xref: /openbmc/linux/fs/btrfs/tree-log.c (revision 0661cb2a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "block-group.h"
21 #include "space-info.h"
22 #include "zoned.h"
23 
24 /* magic values for the inode_only field in btrfs_log_inode:
25  *
26  * LOG_INODE_ALL means to log everything
27  * LOG_INODE_EXISTS means to log just enough to recreate the inode
28  * during log replay
29  */
30 enum {
31 	LOG_INODE_ALL,
32 	LOG_INODE_EXISTS,
33 	LOG_OTHER_INODE,
34 	LOG_OTHER_INODE_ALL,
35 };
36 
37 /*
38  * directory trouble cases
39  *
40  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41  * log, we must force a full commit before doing an fsync of the directory
42  * where the unlink was done.
43  * ---> record transid of last unlink/rename per directory
44  *
45  * mkdir foo/some_dir
46  * normal commit
47  * rename foo/some_dir foo2/some_dir
48  * mkdir foo/some_dir
49  * fsync foo/some_dir/some_file
50  *
51  * The fsync above will unlink the original some_dir without recording
52  * it in its new location (foo2).  After a crash, some_dir will be gone
53  * unless the fsync of some_file forces a full commit
54  *
55  * 2) we must log any new names for any file or dir that is in the fsync
56  * log. ---> check inode while renaming/linking.
57  *
58  * 2a) we must log any new names for any file or dir during rename
59  * when the directory they are being removed from was logged.
60  * ---> check inode and old parent dir during rename
61  *
62  *  2a is actually the more important variant.  With the extra logging
63  *  a crash might unlink the old name without recreating the new one
64  *
65  * 3) after a crash, we must go through any directories with a link count
66  * of zero and redo the rm -rf
67  *
68  * mkdir f1/foo
69  * normal commit
70  * rm -rf f1/foo
71  * fsync(f1)
72  *
73  * The directory f1 was fully removed from the FS, but fsync was never
74  * called on f1, only its parent dir.  After a crash the rm -rf must
75  * be replayed.  This must be able to recurse down the entire
76  * directory tree.  The inode link count fixup code takes care of the
77  * ugly details.
78  */
79 
80 /*
81  * stages for the tree walking.  The first
82  * stage (0) is to only pin down the blocks we find
83  * the second stage (1) is to make sure that all the inodes
84  * we find in the log are created in the subvolume.
85  *
86  * The last stage is to deal with directories and links and extents
87  * and all the other fun semantics
88  */
89 enum {
90 	LOG_WALK_PIN_ONLY,
91 	LOG_WALK_REPLAY_INODES,
92 	LOG_WALK_REPLAY_DIR_INDEX,
93 	LOG_WALK_REPLAY_ALL,
94 };
95 
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 			   struct btrfs_root *root, struct btrfs_inode *inode,
98 			   int inode_only,
99 			   struct btrfs_log_ctx *ctx);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 			     struct btrfs_root *root,
102 			     struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 				       struct btrfs_root *root,
105 				       struct btrfs_root *log,
106 				       struct btrfs_path *path,
107 				       u64 dirid, int del_all);
108 static void wait_log_commit(struct btrfs_root *root, int transid);
109 
110 /*
111  * tree logging is a special write ahead log used to make sure that
112  * fsyncs and O_SYNCs can happen without doing full tree commits.
113  *
114  * Full tree commits are expensive because they require commonly
115  * modified blocks to be recowed, creating many dirty pages in the
116  * extent tree an 4x-6x higher write load than ext3.
117  *
118  * Instead of doing a tree commit on every fsync, we use the
119  * key ranges and transaction ids to find items for a given file or directory
120  * that have changed in this transaction.  Those items are copied into
121  * a special tree (one per subvolume root), that tree is written to disk
122  * and then the fsync is considered complete.
123  *
124  * After a crash, items are copied out of the log-tree back into the
125  * subvolume tree.  Any file data extents found are recorded in the extent
126  * allocation tree, and the log-tree freed.
127  *
128  * The log tree is read three times, once to pin down all the extents it is
129  * using in ram and once, once to create all the inodes logged in the tree
130  * and once to do all the other items.
131  */
132 
133 /*
134  * start a sub transaction and setup the log tree
135  * this increments the log tree writer count to make the people
136  * syncing the tree wait for us to finish
137  */
138 static int start_log_trans(struct btrfs_trans_handle *trans,
139 			   struct btrfs_root *root,
140 			   struct btrfs_log_ctx *ctx)
141 {
142 	struct btrfs_fs_info *fs_info = root->fs_info;
143 	struct btrfs_root *tree_root = fs_info->tree_root;
144 	const bool zoned = btrfs_is_zoned(fs_info);
145 	int ret = 0;
146 	bool created = false;
147 
148 	/*
149 	 * First check if the log root tree was already created. If not, create
150 	 * it before locking the root's log_mutex, just to keep lockdep happy.
151 	 */
152 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
153 		mutex_lock(&tree_root->log_mutex);
154 		if (!fs_info->log_root_tree) {
155 			ret = btrfs_init_log_root_tree(trans, fs_info);
156 			if (!ret) {
157 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
158 				created = true;
159 			}
160 		}
161 		mutex_unlock(&tree_root->log_mutex);
162 		if (ret)
163 			return ret;
164 	}
165 
166 	mutex_lock(&root->log_mutex);
167 
168 again:
169 	if (root->log_root) {
170 		int index = (root->log_transid + 1) % 2;
171 
172 		if (btrfs_need_log_full_commit(trans)) {
173 			ret = -EAGAIN;
174 			goto out;
175 		}
176 
177 		if (zoned && atomic_read(&root->log_commit[index])) {
178 			wait_log_commit(root, root->log_transid - 1);
179 			goto again;
180 		}
181 
182 		if (!root->log_start_pid) {
183 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
184 			root->log_start_pid = current->pid;
185 		} else if (root->log_start_pid != current->pid) {
186 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
187 		}
188 	} else {
189 		/*
190 		 * This means fs_info->log_root_tree was already created
191 		 * for some other FS trees. Do the full commit not to mix
192 		 * nodes from multiple log transactions to do sequential
193 		 * writing.
194 		 */
195 		if (zoned && !created) {
196 			ret = -EAGAIN;
197 			goto out;
198 		}
199 
200 		ret = btrfs_add_log_tree(trans, root);
201 		if (ret)
202 			goto out;
203 
204 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
205 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
206 		root->log_start_pid = current->pid;
207 	}
208 
209 	atomic_inc(&root->log_writers);
210 	if (ctx && !ctx->logging_new_name) {
211 		int index = root->log_transid % 2;
212 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
213 		ctx->log_transid = root->log_transid;
214 	}
215 
216 out:
217 	mutex_unlock(&root->log_mutex);
218 	return ret;
219 }
220 
221 /*
222  * returns 0 if there was a log transaction running and we were able
223  * to join, or returns -ENOENT if there were not transactions
224  * in progress
225  */
226 static int join_running_log_trans(struct btrfs_root *root)
227 {
228 	const bool zoned = btrfs_is_zoned(root->fs_info);
229 	int ret = -ENOENT;
230 
231 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
232 		return ret;
233 
234 	mutex_lock(&root->log_mutex);
235 again:
236 	if (root->log_root) {
237 		int index = (root->log_transid + 1) % 2;
238 
239 		ret = 0;
240 		if (zoned && atomic_read(&root->log_commit[index])) {
241 			wait_log_commit(root, root->log_transid - 1);
242 			goto again;
243 		}
244 		atomic_inc(&root->log_writers);
245 	}
246 	mutex_unlock(&root->log_mutex);
247 	return ret;
248 }
249 
250 /*
251  * This either makes the current running log transaction wait
252  * until you call btrfs_end_log_trans() or it makes any future
253  * log transactions wait until you call btrfs_end_log_trans()
254  */
255 void btrfs_pin_log_trans(struct btrfs_root *root)
256 {
257 	atomic_inc(&root->log_writers);
258 }
259 
260 /*
261  * indicate we're done making changes to the log tree
262  * and wake up anyone waiting to do a sync
263  */
264 void btrfs_end_log_trans(struct btrfs_root *root)
265 {
266 	if (atomic_dec_and_test(&root->log_writers)) {
267 		/* atomic_dec_and_test implies a barrier */
268 		cond_wake_up_nomb(&root->log_writer_wait);
269 	}
270 }
271 
272 static int btrfs_write_tree_block(struct extent_buffer *buf)
273 {
274 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
275 					buf->start + buf->len - 1);
276 }
277 
278 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
279 {
280 	filemap_fdatawait_range(buf->pages[0]->mapping,
281 			        buf->start, buf->start + buf->len - 1);
282 }
283 
284 /*
285  * the walk control struct is used to pass state down the chain when
286  * processing the log tree.  The stage field tells us which part
287  * of the log tree processing we are currently doing.  The others
288  * are state fields used for that specific part
289  */
290 struct walk_control {
291 	/* should we free the extent on disk when done?  This is used
292 	 * at transaction commit time while freeing a log tree
293 	 */
294 	int free;
295 
296 	/* should we write out the extent buffer?  This is used
297 	 * while flushing the log tree to disk during a sync
298 	 */
299 	int write;
300 
301 	/* should we wait for the extent buffer io to finish?  Also used
302 	 * while flushing the log tree to disk for a sync
303 	 */
304 	int wait;
305 
306 	/* pin only walk, we record which extents on disk belong to the
307 	 * log trees
308 	 */
309 	int pin;
310 
311 	/* what stage of the replay code we're currently in */
312 	int stage;
313 
314 	/*
315 	 * Ignore any items from the inode currently being processed. Needs
316 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
317 	 * the LOG_WALK_REPLAY_INODES stage.
318 	 */
319 	bool ignore_cur_inode;
320 
321 	/* the root we are currently replaying */
322 	struct btrfs_root *replay_dest;
323 
324 	/* the trans handle for the current replay */
325 	struct btrfs_trans_handle *trans;
326 
327 	/* the function that gets used to process blocks we find in the
328 	 * tree.  Note the extent_buffer might not be up to date when it is
329 	 * passed in, and it must be checked or read if you need the data
330 	 * inside it
331 	 */
332 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
333 			    struct walk_control *wc, u64 gen, int level);
334 };
335 
336 /*
337  * process_func used to pin down extents, write them or wait on them
338  */
339 static int process_one_buffer(struct btrfs_root *log,
340 			      struct extent_buffer *eb,
341 			      struct walk_control *wc, u64 gen, int level)
342 {
343 	struct btrfs_fs_info *fs_info = log->fs_info;
344 	int ret = 0;
345 
346 	/*
347 	 * If this fs is mixed then we need to be able to process the leaves to
348 	 * pin down any logged extents, so we have to read the block.
349 	 */
350 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
351 		ret = btrfs_read_buffer(eb, gen, level, NULL);
352 		if (ret)
353 			return ret;
354 	}
355 
356 	if (wc->pin)
357 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
358 						      eb->len);
359 
360 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
361 		if (wc->pin && btrfs_header_level(eb) == 0)
362 			ret = btrfs_exclude_logged_extents(eb);
363 		if (wc->write)
364 			btrfs_write_tree_block(eb);
365 		if (wc->wait)
366 			btrfs_wait_tree_block_writeback(eb);
367 	}
368 	return ret;
369 }
370 
371 /*
372  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
373  * to the src data we are copying out.
374  *
375  * root is the tree we are copying into, and path is a scratch
376  * path for use in this function (it should be released on entry and
377  * will be released on exit).
378  *
379  * If the key is already in the destination tree the existing item is
380  * overwritten.  If the existing item isn't big enough, it is extended.
381  * If it is too large, it is truncated.
382  *
383  * If the key isn't in the destination yet, a new item is inserted.
384  */
385 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
386 				   struct btrfs_root *root,
387 				   struct btrfs_path *path,
388 				   struct extent_buffer *eb, int slot,
389 				   struct btrfs_key *key)
390 {
391 	int ret;
392 	u32 item_size;
393 	u64 saved_i_size = 0;
394 	int save_old_i_size = 0;
395 	unsigned long src_ptr;
396 	unsigned long dst_ptr;
397 	int overwrite_root = 0;
398 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
399 
400 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
401 		overwrite_root = 1;
402 
403 	item_size = btrfs_item_size_nr(eb, slot);
404 	src_ptr = btrfs_item_ptr_offset(eb, slot);
405 
406 	/* look for the key in the destination tree */
407 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
408 	if (ret < 0)
409 		return ret;
410 
411 	if (ret == 0) {
412 		char *src_copy;
413 		char *dst_copy;
414 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
415 						  path->slots[0]);
416 		if (dst_size != item_size)
417 			goto insert;
418 
419 		if (item_size == 0) {
420 			btrfs_release_path(path);
421 			return 0;
422 		}
423 		dst_copy = kmalloc(item_size, GFP_NOFS);
424 		src_copy = kmalloc(item_size, GFP_NOFS);
425 		if (!dst_copy || !src_copy) {
426 			btrfs_release_path(path);
427 			kfree(dst_copy);
428 			kfree(src_copy);
429 			return -ENOMEM;
430 		}
431 
432 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
433 
434 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
435 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
436 				   item_size);
437 		ret = memcmp(dst_copy, src_copy, item_size);
438 
439 		kfree(dst_copy);
440 		kfree(src_copy);
441 		/*
442 		 * they have the same contents, just return, this saves
443 		 * us from cowing blocks in the destination tree and doing
444 		 * extra writes that may not have been done by a previous
445 		 * sync
446 		 */
447 		if (ret == 0) {
448 			btrfs_release_path(path);
449 			return 0;
450 		}
451 
452 		/*
453 		 * We need to load the old nbytes into the inode so when we
454 		 * replay the extents we've logged we get the right nbytes.
455 		 */
456 		if (inode_item) {
457 			struct btrfs_inode_item *item;
458 			u64 nbytes;
459 			u32 mode;
460 
461 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
462 					      struct btrfs_inode_item);
463 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
464 			item = btrfs_item_ptr(eb, slot,
465 					      struct btrfs_inode_item);
466 			btrfs_set_inode_nbytes(eb, item, nbytes);
467 
468 			/*
469 			 * If this is a directory we need to reset the i_size to
470 			 * 0 so that we can set it up properly when replaying
471 			 * the rest of the items in this log.
472 			 */
473 			mode = btrfs_inode_mode(eb, item);
474 			if (S_ISDIR(mode))
475 				btrfs_set_inode_size(eb, item, 0);
476 		}
477 	} else if (inode_item) {
478 		struct btrfs_inode_item *item;
479 		u32 mode;
480 
481 		/*
482 		 * New inode, set nbytes to 0 so that the nbytes comes out
483 		 * properly when we replay the extents.
484 		 */
485 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
486 		btrfs_set_inode_nbytes(eb, item, 0);
487 
488 		/*
489 		 * If this is a directory we need to reset the i_size to 0 so
490 		 * that we can set it up properly when replaying the rest of
491 		 * the items in this log.
492 		 */
493 		mode = btrfs_inode_mode(eb, item);
494 		if (S_ISDIR(mode))
495 			btrfs_set_inode_size(eb, item, 0);
496 	}
497 insert:
498 	btrfs_release_path(path);
499 	/* try to insert the key into the destination tree */
500 	path->skip_release_on_error = 1;
501 	ret = btrfs_insert_empty_item(trans, root, path,
502 				      key, item_size);
503 	path->skip_release_on_error = 0;
504 
505 	/* make sure any existing item is the correct size */
506 	if (ret == -EEXIST || ret == -EOVERFLOW) {
507 		u32 found_size;
508 		found_size = btrfs_item_size_nr(path->nodes[0],
509 						path->slots[0]);
510 		if (found_size > item_size)
511 			btrfs_truncate_item(path, item_size, 1);
512 		else if (found_size < item_size)
513 			btrfs_extend_item(path, item_size - found_size);
514 	} else if (ret) {
515 		return ret;
516 	}
517 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
518 					path->slots[0]);
519 
520 	/* don't overwrite an existing inode if the generation number
521 	 * was logged as zero.  This is done when the tree logging code
522 	 * is just logging an inode to make sure it exists after recovery.
523 	 *
524 	 * Also, don't overwrite i_size on directories during replay.
525 	 * log replay inserts and removes directory items based on the
526 	 * state of the tree found in the subvolume, and i_size is modified
527 	 * as it goes
528 	 */
529 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
530 		struct btrfs_inode_item *src_item;
531 		struct btrfs_inode_item *dst_item;
532 
533 		src_item = (struct btrfs_inode_item *)src_ptr;
534 		dst_item = (struct btrfs_inode_item *)dst_ptr;
535 
536 		if (btrfs_inode_generation(eb, src_item) == 0) {
537 			struct extent_buffer *dst_eb = path->nodes[0];
538 			const u64 ino_size = btrfs_inode_size(eb, src_item);
539 
540 			/*
541 			 * For regular files an ino_size == 0 is used only when
542 			 * logging that an inode exists, as part of a directory
543 			 * fsync, and the inode wasn't fsynced before. In this
544 			 * case don't set the size of the inode in the fs/subvol
545 			 * tree, otherwise we would be throwing valid data away.
546 			 */
547 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
548 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
549 			    ino_size != 0)
550 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
551 			goto no_copy;
552 		}
553 
554 		if (overwrite_root &&
555 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
556 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
557 			save_old_i_size = 1;
558 			saved_i_size = btrfs_inode_size(path->nodes[0],
559 							dst_item);
560 		}
561 	}
562 
563 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
564 			   src_ptr, item_size);
565 
566 	if (save_old_i_size) {
567 		struct btrfs_inode_item *dst_item;
568 		dst_item = (struct btrfs_inode_item *)dst_ptr;
569 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
570 	}
571 
572 	/* make sure the generation is filled in */
573 	if (key->type == BTRFS_INODE_ITEM_KEY) {
574 		struct btrfs_inode_item *dst_item;
575 		dst_item = (struct btrfs_inode_item *)dst_ptr;
576 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
577 			btrfs_set_inode_generation(path->nodes[0], dst_item,
578 						   trans->transid);
579 		}
580 	}
581 no_copy:
582 	btrfs_mark_buffer_dirty(path->nodes[0]);
583 	btrfs_release_path(path);
584 	return 0;
585 }
586 
587 /*
588  * simple helper to read an inode off the disk from a given root
589  * This can only be called for subvolume roots and not for the log
590  */
591 static noinline struct inode *read_one_inode(struct btrfs_root *root,
592 					     u64 objectid)
593 {
594 	struct inode *inode;
595 
596 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
597 	if (IS_ERR(inode))
598 		inode = NULL;
599 	return inode;
600 }
601 
602 /* replays a single extent in 'eb' at 'slot' with 'key' into the
603  * subvolume 'root'.  path is released on entry and should be released
604  * on exit.
605  *
606  * extents in the log tree have not been allocated out of the extent
607  * tree yet.  So, this completes the allocation, taking a reference
608  * as required if the extent already exists or creating a new extent
609  * if it isn't in the extent allocation tree yet.
610  *
611  * The extent is inserted into the file, dropping any existing extents
612  * from the file that overlap the new one.
613  */
614 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
615 				      struct btrfs_root *root,
616 				      struct btrfs_path *path,
617 				      struct extent_buffer *eb, int slot,
618 				      struct btrfs_key *key)
619 {
620 	struct btrfs_drop_extents_args drop_args = { 0 };
621 	struct btrfs_fs_info *fs_info = root->fs_info;
622 	int found_type;
623 	u64 extent_end;
624 	u64 start = key->offset;
625 	u64 nbytes = 0;
626 	struct btrfs_file_extent_item *item;
627 	struct inode *inode = NULL;
628 	unsigned long size;
629 	int ret = 0;
630 
631 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
632 	found_type = btrfs_file_extent_type(eb, item);
633 
634 	if (found_type == BTRFS_FILE_EXTENT_REG ||
635 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
636 		nbytes = btrfs_file_extent_num_bytes(eb, item);
637 		extent_end = start + nbytes;
638 
639 		/*
640 		 * We don't add to the inodes nbytes if we are prealloc or a
641 		 * hole.
642 		 */
643 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
644 			nbytes = 0;
645 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
646 		size = btrfs_file_extent_ram_bytes(eb, item);
647 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
648 		extent_end = ALIGN(start + size,
649 				   fs_info->sectorsize);
650 	} else {
651 		ret = 0;
652 		goto out;
653 	}
654 
655 	inode = read_one_inode(root, key->objectid);
656 	if (!inode) {
657 		ret = -EIO;
658 		goto out;
659 	}
660 
661 	/*
662 	 * first check to see if we already have this extent in the
663 	 * file.  This must be done before the btrfs_drop_extents run
664 	 * so we don't try to drop this extent.
665 	 */
666 	ret = btrfs_lookup_file_extent(trans, root, path,
667 			btrfs_ino(BTRFS_I(inode)), start, 0);
668 
669 	if (ret == 0 &&
670 	    (found_type == BTRFS_FILE_EXTENT_REG ||
671 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
672 		struct btrfs_file_extent_item cmp1;
673 		struct btrfs_file_extent_item cmp2;
674 		struct btrfs_file_extent_item *existing;
675 		struct extent_buffer *leaf;
676 
677 		leaf = path->nodes[0];
678 		existing = btrfs_item_ptr(leaf, path->slots[0],
679 					  struct btrfs_file_extent_item);
680 
681 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
682 				   sizeof(cmp1));
683 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
684 				   sizeof(cmp2));
685 
686 		/*
687 		 * we already have a pointer to this exact extent,
688 		 * we don't have to do anything
689 		 */
690 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
691 			btrfs_release_path(path);
692 			goto out;
693 		}
694 	}
695 	btrfs_release_path(path);
696 
697 	/* drop any overlapping extents */
698 	drop_args.start = start;
699 	drop_args.end = extent_end;
700 	drop_args.drop_cache = true;
701 	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
702 	if (ret)
703 		goto out;
704 
705 	if (found_type == BTRFS_FILE_EXTENT_REG ||
706 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
707 		u64 offset;
708 		unsigned long dest_offset;
709 		struct btrfs_key ins;
710 
711 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
712 		    btrfs_fs_incompat(fs_info, NO_HOLES))
713 			goto update_inode;
714 
715 		ret = btrfs_insert_empty_item(trans, root, path, key,
716 					      sizeof(*item));
717 		if (ret)
718 			goto out;
719 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
720 						    path->slots[0]);
721 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
722 				(unsigned long)item,  sizeof(*item));
723 
724 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
725 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
726 		ins.type = BTRFS_EXTENT_ITEM_KEY;
727 		offset = key->offset - btrfs_file_extent_offset(eb, item);
728 
729 		/*
730 		 * Manually record dirty extent, as here we did a shallow
731 		 * file extent item copy and skip normal backref update,
732 		 * but modifying extent tree all by ourselves.
733 		 * So need to manually record dirty extent for qgroup,
734 		 * as the owner of the file extent changed from log tree
735 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
736 		 */
737 		ret = btrfs_qgroup_trace_extent(trans,
738 				btrfs_file_extent_disk_bytenr(eb, item),
739 				btrfs_file_extent_disk_num_bytes(eb, item),
740 				GFP_NOFS);
741 		if (ret < 0)
742 			goto out;
743 
744 		if (ins.objectid > 0) {
745 			struct btrfs_ref ref = { 0 };
746 			u64 csum_start;
747 			u64 csum_end;
748 			LIST_HEAD(ordered_sums);
749 
750 			/*
751 			 * is this extent already allocated in the extent
752 			 * allocation tree?  If so, just add a reference
753 			 */
754 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
755 						ins.offset);
756 			if (ret == 0) {
757 				btrfs_init_generic_ref(&ref,
758 						BTRFS_ADD_DELAYED_REF,
759 						ins.objectid, ins.offset, 0);
760 				btrfs_init_data_ref(&ref,
761 						root->root_key.objectid,
762 						key->objectid, offset);
763 				ret = btrfs_inc_extent_ref(trans, &ref);
764 				if (ret)
765 					goto out;
766 			} else {
767 				/*
768 				 * insert the extent pointer in the extent
769 				 * allocation tree
770 				 */
771 				ret = btrfs_alloc_logged_file_extent(trans,
772 						root->root_key.objectid,
773 						key->objectid, offset, &ins);
774 				if (ret)
775 					goto out;
776 			}
777 			btrfs_release_path(path);
778 
779 			if (btrfs_file_extent_compression(eb, item)) {
780 				csum_start = ins.objectid;
781 				csum_end = csum_start + ins.offset;
782 			} else {
783 				csum_start = ins.objectid +
784 					btrfs_file_extent_offset(eb, item);
785 				csum_end = csum_start +
786 					btrfs_file_extent_num_bytes(eb, item);
787 			}
788 
789 			ret = btrfs_lookup_csums_range(root->log_root,
790 						csum_start, csum_end - 1,
791 						&ordered_sums, 0);
792 			if (ret)
793 				goto out;
794 			/*
795 			 * Now delete all existing cums in the csum root that
796 			 * cover our range. We do this because we can have an
797 			 * extent that is completely referenced by one file
798 			 * extent item and partially referenced by another
799 			 * file extent item (like after using the clone or
800 			 * extent_same ioctls). In this case if we end up doing
801 			 * the replay of the one that partially references the
802 			 * extent first, and we do not do the csum deletion
803 			 * below, we can get 2 csum items in the csum tree that
804 			 * overlap each other. For example, imagine our log has
805 			 * the two following file extent items:
806 			 *
807 			 * key (257 EXTENT_DATA 409600)
808 			 *     extent data disk byte 12845056 nr 102400
809 			 *     extent data offset 20480 nr 20480 ram 102400
810 			 *
811 			 * key (257 EXTENT_DATA 819200)
812 			 *     extent data disk byte 12845056 nr 102400
813 			 *     extent data offset 0 nr 102400 ram 102400
814 			 *
815 			 * Where the second one fully references the 100K extent
816 			 * that starts at disk byte 12845056, and the log tree
817 			 * has a single csum item that covers the entire range
818 			 * of the extent:
819 			 *
820 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
821 			 *
822 			 * After the first file extent item is replayed, the
823 			 * csum tree gets the following csum item:
824 			 *
825 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
826 			 *
827 			 * Which covers the 20K sub-range starting at offset 20K
828 			 * of our extent. Now when we replay the second file
829 			 * extent item, if we do not delete existing csum items
830 			 * that cover any of its blocks, we end up getting two
831 			 * csum items in our csum tree that overlap each other:
832 			 *
833 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
834 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
835 			 *
836 			 * Which is a problem, because after this anyone trying
837 			 * to lookup up for the checksum of any block of our
838 			 * extent starting at an offset of 40K or higher, will
839 			 * end up looking at the second csum item only, which
840 			 * does not contain the checksum for any block starting
841 			 * at offset 40K or higher of our extent.
