xref: /openbmc/linux/fs/btrfs/tree-log.c (revision 0cd08b10)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "inode-map.h"
21 #include "block-group.h"
22 #include "space-info.h"
23 
24 /* magic values for the inode_only field in btrfs_log_inode:
25  *
26  * LOG_INODE_ALL means to log everything
27  * LOG_INODE_EXISTS means to log just enough to recreate the inode
28  * during log replay
29  */
30 enum {
31 	LOG_INODE_ALL,
32 	LOG_INODE_EXISTS,
33 	LOG_OTHER_INODE,
34 	LOG_OTHER_INODE_ALL,
35 };
36 
37 /*
38  * directory trouble cases
39  *
40  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41  * log, we must force a full commit before doing an fsync of the directory
42  * where the unlink was done.
43  * ---> record transid of last unlink/rename per directory
44  *
45  * mkdir foo/some_dir
46  * normal commit
47  * rename foo/some_dir foo2/some_dir
48  * mkdir foo/some_dir
49  * fsync foo/some_dir/some_file
50  *
51  * The fsync above will unlink the original some_dir without recording
52  * it in its new location (foo2).  After a crash, some_dir will be gone
53  * unless the fsync of some_file forces a full commit
54  *
55  * 2) we must log any new names for any file or dir that is in the fsync
56  * log. ---> check inode while renaming/linking.
57  *
58  * 2a) we must log any new names for any file or dir during rename
59  * when the directory they are being removed from was logged.
60  * ---> check inode and old parent dir during rename
61  *
62  *  2a is actually the more important variant.  With the extra logging
63  *  a crash might unlink the old name without recreating the new one
64  *
65  * 3) after a crash, we must go through any directories with a link count
66  * of zero and redo the rm -rf
67  *
68  * mkdir f1/foo
69  * normal commit
70  * rm -rf f1/foo
71  * fsync(f1)
72  *
73  * The directory f1 was fully removed from the FS, but fsync was never
74  * called on f1, only its parent dir.  After a crash the rm -rf must
75  * be replayed.  This must be able to recurse down the entire
76  * directory tree.  The inode link count fixup code takes care of the
77  * ugly details.
78  */
79 
80 /*
81  * stages for the tree walking.  The first
82  * stage (0) is to only pin down the blocks we find
83  * the second stage (1) is to make sure that all the inodes
84  * we find in the log are created in the subvolume.
85  *
86  * The last stage is to deal with directories and links and extents
87  * and all the other fun semantics
88  */
89 enum {
90 	LOG_WALK_PIN_ONLY,
91 	LOG_WALK_REPLAY_INODES,
92 	LOG_WALK_REPLAY_DIR_INDEX,
93 	LOG_WALK_REPLAY_ALL,
94 };
95 
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 			   struct btrfs_root *root, struct btrfs_inode *inode,
98 			   int inode_only,
99 			   const loff_t start,
100 			   const loff_t end,
101 			   struct btrfs_log_ctx *ctx);
102 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 			     struct btrfs_root *root,
104 			     struct btrfs_path *path, u64 objectid);
105 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 				       struct btrfs_root *root,
107 				       struct btrfs_root *log,
108 				       struct btrfs_path *path,
109 				       u64 dirid, int del_all);
110 
111 /*
112  * tree logging is a special write ahead log used to make sure that
113  * fsyncs and O_SYNCs can happen without doing full tree commits.
114  *
115  * Full tree commits are expensive because they require commonly
116  * modified blocks to be recowed, creating many dirty pages in the
117  * extent tree an 4x-6x higher write load than ext3.
118  *
119  * Instead of doing a tree commit on every fsync, we use the
120  * key ranges and transaction ids to find items for a given file or directory
121  * that have changed in this transaction.  Those items are copied into
122  * a special tree (one per subvolume root), that tree is written to disk
123  * and then the fsync is considered complete.
124  *
125  * After a crash, items are copied out of the log-tree back into the
126  * subvolume tree.  Any file data extents found are recorded in the extent
127  * allocation tree, and the log-tree freed.
128  *
129  * The log tree is read three times, once to pin down all the extents it is
130  * using in ram and once, once to create all the inodes logged in the tree
131  * and once to do all the other items.
132  */
133 
134 /*
135  * start a sub transaction and setup the log tree
136  * this increments the log tree writer count to make the people
137  * syncing the tree wait for us to finish
138  */
139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 			   struct btrfs_root *root,
141 			   struct btrfs_log_ctx *ctx)
142 {
143 	struct btrfs_fs_info *fs_info = root->fs_info;
144 	int ret = 0;
145 
146 	mutex_lock(&root->log_mutex);
147 
148 	if (root->log_root) {
149 		if (btrfs_need_log_full_commit(trans)) {
150 			ret = -EAGAIN;
151 			goto out;
152 		}
153 
154 		if (!root->log_start_pid) {
155 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
156 			root->log_start_pid = current->pid;
157 		} else if (root->log_start_pid != current->pid) {
158 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
159 		}
160 	} else {
161 		mutex_lock(&fs_info->tree_log_mutex);
162 		if (!fs_info->log_root_tree)
163 			ret = btrfs_init_log_root_tree(trans, fs_info);
164 		mutex_unlock(&fs_info->tree_log_mutex);
165 		if (ret)
166 			goto out;
167 
168 		ret = btrfs_add_log_tree(trans, root);
169 		if (ret)
170 			goto out;
171 
172 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
173 		root->log_start_pid = current->pid;
174 	}
175 
176 	atomic_inc(&root->log_batch);
177 	atomic_inc(&root->log_writers);
178 	if (ctx) {
179 		int index = root->log_transid % 2;
180 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
181 		ctx->log_transid = root->log_transid;
182 	}
183 
184 out:
185 	mutex_unlock(&root->log_mutex);
186 	return ret;
187 }
188 
189 /*
190  * returns 0 if there was a log transaction running and we were able
191  * to join, or returns -ENOENT if there were not transactions
192  * in progress
193  */
194 static int join_running_log_trans(struct btrfs_root *root)
195 {
196 	int ret = -ENOENT;
197 
198 	mutex_lock(&root->log_mutex);
199 	if (root->log_root) {
200 		ret = 0;
201 		atomic_inc(&root->log_writers);
202 	}
203 	mutex_unlock(&root->log_mutex);
204 	return ret;
205 }
206 
207 /*
208  * This either makes the current running log transaction wait
209  * until you call btrfs_end_log_trans() or it makes any future
210  * log transactions wait until you call btrfs_end_log_trans()
211  */
212 void btrfs_pin_log_trans(struct btrfs_root *root)
213 {
214 	mutex_lock(&root->log_mutex);
215 	atomic_inc(&root->log_writers);
216 	mutex_unlock(&root->log_mutex);
217 }
218 
219 /*
220  * indicate we're done making changes to the log tree
221  * and wake up anyone waiting to do a sync
222  */
223 void btrfs_end_log_trans(struct btrfs_root *root)
224 {
225 	if (atomic_dec_and_test(&root->log_writers)) {
226 		/* atomic_dec_and_test implies a barrier */
227 		cond_wake_up_nomb(&root->log_writer_wait);
228 	}
229 }
230 
231 static int btrfs_write_tree_block(struct extent_buffer *buf)
232 {
233 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
234 					buf->start + buf->len - 1);
235 }
236 
237 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
238 {
239 	filemap_fdatawait_range(buf->pages[0]->mapping,
240 			        buf->start, buf->start + buf->len - 1);
241 }
242 
243 /*
244  * the walk control struct is used to pass state down the chain when
245  * processing the log tree.  The stage field tells us which part
246  * of the log tree processing we are currently doing.  The others
247  * are state fields used for that specific part
248  */
249 struct walk_control {
250 	/* should we free the extent on disk when done?  This is used
251 	 * at transaction commit time while freeing a log tree
252 	 */
253 	int free;
254 
255 	/* should we write out the extent buffer?  This is used
256 	 * while flushing the log tree to disk during a sync
257 	 */
258 	int write;
259 
260 	/* should we wait for the extent buffer io to finish?  Also used
261 	 * while flushing the log tree to disk for a sync
262 	 */
263 	int wait;
264 
265 	/* pin only walk, we record which extents on disk belong to the
266 	 * log trees
267 	 */
268 	int pin;
269 
270 	/* what stage of the replay code we're currently in */
271 	int stage;
272 
273 	/*
274 	 * Ignore any items from the inode currently being processed. Needs
275 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
276 	 * the LOG_WALK_REPLAY_INODES stage.
277 	 */
278 	bool ignore_cur_inode;
279 
280 	/* the root we are currently replaying */
281 	struct btrfs_root *replay_dest;
282 
283 	/* the trans handle for the current replay */
284 	struct btrfs_trans_handle *trans;
285 
286 	/* the function that gets used to process blocks we find in the
287 	 * tree.  Note the extent_buffer might not be up to date when it is
288 	 * passed in, and it must be checked or read if you need the data
289 	 * inside it
290 	 */
291 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
292 			    struct walk_control *wc, u64 gen, int level);
293 };
294 
295 /*
296  * process_func used to pin down extents, write them or wait on them
297  */
298 static int process_one_buffer(struct btrfs_root *log,
299 			      struct extent_buffer *eb,
300 			      struct walk_control *wc, u64 gen, int level)
301 {
302 	struct btrfs_fs_info *fs_info = log->fs_info;
303 	int ret = 0;
304 
305 	/*
306 	 * If this fs is mixed then we need to be able to process the leaves to
307 	 * pin down any logged extents, so we have to read the block.
308 	 */
309 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
310 		ret = btrfs_read_buffer(eb, gen, level, NULL);
311 		if (ret)
312 			return ret;
313 	}
314 
315 	if (wc->pin)
316 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
317 						      eb->len);
318 
319 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
320 		if (wc->pin && btrfs_header_level(eb) == 0)
321 			ret = btrfs_exclude_logged_extents(eb);
322 		if (wc->write)
323 			btrfs_write_tree_block(eb);
324 		if (wc->wait)
325 			btrfs_wait_tree_block_writeback(eb);
326 	}
327 	return ret;
328 }
329 
330 /*
331  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
332  * to the src data we are copying out.
333  *
334  * root is the tree we are copying into, and path is a scratch
335  * path for use in this function (it should be released on entry and
336  * will be released on exit).
337  *
338  * If the key is already in the destination tree the existing item is
339  * overwritten.  If the existing item isn't big enough, it is extended.
340  * If it is too large, it is truncated.
341  *
342  * If the key isn't in the destination yet, a new item is inserted.
343  */
344 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
345 				   struct btrfs_root *root,
346 				   struct btrfs_path *path,
347 				   struct extent_buffer *eb, int slot,
348 				   struct btrfs_key *key)
349 {
350 	int ret;
351 	u32 item_size;
352 	u64 saved_i_size = 0;
353 	int save_old_i_size = 0;
354 	unsigned long src_ptr;
355 	unsigned long dst_ptr;
356 	int overwrite_root = 0;
357 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
358 
359 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
360 		overwrite_root = 1;
361 
362 	item_size = btrfs_item_size_nr(eb, slot);
363 	src_ptr = btrfs_item_ptr_offset(eb, slot);
364 
365 	/* look for the key in the destination tree */
366 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
367 	if (ret < 0)
368 		return ret;
369 
370 	if (ret == 0) {
371 		char *src_copy;
372 		char *dst_copy;
373 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
374 						  path->slots[0]);
375 		if (dst_size != item_size)
376 			goto insert;
377 
378 		if (item_size == 0) {
379 			btrfs_release_path(path);
380 			return 0;
381 		}
382 		dst_copy = kmalloc(item_size, GFP_NOFS);
383 		src_copy = kmalloc(item_size, GFP_NOFS);
384 		if (!dst_copy || !src_copy) {
385 			btrfs_release_path(path);
386 			kfree(dst_copy);
387 			kfree(src_copy);
388 			return -ENOMEM;
389 		}
390 
391 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
392 
393 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
394 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
395 				   item_size);
396 		ret = memcmp(dst_copy, src_copy, item_size);
397 
398 		kfree(dst_copy);
399 		kfree(src_copy);
400 		/*
401 		 * they have the same contents, just return, this saves
402 		 * us from cowing blocks in the destination tree and doing
403 		 * extra writes that may not have been done by a previous
404 		 * sync
405 		 */
406 		if (ret == 0) {
407 			btrfs_release_path(path);
408 			return 0;
409 		}
410 
411 		/*
412 		 * We need to load the old nbytes into the inode so when we
413 		 * replay the extents we've logged we get the right nbytes.
414 		 */
415 		if (inode_item) {
416 			struct btrfs_inode_item *item;
417 			u64 nbytes;
418 			u32 mode;
419 
420 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
421 					      struct btrfs_inode_item);
422 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
423 			item = btrfs_item_ptr(eb, slot,
424 					      struct btrfs_inode_item);
425 			btrfs_set_inode_nbytes(eb, item, nbytes);
426 
427 			/*
428 			 * If this is a directory we need to reset the i_size to
429 			 * 0 so that we can set it up properly when replaying
430 			 * the rest of the items in this log.
431 			 */
432 			mode = btrfs_inode_mode(eb, item);
433 			if (S_ISDIR(mode))
434 				btrfs_set_inode_size(eb, item, 0);
435 		}
436 	} else if (inode_item) {
437 		struct btrfs_inode_item *item;
438 		u32 mode;
439 
440 		/*
441 		 * New inode, set nbytes to 0 so that the nbytes comes out
442 		 * properly when we replay the extents.
443 		 */
444 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
445 		btrfs_set_inode_nbytes(eb, item, 0);
446 
447 		/*
448 		 * If this is a directory we need to reset the i_size to 0 so
449 		 * that we can set it up properly when replaying the rest of
450 		 * the items in this log.
451 		 */
452 		mode = btrfs_inode_mode(eb, item);
453 		if (S_ISDIR(mode))
454 			btrfs_set_inode_size(eb, item, 0);
455 	}
456 insert:
457 	btrfs_release_path(path);
458 	/* try to insert the key into the destination tree */
459 	path->skip_release_on_error = 1;
460 	ret = btrfs_insert_empty_item(trans, root, path,
461 				      key, item_size);
462 	path->skip_release_on_error = 0;
463 
464 	/* make sure any existing item is the correct size */
465 	if (ret == -EEXIST || ret == -EOVERFLOW) {
466 		u32 found_size;
467 		found_size = btrfs_item_size_nr(path->nodes[0],
468 						path->slots[0]);
469 		if (found_size > item_size)
470 			btrfs_truncate_item(path, item_size, 1);
471 		else if (found_size < item_size)
472 			btrfs_extend_item(path, item_size - found_size);
473 	} else if (ret) {
474 		return ret;
475 	}
476 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
477 					path->slots[0]);
478 
479 	/* don't overwrite an existing inode if the generation number
480 	 * was logged as zero.  This is done when the tree logging code
481 	 * is just logging an inode to make sure it exists after recovery.
482 	 *
483 	 * Also, don't overwrite i_size on directories during replay.
484 	 * log replay inserts and removes directory items based on the
485 	 * state of the tree found in the subvolume, and i_size is modified
486 	 * as it goes
487 	 */
488 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
489 		struct btrfs_inode_item *src_item;
490 		struct btrfs_inode_item *dst_item;
491 
492 		src_item = (struct btrfs_inode_item *)src_ptr;
493 		dst_item = (struct btrfs_inode_item *)dst_ptr;
494 
495 		if (btrfs_inode_generation(eb, src_item) == 0) {
496 			struct extent_buffer *dst_eb = path->nodes[0];
497 			const u64 ino_size = btrfs_inode_size(eb, src_item);
498 
499 			/*
500 			 * For regular files an ino_size == 0 is used only when
501 			 * logging that an inode exists, as part of a directory
502 			 * fsync, and the inode wasn't fsynced before. In this
503 			 * case don't set the size of the inode in the fs/subvol
504 			 * tree, otherwise we would be throwing valid data away.
505 			 */
506 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
507 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
508 			    ino_size != 0)
509 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
510 			goto no_copy;
511 		}
512 
513 		if (overwrite_root &&
514 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
515 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
516 			save_old_i_size = 1;
517 			saved_i_size = btrfs_inode_size(path->nodes[0],
518 							dst_item);
519 		}
520 	}
521 
522 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
523 			   src_ptr, item_size);
524 
525 	if (save_old_i_size) {
526 		struct btrfs_inode_item *dst_item;
527 		dst_item = (struct btrfs_inode_item *)dst_ptr;
528 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
529 	}
530 
531 	/* make sure the generation is filled in */
532 	if (key->type == BTRFS_INODE_ITEM_KEY) {
533 		struct btrfs_inode_item *dst_item;
534 		dst_item = (struct btrfs_inode_item *)dst_ptr;
535 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
536 			btrfs_set_inode_generation(path->nodes[0], dst_item,
537 						   trans->transid);
538 		}
539 	}
540 no_copy:
541 	btrfs_mark_buffer_dirty(path->nodes[0]);
542 	btrfs_release_path(path);
543 	return 0;
544 }
545 
546 /*
547  * simple helper to read an inode off the disk from a given root
548  * This can only be called for subvolume roots and not for the log
549  */
550 static noinline struct inode *read_one_inode(struct btrfs_root *root,
551 					     u64 objectid)
552 {
553 	struct inode *inode;
554 
555 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
556 	if (IS_ERR(inode))
557 		inode = NULL;
558 	return inode;
559 }
560 
561 /* replays a single extent in 'eb' at 'slot' with 'key' into the
562  * subvolume 'root'.  path is released on entry and should be released
563  * on exit.
564  *
565  * extents in the log tree have not been allocated out of the extent
566  * tree yet.  So, this completes the allocation, taking a reference
567  * as required if the extent already exists or creating a new extent
568  * if it isn't in the extent allocation tree yet.
569  *
570  * The extent is inserted into the file, dropping any existing extents
571  * from the file that overlap the new one.
572  */
573 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
574 				      struct btrfs_root *root,
575 				      struct btrfs_path *path,
576 				      struct extent_buffer *eb, int slot,
577 				      struct btrfs_key *key)
578 {
579 	struct btrfs_fs_info *fs_info = root->fs_info;
580 	int found_type;
581 	u64 extent_end;
582 	u64 start = key->offset;
583 	u64 nbytes = 0;
584 	struct btrfs_file_extent_item *item;
585 	struct inode *inode = NULL;
586 	unsigned long size;
587 	int ret = 0;
588 
589 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
590 	found_type = btrfs_file_extent_type(eb, item);
591 
592 	if (found_type == BTRFS_FILE_EXTENT_REG ||
593 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
594 		nbytes = btrfs_file_extent_num_bytes(eb, item);
595 		extent_end = start + nbytes;
596 
597 		/*
598 		 * We don't add to the inodes nbytes if we are prealloc or a
599 		 * hole.
600 		 */
601 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
602 			nbytes = 0;
603 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
604 		size = btrfs_file_extent_ram_bytes(eb, item);
605 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
606 		extent_end = ALIGN(start + size,
607 				   fs_info->sectorsize);
608 	} else {
609 		ret = 0;
610 		goto out;
611 	}
612 
613 	inode = read_one_inode(root, key->objectid);
614 	if (!inode) {
615 		ret = -EIO;
616 		goto out;
617 	}
618 
619 	/*
620 	 * first check to see if we already have this extent in the
621 	 * file.  This must be done before the btrfs_drop_extents run
622 	 * so we don't try to drop this extent.
623 	 */
624 	ret = btrfs_lookup_file_extent(trans, root, path,
625 			btrfs_ino(BTRFS_I(inode)), start, 0);
626 
627 	if (ret == 0 &&
628 	    (found_type == BTRFS_FILE_EXTENT_REG ||
629 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
630 		struct btrfs_file_extent_item cmp1;
631 		struct btrfs_file_extent_item cmp2;
632 		struct btrfs_file_extent_item *existing;
633 		struct extent_buffer *leaf;
634 
635 		leaf = path->nodes[0];
636 		existing = btrfs_item_ptr(leaf, path->slots[0],
637 					  struct btrfs_file_extent_item);
638 
639 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
640 				   sizeof(cmp1));
641 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
642 				   sizeof(cmp2));
643 
644 		/*
645 		 * we already have a pointer to this exact extent,
646 		 * we don't have to do anything
647 		 */
648 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
649 			btrfs_release_path(path);
650 			goto out;
651 		}
652 	}
653 	btrfs_release_path(path);
654 
655 	/* drop any overlapping extents */
656 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
657 	if (ret)
658 		goto out;
659 
660 	if (found_type == BTRFS_FILE_EXTENT_REG ||
661 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
662 		u64 offset;
663 		unsigned long dest_offset;
664 		struct btrfs_key ins;
665 
666 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
667 		    btrfs_fs_incompat(fs_info, NO_HOLES))
668 			goto update_inode;
669 
670 		ret = btrfs_insert_empty_item(trans, root, path, key,
671 					      sizeof(*item));
672 		if (ret)
673 			goto out;
674 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
675 						    path->slots[0]);
676 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
677 				(unsigned long)item,  sizeof(*item));
678 
679 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
680 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
681 		ins.type = BTRFS_EXTENT_ITEM_KEY;
682 		offset = key->offset - btrfs_file_extent_offset(eb, item);
683 
684 		/*
685 		 * Manually record dirty extent, as here we did a shallow
686 		 * file extent item copy and skip normal backref update,
687 		 * but modifying extent tree all by ourselves.
688 		 * So need to manually record dirty extent for qgroup,
689 		 * as the owner of the file extent changed from log tree
690 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
691 		 */
692 		ret = btrfs_qgroup_trace_extent(trans,
693 				btrfs_file_extent_disk_bytenr(eb, item),
694 				btrfs_file_extent_disk_num_bytes(eb, item),
695 				GFP_NOFS);
696 		if (ret < 0)
697 			goto out;
698 
699 		if (ins.objectid > 0) {
700 			struct btrfs_ref ref = { 0 };
701 			u64 csum_start;
702 			u64 csum_end;
703 			LIST_HEAD(ordered_sums);
704 
705 			/*
706 			 * is this extent already allocated in the extent
707 			 * allocation tree?  If so, just add a reference
708 			 */
709 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
710 						ins.offset);
711 			if (ret == 0) {
712 				btrfs_init_generic_ref(&ref,
713 						BTRFS_ADD_DELAYED_REF,
714 						ins.objectid, ins.offset, 0);
715 				btrfs_init_data_ref(&ref,
716 						root->root_key.objectid,
717 						key->objectid, offset);
718 				ret = btrfs_inc_extent_ref(trans, &ref);
719 				if (ret)
720 					goto out;
721 			} else {
722 				/*
723 				 * insert the extent pointer in the extent
724 				 * allocation tree
725 				 */
726 				ret = btrfs_alloc_logged_file_extent(trans,
727 						root->root_key.objectid,
728 						key->objectid, offset, &ins);
729 				if (ret)
730 					goto out;
731 			}
732 			btrfs_release_path(path);
733 
734 			if (btrfs_file_extent_compression(eb, item)) {
735 				csum_start = ins.objectid;
736 				csum_end = csum_start + ins.offset;
737 			} else {
738 				csum_start = ins.objectid +
739 					btrfs_file_extent_offset(eb, item);
740 				csum_end = csum_start +
741 					btrfs_file_extent_num_bytes(eb, item);
742 			}
743 
744 			ret = btrfs_lookup_csums_range(root->log_root,
745 						csum_start, csum_end - 1,
746 						&ordered_sums, 0);
747 			if (ret)
748 				goto out;
749 			/*
750 			 * Now delete all existing cums in the csum root that
751 			 * cover our range. We do this because we can have an
752 			 * extent that is completely referenced by one file
753 			 * extent item and partially referenced by another
754 			 * file extent item (like after using the clone or
755 			 * extent_same ioctls). In this case if we end up doing
756 			 * the replay of the one that partially references the
757 			 * extent first, and we do not do the csum deletion
758 			 * below, we can get 2 csum items in the csum tree that
759 			 * overlap each other. For example, imagine our log has
760 			 * the two following file extent items:
761 			 *
762 			 * key (257 EXTENT_DATA 409600)
763 			 *     extent data disk byte 12845056 nr 102400
764 			 *     extent data offset 20480 nr 20480 ram 102400
765 			 *
766 			 * key (257 EXTENT_DATA 819200)
767 			 *     extent data disk byte 12845056 nr 102400
768 			 *     extent data offset 0 nr 102400 ram 102400
769 			 *
770 			 * Where the second one fully references the 100K extent
771 			 * that starts at disk byte 12845056, and the log tree
772 			 * has a single csum item that covers the entire range
773 			 * of the extent:
774 			 *
775 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
776 			 *
777 			 * After the first file extent item is replayed, the
778 			 * csum tree gets the following csum item:
779 			 *
780 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
781 			 *
782 			 * Which covers the 20K sub-range starting at offset 20K
783 			 * of our extent. Now when we replay the second file
784 			 * extent item, if we do not delete existing csum items
785 			 * that cover any of its blocks, we end up getting two
786 			 * csum items in our csum tree that overlap each other:
787 			 *
788 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
789 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
790 			 *
791 			 * Which is a problem, because after this anyone trying
792 			 * to lookup up for the checksum of any block of our
793 			 * extent starting at an offset of 40K or higher, will
794 			 * end up looking at the second csum item only, which
795 			 * does not contain the checksum for any block starting
796 			 * at offset 40K or higher of our extent.
