again and can just 3614 * bail. 3615 */ 3616 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3617 if (ret != 0) 3618 goto done; 3619 3620 /* 3621 * we have a block from this transaction, log every item in it 3622 * from our directory 3623 */ 3624 while (1) { 3625 struct btrfs_key tmp; 3626 src = path->nodes[0]; 3627 nritems = btrfs_header_nritems(src); 3628 for (i = path->slots[0]; i < nritems; i++) { 3629 struct btrfs_dir_item *di; 3630 3631 btrfs_item_key_to_cpu(src, &min_key, i); 3632 3633 if (min_key.objectid != ino || min_key.type != key_type) 3634 goto done; 3635 ret = overwrite_item(trans, log, dst_path, src, i, 3636 &min_key); 3637 if (ret) { 3638 err = ret; 3639 goto done; 3640 } 3641 3642 /* 3643 * We must make sure that when we log a directory entry, 3644 * the corresponding inode, after log replay, has a 3645 * matching link count. For example: 3646 * 3647 * touch foo 3648 * mkdir mydir 3649 * sync 3650 * ln foo mydir/bar 3651 * xfs_io -c "fsync" mydir 3652 * <crash> 3653 * <mount fs and log replay> 3654 * 3655 * Would result in a fsync log that when replayed, our 3656 * file inode would have a link count of 1, but we get 3657 * two directory entries pointing to the same inode. 3658 * After removing one of the names, it would not be 3659 * possible to remove the other name, which resulted 3660 * always in stale file handle errors, and would not 3661 * be possible to rmdir the parent directory, since 3662 * its i_size could never decrement to the value 3663 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors. 3664 */ 3665 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 3666 btrfs_dir_item_key_to_cpu(src, di, &tmp); 3667 if (ctx && 3668 (btrfs_dir_transid(src, di) == trans->transid || 3669 btrfs_dir_type(src, di) == BTRFS_FT_DIR) && 3670 tmp.type != BTRFS_ROOT_ITEM_KEY) 3671 ctx->log_new_dentries = true; 3672 } 3673 path->slots[0] = nritems; 3674 3675 /* 3676 * look ahead to the next item and see if it is also 3677 * from this directory and from this transaction 3678 */ 3679 ret = btrfs_next_leaf(root, path); 3680 if (ret) { 3681 if (ret == 1) 3682 last_offset = (u64)-1; 3683 else 3684 err = ret; 3685 goto done; 3686 } 3687 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3688 if (tmp.objectid != ino || tmp.type != key_type) { 3689 last_offset = (u64)-1; 3690 goto done; 3691 } 3692 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3693 ret = overwrite_item(trans, log, dst_path, 3694 path->nodes[0], path->slots[0], 3695 &tmp); 3696 if (ret) 3697 err = ret; 3698 else 3699 last_offset = tmp.offset; 3700 goto done; 3701 } 3702 } 3703 done: 3704 btrfs_release_path(path); 3705 btrfs_release_path(dst_path); 3706 3707 if (err == 0) { 3708 *last_offset_ret = last_offset; 3709 /* 3710 * insert the log range keys to indicate where the log 3711 * is valid 3712 */ 3713 ret = insert_dir_log_key(trans, log, path, key_type, 3714 ino, first_offset, last_offset); 3715 if (ret) 3716 err = ret; 3717 } 3718 return err; 3719 } 3720 3721 /* 3722 * logging directories is very similar to logging inodes, We find all the items 3723 * from the current transaction and write them to the log. 3724 * 3725 * The recovery code scans the directory in the subvolume, and if it finds a 3726 * key in the range logged that is not present in the log tree, then it means 3727 * that dir entry was unlinked during the transaction. 3728 * 3729 * In order for that scan to work, we must include one key smaller than 3730 * the smallest logged by this transaction and one key larger than the largest 3731 * key logged by this transaction. 3732 */ 3733 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 3734 struct btrfs_root *root, struct btrfs_inode *inode, 3735 struct btrfs_path *path, 3736 struct btrfs_path *dst_path, 3737 struct btrfs_log_ctx *ctx) 3738 { 3739 u64 min_key; 3740 u64 max_key; 3741 int ret; 3742 int key_type = BTRFS_DIR_ITEM_KEY; 3743 3744 again: 3745 min_key = 0; 3746 max_key = 0; 3747 while (1) { 3748 ret = log_dir_items(trans, root, inode, path, dst_path, key_type, 3749 ctx, min_key, &max_key); 3750 if (ret) 3751 return ret; 3752 if (max_key == (u64)-1) 3753 break; 3754 min_key = max_key + 1; 3755 } 3756 3757 if (key_type == BTRFS_DIR_ITEM_KEY) { 3758 key_type = BTRFS_DIR_INDEX_KEY; 3759 goto again; 3760 } 3761 return 0; 3762 } 3763 3764 /* 3765 * a helper function to drop items from the log before we relog an 3766 * inode. max_key_type indicates the highest item type to remove. 3767 * This cannot be run for file data extents because it does not 3768 * free the extents they point to. 3769 */ 3770 static int drop_objectid_items(struct btrfs_trans_handle *trans, 3771 struct btrfs_root *log, 3772 struct btrfs_path *path, 3773 u64 objectid, int max_key_type) 3774 { 3775 int ret; 3776 struct btrfs_key key; 3777 struct btrfs_key found_key; 3778 int start_slot; 3779 3780 key.objectid = objectid; 3781 key.type = max_key_type; 3782 key.offset = (u64)-1; 3783 3784 while (1) { 3785 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 3786 BUG_ON(ret == 0); /* Logic error */ 3787 if (ret < 0) 3788 break; 3789 3790 if (path->slots[0] == 0) 3791 break; 3792 3793 path->slots[0]--; 3794 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 3795 path->slots[0]); 3796 3797 if (found_key.objectid != objectid) 3798 break; 3799 3800 found_key.offset = 0; 3801 found_key.type = 0; 3802 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot); 3803 if (ret < 0) 3804 break; 3805 3806 ret = btrfs_del_items(trans, log, path, start_slot, 3807 path->slots[0] - start_slot + 1); 3808 /* 3809 * If start slot isn't 0 then we don't need to re-search, we've 3810 * found the last guy with the objectid in this tree. 3811 */ 3812 if (ret || start_slot != 0) 3813 break; 3814 btrfs_release_path(path); 3815 } 3816 btrfs_release_path(path); 3817 if (ret > 0) 3818 ret = 0; 3819 return ret; 3820 } 3821 3822 static void fill_inode_item(struct btrfs_trans_handle *trans, 3823 struct extent_buffer *leaf, 3824 struct btrfs_inode_item *item, 3825 struct inode *inode, int log_inode_only, 3826 u64 logged_isize) 3827 { 3828 struct btrfs_map_token token; 3829 3830 btrfs_init_map_token(&token, leaf); 3831 3832 if (log_inode_only) { 3833 /* set the generation to zero so the recover code 3834 * can tell the difference between an logging 3835 * just to say 'this inode exists' and a logging 3836 * to say 'update this inode with these values' 3837 */ 3838 btrfs_set_token_inode_generation(&token, item, 0); 3839 btrfs_set_token_inode_size(&token, item, logged_isize); 3840 } else { 3841 btrfs_set_token_inode_generation(&token, item, 3842 BTRFS_I(inode)->generation); 3843 btrfs_set_token_inode_size(&token, item, inode->i_size); 3844 } 3845 3846 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3847 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3848 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3849 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3850 3851 btrfs_set_token_timespec_sec(&token, &item->atime, 3852 inode->i_atime.tv_sec); 3853 btrfs_set_token_timespec_nsec(&token, &item->atime, 3854 inode->i_atime.tv_nsec); 3855 3856 btrfs_set_token_timespec_sec(&token, &item->mtime, 3857 inode->i_mtime.tv_sec); 3858 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3859 inode->i_mtime.tv_nsec); 3860 3861 btrfs_set_token_timespec_sec(&token, &item->ctime, 3862 inode->i_ctime.tv_sec); 3863 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3864 inode->i_ctime.tv_nsec); 3865 3866 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3867 3868 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3869 btrfs_set_token_inode_transid(&token, item, trans->transid); 3870 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3871 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags); 3872 btrfs_set_token_inode_block_group(&token, item, 0); 3873 } 3874 3875 static int log_inode_item(struct btrfs_trans_handle *trans, 3876 struct btrfs_root *log, struct btrfs_path *path, 3877 struct btrfs_inode *inode) 3878 { 3879 struct btrfs_inode_item *inode_item; 3880 int ret; 3881 3882 ret = btrfs_insert_empty_item(trans, log, path, 3883 &inode->location, sizeof(*inode_item)); 3884 if (ret && ret != -EEXIST) 3885 return ret; 3886 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3887 struct btrfs_inode_item); 3888 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, 3889 0, 0); 3890 btrfs_release_path(path); 3891 return 0; 3892 } 3893 3894 static int log_csums(struct btrfs_trans_handle *trans, 3895 struct btrfs_inode *inode, 3896 struct btrfs_root *log_root, 3897 struct btrfs_ordered_sum *sums) 3898 { 3899 const u64 lock_end = sums->bytenr + sums->len - 1; 3900 struct extent_state *cached_state = NULL; 3901 int ret; 3902 3903 /* 3904 * If this inode was not used for reflink operations in the current 3905 * transaction with new extents, then do the fast path, no need to 3906 * worry about logging checksum items with overlapping ranges. 3907 */ 3908 if (inode->last_reflink_trans < trans->transid) 3909 return btrfs_csum_file_blocks(trans, log_root, sums); 3910 3911 /* 3912 * Serialize logging for checksums. This is to avoid racing with the 3913 * same checksum being logged by another task that is logging another 3914 * file which happens to refer to the same extent as well. Such races 3915 * can leave checksum items in the log with overlapping ranges. 3916 */ 3917 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr, 3918 lock_end, &cached_state); 3919 if (ret) 3920 return ret; 3921 /* 3922 * Due to extent cloning, we might have logged a csum item that covers a 3923 * subrange of a cloned extent, and later we can end up logging a csum 3924 * item for a larger subrange of the same extent or the entire range. 3925 * This would leave csum items in the log tree that cover the same range 3926 * and break the searches for checksums in the log tree, resulting in 3927 * some checksums missing in the fs/subvolume tree. So just delete (or 3928 * trim and adjust) any existing csum items in the log for this range. 