842 			 */
843 			while (!list_empty(&ordered_sums)) {
844 				struct btrfs_ordered_sum *sums;
845 				sums = list_entry(ordered_sums.next,
846 						struct btrfs_ordered_sum,
847 						list);
848 				if (!ret)
849 					ret = btrfs_del_csums(trans,
850 							      fs_info->csum_root,
851 							      sums->bytenr,
852 							      sums->len);
853 				if (!ret)
854 					ret = btrfs_csum_file_blocks(trans,
855 						fs_info->csum_root, sums);
856 				list_del(&sums->list);
857 				kfree(sums);
858 			}
859 			if (ret)
860 				goto out;
861 		} else {
862 			btrfs_release_path(path);
863 		}
864 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
865 		/* inline extents are easy, we just overwrite them */
866 		ret = overwrite_item(trans, root, path, eb, slot, key);
867 		if (ret)
868 			goto out;
869 	}
870 
871 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
872 						extent_end - start);
873 	if (ret)
874 		goto out;
875 
876 update_inode:
877 	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
878 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
879 out:
880 	if (inode)
881 		iput(inode);
882 	return ret;
883 }
884 
885 /*
886  * when cleaning up conflicts between the directory names in the
887  * subvolume, directory names in the log and directory names in the
888  * inode back references, we may have to unlink inodes from directories.
889  *
890  * This is a helper function to do the unlink of a specific directory
891  * item
892  */
893 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
894 				      struct btrfs_root *root,
895 				      struct btrfs_path *path,
896 				      struct btrfs_inode *dir,
897 				      struct btrfs_dir_item *di)
898 {
899 	struct inode *inode;
900 	char *name;
901 	int name_len;
902 	struct extent_buffer *leaf;
903 	struct btrfs_key location;
904 	int ret;
905 
906 	leaf = path->nodes[0];
907 
908 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
909 	name_len = btrfs_dir_name_len(leaf, di);
910 	name = kmalloc(name_len, GFP_NOFS);
911 	if (!name)
912 		return -ENOMEM;
913 
914 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
915 	btrfs_release_path(path);
916 
917 	inode = read_one_inode(root, location.objectid);
918 	if (!inode) {
919 		ret = -EIO;
920 		goto out;
921 	}
922 
923 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
924 	if (ret)
925 		goto out;
926 
927 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
928 			name_len);
929 	if (ret)
930 		goto out;
931 	else
932 		ret = btrfs_run_delayed_items(trans);
933 out:
934 	kfree(name);
935 	iput(inode);
936 	return ret;
937 }
938 
939 /*
940  * helper function to see if a given name and sequence number found
941  * in an inode back reference are already in a directory and correctly
942  * point to this inode
943  */
944 static noinline int inode_in_dir(struct btrfs_root *root,
945 				 struct btrfs_path *path,
946 				 u64 dirid, u64 objectid, u64 index,
947 				 const char *name, int name_len)
948 {
949 	struct btrfs_dir_item *di;
950 	struct btrfs_key location;
951 	int match = 0;
952 
953 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
954 					 index, name, name_len, 0);
955 	if (di && !IS_ERR(di)) {
956 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
957 		if (location.objectid != objectid)
958 			goto out;
959 	} else
960 		goto out;
961 	btrfs_release_path(path);
962 
963 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
964 	if (di && !IS_ERR(di)) {
965 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
966 		if (location.objectid != objectid)
967 			goto out;
968 	} else
969 		goto out;
970 	match = 1;
971 out:
972 	btrfs_release_path(path);
973 	return match;
974 }
975 
976 /*
977  * helper function to check a log tree for a named back reference in
978  * an inode.  This is used to decide if a back reference that is
979  * found in the subvolume conflicts with what we find in the log.
980  *
981  * inode backreferences may have multiple refs in a single item,
982  * during replay we process one reference at a time, and we don't
983  * want to delete valid links to a file from the subvolume if that
984  * link is also in the log.
985  */
986 static noinline int backref_in_log(struct btrfs_root *log,
987 				   struct btrfs_key *key,
988 				   u64 ref_objectid,
989 				   const char *name, int namelen)
990 {
991 	struct btrfs_path *path;
992 	int ret;
993 
994 	path = btrfs_alloc_path();
995 	if (!path)
996 		return -ENOMEM;
997 
998 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
999 	if (ret < 0) {
1000 		goto out;
1001 	} else if (ret == 1) {
1002 		ret = 0;
1003 		goto out;
1004 	}
1005 
1006 	if (key->type == BTRFS_INODE_EXTREF_KEY)
1007 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1008 						       path->slots[0],
1009 						       ref_objectid,
1010 						       name, namelen);
1011 	else
1012 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1013 						   path->slots[0],
1014 						   name, namelen);
1015 out:
1016 	btrfs_free_path(path);
1017 	return ret;
1018 }
1019 
1020 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1021 				  struct btrfs_root *root,
1022 				  struct btrfs_path *path,
1023 				  struct btrfs_root *log_root,
1024 				  struct btrfs_inode *dir,
1025 				  struct btrfs_inode *inode,
1026 				  u64 inode_objectid, u64 parent_objectid,
1027 				  u64 ref_index, char *name, int namelen,
1028 				  int *search_done)
1029 {
1030 	int ret;
1031 	char *victim_name;
1032 	int victim_name_len;
1033 	struct extent_buffer *leaf;
1034 	struct btrfs_dir_item *di;
1035 	struct btrfs_key search_key;
1036 	struct btrfs_inode_extref *extref;
1037 
1038 again:
1039 	/* Search old style refs */
1040 	search_key.objectid = inode_objectid;
1041 	search_key.type = BTRFS_INODE_REF_KEY;
1042 	search_key.offset = parent_objectid;
1043 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1044 	if (ret == 0) {
1045 		struct btrfs_inode_ref *victim_ref;
1046 		unsigned long ptr;
1047 		unsigned long ptr_end;
1048 
1049 		leaf = path->nodes[0];
1050 
1051 		/* are we trying to overwrite a back ref for the root directory
1052 		 * if so, just jump out, we're done
1053 		 */
1054 		if (search_key.objectid == search_key.offset)
1055 			return 1;
1056 
1057 		/* check all the names in this back reference to see
1058 		 * if they are in the log.  if so, we allow them to stay
1059 		 * otherwise they must be unlinked as a conflict
1060 		 */
1061 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1062 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1063 		while (ptr < ptr_end) {
1064 			victim_ref = (struct btrfs_inode_ref *)ptr;
1065 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1066 								   victim_ref);
1067 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1068 			if (!victim_name)
1069 				return -ENOMEM;
1070 
1071 			read_extent_buffer(leaf, victim_name,
1072 					   (unsigned long)(victim_ref + 1),
1073 					   victim_name_len);
1074 
1075 			ret = backref_in_log(log_root, &search_key,
1076 					     parent_objectid, victim_name,
1077 					     victim_name_len);
1078 			if (ret < 0) {
1079 				kfree(victim_name);
1080 				return ret;
1081 			} else if (!ret) {
1082 				inc_nlink(&inode->vfs_inode);
1083 				btrfs_release_path(path);
1084 
1085 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1086 						victim_name, victim_name_len);
1087 				kfree(victim_name);
1088 				if (ret)
1089 					return ret;
1090 				ret = btrfs_run_delayed_items(trans);
1091 				if (ret)
1092 					return ret;
1093 				*search_done = 1;
1094 				goto again;
1095 			}
1096 			kfree(victim_name);
1097 
1098 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1099 		}
1100 
1101 		/*
1102 		 * NOTE: we have searched root tree and checked the
1103 		 * corresponding ref, it does not need to check again.
1104 		 */
1105 		*search_done = 1;
1106 	}
1107 	btrfs_release_path(path);
1108 
1109 	/* Same search but for extended refs */
1110 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1111 					   inode_objectid, parent_objectid, 0,
1112 					   0);
1113 	if (!IS_ERR_OR_NULL(extref)) {
1114 		u32 item_size;
1115 		u32 cur_offset = 0;
1116 		unsigned long base;
1117 		struct inode *victim_parent;
1118 
1119 		leaf = path->nodes[0];
1120 
1121 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1122 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1123 
1124 		while (cur_offset < item_size) {
1125 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1126 
1127 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1128 
1129 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1130 				goto next;
1131 
1132 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1133 			if (!victim_name)
1134 				return -ENOMEM;
1135 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1136 					   victim_name_len);
1137 
1138 			search_key.objectid = inode_objectid;
1139 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1140 			search_key.offset = btrfs_extref_hash(parent_objectid,
1141 							      victim_name,
1142 							      victim_name_len);
1143 			ret = backref_in_log(log_root, &search_key,
1144 					     parent_objectid, victim_name,
1145 					     victim_name_len);
1146 			if (ret < 0) {
1147 				return ret;
1148 			} else if (!ret) {
1149 				ret = -ENOENT;
1150 				victim_parent = read_one_inode(root,
1151 						parent_objectid);
1152 				if (victim_parent) {
1153 					inc_nlink(&inode->vfs_inode);
1154 					btrfs_release_path(path);
1155 
1156 					ret = btrfs_unlink_inode(trans, root,
1157 							BTRFS_I(victim_parent),
1158 							inode,
1159 							victim_name,
1160 							victim_name_len);
1161 					if (!ret)
1162 						ret = btrfs_run_delayed_items(
1163 								  trans);
1164 				}
1165 				iput(victim_parent);
1166 				kfree(victim_name);
1167 				if (ret)
1168 					return ret;
1169 				*search_done = 1;
1170 				goto again;
1171 			}
1172 			kfree(victim_name);
1173 next:
1174 			cur_offset += victim_name_len + sizeof(*extref);
1175 		}
1176 		*search_done = 1;
1177 	}
1178 	btrfs_release_path(path);
1179 
1180 	/* look for a conflicting sequence number */
1181 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1182 					 ref_index, name, namelen, 0);
1183 	if (di && !IS_ERR(di)) {
1184 		ret = drop_one_dir_item(trans, root, path, dir, di);
1185 		if (ret)
1186 			return ret;
1187 	}
1188 	btrfs_release_path(path);
1189 
1190 	/* look for a conflicting name */
1191 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1192 				   name, namelen, 0);
1193 	if (di && !IS_ERR(di)) {
1194 		ret = drop_one_dir_item(trans, root, path, dir, di);
1195 		if (ret)
1196 			return ret;
1197 	}
1198 	btrfs_release_path(path);
1199 
1200 	return 0;
1201 }
1202 
1203 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1204 			     u32 *namelen, char **name, u64 *index,
1205 			     u64 *parent_objectid)
1206 {
1207 	struct btrfs_inode_extref *extref;
1208 
1209 	extref = (struct btrfs_inode_extref *)ref_ptr;
1210 
1211 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1212 	*name = kmalloc(*namelen, GFP_NOFS);
1213 	if (*name == NULL)
1214 		return -ENOMEM;
1215 
1216 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1217 			   *namelen);
1218 
1219 	if (index)
1220 		*index = btrfs_inode_extref_index(eb, extref);
1221 	if (parent_objectid)
1222 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1223 
1224 	return 0;
1225 }
1226 
1227 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1228 			  u32 *namelen, char **name, u64 *index)
1229 {
1230 	struct btrfs_inode_ref *ref;
1231 
1232 	ref = (struct btrfs_inode_ref *)ref_ptr;
1233 
1234 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1235 	*name = kmalloc(*namelen, GFP_NOFS);
1236 	if (*name == NULL)
1237 		return -ENOMEM;
1238 
1239 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1240 
1241 	if (index)
1242 		*index = btrfs_inode_ref_index(eb, ref);
1243 
1244 	return 0;
1245 }
1246 
1247 /*
1248  * Take an inode reference item from the log tree and iterate all names from the
1249  * inode reference item in the subvolume tree with the same key (if it exists).
1250  * For any name that is not in the inode reference item from the log tree, do a
1251  * proper unlink of that name (that is, remove its entry from the inode
1252  * reference item and both dir index keys).
1253  */
1254 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1255 				 struct btrfs_root *root,
1256 				 struct btrfs_path *path,
1257 				 struct btrfs_inode *inode,
1258 				 struct extent_buffer *log_eb,
1259 				 int log_slot,
1260 				 struct btrfs_key *key)
1261 {
1262 	int ret;
1263 	unsigned long ref_ptr;
1264 	unsigned long ref_end;
1265 	struct extent_buffer *eb;
1266 
1267 again:
1268 	btrfs_release_path(path);
1269 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1270 	if (ret > 0) {
1271 		ret = 0;
1272 		goto out;
1273 	}
1274 	if (ret < 0)
1275 		goto out;
1276 
1277 	eb = path->nodes[0];
1278 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1279 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1280 	while (ref_ptr < ref_end) {
1281 		char *name = NULL;
1282 		int namelen;
1283 		u64 parent_id;
1284 
1285 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1286 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1287 						NULL, &parent_id);
1288 		} else {
1289 			parent_id = key->offset;
1290 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1291 					     NULL);
1292 		}
1293 		if (ret)
1294 			goto out;
1295 
1296 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1297 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1298 							       parent_id, name,
1299 							       namelen);
1300 		else
1301 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1302 							   name, namelen);
1303 
1304 		if (!ret) {
1305 			struct inode *dir;
1306 
1307 			btrfs_release_path(path);
1308 			dir = read_one_inode(root, parent_id);
1309 			if (!dir) {
1310 				ret = -ENOENT;
1311 				kfree(name);
1312 				goto out;
1313 			}
1314 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1315 						 inode, name, namelen);
1316 			kfree(name);
1317 			iput(dir);
1318 			if (ret)
1319 				goto out;
1320 			goto again;
1321 		}
1322 
1323 		kfree(name);
1324 		ref_ptr += namelen;
1325 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1326 			ref_ptr += sizeof(struct btrfs_inode_extref);
1327 		else
1328 			ref_ptr += sizeof(struct btrfs_inode_ref);
1329 	}
1330 	ret = 0;
1331  out:
1332 	btrfs_release_path(path);
1333 	return ret;
1334 }
1335 
1336 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1337 				  const u8 ref_type, const char *name,
1338 				  const int namelen)
1339 {
1340 	struct btrfs_key key;
1341 	struct btrfs_path *path;
1342 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1343 	int ret;
1344 
1345 	path = btrfs_alloc_path();
1346 	if (!path)
1347 		return -ENOMEM;
1348 
1349 	key.objectid = btrfs_ino(BTRFS_I(inode));
1350 	key.type = ref_type;
1351 	if (key.type == BTRFS_INODE_REF_KEY)
1352 		key.offset = parent_id;
1353 	else
1354 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1355 
1356 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1357 	if (ret < 0)
1358 		goto out;
1359 	if (ret > 0) {
1360 		ret = 0;
1361 		goto out;
1362 	}
1363 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1364 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1365 				path->slots[0], parent_id, name, namelen);
1366 	else
1367 		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1368 						   name, namelen);
1369 
1370 out:
1371 	btrfs_free_path(path);
1372 	return ret;
1373 }
1374 
1375 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1376 		    struct inode *dir, struct inode *inode, const char *name,
1377 		    int namelen, u64 ref_index)
1378 {
1379 	struct btrfs_dir_item *dir_item;
1380 	struct btrfs_key key;
1381 	struct btrfs_path *path;
1382 	struct inode *other_inode = NULL;
1383 	int ret;
1384 
1385 	path = btrfs_alloc_path();
1386 	if (!path)
1387 		return -ENOMEM;
1388 
1389 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1390 					 btrfs_ino(BTRFS_I(dir)),
1391 					 name, namelen, 0);
1392 	if (!dir_item) {
1393 		btrfs_release_path(path);
1394 		goto add_link;
1395 	} else if (IS_ERR(dir_item)) {
1396 		ret = PTR_ERR(dir_item);
1397 		goto out;
1398 	}
1399 
1400 	/*
1401 	 * Our inode's dentry collides with the dentry of another inode which is
1402 	 * in the log but not yet processed since it has a higher inode number.
1403 	 * So delete that other dentry.
1404 	 */
1405 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1406 	btrfs_release_path(path);
1407 	other_inode = read_one_inode(root, key.objectid);
1408 	if (!other_inode) {
1409 		ret = -ENOENT;
1410 		goto out;
1411 	}
1412 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1413 				 name, namelen);
1414 	if (ret)
1415 		goto out;
1416 	/*
1417 	 * If we dropped the link count to 0, bump it so that later the iput()
1418 	 * on the inode will not free it. We will fixup the link count later.
1419 	 */
1420 	if (other_inode->i_nlink == 0)
1421 		inc_nlink(other_inode);
1422 
1423 	ret = btrfs_run_delayed_items(trans);
1424 	if (ret)
1425 		goto out;
1426 add_link:
1427 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1428 			     name, namelen, 0, ref_index);
1429 out:
1430 	iput(other_inode);
1431 	btrfs_free_path(path);
1432 
1433 	return ret;
1434 }
1435 
1436 /*
1437  * replay one inode back reference item found in the log tree.
1438  * eb, slot and key refer to the buffer and key found in the log tree.
1439  * root is the destination we are replaying into, and path is for temp
1440  * use by this function.  (it should be released on return).
1441  */
1442 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1443 				  struct btrfs_root *root,
1444 				  struct btrfs_root *log,
1445 				  struct btrfs_path *path,
1446 				  struct extent_buffer *eb, int slot,
1447 				  struct btrfs_key *key)
1448 {
1449 	struct inode *dir = NULL;
1450 	struct inode *inode = NULL;
1451 	unsigned long ref_ptr;
1452 	unsigned long ref_end;
1453 	char *name = NULL;
1454 	int namelen;
1455 	int ret;
1456 	int search_done = 0;
1457 	int log_ref_ver = 0;
1458 	u64 parent_objectid;
1459 	u64 inode_objectid;
1460 	u64 ref_index = 0;
1461 	int ref_struct_size;
1462 
1463 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1464 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1465 
1466 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1467 		struct btrfs_inode_extref *r;
1468 
1469 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1470 		log_ref_ver = 1;
1471 		r = (struct btrfs_inode_extref *)ref_ptr;
1472 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1473 	} else {
1474 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1475 		parent_objectid = key->offset;
1476 	}
1477 	inode_objectid = key->objectid;
1478 
1479 	/*
1480 	 * it is possible that we didn't log all the parent directories
1481 	 * for a given inode.  If we don't find the dir, just don't
1482 	 * copy the back ref in.  The link count fixup code will take
1483 	 * care of the rest
1484 	 */
1485 	dir = read_one_inode(root, parent_objectid);
1486 	if (!dir) {
1487 		ret = -ENOENT;
1488 		goto out;
1489 	}
1490 
1491 	inode = read_one_inode(root, inode_objectid);
1492 	if (!inode) {
1493 		ret = -EIO;
1494 		goto out;
1495 	}
1496 
1497 	while (ref_ptr < ref_end) {
1498 		if (log_ref_ver) {
1499 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1500 						&ref_index, &parent_objectid);
1501 			/*
1502 			 * parent object can change from one array
1503 			 * item to another.
1504 			 */
1505 			if (!dir)
1506 				dir = read_one_inode(root, parent_objectid);
1507 			if (!dir) {
1508 				ret = -ENOENT;
1509 				goto out;
1510 			}
1511 		} else {
1512 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1513 					     &ref_index);
1514 		}
1515 		if (ret)
1516 			goto out;
1517 
1518 		/* if we already have a perfect match, we're done */
1519 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1520 					btrfs_ino(BTRFS_I(inode)), ref_index,
1521 					name, namelen)) {
1522 			/*
1523 			 * look for a conflicting back reference in the
1524 			 * metadata. if we find one we have to unlink that name
1525 			 * of the file before we add our new link.  Later on, we
1526 			 * overwrite any existing back reference, and we don't
1527 			 * want to create dangling pointers in the directory.
1528 			 */
1529 
1530 			if (!search_done) {
1531 				ret = __add_inode_ref(trans, root, path, log,
1532 						      BTRFS_I(dir),
1533 						      BTRFS_I(inode),
1534 						      inode_objectid,
1535 						      parent_objectid,
1536 						      ref_index, name, namelen,
1537 						      &search_done);
1538 				if (ret) {
1539 					if (ret == 1)
1540 						ret = 0;
1541 					goto out;
1542 				}
1543 			}
1544 
1545 			/*
1546 			 * If a reference item already exists for this inode
1547 			 * with the same parent and name, but different index,
1548 			 * drop it and the corresponding directory index entries
1549 			 * from the parent before adding the new reference item
1550 			 * and dir index entries, otherwise we would fail with
1551 			 * -EEXIST returned from btrfs_add_link() below.
1552 			 */
1553 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1554 						     name, namelen);
1555 			if (ret > 0) {
1556 				ret = btrfs_unlink_inode(trans, root,
1557 							 BTRFS_I(dir),
1558 							 BTRFS_I(inode),
1559 							 name, namelen);
1560 				/*
1561 				 * If we dropped the link count to 0, bump it so
1562 				 * that later the iput() on the inode will not
1563 				 * free it. We will fixup the link count later.
1564 				 */
1565 				if (!ret && inode->i_nlink == 0)
1566 					inc_nlink(inode);
1567 			}
1568 			if (ret < 0)
1569 				goto out;
1570 
1571 			/* insert our name */
1572 			ret = add_link(trans, root, dir, inode, name, namelen,
1573 				       ref_index);
1574 			if (ret)
1575 				goto out;
1576 
1577 			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1578 			if (ret)
1579 				goto out;
1580 		}
1581 
1582 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1583 		kfree(name);
1584 		name = NULL;
1585 		if (log_ref_ver) {
1586 			iput(dir);
1587 			dir = NULL;
1588 		}
1589 	}
1590 
1591 	/*
1592 	 * Before we overwrite the inode reference item in the subvolume tree
1593 	 * with the item from the log tree, we must unlink all names from the
1594 	 * parent directory that are in the subvolume's tree inode reference
1595 	 * item, otherwise we end up with an inconsistent subvolume tree where
1596 	 * dir index entries exist for a name but there is no inode reference
1597 	 * item with the same name.
1598 	 */
1599 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1600 				    key);
1601 	if (ret)
1602 		goto out;
1603 
1604 	/* finally write the back reference in the inode */
1605 	ret = overwrite_item(trans, root, path, eb, slot, key);
1606 out:
1607 	btrfs_release_path(path);
1608 	kfree(name);
1609 	iput(dir);
1610 	iput(inode);
1611 	return ret;
1612 }
1613 
1614 static int count_inode_extrefs(struct btrfs_root *root,
1615 		struct btrfs_inode *inode, struct btrfs_path *path)
1616 {
1617 	int ret = 0;
1618 	int name_len;
1619 	unsigned int nlink = 0;
1620 	u32 item_size;
1621 	u32 cur_offset = 0;
1622 	u64 inode_objectid = btrfs_ino(inode);
1623 	u64 offset = 0;
1624 	unsigned long ptr;
1625 	struct btrfs_inode_extref *extref;
1626 	struct extent_buffer *leaf;
1627 
1628 	while (1) {
1629 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1630 					    &extref, &offset);
1631 		if (ret)
1632 			break;
1633 
1634 		leaf = path->nodes[0];
1635 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1636 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1637 		cur_offset = 0;
1638 
1639 		while (cur_offset < item_size) {
1640 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1641 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1642 
1643 			nlink++;
1644 
1645 			cur_offset += name_len + sizeof(*extref);
1646 		}
1647 
1648 		offset++;
1649 		btrfs_release_path(path);
1650 	}
1651 	btrfs_release_path(path);
1652 
1653 	if (ret < 0 && ret != -ENOENT)
1654 		return ret;
1655 	return nlink;
1656 }
1657 
1658 static int count_inode_refs(struct btrfs_root *root,
1659 			struct btrfs_inode *inode, struct btrfs_path *path)
1660 {
1661 	int ret;
1662 	struct btrfs_key key;
1663 	unsigned int nlink = 0;
1664 	unsigned long ptr;
1665 	unsigned long ptr_end;
1666 	int name_len;
1667 	u64 ino = btrfs_ino(inode);
1668 
1669 	key.objectid = ino;
1670 	key.type = BTRFS_INODE_REF_KEY;
1671 	key.offset = (u64)-1;
1672 
1673 	while (1) {
1674 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1675 		if (ret < 0)
1676 			break;
1677 		if (ret > 0) {
1678 			if (path->slots[0] == 0)
1679 				break;
1680 			path->slots[0]--;
1681 		}
1682 process_slot:
1683 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1684 				      path->slots[0]);
1685 		if (key.objectid != ino ||
1686 		    key.type != BTRFS_INODE_REF_KEY)
1687 			break;
1688 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1689 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1690 						   path->slots[0]);
1691 		while (ptr < ptr_end) {
1692 			struct btrfs_inode_ref *ref;
1693 
1694 			ref = (struct btrfs_inode_ref *)ptr;
1695 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1696 							    ref);
1697 			ptr = (unsigned long)(ref + 1) + name_len;
1698 			nlink++;
1699 		}
1700 
1701 		if (key.offset == 0)
1702 			break;
1703 		if (path->slots[0] > 0) {
1704 			path->slots[0]--;
1705 			goto process_slot;
1706 		}
1707 		key.offset--;
1708 		btrfs_release_path(path);
1709 	}
1710 	btrfs_release_path(path);
1711 
1712 	return nlink;
1713 }
1714 
1715 /*
1716  * There are a few corners where the link count of the file can't
1717  * be properly maintained during replay.  So, instead of adding
1718  * lots of complexity to the log code, we just scan the backrefs
1719  * for any file that has been through replay.