797 			 */
798 			while (!list_empty(&ordered_sums)) {
799 				struct btrfs_ordered_sum *sums;
800 				sums = list_entry(ordered_sums.next,
801 						struct btrfs_ordered_sum,
802 						list);
803 				if (!ret)
804 					ret = btrfs_del_csums(trans,
805 							      fs_info->csum_root,
806 							      sums->bytenr,
807 							      sums->len);
808 				if (!ret)
809 					ret = btrfs_csum_file_blocks(trans,
810 						fs_info->csum_root, sums);
811 				list_del(&sums->list);
812 				kfree(sums);
813 			}
814 			if (ret)
815 				goto out;
816 		} else {
817 			btrfs_release_path(path);
818 		}
819 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
820 		/* inline extents are easy, we just overwrite them */
821 		ret = overwrite_item(trans, root, path, eb, slot, key);
822 		if (ret)
823 			goto out;
824 	}
825 
826 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
827 						extent_end - start);
828 	if (ret)
829 		goto out;
830 
831 	inode_add_bytes(inode, nbytes);
832 update_inode:
833 	ret = btrfs_update_inode(trans, root, inode);
834 out:
835 	if (inode)
836 		iput(inode);
837 	return ret;
838 }
839 
840 /*
841  * when cleaning up conflicts between the directory names in the
842  * subvolume, directory names in the log and directory names in the
843  * inode back references, we may have to unlink inodes from directories.
844  *
845  * This is a helper function to do the unlink of a specific directory
846  * item
847  */
848 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
849 				      struct btrfs_root *root,
850 				      struct btrfs_path *path,
851 				      struct btrfs_inode *dir,
852 				      struct btrfs_dir_item *di)
853 {
854 	struct inode *inode;
855 	char *name;
856 	int name_len;
857 	struct extent_buffer *leaf;
858 	struct btrfs_key location;
859 	int ret;
860 
861 	leaf = path->nodes[0];
862 
863 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
864 	name_len = btrfs_dir_name_len(leaf, di);
865 	name = kmalloc(name_len, GFP_NOFS);
866 	if (!name)
867 		return -ENOMEM;
868 
869 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
870 	btrfs_release_path(path);
871 
872 	inode = read_one_inode(root, location.objectid);
873 	if (!inode) {
874 		ret = -EIO;
875 		goto out;
876 	}
877 
878 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
879 	if (ret)
880 		goto out;
881 
882 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
883 			name_len);
884 	if (ret)
885 		goto out;
886 	else
887 		ret = btrfs_run_delayed_items(trans);
888 out:
889 	kfree(name);
890 	iput(inode);
891 	return ret;
892 }
893 
894 /*
895  * helper function to see if a given name and sequence number found
896  * in an inode back reference are already in a directory and correctly
897  * point to this inode
898  */
899 static noinline int inode_in_dir(struct btrfs_root *root,
900 				 struct btrfs_path *path,
901 				 u64 dirid, u64 objectid, u64 index,
902 				 const char *name, int name_len)
903 {
904 	struct btrfs_dir_item *di;
905 	struct btrfs_key location;
906 	int match = 0;
907 
908 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
909 					 index, name, name_len, 0);
910 	if (di && !IS_ERR(di)) {
911 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
912 		if (location.objectid != objectid)
913 			goto out;
914 	} else
915 		goto out;
916 	btrfs_release_path(path);
917 
918 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
919 	if (di && !IS_ERR(di)) {
920 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
921 		if (location.objectid != objectid)
922 			goto out;
923 	} else
924 		goto out;
925 	match = 1;
926 out:
927 	btrfs_release_path(path);
928 	return match;
929 }
930 
931 /*
932  * helper function to check a log tree for a named back reference in
933  * an inode.  This is used to decide if a back reference that is
934  * found in the subvolume conflicts with what we find in the log.
935  *
936  * inode backreferences may have multiple refs in a single item,
937  * during replay we process one reference at a time, and we don't
938  * want to delete valid links to a file from the subvolume if that
939  * link is also in the log.
940  */
941 static noinline int backref_in_log(struct btrfs_root *log,
942 				   struct btrfs_key *key,
943 				   u64 ref_objectid,
944 				   const char *name, int namelen)
945 {
946 	struct btrfs_path *path;
947 	int ret;
948 
949 	path = btrfs_alloc_path();
950 	if (!path)
951 		return -ENOMEM;
952 
953 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
954 	if (ret < 0) {
955 		goto out;
956 	} else if (ret == 1) {
957 		ret = 0;
958 		goto out;
959 	}
960 
961 	if (key->type == BTRFS_INODE_EXTREF_KEY)
962 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
963 						       path->slots[0],
964 						       ref_objectid,
965 						       name, namelen);
966 	else
967 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
968 						   path->slots[0],
969 						   name, namelen);
970 out:
971 	btrfs_free_path(path);
972 	return ret;
973 }
974 
975 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
976 				  struct btrfs_root *root,
977 				  struct btrfs_path *path,
978 				  struct btrfs_root *log_root,
979 				  struct btrfs_inode *dir,
980 				  struct btrfs_inode *inode,
981 				  u64 inode_objectid, u64 parent_objectid,
982 				  u64 ref_index, char *name, int namelen,
983 				  int *search_done)
984 {
985 	int ret;
986 	char *victim_name;
987 	int victim_name_len;
988 	struct extent_buffer *leaf;
989 	struct btrfs_dir_item *di;
990 	struct btrfs_key search_key;
991 	struct btrfs_inode_extref *extref;
992 
993 again:
994 	/* Search old style refs */
995 	search_key.objectid = inode_objectid;
996 	search_key.type = BTRFS_INODE_REF_KEY;
997 	search_key.offset = parent_objectid;
998 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
999 	if (ret == 0) {
1000 		struct btrfs_inode_ref *victim_ref;
1001 		unsigned long ptr;
1002 		unsigned long ptr_end;
1003 
1004 		leaf = path->nodes[0];
1005 
1006 		/* are we trying to overwrite a back ref for the root directory
1007 		 * if so, just jump out, we're done
1008 		 */
1009 		if (search_key.objectid == search_key.offset)
1010 			return 1;
1011 
1012 		/* check all the names in this back reference to see
1013 		 * if they are in the log.  if so, we allow them to stay
1014 		 * otherwise they must be unlinked as a conflict
1015 		 */
1016 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1017 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1018 		while (ptr < ptr_end) {
1019 			victim_ref = (struct btrfs_inode_ref *)ptr;
1020 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1021 								   victim_ref);
1022 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1023 			if (!victim_name)
1024 				return -ENOMEM;
1025 
1026 			read_extent_buffer(leaf, victim_name,
1027 					   (unsigned long)(victim_ref + 1),
1028 					   victim_name_len);
1029 
1030 			ret = backref_in_log(log_root, &search_key,
1031 					     parent_objectid, victim_name,
1032 					     victim_name_len);
1033 			if (ret < 0) {
1034 				kfree(victim_name);
1035 				return ret;
1036 			} else if (!ret) {
1037 				inc_nlink(&inode->vfs_inode);
1038 				btrfs_release_path(path);
1039 
1040 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1041 						victim_name, victim_name_len);
1042 				kfree(victim_name);
1043 				if (ret)
1044 					return ret;
1045 				ret = btrfs_run_delayed_items(trans);
1046 				if (ret)
1047 					return ret;
1048 				*search_done = 1;
1049 				goto again;
1050 			}
1051 			kfree(victim_name);
1052 
1053 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1054 		}
1055 
1056 		/*
1057 		 * NOTE: we have searched root tree and checked the
1058 		 * corresponding ref, it does not need to check again.
1059 		 */
1060 		*search_done = 1;
1061 	}
1062 	btrfs_release_path(path);
1063 
1064 	/* Same search but for extended refs */
1065 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1066 					   inode_objectid, parent_objectid, 0,
1067 					   0);
1068 	if (!IS_ERR_OR_NULL(extref)) {
1069 		u32 item_size;
1070 		u32 cur_offset = 0;
1071 		unsigned long base;
1072 		struct inode *victim_parent;
1073 
1074 		leaf = path->nodes[0];
1075 
1076 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1077 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1078 
1079 		while (cur_offset < item_size) {
1080 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1081 
1082 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1083 
1084 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1085 				goto next;
1086 
1087 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1088 			if (!victim_name)
1089 				return -ENOMEM;
1090 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1091 					   victim_name_len);
1092 
1093 			search_key.objectid = inode_objectid;
1094 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1095 			search_key.offset = btrfs_extref_hash(parent_objectid,
1096 							      victim_name,
1097 							      victim_name_len);
1098 			ret = backref_in_log(log_root, &search_key,
1099 					     parent_objectid, victim_name,
1100 					     victim_name_len);
1101 			if (ret < 0) {
1102 				return ret;
1103 			} else if (!ret) {
1104 				ret = -ENOENT;
1105 				victim_parent = read_one_inode(root,
1106 						parent_objectid);
1107 				if (victim_parent) {
1108 					inc_nlink(&inode->vfs_inode);
1109 					btrfs_release_path(path);
1110 
1111 					ret = btrfs_unlink_inode(trans, root,
1112 							BTRFS_I(victim_parent),
1113 							inode,
1114 							victim_name,
1115 							victim_name_len);
1116 					if (!ret)
1117 						ret = btrfs_run_delayed_items(
1118 								  trans);
1119 				}
1120 				iput(victim_parent);
1121 				kfree(victim_name);
1122 				if (ret)
1123 					return ret;
1124 				*search_done = 1;
1125 				goto again;
1126 			}
1127 			kfree(victim_name);
1128 next:
1129 			cur_offset += victim_name_len + sizeof(*extref);
1130 		}
1131 		*search_done = 1;
1132 	}
1133 	btrfs_release_path(path);
1134 
1135 	/* look for a conflicting sequence number */
1136 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1137 					 ref_index, name, namelen, 0);
1138 	if (di && !IS_ERR(di)) {
1139 		ret = drop_one_dir_item(trans, root, path, dir, di);
1140 		if (ret)
1141 			return ret;
1142 	}
1143 	btrfs_release_path(path);
1144 
1145 	/* look for a conflicting name */
1146 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1147 				   name, namelen, 0);
1148 	if (di && !IS_ERR(di)) {
1149 		ret = drop_one_dir_item(trans, root, path, dir, di);
1150 		if (ret)
1151 			return ret;
1152 	}
1153 	btrfs_release_path(path);
1154 
1155 	return 0;
1156 }
1157 
1158 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1159 			     u32 *namelen, char **name, u64 *index,
1160 			     u64 *parent_objectid)
1161 {
1162 	struct btrfs_inode_extref *extref;
1163 
1164 	extref = (struct btrfs_inode_extref *)ref_ptr;
1165 
1166 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1167 	*name = kmalloc(*namelen, GFP_NOFS);
1168 	if (*name == NULL)
1169 		return -ENOMEM;
1170 
1171 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1172 			   *namelen);
1173 
1174 	if (index)
1175 		*index = btrfs_inode_extref_index(eb, extref);
1176 	if (parent_objectid)
1177 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1178 
1179 	return 0;
1180 }
1181 
1182 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1183 			  u32 *namelen, char **name, u64 *index)
1184 {
1185 	struct btrfs_inode_ref *ref;
1186 
1187 	ref = (struct btrfs_inode_ref *)ref_ptr;
1188 
1189 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1190 	*name = kmalloc(*namelen, GFP_NOFS);
1191 	if (*name == NULL)
1192 		return -ENOMEM;
1193 
1194 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1195 
1196 	if (index)
1197 		*index = btrfs_inode_ref_index(eb, ref);
1198 
1199 	return 0;
1200 }
1201 
1202 /*
1203  * Take an inode reference item from the log tree and iterate all names from the
1204  * inode reference item in the subvolume tree with the same key (if it exists).
1205  * For any name that is not in the inode reference item from the log tree, do a
1206  * proper unlink of that name (that is, remove its entry from the inode
1207  * reference item and both dir index keys).
1208  */
1209 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1210 				 struct btrfs_root *root,
1211 				 struct btrfs_path *path,
1212 				 struct btrfs_inode *inode,
1213 				 struct extent_buffer *log_eb,
1214 				 int log_slot,
1215 				 struct btrfs_key *key)
1216 {
1217 	int ret;
1218 	unsigned long ref_ptr;
1219 	unsigned long ref_end;
1220 	struct extent_buffer *eb;
1221 
1222 again:
1223 	btrfs_release_path(path);
1224 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1225 	if (ret > 0) {
1226 		ret = 0;
1227 		goto out;
1228 	}
1229 	if (ret < 0)
1230 		goto out;
1231 
1232 	eb = path->nodes[0];
1233 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1234 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1235 	while (ref_ptr < ref_end) {
1236 		char *name = NULL;
1237 		int namelen;
1238 		u64 parent_id;
1239 
1240 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1241 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1242 						NULL, &parent_id);
1243 		} else {
1244 			parent_id = key->offset;
1245 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1246 					     NULL);
1247 		}
1248 		if (ret)
1249 			goto out;
1250 
1251 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1252 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1253 							       parent_id, name,
1254 							       namelen);
1255 		else
1256 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1257 							   name, namelen);
1258 
1259 		if (!ret) {
1260 			struct inode *dir;
1261 
1262 			btrfs_release_path(path);
1263 			dir = read_one_inode(root, parent_id);
1264 			if (!dir) {
1265 				ret = -ENOENT;
1266 				kfree(name);
1267 				goto out;
1268 			}
1269 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1270 						 inode, name, namelen);
1271 			kfree(name);
1272 			iput(dir);
1273 			if (ret)
1274 				goto out;
1275 			goto again;
1276 		}
1277 
1278 		kfree(name);
1279 		ref_ptr += namelen;
1280 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1281 			ref_ptr += sizeof(struct btrfs_inode_extref);
1282 		else
1283 			ref_ptr += sizeof(struct btrfs_inode_ref);
1284 	}
1285 	ret = 0;
1286  out:
1287 	btrfs_release_path(path);
1288 	return ret;
1289 }
1290 
1291 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1292 				  const u8 ref_type, const char *name,
1293 				  const int namelen)
1294 {
1295 	struct btrfs_key key;
1296 	struct btrfs_path *path;
1297 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1298 	int ret;
1299 
1300 	path = btrfs_alloc_path();
1301 	if (!path)
1302 		return -ENOMEM;
1303 
1304 	key.objectid = btrfs_ino(BTRFS_I(inode));
1305 	key.type = ref_type;
1306 	if (key.type == BTRFS_INODE_REF_KEY)
1307 		key.offset = parent_id;
1308 	else
1309 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1310 
1311 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1312 	if (ret < 0)
1313 		goto out;
1314 	if (ret > 0) {
1315 		ret = 0;
1316 		goto out;
1317 	}
1318 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1319 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1320 				path->slots[0], parent_id, name, namelen);
1321 	else
1322 		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1323 						   name, namelen);
1324 
1325 out:
1326 	btrfs_free_path(path);
1327 	return ret;
1328 }
1329 
1330 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1331 		    struct inode *dir, struct inode *inode, const char *name,
1332 		    int namelen, u64 ref_index)
1333 {
1334 	struct btrfs_dir_item *dir_item;
1335 	struct btrfs_key key;
1336 	struct btrfs_path *path;
1337 	struct inode *other_inode = NULL;
1338 	int ret;
1339 
1340 	path = btrfs_alloc_path();
1341 	if (!path)
1342 		return -ENOMEM;
1343 
1344 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1345 					 btrfs_ino(BTRFS_I(dir)),
1346 					 name, namelen, 0);
1347 	if (!dir_item) {
1348 		btrfs_release_path(path);
1349 		goto add_link;
1350 	} else if (IS_ERR(dir_item)) {
1351 		ret = PTR_ERR(dir_item);
1352 		goto out;
1353 	}
1354 
1355 	/*
1356 	 * Our inode's dentry collides with the dentry of another inode which is
1357 	 * in the log but not yet processed since it has a higher inode number.
1358 	 * So delete that other dentry.
1359 	 */
1360 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1361 	btrfs_release_path(path);
1362 	other_inode = read_one_inode(root, key.objectid);
1363 	if (!other_inode) {
1364 		ret = -ENOENT;
1365 		goto out;
1366 	}
1367 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1368 				 name, namelen);
1369 	if (ret)
1370 		goto out;
1371 	/*
1372 	 * If we dropped the link count to 0, bump it so that later the iput()
1373 	 * on the inode will not free it. We will fixup the link count later.
1374 	 */
1375 	if (other_inode->i_nlink == 0)
1376 		inc_nlink(other_inode);
1377 
1378 	ret = btrfs_run_delayed_items(trans);
1379 	if (ret)
1380 		goto out;
1381 add_link:
1382 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1383 			     name, namelen, 0, ref_index);
1384 out:
1385 	iput(other_inode);
1386 	btrfs_free_path(path);
1387 
1388 	return ret;
1389 }
1390 
1391 /*
1392  * replay one inode back reference item found in the log tree.
1393  * eb, slot and key refer to the buffer and key found in the log tree.
1394  * root is the destination we are replaying into, and path is for temp
1395  * use by this function.  (it should be released on return).
1396  */
1397 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1398 				  struct btrfs_root *root,
1399 				  struct btrfs_root *log,
1400 				  struct btrfs_path *path,
1401 				  struct extent_buffer *eb, int slot,
1402 				  struct btrfs_key *key)
1403 {
1404 	struct inode *dir = NULL;
1405 	struct inode *inode = NULL;
1406 	unsigned long ref_ptr;
1407 	unsigned long ref_end;
1408 	char *name = NULL;
1409 	int namelen;
1410 	int ret;
1411 	int search_done = 0;
1412 	int log_ref_ver = 0;
1413 	u64 parent_objectid;
1414 	u64 inode_objectid;
1415 	u64 ref_index = 0;
1416 	int ref_struct_size;
1417 
1418 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1419 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1420 
1421 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1422 		struct btrfs_inode_extref *r;
1423 
1424 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1425 		log_ref_ver = 1;
1426 		r = (struct btrfs_inode_extref *)ref_ptr;
1427 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1428 	} else {
1429 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1430 		parent_objectid = key->offset;
1431 	}
1432 	inode_objectid = key->objectid;
1433 
1434 	/*
1435 	 * it is possible that we didn't log all the parent directories
1436 	 * for a given inode.  If we don't find the dir, just don't
1437 	 * copy the back ref in.  The link count fixup code will take
1438 	 * care of the rest
1439 	 */
1440 	dir = read_one_inode(root, parent_objectid);
1441 	if (!dir) {
1442 		ret = -ENOENT;
1443 		goto out;
1444 	}
1445 
1446 	inode = read_one_inode(root, inode_objectid);
1447 	if (!inode) {
1448 		ret = -EIO;
1449 		goto out;
1450 	}
1451 
1452 	while (ref_ptr < ref_end) {
1453 		if (log_ref_ver) {
1454 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1455 						&ref_index, &parent_objectid);
1456 			/*
1457 			 * parent object can change from one array
1458 			 * item to another.
1459 			 */
1460 			if (!dir)
1461 				dir = read_one_inode(root, parent_objectid);
1462 			if (!dir) {
1463 				ret = -ENOENT;
1464 				goto out;
1465 			}
1466 		} else {
1467 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1468 					     &ref_index);
1469 		}
1470 		if (ret)
1471 			goto out;
1472 
1473 		/* if we already have a perfect match, we're done */
1474 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1475 					btrfs_ino(BTRFS_I(inode)), ref_index,
1476 					name, namelen)) {
1477 			/*
1478 			 * look for a conflicting back reference in the
1479 			 * metadata. if we find one we have to unlink that name
1480 			 * of the file before we add our new link.  Later on, we
1481 			 * overwrite any existing back reference, and we don't
1482 			 * want to create dangling pointers in the directory.
1483 			 */
1484 
1485 			if (!search_done) {
1486 				ret = __add_inode_ref(trans, root, path, log,
1487 						      BTRFS_I(dir),
1488 						      BTRFS_I(inode),
1489 						      inode_objectid,
1490 						      parent_objectid,
1491 						      ref_index, name, namelen,
1492 						      &search_done);
1493 				if (ret) {
1494 					if (ret == 1)
1495 						ret = 0;
1496 					goto out;
1497 				}
1498 			}
1499 
1500 			/*
1501 			 * If a reference item already exists for this inode
1502 			 * with the same parent and name, but different index,
1503 			 * drop it and the corresponding directory index entries
1504 			 * from the parent before adding the new reference item
1505 			 * and dir index entries, otherwise we would fail with
1506 			 * -EEXIST returned from btrfs_add_link() below.
1507 			 */
1508 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1509 						     name, namelen);
1510 			if (ret > 0) {
1511 				ret = btrfs_unlink_inode(trans, root,
1512 							 BTRFS_I(dir),
1513 							 BTRFS_I(inode),
1514 							 name, namelen);
1515 				/*
1516 				 * If we dropped the link count to 0, bump it so
1517 				 * that later the iput() on the inode will not
1518 				 * free it. We will fixup the link count later.
1519 				 */
1520 				if (!ret && inode->i_nlink == 0)
1521 					inc_nlink(inode);
1522 			}
1523 			if (ret < 0)
1524 				goto out;
1525 
1526 			/* insert our name */
1527 			ret = add_link(trans, root, dir, inode, name, namelen,
1528 				       ref_index);
1529 			if (ret)
1530 				goto out;
1531 
1532 			btrfs_update_inode(trans, root, inode);
1533 		}
1534 
1535 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1536 		kfree(name);
1537 		name = NULL;
1538 		if (log_ref_ver) {
1539 			iput(dir);
1540 			dir = NULL;
1541 		}
1542 	}
1543 
1544 	/*
1545 	 * Before we overwrite the inode reference item in the subvolume tree
1546 	 * with the item from the log tree, we must unlink all names from the
1547 	 * parent directory that are in the subvolume's tree inode reference
1548 	 * item, otherwise we end up with an inconsistent subvolume tree where
1549 	 * dir index entries exist for a name but there is no inode reference
1550 	 * item with the same name.
1551 	 */
1552 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1553 				    key);
1554 	if (ret)
1555 		goto out;
1556 
1557 	/* finally write the back reference in the inode */
1558 	ret = overwrite_item(trans, root, path, eb, slot, key);
1559 out:
1560 	btrfs_release_path(path);
1561 	kfree(name);
1562 	iput(dir);
1563 	iput(inode);
1564 	return ret;
1565 }
1566 
1567 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1568 			      struct btrfs_root *root, u64 ino)
1569 {
1570 	int ret;
1571 
1572 	ret = btrfs_insert_orphan_item(trans, root, ino);
1573 	if (ret == -EEXIST)
1574 		ret = 0;
1575 
1576 	return ret;
1577 }
1578 
1579 static int count_inode_extrefs(struct btrfs_root *root,
1580 		struct btrfs_inode *inode, struct btrfs_path *path)
1581 {
1582 	int ret = 0;
1583 	int name_len;
1584 	unsigned int nlink = 0;
1585 	u32 item_size;
1586 	u32 cur_offset = 0;
1587 	u64 inode_objectid = btrfs_ino(inode);
1588 	u64 offset = 0;
1589 	unsigned long ptr;
1590 	struct btrfs_inode_extref *extref;
1591 	struct extent_buffer *leaf;
1592 
1593 	while (1) {
1594 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1595 					    &extref, &offset);
1596 		if (ret)
1597 			break;
1598 
1599 		leaf = path->nodes[0];
1600 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1601 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1602 		cur_offset = 0;
1603 
1604 		while (cur_offset < item_size) {
1605 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1606 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1607 
1608 			nlink++;
1609 
1610 			cur_offset += name_len + sizeof(*extref);
1611 		}
1612 
1613 		offset++;
1614 		btrfs_release_path(path);
1615 	}
1616 	btrfs_release_path(path);
1617 
1618 	if (ret < 0 && ret != -ENOENT)
1619 		return ret;
1620 	return nlink;
1621 }
1622 
1623 static int count_inode_refs(struct btrfs_root *root,
1624 			struct btrfs_inode *inode, struct btrfs_path *path)
1625 {
1626 	int ret;
1627 	struct btrfs_key key;
1628 	unsigned int nlink = 0;
1629 	unsigned long ptr;
1630 	unsigned long ptr_end;
1631 	int name_len;
1632 	u64 ino = btrfs_ino(inode);
1633 
1634 	key.objectid = ino;
1635 	key.type = BTRFS_INODE_REF_KEY;
1636 	key.offset = (u64)-1;
1637 
1638 	while (1) {
1639 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1640 		if (ret < 0)
1641 			break;
1642 		if (ret > 0) {
1643 			if (path->slots[0] == 0)
1644 				break;
1645 			path->slots[0]--;
1646 		}
1647 process_slot:
1648 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1649 				      path->slots[0]);
1650 		if (key.objectid != ino ||
1651 		    key.type != BTRFS_INODE_REF_KEY)
1652 			break;
1653 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1654 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1655 						   path->slots[0]);
1656 		while (ptr < ptr_end) {
1657 			struct btrfs_inode_ref *ref;
1658 
1659 			ref = (struct btrfs_inode_ref *)ptr;
1660 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1661 							    ref);
1662 			ptr = (unsigned long)(ref + 1) + name_len;
1663 			nlink++;
1664 		}
1665 
1666 		if (key.offset == 0)
1667 			break;
1668 		if (path->slots[0] > 0) {
1669 			path->slots[0]--;
1670 			goto process_slot;
1671 		}
1672 		key.offset--;
1673 		btrfs_release_path(path);
1674 	}
1675 	btrfs_release_path(path);
1676 
1677 	return nlink;
1678 }
1679 
1680 /*
1681  * There are a few corners where the link count of the file can't
1682  * be properly maintained during replay.  So, instead of adding
1683  * lots of complexity to the log code, we just scan the backrefs
1684  * for any file that has been through replay.