3929 */ 3930 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len); 3931 if (!ret) 3932 ret = btrfs_csum_file_blocks(trans, log_root, sums); 3933 3934 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end, 3935 &cached_state); 3936 3937 return ret; 3938 } 3939 3940 static noinline int copy_items(struct btrfs_trans_handle *trans, 3941 struct btrfs_inode *inode, 3942 struct btrfs_path *dst_path, 3943 struct btrfs_path *src_path, 3944 int start_slot, int nr, int inode_only, 3945 u64 logged_isize) 3946 { 3947 struct btrfs_fs_info *fs_info = trans->fs_info; 3948 unsigned long src_offset; 3949 unsigned long dst_offset; 3950 struct btrfs_root *log = inode->root->log_root; 3951 struct btrfs_file_extent_item *extent; 3952 struct btrfs_inode_item *inode_item; 3953 struct extent_buffer *src = src_path->nodes[0]; 3954 int ret; 3955 struct btrfs_key *ins_keys; 3956 u32 *ins_sizes; 3957 char *ins_data; 3958 int i; 3959 struct list_head ordered_sums; 3960 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM; 3961 3962 INIT_LIST_HEAD(&ordered_sums); 3963 3964 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 3965 nr * sizeof(u32), GFP_NOFS); 3966 if (!ins_data) 3967 return -ENOMEM; 3968 3969 ins_sizes = (u32 *)ins_data; 3970 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 3971 3972 for (i = 0; i < nr; i++) { 3973 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 3974 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 3975 } 3976 ret = btrfs_insert_empty_items(trans, log, dst_path, 3977 ins_keys, ins_sizes, nr); 3978 if (ret) { 3979 kfree(ins_data); 3980 return ret; 3981 } 3982 3983 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 3984 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 3985 dst_path->slots[0]); 3986 3987 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 3988 3989 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 3990 inode_item = btrfs_item_ptr(dst_path->nodes[0], 3991 dst_path->slots[0], 3992 struct btrfs_inode_item); 3993 fill_inode_item(trans, dst_path->nodes[0], inode_item, 3994 &inode->vfs_inode, 3995 inode_only == LOG_INODE_EXISTS, 3996 logged_isize); 3997 } else { 3998 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 3999 src_offset, ins_sizes[i]); 4000 } 4001 4002 /* take a reference on file data extents so that truncates 4003 * or deletes of this inode don't have to relog the inode 4004 * again 4005 */ 4006 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY && 4007 !skip_csum) { 4008 int found_type; 4009 extent = btrfs_item_ptr(src, start_slot + i, 4010 struct btrfs_file_extent_item); 4011 4012 if (btrfs_file_extent_generation(src, extent) < trans->transid) 4013 continue; 4014 4015 found_type = btrfs_file_extent_type(src, extent); 4016 if (found_type == BTRFS_FILE_EXTENT_REG) { 4017 u64 ds, dl, cs, cl; 4018 ds = btrfs_file_extent_disk_bytenr(src, 4019 extent); 4020 /* ds == 0 is a hole */ 4021 if (ds == 0) 4022 continue; 4023 4024 dl = btrfs_file_extent_disk_num_bytes(src, 4025 extent); 4026 cs = btrfs_file_extent_offset(src, extent); 4027 cl = btrfs_file_extent_num_bytes(src, 4028 extent); 4029 if (btrfs_file_extent_compression(src, 4030 extent)) { 4031 cs = 0; 4032 cl = dl; 4033 } 4034 4035 ret = btrfs_lookup_csums_range( 4036 fs_info->csum_root, 4037 ds + cs, ds + cs + cl - 1, 4038 &ordered_sums, 0); 4039 if (ret) 4040 break; 4041 } 4042 } 4043 } 4044 4045 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 4046 btrfs_release_path(dst_path); 4047 kfree(ins_data); 4048 4049 /* 4050 * we have to do this after the loop above to avoid changing the 4051 * log tree while trying to change the log tree. 4052 */ 4053 while (!list_empty(&ordered_sums)) { 4054 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4055 struct btrfs_ordered_sum, 4056 list); 4057 if (!ret) 4058 ret = log_csums(trans, inode, log, sums); 4059 list_del(&sums->list); 4060 kfree(sums); 4061 } 4062 4063 return ret; 4064 } 4065 4066 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b) 4067 { 4068 struct extent_map *em1, *em2; 4069 4070 em1 = list_entry(a, struct extent_map, list); 4071 em2 = list_entry(b, struct extent_map, list); 4072 4073 if (em1->start < em2->start) 4074 return -1; 4075 else if (em1->start > em2->start) 4076 return 1; 4077 return 0; 4078 } 4079 4080 static int log_extent_csums(struct btrfs_trans_handle *trans, 4081 struct btrfs_inode *inode, 4082 struct btrfs_root *log_root, 4083 const struct extent_map *em) 4084 { 4085 u64 csum_offset; 4086 u64 csum_len; 4087 LIST_HEAD(ordered_sums); 4088 int ret = 0; 4089 4090 if (inode->flags & BTRFS_INODE_NODATASUM || 4091 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 4092 em->block_start == EXTENT_MAP_HOLE) 4093 return 0; 4094 4095 /* If we're compressed we have to save the entire range of csums. */ 4096 if (em->compress_type) { 4097 csum_offset = 0; 4098 csum_len = max(em->block_len, em->orig_block_len); 4099 } else { 4100 csum_offset = em->mod_start - em->start; 4101 csum_len = em->mod_len; 4102 } 4103 4104 /* block start is already adjusted for the file extent offset. */ 4105 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root, 4106 em->block_start + csum_offset, 4107 em->block_start + csum_offset + 4108 csum_len - 1, &ordered_sums, 0); 4109 if (ret) 4110 return ret; 4111 4112 while (!list_empty(&ordered_sums)) { 4113 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4114 struct btrfs_ordered_sum, 4115 list); 4116 if (!ret) 4117 ret = log_csums(trans, inode, log_root, sums); 4118 list_del(&sums->list); 4119 kfree(sums); 4120 } 4121 4122 return ret; 4123 } 4124 4125 static int log_one_extent(struct btrfs_trans_handle *trans, 4126 struct btrfs_inode *inode, struct btrfs_root *root, 4127 const struct extent_map *em, 4128 struct btrfs_path *path, 4129 struct btrfs_log_ctx *ctx) 4130 { 4131 struct btrfs_root *log = root->log_root; 4132 struct btrfs_file_extent_item *fi; 4133 struct extent_buffer *leaf; 4134 struct btrfs_map_token token; 4135 struct btrfs_key key; 4136 u64 extent_offset = em->start - em->orig_start; 4137 u64 block_len; 4138 int ret; 4139 int extent_inserted = 0; 4140 4141 ret = log_extent_csums(trans, inode, log, em); 4142 if (ret) 4143 return ret; 4144 4145 ret = __btrfs_drop_extents(trans, log, inode, path, em->start, 4146 em->start + em->len, NULL, 0, 1, 4147 sizeof(*fi), &extent_inserted); 4148 if (ret) 4149 return ret; 4150 4151 if (!extent_inserted) { 4152 key.objectid = btrfs_ino(inode); 4153 key.type = BTRFS_EXTENT_DATA_KEY; 4154 key.offset = em->start; 4155 4156 ret = btrfs_insert_empty_item(trans, log, path, &key, 4157 sizeof(*fi)); 4158 if (ret) 4159 return ret; 4160 } 4161 leaf = path->nodes[0]; 4162 btrfs_init_map_token(&token, leaf); 4163 fi = btrfs_item_ptr(leaf, path->slots[0], 4164 struct btrfs_file_extent_item); 4165 4166 btrfs_set_token_file_extent_generation(&token, fi, trans->transid); 4167 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4168 btrfs_set_token_file_extent_type(&token, fi, 4169 BTRFS_FILE_EXTENT_PREALLOC); 4170 else 4171 btrfs_set_token_file_extent_type(&token, fi, 4172 BTRFS_FILE_EXTENT_REG); 4173 4174 block_len = max(em->block_len, em->orig_block_len); 4175 if (em->compress_type != BTRFS_COMPRESS_NONE) { 4176 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 4177 em->block_start); 4178 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len); 4179 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 4180 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 4181 em->block_start - 4182 extent_offset); 4183 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len); 4184 } else { 4185 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0); 4186 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0); 4187 } 4188 4189 btrfs_set_token_file_extent_offset(&token, fi, extent_offset); 4190 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len); 4191 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes); 4192 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type); 4193 btrfs_set_token_file_extent_encryption(&token, fi, 0); 4194 btrfs_set_token_file_extent_other_encoding(&token, fi, 0); 4195 btrfs_mark_buffer_dirty(leaf); 4196 4197 btrfs_release_path(path); 4198 4199 return ret; 4200 } 4201 4202 /* 4203 * Log all prealloc extents beyond the inode's i_size to make sure we do not 4204 * lose them after doing a fast fsync and replaying the log. We scan the 4205 * subvolume's root instead of iterating the inode's extent map tree because 4206 * otherwise we can log incorrect extent items based on extent map conversion. 4207 * That can happen due to the fact that extent maps are merged when they 4208 * are not in the extent map tree's list of modified extents. 4209 */ 4210 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, 4211 struct btrfs_inode *inode, 4212 struct btrfs_path *path) 4213 { 4214 struct btrfs_root *root = inode->root; 4215 struct btrfs_key key; 4216 const u64 i_size = i_size_read(&inode->vfs_inode); 4217 const u64 ino = btrfs_ino(inode); 4218 struct btrfs_path *dst_path = NULL; 4219 bool dropped_extents = false; 4220 u64 truncate_offset = i_size; 4221 struct extent_buffer *leaf; 4222 int slot; 4223 int ins_nr = 0; 4224 int start_slot; 4225 int ret; 4226 4227 if (!(inode->flags & BTRFS_INODE_PREALLOC)) 4228 return 0; 4229 4230 key.objectid = ino; 4231 key.type = BTRFS_EXTENT_DATA_KEY; 4232 key.offset = i_size; 4233 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4234 if (ret < 0) 4235 goto out; 4236 4237 /* 4238 * We must check if there is a prealloc extent that starts before the 4239 * i_size and crosses the i_size boundary. This is to ensure later we 4240 * truncate down to the end of that extent and not to the i_size, as 4241 * otherwise we end up losing part of the prealloc extent after a log 4242 * replay and with an implicit hole if there is another prealloc extent 4243 * that starts at an offset beyond i_size. 4244 */ 4245 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 4246 if (ret < 0) 4247 goto out; 4248 4249 if (ret == 0) { 4250 struct btrfs_file_extent_item *ei; 4251 4252 leaf = path->nodes[0]; 4253 slot = path->slots[0]; 4254 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4255 4256 if (btrfs_file_extent_type(leaf, ei) == 4257 BTRFS_FILE_EXTENT_PREALLOC) { 4258 u64 extent_end; 4259 4260 btrfs_item_key_to_cpu(leaf, &key, slot); 4261 extent_end = key.offset + 4262 btrfs_file_extent_num_bytes(leaf, ei); 4263 4264 if (extent_end > i_size) 4265 truncate_offset = extent_end; 4266 } 4267 } else { 4268 ret = 0; 4269 } 4270 4271 while (true) { 4272 leaf = path->nodes[0]; 4273 slot = path->slots[0]; 4274 4275 if (slot >= btrfs_header_nritems(leaf)) { 4276 if (ins_nr > 0) { 4277 ret = copy_items(trans, inode, dst_path, path, 4278 start_slot, ins_nr, 1, 0); 4279 if (ret < 0) 4280 goto out; 4281 ins_nr = 0; 4282 } 4283 ret = btrfs_next_leaf(root, path); 4284 if (ret < 0) 4285 goto out; 4286 if (ret > 0) { 4287 ret = 0; 4288 break; 4289 } 4290 continue; 4291 } 4292 4293 btrfs_item_key_to_cpu(leaf, &key, slot); 4294 if (key.objectid > ino) 4295 break; 4296 if (WARN_ON_ONCE(key.objectid < ino) || 4297 key.type < BTRFS_EXTENT_DATA_KEY || 4298 key.offset < i_size) { 4299 path->slots[0]++; 4300 continue; 4301 } 4302 if (!dropped_extents) { 4303 /* 4304 * Avoid logging extent items logged in past fsync calls 4305 * and leading to duplicate keys in the log tree. 4306 */ 4307 do { 4308 ret = btrfs_truncate_inode_items(trans, 4309 root->log_root, 4310 &inode->vfs_inode, 4311 truncate_offset, 4312 BTRFS_EXTENT_DATA_KEY); 