1720  *
1721  * The scan will update the link count on the inode to reflect the
1722  * number of back refs found.  If it goes down to zero, the iput
1723  * will free the inode.
1724  */
1725 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1726 					   struct btrfs_root *root,
1727 					   struct inode *inode)
1728 {
1729 	struct btrfs_path *path;
1730 	int ret;
1731 	u64 nlink = 0;
1732 	u64 ino = btrfs_ino(BTRFS_I(inode));
1733 
1734 	path = btrfs_alloc_path();
1735 	if (!path)
1736 		return -ENOMEM;
1737 
1738 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1739 	if (ret < 0)
1740 		goto out;
1741 
1742 	nlink = ret;
1743 
1744 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1745 	if (ret < 0)
1746 		goto out;
1747 
1748 	nlink += ret;
1749 
1750 	ret = 0;
1751 
1752 	if (nlink != inode->i_nlink) {
1753 		set_nlink(inode, nlink);
1754 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1755 		if (ret)
1756 			goto out;
1757 	}
1758 	BTRFS_I(inode)->index_cnt = (u64)-1;
1759 
1760 	if (inode->i_nlink == 0) {
1761 		if (S_ISDIR(inode->i_mode)) {
1762 			ret = replay_dir_deletes(trans, root, NULL, path,
1763 						 ino, 1);
1764 			if (ret)
1765 				goto out;
1766 		}
1767 		ret = btrfs_insert_orphan_item(trans, root, ino);
1768 		if (ret == -EEXIST)
1769 			ret = 0;
1770 	}
1771 
1772 out:
1773 	btrfs_free_path(path);
1774 	return ret;
1775 }
1776 
1777 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1778 					    struct btrfs_root *root,
1779 					    struct btrfs_path *path)
1780 {
1781 	int ret;
1782 	struct btrfs_key key;
1783 	struct inode *inode;
1784 
1785 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1786 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1787 	key.offset = (u64)-1;
1788 	while (1) {
1789 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1790 		if (ret < 0)
1791 			break;
1792 
1793 		if (ret == 1) {
1794 			ret = 0;
1795 			if (path->slots[0] == 0)
1796 				break;
1797 			path->slots[0]--;
1798 		}
1799 
1800 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1801 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1802 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1803 			break;
1804 
1805 		ret = btrfs_del_item(trans, root, path);
1806 		if (ret)
1807 			break;
1808 
1809 		btrfs_release_path(path);
1810 		inode = read_one_inode(root, key.offset);
1811 		if (!inode) {
1812 			ret = -EIO;
1813 			break;
1814 		}
1815 
1816 		ret = fixup_inode_link_count(trans, root, inode);
1817 		iput(inode);
1818 		if (ret)
1819 			break;
1820 
1821 		/*
1822 		 * fixup on a directory may create new entries,
1823 		 * make sure we always look for the highset possible
1824 		 * offset
1825 		 */
1826 		key.offset = (u64)-1;
1827 	}
1828 	btrfs_release_path(path);
1829 	return ret;
1830 }
1831 
1832 
1833 /*
1834  * record a given inode in the fixup dir so we can check its link
1835  * count when replay is done.  The link count is incremented here
1836  * so the inode won't go away until we check it
1837  */
1838 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1839 				      struct btrfs_root *root,
1840 				      struct btrfs_path *path,
1841 				      u64 objectid)
1842 {
1843 	struct btrfs_key key;
1844 	int ret = 0;
1845 	struct inode *inode;
1846 
1847 	inode = read_one_inode(root, objectid);
1848 	if (!inode)
1849 		return -EIO;
1850 
1851 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1852 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1853 	key.offset = objectid;
1854 
1855 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1856 
1857 	btrfs_release_path(path);
1858 	if (ret == 0) {
1859 		if (!inode->i_nlink)
1860 			set_nlink(inode, 1);
1861 		else
1862 			inc_nlink(inode);
1863 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1864 	} else if (ret == -EEXIST) {
1865 		ret = 0;
1866 	}
1867 	iput(inode);
1868 
1869 	return ret;
1870 }
1871 
1872 /*
1873  * when replaying the log for a directory, we only insert names
1874  * for inodes that actually exist.  This means an fsync on a directory
1875  * does not implicitly fsync all the new files in it
1876  */
1877 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1878 				    struct btrfs_root *root,
1879 				    u64 dirid, u64 index,
1880 				    char *name, int name_len,
1881 				    struct btrfs_key *location)
1882 {
1883 	struct inode *inode;
1884 	struct inode *dir;
1885 	int ret;
1886 
1887 	inode = read_one_inode(root, location->objectid);
1888 	if (!inode)
1889 		return -ENOENT;
1890 
1891 	dir = read_one_inode(root, dirid);
1892 	if (!dir) {
1893 		iput(inode);
1894 		return -EIO;
1895 	}
1896 
1897 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1898 			name_len, 1, index);
1899 
1900 	/* FIXME, put inode into FIXUP list */
1901 
1902 	iput(inode);
1903 	iput(dir);
1904 	return ret;
1905 }
1906 
1907 /*
1908  * take a single entry in a log directory item and replay it into
1909  * the subvolume.
1910  *
1911  * if a conflicting item exists in the subdirectory already,
1912  * the inode it points to is unlinked and put into the link count
1913  * fix up tree.
1914  *
1915  * If a name from the log points to a file or directory that does
1916  * not exist in the FS, it is skipped.  fsyncs on directories
1917  * do not force down inodes inside that directory, just changes to the
1918  * names or unlinks in a directory.
1919  *
1920  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1921  * non-existing inode) and 1 if the name was replayed.
1922  */
1923 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1924 				    struct btrfs_root *root,
1925 				    struct btrfs_path *path,
1926 				    struct extent_buffer *eb,
1927 				    struct btrfs_dir_item *di,
1928 				    struct btrfs_key *key)
1929 {
1930 	char *name;
1931 	int name_len;
1932 	struct btrfs_dir_item *dst_di;
1933 	struct btrfs_key found_key;
1934 	struct btrfs_key log_key;
1935 	struct inode *dir;
1936 	u8 log_type;
1937 	int exists;
1938 	int ret = 0;
1939 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1940 	bool name_added = false;
1941 
1942 	dir = read_one_inode(root, key->objectid);
1943 	if (!dir)
1944 		return -EIO;
1945 
1946 	name_len = btrfs_dir_name_len(eb, di);
1947 	name = kmalloc(name_len, GFP_NOFS);
1948 	if (!name) {
1949 		ret = -ENOMEM;
1950 		goto out;
1951 	}
1952 
1953 	log_type = btrfs_dir_type(eb, di);
1954 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1955 		   name_len);
1956 
1957 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1958 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1959 	if (exists == 0)
1960 		exists = 1;
1961 	else
1962 		exists = 0;
1963 	btrfs_release_path(path);
1964 
1965 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1966 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1967 				       name, name_len, 1);
1968 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1969 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1970 						     key->objectid,
1971 						     key->offset, name,
1972 						     name_len, 1);
1973 	} else {
1974 		/* Corruption */
1975 		ret = -EINVAL;
1976 		goto out;
1977 	}
1978 	if (IS_ERR_OR_NULL(dst_di)) {
1979 		/* we need a sequence number to insert, so we only
1980 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1981 		 */
1982 		if (key->type != BTRFS_DIR_INDEX_KEY)
1983 			goto out;
1984 		goto insert;
1985 	}
1986 
1987 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1988 	/* the existing item matches the logged item */
1989 	if (found_key.objectid == log_key.objectid &&
1990 	    found_key.type == log_key.type &&
1991 	    found_key.offset == log_key.offset &&
1992 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1993 		update_size = false;
1994 		goto out;
1995 	}
1996 
1997 	/*
1998 	 * don't drop the conflicting directory entry if the inode
1999 	 * for the new entry doesn't exist
2000 	 */
2001 	if (!exists)
2002 		goto out;
2003 
2004 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2005 	if (ret)
2006 		goto out;
2007 
2008 	if (key->type == BTRFS_DIR_INDEX_KEY)
2009 		goto insert;
2010 out:
2011 	btrfs_release_path(path);
2012 	if (!ret && update_size) {
2013 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2014 		ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
2015 	}
2016 	kfree(name);
2017 	iput(dir);
2018 	if (!ret && name_added)
2019 		ret = 1;
2020 	return ret;
2021 
2022 insert:
2023 	/*
2024 	 * Check if the inode reference exists in the log for the given name,
2025 	 * inode and parent inode
2026 	 */
2027 	found_key.objectid = log_key.objectid;
2028 	found_key.type = BTRFS_INODE_REF_KEY;
2029 	found_key.offset = key->objectid;
2030 	ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
2031 	if (ret < 0) {
2032 	        goto out;
2033 	} else if (ret) {
2034 	        /* The dentry will be added later. */
2035 	        ret = 0;
2036 	        update_size = false;
2037 	        goto out;
2038 	}
2039 
2040 	found_key.objectid = log_key.objectid;
2041 	found_key.type = BTRFS_INODE_EXTREF_KEY;
2042 	found_key.offset = key->objectid;
2043 	ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2044 			     name_len);
2045 	if (ret < 0) {
2046 		goto out;
2047 	} else if (ret) {
2048 		/* The dentry will be added later. */
2049 		ret = 0;
2050 		update_size = false;
2051 		goto out;
2052 	}
2053 	btrfs_release_path(path);
2054 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2055 			      name, name_len, &log_key);
2056 	if (ret && ret != -ENOENT && ret != -EEXIST)
2057 		goto out;
2058 	if (!ret)
2059 		name_added = true;
2060 	update_size = false;
2061 	ret = 0;
2062 	goto out;
2063 }
2064 
2065 /*
2066  * find all the names in a directory item and reconcile them into
2067  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2068  * one name in a directory item, but the same code gets used for
2069  * both directory index types
2070  */
2071 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2072 					struct btrfs_root *root,
2073 					struct btrfs_path *path,
2074 					struct extent_buffer *eb, int slot,
2075 					struct btrfs_key *key)
2076 {
2077 	int ret = 0;
2078 	u32 item_size = btrfs_item_size_nr(eb, slot);
2079 	struct btrfs_dir_item *di;
2080 	int name_len;
2081 	unsigned long ptr;
2082 	unsigned long ptr_end;
2083 	struct btrfs_path *fixup_path = NULL;
2084 
2085 	ptr = btrfs_item_ptr_offset(eb, slot);
2086 	ptr_end = ptr + item_size;
2087 	while (ptr < ptr_end) {
2088 		di = (struct btrfs_dir_item *)ptr;
2089 		name_len = btrfs_dir_name_len(eb, di);
2090 		ret = replay_one_name(trans, root, path, eb, di, key);
2091 		if (ret < 0)
2092 			break;
2093 		ptr = (unsigned long)(di + 1);
2094 		ptr += name_len;
2095 
2096 		/*
2097 		 * If this entry refers to a non-directory (directories can not
2098 		 * have a link count > 1) and it was added in the transaction
2099 		 * that was not committed, make sure we fixup the link count of
2100 		 * the inode it the entry points to. Otherwise something like
2101 		 * the following would result in a directory pointing to an
2102 		 * inode with a wrong link that does not account for this dir
2103 		 * entry:
2104 		 *
2105 		 * mkdir testdir
2106 		 * touch testdir/foo
2107 		 * touch testdir/bar
2108 		 * sync
2109 		 *
2110 		 * ln testdir/bar testdir/bar_link
2111 		 * ln testdir/foo testdir/foo_link
2112 		 * xfs_io -c "fsync" testdir/bar
2113 		 *
2114 		 * <power failure>
2115 		 *
2116 		 * mount fs, log replay happens
2117 		 *
2118 		 * File foo would remain with a link count of 1 when it has two
2119 		 * entries pointing to it in the directory testdir. This would
2120 		 * make it impossible to ever delete the parent directory has
2121 		 * it would result in stale dentries that can never be deleted.
2122 		 */
2123 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2124 			struct btrfs_key di_key;
2125 
2126 			if (!fixup_path) {
2127 				fixup_path = btrfs_alloc_path();
2128 				if (!fixup_path) {
2129 					ret = -ENOMEM;
2130 					break;
2131 				}
2132 			}
2133 
2134 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2135 			ret = link_to_fixup_dir(trans, root, fixup_path,
2136 						di_key.objectid);
2137 			if (ret)
2138 				break;
2139 		}
2140 		ret = 0;
2141 	}
2142 	btrfs_free_path(fixup_path);
2143 	return ret;
2144 }
2145 
2146 /*
2147  * directory replay has two parts.  There are the standard directory
2148  * items in the log copied from the subvolume, and range items
2149  * created in the log while the subvolume was logged.
2150  *
2151  * The range items tell us which parts of the key space the log
2152  * is authoritative for.  During replay, if a key in the subvolume
2153  * directory is in a logged range item, but not actually in the log
2154  * that means it was deleted from the directory before the fsync
2155  * and should be removed.
2156  */
2157 static noinline int find_dir_range(struct btrfs_root *root,
2158 				   struct btrfs_path *path,
2159 				   u64 dirid, int key_type,
2160 				   u64 *start_ret, u64 *end_ret)
2161 {
2162 	struct btrfs_key key;
2163 	u64 found_end;
2164 	struct btrfs_dir_log_item *item;
2165 	int ret;
2166 	int nritems;
2167 
2168 	if (*start_ret == (u64)-1)
2169 		return 1;
2170 
2171 	key.objectid = dirid;
2172 	key.type = key_type;
2173 	key.offset = *start_ret;
2174 
2175 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2176 	if (ret < 0)
2177 		goto out;
2178 	if (ret > 0) {
2179 		if (path->slots[0] == 0)
2180 			goto out;
2181 		path->slots[0]--;
2182 	}
2183 	if (ret != 0)
2184 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2185 
2186 	if (key.type != key_type || key.objectid != dirid) {
2187 		ret = 1;
2188 		goto next;
2189 	}
2190 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2191 			      struct btrfs_dir_log_item);
2192 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2193 
2194 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2195 		ret = 0;
2196 		*start_ret = key.offset;
2197 		*end_ret = found_end;
2198 		goto out;
2199 	}
2200 	ret = 1;
2201 next:
2202 	/* check the next slot in the tree to see if it is a valid item */
2203 	nritems = btrfs_header_nritems(path->nodes[0]);
2204 	path->slots[0]++;
2205 	if (path->slots[0] >= nritems) {
2206 		ret = btrfs_next_leaf(root, path);
2207 		if (ret)
2208 			goto out;
2209 	}
2210 
2211 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2212 
2213 	if (key.type != key_type || key.objectid != dirid) {
2214 		ret = 1;
2215 		goto out;
2216 	}
2217 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2218 			      struct btrfs_dir_log_item);
2219 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2220 	*start_ret = key.offset;
2221 	*end_ret = found_end;
2222 	ret = 0;
2223 out:
2224 	btrfs_release_path(path);
2225 	return ret;
2226 }
2227 
2228 /*
2229  * this looks for a given directory item in the log.  If the directory
2230  * item is not in the log, the item is removed and the inode it points
2231  * to is unlinked
2232  */
2233 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2234 				      struct btrfs_root *root,
2235 				      struct btrfs_root *log,
2236 				      struct btrfs_path *path,
2237 				      struct btrfs_path *log_path,
2238 				      struct inode *dir,
2239 				      struct btrfs_key *dir_key)
2240 {
2241 	int ret;
2242 	struct extent_buffer *eb;
2243 	int slot;
2244 	u32 item_size;
2245 	struct btrfs_dir_item *di;
2246 	struct btrfs_dir_item *log_di;
2247 	int name_len;
2248 	unsigned long ptr;
2249 	unsigned long ptr_end;
2250 	char *name;
2251 	struct inode *inode;
2252 	struct btrfs_key location;
2253 
2254 again:
2255 	eb = path->nodes[0];
2256 	slot = path->slots[0];
2257 	item_size = btrfs_item_size_nr(eb, slot);
2258 	ptr = btrfs_item_ptr_offset(eb, slot);
2259 	ptr_end = ptr + item_size;
2260 	while (ptr < ptr_end) {
2261 		di = (struct btrfs_dir_item *)ptr;
2262 		name_len = btrfs_dir_name_len(eb, di);
2263 		name = kmalloc(name_len, GFP_NOFS);
2264 		if (!name) {
2265 			ret = -ENOMEM;
2266 			goto out;
2267 		}
2268 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2269 				  name_len);
2270 		log_di = NULL;
2271 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2272 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2273 						       dir_key->objectid,
2274 						       name, name_len, 0);
2275 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2276 			log_di = btrfs_lookup_dir_index_item(trans, log,
2277 						     log_path,
2278 						     dir_key->objectid,
2279 						     dir_key->offset,
2280 						     name, name_len, 0);
2281 		}
2282 		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2283 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2284 			btrfs_release_path(path);
2285 			btrfs_release_path(log_path);
2286 			inode = read_one_inode(root, location.objectid);
2287 			if (!inode) {
2288 				kfree(name);
2289 				return -EIO;
2290 			}
2291 
2292 			ret = link_to_fixup_dir(trans, root,
2293 						path, location.objectid);
2294 			if (ret) {
2295 				kfree(name);
2296 				iput(inode);
2297 				goto out;
2298 			}
2299 
2300 			inc_nlink(inode);
2301 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2302 					BTRFS_I(inode), name, name_len);
2303 			if (!ret)
2304 				ret = btrfs_run_delayed_items(trans);
2305 			kfree(name);
2306 			iput(inode);
2307 			if (ret)
2308 				goto out;
2309 
2310 			/* there might still be more names under this key
2311 			 * check and repeat if required
2312 			 */
2313 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2314 						0, 0);
2315 			if (ret == 0)
2316 				goto again;
2317 			ret = 0;
2318 			goto out;
2319 		} else if (IS_ERR(log_di)) {
2320 			kfree(name);
2321 			return PTR_ERR(log_di);
2322 		}
2323 		btrfs_release_path(log_path);
2324 		kfree(name);
2325 
2326 		ptr = (unsigned long)(di + 1);
2327 		ptr += name_len;
2328 	}
2329 	ret = 0;
2330 out:
2331 	btrfs_release_path(path);
2332 	btrfs_release_path(log_path);
2333 	return ret;
2334 }
2335 
2336 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2337 			      struct btrfs_root *root,
2338 			      struct btrfs_root *log,
2339 			      struct btrfs_path *path,
2340 			      const u64 ino)
2341 {
2342 	struct btrfs_key search_key;
2343 	struct btrfs_path *log_path;
2344 	int i;
2345 	int nritems;
2346 	int ret;
2347 
2348 	log_path = btrfs_alloc_path();
2349 	if (!log_path)
2350 		return -ENOMEM;
2351 
2352 	search_key.objectid = ino;
2353 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2354 	search_key.offset = 0;
2355 again:
2356 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2357 	if (ret < 0)
2358 		goto out;
2359 process_leaf:
2360 	nritems = btrfs_header_nritems(path->nodes[0]);
2361 	for (i = path->slots[0]; i < nritems; i++) {
2362 		struct btrfs_key key;
2363 		struct btrfs_dir_item *di;
2364 		struct btrfs_dir_item *log_di;
2365 		u32 total_size;
2366 		u32 cur;
2367 
2368 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2369 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2370 			ret = 0;
2371 			goto out;
2372 		}
2373 
2374 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2375 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2376 		cur = 0;
2377 		while (cur < total_size) {
2378 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2379 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2380 			u32 this_len = sizeof(*di) + name_len + data_len;
2381 			char *name;
2382 
2383 			name = kmalloc(name_len, GFP_NOFS);
2384 			if (!name) {
2385 				ret = -ENOMEM;
2386 				goto out;
2387 			}
2388 			read_extent_buffer(path->nodes[0], name,
2389 					   (unsigned long)(di + 1), name_len);
2390 
2391 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2392 						    name, name_len, 0);
2393 			btrfs_release_path(log_path);
2394 			if (!log_di) {
2395 				/* Doesn't exist in log tree, so delete it. */
2396 				btrfs_release_path(path);
2397 				di = btrfs_lookup_xattr(trans, root, path, ino,
2398 							name, name_len, -1);
2399 				kfree(name);
2400 				if (IS_ERR(di)) {
2401 					ret = PTR_ERR(di);
2402 					goto out;
2403 				}
2404 				ASSERT(di);
2405 				ret = btrfs_delete_one_dir_name(trans, root,
2406 								path, di);
2407 				if (ret)
2408 					goto out;
2409 				btrfs_release_path(path);
2410 				search_key = key;
2411 				goto again;
2412 			}
2413 			kfree(name);
2414 			if (IS_ERR(log_di)) {
2415 				ret = PTR_ERR(log_di);
2416 				goto out;
2417 			}
2418 			cur += this_len;
2419 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2420 		}
2421 	}
2422 	ret = btrfs_next_leaf(root, path);
2423 	if (ret > 0)
2424 		ret = 0;
2425 	else if (ret == 0)
2426 		goto process_leaf;
2427 out:
2428 	btrfs_free_path(log_path);
2429 	btrfs_release_path(path);
2430 	return ret;
2431 }
2432 
2433 
2434 /*
2435  * deletion replay happens before we copy any new directory items
2436  * out of the log or out of backreferences from inodes.  It
2437  * scans the log to find ranges of keys that log is authoritative for,
2438  * and then scans the directory to find items in those ranges that are
2439  * not present in the log.
2440  *
2441  * Anything we don't find in the log is unlinked and removed from the
2442  * directory.
2443  */
2444 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2445 				       struct btrfs_root *root,
2446 				       struct btrfs_root *log,
2447 				       struct btrfs_path *path,
2448 				       u64 dirid, int del_all)
2449 {
2450 	u64 range_start;
2451 	u64 range_end;
2452 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2453 	int ret = 0;
2454 	struct btrfs_key dir_key;
2455 	struct btrfs_key found_key;
2456 	struct btrfs_path *log_path;
2457 	struct inode *dir;
2458 
2459 	dir_key.objectid = dirid;
2460 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2461 	log_path = btrfs_alloc_path();
2462 	if (!log_path)
2463 		return -ENOMEM;
2464 
2465 	dir = read_one_inode(root, dirid);
2466 	/* it isn't an error if the inode isn't there, that can happen
2467 	 * because we replay the deletes before we copy in the inode item
2468 	 * from the log
2469 	 */
2470 	if (!dir) {
2471 		btrfs_free_path(log_path);
2472 		return 0;
2473 	}
2474 again:
2475 	range_start = 0;
2476 	range_end = 0;
2477 	while (1) {
2478 		if (del_all)
2479 			range_end = (u64)-1;
2480 		else {
2481 			ret = find_dir_range(log, path, dirid, key_type,
2482 					     &range_start, &range_end);
2483 			if (ret != 0)
2484 				break;
2485 		}
2486 
2487 		dir_key.offset = range_start;
2488 		while (1) {
2489 			int nritems;
2490 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2491 						0, 0);
2492 			if (ret < 0)
2493 				goto out;
2494 
2495 			nritems = btrfs_header_nritems(path->nodes[0]);
2496 			if (path->slots[0] >= nritems) {
2497 				ret = btrfs_next_leaf(root, path);
2498 				if (ret == 1)
2499 					break;
2500 				else if (ret < 0)
2501 					goto out;
2502 			}
2503 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2504 					      path->slots[0]);
2505 			if (found_key.objectid != dirid ||
2506 			    found_key.type != dir_key.type)
2507 				goto next_type;
2508 
2509 			if (found_key.offset > range_end)
2510 				break;
2511 
2512 			ret = check_item_in_log(trans, root, log, path,
2513 						log_path, dir,
2514 						&found_key);
2515 			if (ret)
2516 				goto out;
2517 			if (found_key.offset == (u64)-1)
2518 				break;
2519 			dir_key.offset = found_key.offset + 1;
2520 		}
2521 		btrfs_release_path(path);
2522 		if (range_end == (u64)-1)
2523 			break;
2524 		range_start = range_end + 1;
2525 	}
2526 
2527 next_type:
2528 	ret = 0;
2529 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2530 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2531 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2532 		btrfs_release_path(path);
2533 		goto again;
2534 	}
2535 out:
2536 	btrfs_release_path(path);
2537 	btrfs_free_path(log_path);
2538 	iput(dir);
2539 	return ret;
2540 }
2541 
2542 /*
2543  * the process_func used to replay items from the log tree.  This
2544  * gets called in two different stages.  The first stage just looks
2545  * for inodes and makes sure they are all copied into the subvolume.
2546  *
2547  * The second stage copies all the other item types from the log into
2548  * the subvolume.  The two stage approach is slower, but gets rid of
2549  * lots of complexity around inodes referencing other inodes that exist
2550  * only in the log (references come from either directory items or inode
2551  * back refs).