1685  *
1686  * The scan will update the link count on the inode to reflect the
1687  * number of back refs found.  If it goes down to zero, the iput
1688  * will free the inode.
1689  */
1690 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1691 					   struct btrfs_root *root,
1692 					   struct inode *inode)
1693 {
1694 	struct btrfs_path *path;
1695 	int ret;
1696 	u64 nlink = 0;
1697 	u64 ino = btrfs_ino(BTRFS_I(inode));
1698 
1699 	path = btrfs_alloc_path();
1700 	if (!path)
1701 		return -ENOMEM;
1702 
1703 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1704 	if (ret < 0)
1705 		goto out;
1706 
1707 	nlink = ret;
1708 
1709 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1710 	if (ret < 0)
1711 		goto out;
1712 
1713 	nlink += ret;
1714 
1715 	ret = 0;
1716 
1717 	if (nlink != inode->i_nlink) {
1718 		set_nlink(inode, nlink);
1719 		btrfs_update_inode(trans, root, inode);
1720 	}
1721 	BTRFS_I(inode)->index_cnt = (u64)-1;
1722 
1723 	if (inode->i_nlink == 0) {
1724 		if (S_ISDIR(inode->i_mode)) {
1725 			ret = replay_dir_deletes(trans, root, NULL, path,
1726 						 ino, 1);
1727 			if (ret)
1728 				goto out;
1729 		}
1730 		ret = insert_orphan_item(trans, root, ino);
1731 	}
1732 
1733 out:
1734 	btrfs_free_path(path);
1735 	return ret;
1736 }
1737 
1738 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1739 					    struct btrfs_root *root,
1740 					    struct btrfs_path *path)
1741 {
1742 	int ret;
1743 	struct btrfs_key key;
1744 	struct inode *inode;
1745 
1746 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1747 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1748 	key.offset = (u64)-1;
1749 	while (1) {
1750 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1751 		if (ret < 0)
1752 			break;
1753 
1754 		if (ret == 1) {
1755 			if (path->slots[0] == 0)
1756 				break;
1757 			path->slots[0]--;
1758 		}
1759 
1760 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1761 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1762 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1763 			break;
1764 
1765 		ret = btrfs_del_item(trans, root, path);
1766 		if (ret)
1767 			goto out;
1768 
1769 		btrfs_release_path(path);
1770 		inode = read_one_inode(root, key.offset);
1771 		if (!inode)
1772 			return -EIO;
1773 
1774 		ret = fixup_inode_link_count(trans, root, inode);
1775 		iput(inode);
1776 		if (ret)
1777 			goto out;
1778 
1779 		/*
1780 		 * fixup on a directory may create new entries,
1781 		 * make sure we always look for the highset possible
1782 		 * offset
1783 		 */
1784 		key.offset = (u64)-1;
1785 	}
1786 	ret = 0;
1787 out:
1788 	btrfs_release_path(path);
1789 	return ret;
1790 }
1791 
1792 
1793 /*
1794  * record a given inode in the fixup dir so we can check its link
1795  * count when replay is done.  The link count is incremented here
1796  * so the inode won't go away until we check it
1797  */
1798 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1799 				      struct btrfs_root *root,
1800 				      struct btrfs_path *path,
1801 				      u64 objectid)
1802 {
1803 	struct btrfs_key key;
1804 	int ret = 0;
1805 	struct inode *inode;
1806 
1807 	inode = read_one_inode(root, objectid);
1808 	if (!inode)
1809 		return -EIO;
1810 
1811 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1812 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1813 	key.offset = objectid;
1814 
1815 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1816 
1817 	btrfs_release_path(path);
1818 	if (ret == 0) {
1819 		if (!inode->i_nlink)
1820 			set_nlink(inode, 1);
1821 		else
1822 			inc_nlink(inode);
1823 		ret = btrfs_update_inode(trans, root, inode);
1824 	} else if (ret == -EEXIST) {
1825 		ret = 0;
1826 	} else {
1827 		BUG(); /* Logic Error */
1828 	}
1829 	iput(inode);
1830 
1831 	return ret;
1832 }
1833 
1834 /*
1835  * when replaying the log for a directory, we only insert names
1836  * for inodes that actually exist.  This means an fsync on a directory
1837  * does not implicitly fsync all the new files in it
1838  */
1839 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1840 				    struct btrfs_root *root,
1841 				    u64 dirid, u64 index,
1842 				    char *name, int name_len,
1843 				    struct btrfs_key *location)
1844 {
1845 	struct inode *inode;
1846 	struct inode *dir;
1847 	int ret;
1848 
1849 	inode = read_one_inode(root, location->objectid);
1850 	if (!inode)
1851 		return -ENOENT;
1852 
1853 	dir = read_one_inode(root, dirid);
1854 	if (!dir) {
1855 		iput(inode);
1856 		return -EIO;
1857 	}
1858 
1859 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1860 			name_len, 1, index);
1861 
1862 	/* FIXME, put inode into FIXUP list */
1863 
1864 	iput(inode);
1865 	iput(dir);
1866 	return ret;
1867 }
1868 
1869 /*
1870  * take a single entry in a log directory item and replay it into
1871  * the subvolume.
1872  *
1873  * if a conflicting item exists in the subdirectory already,
1874  * the inode it points to is unlinked and put into the link count
1875  * fix up tree.
1876  *
1877  * If a name from the log points to a file or directory that does
1878  * not exist in the FS, it is skipped.  fsyncs on directories
1879  * do not force down inodes inside that directory, just changes to the
1880  * names or unlinks in a directory.
1881  *
1882  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1883  * non-existing inode) and 1 if the name was replayed.
1884  */
1885 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1886 				    struct btrfs_root *root,
1887 				    struct btrfs_path *path,
1888 				    struct extent_buffer *eb,
1889 				    struct btrfs_dir_item *di,
1890 				    struct btrfs_key *key)
1891 {
1892 	char *name;
1893 	int name_len;
1894 	struct btrfs_dir_item *dst_di;
1895 	struct btrfs_key found_key;
1896 	struct btrfs_key log_key;
1897 	struct inode *dir;
1898 	u8 log_type;
1899 	int exists;
1900 	int ret = 0;
1901 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1902 	bool name_added = false;
1903 
1904 	dir = read_one_inode(root, key->objectid);
1905 	if (!dir)
1906 		return -EIO;
1907 
1908 	name_len = btrfs_dir_name_len(eb, di);
1909 	name = kmalloc(name_len, GFP_NOFS);
1910 	if (!name) {
1911 		ret = -ENOMEM;
1912 		goto out;
1913 	}
1914 
1915 	log_type = btrfs_dir_type(eb, di);
1916 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1917 		   name_len);
1918 
1919 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1920 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1921 	if (exists == 0)
1922 		exists = 1;
1923 	else
1924 		exists = 0;
1925 	btrfs_release_path(path);
1926 
1927 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1928 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1929 				       name, name_len, 1);
1930 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1931 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1932 						     key->objectid,
1933 						     key->offset, name,
1934 						     name_len, 1);
1935 	} else {
1936 		/* Corruption */
1937 		ret = -EINVAL;
1938 		goto out;
1939 	}
1940 	if (IS_ERR_OR_NULL(dst_di)) {
1941 		/* we need a sequence number to insert, so we only
1942 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1943 		 */
1944 		if (key->type != BTRFS_DIR_INDEX_KEY)
1945 			goto out;
1946 		goto insert;
1947 	}
1948 
1949 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1950 	/* the existing item matches the logged item */
1951 	if (found_key.objectid == log_key.objectid &&
1952 	    found_key.type == log_key.type &&
1953 	    found_key.offset == log_key.offset &&
1954 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1955 		update_size = false;
1956 		goto out;
1957 	}
1958 
1959 	/*
1960 	 * don't drop the conflicting directory entry if the inode
1961 	 * for the new entry doesn't exist
1962 	 */
1963 	if (!exists)
1964 		goto out;
1965 
1966 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1967 	if (ret)
1968 		goto out;
1969 
1970 	if (key->type == BTRFS_DIR_INDEX_KEY)
1971 		goto insert;
1972 out:
1973 	btrfs_release_path(path);
1974 	if (!ret && update_size) {
1975 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1976 		ret = btrfs_update_inode(trans, root, dir);
1977 	}
1978 	kfree(name);
1979 	iput(dir);
1980 	if (!ret && name_added)
1981 		ret = 1;
1982 	return ret;
1983 
1984 insert:
1985 	/*
1986 	 * Check if the inode reference exists in the log for the given name,
1987 	 * inode and parent inode
1988 	 */
1989 	found_key.objectid = log_key.objectid;
1990 	found_key.type = BTRFS_INODE_REF_KEY;
1991 	found_key.offset = key->objectid;
1992 	ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
1993 	if (ret < 0) {
1994 	        goto out;
1995 	} else if (ret) {
1996 	        /* The dentry will be added later. */
1997 	        ret = 0;
1998 	        update_size = false;
1999 	        goto out;
2000 	}
2001 
2002 	found_key.objectid = log_key.objectid;
2003 	found_key.type = BTRFS_INODE_EXTREF_KEY;
2004 	found_key.offset = key->objectid;
2005 	ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2006 			     name_len);
2007 	if (ret < 0) {
2008 		goto out;
2009 	} else if (ret) {
2010 		/* The dentry will be added later. */
2011 		ret = 0;
2012 		update_size = false;
2013 		goto out;
2014 	}
2015 	btrfs_release_path(path);
2016 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2017 			      name, name_len, &log_key);
2018 	if (ret && ret != -ENOENT && ret != -EEXIST)
2019 		goto out;
2020 	if (!ret)
2021 		name_added = true;
2022 	update_size = false;
2023 	ret = 0;
2024 	goto out;
2025 }
2026 
2027 /*
2028  * find all the names in a directory item and reconcile them into
2029  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2030  * one name in a directory item, but the same code gets used for
2031  * both directory index types
2032  */
2033 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2034 					struct btrfs_root *root,
2035 					struct btrfs_path *path,
2036 					struct extent_buffer *eb, int slot,
2037 					struct btrfs_key *key)
2038 {
2039 	int ret = 0;
2040 	u32 item_size = btrfs_item_size_nr(eb, slot);
2041 	struct btrfs_dir_item *di;
2042 	int name_len;
2043 	unsigned long ptr;
2044 	unsigned long ptr_end;
2045 	struct btrfs_path *fixup_path = NULL;
2046 
2047 	ptr = btrfs_item_ptr_offset(eb, slot);
2048 	ptr_end = ptr + item_size;
2049 	while (ptr < ptr_end) {
2050 		di = (struct btrfs_dir_item *)ptr;
2051 		name_len = btrfs_dir_name_len(eb, di);
2052 		ret = replay_one_name(trans, root, path, eb, di, key);
2053 		if (ret < 0)
2054 			break;
2055 		ptr = (unsigned long)(di + 1);
2056 		ptr += name_len;
2057 
2058 		/*
2059 		 * If this entry refers to a non-directory (directories can not
2060 		 * have a link count > 1) and it was added in the transaction
2061 		 * that was not committed, make sure we fixup the link count of
2062 		 * the inode it the entry points to. Otherwise something like
2063 		 * the following would result in a directory pointing to an
2064 		 * inode with a wrong link that does not account for this dir
2065 		 * entry:
2066 		 *
2067 		 * mkdir testdir
2068 		 * touch testdir/foo
2069 		 * touch testdir/bar
2070 		 * sync
2071 		 *
2072 		 * ln testdir/bar testdir/bar_link
2073 		 * ln testdir/foo testdir/foo_link
2074 		 * xfs_io -c "fsync" testdir/bar
2075 		 *
2076 		 * <power failure>
2077 		 *
2078 		 * mount fs, log replay happens
2079 		 *
2080 		 * File foo would remain with a link count of 1 when it has two
2081 		 * entries pointing to it in the directory testdir. This would
2082 		 * make it impossible to ever delete the parent directory has
2083 		 * it would result in stale dentries that can never be deleted.
2084 		 */
2085 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2086 			struct btrfs_key di_key;
2087 
2088 			if (!fixup_path) {
2089 				fixup_path = btrfs_alloc_path();
2090 				if (!fixup_path) {
2091 					ret = -ENOMEM;
2092 					break;
2093 				}
2094 			}
2095 
2096 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2097 			ret = link_to_fixup_dir(trans, root, fixup_path,
2098 						di_key.objectid);
2099 			if (ret)
2100 				break;
2101 		}
2102 		ret = 0;
2103 	}
2104 	btrfs_free_path(fixup_path);
2105 	return ret;
2106 }
2107 
2108 /*
2109  * directory replay has two parts.  There are the standard directory
2110  * items in the log copied from the subvolume, and range items
2111  * created in the log while the subvolume was logged.
2112  *
2113  * The range items tell us which parts of the key space the log
2114  * is authoritative for.  During replay, if a key in the subvolume
2115  * directory is in a logged range item, but not actually in the log
2116  * that means it was deleted from the directory before the fsync
2117  * and should be removed.
2118  */
2119 static noinline int find_dir_range(struct btrfs_root *root,
2120 				   struct btrfs_path *path,
2121 				   u64 dirid, int key_type,
2122 				   u64 *start_ret, u64 *end_ret)
2123 {
2124 	struct btrfs_key key;
2125 	u64 found_end;
2126 	struct btrfs_dir_log_item *item;
2127 	int ret;
2128 	int nritems;
2129 
2130 	if (*start_ret == (u64)-1)
2131 		return 1;
2132 
2133 	key.objectid = dirid;
2134 	key.type = key_type;
2135 	key.offset = *start_ret;
2136 
2137 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2138 	if (ret < 0)
2139 		goto out;
2140 	if (ret > 0) {
2141 		if (path->slots[0] == 0)
2142 			goto out;
2143 		path->slots[0]--;
2144 	}
2145 	if (ret != 0)
2146 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2147 
2148 	if (key.type != key_type || key.objectid != dirid) {
2149 		ret = 1;
2150 		goto next;
2151 	}
2152 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2153 			      struct btrfs_dir_log_item);
2154 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2155 
2156 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2157 		ret = 0;
2158 		*start_ret = key.offset;
2159 		*end_ret = found_end;
2160 		goto out;
2161 	}
2162 	ret = 1;
2163 next:
2164 	/* check the next slot in the tree to see if it is a valid item */
2165 	nritems = btrfs_header_nritems(path->nodes[0]);
2166 	path->slots[0]++;
2167 	if (path->slots[0] >= nritems) {
2168 		ret = btrfs_next_leaf(root, path);
2169 		if (ret)
2170 			goto out;
2171 	}
2172 
2173 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2174 
2175 	if (key.type != key_type || key.objectid != dirid) {
2176 		ret = 1;
2177 		goto out;
2178 	}
2179 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2180 			      struct btrfs_dir_log_item);
2181 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2182 	*start_ret = key.offset;
2183 	*end_ret = found_end;
2184 	ret = 0;
2185 out:
2186 	btrfs_release_path(path);
2187 	return ret;
2188 }
2189 
2190 /*
2191  * this looks for a given directory item in the log.  If the directory
2192  * item is not in the log, the item is removed and the inode it points
2193  * to is unlinked
2194  */
2195 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2196 				      struct btrfs_root *root,
2197 				      struct btrfs_root *log,
2198 				      struct btrfs_path *path,
2199 				      struct btrfs_path *log_path,
2200 				      struct inode *dir,
2201 				      struct btrfs_key *dir_key)
2202 {
2203 	int ret;
2204 	struct extent_buffer *eb;
2205 	int slot;
2206 	u32 item_size;
2207 	struct btrfs_dir_item *di;
2208 	struct btrfs_dir_item *log_di;
2209 	int name_len;
2210 	unsigned long ptr;
2211 	unsigned long ptr_end;
2212 	char *name;
2213 	struct inode *inode;
2214 	struct btrfs_key location;
2215 
2216 again:
2217 	eb = path->nodes[0];
2218 	slot = path->slots[0];
2219 	item_size = btrfs_item_size_nr(eb, slot);
2220 	ptr = btrfs_item_ptr_offset(eb, slot);
2221 	ptr_end = ptr + item_size;
2222 	while (ptr < ptr_end) {
2223 		di = (struct btrfs_dir_item *)ptr;
2224 		name_len = btrfs_dir_name_len(eb, di);
2225 		name = kmalloc(name_len, GFP_NOFS);
2226 		if (!name) {
2227 			ret = -ENOMEM;
2228 			goto out;
2229 		}
2230 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2231 				  name_len);
2232 		log_di = NULL;
2233 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2234 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2235 						       dir_key->objectid,
2236 						       name, name_len, 0);
2237 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2238 			log_di = btrfs_lookup_dir_index_item(trans, log,
2239 						     log_path,
2240 						     dir_key->objectid,
2241 						     dir_key->offset,
2242 						     name, name_len, 0);
2243 		}
2244 		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2245 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2246 			btrfs_release_path(path);
2247 			btrfs_release_path(log_path);
2248 			inode = read_one_inode(root, location.objectid);
2249 			if (!inode) {
2250 				kfree(name);
2251 				return -EIO;
2252 			}
2253 
2254 			ret = link_to_fixup_dir(trans, root,
2255 						path, location.objectid);
2256 			if (ret) {
2257 				kfree(name);
2258 				iput(inode);
2259 				goto out;
2260 			}
2261 
2262 			inc_nlink(inode);
2263 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2264 					BTRFS_I(inode), name, name_len);
2265 			if (!ret)
2266 				ret = btrfs_run_delayed_items(trans);
2267 			kfree(name);
2268 			iput(inode);
2269 			if (ret)
2270 				goto out;
2271 
2272 			/* there might still be more names under this key
2273 			 * check and repeat if required
2274 			 */
2275 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2276 						0, 0);
2277 			if (ret == 0)
2278 				goto again;
2279 			ret = 0;
2280 			goto out;
2281 		} else if (IS_ERR(log_di)) {
2282 			kfree(name);
2283 			return PTR_ERR(log_di);
2284 		}
2285 		btrfs_release_path(log_path);
2286 		kfree(name);
2287 
2288 		ptr = (unsigned long)(di + 1);
2289 		ptr += name_len;
2290 	}
2291 	ret = 0;
2292 out:
2293 	btrfs_release_path(path);
2294 	btrfs_release_path(log_path);
2295 	return ret;
2296 }
2297 
2298 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2299 			      struct btrfs_root *root,
2300 			      struct btrfs_root *log,
2301 			      struct btrfs_path *path,
2302 			      const u64 ino)
2303 {
2304 	struct btrfs_key search_key;
2305 	struct btrfs_path *log_path;
2306 	int i;
2307 	int nritems;
2308 	int ret;
2309 
2310 	log_path = btrfs_alloc_path();
2311 	if (!log_path)
2312 		return -ENOMEM;
2313 
2314 	search_key.objectid = ino;
2315 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2316 	search_key.offset = 0;
2317 again:
2318 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2319 	if (ret < 0)
2320 		goto out;
2321 process_leaf:
2322 	nritems = btrfs_header_nritems(path->nodes[0]);
2323 	for (i = path->slots[0]; i < nritems; i++) {
2324 		struct btrfs_key key;
2325 		struct btrfs_dir_item *di;
2326 		struct btrfs_dir_item *log_di;
2327 		u32 total_size;
2328 		u32 cur;
2329 
2330 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2331 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2332 			ret = 0;
2333 			goto out;
2334 		}
2335 
2336 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2337 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2338 		cur = 0;
2339 		while (cur < total_size) {
2340 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2341 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2342 			u32 this_len = sizeof(*di) + name_len + data_len;
2343 			char *name;
2344 
2345 			name = kmalloc(name_len, GFP_NOFS);
2346 			if (!name) {
2347 				ret = -ENOMEM;
2348 				goto out;
2349 			}
2350 			read_extent_buffer(path->nodes[0], name,
2351 					   (unsigned long)(di + 1), name_len);
2352 
2353 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2354 						    name, name_len, 0);
2355 			btrfs_release_path(log_path);
2356 			if (!log_di) {
2357 				/* Doesn't exist in log tree, so delete it. */
2358 				btrfs_release_path(path);
2359 				di = btrfs_lookup_xattr(trans, root, path, ino,
2360 							name, name_len, -1);
2361 				kfree(name);
2362 				if (IS_ERR(di)) {
2363 					ret = PTR_ERR(di);
2364 					goto out;
2365 				}
2366 				ASSERT(di);
2367 				ret = btrfs_delete_one_dir_name(trans, root,
2368 								path, di);
2369 				if (ret)
2370 					goto out;
2371 				btrfs_release_path(path);
2372 				search_key = key;
2373 				goto again;
2374 			}
2375 			kfree(name);
2376 			if (IS_ERR(log_di)) {
2377 				ret = PTR_ERR(log_di);
2378 				goto out;
2379 			}
2380 			cur += this_len;
2381 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2382 		}
2383 	}
2384 	ret = btrfs_next_leaf(root, path);
2385 	if (ret > 0)
2386 		ret = 0;
2387 	else if (ret == 0)
2388 		goto process_leaf;
2389 out:
2390 	btrfs_free_path(log_path);
2391 	btrfs_release_path(path);
2392 	return ret;
2393 }
2394 
2395 
2396 /*
2397  * deletion replay happens before we copy any new directory items
2398  * out of the log or out of backreferences from inodes.  It
2399  * scans the log to find ranges of keys that log is authoritative for,
2400  * and then scans the directory to find items in those ranges that are
2401  * not present in the log.
2402  *
2403  * Anything we don't find in the log is unlinked and removed from the
2404  * directory.
2405  */
2406 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2407 				       struct btrfs_root *root,
2408 				       struct btrfs_root *log,
2409 				       struct btrfs_path *path,
2410 				       u64 dirid, int del_all)
2411 {
2412 	u64 range_start;
2413 	u64 range_end;
2414 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2415 	int ret = 0;
2416 	struct btrfs_key dir_key;
2417 	struct btrfs_key found_key;
2418 	struct btrfs_path *log_path;
2419 	struct inode *dir;
2420 
2421 	dir_key.objectid = dirid;
2422 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2423 	log_path = btrfs_alloc_path();
2424 	if (!log_path)
2425 		return -ENOMEM;
2426 
2427 	dir = read_one_inode(root, dirid);
2428 	/* it isn't an error if the inode isn't there, that can happen
2429 	 * because we replay the deletes before we copy in the inode item
2430 	 * from the log
2431 	 */
2432 	if (!dir) {
2433 		btrfs_free_path(log_path);
2434 		return 0;
2435 	}
2436 again:
2437 	range_start = 0;
2438 	range_end = 0;
2439 	while (1) {
2440 		if (del_all)
2441 			range_end = (u64)-1;
2442 		else {
2443 			ret = find_dir_range(log, path, dirid, key_type,
2444 					     &range_start, &range_end);
2445 			if (ret != 0)
2446 				break;
2447 		}
2448 
2449 		dir_key.offset = range_start;
2450 		while (1) {
2451 			int nritems;
2452 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2453 						0, 0);
2454 			if (ret < 0)
2455 				goto out;
2456 
2457 			nritems = btrfs_header_nritems(path->nodes[0]);
2458 			if (path->slots[0] >= nritems) {
2459 				ret = btrfs_next_leaf(root, path);
2460 				if (ret == 1)
2461 					break;
2462 				else if (ret < 0)
2463 					goto out;
2464 			}
2465 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2466 					      path->slots[0]);
2467 			if (found_key.objectid != dirid ||
2468 			    found_key.type != dir_key.type)
2469 				goto next_type;
2470 
2471 			if (found_key.offset > range_end)
2472 				break;
2473 
2474 			ret = check_item_in_log(trans, root, log, path,
2475 						log_path, dir,
2476 						&found_key);
2477 			if (ret)
2478 				goto out;
2479 			if (found_key.offset == (u64)-1)
2480 				break;
2481 			dir_key.offset = found_key.offset + 1;
2482 		}
2483 		btrfs_release_path(path);
2484 		if (range_end == (u64)-1)
2485 			break;
2486 		range_start = range_end + 1;
2487 	}
2488 
2489 next_type:
2490 	ret = 0;
2491 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2492 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2493 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2494 		btrfs_release_path(path);
2495 		goto again;
2496 	}
2497 out:
2498 	btrfs_release_path(path);
2499 	btrfs_free_path(log_path);
2500 	iput(dir);
2501 	return ret;
2502 }
2503 
2504 /*
2505  * the process_func used to replay items from the log tree.  This
2506  * gets called in two different stages.  The first stage just looks
2507  * for inodes and makes sure they are all copied into the subvolume.
2508  *
2509  * The second stage copies all the other item types from the log into
2510  * the subvolume.  The two stage approach is slower, but gets rid of
2511  * lots of complexity around inodes referencing other inodes that exist
2512  * only in the log (references come from either directory items or inode
2513  * back refs).
2514  */
2515 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2516 			     struct walk_control *wc, u64 gen, int level)
2517 {
2518 	int nritems;
2519 	struct btrfs_path *path;
2520 	struct btrfs_root *root = wc->replay_dest;
2521 	struct btrfs_key key;
2522 	int i;
2523 	int ret;
2524 
2525 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2526 	if (ret)
2527 		return ret;
2528 
2529 	level = btrfs_header_level(eb);
2530 
2531 	if (level != 0)
2532 		return 0;
2533 
2534 	path = btrfs_alloc_path();
2535 	if (!path)
2536 		return -ENOMEM;
2537 
2538 	nritems = btrfs_header_nritems(eb);
2539 	for (i = 0; i < nritems; i++) {
2540 		btrfs_item_key_to_cpu(eb, &key, i);
2541 
2542 		/* inode keys are done during the first stage */
2543 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2544 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2545 			struct btrfs_inode_item *inode_item;
2546 			u32 mode;
2547 
2548 			inode_item = btrfs_item_ptr(eb, i,
2549 					    struct btrfs_inode_item);
2550 			/*
2551 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2552 			 * and never got linked before the fsync, skip it, as
2553 			 * replaying it is pointless since it would be deleted
2554 			 * later. We skip logging tmpfiles, but it's always
2555 			 * possible we are replaying a log created with a kernel
2556 			 * that used to log tmpfiles.