4313 } while (ret == -EAGAIN); 4314 if (ret) 4315 goto out; 4316 dropped_extents = true; 4317 } 4318 if (ins_nr == 0) 4319 start_slot = slot; 4320 ins_nr++; 4321 path->slots[0]++; 4322 if (!dst_path) { 4323 dst_path = btrfs_alloc_path(); 4324 if (!dst_path) { 4325 ret = -ENOMEM; 4326 goto out; 4327 } 4328 } 4329 } 4330 if (ins_nr > 0) 4331 ret = copy_items(trans, inode, dst_path, path, 4332 start_slot, ins_nr, 1, 0); 4333 out: 4334 btrfs_release_path(path); 4335 btrfs_free_path(dst_path); 4336 return ret; 4337 } 4338 4339 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 4340 struct btrfs_root *root, 4341 struct btrfs_inode *inode, 4342 struct btrfs_path *path, 4343 struct btrfs_log_ctx *ctx, 4344 const u64 start, 4345 const u64 end) 4346 { 4347 struct extent_map *em, *n; 4348 struct list_head extents; 4349 struct extent_map_tree *tree = &inode->extent_tree; 4350 u64 test_gen; 4351 int ret = 0; 4352 int num = 0; 4353 4354 INIT_LIST_HEAD(&extents); 4355 4356 write_lock(&tree->lock); 4357 test_gen = root->fs_info->last_trans_committed; 4358 4359 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 4360 /* 4361 * Skip extents outside our logging range. It's important to do 4362 * it for correctness because if we don't ignore them, we may 4363 * log them before their ordered extent completes, and therefore 4364 * we could log them without logging their respective checksums 4365 * (the checksum items are added to the csum tree at the very 4366 * end of btrfs_finish_ordered_io()). Also leave such extents 4367 * outside of our range in the list, since we may have another 4368 * ranged fsync in the near future that needs them. If an extent 4369 * outside our range corresponds to a hole, log it to avoid 4370 * leaving gaps between extents (fsck will complain when we are 4371 * not using the NO_HOLES feature). 4372 */ 4373 if ((em->start > end || em->start + em->len <= start) && 4374 em->block_start != EXTENT_MAP_HOLE) 4375 continue; 4376 4377 list_del_init(&em->list); 4378 /* 4379 * Just an arbitrary number, this can be really CPU intensive 4380 * once we start getting a lot of extents, and really once we 4381 * have a bunch of extents we just want to commit since it will 4382 * be faster. 4383 */ 4384 if (++num > 32768) { 4385 list_del_init(&tree->modified_extents); 4386 ret = -EFBIG; 4387 goto process; 4388 } 4389 4390 if (em->generation <= test_gen) 4391 continue; 4392 4393 /* We log prealloc extents beyond eof later. */ 4394 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && 4395 em->start >= i_size_read(&inode->vfs_inode)) 4396 continue; 4397 4398 /* Need a ref to keep it from getting evicted from cache */ 4399 refcount_inc(&em->refs); 4400 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 4401 list_add_tail(&em->list, &extents); 4402 num++; 4403 } 4404 4405 list_sort(NULL, &extents, extent_cmp); 4406 process: 4407 while (!list_empty(&extents)) { 4408 em = list_entry(extents.next, struct extent_map, list); 4409 4410 list_del_init(&em->list); 4411 4412 /* 4413 * If we had an error we just need to delete everybody from our 4414 * private list. 4415 */ 4416 if (ret) { 4417 clear_em_logging(tree, em); 4418 free_extent_map(em); 4419 continue; 4420 } 4421 4422 write_unlock(&tree->lock); 4423 4424 ret = log_one_extent(trans, inode, root, em, path, ctx); 4425 write_lock(&tree->lock); 4426 clear_em_logging(tree, em); 4427 free_extent_map(em); 4428 } 4429 WARN_ON(!list_empty(&extents)); 4430 write_unlock(&tree->lock); 4431 4432 btrfs_release_path(path); 4433 if (!ret) 4434 ret = btrfs_log_prealloc_extents(trans, inode, path); 4435 4436 return ret; 4437 } 4438 4439 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, 4440 struct btrfs_path *path, u64 *size_ret) 4441 { 4442 struct btrfs_key key; 4443 int ret; 4444 4445 key.objectid = btrfs_ino(inode); 4446 key.type = BTRFS_INODE_ITEM_KEY; 4447 key.offset = 0; 4448 4449 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 4450 if (ret < 0) { 4451 return ret; 4452 } else if (ret > 0) { 4453 *size_ret = 0; 4454 } else { 4455 struct btrfs_inode_item *item; 4456 4457 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4458 struct btrfs_inode_item); 4459 *size_ret = btrfs_inode_size(path->nodes[0], item); 4460 /* 4461 * If the in-memory inode's i_size is smaller then the inode 4462 * size stored in the btree, return the inode's i_size, so 4463 * that we get a correct inode size after replaying the log 4464 * when before a power failure we had a shrinking truncate 4465 * followed by addition of a new name (rename / new hard link). 4466 * Otherwise return the inode size from the btree, to avoid 4467 * data loss when replaying a log due to previously doing a 4468 * write that expands the inode's size and logging a new name 4469 * immediately after. 4470 */ 4471 if (*size_ret > inode->vfs_inode.i_size) 4472 *size_ret = inode->vfs_inode.i_size; 4473 } 4474 4475 btrfs_release_path(path); 4476 return 0; 4477 } 4478 4479 /* 4480 * At the moment we always log all xattrs. This is to figure out at log replay 4481 * time which xattrs must have their deletion replayed. If a xattr is missing 4482 * in the log tree and exists in the fs/subvol tree, we delete it. This is 4483 * because if a xattr is deleted, the inode is fsynced and a power failure 4484 * happens, causing the log to be replayed the next time the fs is mounted, 4485 * we want the xattr to not exist anymore (same behaviour as other filesystems 4486 * with a journal, ext3/4, xfs, f2fs, etc). 4487 */ 4488 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 4489 struct btrfs_root *root, 4490 struct btrfs_inode *inode, 4491 struct btrfs_path *path, 4492 struct btrfs_path *dst_path) 4493 { 4494 int ret; 4495 struct btrfs_key key; 4496 const u64 ino = btrfs_ino(inode); 4497 int ins_nr = 0; 4498 int start_slot = 0; 4499 4500 key.objectid = ino; 4501 key.type = BTRFS_XATTR_ITEM_KEY; 4502 key.offset = 0; 4503 4504 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4505 if (ret < 0) 4506 return ret; 4507 4508 while (true) { 4509 int slot = path->slots[0]; 4510 struct extent_buffer *leaf = path->nodes[0]; 4511 int nritems = btrfs_header_nritems(leaf); 4512 4513 if (slot >= nritems) { 4514 if (ins_nr > 0) { 4515 ret = copy_items(trans, inode, dst_path, path, 4516 start_slot, ins_nr, 1, 0); 4517 if (ret < 0) 4518 return ret; 4519 ins_nr = 0; 4520 } 4521 ret = btrfs_next_leaf(root, path); 4522 if (ret < 0) 4523 return ret; 4524 else if (ret > 0) 4525 break; 4526 continue; 4527 } 4528 4529 btrfs_item_key_to_cpu(leaf, &key, slot); 4530 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 4531 break; 4532 4533 if (ins_nr == 0) 4534 start_slot = slot; 4535 ins_nr++; 4536 path->slots[0]++; 4537 cond_resched(); 4538 } 4539 if (ins_nr > 0) { 4540 ret = copy_items(trans, inode, dst_path, path, 4541 start_slot, ins_nr, 1, 0); 4542 if (ret < 0) 4543 return ret; 4544 } 4545 4546 return 0; 4547 } 4548 4549 /* 4550 * When using the NO_HOLES feature if we punched a hole that causes the 4551 * deletion of entire leafs or all the extent items of the first leaf (the one 4552 * that contains the inode item and references) we may end up not processing 4553 * any extents, because there are no leafs with a generation matching the 4554 * current transaction that have extent items for our inode. So we need to find 4555 * if any holes exist and then log them. We also need to log holes after any 4556 * truncate operation that changes the inode's size. 4557 */ 4558 static int btrfs_log_holes(struct btrfs_trans_handle *trans, 4559 struct btrfs_root *root, 4560 struct btrfs_inode *inode, 4561 struct btrfs_path *path) 4562 { 4563 struct btrfs_fs_info *fs_info = root->fs_info; 4564 struct btrfs_key key; 4565 const u64 ino = btrfs_ino(inode); 4566 const u64 i_size = i_size_read(&inode->vfs_inode); 4567 u64 prev_extent_end = 0; 4568 int ret; 4569 4570 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0) 4571 return 0; 4572 4573 key.objectid = ino; 4574 key.type = BTRFS_EXTENT_DATA_KEY; 4575 key.offset = 0; 4576 4577 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4578 if (ret < 0) 4579 return ret; 4580 4581 while (true) { 4582 struct extent_buffer *leaf = path->nodes[0]; 4583 4584 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 4585 ret = btrfs_next_leaf(root, path); 4586 if (ret < 0) 4587 return ret; 4588 if (ret > 0) { 4589 ret = 0; 4590 break; 4591 } 4592 leaf = path->nodes[0]; 4593 } 4594 4595 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4596 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 4597 break; 4598 4599 /* We have a hole, log it. */ 4600 if (prev_extent_end < key.offset) { 4601 const u64 hole_len = key.offset - prev_extent_end; 4602 4603 /* 4604 * Release the path to avoid deadlocks with other code 4605 * paths that search the root while holding locks on 4606 * leafs from the log root. 4607 */ 4608 btrfs_release_path(path); 4609 ret = btrfs_insert_file_extent(trans, root->log_root, 4610 ino, prev_extent_end, 0, 4611 0, hole_len, 0, hole_len, 4612 0, 0, 0); 4613 if (ret < 0) 4614 return ret; 4615 4616 /* 4617 * Search for the same key again in the root. Since it's 4618 * an extent item and we are holding the inode lock, the 4619 * key must still exist. If it doesn't just emit warning 4620 * and return an error to fall back to a transaction 4621 * commit. 4622 */ 4623 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4624 if (ret < 0) 4625 return ret; 4626 if (WARN_ON(ret > 0)) 4627 return -ENOENT; 4628 leaf = path->nodes[0]; 4629 } 4630 4631 prev_extent_end = btrfs_file_extent_end(path); 4632 path->slots[0]++; 4633 cond_resched(); 4634 } 4635 4636 if (prev_extent_end < i_size) { 4637 u64 hole_len; 4638 4639 btrfs_release_path(path); 4640 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize); 4641 ret = btrfs_insert_file_extent(trans, root->log_root, 4642 ino, prev_extent_end, 0, 0, 4643 hole_len, 0, hole_len, 4644 0, 0, 0); 4645 if (ret < 0) 4646 return ret; 4647 } 4648 4649 return 0; 4650 } 4651 4652 /* 4653 * When we are logging a new inode X, check if it doesn't have a reference that 4654 * matches the reference from some other inode Y created in a past transaction 4655 * and that was renamed in the current transaction. If we don't do this, then at 4656 * log replay time we can lose inode Y (and all its files if it's a directory): 4657 * 4658 * mkdir /mnt/x 4659 * echo "hello world" > /mnt/x/foobar 4660 * sync 4661 * mv /mnt/x /mnt/y 4662 * mkdir /mnt/x # or touch /mnt/x 4663 * xfs_io -c fsync /mnt/x 4664 * <power fail> 4665 * mount fs, trigger log replay 4666 * 4667 * After the log replay procedure, we would lose the first directory and all its 4668 * files (file foobar). 