2552  */
2553 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2554 			     struct walk_control *wc, u64 gen, int level)
2555 {
2556 	int nritems;
2557 	struct btrfs_path *path;
2558 	struct btrfs_root *root = wc->replay_dest;
2559 	struct btrfs_key key;
2560 	int i;
2561 	int ret;
2562 
2563 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2564 	if (ret)
2565 		return ret;
2566 
2567 	level = btrfs_header_level(eb);
2568 
2569 	if (level != 0)
2570 		return 0;
2571 
2572 	path = btrfs_alloc_path();
2573 	if (!path)
2574 		return -ENOMEM;
2575 
2576 	nritems = btrfs_header_nritems(eb);
2577 	for (i = 0; i < nritems; i++) {
2578 		btrfs_item_key_to_cpu(eb, &key, i);
2579 
2580 		/* inode keys are done during the first stage */
2581 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2582 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2583 			struct btrfs_inode_item *inode_item;
2584 			u32 mode;
2585 
2586 			inode_item = btrfs_item_ptr(eb, i,
2587 					    struct btrfs_inode_item);
2588 			/*
2589 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2590 			 * and never got linked before the fsync, skip it, as
2591 			 * replaying it is pointless since it would be deleted
2592 			 * later. We skip logging tmpfiles, but it's always
2593 			 * possible we are replaying a log created with a kernel
2594 			 * that used to log tmpfiles.
2595 			 */
2596 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2597 				wc->ignore_cur_inode = true;
2598 				continue;
2599 			} else {
2600 				wc->ignore_cur_inode = false;
2601 			}
2602 			ret = replay_xattr_deletes(wc->trans, root, log,
2603 						   path, key.objectid);
2604 			if (ret)
2605 				break;
2606 			mode = btrfs_inode_mode(eb, inode_item);
2607 			if (S_ISDIR(mode)) {
2608 				ret = replay_dir_deletes(wc->trans,
2609 					 root, log, path, key.objectid, 0);
2610 				if (ret)
2611 					break;
2612 			}
2613 			ret = overwrite_item(wc->trans, root, path,
2614 					     eb, i, &key);
2615 			if (ret)
2616 				break;
2617 
2618 			/*
2619 			 * Before replaying extents, truncate the inode to its
2620 			 * size. We need to do it now and not after log replay
2621 			 * because before an fsync we can have prealloc extents
2622 			 * added beyond the inode's i_size. If we did it after,
2623 			 * through orphan cleanup for example, we would drop
2624 			 * those prealloc extents just after replaying them.
2625 			 */
2626 			if (S_ISREG(mode)) {
2627 				struct btrfs_drop_extents_args drop_args = { 0 };
2628 				struct inode *inode;
2629 				u64 from;
2630 
2631 				inode = read_one_inode(root, key.objectid);
2632 				if (!inode) {
2633 					ret = -EIO;
2634 					break;
2635 				}
2636 				from = ALIGN(i_size_read(inode),
2637 					     root->fs_info->sectorsize);
2638 				drop_args.start = from;
2639 				drop_args.end = (u64)-1;
2640 				drop_args.drop_cache = true;
2641 				ret = btrfs_drop_extents(wc->trans, root,
2642 							 BTRFS_I(inode),
2643 							 &drop_args);
2644 				if (!ret) {
2645 					inode_sub_bytes(inode,
2646 							drop_args.bytes_found);
2647 					/* Update the inode's nbytes. */
2648 					ret = btrfs_update_inode(wc->trans,
2649 							root, BTRFS_I(inode));
2650 				}
2651 				iput(inode);
2652 				if (ret)
2653 					break;
2654 			}
2655 
2656 			ret = link_to_fixup_dir(wc->trans, root,
2657 						path, key.objectid);
2658 			if (ret)
2659 				break;
2660 		}
2661 
2662 		if (wc->ignore_cur_inode)
2663 			continue;
2664 
2665 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2666 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2667 			ret = replay_one_dir_item(wc->trans, root, path,
2668 						  eb, i, &key);
2669 			if (ret)
2670 				break;
2671 		}
2672 
2673 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2674 			continue;
2675 
2676 		/* these keys are simply copied */
2677 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2678 			ret = overwrite_item(wc->trans, root, path,
2679 					     eb, i, &key);
2680 			if (ret)
2681 				break;
2682 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2683 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2684 			ret = add_inode_ref(wc->trans, root, log, path,
2685 					    eb, i, &key);
2686 			if (ret && ret != -ENOENT)
2687 				break;
2688 			ret = 0;
2689 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2690 			ret = replay_one_extent(wc->trans, root, path,
2691 						eb, i, &key);
2692 			if (ret)
2693 				break;
2694 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2695 			ret = replay_one_dir_item(wc->trans, root, path,
2696 						  eb, i, &key);
2697 			if (ret)
2698 				break;
2699 		}
2700 	}
2701 	btrfs_free_path(path);
2702 	return ret;
2703 }
2704 
2705 /*
2706  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2707  */
2708 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2709 {
2710 	struct btrfs_block_group *cache;
2711 
2712 	cache = btrfs_lookup_block_group(fs_info, start);
2713 	if (!cache) {
2714 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2715 		return;
2716 	}
2717 
2718 	spin_lock(&cache->space_info->lock);
2719 	spin_lock(&cache->lock);
2720 	cache->reserved -= fs_info->nodesize;
2721 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2722 	spin_unlock(&cache->lock);
2723 	spin_unlock(&cache->space_info->lock);
2724 
2725 	btrfs_put_block_group(cache);
2726 }
2727 
2728 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2729 				   struct btrfs_root *root,
2730 				   struct btrfs_path *path, int *level,
2731 				   struct walk_control *wc)
2732 {
2733 	struct btrfs_fs_info *fs_info = root->fs_info;
2734 	u64 bytenr;
2735 	u64 ptr_gen;
2736 	struct extent_buffer *next;
2737 	struct extent_buffer *cur;
2738 	u32 blocksize;
2739 	int ret = 0;
2740 
2741 	while (*level > 0) {
2742 		struct btrfs_key first_key;
2743 
2744 		cur = path->nodes[*level];
2745 
2746 		WARN_ON(btrfs_header_level(cur) != *level);
2747 
2748 		if (path->slots[*level] >=
2749 		    btrfs_header_nritems(cur))
2750 			break;
2751 
2752 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2753 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2754 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2755 		blocksize = fs_info->nodesize;
2756 
2757 		next = btrfs_find_create_tree_block(fs_info, bytenr,
2758 						    btrfs_header_owner(cur),
2759 						    *level - 1);
2760 		if (IS_ERR(next))
2761 			return PTR_ERR(next);
2762 
2763 		if (*level == 1) {
2764 			ret = wc->process_func(root, next, wc, ptr_gen,
2765 					       *level - 1);
2766 			if (ret) {
2767 				free_extent_buffer(next);
2768 				return ret;
2769 			}
2770 
2771 			path->slots[*level]++;
2772 			if (wc->free) {
2773 				ret = btrfs_read_buffer(next, ptr_gen,
2774 							*level - 1, &first_key);
2775 				if (ret) {
2776 					free_extent_buffer(next);
2777 					return ret;
2778 				}
2779 
2780 				if (trans) {
2781 					btrfs_tree_lock(next);
2782 					btrfs_clean_tree_block(next);
2783 					btrfs_wait_tree_block_writeback(next);
2784 					btrfs_tree_unlock(next);
2785 					ret = btrfs_pin_reserved_extent(trans,
2786 							bytenr, blocksize);
2787 					if (ret) {
2788 						free_extent_buffer(next);
2789 						return ret;
2790 					}
2791 					btrfs_redirty_list_add(
2792 						trans->transaction, next);
2793 				} else {
2794 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2795 						clear_extent_buffer_dirty(next);
2796 					unaccount_log_buffer(fs_info, bytenr);
2797 				}
2798 			}
2799 			free_extent_buffer(next);
2800 			continue;
2801 		}
2802 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2803 		if (ret) {
2804 			free_extent_buffer(next);
2805 			return ret;
2806 		}
2807 
2808 		if (path->nodes[*level-1])
2809 			free_extent_buffer(path->nodes[*level-1]);
2810 		path->nodes[*level-1] = next;
2811 		*level = btrfs_header_level(next);
2812 		path->slots[*level] = 0;
2813 		cond_resched();
2814 	}
2815 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2816 
2817 	cond_resched();
2818 	return 0;
2819 }
2820 
2821 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2822 				 struct btrfs_root *root,
2823 				 struct btrfs_path *path, int *level,
2824 				 struct walk_control *wc)
2825 {
2826 	struct btrfs_fs_info *fs_info = root->fs_info;
2827 	int i;
2828 	int slot;
2829 	int ret;
2830 
2831 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2832 		slot = path->slots[i];
2833 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2834 			path->slots[i]++;
2835 			*level = i;
2836 			WARN_ON(*level == 0);
2837 			return 0;
2838 		} else {
2839 			ret = wc->process_func(root, path->nodes[*level], wc,
2840 				 btrfs_header_generation(path->nodes[*level]),
2841 				 *level);
2842 			if (ret)
2843 				return ret;
2844 
2845 			if (wc->free) {
2846 				struct extent_buffer *next;
2847 
2848 				next = path->nodes[*level];
2849 
2850 				if (trans) {
2851 					btrfs_tree_lock(next);
2852 					btrfs_clean_tree_block(next);
2853 					btrfs_wait_tree_block_writeback(next);
2854 					btrfs_tree_unlock(next);
2855 					ret = btrfs_pin_reserved_extent(trans,
2856 						     path->nodes[*level]->start,
2857 						     path->nodes[*level]->len);
2858 					if (ret)
2859 						return ret;
2860 				} else {
2861 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2862 						clear_extent_buffer_dirty(next);
2863 
2864 					unaccount_log_buffer(fs_info,
2865 						path->nodes[*level]->start);
2866 				}
2867 			}
2868 			free_extent_buffer(path->nodes[*level]);
2869 			path->nodes[*level] = NULL;
2870 			*level = i + 1;
2871 		}
2872 	}
2873 	return 1;
2874 }
2875 
2876 /*
2877  * drop the reference count on the tree rooted at 'snap'.  This traverses
2878  * the tree freeing any blocks that have a ref count of zero after being
2879  * decremented.
2880  */
2881 static int walk_log_tree(struct btrfs_trans_handle *trans,
2882 			 struct btrfs_root *log, struct walk_control *wc)
2883 {
2884 	struct btrfs_fs_info *fs_info = log->fs_info;
2885 	int ret = 0;
2886 	int wret;
2887 	int level;
2888 	struct btrfs_path *path;
2889 	int orig_level;
2890 
2891 	path = btrfs_alloc_path();
2892 	if (!path)
2893 		return -ENOMEM;
2894 
2895 	level = btrfs_header_level(log->node);
2896 	orig_level = level;
2897 	path->nodes[level] = log->node;
2898 	atomic_inc(&log->node->refs);
2899 	path->slots[level] = 0;
2900 
2901 	while (1) {
2902 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2903 		if (wret > 0)
2904 			break;
2905 		if (wret < 0) {
2906 			ret = wret;
2907 			goto out;
2908 		}
2909 
2910 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2911 		if (wret > 0)
2912 			break;
2913 		if (wret < 0) {
2914 			ret = wret;
2915 			goto out;
2916 		}
2917 	}
2918 
2919 	/* was the root node processed? if not, catch it here */
2920 	if (path->nodes[orig_level]) {
2921 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2922 			 btrfs_header_generation(path->nodes[orig_level]),
2923 			 orig_level);
2924 		if (ret)
2925 			goto out;
2926 		if (wc->free) {
2927 			struct extent_buffer *next;
2928 
2929 			next = path->nodes[orig_level];
2930 
2931 			if (trans) {
2932 				btrfs_tree_lock(next);
2933 				btrfs_clean_tree_block(next);
2934 				btrfs_wait_tree_block_writeback(next);
2935 				btrfs_tree_unlock(next);
2936 				ret = btrfs_pin_reserved_extent(trans,
2937 						next->start, next->len);
2938 				if (ret)
2939 					goto out;
2940 			} else {
2941 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2942 					clear_extent_buffer_dirty(next);
2943 				unaccount_log_buffer(fs_info, next->start);
2944 			}
2945 		}
2946 	}
2947 
2948 out:
2949 	btrfs_free_path(path);
2950 	return ret;
2951 }
2952 
2953 /*
2954  * helper function to update the item for a given subvolumes log root
2955  * in the tree of log roots
2956  */
2957 static int update_log_root(struct btrfs_trans_handle *trans,
2958 			   struct btrfs_root *log,
2959 			   struct btrfs_root_item *root_item)
2960 {
2961 	struct btrfs_fs_info *fs_info = log->fs_info;
2962 	int ret;
2963 
2964 	if (log->log_transid == 1) {
2965 		/* insert root item on the first sync */
2966 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2967 				&log->root_key, root_item);
2968 	} else {
2969 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2970 				&log->root_key, root_item);
2971 	}
2972 	return ret;
2973 }
2974 
2975 static void wait_log_commit(struct btrfs_root *root, int transid)
2976 {
2977 	DEFINE_WAIT(wait);
2978 	int index = transid % 2;
2979 
2980 	/*
2981 	 * we only allow two pending log transactions at a time,
2982 	 * so we know that if ours is more than 2 older than the
2983 	 * current transaction, we're done
2984 	 */
2985 	for (;;) {
2986 		prepare_to_wait(&root->log_commit_wait[index],
2987 				&wait, TASK_UNINTERRUPTIBLE);
2988 
2989 		if (!(root->log_transid_committed < transid &&
2990 		      atomic_read(&root->log_commit[index])))
2991 			break;
2992 
2993 		mutex_unlock(&root->log_mutex);
2994 		schedule();
2995 		mutex_lock(&root->log_mutex);
2996 	}
2997 	finish_wait(&root->log_commit_wait[index], &wait);
2998 }
2999 
3000 static void wait_for_writer(struct btrfs_root *root)
3001 {
3002 	DEFINE_WAIT(wait);
3003 
3004 	for (;;) {
3005 		prepare_to_wait(&root->log_writer_wait, &wait,
3006 				TASK_UNINTERRUPTIBLE);
3007 		if (!atomic_read(&root->log_writers))
3008 			break;
3009 
3010 		mutex_unlock(&root->log_mutex);
3011 		schedule();
3012 		mutex_lock(&root->log_mutex);
3013 	}
3014 	finish_wait(&root->log_writer_wait, &wait);
3015 }
3016 
3017 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3018 					struct btrfs_log_ctx *ctx)
3019 {
3020 	if (!ctx)
3021 		return;
3022 
3023 	mutex_lock(&root->log_mutex);
3024 	list_del_init(&ctx->list);
3025 	mutex_unlock(&root->log_mutex);
3026 }
3027 
3028 /*
3029  * Invoked in log mutex context, or be sure there is no other task which
3030  * can access the list.
3031  */
3032 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3033 					     int index, int error)
3034 {
3035 	struct btrfs_log_ctx *ctx;
3036 	struct btrfs_log_ctx *safe;
3037 
3038 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3039 		list_del_init(&ctx->list);
3040 		ctx->log_ret = error;
3041 	}
3042 
3043 	INIT_LIST_HEAD(&root->log_ctxs[index]);
3044 }
3045 
3046 /*
3047  * btrfs_sync_log does sends a given tree log down to the disk and
3048  * updates the super blocks to record it.  When this call is done,
3049  * you know that any inodes previously logged are safely on disk only
3050  * if it returns 0.
3051  *
3052  * Any other return value means you need to call btrfs_commit_transaction.
3053  * Some of the edge cases for fsyncing directories that have had unlinks
3054  * or renames done in the past mean that sometimes the only safe
3055  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3056  * that has happened.
3057  */
3058 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3059 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3060 {
3061 	int index1;
3062 	int index2;
3063 	int mark;
3064 	int ret;
3065 	struct btrfs_fs_info *fs_info = root->fs_info;
3066 	struct btrfs_root *log = root->log_root;
3067 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3068 	struct btrfs_root_item new_root_item;
3069 	int log_transid = 0;
3070 	struct btrfs_log_ctx root_log_ctx;
3071 	struct blk_plug plug;
3072 	u64 log_root_start;
3073 	u64 log_root_level;
3074 
3075 	mutex_lock(&root->log_mutex);
3076 	log_transid = ctx->log_transid;
3077 	if (root->log_transid_committed >= log_transid) {
3078 		mutex_unlock(&root->log_mutex);
3079 		return ctx->log_ret;
3080 	}
3081 
3082 	index1 = log_transid % 2;
3083 	if (atomic_read(&root->log_commit[index1])) {
3084 		wait_log_commit(root, log_transid);
3085 		mutex_unlock(&root->log_mutex);
3086 		return ctx->log_ret;
3087 	}
3088 	ASSERT(log_transid == root->log_transid);
3089 	atomic_set(&root->log_commit[index1], 1);
3090 
3091 	/* wait for previous tree log sync to complete */
3092 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3093 		wait_log_commit(root, log_transid - 1);
3094 
3095 	while (1) {
3096 		int batch = atomic_read(&root->log_batch);
3097 		/* when we're on an ssd, just kick the log commit out */
3098 		if (!btrfs_test_opt(fs_info, SSD) &&
3099 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3100 			mutex_unlock(&root->log_mutex);
3101 			schedule_timeout_uninterruptible(1);
3102 			mutex_lock(&root->log_mutex);
3103 		}
3104 		wait_for_writer(root);
3105 		if (batch == atomic_read(&root->log_batch))
3106 			break;
3107 	}
3108 
3109 	/* bail out if we need to do a full commit */
3110 	if (btrfs_need_log_full_commit(trans)) {
3111 		ret = -EAGAIN;
3112 		mutex_unlock(&root->log_mutex);
3113 		goto out;
3114 	}
3115 
3116 	if (log_transid % 2 == 0)
3117 		mark = EXTENT_DIRTY;
3118 	else
3119 		mark = EXTENT_NEW;
3120 
3121 	/* we start IO on  all the marked extents here, but we don't actually
3122 	 * wait for them until later.
3123 	 */
3124 	blk_start_plug(&plug);
3125 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3126 	/*
3127 	 * -EAGAIN happens when someone, e.g., a concurrent transaction
3128 	 *  commit, writes a dirty extent in this tree-log commit. This
3129 	 *  concurrent write will create a hole writing out the extents,
3130 	 *  and we cannot proceed on a zoned filesystem, requiring
3131 	 *  sequential writing. While we can bail out to a full commit
3132 	 *  here, but we can continue hoping the concurrent writing fills
3133 	 *  the hole.
3134 	 */
3135 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3136 		ret = 0;
3137 	if (ret) {
3138 		blk_finish_plug(&plug);
3139 		btrfs_abort_transaction(trans, ret);
3140 		btrfs_set_log_full_commit(trans);
3141 		mutex_unlock(&root->log_mutex);
3142 		goto out;
3143 	}
3144 
3145 	/*
3146 	 * We _must_ update under the root->log_mutex in order to make sure we
3147 	 * have a consistent view of the log root we are trying to commit at
3148 	 * this moment.
3149 	 *
3150 	 * We _must_ copy this into a local copy, because we are not holding the
3151 	 * log_root_tree->log_mutex yet.  This is important because when we
3152 	 * commit the log_root_tree we must have a consistent view of the
3153 	 * log_root_tree when we update the super block to point at the
3154 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3155 	 * with the commit and possibly point at the new block which we may not
3156 	 * have written out.
3157 	 */
3158 	btrfs_set_root_node(&log->root_item, log->node);
3159 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3160 
3161 	root->log_transid++;
3162 	log->log_transid = root->log_transid;
3163 	root->log_start_pid = 0;
3164 	/*
3165 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3166 	 * in their headers. new modifications of the log will be written to
3167 	 * new positions. so it's safe to allow log writers to go in.
3168 	 */
3169 	mutex_unlock(&root->log_mutex);
3170 
3171 	if (btrfs_is_zoned(fs_info)) {
3172 		mutex_lock(&fs_info->tree_root->log_mutex);
3173 		if (!log_root_tree->node) {
3174 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3175 			if (ret) {
3176 				mutex_unlock(&fs_info->tree_root->log_mutex);
3177 				goto out;
3178 			}
3179 		}
3180 		mutex_unlock(&fs_info->tree_root->log_mutex);
3181 	}
3182 
3183 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3184 
3185 	mutex_lock(&log_root_tree->log_mutex);
3186 
3187 	index2 = log_root_tree->log_transid % 2;
3188 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3189 	root_log_ctx.log_transid = log_root_tree->log_transid;
3190 
3191 	/*
3192 	 * Now we are safe to update the log_root_tree because we're under the
3193 	 * log_mutex, and we're a current writer so we're holding the commit
3194 	 * open until we drop the log_mutex.
3195 	 */
3196 	ret = update_log_root(trans, log, &new_root_item);
3197 	if (ret) {
3198 		if (!list_empty(&root_log_ctx.list))
3199 			list_del_init(&root_log_ctx.list);
3200 
3201 		blk_finish_plug(&plug);
3202 		btrfs_set_log_full_commit(trans);
3203 
3204 		if (ret != -ENOSPC) {
3205 			btrfs_abort_transaction(trans, ret);
3206 			mutex_unlock(&log_root_tree->log_mutex);
3207 			goto out;
3208 		}
3209 		btrfs_wait_tree_log_extents(log, mark);
3210 		mutex_unlock(&log_root_tree->log_mutex);
3211 		ret = -EAGAIN;
3212 		goto out;
3213 	}
3214 
3215 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3216 		blk_finish_plug(&plug);
3217 		list_del_init(&root_log_ctx.list);
3218 		mutex_unlock(&log_root_tree->log_mutex);
3219 		ret = root_log_ctx.log_ret;
3220 		goto out;
3221 	}
3222 
3223 	index2 = root_log_ctx.log_transid % 2;
3224 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3225 		blk_finish_plug(&plug);
3226 		ret = btrfs_wait_tree_log_extents(log, mark);
3227 		wait_log_commit(log_root_tree,
3228 				root_log_ctx.log_transid);
3229 		mutex_unlock(&log_root_tree->log_mutex);
3230 		if (!ret)
3231 			ret = root_log_ctx.log_ret;
3232 		goto out;
3233 	}
3234 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3235 	atomic_set(&log_root_tree->log_commit[index2], 1);
3236 
3237 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3238 		wait_log_commit(log_root_tree,
3239 				root_log_ctx.log_transid - 1);
3240 	}
3241 
3242 	/*
3243 	 * now that we've moved on to the tree of log tree roots,
3244 	 * check the full commit flag again
3245 	 */
3246 	if (btrfs_need_log_full_commit(trans)) {
3247 		blk_finish_plug(&plug);
3248 		btrfs_wait_tree_log_extents(log, mark);
3249 		mutex_unlock(&log_root_tree->log_mutex);
3250 		ret = -EAGAIN;
3251 		goto out_wake_log_root;
3252 	}
3253 
3254 	ret = btrfs_write_marked_extents(fs_info,
3255 					 &log_root_tree->dirty_log_pages,
3256 					 EXTENT_DIRTY | EXTENT_NEW);
3257 	blk_finish_plug(&plug);
3258 	/*
3259 	 * As described above, -EAGAIN indicates a hole in the extents. We
3260 	 * cannot wait for these write outs since the waiting cause a
3261 	 * deadlock. Bail out to the full commit instead.
3262 	 */
3263 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3264 		btrfs_set_log_full_commit(trans);
3265 		btrfs_wait_tree_log_extents(log, mark);
3266 		mutex_unlock(&log_root_tree->log_mutex);
3267 		goto out_wake_log_root;
3268 	} else if (ret) {
3269 		btrfs_set_log_full_commit(trans);
3270 		btrfs_abort_transaction(trans, ret);
3271 		mutex_unlock(&log_root_tree->log_mutex);
3272 		goto out_wake_log_root;
3273 	}
3274 	ret = btrfs_wait_tree_log_extents(log, mark);
3275 	if (!ret)
3276 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3277 						  EXTENT_NEW | EXTENT_DIRTY);
3278 	if (ret) {
3279 		btrfs_set_log_full_commit(trans);
3280 		mutex_unlock(&log_root_tree->log_mutex);
3281 		goto out_wake_log_root;
3282 	}
3283 
3284 	log_root_start = log_root_tree->node->start;
3285 	log_root_level = btrfs_header_level(log_root_tree->node);
3286 	log_root_tree->log_transid++;
3287 	mutex_unlock(&log_root_tree->log_mutex);
3288 
3289 	/*
3290 	 * Here we are guaranteed that nobody is going to write the superblock
3291 	 * for the current transaction before us and that neither we do write
3292 	 * our superblock before the previous transaction finishes its commit
3293 	 * and writes its superblock, because:
3294 	 *
3295 	 * 1) We are holding a handle on the current transaction, so no body
3296 	 *    can commit it until we release the handle;
3297 	 *
3298 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3299 	 *    if the previous transaction is still committing, and hasn't yet
3300 	 *    written its superblock, we wait for it to do it, because a
3301 	 *    transaction commit acquires the tree_log_mutex when the commit
3302 	 *    begins and releases it only after writing its superblock.
3303 	 */
3304 	mutex_lock(&fs_info->tree_log_mutex);
3305 
3306 	/*
3307 	 * The previous transaction writeout phase could have failed, and thus
3308 	 * marked the fs in an error state.  We must not commit here, as we
3309 	 * could have updated our generation in the super_for_commit and
3310 	 * writing the super here would result in transid mismatches.  If there
3311 	 * is an error here just bail.