2557 			 */
2558 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2559 				wc->ignore_cur_inode = true;
2560 				continue;
2561 			} else {
2562 				wc->ignore_cur_inode = false;
2563 			}
2564 			ret = replay_xattr_deletes(wc->trans, root, log,
2565 						   path, key.objectid);
2566 			if (ret)
2567 				break;
2568 			mode = btrfs_inode_mode(eb, inode_item);
2569 			if (S_ISDIR(mode)) {
2570 				ret = replay_dir_deletes(wc->trans,
2571 					 root, log, path, key.objectid, 0);
2572 				if (ret)
2573 					break;
2574 			}
2575 			ret = overwrite_item(wc->trans, root, path,
2576 					     eb, i, &key);
2577 			if (ret)
2578 				break;
2579 
2580 			/*
2581 			 * Before replaying extents, truncate the inode to its
2582 			 * size. We need to do it now and not after log replay
2583 			 * because before an fsync we can have prealloc extents
2584 			 * added beyond the inode's i_size. If we did it after,
2585 			 * through orphan cleanup for example, we would drop
2586 			 * those prealloc extents just after replaying them.
2587 			 */
2588 			if (S_ISREG(mode)) {
2589 				struct inode *inode;
2590 				u64 from;
2591 
2592 				inode = read_one_inode(root, key.objectid);
2593 				if (!inode) {
2594 					ret = -EIO;
2595 					break;
2596 				}
2597 				from = ALIGN(i_size_read(inode),
2598 					     root->fs_info->sectorsize);
2599 				ret = btrfs_drop_extents(wc->trans, root, inode,
2600 							 from, (u64)-1, 1);
2601 				if (!ret) {
2602 					/* Update the inode's nbytes. */
2603 					ret = btrfs_update_inode(wc->trans,
2604 								 root, inode);
2605 				}
2606 				iput(inode);
2607 				if (ret)
2608 					break;
2609 			}
2610 
2611 			ret = link_to_fixup_dir(wc->trans, root,
2612 						path, key.objectid);
2613 			if (ret)
2614 				break;
2615 		}
2616 
2617 		if (wc->ignore_cur_inode)
2618 			continue;
2619 
2620 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2621 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2622 			ret = replay_one_dir_item(wc->trans, root, path,
2623 						  eb, i, &key);
2624 			if (ret)
2625 				break;
2626 		}
2627 
2628 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2629 			continue;
2630 
2631 		/* these keys are simply copied */
2632 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2633 			ret = overwrite_item(wc->trans, root, path,
2634 					     eb, i, &key);
2635 			if (ret)
2636 				break;
2637 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2638 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2639 			ret = add_inode_ref(wc->trans, root, log, path,
2640 					    eb, i, &key);
2641 			if (ret && ret != -ENOENT)
2642 				break;
2643 			ret = 0;
2644 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2645 			ret = replay_one_extent(wc->trans, root, path,
2646 						eb, i, &key);
2647 			if (ret)
2648 				break;
2649 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2650 			ret = replay_one_dir_item(wc->trans, root, path,
2651 						  eb, i, &key);
2652 			if (ret)
2653 				break;
2654 		}
2655 	}
2656 	btrfs_free_path(path);
2657 	return ret;
2658 }
2659 
2660 /*
2661  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2662  */
2663 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2664 {
2665 	struct btrfs_block_group *cache;
2666 
2667 	cache = btrfs_lookup_block_group(fs_info, start);
2668 	if (!cache) {
2669 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2670 		return;
2671 	}
2672 
2673 	spin_lock(&cache->space_info->lock);
2674 	spin_lock(&cache->lock);
2675 	cache->reserved -= fs_info->nodesize;
2676 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2677 	spin_unlock(&cache->lock);
2678 	spin_unlock(&cache->space_info->lock);
2679 
2680 	btrfs_put_block_group(cache);
2681 }
2682 
2683 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2684 				   struct btrfs_root *root,
2685 				   struct btrfs_path *path, int *level,
2686 				   struct walk_control *wc)
2687 {
2688 	struct btrfs_fs_info *fs_info = root->fs_info;
2689 	u64 bytenr;
2690 	u64 ptr_gen;
2691 	struct extent_buffer *next;
2692 	struct extent_buffer *cur;
2693 	u32 blocksize;
2694 	int ret = 0;
2695 
2696 	while (*level > 0) {
2697 		struct btrfs_key first_key;
2698 
2699 		cur = path->nodes[*level];
2700 
2701 		WARN_ON(btrfs_header_level(cur) != *level);
2702 
2703 		if (path->slots[*level] >=
2704 		    btrfs_header_nritems(cur))
2705 			break;
2706 
2707 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2708 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2709 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2710 		blocksize = fs_info->nodesize;
2711 
2712 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2713 		if (IS_ERR(next))
2714 			return PTR_ERR(next);
2715 
2716 		if (*level == 1) {
2717 			ret = wc->process_func(root, next, wc, ptr_gen,
2718 					       *level - 1);
2719 			if (ret) {
2720 				free_extent_buffer(next);
2721 				return ret;
2722 			}
2723 
2724 			path->slots[*level]++;
2725 			if (wc->free) {
2726 				ret = btrfs_read_buffer(next, ptr_gen,
2727 							*level - 1, &first_key);
2728 				if (ret) {
2729 					free_extent_buffer(next);
2730 					return ret;
2731 				}
2732 
2733 				if (trans) {
2734 					btrfs_tree_lock(next);
2735 					btrfs_set_lock_blocking_write(next);
2736 					btrfs_clean_tree_block(next);
2737 					btrfs_wait_tree_block_writeback(next);
2738 					btrfs_tree_unlock(next);
2739 					ret = btrfs_pin_reserved_extent(trans,
2740 							bytenr, blocksize);
2741 					if (ret) {
2742 						free_extent_buffer(next);
2743 						return ret;
2744 					}
2745 				} else {
2746 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2747 						clear_extent_buffer_dirty(next);
2748 					unaccount_log_buffer(fs_info, bytenr);
2749 				}
2750 			}
2751 			free_extent_buffer(next);
2752 			continue;
2753 		}
2754 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2755 		if (ret) {
2756 			free_extent_buffer(next);
2757 			return ret;
2758 		}
2759 
2760 		if (path->nodes[*level-1])
2761 			free_extent_buffer(path->nodes[*level-1]);
2762 		path->nodes[*level-1] = next;
2763 		*level = btrfs_header_level(next);
2764 		path->slots[*level] = 0;
2765 		cond_resched();
2766 	}
2767 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2768 
2769 	cond_resched();
2770 	return 0;
2771 }
2772 
2773 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2774 				 struct btrfs_root *root,
2775 				 struct btrfs_path *path, int *level,
2776 				 struct walk_control *wc)
2777 {
2778 	struct btrfs_fs_info *fs_info = root->fs_info;
2779 	int i;
2780 	int slot;
2781 	int ret;
2782 
2783 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2784 		slot = path->slots[i];
2785 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2786 			path->slots[i]++;
2787 			*level = i;
2788 			WARN_ON(*level == 0);
2789 			return 0;
2790 		} else {
2791 			ret = wc->process_func(root, path->nodes[*level], wc,
2792 				 btrfs_header_generation(path->nodes[*level]),
2793 				 *level);
2794 			if (ret)
2795 				return ret;
2796 
2797 			if (wc->free) {
2798 				struct extent_buffer *next;
2799 
2800 				next = path->nodes[*level];
2801 
2802 				if (trans) {
2803 					btrfs_tree_lock(next);
2804 					btrfs_set_lock_blocking_write(next);
2805 					btrfs_clean_tree_block(next);
2806 					btrfs_wait_tree_block_writeback(next);
2807 					btrfs_tree_unlock(next);
2808 					ret = btrfs_pin_reserved_extent(trans,
2809 						     path->nodes[*level]->start,
2810 						     path->nodes[*level]->len);
2811 					if (ret)
2812 						return ret;
2813 				} else {
2814 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2815 						clear_extent_buffer_dirty(next);
2816 
2817 					unaccount_log_buffer(fs_info,
2818 						path->nodes[*level]->start);
2819 				}
2820 			}
2821 			free_extent_buffer(path->nodes[*level]);
2822 			path->nodes[*level] = NULL;
2823 			*level = i + 1;
2824 		}
2825 	}
2826 	return 1;
2827 }
2828 
2829 /*
2830  * drop the reference count on the tree rooted at 'snap'.  This traverses
2831  * the tree freeing any blocks that have a ref count of zero after being
2832  * decremented.
2833  */
2834 static int walk_log_tree(struct btrfs_trans_handle *trans,
2835 			 struct btrfs_root *log, struct walk_control *wc)
2836 {
2837 	struct btrfs_fs_info *fs_info = log->fs_info;
2838 	int ret = 0;
2839 	int wret;
2840 	int level;
2841 	struct btrfs_path *path;
2842 	int orig_level;
2843 
2844 	path = btrfs_alloc_path();
2845 	if (!path)
2846 		return -ENOMEM;
2847 
2848 	level = btrfs_header_level(log->node);
2849 	orig_level = level;
2850 	path->nodes[level] = log->node;
2851 	atomic_inc(&log->node->refs);
2852 	path->slots[level] = 0;
2853 
2854 	while (1) {
2855 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2856 		if (wret > 0)
2857 			break;
2858 		if (wret < 0) {
2859 			ret = wret;
2860 			goto out;
2861 		}
2862 
2863 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2864 		if (wret > 0)
2865 			break;
2866 		if (wret < 0) {
2867 			ret = wret;
2868 			goto out;
2869 		}
2870 	}
2871 
2872 	/* was the root node processed? if not, catch it here */
2873 	if (path->nodes[orig_level]) {
2874 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2875 			 btrfs_header_generation(path->nodes[orig_level]),
2876 			 orig_level);
2877 		if (ret)
2878 			goto out;
2879 		if (wc->free) {
2880 			struct extent_buffer *next;
2881 
2882 			next = path->nodes[orig_level];
2883 
2884 			if (trans) {
2885 				btrfs_tree_lock(next);
2886 				btrfs_set_lock_blocking_write(next);
2887 				btrfs_clean_tree_block(next);
2888 				btrfs_wait_tree_block_writeback(next);
2889 				btrfs_tree_unlock(next);
2890 				ret = btrfs_pin_reserved_extent(trans,
2891 						next->start, next->len);
2892 				if (ret)
2893 					goto out;
2894 			} else {
2895 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2896 					clear_extent_buffer_dirty(next);
2897 				unaccount_log_buffer(fs_info, next->start);
2898 			}
2899 		}
2900 	}
2901 
2902 out:
2903 	btrfs_free_path(path);
2904 	return ret;
2905 }
2906 
2907 /*
2908  * helper function to update the item for a given subvolumes log root
2909  * in the tree of log roots
2910  */
2911 static int update_log_root(struct btrfs_trans_handle *trans,
2912 			   struct btrfs_root *log,
2913 			   struct btrfs_root_item *root_item)
2914 {
2915 	struct btrfs_fs_info *fs_info = log->fs_info;
2916 	int ret;
2917 
2918 	if (log->log_transid == 1) {
2919 		/* insert root item on the first sync */
2920 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2921 				&log->root_key, root_item);
2922 	} else {
2923 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2924 				&log->root_key, root_item);
2925 	}
2926 	return ret;
2927 }
2928 
2929 static void wait_log_commit(struct btrfs_root *root, int transid)
2930 {
2931 	DEFINE_WAIT(wait);
2932 	int index = transid % 2;
2933 
2934 	/*
2935 	 * we only allow two pending log transactions at a time,
2936 	 * so we know that if ours is more than 2 older than the
2937 	 * current transaction, we're done
2938 	 */
2939 	for (;;) {
2940 		prepare_to_wait(&root->log_commit_wait[index],
2941 				&wait, TASK_UNINTERRUPTIBLE);
2942 
2943 		if (!(root->log_transid_committed < transid &&
2944 		      atomic_read(&root->log_commit[index])))
2945 			break;
2946 
2947 		mutex_unlock(&root->log_mutex);
2948 		schedule();
2949 		mutex_lock(&root->log_mutex);
2950 	}
2951 	finish_wait(&root->log_commit_wait[index], &wait);
2952 }
2953 
2954 static void wait_for_writer(struct btrfs_root *root)
2955 {
2956 	DEFINE_WAIT(wait);
2957 
2958 	for (;;) {
2959 		prepare_to_wait(&root->log_writer_wait, &wait,
2960 				TASK_UNINTERRUPTIBLE);
2961 		if (!atomic_read(&root->log_writers))
2962 			break;
2963 
2964 		mutex_unlock(&root->log_mutex);
2965 		schedule();
2966 		mutex_lock(&root->log_mutex);
2967 	}
2968 	finish_wait(&root->log_writer_wait, &wait);
2969 }
2970 
2971 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2972 					struct btrfs_log_ctx *ctx)
2973 {
2974 	if (!ctx)
2975 		return;
2976 
2977 	mutex_lock(&root->log_mutex);
2978 	list_del_init(&ctx->list);
2979 	mutex_unlock(&root->log_mutex);
2980 }
2981 
2982 /*
2983  * Invoked in log mutex context, or be sure there is no other task which
2984  * can access the list.
2985  */
2986 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2987 					     int index, int error)
2988 {
2989 	struct btrfs_log_ctx *ctx;
2990 	struct btrfs_log_ctx *safe;
2991 
2992 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2993 		list_del_init(&ctx->list);
2994 		ctx->log_ret = error;
2995 	}
2996 
2997 	INIT_LIST_HEAD(&root->log_ctxs[index]);
2998 }
2999 
3000 /*
3001  * btrfs_sync_log does sends a given tree log down to the disk and
3002  * updates the super blocks to record it.  When this call is done,
3003  * you know that any inodes previously logged are safely on disk only
3004  * if it returns 0.
3005  *
3006  * Any other return value means you need to call btrfs_commit_transaction.
3007  * Some of the edge cases for fsyncing directories that have had unlinks
3008  * or renames done in the past mean that sometimes the only safe
3009  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3010  * that has happened.
3011  */
3012 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3013 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3014 {
3015 	int index1;
3016 	int index2;
3017 	int mark;
3018 	int ret;
3019 	struct btrfs_fs_info *fs_info = root->fs_info;
3020 	struct btrfs_root *log = root->log_root;
3021 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3022 	struct btrfs_root_item new_root_item;
3023 	int log_transid = 0;
3024 	struct btrfs_log_ctx root_log_ctx;
3025 	struct blk_plug plug;
3026 
3027 	mutex_lock(&root->log_mutex);
3028 	log_transid = ctx->log_transid;
3029 	if (root->log_transid_committed >= log_transid) {
3030 		mutex_unlock(&root->log_mutex);
3031 		return ctx->log_ret;
3032 	}
3033 
3034 	index1 = log_transid % 2;
3035 	if (atomic_read(&root->log_commit[index1])) {
3036 		wait_log_commit(root, log_transid);
3037 		mutex_unlock(&root->log_mutex);
3038 		return ctx->log_ret;
3039 	}
3040 	ASSERT(log_transid == root->log_transid);
3041 	atomic_set(&root->log_commit[index1], 1);
3042 
3043 	/* wait for previous tree log sync to complete */
3044 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3045 		wait_log_commit(root, log_transid - 1);
3046 
3047 	while (1) {
3048 		int batch = atomic_read(&root->log_batch);
3049 		/* when we're on an ssd, just kick the log commit out */
3050 		if (!btrfs_test_opt(fs_info, SSD) &&
3051 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3052 			mutex_unlock(&root->log_mutex);
3053 			schedule_timeout_uninterruptible(1);
3054 			mutex_lock(&root->log_mutex);
3055 		}
3056 		wait_for_writer(root);
3057 		if (batch == atomic_read(&root->log_batch))
3058 			break;
3059 	}
3060 
3061 	/* bail out if we need to do a full commit */
3062 	if (btrfs_need_log_full_commit(trans)) {
3063 		ret = -EAGAIN;
3064 		mutex_unlock(&root->log_mutex);
3065 		goto out;
3066 	}
3067 
3068 	if (log_transid % 2 == 0)
3069 		mark = EXTENT_DIRTY;
3070 	else
3071 		mark = EXTENT_NEW;
3072 
3073 	/* we start IO on  all the marked extents here, but we don't actually
3074 	 * wait for them until later.
3075 	 */
3076 	blk_start_plug(&plug);
3077 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3078 	if (ret) {
3079 		blk_finish_plug(&plug);
3080 		btrfs_abort_transaction(trans, ret);
3081 		btrfs_set_log_full_commit(trans);
3082 		mutex_unlock(&root->log_mutex);
3083 		goto out;
3084 	}
3085 
3086 	/*
3087 	 * We _must_ update under the root->log_mutex in order to make sure we
3088 	 * have a consistent view of the log root we are trying to commit at
3089 	 * this moment.
3090 	 *
3091 	 * We _must_ copy this into a local copy, because we are not holding the
3092 	 * log_root_tree->log_mutex yet.  This is important because when we
3093 	 * commit the log_root_tree we must have a consistent view of the
3094 	 * log_root_tree when we update the super block to point at the
3095 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3096 	 * with the commit and possibly point at the new block which we may not
3097 	 * have written out.
3098 	 */
3099 	btrfs_set_root_node(&log->root_item, log->node);
3100 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3101 
3102 	root->log_transid++;
3103 	log->log_transid = root->log_transid;
3104 	root->log_start_pid = 0;
3105 	/*
3106 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3107 	 * in their headers. new modifications of the log will be written to
3108 	 * new positions. so it's safe to allow log writers to go in.
3109 	 */
3110 	mutex_unlock(&root->log_mutex);
3111 
3112 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3113 
3114 	mutex_lock(&log_root_tree->log_mutex);
3115 	atomic_inc(&log_root_tree->log_batch);
3116 	atomic_inc(&log_root_tree->log_writers);
3117 
3118 	index2 = log_root_tree->log_transid % 2;
3119 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3120 	root_log_ctx.log_transid = log_root_tree->log_transid;
3121 
3122 	mutex_unlock(&log_root_tree->log_mutex);
3123 
3124 	mutex_lock(&log_root_tree->log_mutex);
3125 
3126 	/*
3127 	 * Now we are safe to update the log_root_tree because we're under the
3128 	 * log_mutex, and we're a current writer so we're holding the commit
3129 	 * open until we drop the log_mutex.
3130 	 */
3131 	ret = update_log_root(trans, log, &new_root_item);
3132 
3133 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
3134 		/* atomic_dec_and_test implies a barrier */
3135 		cond_wake_up_nomb(&log_root_tree->log_writer_wait);
3136 	}
3137 
3138 	if (ret) {
3139 		if (!list_empty(&root_log_ctx.list))
3140 			list_del_init(&root_log_ctx.list);
3141 
3142 		blk_finish_plug(&plug);
3143 		btrfs_set_log_full_commit(trans);
3144 
3145 		if (ret != -ENOSPC) {
3146 			btrfs_abort_transaction(trans, ret);
3147 			mutex_unlock(&log_root_tree->log_mutex);
3148 			goto out;
3149 		}
3150 		btrfs_wait_tree_log_extents(log, mark);
3151 		mutex_unlock(&log_root_tree->log_mutex);
3152 		ret = -EAGAIN;
3153 		goto out;
3154 	}
3155 
3156 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3157 		blk_finish_plug(&plug);
3158 		list_del_init(&root_log_ctx.list);
3159 		mutex_unlock(&log_root_tree->log_mutex);
3160 		ret = root_log_ctx.log_ret;
3161 		goto out;
3162 	}
3163 
3164 	index2 = root_log_ctx.log_transid % 2;
3165 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3166 		blk_finish_plug(&plug);
3167 		ret = btrfs_wait_tree_log_extents(log, mark);
3168 		wait_log_commit(log_root_tree,
3169 				root_log_ctx.log_transid);
3170 		mutex_unlock(&log_root_tree->log_mutex);
3171 		if (!ret)
3172 			ret = root_log_ctx.log_ret;
3173 		goto out;
3174 	}
3175 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3176 	atomic_set(&log_root_tree->log_commit[index2], 1);
3177 
3178 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3179 		wait_log_commit(log_root_tree,
3180 				root_log_ctx.log_transid - 1);
3181 	}
3182 
3183 	wait_for_writer(log_root_tree);
3184 
3185 	/*
3186 	 * now that we've moved on to the tree of log tree roots,
3187 	 * check the full commit flag again
3188 	 */
3189 	if (btrfs_need_log_full_commit(trans)) {
3190 		blk_finish_plug(&plug);
3191 		btrfs_wait_tree_log_extents(log, mark);
3192 		mutex_unlock(&log_root_tree->log_mutex);
3193 		ret = -EAGAIN;
3194 		goto out_wake_log_root;
3195 	}
3196 
3197 	ret = btrfs_write_marked_extents(fs_info,
3198 					 &log_root_tree->dirty_log_pages,
3199 					 EXTENT_DIRTY | EXTENT_NEW);
3200 	blk_finish_plug(&plug);
3201 	if (ret) {
3202 		btrfs_set_log_full_commit(trans);
3203 		btrfs_abort_transaction(trans, ret);
3204 		mutex_unlock(&log_root_tree->log_mutex);
3205 		goto out_wake_log_root;
3206 	}
3207 	ret = btrfs_wait_tree_log_extents(log, mark);
3208 	if (!ret)
3209 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3210 						  EXTENT_NEW | EXTENT_DIRTY);
3211 	if (ret) {
3212 		btrfs_set_log_full_commit(trans);
3213 		mutex_unlock(&log_root_tree->log_mutex);
3214 		goto out_wake_log_root;
3215 	}
3216 
3217 	btrfs_set_super_log_root(fs_info->super_for_commit,
3218 				 log_root_tree->node->start);
3219 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3220 				       btrfs_header_level(log_root_tree->node));
3221 
3222 	log_root_tree->log_transid++;
3223 	mutex_unlock(&log_root_tree->log_mutex);
3224 
3225 	/*
3226 	 * Nobody else is going to jump in and write the ctree
3227 	 * super here because the log_commit atomic below is protecting
3228 	 * us.  We must be called with a transaction handle pinning
3229 	 * the running transaction open, so a full commit can't hop
3230 	 * in and cause problems either.
3231 	 */
3232 	ret = write_all_supers(fs_info, 1);
3233 	if (ret) {
3234 		btrfs_set_log_full_commit(trans);
3235 		btrfs_abort_transaction(trans, ret);
3236 		goto out_wake_log_root;
3237 	}
3238 
3239 	mutex_lock(&root->log_mutex);
3240 	if (root->last_log_commit < log_transid)
3241 		root->last_log_commit = log_transid;
3242 	mutex_unlock(&root->log_mutex);
3243 
3244 out_wake_log_root:
3245 	mutex_lock(&log_root_tree->log_mutex);
3246 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3247 
3248 	log_root_tree->log_transid_committed++;
3249 	atomic_set(&log_root_tree->log_commit[index2], 0);
3250 	mutex_unlock(&log_root_tree->log_mutex);
3251 
3252 	/*
3253 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3254 	 * all the updates above are seen by the woken threads. It might not be
3255 	 * necessary, but proving that seems to be hard.
3256 	 */
3257 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3258 out:
3259 	mutex_lock(&root->log_mutex);
3260 	btrfs_remove_all_log_ctxs(root, index1, ret);
3261 	root->log_transid_committed++;
3262 	atomic_set(&root->log_commit[index1], 0);
3263 	mutex_unlock(&root->log_mutex);
3264 
3265 	/*
3266 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3267 	 * all the updates above are seen by the woken threads. It might not be
3268 	 * necessary, but proving that seems to be hard.
3269 	 */
3270 	cond_wake_up(&root->log_commit_wait[index1]);
3271 	return ret;
3272 }
3273 
3274 static void free_log_tree(struct btrfs_trans_handle *trans,
3275 			  struct btrfs_root *log)
3276 {
3277 	int ret;
3278 	struct walk_control wc = {
3279 		.free = 1,
3280 		.process_func = process_one_buffer
3281 	};
3282 
3283 	ret = walk_log_tree(trans, log, &wc);
3284 	if (ret) {
3285 		if (trans)
3286 			btrfs_abort_transaction(trans, ret);
3287 		else
3288 			btrfs_handle_fs_error(log->fs_info, ret, NULL);
3289 	}
3290 
3291 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3292 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3293 	extent_io_tree_release(&log->log_csum_range);
3294 	btrfs_put_root(log);
3295 }
3296 
3297 /*
3298  * free all the extents used by the tree log.  This should be called
3299  * at commit time of the full transaction
3300  */
3301 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3302 {
3303 	if (root->log_root) {
3304 		free_log_tree(trans, root->log_root);
3305 		root->log_root = NULL;
3306 	}
3307 	return 0;
3308 }
3309 
3310 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3311 			     struct btrfs_fs_info *fs_info)
3312 {
3313 	if (fs_info->log_root_tree) {
3314 		free_log_tree(trans, fs_info->log_root_tree);
3315 		fs_info->log_root_tree = NULL;
3316 	}
3317 	return 0;
3318 }
3319 
3320 /*
3321  * Check if an inode was logged in the current transaction. We can't always rely
3322  * on an inode's logged_trans value, because it's an in-memory only field and
3323  * therefore not persisted. This means that its value is lost if the inode gets
3324  * evicted and loaded again from disk (in which case it has a value of 0, and
3325  * certainly it is smaller then any possible transaction ID), when that happens
3326  * the full_sync flag is set in the inode's runtime flags, so on that case we
3327  * assume eviction happened and ignore the logged_trans value, assuming the
3328  * worst case, that the inode was logged before in the current transaction.