4669 * For the case where inode Y is not a directory we simply end up losing it: 4670 * 4671 * echo "123" > /mnt/foo 4672 * sync 4673 * mv /mnt/foo /mnt/bar 4674 * echo "abc" > /mnt/foo 4675 * xfs_io -c fsync /mnt/foo 4676 * <power fail> 4677 * 4678 * We also need this for cases where a snapshot entry is replaced by some other 4679 * entry (file or directory) otherwise we end up with an unreplayable log due to 4680 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 4681 * if it were a regular entry: 4682 * 4683 * mkdir /mnt/x 4684 * btrfs subvolume snapshot /mnt /mnt/x/snap 4685 * btrfs subvolume delete /mnt/x/snap 4686 * rmdir /mnt/x 4687 * mkdir /mnt/x 4688 * fsync /mnt/x or fsync some new file inside it 4689 * <power fail> 4690 * 4691 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 4692 * the same transaction. 4693 */ 4694 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 4695 const int slot, 4696 const struct btrfs_key *key, 4697 struct btrfs_inode *inode, 4698 u64 *other_ino, u64 *other_parent) 4699 { 4700 int ret; 4701 struct btrfs_path *search_path; 4702 char *name = NULL; 4703 u32 name_len = 0; 4704 u32 item_size = btrfs_item_size_nr(eb, slot); 4705 u32 cur_offset = 0; 4706 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 4707 4708 search_path = btrfs_alloc_path(); 4709 if (!search_path) 4710 return -ENOMEM; 4711 search_path->search_commit_root = 1; 4712 search_path->skip_locking = 1; 4713 4714 while (cur_offset < item_size) { 4715 u64 parent; 4716 u32 this_name_len; 4717 u32 this_len; 4718 unsigned long name_ptr; 4719 struct btrfs_dir_item *di; 4720 4721 if (key->type == BTRFS_INODE_REF_KEY) { 4722 struct btrfs_inode_ref *iref; 4723 4724 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 4725 parent = key->offset; 4726 this_name_len = btrfs_inode_ref_name_len(eb, iref); 4727 name_ptr = (unsigned long)(iref + 1); 4728 this_len = sizeof(*iref) + this_name_len; 4729 } else { 4730 struct btrfs_inode_extref *extref; 4731 4732 extref = (struct btrfs_inode_extref *)(ptr + 4733 cur_offset); 4734 parent = btrfs_inode_extref_parent(eb, extref); 4735 this_name_len = btrfs_inode_extref_name_len(eb, extref); 4736 name_ptr = (unsigned long)&extref->name; 4737 this_len = sizeof(*extref) + this_name_len; 4738 } 4739 4740 if (this_name_len > name_len) { 4741 char *new_name; 4742 4743 new_name = krealloc(name, this_name_len, GFP_NOFS); 4744 if (!new_name) { 4745 ret = -ENOMEM; 4746 goto out; 4747 } 4748 name_len = this_name_len; 4749 name = new_name; 4750 } 4751 4752 read_extent_buffer(eb, name, name_ptr, this_name_len); 4753 di = btrfs_lookup_dir_item(NULL, inode->root, search_path, 4754 parent, name, this_name_len, 0); 4755 if (di && !IS_ERR(di)) { 4756 struct btrfs_key di_key; 4757 4758 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 4759 di, &di_key); 4760 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 4761 if (di_key.objectid != key->objectid) { 4762 ret = 1; 4763 *other_ino = di_key.objectid; 4764 *other_parent = parent; 4765 } else { 4766 ret = 0; 4767 } 4768 } else { 4769 ret = -EAGAIN; 4770 } 4771 goto out; 4772 } else if (IS_ERR(di)) { 4773 ret = PTR_ERR(di); 4774 goto out; 4775 } 4776 btrfs_release_path(search_path); 4777 4778 cur_offset += this_len; 4779 } 4780 ret = 0; 4781 out: 4782 btrfs_free_path(search_path); 4783 kfree(name); 4784 return ret; 4785 } 4786 4787 struct btrfs_ino_list { 4788 u64 ino; 4789 u64 parent; 4790 struct list_head list; 4791 }; 4792 4793 static int log_conflicting_inodes(struct btrfs_trans_handle *trans, 4794 struct btrfs_root *root, 4795 struct btrfs_path *path, 4796 struct btrfs_log_ctx *ctx, 4797 u64 ino, u64 parent) 4798 { 4799 struct btrfs_ino_list *ino_elem; 4800 LIST_HEAD(inode_list); 4801 int ret = 0; 4802 4803 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 4804 if (!ino_elem) 4805 return -ENOMEM; 4806 ino_elem->ino = ino; 4807 ino_elem->parent = parent; 4808 list_add_tail(&ino_elem->list, &inode_list); 4809 4810 while (!list_empty(&inode_list)) { 4811 struct btrfs_fs_info *fs_info = root->fs_info; 4812 struct btrfs_key key; 4813 struct inode *inode; 4814 4815 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list, 4816 list); 4817 ino = ino_elem->ino; 4818 parent = ino_elem->parent; 4819 list_del(&ino_elem->list); 4820 kfree(ino_elem); 4821 if (ret) 4822 continue; 4823 4824 btrfs_release_path(path); 4825 4826 inode = btrfs_iget(fs_info->sb, ino, root); 4827 /* 4828 * If the other inode that had a conflicting dir entry was 4829 * deleted in the current transaction, we need to log its parent 4830 * directory. 4831 */ 4832 if (IS_ERR(inode)) { 4833 ret = PTR_ERR(inode); 4834 if (ret == -ENOENT) { 4835 inode = btrfs_iget(fs_info->sb, parent, root); 4836 if (IS_ERR(inode)) { 4837 ret = PTR_ERR(inode); 4838 } else { 4839 ret = btrfs_log_inode(trans, root, 4840 BTRFS_I(inode), 4841 LOG_OTHER_INODE_ALL, 4842 0, LLONG_MAX, ctx); 4843 btrfs_add_delayed_iput(inode); 4844 } 4845 } 4846 continue; 4847 } 4848 /* 4849 * If the inode was already logged skip it - otherwise we can 4850 * hit an infinite loop. Example: 4851 * 4852 * From the commit root (previous transaction) we have the 4853 * following inodes: 4854 * 4855 * inode 257 a directory 4856 * inode 258 with references "zz" and "zz_link" on inode 257 4857 * inode 259 with reference "a" on inode 257 4858 * 4859 * And in the current (uncommitted) transaction we have: 4860 * 4861 * inode 257 a directory, unchanged 4862 * inode 258 with references "a" and "a2" on inode 257 4863 * inode 259 with reference "zz_link" on inode 257 4864 * inode 261 with reference "zz" on inode 257 4865 * 4866 * When logging inode 261 the following infinite loop could 4867 * happen if we don't skip already logged inodes: 4868 * 4869 * - we detect inode 258 as a conflicting inode, with inode 261 4870 * on reference "zz", and log it; 4871 * 4872 * - we detect inode 259 as a conflicting inode, with inode 258 4873 * on reference "a", and log it; 4874 * 4875 * - we detect inode 258 as a conflicting inode, with inode 259 4876 * on reference "zz_link", and log it - again! After this we 4877 * repeat the above steps forever. 4878 */ 4879 spin_lock(&BTRFS_I(inode)->lock); 4880 /* 4881 * Check the inode's logged_trans only instead of 4882 * btrfs_inode_in_log(). This is because the last_log_commit of 4883 * the inode is not updated when we only log that it exists and 4884 * and it has the full sync bit set (see btrfs_log_inode()). 4885 */ 4886 if (BTRFS_I(inode)->logged_trans == trans->transid) { 4887 spin_unlock(&BTRFS_I(inode)->lock); 4888 btrfs_add_delayed_iput(inode); 4889 continue; 4890 } 4891 spin_unlock(&BTRFS_I(inode)->lock); 4892 /* 4893 * We are safe logging the other inode without acquiring its 4894 * lock as long as we log with the LOG_INODE_EXISTS mode. We 4895 * are safe against concurrent renames of the other inode as 4896 * well because during a rename we pin the log and update the 4897 * log with the new name before we unpin it. 4898 */ 4899 ret = btrfs_log_inode(trans, root, BTRFS_I(inode), 4900 LOG_OTHER_INODE, 0, LLONG_MAX, ctx); 4901 if (ret) { 4902 btrfs_add_delayed_iput(inode); 4903 continue; 4904 } 4905 4906 key.objectid = ino; 4907 key.type = BTRFS_INODE_REF_KEY; 4908 key.offset = 0; 4909 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4910 if (ret < 0) { 4911 btrfs_add_delayed_iput(inode); 4912 continue; 4913 } 4914 4915 while (true) { 4916 struct extent_buffer *leaf = path->nodes[0]; 4917 int slot = path->slots[0]; 4918 u64 other_ino = 0; 4919 u64 other_parent = 0; 4920 4921 if (slot >= btrfs_header_nritems(leaf)) { 4922 ret = btrfs_next_leaf(root, path); 4923 if (ret < 0) { 4924 break; 4925 } else if (ret > 0) { 4926 ret = 0; 4927 break; 4928 } 4929 continue; 4930 } 4931 4932 btrfs_item_key_to_cpu(leaf, &key, slot); 4933 if (key.objectid != ino || 4934 (key.type != BTRFS_INODE_REF_KEY && 4935 key.type != BTRFS_INODE_EXTREF_KEY)) { 4936 ret = 0; 4937 break; 4938 } 4939 4940 ret = btrfs_check_ref_name_override(leaf, slot, &key, 4941 BTRFS_I(inode), &other_ino, 4942 &other_parent); 4943 if (ret < 0) 4944 break; 4945 if (ret > 0) { 4946 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 4947 if (!ino_elem) { 4948 ret = -ENOMEM; 4949 break; 4950 } 4951 ino_elem->ino = other_ino; 4952 ino_elem->parent = other_parent; 4953 list_add_tail(&ino_elem->list, &inode_list); 4954 ret = 0; 4955 } 4956 path->slots[0]++; 4957 } 4958 btrfs_add_delayed_iput(inode); 4959 } 4960 4961 return ret; 4962 } 4963 4964 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans, 4965 struct btrfs_inode *inode, 4966 struct btrfs_key *min_key, 4967 const struct btrfs_key *max_key, 4968 struct btrfs_path *path, 4969 struct btrfs_path *dst_path, 4970 const u64 logged_isize, 4971 const bool recursive_logging, 4972 const int inode_only, 4973 struct btrfs_log_ctx *ctx, 4974 bool *need_log_inode_item) 4975 { 4976 struct btrfs_root *root = inode->root; 4977 int ins_start_slot = 0; 4978 int ins_nr = 0; 4979 int ret; 4980 4981 while (1) { 4982 ret = btrfs_search_forward(root, min_key, path, trans->transid); 4983 if (ret < 0) 4984 return ret; 4985 if (ret > 0) { 4986 ret = 0; 4987 break; 4988 } 4989 again: 4990 /* Note, ins_nr might be > 0 here, cleanup outside the loop */ 4991 if (min_key->objectid != max_key->objectid) 4992 break; 4993 if (min_key->type > max_key->type) 4994 break; 4995 4996 if (min_key->type == BTRFS_INODE_ITEM_KEY) 4997 *need_log_inode_item = false; 4998 4999 if ((min_key->type == BTRFS_INODE_REF_KEY || 5000 min_key->type == BTRFS_INODE_EXTREF_KEY) && 5001 inode->generation == trans->transid && 5002 !recursive_logging) { 5003 u64 other_ino = 0; 5004 u64 other_parent = 0; 5005 5006 ret = btrfs_check_ref_name_override(path->nodes[0], 5007 path->slots[0], min_key, inode, 5008 &other_ino, &other_parent); 5009 if (ret < 0) { 5010 return ret; 5011 } else if (ret > 0 && ctx && 5012 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) { 5013 if (ins_nr > 0) { 5014 ins_nr++; 5015 } else { 5016 ins_nr = 1; 5017 ins_start_slot = path->slots[0]; 5018 } 5019 ret = copy_items(trans, inode, dst_path, path, 5020 ins_start_slot, ins_nr, 5021 inode_only, logged_isize); 5022 if (ret < 0) 5023 return ret; 5024 ins_nr = 0; 5025 5026 ret = log_conflicting_inodes(trans, root, path, 5027 ctx, other_ino, other_parent); 5028 if (ret) 5029 return ret; 5030 btrfs_release_path(path); 5031 goto next_key; 5032 } 5033 } 5034 5035 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */ 5036 if (min_key->type == BTRFS_XATTR_ITEM_KEY) { 5037 if (ins_nr == 0) 5038 goto next_slot; 5039 ret = copy_items(trans, inode, dst_path, path, 5040 ins_start_slot, 5041 ins_nr, inode_only, logged_isize); 5042 if (ret < 0) 5043 return ret; 5044 ins_nr = 0; 5045 goto next_slot; 5046 } 5047 5048 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 5049 ins_nr++; 5050 goto next_slot; 5051 } else if (!ins_nr) { 5052 ins_start_slot = path->slots[0]; 5053 ins_nr = 1; 5054 goto next_slot; 5055 } 5056 5057 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5058 ins_nr, inode_only, logged_isize); 5059 if (ret < 0) 5060 return ret; 5061 ins_nr = 1; 5062 ins_start_slot = path->slots[0]; 5063 next_slot: 5064 path->slots[0]++; 5065 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 5066 btrfs_item_key_to_cpu(path->nodes[0], min_key, 5067 path->slots[0]); 5068 goto again; 5069 } 5070 if (ins_nr) { 5071 ret = copy_items(trans, inode, dst_path, path, 5072 ins_start_slot, ins_nr, inode_only, 5073 logged_isize); 5074 if (ret < 0) 5075 return ret; 5076 ins_nr = 0; 5077 } 5078 btrfs_release_path(path); 5079 next_key: 5080 if (min_key->offset < (u64)-1) { 5081 min_key->offset++; 5082 } else if (min_key->type < max_key->type) { 5083 min_key->type++; 5084 min_key->offset = 0; 5085 } else { 5086 break; 5087 } 5088 } 5089 if (ins_nr) 5090 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5091 ins_nr, inode_only, logged_isize); 5092 5093 return ret; 5094 } 5095 5096 /* log a single inode in the tree log. 5097 * At least one parent directory for this inode must exist in the tree 5098 * or be logged already. 