3312 	 */
3313 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3314 		ret = -EIO;
3315 		btrfs_set_log_full_commit(trans);
3316 		btrfs_abort_transaction(trans, ret);
3317 		mutex_unlock(&fs_info->tree_log_mutex);
3318 		goto out_wake_log_root;
3319 	}
3320 
3321 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3322 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3323 	ret = write_all_supers(fs_info, 1);
3324 	mutex_unlock(&fs_info->tree_log_mutex);
3325 	if (ret) {
3326 		btrfs_set_log_full_commit(trans);
3327 		btrfs_abort_transaction(trans, ret);
3328 		goto out_wake_log_root;
3329 	}
3330 
3331 	mutex_lock(&root->log_mutex);
3332 	if (root->last_log_commit < log_transid)
3333 		root->last_log_commit = log_transid;
3334 	mutex_unlock(&root->log_mutex);
3335 
3336 out_wake_log_root:
3337 	mutex_lock(&log_root_tree->log_mutex);
3338 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3339 
3340 	log_root_tree->log_transid_committed++;
3341 	atomic_set(&log_root_tree->log_commit[index2], 0);
3342 	mutex_unlock(&log_root_tree->log_mutex);
3343 
3344 	/*
3345 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3346 	 * all the updates above are seen by the woken threads. It might not be
3347 	 * necessary, but proving that seems to be hard.
3348 	 */
3349 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3350 out:
3351 	mutex_lock(&root->log_mutex);
3352 	btrfs_remove_all_log_ctxs(root, index1, ret);
3353 	root->log_transid_committed++;
3354 	atomic_set(&root->log_commit[index1], 0);
3355 	mutex_unlock(&root->log_mutex);
3356 
3357 	/*
3358 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3359 	 * all the updates above are seen by the woken threads. It might not be
3360 	 * necessary, but proving that seems to be hard.
3361 	 */
3362 	cond_wake_up(&root->log_commit_wait[index1]);
3363 	return ret;
3364 }
3365 
3366 static void free_log_tree(struct btrfs_trans_handle *trans,
3367 			  struct btrfs_root *log)
3368 {
3369 	int ret;
3370 	struct walk_control wc = {
3371 		.free = 1,
3372 		.process_func = process_one_buffer
3373 	};
3374 
3375 	if (log->node) {
3376 		ret = walk_log_tree(trans, log, &wc);
3377 		if (ret) {
3378 			if (trans)
3379 				btrfs_abort_transaction(trans, ret);
3380 			else
3381 				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3382 		}
3383 	}
3384 
3385 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3386 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3387 	extent_io_tree_release(&log->log_csum_range);
3388 
3389 	if (trans && log->node)
3390 		btrfs_redirty_list_add(trans->transaction, log->node);
3391 	btrfs_put_root(log);
3392 }
3393 
3394 /*
3395  * free all the extents used by the tree log.  This should be called
3396  * at commit time of the full transaction
3397  */
3398 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3399 {
3400 	if (root->log_root) {
3401 		free_log_tree(trans, root->log_root);
3402 		root->log_root = NULL;
3403 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3404 	}
3405 	return 0;
3406 }
3407 
3408 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3409 			     struct btrfs_fs_info *fs_info)
3410 {
3411 	if (fs_info->log_root_tree) {
3412 		free_log_tree(trans, fs_info->log_root_tree);
3413 		fs_info->log_root_tree = NULL;
3414 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3415 	}
3416 	return 0;
3417 }
3418 
3419 /*
3420  * Check if an inode was logged in the current transaction. We can't always rely
3421  * on an inode's logged_trans value, because it's an in-memory only field and
3422  * therefore not persisted. This means that its value is lost if the inode gets
3423  * evicted and loaded again from disk (in which case it has a value of 0, and
3424  * certainly it is smaller then any possible transaction ID), when that happens
3425  * the full_sync flag is set in the inode's runtime flags, so on that case we
3426  * assume eviction happened and ignore the logged_trans value, assuming the
3427  * worst case, that the inode was logged before in the current transaction.
3428  */
3429 static bool inode_logged(struct btrfs_trans_handle *trans,
3430 			 struct btrfs_inode *inode)
3431 {
3432 	if (inode->logged_trans == trans->transid)
3433 		return true;
3434 
3435 	if (inode->last_trans == trans->transid &&
3436 	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3437 	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3438 		return true;
3439 
3440 	return false;
3441 }
3442 
3443 /*
3444  * If both a file and directory are logged, and unlinks or renames are
3445  * mixed in, we have a few interesting corners:
3446  *
3447  * create file X in dir Y
3448  * link file X to X.link in dir Y
3449  * fsync file X
3450  * unlink file X but leave X.link
3451  * fsync dir Y
3452  *
3453  * After a crash we would expect only X.link to exist.  But file X
3454  * didn't get fsync'd again so the log has back refs for X and X.link.
3455  *
3456  * We solve this by removing directory entries and inode backrefs from the
3457  * log when a file that was logged in the current transaction is
3458  * unlinked.  Any later fsync will include the updated log entries, and
3459  * we'll be able to reconstruct the proper directory items from backrefs.
3460  *
3461  * This optimizations allows us to avoid relogging the entire inode
3462  * or the entire directory.
3463  */
3464 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3465 				 struct btrfs_root *root,
3466 				 const char *name, int name_len,
3467 				 struct btrfs_inode *dir, u64 index)
3468 {
3469 	struct btrfs_root *log;
3470 	struct btrfs_dir_item *di;
3471 	struct btrfs_path *path;
3472 	int ret;
3473 	int err = 0;
3474 	u64 dir_ino = btrfs_ino(dir);
3475 
3476 	if (!inode_logged(trans, dir))
3477 		return 0;
3478 
3479 	ret = join_running_log_trans(root);
3480 	if (ret)
3481 		return 0;
3482 
3483 	mutex_lock(&dir->log_mutex);
3484 
3485 	log = root->log_root;
3486 	path = btrfs_alloc_path();
3487 	if (!path) {
3488 		err = -ENOMEM;
3489 		goto out_unlock;
3490 	}
3491 
3492 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3493 				   name, name_len, -1);
3494 	if (IS_ERR(di)) {
3495 		err = PTR_ERR(di);
3496 		goto fail;
3497 	}
3498 	if (di) {
3499 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3500 		if (ret) {
3501 			err = ret;
3502 			goto fail;
3503 		}
3504 	}
3505 	btrfs_release_path(path);
3506 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3507 					 index, name, name_len, -1);
3508 	if (IS_ERR(di)) {
3509 		err = PTR_ERR(di);
3510 		goto fail;
3511 	}
3512 	if (di) {
3513 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3514 		if (ret) {
3515 			err = ret;
3516 			goto fail;
3517 		}
3518 	}
3519 
3520 	/*
3521 	 * We do not need to update the size field of the directory's inode item
3522 	 * because on log replay we update the field to reflect all existing
3523 	 * entries in the directory (see overwrite_item()).
3524 	 */
3525 fail:
3526 	btrfs_free_path(path);
3527 out_unlock:
3528 	mutex_unlock(&dir->log_mutex);
3529 	if (err == -ENOSPC) {
3530 		btrfs_set_log_full_commit(trans);
3531 		err = 0;
3532 	} else if (err < 0 && err != -ENOENT) {
3533 		/* ENOENT can be returned if the entry hasn't been fsynced yet */
3534 		btrfs_abort_transaction(trans, err);
3535 	}
3536 
3537 	btrfs_end_log_trans(root);
3538 
3539 	return err;
3540 }
3541 
3542 /* see comments for btrfs_del_dir_entries_in_log */
3543 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3544 			       struct btrfs_root *root,
3545 			       const char *name, int name_len,
3546 			       struct btrfs_inode *inode, u64 dirid)
3547 {
3548 	struct btrfs_root *log;
3549 	u64 index;
3550 	int ret;
3551 
3552 	if (!inode_logged(trans, inode))
3553 		return 0;
3554 
3555 	ret = join_running_log_trans(root);
3556 	if (ret)
3557 		return 0;
3558 	log = root->log_root;
3559 	mutex_lock(&inode->log_mutex);
3560 
3561 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3562 				  dirid, &index);
3563 	mutex_unlock(&inode->log_mutex);
3564 	if (ret == -ENOSPC) {
3565 		btrfs_set_log_full_commit(trans);
3566 		ret = 0;
3567 	} else if (ret < 0 && ret != -ENOENT)
3568 		btrfs_abort_transaction(trans, ret);
3569 	btrfs_end_log_trans(root);
3570 
3571 	return ret;
3572 }
3573 
3574 /*
3575  * creates a range item in the log for 'dirid'.  first_offset and
3576  * last_offset tell us which parts of the key space the log should
3577  * be considered authoritative for.
3578  */
3579 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3580 				       struct btrfs_root *log,
3581 				       struct btrfs_path *path,
3582 				       int key_type, u64 dirid,
3583 				       u64 first_offset, u64 last_offset)
3584 {
3585 	int ret;
3586 	struct btrfs_key key;
3587 	struct btrfs_dir_log_item *item;
3588 
3589 	key.objectid = dirid;
3590 	key.offset = first_offset;
3591 	if (key_type == BTRFS_DIR_ITEM_KEY)
3592 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3593 	else
3594 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3595 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3596 	if (ret)
3597 		return ret;
3598 
3599 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3600 			      struct btrfs_dir_log_item);
3601 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3602 	btrfs_mark_buffer_dirty(path->nodes[0]);
3603 	btrfs_release_path(path);
3604 	return 0;
3605 }
3606 
3607 /*
3608  * log all the items included in the current transaction for a given
3609  * directory.  This also creates the range items in the log tree required
3610  * to replay anything deleted before the fsync
3611  */
3612 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3613 			  struct btrfs_root *root, struct btrfs_inode *inode,
3614 			  struct btrfs_path *path,
3615 			  struct btrfs_path *dst_path, int key_type,
3616 			  struct btrfs_log_ctx *ctx,
3617 			  u64 min_offset, u64 *last_offset_ret)
3618 {
3619 	struct btrfs_key min_key;
3620 	struct btrfs_root *log = root->log_root;
3621 	struct extent_buffer *src;
3622 	int err = 0;
3623 	int ret;
3624 	int i;
3625 	int nritems;
3626 	u64 first_offset = min_offset;
3627 	u64 last_offset = (u64)-1;
3628 	u64 ino = btrfs_ino(inode);
3629 
3630 	log = root->log_root;
3631 
3632 	min_key.objectid = ino;
3633 	min_key.type = key_type;
3634 	min_key.offset = min_offset;
3635 
3636 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3637 
3638 	/*
3639 	 * we didn't find anything from this transaction, see if there
3640 	 * is anything at all
3641 	 */
3642 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3643 		min_key.objectid = ino;
3644 		min_key.type = key_type;
3645 		min_key.offset = (u64)-1;
3646 		btrfs_release_path(path);
3647 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3648 		if (ret < 0) {
3649 			btrfs_release_path(path);
3650 			return ret;
3651 		}
3652 		ret = btrfs_previous_item(root, path, ino, key_type);
3653 
3654 		/* if ret == 0 there are items for this type,
3655 		 * create a range to tell us the last key of this type.
3656 		 * otherwise, there are no items in this directory after
3657 		 * *min_offset, and we create a range to indicate that.
3658 		 */
3659 		if (ret == 0) {
3660 			struct btrfs_key tmp;
3661 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3662 					      path->slots[0]);
3663 			if (key_type == tmp.type)
3664 				first_offset = max(min_offset, tmp.offset) + 1;
3665 		}
3666 		goto done;
3667 	}
3668 
3669 	/* go backward to find any previous key */
3670 	ret = btrfs_previous_item(root, path, ino, key_type);
3671 	if (ret == 0) {
3672 		struct btrfs_key tmp;
3673 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3674 		if (key_type == tmp.type) {
3675 			first_offset = tmp.offset;
3676 			ret = overwrite_item(trans, log, dst_path,
3677 					     path->nodes[0], path->slots[0],
3678 					     &tmp);
3679 			if (ret) {
3680 				err = ret;
3681 				goto done;
3682 			}
3683 		}
3684 	}
3685 	btrfs_release_path(path);
3686 
3687 	/*
3688 	 * Find the first key from this transaction again.  See the note for
3689 	 * log_new_dir_dentries, if we're logging a directory recursively we
3690 	 * won't be holding its i_mutex, which means we can modify the directory
3691 	 * while we're logging it.  If we remove an entry between our first
3692 	 * search and this search we'll not find the key again and can just
3693 	 * bail.
3694 	 */
3695 search:
3696 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3697 	if (ret != 0)
3698 		goto done;
3699 
3700 	/*
3701 	 * we have a block from this transaction, log every item in it
3702 	 * from our directory
3703 	 */
3704 	while (1) {
3705 		struct btrfs_key tmp;
3706 		src = path->nodes[0];
3707 		nritems = btrfs_header_nritems(src);
3708 		for (i = path->slots[0]; i < nritems; i++) {
3709 			struct btrfs_dir_item *di;
3710 
3711 			btrfs_item_key_to_cpu(src, &min_key, i);
3712 
3713 			if (min_key.objectid != ino || min_key.type != key_type)
3714 				goto done;
3715 
3716 			if (need_resched()) {
3717 				btrfs_release_path(path);
3718 				cond_resched();
3719 				goto search;
3720 			}
3721 
3722 			ret = overwrite_item(trans, log, dst_path, src, i,
3723 					     &min_key);
3724 			if (ret) {
3725 				err = ret;
3726 				goto done;
3727 			}
3728 
3729 			/*
3730 			 * We must make sure that when we log a directory entry,
3731 			 * the corresponding inode, after log replay, has a
3732 			 * matching link count. For example:
3733 			 *
3734 			 * touch foo
3735 			 * mkdir mydir
3736 			 * sync
3737 			 * ln foo mydir/bar
3738 			 * xfs_io -c "fsync" mydir
3739 			 * <crash>
3740 			 * <mount fs and log replay>
3741 			 *
3742 			 * Would result in a fsync log that when replayed, our
3743 			 * file inode would have a link count of 1, but we get
3744 			 * two directory entries pointing to the same inode.
3745 			 * After removing one of the names, it would not be
3746 			 * possible to remove the other name, which resulted
3747 			 * always in stale file handle errors, and would not
3748 			 * be possible to rmdir the parent directory, since
3749 			 * its i_size could never decrement to the value
3750 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3751 			 */
3752 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3753 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3754 			if (ctx &&
3755 			    (btrfs_dir_transid(src, di) == trans->transid ||
3756 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3757 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3758 				ctx->log_new_dentries = true;
3759 		}
3760 		path->slots[0] = nritems;
3761 
3762 		/*
3763 		 * look ahead to the next item and see if it is also
3764 		 * from this directory and from this transaction
3765 		 */
3766 		ret = btrfs_next_leaf(root, path);
3767 		if (ret) {
3768 			if (ret == 1)
3769 				last_offset = (u64)-1;
3770 			else
3771 				err = ret;
3772 			goto done;
3773 		}
3774 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3775 		if (tmp.objectid != ino || tmp.type != key_type) {
3776 			last_offset = (u64)-1;
3777 			goto done;
3778 		}
3779 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3780 			ret = overwrite_item(trans, log, dst_path,
3781 					     path->nodes[0], path->slots[0],
3782 					     &tmp);
3783 			if (ret)
3784 				err = ret;
3785 			else
3786 				last_offset = tmp.offset;
3787 			goto done;
3788 		}
3789 	}
3790 done:
3791 	btrfs_release_path(path);
3792 	btrfs_release_path(dst_path);
3793 
3794 	if (err == 0) {
3795 		*last_offset_ret = last_offset;
3796 		/*
3797 		 * insert the log range keys to indicate where the log
3798 		 * is valid
3799 		 */
3800 		ret = insert_dir_log_key(trans, log, path, key_type,
3801 					 ino, first_offset, last_offset);
3802 		if (ret)
3803 			err = ret;
3804 	}
3805 	return err;
3806 }
3807 
3808 /*
3809  * logging directories is very similar to logging inodes, We find all the items
3810  * from the current transaction and write them to the log.
3811  *
3812  * The recovery code scans the directory in the subvolume, and if it finds a
3813  * key in the range logged that is not present in the log tree, then it means
3814  * that dir entry was unlinked during the transaction.
3815  *
3816  * In order for that scan to work, we must include one key smaller than
3817  * the smallest logged by this transaction and one key larger than the largest
3818  * key logged by this transaction.
3819  */
3820 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3821 			  struct btrfs_root *root, struct btrfs_inode *inode,
3822 			  struct btrfs_path *path,
3823 			  struct btrfs_path *dst_path,
3824 			  struct btrfs_log_ctx *ctx)
3825 {
3826 	u64 min_key;
3827 	u64 max_key;
3828 	int ret;
3829 	int key_type = BTRFS_DIR_ITEM_KEY;
3830 
3831 again:
3832 	min_key = 0;
3833 	max_key = 0;
3834 	while (1) {
3835 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3836 				ctx, min_key, &max_key);
3837 		if (ret)
3838 			return ret;
3839 		if (max_key == (u64)-1)
3840 			break;
3841 		min_key = max_key + 1;
3842 	}
3843 
3844 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3845 		key_type = BTRFS_DIR_INDEX_KEY;
3846 		goto again;
3847 	}
3848 	return 0;
3849 }
3850 
3851 /*
3852  * a helper function to drop items from the log before we relog an
3853  * inode.  max_key_type indicates the highest item type to remove.
3854  * This cannot be run for file data extents because it does not
3855  * free the extents they point to.
3856  */
3857 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3858 				  struct btrfs_root *log,
3859 				  struct btrfs_path *path,
3860 				  u64 objectid, int max_key_type)
3861 {
3862 	int ret;
3863 	struct btrfs_key key;
3864 	struct btrfs_key found_key;
3865 	int start_slot;
3866 
3867 	key.objectid = objectid;
3868 	key.type = max_key_type;
3869 	key.offset = (u64)-1;
3870 
3871 	while (1) {
3872 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3873 		BUG_ON(ret == 0); /* Logic error */
3874 		if (ret < 0)
3875 			break;
3876 
3877 		if (path->slots[0] == 0)
3878 			break;
3879 
3880 		path->slots[0]--;
3881 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3882 				      path->slots[0]);
3883 
3884 		if (found_key.objectid != objectid)
3885 			break;
3886 
3887 		found_key.offset = 0;
3888 		found_key.type = 0;
3889 		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3890 		if (ret < 0)
3891 			break;
3892 
3893 		ret = btrfs_del_items(trans, log, path, start_slot,
3894 				      path->slots[0] - start_slot + 1);
3895 		/*
3896 		 * If start slot isn't 0 then we don't need to re-search, we've
3897 		 * found the last guy with the objectid in this tree.
3898 		 */
3899 		if (ret || start_slot != 0)
3900 			break;
3901 		btrfs_release_path(path);
3902 	}
3903 	btrfs_release_path(path);
3904 	if (ret > 0)
3905 		ret = 0;
3906 	return ret;
3907 }
3908 
3909 static void fill_inode_item(struct btrfs_trans_handle *trans,
3910 			    struct extent_buffer *leaf,
3911 			    struct btrfs_inode_item *item,
3912 			    struct inode *inode, int log_inode_only,
3913 			    u64 logged_isize)
3914 {
3915 	struct btrfs_map_token token;
3916 
3917 	btrfs_init_map_token(&token, leaf);
3918 
3919 	if (log_inode_only) {
3920 		/* set the generation to zero so the recover code
3921 		 * can tell the difference between an logging
3922 		 * just to say 'this inode exists' and a logging
3923 		 * to say 'update this inode with these values'
3924 		 */
3925 		btrfs_set_token_inode_generation(&token, item, 0);
3926 		btrfs_set_token_inode_size(&token, item, logged_isize);
3927 	} else {
3928 		btrfs_set_token_inode_generation(&token, item,
3929 						 BTRFS_I(inode)->generation);
3930 		btrfs_set_token_inode_size(&token, item, inode->i_size);
3931 	}
3932 
3933 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3934 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3935 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3936 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3937 
3938 	btrfs_set_token_timespec_sec(&token, &item->atime,
3939 				     inode->i_atime.tv_sec);
3940 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3941 				      inode->i_atime.tv_nsec);
3942 
3943 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3944 				     inode->i_mtime.tv_sec);
3945 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3946 				      inode->i_mtime.tv_nsec);
3947 
3948 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3949 				     inode->i_ctime.tv_sec);
3950 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3951 				      inode->i_ctime.tv_nsec);
3952 
3953 	/*
3954 	 * We do not need to set the nbytes field, in fact during a fast fsync
3955 	 * its value may not even be correct, since a fast fsync does not wait
3956 	 * for ordered extent completion, which is where we update nbytes, it
3957 	 * only waits for writeback to complete. During log replay as we find
3958 	 * file extent items and replay them, we adjust the nbytes field of the
3959 	 * inode item in subvolume tree as needed (see overwrite_item()).
3960 	 */
3961 
3962 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3963 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3964 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3965 	btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3966 	btrfs_set_token_inode_block_group(&token, item, 0);
3967 }
3968 
3969 static int log_inode_item(struct btrfs_trans_handle *trans,
3970 			  struct btrfs_root *log, struct btrfs_path *path,
3971 			  struct btrfs_inode *inode)
3972 {
3973 	struct btrfs_inode_item *inode_item;
3974 	int ret;
3975 
3976 	ret = btrfs_insert_empty_item(trans, log, path,
3977 				      &inode->location, sizeof(*inode_item));
3978 	if (ret && ret != -EEXIST)
3979 		return ret;
3980 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3981 				    struct btrfs_inode_item);
3982 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3983 			0, 0);
3984 	btrfs_release_path(path);
3985 	return 0;
3986 }
3987 
3988 static int log_csums(struct btrfs_trans_handle *trans,
3989 		     struct btrfs_inode *inode,
3990 		     struct btrfs_root *log_root,
3991 		     struct btrfs_ordered_sum *sums)
3992 {
3993 	const u64 lock_end = sums->bytenr + sums->len - 1;
3994 	struct extent_state *cached_state = NULL;
3995 	int ret;
3996 
3997 	/*
3998 	 * If this inode was not used for reflink operations in the current
3999 	 * transaction with new extents, then do the fast path, no need to
4000 	 * worry about logging checksum items with overlapping ranges.
4001 	 */
4002 	if (inode->last_reflink_trans < trans->transid)
4003 		return btrfs_csum_file_blocks(trans, log_root, sums);
4004 
4005 	/*
4006 	 * Serialize logging for checksums. This is to avoid racing with the
4007 	 * same checksum being logged by another task that is logging another
4008 	 * file which happens to refer to the same extent as well. Such races
4009 	 * can leave checksum items in the log with overlapping ranges.
4010 	 */
4011 	ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
4012 			       lock_end, &cached_state);
4013 	if (ret)
4014 		return ret;
4015 	/*
4016 	 * Due to extent cloning, we might have logged a csum item that covers a
4017 	 * subrange of a cloned extent, and later we can end up logging a csum
4018 	 * item for a larger subrange of the same extent or the entire range.
4019 	 * This would leave csum items in the log tree that cover the same range
4020 	 * and break the searches for checksums in the log tree, resulting in
4021 	 * some checksums missing in the fs/subvolume tree. So just delete (or
4022 	 * trim and adjust) any existing csum items in the log for this range.
4023 	 */
4024 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4025 	if (!ret)
4026 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4027 
4028 	unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4029 			     &cached_state);
4030 
4031 	return ret;
4032 }
4033 
4034 static noinline int copy_items(struct btrfs_trans_handle *trans,
4035 			       struct btrfs_inode *inode,
4036 			       struct btrfs_path *dst_path,
4037 			       struct btrfs_path *src_path,
4038 			       int start_slot, int nr, int inode_only,
4039 			       u64 logged_isize)
4040 {
4041 	struct btrfs_fs_info *fs_info = trans->fs_info;
4042 	unsigned long src_offset;
4043 	unsigned long dst_offset;
4044 	struct btrfs_root *log = inode->root->log_root;
4045 	struct btrfs_file_extent_item *extent;
4046 	struct btrfs_inode_item *inode_item;
4047 	struct extent_buffer *src = src_path->nodes[0];
4048 	int ret;
4049 	struct btrfs_key *ins_keys;
4050 	u32 *ins_sizes;
4051 	char *ins_data;
4052 	int i;
4053 	struct list_head ordered_sums;
4054 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
4055 
4056 	INIT_LIST_HEAD(&ordered_sums);
4057 
4058 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4059 			   nr * sizeof(u32), GFP_NOFS);
4060 	if (!ins_data)
4061 		return -ENOMEM;
4062 
4063 	ins_sizes = (u32 *)ins_data;
4064 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4065 
4066 	for (i = 0; i < nr; i++) {
4067 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
4068 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4069 	}
4070 	ret = btrfs_insert_empty_items(trans, log, dst_path,
4071 				       ins_keys, ins_sizes, nr);
4072 	if (ret) {
4073 		kfree(ins_data);
4074 		return ret;
4075 	}
4076 
4077 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
4078 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4079 						   dst_path->slots[0]);
4080 
4081 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4082 
4083 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
4084 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
4085 						    dst_path->slots[0],
4086 						    struct btrfs_inode_item);
4087 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4088 					&inode->vfs_inode,
4089 					inode_only == LOG_INODE_EXISTS,
4090 					logged_isize);
4091 		} else {
4092 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4093 					   src_offset, ins_sizes[i]);
4094 		}
4095 
4096 		/* take a reference on file data extents so that truncates
4097 		 * or deletes of this inode don't have to relog the inode
4098 		 * again
4099 		 */
4100 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4101 		    !skip_csum) {
4102 			int found_type;
4103 			extent = btrfs_item_ptr(src, start_slot + i,
4104 						struct btrfs_file_extent_item);
4105 
4106 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4107 				continue;
4108 
4109 			found_type = btrfs_file_extent_type(src, extent);
4110 			if (found_type == BTRFS_FILE_EXTENT_REG) {
4111 				u64 ds, dl, cs, cl;
4112 				ds = btrfs_file_extent_disk_bytenr(src,
4113 								extent);
4114 				/* ds == 0 is a hole */
4115 				if (ds == 0)
4116 					continue;
4117 
4118 				dl = btrfs_file_extent_disk_num_bytes(src,
4119 								extent);
4120 				cs = btrfs_file_extent_offset(src, extent);
4121 				cl = btrfs_file_extent_num_bytes(src,
4122 								extent);
4123 				if (btrfs_file_extent_compression(src,
4124 								  extent)) {
4125 					cs = 0;
4126 					cl = dl;
4127 				}
4128 
4129 				ret = btrfs_lookup_csums_range(
4130 						fs_info->csum_root,
4131 						ds + cs, ds + cs + cl - 1,
4132 						&ordered_sums, 0);
4133 				if (ret)
4134 					break;
4135 			}
4136 		}
4137 	}
4138 
4139 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4140 	btrfs_release_path(dst_path);
4141 	kfree(ins_data);
4142 
4143 	/*
4144 	 * we have to do this after the loop above to avoid changing the
4145 	 * log tree while trying to change the log tree.