3329  */
3330 static bool inode_logged(struct btrfs_trans_handle *trans,
3331 			 struct btrfs_inode *inode)
3332 {
3333 	if (inode->logged_trans == trans->transid)
3334 		return true;
3335 
3336 	if (inode->last_trans == trans->transid &&
3337 	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3338 	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3339 		return true;
3340 
3341 	return false;
3342 }
3343 
3344 /*
3345  * If both a file and directory are logged, and unlinks or renames are
3346  * mixed in, we have a few interesting corners:
3347  *
3348  * create file X in dir Y
3349  * link file X to X.link in dir Y
3350  * fsync file X
3351  * unlink file X but leave X.link
3352  * fsync dir Y
3353  *
3354  * After a crash we would expect only X.link to exist.  But file X
3355  * didn't get fsync'd again so the log has back refs for X and X.link.
3356  *
3357  * We solve this by removing directory entries and inode backrefs from the
3358  * log when a file that was logged in the current transaction is
3359  * unlinked.  Any later fsync will include the updated log entries, and
3360  * we'll be able to reconstruct the proper directory items from backrefs.
3361  *
3362  * This optimizations allows us to avoid relogging the entire inode
3363  * or the entire directory.
3364  */
3365 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3366 				 struct btrfs_root *root,
3367 				 const char *name, int name_len,
3368 				 struct btrfs_inode *dir, u64 index)
3369 {
3370 	struct btrfs_root *log;
3371 	struct btrfs_dir_item *di;
3372 	struct btrfs_path *path;
3373 	int ret;
3374 	int err = 0;
3375 	int bytes_del = 0;
3376 	u64 dir_ino = btrfs_ino(dir);
3377 
3378 	if (!inode_logged(trans, dir))
3379 		return 0;
3380 
3381 	ret = join_running_log_trans(root);
3382 	if (ret)
3383 		return 0;
3384 
3385 	mutex_lock(&dir->log_mutex);
3386 
3387 	log = root->log_root;
3388 	path = btrfs_alloc_path();
3389 	if (!path) {
3390 		err = -ENOMEM;
3391 		goto out_unlock;
3392 	}
3393 
3394 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3395 				   name, name_len, -1);
3396 	if (IS_ERR(di)) {
3397 		err = PTR_ERR(di);
3398 		goto fail;
3399 	}
3400 	if (di) {
3401 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3402 		bytes_del += name_len;
3403 		if (ret) {
3404 			err = ret;
3405 			goto fail;
3406 		}
3407 	}
3408 	btrfs_release_path(path);
3409 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3410 					 index, name, name_len, -1);
3411 	if (IS_ERR(di)) {
3412 		err = PTR_ERR(di);
3413 		goto fail;
3414 	}
3415 	if (di) {
3416 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3417 		bytes_del += name_len;
3418 		if (ret) {
3419 			err = ret;
3420 			goto fail;
3421 		}
3422 	}
3423 
3424 	/* update the directory size in the log to reflect the names
3425 	 * we have removed
3426 	 */
3427 	if (bytes_del) {
3428 		struct btrfs_key key;
3429 
3430 		key.objectid = dir_ino;
3431 		key.offset = 0;
3432 		key.type = BTRFS_INODE_ITEM_KEY;
3433 		btrfs_release_path(path);
3434 
3435 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3436 		if (ret < 0) {
3437 			err = ret;
3438 			goto fail;
3439 		}
3440 		if (ret == 0) {
3441 			struct btrfs_inode_item *item;
3442 			u64 i_size;
3443 
3444 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3445 					      struct btrfs_inode_item);
3446 			i_size = btrfs_inode_size(path->nodes[0], item);
3447 			if (i_size > bytes_del)
3448 				i_size -= bytes_del;
3449 			else
3450 				i_size = 0;
3451 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3452 			btrfs_mark_buffer_dirty(path->nodes[0]);
3453 		} else
3454 			ret = 0;
3455 		btrfs_release_path(path);
3456 	}
3457 fail:
3458 	btrfs_free_path(path);
3459 out_unlock:
3460 	mutex_unlock(&dir->log_mutex);
3461 	if (ret == -ENOSPC) {
3462 		btrfs_set_log_full_commit(trans);
3463 		ret = 0;
3464 	} else if (ret < 0)
3465 		btrfs_abort_transaction(trans, ret);
3466 
3467 	btrfs_end_log_trans(root);
3468 
3469 	return err;
3470 }
3471 
3472 /* see comments for btrfs_del_dir_entries_in_log */
3473 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3474 			       struct btrfs_root *root,
3475 			       const char *name, int name_len,
3476 			       struct btrfs_inode *inode, u64 dirid)
3477 {
3478 	struct btrfs_root *log;
3479 	u64 index;
3480 	int ret;
3481 
3482 	if (!inode_logged(trans, inode))
3483 		return 0;
3484 
3485 	ret = join_running_log_trans(root);
3486 	if (ret)
3487 		return 0;
3488 	log = root->log_root;
3489 	mutex_lock(&inode->log_mutex);
3490 
3491 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3492 				  dirid, &index);
3493 	mutex_unlock(&inode->log_mutex);
3494 	if (ret == -ENOSPC) {
3495 		btrfs_set_log_full_commit(trans);
3496 		ret = 0;
3497 	} else if (ret < 0 && ret != -ENOENT)
3498 		btrfs_abort_transaction(trans, ret);
3499 	btrfs_end_log_trans(root);
3500 
3501 	return ret;
3502 }
3503 
3504 /*
3505  * creates a range item in the log for 'dirid'.  first_offset and
3506  * last_offset tell us which parts of the key space the log should
3507  * be considered authoritative for.
3508  */
3509 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3510 				       struct btrfs_root *log,
3511 				       struct btrfs_path *path,
3512 				       int key_type, u64 dirid,
3513 				       u64 first_offset, u64 last_offset)
3514 {
3515 	int ret;
3516 	struct btrfs_key key;
3517 	struct btrfs_dir_log_item *item;
3518 
3519 	key.objectid = dirid;
3520 	key.offset = first_offset;
3521 	if (key_type == BTRFS_DIR_ITEM_KEY)
3522 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3523 	else
3524 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3525 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3526 	if (ret)
3527 		return ret;
3528 
3529 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3530 			      struct btrfs_dir_log_item);
3531 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3532 	btrfs_mark_buffer_dirty(path->nodes[0]);
3533 	btrfs_release_path(path);
3534 	return 0;
3535 }
3536 
3537 /*
3538  * log all the items included in the current transaction for a given
3539  * directory.  This also creates the range items in the log tree required
3540  * to replay anything deleted before the fsync
3541  */
3542 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3543 			  struct btrfs_root *root, struct btrfs_inode *inode,
3544 			  struct btrfs_path *path,
3545 			  struct btrfs_path *dst_path, int key_type,
3546 			  struct btrfs_log_ctx *ctx,
3547 			  u64 min_offset, u64 *last_offset_ret)
3548 {
3549 	struct btrfs_key min_key;
3550 	struct btrfs_root *log = root->log_root;
3551 	struct extent_buffer *src;
3552 	int err = 0;
3553 	int ret;
3554 	int i;
3555 	int nritems;
3556 	u64 first_offset = min_offset;
3557 	u64 last_offset = (u64)-1;
3558 	u64 ino = btrfs_ino(inode);
3559 
3560 	log = root->log_root;
3561 
3562 	min_key.objectid = ino;
3563 	min_key.type = key_type;
3564 	min_key.offset = min_offset;
3565 
3566 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3567 
3568 	/*
3569 	 * we didn't find anything from this transaction, see if there
3570 	 * is anything at all
3571 	 */
3572 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3573 		min_key.objectid = ino;
3574 		min_key.type = key_type;
3575 		min_key.offset = (u64)-1;
3576 		btrfs_release_path(path);
3577 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3578 		if (ret < 0) {
3579 			btrfs_release_path(path);
3580 			return ret;
3581 		}
3582 		ret = btrfs_previous_item(root, path, ino, key_type);
3583 
3584 		/* if ret == 0 there are items for this type,
3585 		 * create a range to tell us the last key of this type.
3586 		 * otherwise, there are no items in this directory after
3587 		 * *min_offset, and we create a range to indicate that.
3588 		 */
3589 		if (ret == 0) {
3590 			struct btrfs_key tmp;
3591 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3592 					      path->slots[0]);
3593 			if (key_type == tmp.type)
3594 				first_offset = max(min_offset, tmp.offset) + 1;
3595 		}
3596 		goto done;
3597 	}
3598 
3599 	/* go backward to find any previous key */
3600 	ret = btrfs_previous_item(root, path, ino, key_type);
3601 	if (ret == 0) {
3602 		struct btrfs_key tmp;
3603 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3604 		if (key_type == tmp.type) {
3605 			first_offset = tmp.offset;
3606 			ret = overwrite_item(trans, log, dst_path,
3607 					     path->nodes[0], path->slots[0],
3608 					     &tmp);
3609 			if (ret) {
3610 				err = ret;
3611 				goto done;
3612 			}
3613 		}
3614 	}
3615 	btrfs_release_path(path);
3616 
3617 	/*
3618 	 * Find the first key from this transaction again.  See the note for
3619 	 * log_new_dir_dentries, if we're logging a directory recursively we
3620 	 * won't be holding its i_mutex, which means we can modify the directory
3621 	 * while we're logging it.  If we remove an entry between our first
3622 	 * search and this search we'll not find the key again and can just
3623 	 * bail.
3624 	 */
3625 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3626 	if (ret != 0)
3627 		goto done;
3628 
3629 	/*
3630 	 * we have a block from this transaction, log every item in it
3631 	 * from our directory
3632 	 */
3633 	while (1) {
3634 		struct btrfs_key tmp;
3635 		src = path->nodes[0];
3636 		nritems = btrfs_header_nritems(src);
3637 		for (i = path->slots[0]; i < nritems; i++) {
3638 			struct btrfs_dir_item *di;
3639 
3640 			btrfs_item_key_to_cpu(src, &min_key, i);
3641 
3642 			if (min_key.objectid != ino || min_key.type != key_type)
3643 				goto done;
3644 			ret = overwrite_item(trans, log, dst_path, src, i,
3645 					     &min_key);
3646 			if (ret) {
3647 				err = ret;
3648 				goto done;
3649 			}
3650 
3651 			/*
3652 			 * We must make sure that when we log a directory entry,
3653 			 * the corresponding inode, after log replay, has a
3654 			 * matching link count. For example:
3655 			 *
3656 			 * touch foo
3657 			 * mkdir mydir
3658 			 * sync
3659 			 * ln foo mydir/bar
3660 			 * xfs_io -c "fsync" mydir
3661 			 * <crash>
3662 			 * <mount fs and log replay>
3663 			 *
3664 			 * Would result in a fsync log that when replayed, our
3665 			 * file inode would have a link count of 1, but we get
3666 			 * two directory entries pointing to the same inode.
3667 			 * After removing one of the names, it would not be
3668 			 * possible to remove the other name, which resulted
3669 			 * always in stale file handle errors, and would not
3670 			 * be possible to rmdir the parent directory, since
3671 			 * its i_size could never decrement to the value
3672 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3673 			 */
3674 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3675 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3676 			if (ctx &&
3677 			    (btrfs_dir_transid(src, di) == trans->transid ||
3678 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3679 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3680 				ctx->log_new_dentries = true;
3681 		}
3682 		path->slots[0] = nritems;
3683 
3684 		/*
3685 		 * look ahead to the next item and see if it is also
3686 		 * from this directory and from this transaction
3687 		 */
3688 		ret = btrfs_next_leaf(root, path);
3689 		if (ret) {
3690 			if (ret == 1)
3691 				last_offset = (u64)-1;
3692 			else
3693 				err = ret;
3694 			goto done;
3695 		}
3696 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3697 		if (tmp.objectid != ino || tmp.type != key_type) {
3698 			last_offset = (u64)-1;
3699 			goto done;
3700 		}
3701 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3702 			ret = overwrite_item(trans, log, dst_path,
3703 					     path->nodes[0], path->slots[0],
3704 					     &tmp);
3705 			if (ret)
3706 				err = ret;
3707 			else
3708 				last_offset = tmp.offset;
3709 			goto done;
3710 		}
3711 	}
3712 done:
3713 	btrfs_release_path(path);
3714 	btrfs_release_path(dst_path);
3715 
3716 	if (err == 0) {
3717 		*last_offset_ret = last_offset;
3718 		/*
3719 		 * insert the log range keys to indicate where the log
3720 		 * is valid
3721 		 */
3722 		ret = insert_dir_log_key(trans, log, path, key_type,
3723 					 ino, first_offset, last_offset);
3724 		if (ret)
3725 			err = ret;
3726 	}
3727 	return err;
3728 }
3729 
3730 /*
3731  * logging directories is very similar to logging inodes, We find all the items
3732  * from the current transaction and write them to the log.
3733  *
3734  * The recovery code scans the directory in the subvolume, and if it finds a
3735  * key in the range logged that is not present in the log tree, then it means
3736  * that dir entry was unlinked during the transaction.
3737  *
3738  * In order for that scan to work, we must include one key smaller than
3739  * the smallest logged by this transaction and one key larger than the largest
3740  * key logged by this transaction.
3741  */
3742 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3743 			  struct btrfs_root *root, struct btrfs_inode *inode,
3744 			  struct btrfs_path *path,
3745 			  struct btrfs_path *dst_path,
3746 			  struct btrfs_log_ctx *ctx)
3747 {
3748 	u64 min_key;
3749 	u64 max_key;
3750 	int ret;
3751 	int key_type = BTRFS_DIR_ITEM_KEY;
3752 
3753 again:
3754 	min_key = 0;
3755 	max_key = 0;
3756 	while (1) {
3757 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3758 				ctx, min_key, &max_key);
3759 		if (ret)
3760 			return ret;
3761 		if (max_key == (u64)-1)
3762 			break;
3763 		min_key = max_key + 1;
3764 	}
3765 
3766 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3767 		key_type = BTRFS_DIR_INDEX_KEY;
3768 		goto again;
3769 	}
3770 	return 0;
3771 }
3772 
3773 /*
3774  * a helper function to drop items from the log before we relog an
3775  * inode.  max_key_type indicates the highest item type to remove.
3776  * This cannot be run for file data extents because it does not
3777  * free the extents they point to.
3778  */
3779 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3780 				  struct btrfs_root *log,
3781 				  struct btrfs_path *path,
3782 				  u64 objectid, int max_key_type)
3783 {
3784 	int ret;
3785 	struct btrfs_key key;
3786 	struct btrfs_key found_key;
3787 	int start_slot;
3788 
3789 	key.objectid = objectid;
3790 	key.type = max_key_type;
3791 	key.offset = (u64)-1;
3792 
3793 	while (1) {
3794 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3795 		BUG_ON(ret == 0); /* Logic error */
3796 		if (ret < 0)
3797 			break;
3798 
3799 		if (path->slots[0] == 0)
3800 			break;
3801 
3802 		path->slots[0]--;
3803 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3804 				      path->slots[0]);
3805 
3806 		if (found_key.objectid != objectid)
3807 			break;
3808 
3809 		found_key.offset = 0;
3810 		found_key.type = 0;
3811 		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3812 		if (ret < 0)
3813 			break;
3814 
3815 		ret = btrfs_del_items(trans, log, path, start_slot,
3816 				      path->slots[0] - start_slot + 1);
3817 		/*
3818 		 * If start slot isn't 0 then we don't need to re-search, we've
3819 		 * found the last guy with the objectid in this tree.
3820 		 */
3821 		if (ret || start_slot != 0)
3822 			break;
3823 		btrfs_release_path(path);
3824 	}
3825 	btrfs_release_path(path);
3826 	if (ret > 0)
3827 		ret = 0;
3828 	return ret;
3829 }
3830 
3831 static void fill_inode_item(struct btrfs_trans_handle *trans,
3832 			    struct extent_buffer *leaf,
3833 			    struct btrfs_inode_item *item,
3834 			    struct inode *inode, int log_inode_only,
3835 			    u64 logged_isize)
3836 {
3837 	struct btrfs_map_token token;
3838 
3839 	btrfs_init_map_token(&token, leaf);
3840 
3841 	if (log_inode_only) {
3842 		/* set the generation to zero so the recover code
3843 		 * can tell the difference between an logging
3844 		 * just to say 'this inode exists' and a logging
3845 		 * to say 'update this inode with these values'
3846 		 */
3847 		btrfs_set_token_inode_generation(&token, item, 0);
3848 		btrfs_set_token_inode_size(&token, item, logged_isize);
3849 	} else {
3850 		btrfs_set_token_inode_generation(&token, item,
3851 						 BTRFS_I(inode)->generation);
3852 		btrfs_set_token_inode_size(&token, item, inode->i_size);
3853 	}
3854 
3855 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3856 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3857 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3858 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3859 
3860 	btrfs_set_token_timespec_sec(&token, &item->atime,
3861 				     inode->i_atime.tv_sec);
3862 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3863 				      inode->i_atime.tv_nsec);
3864 
3865 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3866 				     inode->i_mtime.tv_sec);
3867 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3868 				      inode->i_mtime.tv_nsec);
3869 
3870 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3871 				     inode->i_ctime.tv_sec);
3872 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3873 				      inode->i_ctime.tv_nsec);
3874 
3875 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3876 
3877 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3878 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3879 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3880 	btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3881 	btrfs_set_token_inode_block_group(&token, item, 0);
3882 }
3883 
3884 static int log_inode_item(struct btrfs_trans_handle *trans,
3885 			  struct btrfs_root *log, struct btrfs_path *path,
3886 			  struct btrfs_inode *inode)
3887 {
3888 	struct btrfs_inode_item *inode_item;
3889 	int ret;
3890 
3891 	ret = btrfs_insert_empty_item(trans, log, path,
3892 				      &inode->location, sizeof(*inode_item));
3893 	if (ret && ret != -EEXIST)
3894 		return ret;
3895 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3896 				    struct btrfs_inode_item);
3897 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3898 			0, 0);
3899 	btrfs_release_path(path);
3900 	return 0;
3901 }
3902 
3903 static int log_csums(struct btrfs_trans_handle *trans,
3904 		     struct btrfs_root *log_root,
3905 		     struct btrfs_ordered_sum *sums)
3906 {
3907 	const u64 lock_end = sums->bytenr + sums->len - 1;
3908 	struct extent_state *cached_state = NULL;
3909 	int ret;
3910 
3911 	/*
3912 	 * Serialize logging for checksums. This is to avoid racing with the
3913 	 * same checksum being logged by another task that is logging another
3914 	 * file which happens to refer to the same extent as well. Such races
3915 	 * can leave checksum items in the log with overlapping ranges.
3916 	 */
3917 	ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
3918 			       lock_end, &cached_state);
3919 	if (ret)
3920 		return ret;
3921 	/*
3922 	 * Due to extent cloning, we might have logged a csum item that covers a
3923 	 * subrange of a cloned extent, and later we can end up logging a csum
3924 	 * item for a larger subrange of the same extent or the entire range.
3925 	 * This would leave csum items in the log tree that cover the same range
3926 	 * and break the searches for checksums in the log tree, resulting in
3927 	 * some checksums missing in the fs/subvolume tree. So just delete (or
3928 	 * trim and adjust) any existing csum items in the log for this range.
3929 	 */
3930 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3931 	if (!ret)
3932 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
3933 
3934 	unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
3935 			     &cached_state);
3936 
3937 	return ret;
3938 }
3939 
3940 static noinline int copy_items(struct btrfs_trans_handle *trans,
3941 			       struct btrfs_inode *inode,
3942 			       struct btrfs_path *dst_path,
3943 			       struct btrfs_path *src_path,
3944 			       int start_slot, int nr, int inode_only,
3945 			       u64 logged_isize)
3946 {
3947 	struct btrfs_fs_info *fs_info = trans->fs_info;
3948 	unsigned long src_offset;
3949 	unsigned long dst_offset;
3950 	struct btrfs_root *log = inode->root->log_root;
3951 	struct btrfs_file_extent_item *extent;
3952 	struct btrfs_inode_item *inode_item;
3953 	struct extent_buffer *src = src_path->nodes[0];
3954 	int ret;
3955 	struct btrfs_key *ins_keys;
3956 	u32 *ins_sizes;
3957 	char *ins_data;
3958 	int i;
3959 	struct list_head ordered_sums;
3960 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3961 
3962 	INIT_LIST_HEAD(&ordered_sums);
3963 
3964 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3965 			   nr * sizeof(u32), GFP_NOFS);
3966 	if (!ins_data)
3967 		return -ENOMEM;
3968 
3969 	ins_sizes = (u32 *)ins_data;
3970 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3971 
3972 	for (i = 0; i < nr; i++) {
3973 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3974 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3975 	}
3976 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3977 				       ins_keys, ins_sizes, nr);
3978 	if (ret) {
3979 		kfree(ins_data);
3980 		return ret;
3981 	}
3982 
3983 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3984 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3985 						   dst_path->slots[0]);
3986 
3987 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3988 
3989 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3990 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3991 						    dst_path->slots[0],
3992 						    struct btrfs_inode_item);
3993 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3994 					&inode->vfs_inode,
3995 					inode_only == LOG_INODE_EXISTS,
3996 					logged_isize);
3997 		} else {
3998 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3999 					   src_offset, ins_sizes[i]);
4000 		}
4001 
4002 		/* take a reference on file data extents so that truncates
4003 		 * or deletes of this inode don't have to relog the inode
4004 		 * again
4005 		 */
4006 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4007 		    !skip_csum) {
4008 			int found_type;
4009 			extent = btrfs_item_ptr(src, start_slot + i,
4010 						struct btrfs_file_extent_item);
4011 
4012 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4013 				continue;
4014 
4015 			found_type = btrfs_file_extent_type(src, extent);
4016 			if (found_type == BTRFS_FILE_EXTENT_REG) {
4017 				u64 ds, dl, cs, cl;
4018 				ds = btrfs_file_extent_disk_bytenr(src,
4019 								extent);
4020 				/* ds == 0 is a hole */
4021 				if (ds == 0)
4022 					continue;
4023 
4024 				dl = btrfs_file_extent_disk_num_bytes(src,
4025 								extent);
4026 				cs = btrfs_file_extent_offset(src, extent);
4027 				cl = btrfs_file_extent_num_bytes(src,
4028 								extent);
4029 				if (btrfs_file_extent_compression(src,
4030 								  extent)) {
4031 					cs = 0;
4032 					cl = dl;
4033 				}
4034 
4035 				ret = btrfs_lookup_csums_range(
4036 						fs_info->csum_root,
4037 						ds + cs, ds + cs + cl - 1,
4038 						&ordered_sums, 0);
4039 				if (ret) {
4040 					btrfs_release_path(dst_path);
4041 					kfree(ins_data);
4042 					return ret;
4043 				}
4044 			}
4045 		}
4046 	}
4047 
4048 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4049 	btrfs_release_path(dst_path);
4050 	kfree(ins_data);
4051 
4052 	/*
4053 	 * we have to do this after the loop above to avoid changing the
4054 	 * log tree while trying to change the log tree.