5099 * 5100 * Any items from this inode changed by the current transaction are copied 5101 * to the log tree. An extra reference is taken on any extents in this 5102 * file, allowing us to avoid a whole pile of corner cases around logging 5103 * blocks that have been removed from the tree. 5104 * 5105 * See LOG_INODE_ALL and related defines for a description of what inode_only 5106 * does. 5107 * 5108 * This handles both files and directories. 5109 */ 5110 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 5111 struct btrfs_root *root, struct btrfs_inode *inode, 5112 int inode_only, 5113 const loff_t start, 5114 const loff_t end, 5115 struct btrfs_log_ctx *ctx) 5116 { 5117 struct btrfs_path *path; 5118 struct btrfs_path *dst_path; 5119 struct btrfs_key min_key; 5120 struct btrfs_key max_key; 5121 struct btrfs_root *log = root->log_root; 5122 int err = 0; 5123 int ret = 0; 5124 bool fast_search = false; 5125 u64 ino = btrfs_ino(inode); 5126 struct extent_map_tree *em_tree = &inode->extent_tree; 5127 u64 logged_isize = 0; 5128 bool need_log_inode_item = true; 5129 bool xattrs_logged = false; 5130 bool recursive_logging = false; 5131 5132 path = btrfs_alloc_path(); 5133 if (!path) 5134 return -ENOMEM; 5135 dst_path = btrfs_alloc_path(); 5136 if (!dst_path) { 5137 btrfs_free_path(path); 5138 return -ENOMEM; 5139 } 5140 5141 min_key.objectid = ino; 5142 min_key.type = BTRFS_INODE_ITEM_KEY; 5143 min_key.offset = 0; 5144 5145 max_key.objectid = ino; 5146 5147 5148 /* today the code can only do partial logging of directories */ 5149 if (S_ISDIR(inode->vfs_inode.i_mode) || 5150 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5151 &inode->runtime_flags) && 5152 inode_only >= LOG_INODE_EXISTS)) 5153 max_key.type = BTRFS_XATTR_ITEM_KEY; 5154 else 5155 max_key.type = (u8)-1; 5156 max_key.offset = (u64)-1; 5157 5158 /* 5159 * Only run delayed items if we are a directory. We want to make sure 5160 * all directory indexes hit the fs/subvolume tree so we can find them 5161 * and figure out which index ranges have to be logged. 5162 * 5163 * Otherwise commit the delayed inode only if the full sync flag is set, 5164 * as we want to make sure an up to date version is in the subvolume 5165 * tree so copy_inode_items_to_log() / copy_items() can find it and copy 5166 * it to the log tree. For a non full sync, we always log the inode item 5167 * based on the in-memory struct btrfs_inode which is always up to date. 5168 */ 5169 if (S_ISDIR(inode->vfs_inode.i_mode)) 5170 ret = btrfs_commit_inode_delayed_items(trans, inode); 5171 else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags)) 5172 ret = btrfs_commit_inode_delayed_inode(inode); 5173 5174 if (ret) { 5175 btrfs_free_path(path); 5176 btrfs_free_path(dst_path); 5177 return ret; 5178 } 5179 5180 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) { 5181 recursive_logging = true; 5182 if (inode_only == LOG_OTHER_INODE) 5183 inode_only = LOG_INODE_EXISTS; 5184 else 5185 inode_only = LOG_INODE_ALL; 5186 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING); 5187 } else { 5188 mutex_lock(&inode->log_mutex); 5189 } 5190 5191 /* 5192 * a brute force approach to making sure we get the most uptodate 5193 * copies of everything. 5194 */ 5195 if (S_ISDIR(inode->vfs_inode.i_mode)) { 5196 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 5197 5198 if (inode_only == LOG_INODE_EXISTS) 5199 max_key_type = BTRFS_XATTR_ITEM_KEY; 5200 ret = drop_objectid_items(trans, log, path, ino, max_key_type); 5201 } else { 5202 if (inode_only == LOG_INODE_EXISTS) { 5203 /* 5204 * Make sure the new inode item we write to the log has 5205 * the same isize as the current one (if it exists). 5206 * This is necessary to prevent data loss after log 5207 * replay, and also to prevent doing a wrong expanding 5208 * truncate - for e.g. create file, write 4K into offset 5209 * 0, fsync, write 4K into offset 4096, add hard link, 5210 * fsync some other file (to sync log), power fail - if 5211 * we use the inode's current i_size, after log replay 5212 * we get a 8Kb file, with the last 4Kb extent as a hole 5213 * (zeroes), as if an expanding truncate happened, 5214 * instead of getting a file of 4Kb only. 5215 */ 5216 err = logged_inode_size(log, inode, path, &logged_isize); 5217 if (err) 5218 goto out_unlock; 5219 } 5220 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5221 &inode->runtime_flags)) { 5222 if (inode_only == LOG_INODE_EXISTS) { 5223 max_key.type = BTRFS_XATTR_ITEM_KEY; 5224 ret = drop_objectid_items(trans, log, path, ino, 5225 max_key.type); 5226 } else { 5227 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5228 &inode->runtime_flags); 5229 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5230 &inode->runtime_flags); 5231 while(1) { 5232 ret = btrfs_truncate_inode_items(trans, 5233 log, &inode->vfs_inode, 0, 0); 5234 if (ret != -EAGAIN) 5235 break; 5236 } 5237 } 5238 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5239 &inode->runtime_flags) || 5240 inode_only == LOG_INODE_EXISTS) { 5241 if (inode_only == LOG_INODE_ALL) 5242 fast_search = true; 5243 max_key.type = BTRFS_XATTR_ITEM_KEY; 5244 ret = drop_objectid_items(trans, log, path, ino, 5245 max_key.type); 5246 } else { 5247 if (inode_only == LOG_INODE_ALL) 5248 fast_search = true; 5249 goto log_extents; 5250 } 5251 5252 } 5253 if (ret) { 5254 err = ret; 5255 goto out_unlock; 5256 } 5257 5258 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key, 5259 path, dst_path, logged_isize, 5260 recursive_logging, inode_only, ctx, 5261 &need_log_inode_item); 5262 if (err) 5263 goto out_unlock; 5264 5265 btrfs_release_path(path); 5266 btrfs_release_path(dst_path); 5267 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path); 5268 if (err) 5269 goto out_unlock; 5270 xattrs_logged = true; 5271 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 5272 btrfs_release_path(path); 5273 btrfs_release_path(dst_path); 5274 err = btrfs_log_holes(trans, root, inode, path); 5275 if (err) 5276 goto out_unlock; 5277 } 5278 log_extents: 5279 btrfs_release_path(path); 5280 btrfs_release_path(dst_path); 5281 if (need_log_inode_item) { 5282 err = log_inode_item(trans, log, dst_path, inode); 5283 if (!err && !xattrs_logged) { 5284 err = btrfs_log_all_xattrs(trans, root, inode, path, 5285 dst_path); 5286 btrfs_release_path(path); 5287 } 5288 if (err) 5289 goto out_unlock; 5290 } 5291 if (fast_search) { 5292 ret = btrfs_log_changed_extents(trans, root, inode, dst_path, 5293 ctx, start, end); 5294 if (ret) { 5295 err = ret; 5296 goto out_unlock; 5297 } 5298 } else if (inode_only == LOG_INODE_ALL) { 5299 struct extent_map *em, *n; 5300 5301 write_lock(&em_tree->lock); 5302 /* 5303 * We can't just remove every em if we're called for a ranged 5304 * fsync - that is, one that doesn't cover the whole possible 5305 * file range (0 to LLONG_MAX). This is because we can have 5306 * em's that fall outside the range we're logging and therefore 5307 * their ordered operations haven't completed yet 5308 * (btrfs_finish_ordered_io() not invoked yet). This means we 5309 * didn't get their respective file extent item in the fs/subvol 5310 * tree yet, and need to let the next fast fsync (one which 5311 * consults the list of modified extent maps) find the em so 5312 * that it logs a matching file extent item and waits for the 5313 * respective ordered operation to complete (if it's still 5314 * running). 5315 * 5316 * Removing every em outside the range we're logging would make 5317 * the next fast fsync not log their matching file extent items, 5318 * therefore making us lose data after a log replay. 5319 */ 5320 list_for_each_entry_safe(em, n, &em_tree->modified_extents, 5321 list) { 5322 const u64 mod_end = em->mod_start + em->mod_len - 1; 5323 5324 if (em->mod_start >= start && mod_end <= end) 5325 list_del_init(&em->list); 5326 } 5327 write_unlock(&em_tree->lock); 5328 } 5329 5330 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) { 5331 ret = log_directory_changes(trans, root, inode, path, dst_path, 5332 ctx); 5333 if (ret) { 5334 err = ret; 5335 goto out_unlock; 5336 } 5337 } 5338 5339 /* 5340 * Don't update last_log_commit if we logged that an inode exists after 5341 * it was loaded to memory (full_sync bit set). 5342 * This is to prevent data loss when we do a write to the inode, then 5343 * the inode gets evicted after all delalloc was flushed, then we log 5344 * it exists (due to a rename for example) and then fsync it. This last 5345 * fsync would do nothing (not logging the extents previously written). 5346 */ 5347 spin_lock(&inode->lock); 5348 inode->logged_trans = trans->transid; 5349 if (inode_only != LOG_INODE_EXISTS || 5350 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags)) 5351 inode->last_log_commit = inode->last_sub_trans; 5352 spin_unlock(&inode->lock); 5353 out_unlock: 5354 mutex_unlock(&inode->log_mutex); 5355 5356 btrfs_free_path(path); 5357 btrfs_free_path(dst_path); 5358 return err; 5359 } 5360 5361 /* 5362 * Check if we must fallback to a transaction commit when logging an inode. 