4146 	 */
4147 	while (!list_empty(&ordered_sums)) {
4148 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4149 						   struct btrfs_ordered_sum,
4150 						   list);
4151 		if (!ret)
4152 			ret = log_csums(trans, inode, log, sums);
4153 		list_del(&sums->list);
4154 		kfree(sums);
4155 	}
4156 
4157 	return ret;
4158 }
4159 
4160 static int extent_cmp(void *priv, const struct list_head *a,
4161 		      const struct list_head *b)
4162 {
4163 	struct extent_map *em1, *em2;
4164 
4165 	em1 = list_entry(a, struct extent_map, list);
4166 	em2 = list_entry(b, struct extent_map, list);
4167 
4168 	if (em1->start < em2->start)
4169 		return -1;
4170 	else if (em1->start > em2->start)
4171 		return 1;
4172 	return 0;
4173 }
4174 
4175 static int log_extent_csums(struct btrfs_trans_handle *trans,
4176 			    struct btrfs_inode *inode,
4177 			    struct btrfs_root *log_root,
4178 			    const struct extent_map *em,
4179 			    struct btrfs_log_ctx *ctx)
4180 {
4181 	struct btrfs_ordered_extent *ordered;
4182 	u64 csum_offset;
4183 	u64 csum_len;
4184 	u64 mod_start = em->mod_start;
4185 	u64 mod_len = em->mod_len;
4186 	LIST_HEAD(ordered_sums);
4187 	int ret = 0;
4188 
4189 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4190 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4191 	    em->block_start == EXTENT_MAP_HOLE)
4192 		return 0;
4193 
4194 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4195 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4196 		const u64 mod_end = mod_start + mod_len;
4197 		struct btrfs_ordered_sum *sums;
4198 
4199 		if (mod_len == 0)
4200 			break;
4201 
4202 		if (ordered_end <= mod_start)
4203 			continue;
4204 		if (mod_end <= ordered->file_offset)
4205 			break;
4206 
4207 		/*
4208 		 * We are going to copy all the csums on this ordered extent, so
4209 		 * go ahead and adjust mod_start and mod_len in case this ordered
4210 		 * extent has already been logged.
4211 		 */
4212 		if (ordered->file_offset > mod_start) {
4213 			if (ordered_end >= mod_end)
4214 				mod_len = ordered->file_offset - mod_start;
4215 			/*
4216 			 * If we have this case
4217 			 *
4218 			 * |--------- logged extent ---------|
4219 			 *       |----- ordered extent ----|
4220 			 *
4221 			 * Just don't mess with mod_start and mod_len, we'll
4222 			 * just end up logging more csums than we need and it
4223 			 * will be ok.
4224 			 */
4225 		} else {
4226 			if (ordered_end < mod_end) {
4227 				mod_len = mod_end - ordered_end;
4228 				mod_start = ordered_end;
4229 			} else {
4230 				mod_len = 0;
4231 			}
4232 		}
4233 
4234 		/*
4235 		 * To keep us from looping for the above case of an ordered
4236 		 * extent that falls inside of the logged extent.
4237 		 */
4238 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4239 			continue;
4240 
4241 		list_for_each_entry(sums, &ordered->list, list) {
4242 			ret = log_csums(trans, inode, log_root, sums);
4243 			if (ret)
4244 				return ret;
4245 		}
4246 	}
4247 
4248 	/* We're done, found all csums in the ordered extents. */
4249 	if (mod_len == 0)
4250 		return 0;
4251 
4252 	/* If we're compressed we have to save the entire range of csums. */
4253 	if (em->compress_type) {
4254 		csum_offset = 0;
4255 		csum_len = max(em->block_len, em->orig_block_len);
4256 	} else {
4257 		csum_offset = mod_start - em->start;
4258 		csum_len = mod_len;
4259 	}
4260 
4261 	/* block start is already adjusted for the file extent offset. */
4262 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4263 				       em->block_start + csum_offset,
4264 				       em->block_start + csum_offset +
4265 				       csum_len - 1, &ordered_sums, 0);
4266 	if (ret)
4267 		return ret;
4268 
4269 	while (!list_empty(&ordered_sums)) {
4270 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4271 						   struct btrfs_ordered_sum,
4272 						   list);
4273 		if (!ret)
4274 			ret = log_csums(trans, inode, log_root, sums);
4275 		list_del(&sums->list);
4276 		kfree(sums);
4277 	}
4278 
4279 	return ret;
4280 }
4281 
4282 static int log_one_extent(struct btrfs_trans_handle *trans,
4283 			  struct btrfs_inode *inode, struct btrfs_root *root,
4284 			  const struct extent_map *em,
4285 			  struct btrfs_path *path,
4286 			  struct btrfs_log_ctx *ctx)
4287 {
4288 	struct btrfs_drop_extents_args drop_args = { 0 };
4289 	struct btrfs_root *log = root->log_root;
4290 	struct btrfs_file_extent_item *fi;
4291 	struct extent_buffer *leaf;
4292 	struct btrfs_map_token token;
4293 	struct btrfs_key key;
4294 	u64 extent_offset = em->start - em->orig_start;
4295 	u64 block_len;
4296 	int ret;
4297 
4298 	ret = log_extent_csums(trans, inode, log, em, ctx);
4299 	if (ret)
4300 		return ret;
4301 
4302 	drop_args.path = path;
4303 	drop_args.start = em->start;
4304 	drop_args.end = em->start + em->len;
4305 	drop_args.replace_extent = true;
4306 	drop_args.extent_item_size = sizeof(*fi);
4307 	ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4308 	if (ret)
4309 		return ret;
4310 
4311 	if (!drop_args.extent_inserted) {
4312 		key.objectid = btrfs_ino(inode);
4313 		key.type = BTRFS_EXTENT_DATA_KEY;
4314 		key.offset = em->start;
4315 
4316 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4317 					      sizeof(*fi));
4318 		if (ret)
4319 			return ret;
4320 	}
4321 	leaf = path->nodes[0];
4322 	btrfs_init_map_token(&token, leaf);
4323 	fi = btrfs_item_ptr(leaf, path->slots[0],
4324 			    struct btrfs_file_extent_item);
4325 
4326 	btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4327 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4328 		btrfs_set_token_file_extent_type(&token, fi,
4329 						 BTRFS_FILE_EXTENT_PREALLOC);
4330 	else
4331 		btrfs_set_token_file_extent_type(&token, fi,
4332 						 BTRFS_FILE_EXTENT_REG);
4333 
4334 	block_len = max(em->block_len, em->orig_block_len);
4335 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4336 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4337 							em->block_start);
4338 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4339 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4340 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4341 							em->block_start -
4342 							extent_offset);
4343 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4344 	} else {
4345 		btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4346 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4347 	}
4348 
4349 	btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4350 	btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4351 	btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4352 	btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4353 	btrfs_set_token_file_extent_encryption(&token, fi, 0);
4354 	btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4355 	btrfs_mark_buffer_dirty(leaf);
4356 
4357 	btrfs_release_path(path);
4358 
4359 	return ret;
4360 }
4361 
4362 /*
4363  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4364  * lose them after doing a fast fsync and replaying the log. We scan the
4365  * subvolume's root instead of iterating the inode's extent map tree because
4366  * otherwise we can log incorrect extent items based on extent map conversion.
4367  * That can happen due to the fact that extent maps are merged when they
4368  * are not in the extent map tree's list of modified extents.
4369  */
4370 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4371 				      struct btrfs_inode *inode,
4372 				      struct btrfs_path *path)
4373 {
4374 	struct btrfs_root *root = inode->root;
4375 	struct btrfs_key key;
4376 	const u64 i_size = i_size_read(&inode->vfs_inode);
4377 	const u64 ino = btrfs_ino(inode);
4378 	struct btrfs_path *dst_path = NULL;
4379 	bool dropped_extents = false;
4380 	u64 truncate_offset = i_size;
4381 	struct extent_buffer *leaf;
4382 	int slot;
4383 	int ins_nr = 0;
4384 	int start_slot;
4385 	int ret;
4386 
4387 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4388 		return 0;
4389 
4390 	key.objectid = ino;
4391 	key.type = BTRFS_EXTENT_DATA_KEY;
4392 	key.offset = i_size;
4393 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4394 	if (ret < 0)
4395 		goto out;
4396 
4397 	/*
4398 	 * We must check if there is a prealloc extent that starts before the
4399 	 * i_size and crosses the i_size boundary. This is to ensure later we
4400 	 * truncate down to the end of that extent and not to the i_size, as
4401 	 * otherwise we end up losing part of the prealloc extent after a log
4402 	 * replay and with an implicit hole if there is another prealloc extent
4403 	 * that starts at an offset beyond i_size.
4404 	 */
4405 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4406 	if (ret < 0)
4407 		goto out;
4408 
4409 	if (ret == 0) {
4410 		struct btrfs_file_extent_item *ei;
4411 
4412 		leaf = path->nodes[0];
4413 		slot = path->slots[0];
4414 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4415 
4416 		if (btrfs_file_extent_type(leaf, ei) ==
4417 		    BTRFS_FILE_EXTENT_PREALLOC) {
4418 			u64 extent_end;
4419 
4420 			btrfs_item_key_to_cpu(leaf, &key, slot);
4421 			extent_end = key.offset +
4422 				btrfs_file_extent_num_bytes(leaf, ei);
4423 
4424 			if (extent_end > i_size)
4425 				truncate_offset = extent_end;
4426 		}
4427 	} else {
4428 		ret = 0;
4429 	}
4430 
4431 	while (true) {
4432 		leaf = path->nodes[0];
4433 		slot = path->slots[0];
4434 
4435 		if (slot >= btrfs_header_nritems(leaf)) {
4436 			if (ins_nr > 0) {
4437 				ret = copy_items(trans, inode, dst_path, path,
4438 						 start_slot, ins_nr, 1, 0);
4439 				if (ret < 0)
4440 					goto out;
4441 				ins_nr = 0;
4442 			}
4443 			ret = btrfs_next_leaf(root, path);
4444 			if (ret < 0)
4445 				goto out;
4446 			if (ret > 0) {
4447 				ret = 0;
4448 				break;
4449 			}
4450 			continue;
4451 		}
4452 
4453 		btrfs_item_key_to_cpu(leaf, &key, slot);
4454 		if (key.objectid > ino)
4455 			break;
4456 		if (WARN_ON_ONCE(key.objectid < ino) ||
4457 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4458 		    key.offset < i_size) {
4459 			path->slots[0]++;
4460 			continue;
4461 		}
4462 		if (!dropped_extents) {
4463 			/*
4464 			 * Avoid logging extent items logged in past fsync calls
4465 			 * and leading to duplicate keys in the log tree.
4466 			 */
4467 			do {
4468 				ret = btrfs_truncate_inode_items(trans,
4469 							 root->log_root,
4470 							 inode, truncate_offset,
4471 							 BTRFS_EXTENT_DATA_KEY,
4472 							 NULL);
4473 			} while (ret == -EAGAIN);
4474 			if (ret)
4475 				goto out;
4476 			dropped_extents = true;
4477 		}
4478 		if (ins_nr == 0)
4479 			start_slot = slot;
4480 		ins_nr++;
4481 		path->slots[0]++;
4482 		if (!dst_path) {
4483 			dst_path = btrfs_alloc_path();
4484 			if (!dst_path) {
4485 				ret = -ENOMEM;
4486 				goto out;
4487 			}
4488 		}
4489 	}
4490 	if (ins_nr > 0)
4491 		ret = copy_items(trans, inode, dst_path, path,
4492 				 start_slot, ins_nr, 1, 0);
4493 out:
4494 	btrfs_release_path(path);
4495 	btrfs_free_path(dst_path);
4496 	return ret;
4497 }
4498 
4499 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4500 				     struct btrfs_root *root,
4501 				     struct btrfs_inode *inode,
4502 				     struct btrfs_path *path,
4503 				     struct btrfs_log_ctx *ctx)
4504 {
4505 	struct btrfs_ordered_extent *ordered;
4506 	struct btrfs_ordered_extent *tmp;
4507 	struct extent_map *em, *n;
4508 	struct list_head extents;
4509 	struct extent_map_tree *tree = &inode->extent_tree;
4510 	int ret = 0;
4511 	int num = 0;
4512 
4513 	INIT_LIST_HEAD(&extents);
4514 
4515 	write_lock(&tree->lock);
4516 
4517 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4518 		list_del_init(&em->list);
4519 		/*
4520 		 * Just an arbitrary number, this can be really CPU intensive
4521 		 * once we start getting a lot of extents, and really once we
4522 		 * have a bunch of extents we just want to commit since it will
4523 		 * be faster.
4524 		 */
4525 		if (++num > 32768) {
4526 			list_del_init(&tree->modified_extents);
4527 			ret = -EFBIG;
4528 			goto process;
4529 		}
4530 
4531 		if (em->generation < trans->transid)
4532 			continue;
4533 
4534 		/* We log prealloc extents beyond eof later. */
4535 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4536 		    em->start >= i_size_read(&inode->vfs_inode))
4537 			continue;
4538 
4539 		/* Need a ref to keep it from getting evicted from cache */
4540 		refcount_inc(&em->refs);
4541 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4542 		list_add_tail(&em->list, &extents);
4543 		num++;
4544 	}
4545 
4546 	list_sort(NULL, &extents, extent_cmp);
4547 process:
4548 	while (!list_empty(&extents)) {
4549 		em = list_entry(extents.next, struct extent_map, list);
4550 
4551 		list_del_init(&em->list);
4552 
4553 		/*
4554 		 * If we had an error we just need to delete everybody from our
4555 		 * private list.
4556 		 */
4557 		if (ret) {
4558 			clear_em_logging(tree, em);
4559 			free_extent_map(em);
4560 			continue;
4561 		}
4562 
4563 		write_unlock(&tree->lock);
4564 
4565 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4566 		write_lock(&tree->lock);
4567 		clear_em_logging(tree, em);
4568 		free_extent_map(em);
4569 	}
4570 	WARN_ON(!list_empty(&extents));
4571 	write_unlock(&tree->lock);
4572 
4573 	btrfs_release_path(path);
4574 	if (!ret)
4575 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4576 	if (ret)
4577 		return ret;
4578 
4579 	/*
4580 	 * We have logged all extents successfully, now make sure the commit of
4581 	 * the current transaction waits for the ordered extents to complete
4582 	 * before it commits and wipes out the log trees, otherwise we would
4583 	 * lose data if an ordered extents completes after the transaction
4584 	 * commits and a power failure happens after the transaction commit.
4585 	 */
4586 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4587 		list_del_init(&ordered->log_list);
4588 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4589 
4590 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4591 			spin_lock_irq(&inode->ordered_tree.lock);
4592 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4593 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4594 				atomic_inc(&trans->transaction->pending_ordered);
4595 			}
4596 			spin_unlock_irq(&inode->ordered_tree.lock);
4597 		}
4598 		btrfs_put_ordered_extent(ordered);
4599 	}
4600 
4601 	return 0;
4602 }
4603 
4604 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4605 			     struct btrfs_path *path, u64 *size_ret)
4606 {
4607 	struct btrfs_key key;
4608 	int ret;
4609 
4610 	key.objectid = btrfs_ino(inode);
4611 	key.type = BTRFS_INODE_ITEM_KEY;
4612 	key.offset = 0;
4613 
4614 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4615 	if (ret < 0) {
4616 		return ret;
4617 	} else if (ret > 0) {
4618 		*size_ret = 0;
4619 	} else {
4620 		struct btrfs_inode_item *item;
4621 
4622 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4623 				      struct btrfs_inode_item);
4624 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4625 		/*
4626 		 * If the in-memory inode's i_size is smaller then the inode
4627 		 * size stored in the btree, return the inode's i_size, so
4628 		 * that we get a correct inode size after replaying the log
4629 		 * when before a power failure we had a shrinking truncate
4630 		 * followed by addition of a new name (rename / new hard link).
4631 		 * Otherwise return the inode size from the btree, to avoid
4632 		 * data loss when replaying a log due to previously doing a
4633 		 * write that expands the inode's size and logging a new name
4634 		 * immediately after.
4635 		 */
4636 		if (*size_ret > inode->vfs_inode.i_size)
4637 			*size_ret = inode->vfs_inode.i_size;
4638 	}
4639 
4640 	btrfs_release_path(path);
4641 	return 0;
4642 }
4643 
4644 /*
4645  * At the moment we always log all xattrs. This is to figure out at log replay
4646  * time which xattrs must have their deletion replayed. If a xattr is missing
4647  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4648  * because if a xattr is deleted, the inode is fsynced and a power failure
4649  * happens, causing the log to be replayed the next time the fs is mounted,
4650  * we want the xattr to not exist anymore (same behaviour as other filesystems
4651  * with a journal, ext3/4, xfs, f2fs, etc).
4652  */
4653 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4654 				struct btrfs_root *root,
4655 				struct btrfs_inode *inode,
4656 				struct btrfs_path *path,
4657 				struct btrfs_path *dst_path)
4658 {
4659 	int ret;
4660 	struct btrfs_key key;
4661 	const u64 ino = btrfs_ino(inode);
4662 	int ins_nr = 0;
4663 	int start_slot = 0;
4664 	bool found_xattrs = false;
4665 
4666 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4667 		return 0;
4668 
4669 	key.objectid = ino;
4670 	key.type = BTRFS_XATTR_ITEM_KEY;
4671 	key.offset = 0;
4672 
4673 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4674 	if (ret < 0)
4675 		return ret;
4676 
4677 	while (true) {
4678 		int slot = path->slots[0];
4679 		struct extent_buffer *leaf = path->nodes[0];
4680 		int nritems = btrfs_header_nritems(leaf);
4681 
4682 		if (slot >= nritems) {
4683 			if (ins_nr > 0) {
4684 				ret = copy_items(trans, inode, dst_path, path,
4685 						 start_slot, ins_nr, 1, 0);
4686 				if (ret < 0)
4687 					return ret;
4688 				ins_nr = 0;
4689 			}
4690 			ret = btrfs_next_leaf(root, path);
4691 			if (ret < 0)
4692 				return ret;
4693 			else if (ret > 0)
4694 				break;
4695 			continue;
4696 		}
4697 
4698 		btrfs_item_key_to_cpu(leaf, &key, slot);
4699 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4700 			break;
4701 
4702 		if (ins_nr == 0)
4703 			start_slot = slot;
4704 		ins_nr++;
4705 		path->slots[0]++;
4706 		found_xattrs = true;
4707 		cond_resched();
4708 	}
4709 	if (ins_nr > 0) {
4710 		ret = copy_items(trans, inode, dst_path, path,
4711 				 start_slot, ins_nr, 1, 0);
4712 		if (ret < 0)
4713 			return ret;
4714 	}
4715 
4716 	if (!found_xattrs)
4717 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
4718 
4719 	return 0;
4720 }
4721 
4722 /*
4723  * When using the NO_HOLES feature if we punched a hole that causes the
4724  * deletion of entire leafs or all the extent items of the first leaf (the one
4725  * that contains the inode item and references) we may end up not processing
4726  * any extents, because there are no leafs with a generation matching the
4727  * current transaction that have extent items for our inode. So we need to find
4728  * if any holes exist and then log them. We also need to log holes after any
4729  * truncate operation that changes the inode's size.
4730  */
4731 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4732 			   struct btrfs_root *root,
4733 			   struct btrfs_inode *inode,
4734 			   struct btrfs_path *path)
4735 {
4736 	struct btrfs_fs_info *fs_info = root->fs_info;
4737 	struct btrfs_key key;
4738 	const u64 ino = btrfs_ino(inode);
4739 	const u64 i_size = i_size_read(&inode->vfs_inode);
4740 	u64 prev_extent_end = 0;
4741 	int ret;
4742 
4743 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4744 		return 0;
4745 
4746 	key.objectid = ino;
4747 	key.type = BTRFS_EXTENT_DATA_KEY;
4748 	key.offset = 0;
4749 
4750 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4751 	if (ret < 0)
4752 		return ret;
4753 
4754 	while (true) {
4755 		struct extent_buffer *leaf = path->nodes[0];
4756 
4757 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4758 			ret = btrfs_next_leaf(root, path);
4759 			if (ret < 0)
4760 				return ret;
4761 			if (ret > 0) {
4762 				ret = 0;
4763 				break;
4764 			}
4765 			leaf = path->nodes[0];
4766 		}
4767 
4768 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4769 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4770 			break;
4771 
4772 		/* We have a hole, log it. */
4773 		if (prev_extent_end < key.offset) {
4774 			const u64 hole_len = key.offset - prev_extent_end;
4775 
4776 			/*
4777 			 * Release the path to avoid deadlocks with other code
4778 			 * paths that search the root while holding locks on
4779 			 * leafs from the log root.
4780 			 */
4781 			btrfs_release_path(path);
4782 			ret = btrfs_insert_file_extent(trans, root->log_root,
4783 						       ino, prev_extent_end, 0,
4784 						       0, hole_len, 0, hole_len,
4785 						       0, 0, 0);
4786 			if (ret < 0)
4787 				return ret;
4788 
4789 			/*
4790 			 * Search for the same key again in the root. Since it's
4791 			 * an extent item and we are holding the inode lock, the
4792 			 * key must still exist. If it doesn't just emit warning
4793 			 * and return an error to fall back to a transaction
4794 			 * commit.
4795 			 */
4796 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4797 			if (ret < 0)
4798 				return ret;
4799 			if (WARN_ON(ret > 0))
4800 				return -ENOENT;
4801 			leaf = path->nodes[0];
4802 		}
4803 
4804 		prev_extent_end = btrfs_file_extent_end(path);
4805 		path->slots[0]++;
4806 		cond_resched();
4807 	}
4808 
4809 	if (prev_extent_end < i_size) {
4810 		u64 hole_len;
4811 
4812 		btrfs_release_path(path);
4813 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4814 		ret = btrfs_insert_file_extent(trans, root->log_root,
4815 					       ino, prev_extent_end, 0, 0,
4816 					       hole_len, 0, hole_len,
4817 					       0, 0, 0);
4818 		if (ret < 0)
4819 			return ret;
4820 	}
4821 
4822 	return 0;
4823 }
4824 
4825 /*
4826  * When we are logging a new inode X, check if it doesn't have a reference that
4827  * matches the reference from some other inode Y created in a past transaction
4828  * and that was renamed in the current transaction. If we don't do this, then at
4829  * log replay time we can lose inode Y (and all its files if it's a directory):
4830  *
4831  * mkdir /mnt/x
4832  * echo "hello world" > /mnt/x/foobar
4833  * sync
4834  * mv /mnt/x /mnt/y
4835  * mkdir /mnt/x                 # or touch /mnt/x
4836  * xfs_io -c fsync /mnt/x
4837  * <power fail>
4838  * mount fs, trigger log replay
4839  *
4840  * After the log replay procedure, we would lose the first directory and all its
4841  * files (file foobar).
4842  * For the case where inode Y is not a directory we simply end up losing it:
4843  *
4844  * echo "123" > /mnt/foo
4845  * sync
4846  * mv /mnt/foo /mnt/bar
4847  * echo "abc" > /mnt/foo
4848  * xfs_io -c fsync /mnt/foo
4849  * <power fail>
4850  *
4851  * We also need this for cases where a snapshot entry is replaced by some other
4852  * entry (file or directory) otherwise we end up with an unreplayable log due to
4853  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4854  * if it were a regular entry:
4855  *
4856  * mkdir /mnt/x
4857  * btrfs subvolume snapshot /mnt /mnt/x/snap
4858  * btrfs subvolume delete /mnt/x/snap
4859  * rmdir /mnt/x
4860  * mkdir /mnt/x
4861  * fsync /mnt/x or fsync some new file inside it
4862  * <power fail>
4863  *
4864  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4865  * the same transaction.