4055 	 */
4056 	ret = 0;
4057 	while (!list_empty(&ordered_sums)) {
4058 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4059 						   struct btrfs_ordered_sum,
4060 						   list);
4061 		if (!ret)
4062 			ret = log_csums(trans, log, sums);
4063 		list_del(&sums->list);
4064 		kfree(sums);
4065 	}
4066 
4067 	return ret;
4068 }
4069 
4070 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4071 {
4072 	struct extent_map *em1, *em2;
4073 
4074 	em1 = list_entry(a, struct extent_map, list);
4075 	em2 = list_entry(b, struct extent_map, list);
4076 
4077 	if (em1->start < em2->start)
4078 		return -1;
4079 	else if (em1->start > em2->start)
4080 		return 1;
4081 	return 0;
4082 }
4083 
4084 static int log_extent_csums(struct btrfs_trans_handle *trans,
4085 			    struct btrfs_inode *inode,
4086 			    struct btrfs_root *log_root,
4087 			    const struct extent_map *em)
4088 {
4089 	u64 csum_offset;
4090 	u64 csum_len;
4091 	LIST_HEAD(ordered_sums);
4092 	int ret = 0;
4093 
4094 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4095 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4096 	    em->block_start == EXTENT_MAP_HOLE)
4097 		return 0;
4098 
4099 	/* If we're compressed we have to save the entire range of csums. */
4100 	if (em->compress_type) {
4101 		csum_offset = 0;
4102 		csum_len = max(em->block_len, em->orig_block_len);
4103 	} else {
4104 		csum_offset = em->mod_start - em->start;
4105 		csum_len = em->mod_len;
4106 	}
4107 
4108 	/* block start is already adjusted for the file extent offset. */
4109 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4110 				       em->block_start + csum_offset,
4111 				       em->block_start + csum_offset +
4112 				       csum_len - 1, &ordered_sums, 0);
4113 	if (ret)
4114 		return ret;
4115 
4116 	while (!list_empty(&ordered_sums)) {
4117 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4118 						   struct btrfs_ordered_sum,
4119 						   list);
4120 		if (!ret)
4121 			ret = log_csums(trans, log_root, sums);
4122 		list_del(&sums->list);
4123 		kfree(sums);
4124 	}
4125 
4126 	return ret;
4127 }
4128 
4129 static int log_one_extent(struct btrfs_trans_handle *trans,
4130 			  struct btrfs_inode *inode, struct btrfs_root *root,
4131 			  const struct extent_map *em,
4132 			  struct btrfs_path *path,
4133 			  struct btrfs_log_ctx *ctx)
4134 {
4135 	struct btrfs_root *log = root->log_root;
4136 	struct btrfs_file_extent_item *fi;
4137 	struct extent_buffer *leaf;
4138 	struct btrfs_map_token token;
4139 	struct btrfs_key key;
4140 	u64 extent_offset = em->start - em->orig_start;
4141 	u64 block_len;
4142 	int ret;
4143 	int extent_inserted = 0;
4144 
4145 	ret = log_extent_csums(trans, inode, log, em);
4146 	if (ret)
4147 		return ret;
4148 
4149 	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4150 				   em->start + em->len, NULL, 0, 1,
4151 				   sizeof(*fi), &extent_inserted);
4152 	if (ret)
4153 		return ret;
4154 
4155 	if (!extent_inserted) {
4156 		key.objectid = btrfs_ino(inode);
4157 		key.type = BTRFS_EXTENT_DATA_KEY;
4158 		key.offset = em->start;
4159 
4160 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4161 					      sizeof(*fi));
4162 		if (ret)
4163 			return ret;
4164 	}
4165 	leaf = path->nodes[0];
4166 	btrfs_init_map_token(&token, leaf);
4167 	fi = btrfs_item_ptr(leaf, path->slots[0],
4168 			    struct btrfs_file_extent_item);
4169 
4170 	btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4171 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4172 		btrfs_set_token_file_extent_type(&token, fi,
4173 						 BTRFS_FILE_EXTENT_PREALLOC);
4174 	else
4175 		btrfs_set_token_file_extent_type(&token, fi,
4176 						 BTRFS_FILE_EXTENT_REG);
4177 
4178 	block_len = max(em->block_len, em->orig_block_len);
4179 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4180 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4181 							em->block_start);
4182 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4183 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4184 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4185 							em->block_start -
4186 							extent_offset);
4187 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4188 	} else {
4189 		btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4190 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4191 	}
4192 
4193 	btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4194 	btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4195 	btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4196 	btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4197 	btrfs_set_token_file_extent_encryption(&token, fi, 0);
4198 	btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4199 	btrfs_mark_buffer_dirty(leaf);
4200 
4201 	btrfs_release_path(path);
4202 
4203 	return ret;
4204 }
4205 
4206 /*
4207  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4208  * lose them after doing a fast fsync and replaying the log. We scan the
4209  * subvolume's root instead of iterating the inode's extent map tree because
4210  * otherwise we can log incorrect extent items based on extent map conversion.
4211  * That can happen due to the fact that extent maps are merged when they
4212  * are not in the extent map tree's list of modified extents.
4213  */
4214 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4215 				      struct btrfs_inode *inode,
4216 				      struct btrfs_path *path)
4217 {
4218 	struct btrfs_root *root = inode->root;
4219 	struct btrfs_key key;
4220 	const u64 i_size = i_size_read(&inode->vfs_inode);
4221 	const u64 ino = btrfs_ino(inode);
4222 	struct btrfs_path *dst_path = NULL;
4223 	bool dropped_extents = false;
4224 	u64 truncate_offset = i_size;
4225 	struct extent_buffer *leaf;
4226 	int slot;
4227 	int ins_nr = 0;
4228 	int start_slot;
4229 	int ret;
4230 
4231 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4232 		return 0;
4233 
4234 	key.objectid = ino;
4235 	key.type = BTRFS_EXTENT_DATA_KEY;
4236 	key.offset = i_size;
4237 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4238 	if (ret < 0)
4239 		goto out;
4240 
4241 	/*
4242 	 * We must check if there is a prealloc extent that starts before the
4243 	 * i_size and crosses the i_size boundary. This is to ensure later we
4244 	 * truncate down to the end of that extent and not to the i_size, as
4245 	 * otherwise we end up losing part of the prealloc extent after a log
4246 	 * replay and with an implicit hole if there is another prealloc extent
4247 	 * that starts at an offset beyond i_size.
4248 	 */
4249 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4250 	if (ret < 0)
4251 		goto out;
4252 
4253 	if (ret == 0) {
4254 		struct btrfs_file_extent_item *ei;
4255 
4256 		leaf = path->nodes[0];
4257 		slot = path->slots[0];
4258 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4259 
4260 		if (btrfs_file_extent_type(leaf, ei) ==
4261 		    BTRFS_FILE_EXTENT_PREALLOC) {
4262 			u64 extent_end;
4263 
4264 			btrfs_item_key_to_cpu(leaf, &key, slot);
4265 			extent_end = key.offset +
4266 				btrfs_file_extent_num_bytes(leaf, ei);
4267 
4268 			if (extent_end > i_size)
4269 				truncate_offset = extent_end;
4270 		}
4271 	} else {
4272 		ret = 0;
4273 	}
4274 
4275 	while (true) {
4276 		leaf = path->nodes[0];
4277 		slot = path->slots[0];
4278 
4279 		if (slot >= btrfs_header_nritems(leaf)) {
4280 			if (ins_nr > 0) {
4281 				ret = copy_items(trans, inode, dst_path, path,
4282 						 start_slot, ins_nr, 1, 0);
4283 				if (ret < 0)
4284 					goto out;
4285 				ins_nr = 0;
4286 			}
4287 			ret = btrfs_next_leaf(root, path);
4288 			if (ret < 0)
4289 				goto out;
4290 			if (ret > 0) {
4291 				ret = 0;
4292 				break;
4293 			}
4294 			continue;
4295 		}
4296 
4297 		btrfs_item_key_to_cpu(leaf, &key, slot);
4298 		if (key.objectid > ino)
4299 			break;
4300 		if (WARN_ON_ONCE(key.objectid < ino) ||
4301 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4302 		    key.offset < i_size) {
4303 			path->slots[0]++;
4304 			continue;
4305 		}
4306 		if (!dropped_extents) {
4307 			/*
4308 			 * Avoid logging extent items logged in past fsync calls
4309 			 * and leading to duplicate keys in the log tree.
4310 			 */
4311 			do {
4312 				ret = btrfs_truncate_inode_items(trans,
4313 							 root->log_root,
4314 							 &inode->vfs_inode,
4315 							 truncate_offset,
4316 							 BTRFS_EXTENT_DATA_KEY);
4317 			} while (ret == -EAGAIN);
4318 			if (ret)
4319 				goto out;
4320 			dropped_extents = true;
4321 		}
4322 		if (ins_nr == 0)
4323 			start_slot = slot;
4324 		ins_nr++;
4325 		path->slots[0]++;
4326 		if (!dst_path) {
4327 			dst_path = btrfs_alloc_path();
4328 			if (!dst_path) {
4329 				ret = -ENOMEM;
4330 				goto out;
4331 			}
4332 		}
4333 	}
4334 	if (ins_nr > 0)
4335 		ret = copy_items(trans, inode, dst_path, path,
4336 				 start_slot, ins_nr, 1, 0);
4337 out:
4338 	btrfs_release_path(path);
4339 	btrfs_free_path(dst_path);
4340 	return ret;
4341 }
4342 
4343 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4344 				     struct btrfs_root *root,
4345 				     struct btrfs_inode *inode,
4346 				     struct btrfs_path *path,
4347 				     struct btrfs_log_ctx *ctx,
4348 				     const u64 start,
4349 				     const u64 end)
4350 {
4351 	struct extent_map *em, *n;
4352 	struct list_head extents;
4353 	struct extent_map_tree *tree = &inode->extent_tree;
4354 	u64 test_gen;
4355 	int ret = 0;
4356 	int num = 0;
4357 
4358 	INIT_LIST_HEAD(&extents);
4359 
4360 	write_lock(&tree->lock);
4361 	test_gen = root->fs_info->last_trans_committed;
4362 
4363 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4364 		/*
4365 		 * Skip extents outside our logging range. It's important to do
4366 		 * it for correctness because if we don't ignore them, we may
4367 		 * log them before their ordered extent completes, and therefore
4368 		 * we could log them without logging their respective checksums
4369 		 * (the checksum items are added to the csum tree at the very
4370 		 * end of btrfs_finish_ordered_io()). Also leave such extents
4371 		 * outside of our range in the list, since we may have another
4372 		 * ranged fsync in the near future that needs them. If an extent
4373 		 * outside our range corresponds to a hole, log it to avoid
4374 		 * leaving gaps between extents (fsck will complain when we are
4375 		 * not using the NO_HOLES feature).
4376 		 */
4377 		if ((em->start > end || em->start + em->len <= start) &&
4378 		    em->block_start != EXTENT_MAP_HOLE)
4379 			continue;
4380 
4381 		list_del_init(&em->list);
4382 		/*
4383 		 * Just an arbitrary number, this can be really CPU intensive
4384 		 * once we start getting a lot of extents, and really once we
4385 		 * have a bunch of extents we just want to commit since it will
4386 		 * be faster.
4387 		 */
4388 		if (++num > 32768) {
4389 			list_del_init(&tree->modified_extents);
4390 			ret = -EFBIG;
4391 			goto process;
4392 		}
4393 
4394 		if (em->generation <= test_gen)
4395 			continue;
4396 
4397 		/* We log prealloc extents beyond eof later. */
4398 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4399 		    em->start >= i_size_read(&inode->vfs_inode))
4400 			continue;
4401 
4402 		/* Need a ref to keep it from getting evicted from cache */
4403 		refcount_inc(&em->refs);
4404 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4405 		list_add_tail(&em->list, &extents);
4406 		num++;
4407 	}
4408 
4409 	list_sort(NULL, &extents, extent_cmp);
4410 process:
4411 	while (!list_empty(&extents)) {
4412 		em = list_entry(extents.next, struct extent_map, list);
4413 
4414 		list_del_init(&em->list);
4415 
4416 		/*
4417 		 * If we had an error we just need to delete everybody from our
4418 		 * private list.
4419 		 */
4420 		if (ret) {
4421 			clear_em_logging(tree, em);
4422 			free_extent_map(em);
4423 			continue;
4424 		}
4425 
4426 		write_unlock(&tree->lock);
4427 
4428 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4429 		write_lock(&tree->lock);
4430 		clear_em_logging(tree, em);
4431 		free_extent_map(em);
4432 	}
4433 	WARN_ON(!list_empty(&extents));
4434 	write_unlock(&tree->lock);
4435 
4436 	btrfs_release_path(path);
4437 	if (!ret)
4438 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4439 
4440 	return ret;
4441 }
4442 
4443 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4444 			     struct btrfs_path *path, u64 *size_ret)
4445 {
4446 	struct btrfs_key key;
4447 	int ret;
4448 
4449 	key.objectid = btrfs_ino(inode);
4450 	key.type = BTRFS_INODE_ITEM_KEY;
4451 	key.offset = 0;
4452 
4453 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4454 	if (ret < 0) {
4455 		return ret;
4456 	} else if (ret > 0) {
4457 		*size_ret = 0;
4458 	} else {
4459 		struct btrfs_inode_item *item;
4460 
4461 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4462 				      struct btrfs_inode_item);
4463 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4464 		/*
4465 		 * If the in-memory inode's i_size is smaller then the inode
4466 		 * size stored in the btree, return the inode's i_size, so
4467 		 * that we get a correct inode size after replaying the log
4468 		 * when before a power failure we had a shrinking truncate
4469 		 * followed by addition of a new name (rename / new hard link).
4470 		 * Otherwise return the inode size from the btree, to avoid
4471 		 * data loss when replaying a log due to previously doing a
4472 		 * write that expands the inode's size and logging a new name
4473 		 * immediately after.
4474 		 */
4475 		if (*size_ret > inode->vfs_inode.i_size)
4476 			*size_ret = inode->vfs_inode.i_size;
4477 	}
4478 
4479 	btrfs_release_path(path);
4480 	return 0;
4481 }
4482 
4483 /*
4484  * At the moment we always log all xattrs. This is to figure out at log replay
4485  * time which xattrs must have their deletion replayed. If a xattr is missing
4486  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4487  * because if a xattr is deleted, the inode is fsynced and a power failure
4488  * happens, causing the log to be replayed the next time the fs is mounted,
4489  * we want the xattr to not exist anymore (same behaviour as other filesystems
4490  * with a journal, ext3/4, xfs, f2fs, etc).
4491  */
4492 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4493 				struct btrfs_root *root,
4494 				struct btrfs_inode *inode,
4495 				struct btrfs_path *path,
4496 				struct btrfs_path *dst_path)
4497 {
4498 	int ret;
4499 	struct btrfs_key key;
4500 	const u64 ino = btrfs_ino(inode);
4501 	int ins_nr = 0;
4502 	int start_slot = 0;
4503 
4504 	key.objectid = ino;
4505 	key.type = BTRFS_XATTR_ITEM_KEY;
4506 	key.offset = 0;
4507 
4508 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4509 	if (ret < 0)
4510 		return ret;
4511 
4512 	while (true) {
4513 		int slot = path->slots[0];
4514 		struct extent_buffer *leaf = path->nodes[0];
4515 		int nritems = btrfs_header_nritems(leaf);
4516 
4517 		if (slot >= nritems) {
4518 			if (ins_nr > 0) {
4519 				ret = copy_items(trans, inode, dst_path, path,
4520 						 start_slot, ins_nr, 1, 0);
4521 				if (ret < 0)
4522 					return ret;
4523 				ins_nr = 0;
4524 			}
4525 			ret = btrfs_next_leaf(root, path);
4526 			if (ret < 0)
4527 				return ret;
4528 			else if (ret > 0)
4529 				break;
4530 			continue;
4531 		}
4532 
4533 		btrfs_item_key_to_cpu(leaf, &key, slot);
4534 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4535 			break;
4536 
4537 		if (ins_nr == 0)
4538 			start_slot = slot;
4539 		ins_nr++;
4540 		path->slots[0]++;
4541 		cond_resched();
4542 	}
4543 	if (ins_nr > 0) {
4544 		ret = copy_items(trans, inode, dst_path, path,
4545 				 start_slot, ins_nr, 1, 0);
4546 		if (ret < 0)
4547 			return ret;
4548 	}
4549 
4550 	return 0;
4551 }
4552 
4553 /*
4554  * When using the NO_HOLES feature if we punched a hole that causes the
4555  * deletion of entire leafs or all the extent items of the first leaf (the one
4556  * that contains the inode item and references) we may end up not processing
4557  * any extents, because there are no leafs with a generation matching the
4558  * current transaction that have extent items for our inode. So we need to find
4559  * if any holes exist and then log them. We also need to log holes after any
4560  * truncate operation that changes the inode's size.
4561  */
4562 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4563 			   struct btrfs_root *root,
4564 			   struct btrfs_inode *inode,
4565 			   struct btrfs_path *path)
4566 {
4567 	struct btrfs_fs_info *fs_info = root->fs_info;
4568 	struct btrfs_key key;
4569 	const u64 ino = btrfs_ino(inode);
4570 	const u64 i_size = i_size_read(&inode->vfs_inode);
4571 	u64 prev_extent_end = 0;
4572 	int ret;
4573 
4574 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4575 		return 0;
4576 
4577 	key.objectid = ino;
4578 	key.type = BTRFS_EXTENT_DATA_KEY;
4579 	key.offset = 0;
4580 
4581 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4582 	if (ret < 0)
4583 		return ret;
4584 
4585 	while (true) {
4586 		struct extent_buffer *leaf = path->nodes[0];
4587 
4588 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4589 			ret = btrfs_next_leaf(root, path);
4590 			if (ret < 0)
4591 				return ret;
4592 			if (ret > 0) {
4593 				ret = 0;
4594 				break;
4595 			}
4596 			leaf = path->nodes[0];
4597 		}
4598 
4599 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4600 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4601 			break;
4602 
4603 		/* We have a hole, log it. */
4604 		if (prev_extent_end < key.offset) {
4605 			const u64 hole_len = key.offset - prev_extent_end;
4606 
4607 			/*
4608 			 * Release the path to avoid deadlocks with other code
4609 			 * paths that search the root while holding locks on
4610 			 * leafs from the log root.
4611 			 */
4612 			btrfs_release_path(path);
4613 			ret = btrfs_insert_file_extent(trans, root->log_root,
4614 						       ino, prev_extent_end, 0,
4615 						       0, hole_len, 0, hole_len,
4616 						       0, 0, 0);
4617 			if (ret < 0)
4618 				return ret;
4619 
4620 			/*
4621 			 * Search for the same key again in the root. Since it's
4622 			 * an extent item and we are holding the inode lock, the
4623 			 * key must still exist. If it doesn't just emit warning
4624 			 * and return an error to fall back to a transaction
4625 			 * commit.
4626 			 */
4627 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4628 			if (ret < 0)
4629 				return ret;
4630 			if (WARN_ON(ret > 0))
4631 				return -ENOENT;
4632 			leaf = path->nodes[0];
4633 		}
4634 
4635 		prev_extent_end = btrfs_file_extent_end(path);
4636 		path->slots[0]++;
4637 		cond_resched();
4638 	}
4639 
4640 	if (prev_extent_end < i_size) {
4641 		u64 hole_len;
4642 
4643 		btrfs_release_path(path);
4644 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4645 		ret = btrfs_insert_file_extent(trans, root->log_root,
4646 					       ino, prev_extent_end, 0, 0,
4647 					       hole_len, 0, hole_len,
4648 					       0, 0, 0);
4649 		if (ret < 0)
4650 			return ret;
4651 	}
4652 
4653 	return 0;
4654 }
4655 
4656 /*
4657  * When we are logging a new inode X, check if it doesn't have a reference that
4658  * matches the reference from some other inode Y created in a past transaction
4659  * and that was renamed in the current transaction. If we don't do this, then at
4660  * log replay time we can lose inode Y (and all its files if it's a directory):
4661  *
4662  * mkdir /mnt/x
4663  * echo "hello world" > /mnt/x/foobar
4664  * sync
4665  * mv /mnt/x /mnt/y
4666  * mkdir /mnt/x                 # or touch /mnt/x
4667  * xfs_io -c fsync /mnt/x
4668  * <power fail>
4669  * mount fs, trigger log replay
4670  *
4671  * After the log replay procedure, we would lose the first directory and all its
4672  * files (file foobar).
4673  * For the case where inode Y is not a directory we simply end up losing it:
4674  *
4675  * echo "123" > /mnt/foo
4676  * sync
4677  * mv /mnt/foo /mnt/bar
4678  * echo "abc" > /mnt/foo
4679  * xfs_io -c fsync /mnt/foo
4680  * <power fail>
4681  *
4682  * We also need this for cases where a snapshot entry is replaced by some other
4683  * entry (file or directory) otherwise we end up with an unreplayable log due to
4684  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4685  * if it were a regular entry:
4686  *
4687  * mkdir /mnt/x
4688  * btrfs subvolume snapshot /mnt /mnt/x/snap
4689  * btrfs subvolume delete /mnt/x/snap
4690  * rmdir /mnt/x
4691  * mkdir /mnt/x
4692  * fsync /mnt/x or fsync some new file inside it
4693  * <power fail>
4694  *
4695  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4696  * the same transaction.
4697  */
4698 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4699 					 const int slot,
4700 					 const struct btrfs_key *key,
4701 					 struct btrfs_inode *inode,
4702 					 u64 *other_ino, u64 *other_parent)
4703 {
4704 	int ret;
4705 	struct btrfs_path *search_path;
4706 	char *name = NULL;
4707 	u32 name_len = 0;
4708 	u32 item_size = btrfs_item_size_nr(eb, slot);
4709 	u32 cur_offset = 0;
4710 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4711 
4712 	search_path = btrfs_alloc_path();
4713 	if (!search_path)
4714 		return -ENOMEM;
4715 	search_path->search_commit_root = 1;
4716 	search_path->skip_locking = 1;
4717 
4718 	while (cur_offset < item_size) {
4719 		u64 parent;
4720 		u32 this_name_len;
4721 		u32 this_len;
4722 		unsigned long name_ptr;
4723 		struct btrfs_dir_item *di;
4724 
4725 		if (key->type == BTRFS_INODE_REF_KEY) {
4726 			struct btrfs_inode_ref *iref;
4727 
4728 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4729 			parent = key->offset;
4730 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4731 			name_ptr = (unsigned long)(iref + 1);
4732 			this_len = sizeof(*iref) + this_name_len;
4733 		} else {
4734 			struct btrfs_inode_extref *extref;
4735 
4736 			extref = (struct btrfs_inode_extref *)(ptr +
4737 							       cur_offset);
4738 			parent = btrfs_inode_extref_parent(eb, extref);
4739 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4740 			name_ptr = (unsigned long)&extref->name;
4741 			this_len = sizeof(*extref) + this_name_len;
4742 		}
4743 
4744 		if (this_name_len > name_len) {
4745 			char *new_name;
4746 
4747 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4748 			if (!new_name) {
4749 				ret = -ENOMEM;
4750 				goto out;
4751 			}
4752 			name_len = this_name_len;
4753 			name = new_name;
4754 		}
4755 
4756 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4757 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4758 				parent, name, this_name_len, 0);
4759 		if (di && !IS_ERR(di)) {
4760 			struct btrfs_key di_key;
4761 
4762 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4763 						  di, &di_key);
4764 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4765 				if (di_key.objectid != key->objectid) {
4766 					ret = 1;
4767 					*other_ino = di_key.objectid;
4768 					*other_parent = parent;
4769 				} else {
4770 					ret = 0;
4771 				}
4772 			} else {
4773 				ret = -EAGAIN;
4774 			}
4775 			goto out;
4776 		} else if (IS_ERR(di)) {
4777 			ret = PTR_ERR(di);
4778 			goto out;
4779 		}
4780 		btrfs_release_path(search_path);
4781 
4782 		cur_offset += this_len;
4783 	}
4784 	ret = 0;
4785 out:
4786 	btrfs_free_path(search_path);
4787 	kfree(name);
4788 	return ret;
4789 }
4790 
4791 struct btrfs_ino_list {
4792 	u64 ino;
4793 	u64 parent;
4794 	struct list_head list;
4795 };
4796 
4797 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4798 				  struct btrfs_root *root,
4799 				  struct btrfs_path *path,
4800 				  struct btrfs_log_ctx *ctx,
4801 				  u64 ino, u64 parent)
4802 {
4803 	struct btrfs_ino_list *ino_elem;
4804 	LIST_HEAD(inode_list);
4805 	int ret = 0;
4806 
4807 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4808 	if (!ino_elem)
4809 		return -ENOMEM;
4810 	ino_elem->ino = ino;
4811 	ino_elem->parent = parent;
4812 	list_add_tail(&ino_elem->list, &inode_list);
4813 
4814 	while (!list_empty(&inode_list)) {
4815 		struct btrfs_fs_info *fs_info = root->fs_info;
4816 		struct btrfs_key key;
4817 		struct inode *inode;
4818 
4819 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4820 					    list);
4821 		ino = ino_elem->ino;
4822 		parent = ino_elem->parent;
4823 		list_del(&ino_elem->list);
4824 		kfree(ino_elem);
4825 		if (ret)
4826 			continue;
4827 
4828 		btrfs_release_path(path);
4829 
4830 		inode = btrfs_iget(fs_info->sb, ino, root);
4831 		/*
4832 		 * If the other inode that had a conflicting dir entry was
4833 		 * deleted in the current transaction, we need to log its parent
4834 		 * directory.
4835 		 */
4836 		if (IS_ERR(inode)) {
4837 			ret = PTR_ERR(inode);
4838 			if (ret == -ENOENT) {
4839 				inode = btrfs_iget(fs_info->sb, parent, root);
4840 				if (IS_ERR(inode)) {
4841 					ret = PTR_ERR(inode);
4842 				} else {
4843 					ret = btrfs_log_inode(trans, root,
4844 						      BTRFS_I(inode),
4845 						      LOG_OTHER_INODE_ALL,
4846 						      0, LLONG_MAX, ctx);
4847 					btrfs_add_delayed_iput(inode);
4848 				}
4849 			}
4850 			continue;
4851 		}
4852 		/*
4853 		 * If the inode was already logged skip it - otherwise we can
4854 		 * hit an infinite loop. Example:
4855 		 *
4856 		 * From the commit root (previous transaction) we have the
4857 		 * following inodes:
4858 		 *
4859 		 * inode 257 a directory
4860 		 * inode 258 with references "zz" and "zz_link" on inode 257
4861 		 * inode 259 with reference "a" on inode 257
4862 		 *
4863 		 * And in the current (uncommitted) transaction we have:
4864 		 *
4865 		 * inode 257 a directory, unchanged
4866 		 * inode 258 with references "a" and "a2" on inode 257
4867 		 * inode 259 with reference "zz_link" on inode 257
4868 		 * inode 261 with reference "zz" on inode 257
4869 		 *
4870 		 * When logging inode 261 the following infinite loop could
4871 		 * happen if we don't skip already logged inodes:
4872 		 *
4873 		 * - we detect inode 258 as a conflicting inode, with inode 261
4874 		 *   on reference "zz", and log it;
4875 		 *
4876 		 * - we detect inode 259 as a conflicting inode, with inode 258
4877 		 *   on reference "a", and log it;
4878 		 *
4879 		 * - we detect inode 258 as a conflicting inode, with inode 259
4880 		 *   on reference "zz_link", and log it - again! After this we
4881 		 *   repeat the above steps forever.