5363 * This must be called after logging the inode and is used only in the context 5364 * when fsyncing an inode requires the need to log some other inode - in which 5365 * case we can't lock the i_mutex of each other inode we need to log as that 5366 * can lead to deadlocks with concurrent fsync against other inodes (as we can 5367 * log inodes up or down in the hierarchy) or rename operations for example. So 5368 * we take the log_mutex of the inode after we have logged it and then check for 5369 * its last_unlink_trans value - this is safe because any task setting 5370 * last_unlink_trans must take the log_mutex and it must do this before it does 5371 * the actual unlink operation, so if we do this check before a concurrent task 5372 * sets last_unlink_trans it means we've logged a consistent version/state of 5373 * all the inode items, otherwise we are not sure and must do a transaction 5374 * commit (the concurrent task might have only updated last_unlink_trans before 5375 * we logged the inode or it might have also done the unlink). 5376 */ 5377 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans, 5378 struct btrfs_inode *inode) 5379 { 5380 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5381 bool ret = false; 5382 5383 mutex_lock(&inode->log_mutex); 5384 if (inode->last_unlink_trans > fs_info->last_trans_committed) { 5385 /* 5386 * Make sure any commits to the log are forced to be full 5387 * commits. 5388 */ 5389 btrfs_set_log_full_commit(trans); 5390 ret = true; 5391 } 5392 mutex_unlock(&inode->log_mutex); 5393 5394 return ret; 5395 } 5396 5397 /* 5398 * follow the dentry parent pointers up the chain and see if any 5399 * of the directories in it require a full commit before they can 5400 * be logged. Returns zero if nothing special needs to be done or 1 if 5401 * a full commit is required. 5402 */ 5403 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, 5404 struct btrfs_inode *inode, 5405 struct dentry *parent, 5406 struct super_block *sb, 5407 u64 last_committed) 5408 { 5409 int ret = 0; 5410 struct dentry *old_parent = NULL; 5411 5412 /* 5413 * for regular files, if its inode is already on disk, we don't 5414 * have to worry about the parents at all. This is because 5415 * we can use the last_unlink_trans field to record renames 5416 * and other fun in this file. 5417 */ 5418 if (S_ISREG(inode->vfs_inode.i_mode) && 5419 inode->generation <= last_committed && 5420 inode->last_unlink_trans <= last_committed) 5421 goto out; 5422 5423 if (!S_ISDIR(inode->vfs_inode.i_mode)) { 5424 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5425 goto out; 5426 inode = BTRFS_I(d_inode(parent)); 5427 } 5428 5429 while (1) { 5430 if (btrfs_must_commit_transaction(trans, inode)) { 5431 ret = 1; 5432 break; 5433 } 5434 5435 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5436 break; 5437 5438 if (IS_ROOT(parent)) { 5439 inode = BTRFS_I(d_inode(parent)); 5440 if (btrfs_must_commit_transaction(trans, inode)) 5441 ret = 1; 5442 break; 5443 } 5444 5445 parent = dget_parent(parent); 5446 dput(old_parent); 5447 old_parent = parent; 5448 inode = BTRFS_I(d_inode(parent)); 5449 5450 } 5451 dput(old_parent); 5452 out: 5453 return ret; 5454 } 5455 5456 struct btrfs_dir_list { 5457 u64 ino; 5458 struct list_head list; 5459 }; 5460 5461 /* 5462 * Log the inodes of the new dentries of a directory. See log_dir_items() for 5463 * details about the why it is needed. 5464 * This is a recursive operation - if an existing dentry corresponds to a 5465 * directory, that directory's new entries are logged too (same behaviour as 5466 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5467 * the dentries point to we do not lock their i_mutex, otherwise lockdep 5468 * complains about the following circular lock dependency / possible deadlock: 5469 * 5470 * CPU0 CPU1 5471 * ---- ---- 5472 * lock(&type->i_mutex_dir_key#3/2); 5473 * lock(sb_internal#2); 5474 * lock(&type->i_mutex_dir_key#3/2); 5475 * lock(&sb->s_type->i_mutex_key#14); 5476 * 5477 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5478 * sb_start_intwrite() in btrfs_start_transaction(). 5479 * Not locking i_mutex of the inodes is still safe because: 5480 * 5481 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5482 * that while logging the inode new references (names) are added or removed 5483 * from the inode, leaving the logged inode item with a link count that does 5484 * not match the number of logged inode reference items. This is fine because 5485 * at log replay time we compute the real number of links and correct the 5486 * link count in the inode item (see replay_one_buffer() and 5487 * link_to_fixup_dir()); 5488 * 5489 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5490 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and 5491 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item 5492 * has a size that doesn't match the sum of the lengths of all the logged 5493 * names. This does not result in a problem because if a dir_item key is 5494 * logged but its matching dir_index key is not logged, at log replay time we 5495 * don't use it to replay the respective name (see replay_one_name()). On the 5496 * other hand if only the dir_index key ends up being logged, the respective 5497 * name is added to the fs/subvol tree with both the dir_item and dir_index 5498 * keys created (see replay_one_name()). 5499 * The directory's inode item with a wrong i_size is not a problem as well, 5500 * since we don't use it at log replay time to set the i_size in the inode 5501 * item of the fs/subvol tree (see overwrite_item()). 5502 */ 5503 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5504 struct btrfs_root *root, 5505 struct btrfs_inode *start_inode, 5506 struct btrfs_log_ctx *ctx) 5507 { 5508 struct btrfs_fs_info *fs_info = root->fs_info; 5509 struct btrfs_root *log = root->log_root; 5510 struct btrfs_path *path; 5511 LIST_HEAD(dir_list); 5512 struct btrfs_dir_list *dir_elem; 5513 int ret = 0; 5514 5515 path = btrfs_alloc_path(); 5516 if (!path) 5517 return -ENOMEM; 5518 5519 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5520 if (!dir_elem) { 5521 btrfs_free_path(path); 5522 return -ENOMEM; 5523 } 5524 dir_elem->ino = btrfs_ino(start_inode); 5525 list_add_tail(&dir_elem->list, &dir_list); 5526 5527 while (!list_empty(&dir_list)) { 5528 struct extent_buffer *leaf; 5529 struct btrfs_key min_key; 5530 int nritems; 5531 int i; 5532 5533 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, 5534 list); 5535 if (ret) 5536 goto next_dir_inode; 5537 5538 min_key.objectid = dir_elem->ino; 5539 min_key.type = BTRFS_DIR_ITEM_KEY; 5540 min_key.offset = 0; 5541 again: 5542 btrfs_release_path(path); 5543 ret = btrfs_search_forward(log, &min_key, path, trans->transid); 5544 if (ret < 0) { 5545 goto next_dir_inode; 5546 } else if (ret > 0) { 5547 ret = 0; 5548 goto next_dir_inode; 5549 } 5550 5551 process_leaf: 5552 leaf = path->nodes[0]; 5553 nritems = btrfs_header_nritems(leaf); 5554 for (i = path->slots[0]; i < nritems; i++) { 5555 struct btrfs_dir_item *di; 5556 struct btrfs_key di_key; 5557 struct inode *di_inode; 5558 struct btrfs_dir_list *new_dir_elem; 5559 int log_mode = LOG_INODE_EXISTS; 5560 int type; 5561 5562 btrfs_item_key_to_cpu(leaf, &min_key, i); 5563 if (min_key.objectid != dir_elem->ino || 5564 min_key.type != BTRFS_DIR_ITEM_KEY) 5565 goto next_dir_inode; 5566 5567 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item); 5568 type = btrfs_dir_type(leaf, di); 5569 if (btrfs_dir_transid(leaf, di) < trans->transid && 5570 type != BTRFS_FT_DIR) 5571 continue; 5572 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5573 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5574 continue; 5575 5576 btrfs_release_path(path); 5577 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root); 5578 if (IS_ERR(di_inode)) { 5579 ret = PTR_ERR(di_inode); 5580 goto next_dir_inode; 5581 } 5582 5583 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) { 5584 btrfs_add_delayed_iput(di_inode); 5585 break; 5586 } 5587 5588 ctx->log_new_dentries = false; 5589 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK) 5590 log_mode = LOG_INODE_ALL; 5591 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode), 5592 log_mode, 0, LLONG_MAX, ctx); 5593 if (!ret && 5594 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode))) 5595 ret = 1; 5596 btrfs_add_delayed_iput(di_inode); 5597 if (ret) 5598 goto next_dir_inode; 5599 if (ctx->log_new_dentries) { 5600 new_dir_elem = kmalloc(sizeof(*new_dir_elem), 5601 GFP_NOFS); 5602 if (!new_dir_elem) { 5603 ret = -ENOMEM; 5604 goto next_dir_inode; 5605 } 5606 new_dir_elem->ino = di_key.objectid; 5607 list_add_tail(&new_dir_elem->list, &dir_list); 5608 } 5609 break; 5610 } 5611 if (i == nritems) { 5612 ret = btrfs_next_leaf(log, path); 5613 if (ret < 0) { 5614 goto next_dir_inode; 5615 } else if (ret > 0) { 5616 ret = 0; 5617 goto next_dir_inode; 5618 } 5619 goto process_leaf; 5620 } 5621 if (min_key.offset < (u64)-1) { 5622 min_key.offset++; 5623 goto again; 5624 } 5625 next_dir_inode: 5626 list_del(&dir_elem->list); 5627 kfree(dir_elem); 5628 } 5629 5630 btrfs_free_path(path); 5631 return ret; 5632 } 5633 5634 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 5635 struct btrfs_inode *inode, 5636 struct btrfs_log_ctx *ctx) 5637 { 5638 struct btrfs_fs_info *fs_info = trans->fs_info; 5639 int ret; 5640 struct btrfs_path *path; 5641 struct btrfs_key key; 5642 struct btrfs_root *root = inode->root; 5643 const u64 ino = btrfs_ino(inode); 5644 5645 path = btrfs_alloc_path(); 5646 if (!path) 5647 return -ENOMEM; 5648 path->skip_locking = 1; 5649 path->search_commit_root = 1; 5650 5651 key.objectid = ino; 5652 key.type = BTRFS_INODE_REF_KEY; 5653 key.offset = 0; 5654 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5655 if (ret < 0) 5656 goto out; 5657 5658 while (true) { 5659 struct extent_buffer *leaf = path->nodes[0]; 5660 int slot = path->slots[0]; 5661 u32 cur_offset = 0; 5662 u32 item_size; 5663 unsigned long ptr; 5664 5665 if (slot >= btrfs_header_nritems(leaf)) { 5666 ret = btrfs_next_leaf(root, path); 5667 if (ret < 0) 5668 goto out; 5669 else if (ret > 0) 5670 break; 5671 continue; 5672 } 5673 5674 btrfs_item_key_to_cpu(leaf, &key, slot); 5675 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 5676 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 5677 break; 5678 5679 item_size = btrfs_item_size_nr(leaf, slot); 5680 ptr = btrfs_item_ptr_offset(leaf, slot); 5681 while (cur_offset < item_size) { 5682 struct btrfs_key inode_key; 5683 struct inode *dir_inode; 5684 5685 inode_key.type = BTRFS_INODE_ITEM_KEY; 5686 inode_key.offset = 0; 5687 5688 if (key.type == BTRFS_INODE_EXTREF_KEY) { 5689 struct btrfs_inode_extref *extref; 5690 5691 extref = (struct btrfs_inode_extref *) 5692 (ptr + cur_offset); 5693 inode_key.objectid = btrfs_inode_extref_parent( 5694 leaf, extref); 5695 cur_offset += sizeof(*extref); 5696 cur_offset += btrfs_inode_extref_name_len(leaf, 5697 extref); 5698 } else { 5699 inode_key.objectid = key.offset; 5700 cur_offset = item_size; 5701 } 5702 5703 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid, 5704 root); 5705 /* 5706 * If the parent inode was deleted, return an error to 5707 * fallback to a transaction commit. This is to prevent 5708 * getting an inode that was moved from one parent A to 5709 * a parent B, got its former parent A deleted and then 5710 * it got fsync'ed, from existing at both parents after 5711 * a log replay (and the old parent still existing). 