4866  */
4867 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4868 					 const int slot,
4869 					 const struct btrfs_key *key,
4870 					 struct btrfs_inode *inode,
4871 					 u64 *other_ino, u64 *other_parent)
4872 {
4873 	int ret;
4874 	struct btrfs_path *search_path;
4875 	char *name = NULL;
4876 	u32 name_len = 0;
4877 	u32 item_size = btrfs_item_size_nr(eb, slot);
4878 	u32 cur_offset = 0;
4879 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4880 
4881 	search_path = btrfs_alloc_path();
4882 	if (!search_path)
4883 		return -ENOMEM;
4884 	search_path->search_commit_root = 1;
4885 	search_path->skip_locking = 1;
4886 
4887 	while (cur_offset < item_size) {
4888 		u64 parent;
4889 		u32 this_name_len;
4890 		u32 this_len;
4891 		unsigned long name_ptr;
4892 		struct btrfs_dir_item *di;
4893 
4894 		if (key->type == BTRFS_INODE_REF_KEY) {
4895 			struct btrfs_inode_ref *iref;
4896 
4897 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4898 			parent = key->offset;
4899 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4900 			name_ptr = (unsigned long)(iref + 1);
4901 			this_len = sizeof(*iref) + this_name_len;
4902 		} else {
4903 			struct btrfs_inode_extref *extref;
4904 
4905 			extref = (struct btrfs_inode_extref *)(ptr +
4906 							       cur_offset);
4907 			parent = btrfs_inode_extref_parent(eb, extref);
4908 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4909 			name_ptr = (unsigned long)&extref->name;
4910 			this_len = sizeof(*extref) + this_name_len;
4911 		}
4912 
4913 		if (this_name_len > name_len) {
4914 			char *new_name;
4915 
4916 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4917 			if (!new_name) {
4918 				ret = -ENOMEM;
4919 				goto out;
4920 			}
4921 			name_len = this_name_len;
4922 			name = new_name;
4923 		}
4924 
4925 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4926 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4927 				parent, name, this_name_len, 0);
4928 		if (di && !IS_ERR(di)) {
4929 			struct btrfs_key di_key;
4930 
4931 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4932 						  di, &di_key);
4933 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4934 				if (di_key.objectid != key->objectid) {
4935 					ret = 1;
4936 					*other_ino = di_key.objectid;
4937 					*other_parent = parent;
4938 				} else {
4939 					ret = 0;
4940 				}
4941 			} else {
4942 				ret = -EAGAIN;
4943 			}
4944 			goto out;
4945 		} else if (IS_ERR(di)) {
4946 			ret = PTR_ERR(di);
4947 			goto out;
4948 		}
4949 		btrfs_release_path(search_path);
4950 
4951 		cur_offset += this_len;
4952 	}
4953 	ret = 0;
4954 out:
4955 	btrfs_free_path(search_path);
4956 	kfree(name);
4957 	return ret;
4958 }
4959 
4960 struct btrfs_ino_list {
4961 	u64 ino;
4962 	u64 parent;
4963 	struct list_head list;
4964 };
4965 
4966 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4967 				  struct btrfs_root *root,
4968 				  struct btrfs_path *path,
4969 				  struct btrfs_log_ctx *ctx,
4970 				  u64 ino, u64 parent)
4971 {
4972 	struct btrfs_ino_list *ino_elem;
4973 	LIST_HEAD(inode_list);
4974 	int ret = 0;
4975 
4976 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4977 	if (!ino_elem)
4978 		return -ENOMEM;
4979 	ino_elem->ino = ino;
4980 	ino_elem->parent = parent;
4981 	list_add_tail(&ino_elem->list, &inode_list);
4982 
4983 	while (!list_empty(&inode_list)) {
4984 		struct btrfs_fs_info *fs_info = root->fs_info;
4985 		struct btrfs_key key;
4986 		struct inode *inode;
4987 
4988 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4989 					    list);
4990 		ino = ino_elem->ino;
4991 		parent = ino_elem->parent;
4992 		list_del(&ino_elem->list);
4993 		kfree(ino_elem);
4994 		if (ret)
4995 			continue;
4996 
4997 		btrfs_release_path(path);
4998 
4999 		inode = btrfs_iget(fs_info->sb, ino, root);
5000 		/*
5001 		 * If the other inode that had a conflicting dir entry was
5002 		 * deleted in the current transaction, we need to log its parent
5003 		 * directory.
5004 		 */
5005 		if (IS_ERR(inode)) {
5006 			ret = PTR_ERR(inode);
5007 			if (ret == -ENOENT) {
5008 				inode = btrfs_iget(fs_info->sb, parent, root);
5009 				if (IS_ERR(inode)) {
5010 					ret = PTR_ERR(inode);
5011 				} else {
5012 					ret = btrfs_log_inode(trans, root,
5013 						      BTRFS_I(inode),
5014 						      LOG_OTHER_INODE_ALL,
5015 						      ctx);
5016 					btrfs_add_delayed_iput(inode);
5017 				}
5018 			}
5019 			continue;
5020 		}
5021 		/*
5022 		 * If the inode was already logged skip it - otherwise we can
5023 		 * hit an infinite loop. Example:
5024 		 *
5025 		 * From the commit root (previous transaction) we have the
5026 		 * following inodes:
5027 		 *
5028 		 * inode 257 a directory
5029 		 * inode 258 with references "zz" and "zz_link" on inode 257
5030 		 * inode 259 with reference "a" on inode 257
5031 		 *
5032 		 * And in the current (uncommitted) transaction we have:
5033 		 *
5034 		 * inode 257 a directory, unchanged
5035 		 * inode 258 with references "a" and "a2" on inode 257
5036 		 * inode 259 with reference "zz_link" on inode 257
5037 		 * inode 261 with reference "zz" on inode 257
5038 		 *
5039 		 * When logging inode 261 the following infinite loop could
5040 		 * happen if we don't skip already logged inodes:
5041 		 *
5042 		 * - we detect inode 258 as a conflicting inode, with inode 261
5043 		 *   on reference "zz", and log it;
5044 		 *
5045 		 * - we detect inode 259 as a conflicting inode, with inode 258
5046 		 *   on reference "a", and log it;
5047 		 *
5048 		 * - we detect inode 258 as a conflicting inode, with inode 259
5049 		 *   on reference "zz_link", and log it - again! After this we
5050 		 *   repeat the above steps forever.
5051 		 */
5052 		spin_lock(&BTRFS_I(inode)->lock);
5053 		/*
5054 		 * Check the inode's logged_trans only instead of
5055 		 * btrfs_inode_in_log(). This is because the last_log_commit of
5056 		 * the inode is not updated when we only log that it exists and
5057 		 * it has the full sync bit set (see btrfs_log_inode()).
5058 		 */
5059 		if (BTRFS_I(inode)->logged_trans == trans->transid) {
5060 			spin_unlock(&BTRFS_I(inode)->lock);
5061 			btrfs_add_delayed_iput(inode);
5062 			continue;
5063 		}
5064 		spin_unlock(&BTRFS_I(inode)->lock);
5065 		/*
5066 		 * We are safe logging the other inode without acquiring its
5067 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5068 		 * are safe against concurrent renames of the other inode as
5069 		 * well because during a rename we pin the log and update the
5070 		 * log with the new name before we unpin it.
5071 		 */
5072 		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5073 				      LOG_OTHER_INODE, ctx);
5074 		if (ret) {
5075 			btrfs_add_delayed_iput(inode);
5076 			continue;
5077 		}
5078 
5079 		key.objectid = ino;
5080 		key.type = BTRFS_INODE_REF_KEY;
5081 		key.offset = 0;
5082 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5083 		if (ret < 0) {
5084 			btrfs_add_delayed_iput(inode);
5085 			continue;
5086 		}
5087 
5088 		while (true) {
5089 			struct extent_buffer *leaf = path->nodes[0];
5090 			int slot = path->slots[0];
5091 			u64 other_ino = 0;
5092 			u64 other_parent = 0;
5093 
5094 			if (slot >= btrfs_header_nritems(leaf)) {
5095 				ret = btrfs_next_leaf(root, path);
5096 				if (ret < 0) {
5097 					break;
5098 				} else if (ret > 0) {
5099 					ret = 0;
5100 					break;
5101 				}
5102 				continue;
5103 			}
5104 
5105 			btrfs_item_key_to_cpu(leaf, &key, slot);
5106 			if (key.objectid != ino ||
5107 			    (key.type != BTRFS_INODE_REF_KEY &&
5108 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5109 				ret = 0;
5110 				break;
5111 			}
5112 
5113 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5114 					BTRFS_I(inode), &other_ino,
5115 					&other_parent);
5116 			if (ret < 0)
5117 				break;
5118 			if (ret > 0) {
5119 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5120 				if (!ino_elem) {
5121 					ret = -ENOMEM;
5122 					break;
5123 				}
5124 				ino_elem->ino = other_ino;
5125 				ino_elem->parent = other_parent;
5126 				list_add_tail(&ino_elem->list, &inode_list);
5127 				ret = 0;
5128 			}
5129 			path->slots[0]++;
5130 		}
5131 		btrfs_add_delayed_iput(inode);
5132 	}
5133 
5134 	return ret;
5135 }
5136 
5137 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5138 				   struct btrfs_inode *inode,
5139 				   struct btrfs_key *min_key,
5140 				   const struct btrfs_key *max_key,
5141 				   struct btrfs_path *path,
5142 				   struct btrfs_path *dst_path,
5143 				   const u64 logged_isize,
5144 				   const bool recursive_logging,
5145 				   const int inode_only,
5146 				   struct btrfs_log_ctx *ctx,
5147 				   bool *need_log_inode_item)
5148 {
5149 	struct btrfs_root *root = inode->root;
5150 	int ins_start_slot = 0;
5151 	int ins_nr = 0;
5152 	int ret;
5153 
5154 	while (1) {
5155 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5156 		if (ret < 0)
5157 			return ret;
5158 		if (ret > 0) {
5159 			ret = 0;
5160 			break;
5161 		}
5162 again:
5163 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5164 		if (min_key->objectid != max_key->objectid)
5165 			break;
5166 		if (min_key->type > max_key->type)
5167 			break;
5168 
5169 		if (min_key->type == BTRFS_INODE_ITEM_KEY)
5170 			*need_log_inode_item = false;
5171 
5172 		if ((min_key->type == BTRFS_INODE_REF_KEY ||
5173 		     min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5174 		    inode->generation == trans->transid &&
5175 		    !recursive_logging) {
5176 			u64 other_ino = 0;
5177 			u64 other_parent = 0;
5178 
5179 			ret = btrfs_check_ref_name_override(path->nodes[0],
5180 					path->slots[0], min_key, inode,
5181 					&other_ino, &other_parent);
5182 			if (ret < 0) {
5183 				return ret;
5184 			} else if (ret > 0 && ctx &&
5185 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5186 				if (ins_nr > 0) {
5187 					ins_nr++;
5188 				} else {
5189 					ins_nr = 1;
5190 					ins_start_slot = path->slots[0];
5191 				}
5192 				ret = copy_items(trans, inode, dst_path, path,
5193 						 ins_start_slot, ins_nr,
5194 						 inode_only, logged_isize);
5195 				if (ret < 0)
5196 					return ret;
5197 				ins_nr = 0;
5198 
5199 				ret = log_conflicting_inodes(trans, root, path,
5200 						ctx, other_ino, other_parent);
5201 				if (ret)
5202 					return ret;
5203 				btrfs_release_path(path);
5204 				goto next_key;
5205 			}
5206 		}
5207 
5208 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5209 		if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5210 			if (ins_nr == 0)
5211 				goto next_slot;
5212 			ret = copy_items(trans, inode, dst_path, path,
5213 					 ins_start_slot,
5214 					 ins_nr, inode_only, logged_isize);
5215 			if (ret < 0)
5216 				return ret;
5217 			ins_nr = 0;
5218 			goto next_slot;
5219 		}
5220 
5221 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5222 			ins_nr++;
5223 			goto next_slot;
5224 		} else if (!ins_nr) {
5225 			ins_start_slot = path->slots[0];
5226 			ins_nr = 1;
5227 			goto next_slot;
5228 		}
5229 
5230 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5231 				 ins_nr, inode_only, logged_isize);
5232 		if (ret < 0)
5233 			return ret;
5234 		ins_nr = 1;
5235 		ins_start_slot = path->slots[0];
5236 next_slot:
5237 		path->slots[0]++;
5238 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5239 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5240 					      path->slots[0]);
5241 			goto again;
5242 		}
5243 		if (ins_nr) {
5244 			ret = copy_items(trans, inode, dst_path, path,
5245 					 ins_start_slot, ins_nr, inode_only,
5246 					 logged_isize);
5247 			if (ret < 0)
5248 				return ret;
5249 			ins_nr = 0;
5250 		}
5251 		btrfs_release_path(path);
5252 next_key:
5253 		if (min_key->offset < (u64)-1) {
5254 			min_key->offset++;
5255 		} else if (min_key->type < max_key->type) {
5256 			min_key->type++;
5257 			min_key->offset = 0;
5258 		} else {
5259 			break;
5260 		}
5261 	}
5262 	if (ins_nr)
5263 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5264 				 ins_nr, inode_only, logged_isize);
5265 
5266 	return ret;
5267 }
5268 
5269 /* log a single inode in the tree log.
5270  * At least one parent directory for this inode must exist in the tree
5271  * or be logged already.
5272  *
5273  * Any items from this inode changed by the current transaction are copied
5274  * to the log tree.  An extra reference is taken on any extents in this
5275  * file, allowing us to avoid a whole pile of corner cases around logging
5276  * blocks that have been removed from the tree.
5277  *
5278  * See LOG_INODE_ALL and related defines for a description of what inode_only
5279  * does.
5280  *
5281  * This handles both files and directories.
5282  */
5283 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5284 			   struct btrfs_root *root, struct btrfs_inode *inode,
5285 			   int inode_only,
5286 			   struct btrfs_log_ctx *ctx)
5287 {
5288 	struct btrfs_path *path;
5289 	struct btrfs_path *dst_path;
5290 	struct btrfs_key min_key;
5291 	struct btrfs_key max_key;
5292 	struct btrfs_root *log = root->log_root;
5293 	int err = 0;
5294 	int ret = 0;
5295 	bool fast_search = false;
5296 	u64 ino = btrfs_ino(inode);
5297 	struct extent_map_tree *em_tree = &inode->extent_tree;
5298 	u64 logged_isize = 0;
5299 	bool need_log_inode_item = true;
5300 	bool xattrs_logged = false;
5301 	bool recursive_logging = false;
5302 
5303 	path = btrfs_alloc_path();
5304 	if (!path)
5305 		return -ENOMEM;
5306 	dst_path = btrfs_alloc_path();
5307 	if (!dst_path) {
5308 		btrfs_free_path(path);
5309 		return -ENOMEM;
5310 	}
5311 
5312 	min_key.objectid = ino;
5313 	min_key.type = BTRFS_INODE_ITEM_KEY;
5314 	min_key.offset = 0;
5315 
5316 	max_key.objectid = ino;
5317 
5318 
5319 	/* today the code can only do partial logging of directories */
5320 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5321 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5322 		       &inode->runtime_flags) &&
5323 	     inode_only >= LOG_INODE_EXISTS))
5324 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5325 	else
5326 		max_key.type = (u8)-1;
5327 	max_key.offset = (u64)-1;
5328 
5329 	/*
5330 	 * Only run delayed items if we are a directory. We want to make sure
5331 	 * all directory indexes hit the fs/subvolume tree so we can find them
5332 	 * and figure out which index ranges have to be logged.
5333 	 *
5334 	 * Otherwise commit the delayed inode only if the full sync flag is set,
5335 	 * as we want to make sure an up to date version is in the subvolume
5336 	 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5337 	 * it to the log tree. For a non full sync, we always log the inode item
5338 	 * based on the in-memory struct btrfs_inode which is always up to date.
5339 	 */
5340 	if (S_ISDIR(inode->vfs_inode.i_mode))
5341 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5342 	else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5343 		ret = btrfs_commit_inode_delayed_inode(inode);
5344 
5345 	if (ret) {
5346 		btrfs_free_path(path);
5347 		btrfs_free_path(dst_path);
5348 		return ret;
5349 	}
5350 
5351 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5352 		recursive_logging = true;
5353 		if (inode_only == LOG_OTHER_INODE)
5354 			inode_only = LOG_INODE_EXISTS;
5355 		else
5356 			inode_only = LOG_INODE_ALL;
5357 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5358 	} else {
5359 		mutex_lock(&inode->log_mutex);
5360 	}
5361 
5362 	/*
5363 	 * This is for cases where logging a directory could result in losing a
5364 	 * a file after replaying the log. For example, if we move a file from a
5365 	 * directory A to a directory B, then fsync directory A, we have no way
5366 	 * to known the file was moved from A to B, so logging just A would
5367 	 * result in losing the file after a log replay.
5368 	 */
5369 	if (S_ISDIR(inode->vfs_inode.i_mode) &&
5370 	    inode_only == LOG_INODE_ALL &&
5371 	    inode->last_unlink_trans >= trans->transid) {
5372 		btrfs_set_log_full_commit(trans);
5373 		err = 1;
5374 		goto out_unlock;
5375 	}
5376 
5377 	/*
5378 	 * a brute force approach to making sure we get the most uptodate
5379 	 * copies of everything.
5380 	 */
5381 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5382 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5383 
5384 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
5385 		if (inode_only == LOG_INODE_EXISTS)
5386 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5387 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5388 	} else {
5389 		if (inode_only == LOG_INODE_EXISTS) {
5390 			/*
5391 			 * Make sure the new inode item we write to the log has
5392 			 * the same isize as the current one (if it exists).
5393 			 * This is necessary to prevent data loss after log
5394 			 * replay, and also to prevent doing a wrong expanding
5395 			 * truncate - for e.g. create file, write 4K into offset
5396 			 * 0, fsync, write 4K into offset 4096, add hard link,
5397 			 * fsync some other file (to sync log), power fail - if
5398 			 * we use the inode's current i_size, after log replay
5399 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5400 			 * (zeroes), as if an expanding truncate happened,
5401 			 * instead of getting a file of 4Kb only.
5402 			 */
5403 			err = logged_inode_size(log, inode, path, &logged_isize);
5404 			if (err)
5405 				goto out_unlock;
5406 		}
5407 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5408 			     &inode->runtime_flags)) {
5409 			if (inode_only == LOG_INODE_EXISTS) {
5410 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5411 				ret = drop_objectid_items(trans, log, path, ino,
5412 							  max_key.type);
5413 			} else {
5414 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5415 					  &inode->runtime_flags);
5416 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5417 					  &inode->runtime_flags);
5418 				while(1) {
5419 					ret = btrfs_truncate_inode_items(trans,
5420 						log, inode, 0, 0, NULL);
5421 					if (ret != -EAGAIN)
5422 						break;
5423 				}
5424 			}
5425 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5426 					      &inode->runtime_flags) ||
5427 			   inode_only == LOG_INODE_EXISTS) {
5428 			if (inode_only == LOG_INODE_ALL)
5429 				fast_search = true;
5430 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5431 			ret = drop_objectid_items(trans, log, path, ino,
5432 						  max_key.type);
5433 		} else {
5434 			if (inode_only == LOG_INODE_ALL)
5435 				fast_search = true;
5436 			goto log_extents;
5437 		}
5438 
5439 	}
5440 	if (ret) {
5441 		err = ret;
5442 		goto out_unlock;
5443 	}
5444 
5445 	err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5446 				      path, dst_path, logged_isize,
5447 				      recursive_logging, inode_only, ctx,
5448 				      &need_log_inode_item);
5449 	if (err)
5450 		goto out_unlock;
5451 
5452 	btrfs_release_path(path);
5453 	btrfs_release_path(dst_path);
5454 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5455 	if (err)
5456 		goto out_unlock;
5457 	xattrs_logged = true;
5458 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5459 		btrfs_release_path(path);
5460 		btrfs_release_path(dst_path);
5461 		err = btrfs_log_holes(trans, root, inode, path);
5462 		if (err)
5463 			goto out_unlock;
5464 	}
5465 log_extents:
5466 	btrfs_release_path(path);
5467 	btrfs_release_path(dst_path);
5468 	if (need_log_inode_item) {
5469 		err = log_inode_item(trans, log, dst_path, inode);
5470 		if (err)
5471 			goto out_unlock;
5472 		/*
5473 		 * If we are doing a fast fsync and the inode was logged before
5474 		 * in this transaction, we don't need to log the xattrs because
5475 		 * they were logged before. If xattrs were added, changed or
5476 		 * deleted since the last time we logged the inode, then we have
5477 		 * already logged them because the inode had the runtime flag
5478 		 * BTRFS_INODE_COPY_EVERYTHING set.
5479 		 */
5480 		if (!xattrs_logged && inode->logged_trans < trans->transid) {
5481 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5482 						   dst_path);
5483 			if (err)
5484 				goto out_unlock;
5485 			btrfs_release_path(path);
5486 		}
5487 	}
5488 	if (fast_search) {
5489 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5490 						ctx);
5491 		if (ret) {
5492 			err = ret;
5493 			goto out_unlock;
5494 		}
5495 	} else if (inode_only == LOG_INODE_ALL) {
5496 		struct extent_map *em, *n;
5497 
5498 		write_lock(&em_tree->lock);
5499 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5500 			list_del_init(&em->list);
5501 		write_unlock(&em_tree->lock);
5502 	}
5503 
5504 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5505 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5506 					ctx);
5507 		if (ret) {
5508 			err = ret;
5509 			goto out_unlock;
5510 		}
5511 	}
5512 
5513 	/*
5514 	 * If we are logging that an ancestor inode exists as part of logging a
5515 	 * new name from a link or rename operation, don't mark the inode as
5516 	 * logged - otherwise if an explicit fsync is made against an ancestor,
5517 	 * the fsync considers the inode in the log and doesn't sync the log,
5518 	 * resulting in the ancestor missing after a power failure unless the
5519 	 * log was synced as part of an fsync against any other unrelated inode.
5520 	 * So keep it simple for this case and just don't flag the ancestors as
5521 	 * logged.
5522 	 */
5523 	if (!ctx ||
5524 	    !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5525 	      &inode->vfs_inode != ctx->inode)) {
5526 		spin_lock(&inode->lock);
5527 		inode->logged_trans = trans->transid;
5528 		/*
5529 		 * Don't update last_log_commit if we logged that an inode exists.
5530 		 * We do this for two reasons:
5531 		 *
5532 		 * 1) We might have had buffered writes to this inode that were
5533 		 *    flushed and had their ordered extents completed in this
5534 		 *    transaction, but we did not previously log the inode with
5535 		 *    LOG_INODE_ALL. Later the inode was evicted and after that
5536 		 *    it was loaded again and this LOG_INODE_EXISTS log operation
5537 		 *    happened. We must make sure that if an explicit fsync against
5538 		 *    the inode is performed later, it logs the new extents, an
5539 		 *    updated inode item, etc, and syncs the log. The same logic
5540 		 *    applies to direct IO writes instead of buffered writes.
5541 		 *
5542 		 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
5543 		 *    is logged with an i_size of 0 or whatever value was logged
5544 		 *    before. If later the i_size of the inode is increased by a
5545 		 *    truncate operation, the log is synced through an fsync of
5546 		 *    some other inode and then finally an explicit fsync against
5547 		 *    this inode is made, we must make sure this fsync logs the
5548 		 *    inode with the new i_size, the hole between old i_size and
5549 		 *    the new i_size, and syncs the log.
5550 		 */
5551 		if (inode_only != LOG_INODE_EXISTS)
5552 			inode->last_log_commit = inode->last_sub_trans;
5553 		spin_unlock(&inode->lock);
5554 	}
5555 out_unlock:
5556 	mutex_unlock(&inode->log_mutex);
5557 
5558 	btrfs_free_path(path);
5559 	btrfs_free_path(dst_path);
5560 	return err;
5561 }
5562 
5563 /*
5564  * Check if we need to log an inode. This is used in contexts where while
5565  * logging an inode we need to log another inode (either that it exists or in
5566  * full mode). This is used instead of btrfs_inode_in_log() because the later
5567  * requires the inode to be in the log and have the log transaction committed,
5568  * while here we do not care if the log transaction was already committed - our
5569  * caller will commit the log later - and we want to avoid logging an inode
5570  * multiple times when multiple tasks have joined the same log transaction.
5571  */
5572 static bool need_log_inode(struct btrfs_trans_handle *trans,
5573 			   struct btrfs_inode *inode)
5574 {
5575 	/*
5576 	 * If this inode does not have new/updated/deleted xattrs since the last
5577 	 * time it was logged and is flagged as logged in the current transaction,
5578 	 * we can skip logging it. As for new/deleted names, those are updated in
5579 	 * the log by link/unlink/rename operations.
5580 	 * In case the inode was logged and then evicted and reloaded, its
5581 	 * logged_trans will be 0, in which case we have to fully log it since
5582 	 * logged_trans is a transient field, not persisted.
5583 	 */
5584 	if (inode->logged_trans == trans->transid &&
5585 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5586 		return false;
5587 
5588 	return true;
5589 }
5590 
5591 struct btrfs_dir_list {
5592 	u64 ino;
5593 	struct list_head list;
5594 };
5595 
5596 /*
5597  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5598  * details about the why it is needed.
5599  * This is a recursive operation - if an existing dentry corresponds to a
5600  * directory, that directory's new entries are logged too (same behaviour as
5601  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5602  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5603  * complains about the following circular lock dependency / possible deadlock:
5604  *
5605  *        CPU0                                        CPU1
5606  *        ----                                        ----
5607  * lock(&type->i_mutex_dir_key#3/2);
5608  *                                            lock(sb_internal#2);
5609  *                                            lock(&type->i_mutex_dir_key#3/2);
5610  * lock(&sb->s_type->i_mutex_key#14);
5611  *
5612  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5613  * sb_start_intwrite() in btrfs_start_transaction().
5614  * Not locking i_mutex of the inodes is still safe because:
5615  *
5616  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5617  *    that while logging the inode new references (names) are added or removed
5618  *    from the inode, leaving the logged inode item with a link count that does
5619  *    not match the number of logged inode reference items. This is fine because
5620  *    at log replay time we compute the real number of links and correct the
5621  *    link count in the inode item (see replay_one_buffer() and
5622  *    link_to_fixup_dir());
5623  *
5624  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5625  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5626  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5627  *    has a size that doesn't match the sum of the lengths of all the logged
5628  *    names. This does not result in a problem because if a dir_item key is
5629  *    logged but its matching dir_index key is not logged, at log replay time we
5630  *    don't use it to replay the respective name (see replay_one_name()). On the
5631  *    other hand if only the dir_index key ends up being logged, the respective
5632  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5633  *    keys created (see replay_one_name()).