4882 		 */
4883 		spin_lock(&BTRFS_I(inode)->lock);
4884 		/*
4885 		 * Check the inode's logged_trans only instead of
4886 		 * btrfs_inode_in_log(). This is because the last_log_commit of
4887 		 * the inode is not updated when we only log that it exists and
4888 		 * and it has the full sync bit set (see btrfs_log_inode()).
4889 		 */
4890 		if (BTRFS_I(inode)->logged_trans == trans->transid) {
4891 			spin_unlock(&BTRFS_I(inode)->lock);
4892 			btrfs_add_delayed_iput(inode);
4893 			continue;
4894 		}
4895 		spin_unlock(&BTRFS_I(inode)->lock);
4896 		/*
4897 		 * We are safe logging the other inode without acquiring its
4898 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4899 		 * are safe against concurrent renames of the other inode as
4900 		 * well because during a rename we pin the log and update the
4901 		 * log with the new name before we unpin it.
4902 		 */
4903 		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
4904 				      LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
4905 		if (ret) {
4906 			btrfs_add_delayed_iput(inode);
4907 			continue;
4908 		}
4909 
4910 		key.objectid = ino;
4911 		key.type = BTRFS_INODE_REF_KEY;
4912 		key.offset = 0;
4913 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4914 		if (ret < 0) {
4915 			btrfs_add_delayed_iput(inode);
4916 			continue;
4917 		}
4918 
4919 		while (true) {
4920 			struct extent_buffer *leaf = path->nodes[0];
4921 			int slot = path->slots[0];
4922 			u64 other_ino = 0;
4923 			u64 other_parent = 0;
4924 
4925 			if (slot >= btrfs_header_nritems(leaf)) {
4926 				ret = btrfs_next_leaf(root, path);
4927 				if (ret < 0) {
4928 					break;
4929 				} else if (ret > 0) {
4930 					ret = 0;
4931 					break;
4932 				}
4933 				continue;
4934 			}
4935 
4936 			btrfs_item_key_to_cpu(leaf, &key, slot);
4937 			if (key.objectid != ino ||
4938 			    (key.type != BTRFS_INODE_REF_KEY &&
4939 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
4940 				ret = 0;
4941 				break;
4942 			}
4943 
4944 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
4945 					BTRFS_I(inode), &other_ino,
4946 					&other_parent);
4947 			if (ret < 0)
4948 				break;
4949 			if (ret > 0) {
4950 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4951 				if (!ino_elem) {
4952 					ret = -ENOMEM;
4953 					break;
4954 				}
4955 				ino_elem->ino = other_ino;
4956 				ino_elem->parent = other_parent;
4957 				list_add_tail(&ino_elem->list, &inode_list);
4958 				ret = 0;
4959 			}
4960 			path->slots[0]++;
4961 		}
4962 		btrfs_add_delayed_iput(inode);
4963 	}
4964 
4965 	return ret;
4966 }
4967 
4968 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
4969 				   struct btrfs_inode *inode,
4970 				   struct btrfs_key *min_key,
4971 				   const struct btrfs_key *max_key,
4972 				   struct btrfs_path *path,
4973 				   struct btrfs_path *dst_path,
4974 				   const u64 logged_isize,
4975 				   const bool recursive_logging,
4976 				   const int inode_only,
4977 				   struct btrfs_log_ctx *ctx,
4978 				   bool *need_log_inode_item)
4979 {
4980 	struct btrfs_root *root = inode->root;
4981 	int ins_start_slot = 0;
4982 	int ins_nr = 0;
4983 	int ret;
4984 
4985 	while (1) {
4986 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
4987 		if (ret < 0)
4988 			return ret;
4989 		if (ret > 0) {
4990 			ret = 0;
4991 			break;
4992 		}
4993 again:
4994 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
4995 		if (min_key->objectid != max_key->objectid)
4996 			break;
4997 		if (min_key->type > max_key->type)
4998 			break;
4999 
5000 		if (min_key->type == BTRFS_INODE_ITEM_KEY)
5001 			*need_log_inode_item = false;
5002 
5003 		if ((min_key->type == BTRFS_INODE_REF_KEY ||
5004 		     min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5005 		    inode->generation == trans->transid &&
5006 		    !recursive_logging) {
5007 			u64 other_ino = 0;
5008 			u64 other_parent = 0;
5009 
5010 			ret = btrfs_check_ref_name_override(path->nodes[0],
5011 					path->slots[0], min_key, inode,
5012 					&other_ino, &other_parent);
5013 			if (ret < 0) {
5014 				return ret;
5015 			} else if (ret > 0 && ctx &&
5016 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5017 				if (ins_nr > 0) {
5018 					ins_nr++;
5019 				} else {
5020 					ins_nr = 1;
5021 					ins_start_slot = path->slots[0];
5022 				}
5023 				ret = copy_items(trans, inode, dst_path, path,
5024 						 ins_start_slot, ins_nr,
5025 						 inode_only, logged_isize);
5026 				if (ret < 0)
5027 					return ret;
5028 				ins_nr = 0;
5029 
5030 				ret = log_conflicting_inodes(trans, root, path,
5031 						ctx, other_ino, other_parent);
5032 				if (ret)
5033 					return ret;
5034 				btrfs_release_path(path);
5035 				goto next_key;
5036 			}
5037 		}
5038 
5039 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5040 		if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5041 			if (ins_nr == 0)
5042 				goto next_slot;
5043 			ret = copy_items(trans, inode, dst_path, path,
5044 					 ins_start_slot,
5045 					 ins_nr, inode_only, logged_isize);
5046 			if (ret < 0)
5047 				return ret;
5048 			ins_nr = 0;
5049 			goto next_slot;
5050 		}
5051 
5052 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5053 			ins_nr++;
5054 			goto next_slot;
5055 		} else if (!ins_nr) {
5056 			ins_start_slot = path->slots[0];
5057 			ins_nr = 1;
5058 			goto next_slot;
5059 		}
5060 
5061 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5062 				 ins_nr, inode_only, logged_isize);
5063 		if (ret < 0)
5064 			return ret;
5065 		ins_nr = 1;
5066 		ins_start_slot = path->slots[0];
5067 next_slot:
5068 		path->slots[0]++;
5069 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5070 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5071 					      path->slots[0]);
5072 			goto again;
5073 		}
5074 		if (ins_nr) {
5075 			ret = copy_items(trans, inode, dst_path, path,
5076 					 ins_start_slot, ins_nr, inode_only,
5077 					 logged_isize);
5078 			if (ret < 0)
5079 				return ret;
5080 			ins_nr = 0;
5081 		}
5082 		btrfs_release_path(path);
5083 next_key:
5084 		if (min_key->offset < (u64)-1) {
5085 			min_key->offset++;
5086 		} else if (min_key->type < max_key->type) {
5087 			min_key->type++;
5088 			min_key->offset = 0;
5089 		} else {
5090 			break;
5091 		}
5092 	}
5093 	if (ins_nr)
5094 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5095 				 ins_nr, inode_only, logged_isize);
5096 
5097 	return ret;
5098 }
5099 
5100 /* log a single inode in the tree log.
5101  * At least one parent directory for this inode must exist in the tree
5102  * or be logged already.
5103  *
5104  * Any items from this inode changed by the current transaction are copied
5105  * to the log tree.  An extra reference is taken on any extents in this
5106  * file, allowing us to avoid a whole pile of corner cases around logging
5107  * blocks that have been removed from the tree.
5108  *
5109  * See LOG_INODE_ALL and related defines for a description of what inode_only
5110  * does.
5111  *
5112  * This handles both files and directories.
5113  */
5114 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5115 			   struct btrfs_root *root, struct btrfs_inode *inode,
5116 			   int inode_only,
5117 			   const loff_t start,
5118 			   const loff_t end,
5119 			   struct btrfs_log_ctx *ctx)
5120 {
5121 	struct btrfs_fs_info *fs_info = root->fs_info;
5122 	struct btrfs_path *path;
5123 	struct btrfs_path *dst_path;
5124 	struct btrfs_key min_key;
5125 	struct btrfs_key max_key;
5126 	struct btrfs_root *log = root->log_root;
5127 	int err = 0;
5128 	int ret;
5129 	bool fast_search = false;
5130 	u64 ino = btrfs_ino(inode);
5131 	struct extent_map_tree *em_tree = &inode->extent_tree;
5132 	u64 logged_isize = 0;
5133 	bool need_log_inode_item = true;
5134 	bool xattrs_logged = false;
5135 	bool recursive_logging = false;
5136 
5137 	path = btrfs_alloc_path();
5138 	if (!path)
5139 		return -ENOMEM;
5140 	dst_path = btrfs_alloc_path();
5141 	if (!dst_path) {
5142 		btrfs_free_path(path);
5143 		return -ENOMEM;
5144 	}
5145 
5146 	min_key.objectid = ino;
5147 	min_key.type = BTRFS_INODE_ITEM_KEY;
5148 	min_key.offset = 0;
5149 
5150 	max_key.objectid = ino;
5151 
5152 
5153 	/* today the code can only do partial logging of directories */
5154 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5155 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5156 		       &inode->runtime_flags) &&
5157 	     inode_only >= LOG_INODE_EXISTS))
5158 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5159 	else
5160 		max_key.type = (u8)-1;
5161 	max_key.offset = (u64)-1;
5162 
5163 	/*
5164 	 * Only run delayed items if we are a dir or a new file.
5165 	 * Otherwise commit the delayed inode only, which is needed in
5166 	 * order for the log replay code to mark inodes for link count
5167 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5168 	 */
5169 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5170 	    inode->generation > fs_info->last_trans_committed)
5171 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5172 	else
5173 		ret = btrfs_commit_inode_delayed_inode(inode);
5174 
5175 	if (ret) {
5176 		btrfs_free_path(path);
5177 		btrfs_free_path(dst_path);
5178 		return ret;
5179 	}
5180 
5181 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5182 		recursive_logging = true;
5183 		if (inode_only == LOG_OTHER_INODE)
5184 			inode_only = LOG_INODE_EXISTS;
5185 		else
5186 			inode_only = LOG_INODE_ALL;
5187 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5188 	} else {
5189 		mutex_lock(&inode->log_mutex);
5190 	}
5191 
5192 	/*
5193 	 * a brute force approach to making sure we get the most uptodate
5194 	 * copies of everything.
5195 	 */
5196 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5197 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5198 
5199 		if (inode_only == LOG_INODE_EXISTS)
5200 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5201 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5202 	} else {
5203 		if (inode_only == LOG_INODE_EXISTS) {
5204 			/*
5205 			 * Make sure the new inode item we write to the log has
5206 			 * the same isize as the current one (if it exists).
5207 			 * This is necessary to prevent data loss after log
5208 			 * replay, and also to prevent doing a wrong expanding
5209 			 * truncate - for e.g. create file, write 4K into offset
5210 			 * 0, fsync, write 4K into offset 4096, add hard link,
5211 			 * fsync some other file (to sync log), power fail - if
5212 			 * we use the inode's current i_size, after log replay
5213 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5214 			 * (zeroes), as if an expanding truncate happened,
5215 			 * instead of getting a file of 4Kb only.
5216 			 */
5217 			err = logged_inode_size(log, inode, path, &logged_isize);
5218 			if (err)
5219 				goto out_unlock;
5220 		}
5221 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5222 			     &inode->runtime_flags)) {
5223 			if (inode_only == LOG_INODE_EXISTS) {
5224 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5225 				ret = drop_objectid_items(trans, log, path, ino,
5226 							  max_key.type);
5227 			} else {
5228 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5229 					  &inode->runtime_flags);
5230 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5231 					  &inode->runtime_flags);
5232 				while(1) {
5233 					ret = btrfs_truncate_inode_items(trans,
5234 						log, &inode->vfs_inode, 0, 0);
5235 					if (ret != -EAGAIN)
5236 						break;
5237 				}
5238 			}
5239 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5240 					      &inode->runtime_flags) ||
5241 			   inode_only == LOG_INODE_EXISTS) {
5242 			if (inode_only == LOG_INODE_ALL)
5243 				fast_search = true;
5244 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5245 			ret = drop_objectid_items(trans, log, path, ino,
5246 						  max_key.type);
5247 		} else {
5248 			if (inode_only == LOG_INODE_ALL)
5249 				fast_search = true;
5250 			goto log_extents;
5251 		}
5252 
5253 	}
5254 	if (ret) {
5255 		err = ret;
5256 		goto out_unlock;
5257 	}
5258 
5259 	err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5260 				      path, dst_path, logged_isize,
5261 				      recursive_logging, inode_only, ctx,
5262 				      &need_log_inode_item);
5263 	if (err)
5264 		goto out_unlock;
5265 
5266 	btrfs_release_path(path);
5267 	btrfs_release_path(dst_path);
5268 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5269 	if (err)
5270 		goto out_unlock;
5271 	xattrs_logged = true;
5272 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5273 		btrfs_release_path(path);
5274 		btrfs_release_path(dst_path);
5275 		err = btrfs_log_holes(trans, root, inode, path);
5276 		if (err)
5277 			goto out_unlock;
5278 	}
5279 log_extents:
5280 	btrfs_release_path(path);
5281 	btrfs_release_path(dst_path);
5282 	if (need_log_inode_item) {
5283 		err = log_inode_item(trans, log, dst_path, inode);
5284 		if (!err && !xattrs_logged) {
5285 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5286 						   dst_path);
5287 			btrfs_release_path(path);
5288 		}
5289 		if (err)
5290 			goto out_unlock;
5291 	}
5292 	if (fast_search) {
5293 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5294 						ctx, start, end);
5295 		if (ret) {
5296 			err = ret;
5297 			goto out_unlock;
5298 		}
5299 	} else if (inode_only == LOG_INODE_ALL) {
5300 		struct extent_map *em, *n;
5301 
5302 		write_lock(&em_tree->lock);
5303 		/*
5304 		 * We can't just remove every em if we're called for a ranged
5305 		 * fsync - that is, one that doesn't cover the whole possible
5306 		 * file range (0 to LLONG_MAX). This is because we can have
5307 		 * em's that fall outside the range we're logging and therefore
5308 		 * their ordered operations haven't completed yet
5309 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5310 		 * didn't get their respective file extent item in the fs/subvol
5311 		 * tree yet, and need to let the next fast fsync (one which
5312 		 * consults the list of modified extent maps) find the em so
5313 		 * that it logs a matching file extent item and waits for the
5314 		 * respective ordered operation to complete (if it's still
5315 		 * running).
5316 		 *
5317 		 * Removing every em outside the range we're logging would make
5318 		 * the next fast fsync not log their matching file extent items,
5319 		 * therefore making us lose data after a log replay.
5320 		 */
5321 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5322 					 list) {
5323 			const u64 mod_end = em->mod_start + em->mod_len - 1;
5324 
5325 			if (em->mod_start >= start && mod_end <= end)
5326 				list_del_init(&em->list);
5327 		}
5328 		write_unlock(&em_tree->lock);
5329 	}
5330 
5331 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5332 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5333 					ctx);
5334 		if (ret) {
5335 			err = ret;
5336 			goto out_unlock;
5337 		}
5338 	}
5339 
5340 	/*
5341 	 * Don't update last_log_commit if we logged that an inode exists after
5342 	 * it was loaded to memory (full_sync bit set).
5343 	 * This is to prevent data loss when we do a write to the inode, then
5344 	 * the inode gets evicted after all delalloc was flushed, then we log
5345 	 * it exists (due to a rename for example) and then fsync it. This last
5346 	 * fsync would do nothing (not logging the extents previously written).
5347 	 */
5348 	spin_lock(&inode->lock);
5349 	inode->logged_trans = trans->transid;
5350 	if (inode_only != LOG_INODE_EXISTS ||
5351 	    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5352 		inode->last_log_commit = inode->last_sub_trans;
5353 	spin_unlock(&inode->lock);
5354 out_unlock:
5355 	mutex_unlock(&inode->log_mutex);
5356 
5357 	btrfs_free_path(path);
5358 	btrfs_free_path(dst_path);
5359 	return err;
5360 }
5361 
5362 /*
5363  * Check if we must fallback to a transaction commit when logging an inode.
5364  * This must be called after logging the inode and is used only in the context
5365  * when fsyncing an inode requires the need to log some other inode - in which
5366  * case we can't lock the i_mutex of each other inode we need to log as that
5367  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5368  * log inodes up or down in the hierarchy) or rename operations for example. So
5369  * we take the log_mutex of the inode after we have logged it and then check for
5370  * its last_unlink_trans value - this is safe because any task setting
5371  * last_unlink_trans must take the log_mutex and it must do this before it does
5372  * the actual unlink operation, so if we do this check before a concurrent task
5373  * sets last_unlink_trans it means we've logged a consistent version/state of
5374  * all the inode items, otherwise we are not sure and must do a transaction
5375  * commit (the concurrent task might have only updated last_unlink_trans before
5376  * we logged the inode or it might have also done the unlink).
5377  */
5378 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5379 					  struct btrfs_inode *inode)
5380 {
5381 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5382 	bool ret = false;
5383 
5384 	mutex_lock(&inode->log_mutex);
5385 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5386 		/*
5387 		 * Make sure any commits to the log are forced to be full
5388 		 * commits.
5389 		 */
5390 		btrfs_set_log_full_commit(trans);
5391 		ret = true;
5392 	}
5393 	mutex_unlock(&inode->log_mutex);
5394 
5395 	return ret;
5396 }
5397 
5398 /*
5399  * follow the dentry parent pointers up the chain and see if any
5400  * of the directories in it require a full commit before they can
5401  * be logged.  Returns zero if nothing special needs to be done or 1 if
5402  * a full commit is required.
5403  */
5404 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5405 					       struct btrfs_inode *inode,
5406 					       struct dentry *parent,
5407 					       struct super_block *sb,
5408 					       u64 last_committed)
5409 {
5410 	int ret = 0;
5411 	struct dentry *old_parent = NULL;
5412 
5413 	/*
5414 	 * for regular files, if its inode is already on disk, we don't
5415 	 * have to worry about the parents at all.  This is because
5416 	 * we can use the last_unlink_trans field to record renames
5417 	 * and other fun in this file.
5418 	 */
5419 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5420 	    inode->generation <= last_committed &&
5421 	    inode->last_unlink_trans <= last_committed)
5422 		goto out;
5423 
5424 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5425 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5426 			goto out;
5427 		inode = BTRFS_I(d_inode(parent));
5428 	}
5429 
5430 	while (1) {
5431 		if (btrfs_must_commit_transaction(trans, inode)) {
5432 			ret = 1;
5433 			break;
5434 		}
5435 
5436 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5437 			break;
5438 
5439 		if (IS_ROOT(parent)) {
5440 			inode = BTRFS_I(d_inode(parent));
5441 			if (btrfs_must_commit_transaction(trans, inode))
5442 				ret = 1;
5443 			break;
5444 		}
5445 
5446 		parent = dget_parent(parent);
5447 		dput(old_parent);
5448 		old_parent = parent;
5449 		inode = BTRFS_I(d_inode(parent));
5450 
5451 	}
5452 	dput(old_parent);
5453 out:
5454 	return ret;
5455 }
5456 
5457 struct btrfs_dir_list {
5458 	u64 ino;
5459 	struct list_head list;
5460 };
5461 
5462 /*
5463  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5464  * details about the why it is needed.
5465  * This is a recursive operation - if an existing dentry corresponds to a
5466  * directory, that directory's new entries are logged too (same behaviour as
5467  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5468  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5469  * complains about the following circular lock dependency / possible deadlock:
5470  *
5471  *        CPU0                                        CPU1
5472  *        ----                                        ----
5473  * lock(&type->i_mutex_dir_key#3/2);
5474  *                                            lock(sb_internal#2);
5475  *                                            lock(&type->i_mutex_dir_key#3/2);
5476  * lock(&sb->s_type->i_mutex_key#14);
5477  *
5478  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5479  * sb_start_intwrite() in btrfs_start_transaction().
5480  * Not locking i_mutex of the inodes is still safe because:
5481  *
5482  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5483  *    that while logging the inode new references (names) are added or removed
5484  *    from the inode, leaving the logged inode item with a link count that does
5485  *    not match the number of logged inode reference items. This is fine because
5486  *    at log replay time we compute the real number of links and correct the
5487  *    link count in the inode item (see replay_one_buffer() and
5488  *    link_to_fixup_dir());
5489  *
5490  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5491  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5492  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5493  *    has a size that doesn't match the sum of the lengths of all the logged
5494  *    names. This does not result in a problem because if a dir_item key is
5495  *    logged but its matching dir_index key is not logged, at log replay time we
5496  *    don't use it to replay the respective name (see replay_one_name()). On the
5497  *    other hand if only the dir_index key ends up being logged, the respective
5498  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5499  *    keys created (see replay_one_name()).
5500  *    The directory's inode item with a wrong i_size is not a problem as well,
5501  *    since we don't use it at log replay time to set the i_size in the inode
5502  *    item of the fs/subvol tree (see overwrite_item()).
5503  */
5504 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5505 				struct btrfs_root *root,
5506 				struct btrfs_inode *start_inode,
5507 				struct btrfs_log_ctx *ctx)
5508 {
5509 	struct btrfs_fs_info *fs_info = root->fs_info;
5510 	struct btrfs_root *log = root->log_root;
5511 	struct btrfs_path *path;
5512 	LIST_HEAD(dir_list);
5513 	struct btrfs_dir_list *dir_elem;
5514 	int ret = 0;
5515 
5516 	path = btrfs_alloc_path();
5517 	if (!path)
5518 		return -ENOMEM;
5519 
5520 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5521 	if (!dir_elem) {
5522 		btrfs_free_path(path);
5523 		return -ENOMEM;
5524 	}
5525 	dir_elem->ino = btrfs_ino(start_inode);
5526 	list_add_tail(&dir_elem->list, &dir_list);
5527 
5528 	while (!list_empty(&dir_list)) {
5529 		struct extent_buffer *leaf;
5530 		struct btrfs_key min_key;
5531 		int nritems;
5532 		int i;
5533 
5534 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5535 					    list);
5536 		if (ret)
5537 			goto next_dir_inode;
5538 
5539 		min_key.objectid = dir_elem->ino;
5540 		min_key.type = BTRFS_DIR_ITEM_KEY;
5541 		min_key.offset = 0;
5542 again:
5543 		btrfs_release_path(path);
5544 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5545 		if (ret < 0) {
5546 			goto next_dir_inode;
5547 		} else if (ret > 0) {
5548 			ret = 0;
5549 			goto next_dir_inode;
5550 		}
5551 
5552 process_leaf:
5553 		leaf = path->nodes[0];
5554 		nritems = btrfs_header_nritems(leaf);
5555 		for (i = path->slots[0]; i < nritems; i++) {
5556 			struct btrfs_dir_item *di;
5557 			struct btrfs_key di_key;
5558 			struct inode *di_inode;
5559 			struct btrfs_dir_list *new_dir_elem;
5560 			int log_mode = LOG_INODE_EXISTS;
5561 			int type;
5562 
5563 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5564 			if (min_key.objectid != dir_elem->ino ||
5565 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5566 				goto next_dir_inode;
5567 
5568 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5569 			type = btrfs_dir_type(leaf, di);
5570 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5571 			    type != BTRFS_FT_DIR)
5572 				continue;
5573 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5574 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5575 				continue;
5576 
5577 			btrfs_release_path(path);
5578 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5579 			if (IS_ERR(di_inode)) {
5580 				ret = PTR_ERR(di_inode);
5581 				goto next_dir_inode;
5582 			}
5583 
5584 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5585 				btrfs_add_delayed_iput(di_inode);
5586 				break;
5587 			}
5588 
5589 			ctx->log_new_dentries = false;
5590 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5591 				log_mode = LOG_INODE_ALL;
5592 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5593 					      log_mode, 0, LLONG_MAX, ctx);
5594 			if (!ret &&
5595 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5596 				ret = 1;
5597 			btrfs_add_delayed_iput(di_inode);
5598 			if (ret)
5599 				goto next_dir_inode;
5600 			if (ctx->log_new_dentries) {
5601 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5602 						       GFP_NOFS);
5603 				if (!new_dir_elem) {
5604 					ret = -ENOMEM;
5605 					goto next_dir_inode;
5606 				}
5607 				new_dir_elem->ino = di_key.objectid;
5608 				list_add_tail(&new_dir_elem->list, &dir_list);
5609 			}
5610 			break;
5611 		}
5612 		if (i == nritems) {
5613 			ret = btrfs_next_leaf(log, path);
5614 			if (ret < 0) {
5615 				goto next_dir_inode;
5616 			} else if (ret > 0) {
5617 				ret = 0;
5618 				goto next_dir_inode;
5619 			}
5620 			goto process_leaf;
5621 		}
5622 		if (min_key.offset < (u64)-1) {
5623 			min_key.offset++;
5624 			goto again;
5625 		}
5626 next_dir_inode:
5627 		list_del(&dir_elem->list);
5628 		kfree(dir_elem);
5629 	}
5630 
5631 	btrfs_free_path(path);
5632 	return ret;
5633 }
5634 
5635 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5636 				 struct btrfs_inode *inode,
5637 				 struct btrfs_log_ctx *ctx)
5638 {
5639 	struct btrfs_fs_info *fs_info = trans->fs_info;
5640 	int ret;
5641 	struct btrfs_path *path;
5642 	struct btrfs_key key;
5643 	struct btrfs_root *root = inode->root;
5644 	const u64 ino = btrfs_ino(inode);
5645 
5646 	path = btrfs_alloc_path();
5647 	if (!path)
5648 		return -ENOMEM;
5649 	path->skip_locking = 1;
5650 	path->search_commit_root = 1;
5651 
5652 	key.objectid = ino;
5653 	key.type = BTRFS_INODE_REF_KEY;
5654 	key.offset = 0;
5655 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5656 	if (ret < 0)
5657 		goto out;
5658 
5659 	while (true) {
5660 		struct extent_buffer *leaf = path->nodes[0];
5661 		int slot = path->slots[0];
5662 		u32 cur_offset = 0;
5663 		u32 item_size;
5664 		unsigned long ptr;
5665 
5666 		if (slot >= btrfs_header_nritems(leaf)) {
5667 			ret = btrfs_next_leaf(root, path);
5668 			if (ret < 0)
5669 				goto out;
5670 			else if (ret > 0)
5671 				break;
5672 			continue;
5673 		}
5674 
5675 		btrfs_item_key_to_cpu(leaf, &key, slot);
5676 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5677 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5678 			break;
5679 
5680 		item_size = btrfs_item_size_nr(leaf, slot);
5681 		ptr = btrfs_item_ptr_offset(leaf, slot);
5682 		while (cur_offset < item_size) {
5683 			struct btrfs_key inode_key;
5684 			struct inode *dir_inode;
5685 
5686 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5687 			inode_key.offset = 0;
5688 
5689 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5690 				struct btrfs_inode_extref *extref;
5691 
5692 				extref = (struct btrfs_inode_extref *)
5693 					(ptr + cur_offset);
5694 				inode_key.objectid = btrfs_inode_extref_parent(
5695 					leaf, extref);
5696 				cur_offset += sizeof(*extref);
5697 				cur_offset += btrfs_inode_extref_name_len(leaf,
5698 					extref);
5699 			} else {
5700 				inode_key.objectid = key.offset;
5701 				cur_offset = item_size;
5702 			}
5703 
5704 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5705 					       root);
5706 			/*
5707 			 * If the parent inode was deleted, return an error to
5708 			 * fallback to a transaction commit. This is to prevent
5709 			 * getting an inode that was moved from one parent A to
5710 			 * a parent B, got its former parent A deleted and then
5711 			 * it got fsync'ed, from existing at both parents after
5712 			 * a log replay (and the old parent still existing).