5712 * Example: 5713 * 5714 * mkdir /mnt/A 5715 * mkdir /mnt/B 5716 * touch /mnt/B/bar 5717 * sync 5718 * mv /mnt/B/bar /mnt/A/bar 5719 * mv -T /mnt/A /mnt/B 5720 * fsync /mnt/B/bar 5721 * <power fail> 5722 * 5723 * If we ignore the old parent B which got deleted, 5724 * after a log replay we would have file bar linked 5725 * at both parents and the old parent B would still 5726 * exist. 5727 */ 5728 if (IS_ERR(dir_inode)) { 5729 ret = PTR_ERR(dir_inode); 5730 goto out; 5731 } 5732 5733 if (ctx) 5734 ctx->log_new_dentries = false; 5735 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode), 5736 LOG_INODE_ALL, 0, LLONG_MAX, ctx); 5737 if (!ret && 5738 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode))) 5739 ret = 1; 5740 if (!ret && ctx && ctx->log_new_dentries) 5741 ret = log_new_dir_dentries(trans, root, 5742 BTRFS_I(dir_inode), ctx); 5743 btrfs_add_delayed_iput(dir_inode); 5744 if (ret) 5745 goto out; 5746 } 5747 path->slots[0]++; 5748 } 5749 ret = 0; 5750 out: 5751 btrfs_free_path(path); 5752 return ret; 5753 } 5754 5755 static int log_new_ancestors(struct btrfs_trans_handle *trans, 5756 struct btrfs_root *root, 5757 struct btrfs_path *path, 5758 struct btrfs_log_ctx *ctx) 5759 { 5760 struct btrfs_key found_key; 5761 5762 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 5763 5764 while (true) { 5765 struct btrfs_fs_info *fs_info = root->fs_info; 5766 const u64 last_committed = fs_info->last_trans_committed; 5767 struct extent_buffer *leaf = path->nodes[0]; 5768 int slot = path->slots[0]; 5769 struct btrfs_key search_key; 5770 struct inode *inode; 5771 u64 ino; 5772 int ret = 0; 5773 5774 btrfs_release_path(path); 5775 5776 ino = found_key.offset; 5777 5778 search_key.objectid = found_key.offset; 5779 search_key.type = BTRFS_INODE_ITEM_KEY; 5780 search_key.offset = 0; 5781 inode = btrfs_iget(fs_info->sb, ino, root); 5782 if (IS_ERR(inode)) 5783 return PTR_ERR(inode); 5784 5785 if (BTRFS_I(inode)->generation > last_committed) 5786 ret = btrfs_log_inode(trans, root, BTRFS_I(inode), 5787 LOG_INODE_EXISTS, 5788 0, LLONG_MAX, ctx); 5789 btrfs_add_delayed_iput(inode); 5790 if (ret) 5791 return ret; 5792 5793 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) 5794 break; 5795 5796 search_key.type = BTRFS_INODE_REF_KEY; 5797 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5798 if (ret < 0) 5799 return ret; 5800 5801 leaf = path->nodes[0]; 5802 slot = path->slots[0]; 5803 if (slot >= btrfs_header_nritems(leaf)) { 5804 ret = btrfs_next_leaf(root, path); 5805 if (ret < 0) 5806 return ret; 5807 else if (ret > 0) 5808 return -ENOENT; 5809 leaf = path->nodes[0]; 5810 slot = path->slots[0]; 5811 } 5812 5813 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5814 if (found_key.objectid != search_key.objectid || 5815 found_key.type != BTRFS_INODE_REF_KEY) 5816 return -ENOENT; 5817 } 5818 return 0; 5819 } 5820 5821 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, 5822 struct btrfs_inode *inode, 5823 struct dentry *parent, 5824 struct btrfs_log_ctx *ctx) 5825 { 5826 struct btrfs_root *root = inode->root; 5827 struct btrfs_fs_info *fs_info = root->fs_info; 5828 struct dentry *old_parent = NULL; 5829 struct super_block *sb = inode->vfs_inode.i_sb; 5830 int ret = 0; 5831 5832 while (true) { 5833 if (!parent || d_really_is_negative(parent) || 5834 sb != parent->d_sb) 5835 break; 5836 5837 inode = BTRFS_I(d_inode(parent)); 5838 if (root != inode->root) 5839 break; 5840 5841 if (inode->generation > fs_info->last_trans_committed) { 5842 ret = btrfs_log_inode(trans, root, inode, 5843 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx); 5844 if (ret) 5845 break; 5846 } 5847 if (IS_ROOT(parent)) 5848 break; 5849 5850 parent = dget_parent(parent); 5851 dput(old_parent); 5852 old_parent = parent; 5853 } 5854 dput(old_parent); 5855 5856 return ret; 5857 } 5858 5859 static int log_all_new_ancestors(struct btrfs_trans_handle *trans, 5860 struct btrfs_inode *inode, 5861 struct dentry *parent, 5862 struct btrfs_log_ctx *ctx) 5863 { 5864 struct btrfs_root *root = inode->root; 5865 const u64 ino = btrfs_ino(inode); 5866 struct btrfs_path *path; 5867 struct btrfs_key search_key; 5868 int ret; 5869 5870 /* 5871 * For a single hard link case, go through a fast path that does not 5872 * need to iterate the fs/subvolume tree. 5873 */ 5874 if (inode->vfs_inode.i_nlink < 2) 5875 return log_new_ancestors_fast(trans, inode, parent, ctx); 5876 5877 path = btrfs_alloc_path(); 5878 if (!path) 5879 return -ENOMEM; 5880 5881 search_key.objectid = ino; 5882 search_key.type = BTRFS_INODE_REF_KEY; 5883 search_key.offset = 0; 5884 again: 5885 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5886 if (ret < 0) 5887 goto out; 5888 if (ret == 0) 5889 path->slots[0]++; 5890 5891 while (true) { 5892 struct extent_buffer *leaf = path->nodes[0]; 5893 int slot = path->slots[0]; 5894 struct btrfs_key found_key; 5895 5896 if (slot >= btrfs_header_nritems(leaf)) { 5897 ret = btrfs_next_leaf(root, path); 5898 if (ret < 0) 5899 goto out; 5900 else if (ret > 0) 5901 break; 5902 continue; 5903 } 5904 5905 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5906 if (found_key.objectid != ino || 5907 found_key.type > BTRFS_INODE_EXTREF_KEY) 5908 break; 5909 5910 /* 5911 * Don't deal with extended references because they are rare 5912 * cases and too complex to deal with (we would need to keep 5913 * track of which subitem we are processing for each item in 5914 * this loop, etc). So just return some error to fallback to 5915 * a transaction commit. 5916 */ 5917 if (found_key.type == BTRFS_INODE_EXTREF_KEY) { 5918 ret = -EMLINK; 5919 goto out; 5920 } 5921 5922 /* 5923 * Logging ancestors needs to do more searches on the fs/subvol 5924 * tree, so it releases the path as needed to avoid deadlocks. 5925 * Keep track of the last inode ref key and resume from that key 5926 * after logging all new ancestors for the current hard link. 5927 */ 5928 memcpy(&search_key, &found_key, sizeof(search_key)); 5929 5930 ret = log_new_ancestors(trans, root, path, ctx); 5931 if (ret) 5932 goto out; 5933 btrfs_release_path(path); 5934 goto again; 5935 } 5936 ret = 0; 5937 out: 5938 btrfs_free_path(path); 5939 return ret; 5940 } 5941 5942 /* 5943 * helper function around btrfs_log_inode to make sure newly created 5944 * parent directories also end up in the log. A minimal inode and backref 5945 * only logging is done of any parent directories that are older than 5946 * the last committed transaction 5947 */ 5948 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 5949 struct btrfs_inode *inode, 5950 struct dentry *parent, 5951 const loff_t start, 5952 const loff_t end, 5953 int inode_only, 5954 struct btrfs_log_ctx *ctx) 5955 { 5956 struct btrfs_root *root = inode->root; 5957 struct btrfs_fs_info *fs_info = root->fs_info; 5958 struct super_block *sb; 5959 int ret = 0; 5960 u64 last_committed = fs_info->last_trans_committed; 5961 bool log_dentries = false; 5962 5963 sb = inode->vfs_inode.i_sb; 5964 5965 if (btrfs_test_opt(fs_info, NOTREELOG)) { 5966 ret = 1; 5967 goto end_no_trans; 5968 } 5969 5970 /* 5971 * The prev transaction commit doesn't complete, we need do 5972 * full commit by ourselves. 5973 */ 5974 if (fs_info->last_trans_log_full_commit > 5975 fs_info->last_trans_committed) { 5976 ret = 1; 5977 goto end_no_trans; 5978 } 5979 5980 if (btrfs_root_refs(&root->root_item) == 0) { 5981 ret = 1; 5982 goto end_no_trans; 5983 } 5984 5985 ret = check_parent_dirs_for_sync(trans, inode, parent, sb, 5986 last_committed); 5987 if (ret) 5988 goto end_no_trans; 5989 5990 /* 5991 * Skip already logged inodes or inodes corresponding to tmpfiles 5992 * (since logging them is pointless, a link count of 0 means they 5993 * will never be accessible). 5994 */ 5995 if (btrfs_inode_in_log(inode, trans->transid) || 5996 inode->vfs_inode.i_nlink == 0) { 5997 ret = BTRFS_NO_LOG_SYNC; 5998 goto end_no_trans; 5999 } 6000 6001 ret = start_log_trans(trans, root, ctx); 6002 if (ret) 6003 goto end_no_trans; 6004 6005 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx); 6006 if (ret) 6007 goto end_trans; 6008 6009 /* 6010 * for regular files, if its inode is already on disk, we don't 6011 * have to worry about the parents at all. This is because 6012 * we can use the last_unlink_trans field to record renames 6013 * and other fun in this file. 6014 */ 6015 if (S_ISREG(inode->vfs_inode.i_mode) && 6016 inode->generation <= last_committed && 6017 inode->last_unlink_trans <= last_committed) { 6018 ret = 0; 6019 goto end_trans; 6020 } 6021 6022 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries) 6023 log_dentries = true; 6024 6025 /* 6026 * On unlink we must make sure all our current and old parent directory 6027 * inodes are fully logged. This is to prevent leaving dangling 6028 * directory index entries in directories that were our parents but are 6029 * not anymore. Not doing this results in old parent directory being 6030 * impossible to delete after log replay (rmdir will always fail with 6031 * error -ENOTEMPTY). 6032 * 6033 * Example 1: 6034 * 6035 * mkdir testdir 6036 * touch testdir/foo 6037 * ln testdir/foo testdir/bar 6038 * sync 6039 * unlink testdir/bar 6040 * xfs_io -c fsync testdir/foo 6041 * <power failure> 6042 * mount fs, triggers log replay 6043 * 6044 * If we don't log the parent directory (testdir), after log replay the 6045 * directory still has an entry pointing to the file inode using the bar 6046 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 6047 * the file inode has a link count of 1. 6048 * 6049 * Example 2: 6050 * 6051 * mkdir testdir 6052 * touch foo 6053 * ln foo testdir/foo2 6054 * ln foo testdir/foo3 6055 * sync 6056 * unlink testdir/foo3 6057 * xfs_io -c fsync foo 6058 * <power failure> 6059 * mount fs, triggers log replay 6060 * 6061 * Similar as the first example, after log replay the parent directory 6062 * testdir still has an entry pointing to the inode file with name foo3 6063 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 6064 * and has a link count of 2. 6065 */ 6066 if (inode->last_unlink_trans > last_committed) { 6067 ret = btrfs_log_all_parents(trans, inode, ctx); 6068 if (ret) 6069 goto end_trans; 6070 } 6071 6072 ret = log_all_new_ancestors(trans, inode, parent, ctx); 6073 if (ret) 6074 goto end_trans; 6075 6076 if (log_dentries) 6077 ret = log_new_dir_dentries(trans, root, inode, ctx); 6078 else 6079 ret = 0; 6080 end_trans: 6081 if (ret < 0) { 6082 btrfs_set_log_full_commit(trans); 6083 ret = 1; 6084 } 6085 6086 if (ret) 6087 btrfs_remove_log_ctx(root, ctx); 6088 btrfs_end_log_trans(root); 6089 end_no_trans: 6090 return ret; 6091 } 6092 6093 /* 6094 * it is not safe to log dentry if the chunk root has added new 6095 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 6096 * If this returns 1, you must commit the transaction to safely get your 6097 * data on disk. 6098 */ 6099 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 6100 struct dentry *dentry, 6101 const loff_t start, 6102 const loff_t end, 6103 struct btrfs_log_ctx *ctx) 6104 { 6105 struct dentry *parent = dget_parent(dentry); 6106 int ret; 6107 6108 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, 6109 start, end, LOG_INODE_ALL, ctx); 6110 dput(parent); 6111 6112 return ret; 6113 } 6114 6115 /* 6116 * should be called during mount to recover any replay any log trees 6117 * from the FS 6118 */ 6119 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 6120 { 6121 int ret; 6122 struct btrfs_path *path; 6123 struct btrfs_trans_handle *trans; 6124 struct btrfs_key key; 6125 struct btrfs_key found_key; 6126 struct btrfs_root *log; 6127 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 6128 struct walk_control wc = { 6129 .process_func = process_one_buffer, 6130 .stage = LOG_WALK_PIN_ONLY, 6131 }; 6132 6133 path = btrfs_alloc_path(); 6134 if (!path) 6135 return -ENOMEM; 6136 6137 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6138 6139 trans = btrfs_start_transaction(fs_info->tree_root, 0); 6140 if (IS_ERR(trans)) { 6141 ret = PTR_ERR(trans); 6142 goto error; 6143 } 6144 6145 wc.trans = trans; 6146 wc.pin = 1; 6147 6148 ret = walk_log_tree(trans, log_root_tree, &wc); 6149 if (ret) { 6150 btrfs_handle_fs_error(fs_info, ret, 6151 "Failed to pin buffers while recovering log root tree."); 6152 goto error; 6153 } 6154 6155 again: 6156 key.objectid = BTRFS_TREE_LOG_OBJECTID; 6157 key.offset = (u64)-1; 6158 key.type = BTRFS_ROOT_ITEM_KEY; 6159 6160 while (1) { 6161 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 6162 6163 if (ret < 0) { 6164 btrfs_handle_fs_error(fs_info, ret, 6165 "Couldn't find tree log root."); 6166 goto error; 6167 } 6168 if (ret > 0) { 6169 if (path->slots[0] == 0) 6170 break; 6171 path->slots[0]--; 6172 } 6173 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 6174 path->slots[0]); 6175 btrfs_release_path(path); 6176 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 6177 break; 6178 6179 log = btrfs_read_tree_root(log_root_tree, &found_key); 6180 if (IS_ERR(log)) { 6181 ret = PTR_ERR(log); 6182 btrfs_handle_fs_error(fs_info, ret, 6183 "Couldn't read tree log root."); 6184 goto error; 6185 } 6186 6187 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset, 6188 true); 6189 if (IS_ERR(wc.replay_dest)) { 6190 ret = PTR_ERR(wc.replay_dest); 6191 6192 /* 6193 * We didn't find the subvol, likely because it was 6194 * deleted. This is ok, simply skip this log and go to 6195 * the next one. 6196 * 6197 * We need to exclude the root because we can't have 6198 * other log replays overwriting this log as we'll read 6199 * it back in a few more times. This will keep our 6200 * block from being modified, and we'll just bail for 6201 * each subsequent pass. 6202 */ 6203 if (ret == -ENOENT) 6204 ret = btrfs_pin_extent_for_log_replay(trans, 6205 log->node->start, 6206 log->node->len); 6207 btrfs_put_root(log); 6208 6209 if (!ret) 6210 goto next; 6211 btrfs_handle_fs_error(fs_info, ret, 6212 "Couldn't read target root for tree log recovery."); 6213 goto error; 6214 } 6215 6216 wc.replay_dest->log_root = log; 6217 btrfs_record_root_in_trans(trans, wc.replay_dest); 6218 ret = walk_log_tree(trans, log, &wc); 6219 6220 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6221 ret = fixup_inode_link_counts(trans, wc.replay_dest, 6222 path); 6223 } 6224 6225 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6226 struct btrfs_root *root = wc.replay_dest; 6227 6228 btrfs_release_path(path); 6229 6230 /* 6231 * We have just replayed everything, and the highest 6232 * objectid of fs roots probably has changed in case 6233 * some inode_item's got replayed. 6234 * 6235 * root->objectid_mutex is not acquired as log replay 6236 * could only happen during mount. 6237 */ 6238 ret = btrfs_find_highest_objectid(root, 6239 &root->highest_objectid); 6240 } 6241 6242 wc.replay_dest->log_root = NULL; 6243 btrfs_put_root(wc.replay_dest); 6244 btrfs_put_root(log); 6245 6246 if (ret) 6247 goto error; 6248 next: 6249 if (found_key.offset == 0) 6250 break; 6251 key.offset = found_key.offset - 1; 6252 } 6253 btrfs_release_path(path); 6254 6255 /* step one is to pin it all, step two is to replay just inodes */ 6256 if (wc.pin) { 6257 wc.pin = 0; 6258 wc.process_func = replay_one_buffer; 6259 wc.stage = LOG_WALK_REPLAY_INODES; 6260 goto again; 6261 } 6262 /* step three is to replay everything */ 6263 if (wc.stage < LOG_WALK_REPLAY_ALL) { 6264 wc.stage++; 6265 goto again; 6266 } 6267 6268 btrfs_free_path(path); 6269 6270 /* step 4: commit the transaction, which also unpins the blocks */ 6271 ret = btrfs_commit_transaction(trans); 6272 if (ret) 6273 return ret; 6274 6275 log_root_tree->log_root = NULL; 6276 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6277 btrfs_put_root(log_root_tree); 6278 6279 return 0; 6280 error: 6281 if (wc.trans) 6282 btrfs_end_transaction(wc.trans); 6283 btrfs_free_path(path); 6284 return ret; 6285 } 6286 6287 /* 6288 * there are some corner cases where we want to force a full 6289 * commit instead of allowing a directory to be logged. 6290 * 6291 * They revolve around files there were unlinked from the directory, and 6292 * this function updates the parent directory so that a full commit is 6293 * properly done if it is fsync'd later after the unlinks are done. 6294 * 6295 * Must be called before the unlink operations (updates to the subvolume tree, 6296 * inodes, etc) are done. 6297 */ 6298 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 6299 struct btrfs_inode *dir, struct btrfs_inode *inode, 6300 int for_rename) 6301 { 6302 /* 6303 * when we're logging a file, if it hasn't been renamed 6304 * or unlinked, and its inode is fully committed on disk, 6305 * we don't have to worry about walking up the directory chain 6306 * to log its parents. 6307 * 6308 * So, we use the last_unlink_trans field to put this transid 6309 * into the file. When the file is logged we check it and 6310 * don't log the parents if the file is fully on disk. 6311 */ 6312 mutex_lock(&inode->log_mutex); 6313 inode->last_unlink_trans = trans->transid; 6314 mutex_unlock(&inode->log_mutex); 6315 6316 /* 6317 * if this directory was already logged any new 6318 * names for this file/dir will get recorded 6319 */ 6320 if (dir->logged_trans == trans->transid) 6321 return; 6322 6323 /* 6324 * if the inode we're about to unlink was logged, 6325 * the log will be properly updated for any new names 6326 */ 6327 if (inode->logged_trans == trans->transid) 6328 return; 6329 6330 /* 6331 * when renaming files across directories, if the directory 6332 * there we're unlinking from gets fsync'd later on, there's 6333 * no way to find the destination directory later and fsync it 6334 * properly. So, we have to be conservative and force commits 6335 * so the new name gets discovered. 6336 */ 6337 if (for_rename) 6338 goto record; 6339 6340 /* we can safely do the unlink without any special recording */ 6341 return; 6342 6343 record: 6344 mutex_lock(&dir->log_mutex); 6345 dir->last_unlink_trans = trans->transid; 6346 mutex_unlock(&dir->log_mutex); 6347 } 6348 6349 /* 6350 * Make sure that if someone attempts to fsync the parent directory of a deleted 6351 * snapshot, it ends up triggering a transaction commit. This is to guarantee 6352 * that after replaying the log tree of the parent directory's root we will not 6353 * see the snapshot anymore and at log replay time we will not see any log tree 6354 * corresponding to the deleted snapshot's root, which could lead to replaying 6355 * it after replaying the log tree of the parent directory (which would replay 6356 * the snapshot delete operation). 6357 * 6358 * Must be called before the actual snapshot destroy operation (updates to the 6359 * parent root and tree of tree roots trees, etc) are done. 6360 */ 6361 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 6362 struct btrfs_inode *dir) 6363 { 6364 mutex_lock(&dir->log_mutex); 6365 dir->last_unlink_trans = trans->transid; 6366 mutex_unlock(&dir->log_mutex); 6367 } 6368 6369 /* 6370 * Call this after adding a new name for a file and it will properly 6371 * update the log to reflect the new name. 6372 * 6373 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's 6374 * true (because it's not used). 6375 * 6376 * Return value depends on whether @sync_log is true or false. 6377 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be 6378 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT 6379 * otherwise. 6380 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to 6381 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log, 6382 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be 6383 * committed (without attempting to sync the log). 6384 */ 6385 int btrfs_log_new_name(struct btrfs_trans_handle *trans, 6386 struct btrfs_inode *inode, struct btrfs_inode *old_dir, 6387 struct dentry *parent, 6388 bool sync_log, struct btrfs_log_ctx *ctx) 6389 { 6390 struct btrfs_fs_info *fs_info = trans->fs_info; 6391 int ret; 6392 6393 /* 6394 * this will force the logging code to walk the dentry chain 6395 * up for the file 6396 */ 6397 if (!S_ISDIR(inode->vfs_inode.i_mode)) 6398 inode->last_unlink_trans = trans->transid; 6399 6400 /* 6401 * if this inode hasn't been logged and directory we're renaming it 6402 * from hasn't been logged, we don't need to log it 6403 */ 6404 if (inode->logged_trans <= fs_info->last_trans_committed && 6405 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed)) 6406 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT : 6407 BTRFS_DONT_NEED_LOG_SYNC; 6408 6409 if (sync_log) { 6410 struct btrfs_log_ctx ctx2; 6411 6412 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode); 6413 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX, 6414 LOG_INODE_EXISTS, &ctx2); 6415 if (ret == BTRFS_NO_LOG_SYNC) 6416 return BTRFS_DONT_NEED_TRANS_COMMIT; 6417 else if (ret) 6418 return BTRFS_NEED_TRANS_COMMIT; 6419 6420 ret = btrfs_sync_log(trans, inode->root, &ctx2); 6421 if (ret) 6422 return BTRFS_NEED_TRANS_COMMIT; 6423 return BTRFS_DONT_NEED_TRANS_COMMIT; 6424 } 6425 6426 ASSERT(ctx); 6427 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX, 6428 LOG_INODE_EXISTS, ctx); 6429 if (ret == BTRFS_NO_LOG_SYNC) 6430 return BTRFS_DONT_NEED_LOG_SYNC; 6431 else if (ret) 6432 return BTRFS_NEED_TRANS_COMMIT; 6433 6434 return BTRFS_NEED_LOG_SYNC; 6435 } 6436 6437