5713 			 * Example:
5714 			 *
5715 			 * mkdir /mnt/A
5716 			 * mkdir /mnt/B
5717 			 * touch /mnt/B/bar
5718 			 * sync
5719 			 * mv /mnt/B/bar /mnt/A/bar
5720 			 * mv -T /mnt/A /mnt/B
5721 			 * fsync /mnt/B/bar
5722 			 * <power fail>
5723 			 *
5724 			 * If we ignore the old parent B which got deleted,
5725 			 * after a log replay we would have file bar linked
5726 			 * at both parents and the old parent B would still
5727 			 * exist.
5728 			 */
5729 			if (IS_ERR(dir_inode)) {
5730 				ret = PTR_ERR(dir_inode);
5731 				goto out;
5732 			}
5733 
5734 			if (ctx)
5735 				ctx->log_new_dentries = false;
5736 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5737 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5738 			if (!ret &&
5739 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5740 				ret = 1;
5741 			if (!ret && ctx && ctx->log_new_dentries)
5742 				ret = log_new_dir_dentries(trans, root,
5743 						   BTRFS_I(dir_inode), ctx);
5744 			btrfs_add_delayed_iput(dir_inode);
5745 			if (ret)
5746 				goto out;
5747 		}
5748 		path->slots[0]++;
5749 	}
5750 	ret = 0;
5751 out:
5752 	btrfs_free_path(path);
5753 	return ret;
5754 }
5755 
5756 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5757 			     struct btrfs_root *root,
5758 			     struct btrfs_path *path,
5759 			     struct btrfs_log_ctx *ctx)
5760 {
5761 	struct btrfs_key found_key;
5762 
5763 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5764 
5765 	while (true) {
5766 		struct btrfs_fs_info *fs_info = root->fs_info;
5767 		const u64 last_committed = fs_info->last_trans_committed;
5768 		struct extent_buffer *leaf = path->nodes[0];
5769 		int slot = path->slots[0];
5770 		struct btrfs_key search_key;
5771 		struct inode *inode;
5772 		u64 ino;
5773 		int ret = 0;
5774 
5775 		btrfs_release_path(path);
5776 
5777 		ino = found_key.offset;
5778 
5779 		search_key.objectid = found_key.offset;
5780 		search_key.type = BTRFS_INODE_ITEM_KEY;
5781 		search_key.offset = 0;
5782 		inode = btrfs_iget(fs_info->sb, ino, root);
5783 		if (IS_ERR(inode))
5784 			return PTR_ERR(inode);
5785 
5786 		if (BTRFS_I(inode)->generation > last_committed)
5787 			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5788 					      LOG_INODE_EXISTS,
5789 					      0, LLONG_MAX, ctx);
5790 		btrfs_add_delayed_iput(inode);
5791 		if (ret)
5792 			return ret;
5793 
5794 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5795 			break;
5796 
5797 		search_key.type = BTRFS_INODE_REF_KEY;
5798 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5799 		if (ret < 0)
5800 			return ret;
5801 
5802 		leaf = path->nodes[0];
5803 		slot = path->slots[0];
5804 		if (slot >= btrfs_header_nritems(leaf)) {
5805 			ret = btrfs_next_leaf(root, path);
5806 			if (ret < 0)
5807 				return ret;
5808 			else if (ret > 0)
5809 				return -ENOENT;
5810 			leaf = path->nodes[0];
5811 			slot = path->slots[0];
5812 		}
5813 
5814 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5815 		if (found_key.objectid != search_key.objectid ||
5816 		    found_key.type != BTRFS_INODE_REF_KEY)
5817 			return -ENOENT;
5818 	}
5819 	return 0;
5820 }
5821 
5822 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5823 				  struct btrfs_inode *inode,
5824 				  struct dentry *parent,
5825 				  struct btrfs_log_ctx *ctx)
5826 {
5827 	struct btrfs_root *root = inode->root;
5828 	struct btrfs_fs_info *fs_info = root->fs_info;
5829 	struct dentry *old_parent = NULL;
5830 	struct super_block *sb = inode->vfs_inode.i_sb;
5831 	int ret = 0;
5832 
5833 	while (true) {
5834 		if (!parent || d_really_is_negative(parent) ||
5835 		    sb != parent->d_sb)
5836 			break;
5837 
5838 		inode = BTRFS_I(d_inode(parent));
5839 		if (root != inode->root)
5840 			break;
5841 
5842 		if (inode->generation > fs_info->last_trans_committed) {
5843 			ret = btrfs_log_inode(trans, root, inode,
5844 					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5845 			if (ret)
5846 				break;
5847 		}
5848 		if (IS_ROOT(parent))
5849 			break;
5850 
5851 		parent = dget_parent(parent);
5852 		dput(old_parent);
5853 		old_parent = parent;
5854 	}
5855 	dput(old_parent);
5856 
5857 	return ret;
5858 }
5859 
5860 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5861 				 struct btrfs_inode *inode,
5862 				 struct dentry *parent,
5863 				 struct btrfs_log_ctx *ctx)
5864 {
5865 	struct btrfs_root *root = inode->root;
5866 	const u64 ino = btrfs_ino(inode);
5867 	struct btrfs_path *path;
5868 	struct btrfs_key search_key;
5869 	int ret;
5870 
5871 	/*
5872 	 * For a single hard link case, go through a fast path that does not
5873 	 * need to iterate the fs/subvolume tree.
5874 	 */
5875 	if (inode->vfs_inode.i_nlink < 2)
5876 		return log_new_ancestors_fast(trans, inode, parent, ctx);
5877 
5878 	path = btrfs_alloc_path();
5879 	if (!path)
5880 		return -ENOMEM;
5881 
5882 	search_key.objectid = ino;
5883 	search_key.type = BTRFS_INODE_REF_KEY;
5884 	search_key.offset = 0;
5885 again:
5886 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5887 	if (ret < 0)
5888 		goto out;
5889 	if (ret == 0)
5890 		path->slots[0]++;
5891 
5892 	while (true) {
5893 		struct extent_buffer *leaf = path->nodes[0];
5894 		int slot = path->slots[0];
5895 		struct btrfs_key found_key;
5896 
5897 		if (slot >= btrfs_header_nritems(leaf)) {
5898 			ret = btrfs_next_leaf(root, path);
5899 			if (ret < 0)
5900 				goto out;
5901 			else if (ret > 0)
5902 				break;
5903 			continue;
5904 		}
5905 
5906 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5907 		if (found_key.objectid != ino ||
5908 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
5909 			break;
5910 
5911 		/*
5912 		 * Don't deal with extended references because they are rare
5913 		 * cases and too complex to deal with (we would need to keep
5914 		 * track of which subitem we are processing for each item in
5915 		 * this loop, etc). So just return some error to fallback to
5916 		 * a transaction commit.
5917 		 */
5918 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
5919 			ret = -EMLINK;
5920 			goto out;
5921 		}
5922 
5923 		/*
5924 		 * Logging ancestors needs to do more searches on the fs/subvol
5925 		 * tree, so it releases the path as needed to avoid deadlocks.
5926 		 * Keep track of the last inode ref key and resume from that key
5927 		 * after logging all new ancestors for the current hard link.
5928 		 */
5929 		memcpy(&search_key, &found_key, sizeof(search_key));
5930 
5931 		ret = log_new_ancestors(trans, root, path, ctx);
5932 		if (ret)
5933 			goto out;
5934 		btrfs_release_path(path);
5935 		goto again;
5936 	}
5937 	ret = 0;
5938 out:
5939 	btrfs_free_path(path);
5940 	return ret;
5941 }
5942 
5943 /*
5944  * helper function around btrfs_log_inode to make sure newly created
5945  * parent directories also end up in the log.  A minimal inode and backref
5946  * only logging is done of any parent directories that are older than
5947  * the last committed transaction
5948  */
5949 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5950 				  struct btrfs_inode *inode,
5951 				  struct dentry *parent,
5952 				  const loff_t start,
5953 				  const loff_t end,
5954 				  int inode_only,
5955 				  struct btrfs_log_ctx *ctx)
5956 {
5957 	struct btrfs_root *root = inode->root;
5958 	struct btrfs_fs_info *fs_info = root->fs_info;
5959 	struct super_block *sb;
5960 	int ret = 0;
5961 	u64 last_committed = fs_info->last_trans_committed;
5962 	bool log_dentries = false;
5963 
5964 	sb = inode->vfs_inode.i_sb;
5965 
5966 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
5967 		ret = 1;
5968 		goto end_no_trans;
5969 	}
5970 
5971 	/*
5972 	 * The prev transaction commit doesn't complete, we need do
5973 	 * full commit by ourselves.
5974 	 */
5975 	if (fs_info->last_trans_log_full_commit >
5976 	    fs_info->last_trans_committed) {
5977 		ret = 1;
5978 		goto end_no_trans;
5979 	}
5980 
5981 	if (btrfs_root_refs(&root->root_item) == 0) {
5982 		ret = 1;
5983 		goto end_no_trans;
5984 	}
5985 
5986 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5987 			last_committed);
5988 	if (ret)
5989 		goto end_no_trans;
5990 
5991 	/*
5992 	 * Skip already logged inodes or inodes corresponding to tmpfiles
5993 	 * (since logging them is pointless, a link count of 0 means they
5994 	 * will never be accessible).
5995 	 */
5996 	if (btrfs_inode_in_log(inode, trans->transid) ||
5997 	    inode->vfs_inode.i_nlink == 0) {
5998 		ret = BTRFS_NO_LOG_SYNC;
5999 		goto end_no_trans;
6000 	}
6001 
6002 	ret = start_log_trans(trans, root, ctx);
6003 	if (ret)
6004 		goto end_no_trans;
6005 
6006 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
6007 	if (ret)
6008 		goto end_trans;
6009 
6010 	/*
6011 	 * for regular files, if its inode is already on disk, we don't
6012 	 * have to worry about the parents at all.  This is because
6013 	 * we can use the last_unlink_trans field to record renames
6014 	 * and other fun in this file.
6015 	 */
6016 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6017 	    inode->generation <= last_committed &&
6018 	    inode->last_unlink_trans <= last_committed) {
6019 		ret = 0;
6020 		goto end_trans;
6021 	}
6022 
6023 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6024 		log_dentries = true;
6025 
6026 	/*
6027 	 * On unlink we must make sure all our current and old parent directory
6028 	 * inodes are fully logged. This is to prevent leaving dangling
6029 	 * directory index entries in directories that were our parents but are
6030 	 * not anymore. Not doing this results in old parent directory being
6031 	 * impossible to delete after log replay (rmdir will always fail with
6032 	 * error -ENOTEMPTY).
6033 	 *
6034 	 * Example 1:
6035 	 *
6036 	 * mkdir testdir
6037 	 * touch testdir/foo
6038 	 * ln testdir/foo testdir/bar
6039 	 * sync
6040 	 * unlink testdir/bar
6041 	 * xfs_io -c fsync testdir/foo
6042 	 * <power failure>
6043 	 * mount fs, triggers log replay
6044 	 *
6045 	 * If we don't log the parent directory (testdir), after log replay the
6046 	 * directory still has an entry pointing to the file inode using the bar
6047 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6048 	 * the file inode has a link count of 1.
6049 	 *
6050 	 * Example 2:
6051 	 *
6052 	 * mkdir testdir
6053 	 * touch foo
6054 	 * ln foo testdir/foo2
6055 	 * ln foo testdir/foo3
6056 	 * sync
6057 	 * unlink testdir/foo3
6058 	 * xfs_io -c fsync foo
6059 	 * <power failure>
6060 	 * mount fs, triggers log replay
6061 	 *
6062 	 * Similar as the first example, after log replay the parent directory
6063 	 * testdir still has an entry pointing to the inode file with name foo3
6064 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6065 	 * and has a link count of 2.
6066 	 */
6067 	if (inode->last_unlink_trans > last_committed) {
6068 		ret = btrfs_log_all_parents(trans, inode, ctx);
6069 		if (ret)
6070 			goto end_trans;
6071 	}
6072 
6073 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6074 	if (ret)
6075 		goto end_trans;
6076 
6077 	if (log_dentries)
6078 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6079 	else
6080 		ret = 0;
6081 end_trans:
6082 	if (ret < 0) {
6083 		btrfs_set_log_full_commit(trans);
6084 		ret = 1;
6085 	}
6086 
6087 	if (ret)
6088 		btrfs_remove_log_ctx(root, ctx);
6089 	btrfs_end_log_trans(root);
6090 end_no_trans:
6091 	return ret;
6092 }
6093 
6094 /*
6095  * it is not safe to log dentry if the chunk root has added new
6096  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6097  * If this returns 1, you must commit the transaction to safely get your
6098  * data on disk.
6099  */
6100 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6101 			  struct dentry *dentry,
6102 			  const loff_t start,
6103 			  const loff_t end,
6104 			  struct btrfs_log_ctx *ctx)
6105 {
6106 	struct dentry *parent = dget_parent(dentry);
6107 	int ret;
6108 
6109 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6110 				     start, end, LOG_INODE_ALL, ctx);
6111 	dput(parent);
6112 
6113 	return ret;
6114 }
6115 
6116 /*
6117  * should be called during mount to recover any replay any log trees
6118  * from the FS
6119  */
6120 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6121 {
6122 	int ret;
6123 	struct btrfs_path *path;
6124 	struct btrfs_trans_handle *trans;
6125 	struct btrfs_key key;
6126 	struct btrfs_key found_key;
6127 	struct btrfs_root *log;
6128 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6129 	struct walk_control wc = {
6130 		.process_func = process_one_buffer,
6131 		.stage = LOG_WALK_PIN_ONLY,
6132 	};
6133 
6134 	path = btrfs_alloc_path();
6135 	if (!path)
6136 		return -ENOMEM;
6137 
6138 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6139 
6140 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6141 	if (IS_ERR(trans)) {
6142 		ret = PTR_ERR(trans);
6143 		goto error;
6144 	}
6145 
6146 	wc.trans = trans;
6147 	wc.pin = 1;
6148 
6149 	ret = walk_log_tree(trans, log_root_tree, &wc);
6150 	if (ret) {
6151 		btrfs_handle_fs_error(fs_info, ret,
6152 			"Failed to pin buffers while recovering log root tree.");
6153 		goto error;
6154 	}
6155 
6156 again:
6157 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6158 	key.offset = (u64)-1;
6159 	key.type = BTRFS_ROOT_ITEM_KEY;
6160 
6161 	while (1) {
6162 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6163 
6164 		if (ret < 0) {
6165 			btrfs_handle_fs_error(fs_info, ret,
6166 				    "Couldn't find tree log root.");
6167 			goto error;
6168 		}
6169 		if (ret > 0) {
6170 			if (path->slots[0] == 0)
6171 				break;
6172 			path->slots[0]--;
6173 		}
6174 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6175 				      path->slots[0]);
6176 		btrfs_release_path(path);
6177 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6178 			break;
6179 
6180 		log = btrfs_read_tree_root(log_root_tree, &found_key);
6181 		if (IS_ERR(log)) {
6182 			ret = PTR_ERR(log);
6183 			btrfs_handle_fs_error(fs_info, ret,
6184 				    "Couldn't read tree log root.");
6185 			goto error;
6186 		}
6187 
6188 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6189 						   true);
6190 		if (IS_ERR(wc.replay_dest)) {
6191 			ret = PTR_ERR(wc.replay_dest);
6192 
6193 			/*
6194 			 * We didn't find the subvol, likely because it was
6195 			 * deleted.  This is ok, simply skip this log and go to
6196 			 * the next one.
6197 			 *
6198 			 * We need to exclude the root because we can't have
6199 			 * other log replays overwriting this log as we'll read
6200 			 * it back in a few more times.  This will keep our
6201 			 * block from being modified, and we'll just bail for
6202 			 * each subsequent pass.
6203 			 */
6204 			if (ret == -ENOENT)
6205 				ret = btrfs_pin_extent_for_log_replay(trans,
6206 							log->node->start,
6207 							log->node->len);
6208 			btrfs_put_root(log);
6209 
6210 			if (!ret)
6211 				goto next;
6212 			btrfs_handle_fs_error(fs_info, ret,
6213 				"Couldn't read target root for tree log recovery.");
6214 			goto error;
6215 		}
6216 
6217 		wc.replay_dest->log_root = log;
6218 		btrfs_record_root_in_trans(trans, wc.replay_dest);
6219 		ret = walk_log_tree(trans, log, &wc);
6220 
6221 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6222 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6223 						      path);
6224 		}
6225 
6226 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6227 			struct btrfs_root *root = wc.replay_dest;
6228 
6229 			btrfs_release_path(path);
6230 
6231 			/*
6232 			 * We have just replayed everything, and the highest
6233 			 * objectid of fs roots probably has changed in case
6234 			 * some inode_item's got replayed.
6235 			 *
6236 			 * root->objectid_mutex is not acquired as log replay
6237 			 * could only happen during mount.
6238 			 */
6239 			ret = btrfs_find_highest_objectid(root,
6240 						  &root->highest_objectid);
6241 		}
6242 
6243 		wc.replay_dest->log_root = NULL;
6244 		btrfs_put_root(wc.replay_dest);
6245 		btrfs_put_root(log);
6246 
6247 		if (ret)
6248 			goto error;
6249 next:
6250 		if (found_key.offset == 0)
6251 			break;
6252 		key.offset = found_key.offset - 1;
6253 	}
6254 	btrfs_release_path(path);
6255 
6256 	/* step one is to pin it all, step two is to replay just inodes */
6257 	if (wc.pin) {
6258 		wc.pin = 0;
6259 		wc.process_func = replay_one_buffer;
6260 		wc.stage = LOG_WALK_REPLAY_INODES;
6261 		goto again;
6262 	}
6263 	/* step three is to replay everything */
6264 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6265 		wc.stage++;
6266 		goto again;
6267 	}
6268 
6269 	btrfs_free_path(path);
6270 
6271 	/* step 4: commit the transaction, which also unpins the blocks */
6272 	ret = btrfs_commit_transaction(trans);
6273 	if (ret)
6274 		return ret;
6275 
6276 	log_root_tree->log_root = NULL;
6277 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6278 	btrfs_put_root(log_root_tree);
6279 
6280 	return 0;
6281 error:
6282 	if (wc.trans)
6283 		btrfs_end_transaction(wc.trans);
6284 	btrfs_free_path(path);
6285 	return ret;
6286 }
6287 
6288 /*
6289  * there are some corner cases where we want to force a full
6290  * commit instead of allowing a directory to be logged.
6291  *
6292  * They revolve around files there were unlinked from the directory, and
6293  * this function updates the parent directory so that a full commit is
6294  * properly done if it is fsync'd later after the unlinks are done.
6295  *
6296  * Must be called before the unlink operations (updates to the subvolume tree,
6297  * inodes, etc) are done.
6298  */
6299 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6300 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6301 			     int for_rename)
6302 {
6303 	/*
6304 	 * when we're logging a file, if it hasn't been renamed
6305 	 * or unlinked, and its inode is fully committed on disk,
6306 	 * we don't have to worry about walking up the directory chain
6307 	 * to log its parents.
6308 	 *
6309 	 * So, we use the last_unlink_trans field to put this transid
6310 	 * into the file.  When the file is logged we check it and
6311 	 * don't log the parents if the file is fully on disk.
6312 	 */
6313 	mutex_lock(&inode->log_mutex);
6314 	inode->last_unlink_trans = trans->transid;
6315 	mutex_unlock(&inode->log_mutex);
6316 
6317 	/*
6318 	 * if this directory was already logged any new
6319 	 * names for this file/dir will get recorded
6320 	 */
6321 	if (dir->logged_trans == trans->transid)
6322 		return;
6323 
6324 	/*
6325 	 * if the inode we're about to unlink was logged,
6326 	 * the log will be properly updated for any new names
6327 	 */
6328 	if (inode->logged_trans == trans->transid)
6329 		return;
6330 
6331 	/*
6332 	 * when renaming files across directories, if the directory
6333 	 * there we're unlinking from gets fsync'd later on, there's
6334 	 * no way to find the destination directory later and fsync it
6335 	 * properly.  So, we have to be conservative and force commits
6336 	 * so the new name gets discovered.
6337 	 */
6338 	if (for_rename)
6339 		goto record;
6340 
6341 	/* we can safely do the unlink without any special recording */
6342 	return;
6343 
6344 record:
6345 	mutex_lock(&dir->log_mutex);
6346 	dir->last_unlink_trans = trans->transid;
6347 	mutex_unlock(&dir->log_mutex);
6348 }
6349 
6350 /*
6351  * Make sure that if someone attempts to fsync the parent directory of a deleted
6352  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6353  * that after replaying the log tree of the parent directory's root we will not
6354  * see the snapshot anymore and at log replay time we will not see any log tree
6355  * corresponding to the deleted snapshot's root, which could lead to replaying
6356  * it after replaying the log tree of the parent directory (which would replay
6357  * the snapshot delete operation).
6358  *
6359  * Must be called before the actual snapshot destroy operation (updates to the
6360  * parent root and tree of tree roots trees, etc) are done.
6361  */
6362 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6363 				   struct btrfs_inode *dir)
6364 {
6365 	mutex_lock(&dir->log_mutex);
6366 	dir->last_unlink_trans = trans->transid;
6367 	mutex_unlock(&dir->log_mutex);
6368 }
6369 
6370 /*
6371  * Call this after adding a new name for a file and it will properly
6372  * update the log to reflect the new name.
6373  *
6374  * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6375  * true (because it's not used).
6376  *
6377  * Return value depends on whether @sync_log is true or false.
6378  * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6379  *            committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6380  *            otherwise.
6381  * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6382  *             to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6383  *             or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6384  *             committed (without attempting to sync the log).
6385  */
6386 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6387 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6388 			struct dentry *parent,
6389 			bool sync_log, struct btrfs_log_ctx *ctx)
6390 {
6391 	struct btrfs_fs_info *fs_info = trans->fs_info;
6392 	int ret;
6393 
6394 	/*
6395 	 * this will force the logging code to walk the dentry chain
6396 	 * up for the file
6397 	 */
6398 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6399 		inode->last_unlink_trans = trans->transid;
6400 
6401 	/*
6402 	 * if this inode hasn't been logged and directory we're renaming it
6403 	 * from hasn't been logged, we don't need to log it
6404 	 */
6405 	if (inode->logged_trans <= fs_info->last_trans_committed &&
6406 	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6407 		return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6408 			BTRFS_DONT_NEED_LOG_SYNC;
6409 
6410 	if (sync_log) {
6411 		struct btrfs_log_ctx ctx2;
6412 
6413 		btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6414 		ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6415 					     LOG_INODE_EXISTS, &ctx2);
6416 		if (ret == BTRFS_NO_LOG_SYNC)
6417 			return BTRFS_DONT_NEED_TRANS_COMMIT;
6418 		else if (ret)
6419 			return BTRFS_NEED_TRANS_COMMIT;
6420 
6421 		ret = btrfs_sync_log(trans, inode->root, &ctx2);
6422 		if (ret)
6423 			return BTRFS_NEED_TRANS_COMMIT;
6424 		return BTRFS_DONT_NEED_TRANS_COMMIT;
6425 	}
6426 
6427 	ASSERT(ctx);
6428 	ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6429 				     LOG_INODE_EXISTS, ctx);
6430 	if (ret == BTRFS_NO_LOG_SYNC)
6431 		return BTRFS_DONT_NEED_LOG_SYNC;
6432 	else if (ret)
6433 		return BTRFS_NEED_TRANS_COMMIT;
6434 
6435 	return BTRFS_NEED_LOG_SYNC;
6436 }
6437 
6438