5634  *    The directory's inode item with a wrong i_size is not a problem as well,
5635  *    since we don't use it at log replay time to set the i_size in the inode
5636  *    item of the fs/subvol tree (see overwrite_item()).
5637  */
5638 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5639 				struct btrfs_root *root,
5640 				struct btrfs_inode *start_inode,
5641 				struct btrfs_log_ctx *ctx)
5642 {
5643 	struct btrfs_fs_info *fs_info = root->fs_info;
5644 	struct btrfs_root *log = root->log_root;
5645 	struct btrfs_path *path;
5646 	LIST_HEAD(dir_list);
5647 	struct btrfs_dir_list *dir_elem;
5648 	int ret = 0;
5649 
5650 	path = btrfs_alloc_path();
5651 	if (!path)
5652 		return -ENOMEM;
5653 
5654 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5655 	if (!dir_elem) {
5656 		btrfs_free_path(path);
5657 		return -ENOMEM;
5658 	}
5659 	dir_elem->ino = btrfs_ino(start_inode);
5660 	list_add_tail(&dir_elem->list, &dir_list);
5661 
5662 	while (!list_empty(&dir_list)) {
5663 		struct extent_buffer *leaf;
5664 		struct btrfs_key min_key;
5665 		int nritems;
5666 		int i;
5667 
5668 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5669 					    list);
5670 		if (ret)
5671 			goto next_dir_inode;
5672 
5673 		min_key.objectid = dir_elem->ino;
5674 		min_key.type = BTRFS_DIR_ITEM_KEY;
5675 		min_key.offset = 0;
5676 again:
5677 		btrfs_release_path(path);
5678 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5679 		if (ret < 0) {
5680 			goto next_dir_inode;
5681 		} else if (ret > 0) {
5682 			ret = 0;
5683 			goto next_dir_inode;
5684 		}
5685 
5686 process_leaf:
5687 		leaf = path->nodes[0];
5688 		nritems = btrfs_header_nritems(leaf);
5689 		for (i = path->slots[0]; i < nritems; i++) {
5690 			struct btrfs_dir_item *di;
5691 			struct btrfs_key di_key;
5692 			struct inode *di_inode;
5693 			struct btrfs_dir_list *new_dir_elem;
5694 			int log_mode = LOG_INODE_EXISTS;
5695 			int type;
5696 
5697 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5698 			if (min_key.objectid != dir_elem->ino ||
5699 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5700 				goto next_dir_inode;
5701 
5702 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5703 			type = btrfs_dir_type(leaf, di);
5704 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5705 			    type != BTRFS_FT_DIR)
5706 				continue;
5707 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5708 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5709 				continue;
5710 
5711 			btrfs_release_path(path);
5712 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5713 			if (IS_ERR(di_inode)) {
5714 				ret = PTR_ERR(di_inode);
5715 				goto next_dir_inode;
5716 			}
5717 
5718 			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5719 				btrfs_add_delayed_iput(di_inode);
5720 				break;
5721 			}
5722 
5723 			ctx->log_new_dentries = false;
5724 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5725 				log_mode = LOG_INODE_ALL;
5726 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5727 					      log_mode, ctx);
5728 			btrfs_add_delayed_iput(di_inode);
5729 			if (ret)
5730 				goto next_dir_inode;
5731 			if (ctx->log_new_dentries) {
5732 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5733 						       GFP_NOFS);
5734 				if (!new_dir_elem) {
5735 					ret = -ENOMEM;
5736 					goto next_dir_inode;
5737 				}
5738 				new_dir_elem->ino = di_key.objectid;
5739 				list_add_tail(&new_dir_elem->list, &dir_list);
5740 			}
5741 			break;
5742 		}
5743 		if (i == nritems) {
5744 			ret = btrfs_next_leaf(log, path);
5745 			if (ret < 0) {
5746 				goto next_dir_inode;
5747 			} else if (ret > 0) {
5748 				ret = 0;
5749 				goto next_dir_inode;
5750 			}
5751 			goto process_leaf;
5752 		}
5753 		if (min_key.offset < (u64)-1) {
5754 			min_key.offset++;
5755 			goto again;
5756 		}
5757 next_dir_inode:
5758 		list_del(&dir_elem->list);
5759 		kfree(dir_elem);
5760 	}
5761 
5762 	btrfs_free_path(path);
5763 	return ret;
5764 }
5765 
5766 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5767 				 struct btrfs_inode *inode,
5768 				 struct btrfs_log_ctx *ctx)
5769 {
5770 	struct btrfs_fs_info *fs_info = trans->fs_info;
5771 	int ret;
5772 	struct btrfs_path *path;
5773 	struct btrfs_key key;
5774 	struct btrfs_root *root = inode->root;
5775 	const u64 ino = btrfs_ino(inode);
5776 
5777 	path = btrfs_alloc_path();
5778 	if (!path)
5779 		return -ENOMEM;
5780 	path->skip_locking = 1;
5781 	path->search_commit_root = 1;
5782 
5783 	key.objectid = ino;
5784 	key.type = BTRFS_INODE_REF_KEY;
5785 	key.offset = 0;
5786 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5787 	if (ret < 0)
5788 		goto out;
5789 
5790 	while (true) {
5791 		struct extent_buffer *leaf = path->nodes[0];
5792 		int slot = path->slots[0];
5793 		u32 cur_offset = 0;
5794 		u32 item_size;
5795 		unsigned long ptr;
5796 
5797 		if (slot >= btrfs_header_nritems(leaf)) {
5798 			ret = btrfs_next_leaf(root, path);
5799 			if (ret < 0)
5800 				goto out;
5801 			else if (ret > 0)
5802 				break;
5803 			continue;
5804 		}
5805 
5806 		btrfs_item_key_to_cpu(leaf, &key, slot);
5807 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5808 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5809 			break;
5810 
5811 		item_size = btrfs_item_size_nr(leaf, slot);
5812 		ptr = btrfs_item_ptr_offset(leaf, slot);
5813 		while (cur_offset < item_size) {
5814 			struct btrfs_key inode_key;
5815 			struct inode *dir_inode;
5816 
5817 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5818 			inode_key.offset = 0;
5819 
5820 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5821 				struct btrfs_inode_extref *extref;
5822 
5823 				extref = (struct btrfs_inode_extref *)
5824 					(ptr + cur_offset);
5825 				inode_key.objectid = btrfs_inode_extref_parent(
5826 					leaf, extref);
5827 				cur_offset += sizeof(*extref);
5828 				cur_offset += btrfs_inode_extref_name_len(leaf,
5829 					extref);
5830 			} else {
5831 				inode_key.objectid = key.offset;
5832 				cur_offset = item_size;
5833 			}
5834 
5835 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5836 					       root);
5837 			/*
5838 			 * If the parent inode was deleted, return an error to
5839 			 * fallback to a transaction commit. This is to prevent
5840 			 * getting an inode that was moved from one parent A to
5841 			 * a parent B, got its former parent A deleted and then
5842 			 * it got fsync'ed, from existing at both parents after
5843 			 * a log replay (and the old parent still existing).
5844 			 * Example:
5845 			 *
5846 			 * mkdir /mnt/A
5847 			 * mkdir /mnt/B
5848 			 * touch /mnt/B/bar
5849 			 * sync
5850 			 * mv /mnt/B/bar /mnt/A/bar
5851 			 * mv -T /mnt/A /mnt/B
5852 			 * fsync /mnt/B/bar
5853 			 * <power fail>
5854 			 *
5855 			 * If we ignore the old parent B which got deleted,
5856 			 * after a log replay we would have file bar linked
5857 			 * at both parents and the old parent B would still
5858 			 * exist.
5859 			 */
5860 			if (IS_ERR(dir_inode)) {
5861 				ret = PTR_ERR(dir_inode);
5862 				goto out;
5863 			}
5864 
5865 			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
5866 				btrfs_add_delayed_iput(dir_inode);
5867 				continue;
5868 			}
5869 
5870 			if (ctx)
5871 				ctx->log_new_dentries = false;
5872 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5873 					      LOG_INODE_ALL, ctx);
5874 			if (!ret && ctx && ctx->log_new_dentries)
5875 				ret = log_new_dir_dentries(trans, root,
5876 						   BTRFS_I(dir_inode), ctx);
5877 			btrfs_add_delayed_iput(dir_inode);
5878 			if (ret)
5879 				goto out;
5880 		}
5881 		path->slots[0]++;
5882 	}
5883 	ret = 0;
5884 out:
5885 	btrfs_free_path(path);
5886 	return ret;
5887 }
5888 
5889 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5890 			     struct btrfs_root *root,
5891 			     struct btrfs_path *path,
5892 			     struct btrfs_log_ctx *ctx)
5893 {
5894 	struct btrfs_key found_key;
5895 
5896 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5897 
5898 	while (true) {
5899 		struct btrfs_fs_info *fs_info = root->fs_info;
5900 		struct extent_buffer *leaf = path->nodes[0];
5901 		int slot = path->slots[0];
5902 		struct btrfs_key search_key;
5903 		struct inode *inode;
5904 		u64 ino;
5905 		int ret = 0;
5906 
5907 		btrfs_release_path(path);
5908 
5909 		ino = found_key.offset;
5910 
5911 		search_key.objectid = found_key.offset;
5912 		search_key.type = BTRFS_INODE_ITEM_KEY;
5913 		search_key.offset = 0;
5914 		inode = btrfs_iget(fs_info->sb, ino, root);
5915 		if (IS_ERR(inode))
5916 			return PTR_ERR(inode);
5917 
5918 		if (BTRFS_I(inode)->generation >= trans->transid &&
5919 		    need_log_inode(trans, BTRFS_I(inode)))
5920 			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5921 					      LOG_INODE_EXISTS, ctx);
5922 		btrfs_add_delayed_iput(inode);
5923 		if (ret)
5924 			return ret;
5925 
5926 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5927 			break;
5928 
5929 		search_key.type = BTRFS_INODE_REF_KEY;
5930 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5931 		if (ret < 0)
5932 			return ret;
5933 
5934 		leaf = path->nodes[0];
5935 		slot = path->slots[0];
5936 		if (slot >= btrfs_header_nritems(leaf)) {
5937 			ret = btrfs_next_leaf(root, path);
5938 			if (ret < 0)
5939 				return ret;
5940 			else if (ret > 0)
5941 				return -ENOENT;
5942 			leaf = path->nodes[0];
5943 			slot = path->slots[0];
5944 		}
5945 
5946 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5947 		if (found_key.objectid != search_key.objectid ||
5948 		    found_key.type != BTRFS_INODE_REF_KEY)
5949 			return -ENOENT;
5950 	}
5951 	return 0;
5952 }
5953 
5954 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5955 				  struct btrfs_inode *inode,
5956 				  struct dentry *parent,
5957 				  struct btrfs_log_ctx *ctx)
5958 {
5959 	struct btrfs_root *root = inode->root;
5960 	struct dentry *old_parent = NULL;
5961 	struct super_block *sb = inode->vfs_inode.i_sb;
5962 	int ret = 0;
5963 
5964 	while (true) {
5965 		if (!parent || d_really_is_negative(parent) ||
5966 		    sb != parent->d_sb)
5967 			break;
5968 
5969 		inode = BTRFS_I(d_inode(parent));
5970 		if (root != inode->root)
5971 			break;
5972 
5973 		if (inode->generation >= trans->transid &&
5974 		    need_log_inode(trans, inode)) {
5975 			ret = btrfs_log_inode(trans, root, inode,
5976 					      LOG_INODE_EXISTS, ctx);
5977 			if (ret)
5978 				break;
5979 		}
5980 		if (IS_ROOT(parent))
5981 			break;
5982 
5983 		parent = dget_parent(parent);
5984 		dput(old_parent);
5985 		old_parent = parent;
5986 	}
5987 	dput(old_parent);
5988 
5989 	return ret;
5990 }
5991 
5992 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5993 				 struct btrfs_inode *inode,
5994 				 struct dentry *parent,
5995 				 struct btrfs_log_ctx *ctx)
5996 {
5997 	struct btrfs_root *root = inode->root;
5998 	const u64 ino = btrfs_ino(inode);
5999 	struct btrfs_path *path;
6000 	struct btrfs_key search_key;
6001 	int ret;
6002 
6003 	/*
6004 	 * For a single hard link case, go through a fast path that does not
6005 	 * need to iterate the fs/subvolume tree.
6006 	 */
6007 	if (inode->vfs_inode.i_nlink < 2)
6008 		return log_new_ancestors_fast(trans, inode, parent, ctx);
6009 
6010 	path = btrfs_alloc_path();
6011 	if (!path)
6012 		return -ENOMEM;
6013 
6014 	search_key.objectid = ino;
6015 	search_key.type = BTRFS_INODE_REF_KEY;
6016 	search_key.offset = 0;
6017 again:
6018 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6019 	if (ret < 0)
6020 		goto out;
6021 	if (ret == 0)
6022 		path->slots[0]++;
6023 
6024 	while (true) {
6025 		struct extent_buffer *leaf = path->nodes[0];
6026 		int slot = path->slots[0];
6027 		struct btrfs_key found_key;
6028 
6029 		if (slot >= btrfs_header_nritems(leaf)) {
6030 			ret = btrfs_next_leaf(root, path);
6031 			if (ret < 0)
6032 				goto out;
6033 			else if (ret > 0)
6034 				break;
6035 			continue;
6036 		}
6037 
6038 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6039 		if (found_key.objectid != ino ||
6040 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6041 			break;
6042 
6043 		/*
6044 		 * Don't deal with extended references because they are rare
6045 		 * cases and too complex to deal with (we would need to keep
6046 		 * track of which subitem we are processing for each item in
6047 		 * this loop, etc). So just return some error to fallback to
6048 		 * a transaction commit.
6049 		 */
6050 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6051 			ret = -EMLINK;
6052 			goto out;
6053 		}
6054 
6055 		/*
6056 		 * Logging ancestors needs to do more searches on the fs/subvol
6057 		 * tree, so it releases the path as needed to avoid deadlocks.
6058 		 * Keep track of the last inode ref key and resume from that key
6059 		 * after logging all new ancestors for the current hard link.
6060 		 */
6061 		memcpy(&search_key, &found_key, sizeof(search_key));
6062 
6063 		ret = log_new_ancestors(trans, root, path, ctx);
6064 		if (ret)
6065 			goto out;
6066 		btrfs_release_path(path);
6067 		goto again;
6068 	}
6069 	ret = 0;
6070 out:
6071 	btrfs_free_path(path);
6072 	return ret;
6073 }
6074 
6075 /*
6076  * helper function around btrfs_log_inode to make sure newly created
6077  * parent directories also end up in the log.  A minimal inode and backref
6078  * only logging is done of any parent directories that are older than
6079  * the last committed transaction
6080  */
6081 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6082 				  struct btrfs_inode *inode,
6083 				  struct dentry *parent,
6084 				  int inode_only,
6085 				  struct btrfs_log_ctx *ctx)
6086 {
6087 	struct btrfs_root *root = inode->root;
6088 	struct btrfs_fs_info *fs_info = root->fs_info;
6089 	int ret = 0;
6090 	bool log_dentries = false;
6091 
6092 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6093 		ret = 1;
6094 		goto end_no_trans;
6095 	}
6096 
6097 	if (btrfs_root_refs(&root->root_item) == 0) {
6098 		ret = 1;
6099 		goto end_no_trans;
6100 	}
6101 
6102 	/*
6103 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6104 	 * (since logging them is pointless, a link count of 0 means they
6105 	 * will never be accessible).
6106 	 */
6107 	if ((btrfs_inode_in_log(inode, trans->transid) &&
6108 	     list_empty(&ctx->ordered_extents)) ||
6109 	    inode->vfs_inode.i_nlink == 0) {
6110 		ret = BTRFS_NO_LOG_SYNC;
6111 		goto end_no_trans;
6112 	}
6113 
6114 	ret = start_log_trans(trans, root, ctx);
6115 	if (ret)
6116 		goto end_no_trans;
6117 
6118 	ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
6119 	if (ret)
6120 		goto end_trans;
6121 
6122 	/*
6123 	 * for regular files, if its inode is already on disk, we don't
6124 	 * have to worry about the parents at all.  This is because
6125 	 * we can use the last_unlink_trans field to record renames
6126 	 * and other fun in this file.
6127 	 */
6128 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6129 	    inode->generation < trans->transid &&
6130 	    inode->last_unlink_trans < trans->transid) {
6131 		ret = 0;
6132 		goto end_trans;
6133 	}
6134 
6135 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6136 		log_dentries = true;
6137 
6138 	/*
6139 	 * On unlink we must make sure all our current and old parent directory
6140 	 * inodes are fully logged. This is to prevent leaving dangling
6141 	 * directory index entries in directories that were our parents but are
6142 	 * not anymore. Not doing this results in old parent directory being
6143 	 * impossible to delete after log replay (rmdir will always fail with
6144 	 * error -ENOTEMPTY).
6145 	 *
6146 	 * Example 1:
6147 	 *
6148 	 * mkdir testdir
6149 	 * touch testdir/foo
6150 	 * ln testdir/foo testdir/bar
6151 	 * sync
6152 	 * unlink testdir/bar
6153 	 * xfs_io -c fsync testdir/foo
6154 	 * <power failure>
6155 	 * mount fs, triggers log replay
6156 	 *
6157 	 * If we don't log the parent directory (testdir), after log replay the
6158 	 * directory still has an entry pointing to the file inode using the bar
6159 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6160 	 * the file inode has a link count of 1.
6161 	 *
6162 	 * Example 2:
6163 	 *
6164 	 * mkdir testdir
6165 	 * touch foo
6166 	 * ln foo testdir/foo2
6167 	 * ln foo testdir/foo3
6168 	 * sync
6169 	 * unlink testdir/foo3
6170 	 * xfs_io -c fsync foo
6171 	 * <power failure>
6172 	 * mount fs, triggers log replay
6173 	 *
6174 	 * Similar as the first example, after log replay the parent directory
6175 	 * testdir still has an entry pointing to the inode file with name foo3
6176 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6177 	 * and has a link count of 2.
6178 	 */
6179 	if (inode->last_unlink_trans >= trans->transid) {
6180 		ret = btrfs_log_all_parents(trans, inode, ctx);
6181 		if (ret)
6182 			goto end_trans;
6183 	}
6184 
6185 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6186 	if (ret)
6187 		goto end_trans;
6188 
6189 	if (log_dentries)
6190 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6191 	else
6192 		ret = 0;
6193 end_trans:
6194 	if (ret < 0) {
6195 		btrfs_set_log_full_commit(trans);
6196 		ret = 1;
6197 	}
6198 
6199 	if (ret)
6200 		btrfs_remove_log_ctx(root, ctx);
6201 	btrfs_end_log_trans(root);
6202 end_no_trans:
6203 	return ret;
6204 }
6205 
6206 /*
6207  * it is not safe to log dentry if the chunk root has added new
6208  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6209  * If this returns 1, you must commit the transaction to safely get your
6210  * data on disk.
6211  */
6212 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6213 			  struct dentry *dentry,
6214 			  struct btrfs_log_ctx *ctx)
6215 {
6216 	struct dentry *parent = dget_parent(dentry);
6217 	int ret;
6218 
6219 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6220 				     LOG_INODE_ALL, ctx);
6221 	dput(parent);
6222 
6223 	return ret;
6224 }
6225 
6226 /*
6227  * should be called during mount to recover any replay any log trees
6228  * from the FS
6229  */
6230 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6231 {
6232 	int ret;
6233 	struct btrfs_path *path;
6234 	struct btrfs_trans_handle *trans;
6235 	struct btrfs_key key;
6236 	struct btrfs_key found_key;
6237 	struct btrfs_root *log;
6238 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6239 	struct walk_control wc = {
6240 		.process_func = process_one_buffer,
6241 		.stage = LOG_WALK_PIN_ONLY,
6242 	};
6243 
6244 	path = btrfs_alloc_path();
6245 	if (!path)
6246 		return -ENOMEM;
6247 
6248 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6249 
6250 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6251 	if (IS_ERR(trans)) {
6252 		ret = PTR_ERR(trans);
6253 		goto error;
6254 	}
6255 
6256 	wc.trans = trans;
6257 	wc.pin = 1;
6258 
6259 	ret = walk_log_tree(trans, log_root_tree, &wc);
6260 	if (ret) {
6261 		btrfs_handle_fs_error(fs_info, ret,
6262 			"Failed to pin buffers while recovering log root tree.");
6263 		goto error;
6264 	}
6265 
6266 again:
6267 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6268 	key.offset = (u64)-1;
6269 	key.type = BTRFS_ROOT_ITEM_KEY;
6270 
6271 	while (1) {
6272 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6273 
6274 		if (ret < 0) {
6275 			btrfs_handle_fs_error(fs_info, ret,
6276 				    "Couldn't find tree log root.");
6277 			goto error;
6278 		}
6279 		if (ret > 0) {
6280 			if (path->slots[0] == 0)
6281 				break;
6282 			path->slots[0]--;
6283 		}
6284 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6285 				      path->slots[0]);
6286 		btrfs_release_path(path);
6287 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6288 			break;
6289 
6290 		log = btrfs_read_tree_root(log_root_tree, &found_key);
6291 		if (IS_ERR(log)) {
6292 			ret = PTR_ERR(log);
6293 			btrfs_handle_fs_error(fs_info, ret,
6294 				    "Couldn't read tree log root.");
6295 			goto error;
6296 		}
6297 
6298 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6299 						   true);
6300 		if (IS_ERR(wc.replay_dest)) {
6301 			ret = PTR_ERR(wc.replay_dest);
6302 
6303 			/*
6304 			 * We didn't find the subvol, likely because it was
6305 			 * deleted.  This is ok, simply skip this log and go to
6306 			 * the next one.
6307 			 *
6308 			 * We need to exclude the root because we can't have
6309 			 * other log replays overwriting this log as we'll read
6310 			 * it back in a few more times.  This will keep our
6311 			 * block from being modified, and we'll just bail for
6312 			 * each subsequent pass.
6313 			 */
6314 			if (ret == -ENOENT)
6315 				ret = btrfs_pin_extent_for_log_replay(trans,
6316 							log->node->start,
6317 							log->node->len);
6318 			btrfs_put_root(log);
6319 
6320 			if (!ret)
6321 				goto next;
6322 			btrfs_handle_fs_error(fs_info, ret,
6323 				"Couldn't read target root for tree log recovery.");
6324 			goto error;
6325 		}
6326 
6327 		wc.replay_dest->log_root = log;
6328 		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6329 		if (ret)
6330 			/* The loop needs to continue due to the root refs */
6331 			btrfs_handle_fs_error(fs_info, ret,
6332 				"failed to record the log root in transaction");
6333 		else
6334 			ret = walk_log_tree(trans, log, &wc);
6335 
6336 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6337 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6338 						      path);
6339 		}
6340 
6341 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6342 			struct btrfs_root *root = wc.replay_dest;
6343 
6344 			btrfs_release_path(path);
6345 
6346 			/*
6347 			 * We have just replayed everything, and the highest
6348 			 * objectid of fs roots probably has changed in case
6349 			 * some inode_item's got replayed.
6350 			 *
6351 			 * root->objectid_mutex is not acquired as log replay
6352 			 * could only happen during mount.
6353 			 */
6354 			ret = btrfs_init_root_free_objectid(root);
6355 		}
6356 
6357 		wc.replay_dest->log_root = NULL;
6358 		btrfs_put_root(wc.replay_dest);
6359 		btrfs_put_root(log);
6360 
6361 		if (ret)
6362 			goto error;
6363 next:
6364 		if (found_key.offset == 0)
6365 			break;
6366 		key.offset = found_key.offset - 1;
6367 	}
6368 	btrfs_release_path(path);
6369 
6370 	/* step one is to pin it all, step two is to replay just inodes */
6371 	if (wc.pin) {
6372 		wc.pin = 0;
6373 		wc.process_func = replay_one_buffer;
6374 		wc.stage = LOG_WALK_REPLAY_INODES;
6375 		goto again;
6376 	}
6377 	/* step three is to replay everything */
6378 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6379 		wc.stage++;
6380 		goto again;
6381 	}
6382 
6383 	btrfs_free_path(path);
6384 
6385 	/* step 4: commit the transaction, which also unpins the blocks */
6386 	ret = btrfs_commit_transaction(trans);
6387 	if (ret)
6388 		return ret;
6389 
6390 	log_root_tree->log_root = NULL;
6391 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6392 	btrfs_put_root(log_root_tree);
6393 
6394 	return 0;
6395 error:
6396 	if (wc.trans)
6397 		btrfs_end_transaction(wc.trans);
6398 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6399 	btrfs_free_path(path);
6400 	return ret;
6401 }
6402 
6403 /*
6404  * there are some corner cases where we want to force a full
6405  * commit instead of allowing a directory to be logged.
6406  *
6407  * They revolve around files there were unlinked from the directory, and
6408  * this function updates the parent directory so that a full commit is
6409  * properly done if it is fsync'd later after the unlinks are done.
6410  *
6411  * Must be called before the unlink operations (updates to the subvolume tree,
6412  * inodes, etc) are done.
6413  */
6414 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6415 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6416 			     int for_rename)
6417 {
6418 	/*
6419 	 * when we're logging a file, if it hasn't been renamed
6420 	 * or unlinked, and its inode is fully committed on disk,
6421 	 * we don't have to worry about walking up the directory chain
6422 	 * to log its parents.
6423 	 *
6424 	 * So, we use the last_unlink_trans field to put this transid
6425 	 * into the file.  When the file is logged we check it and
6426 	 * don't log the parents if the file is fully on disk.
6427 	 */
6428 	mutex_lock(&inode->log_mutex);
6429 	inode->last_unlink_trans = trans->transid;
6430 	mutex_unlock(&inode->log_mutex);
6431 
6432 	/*
6433 	 * if this directory was already logged any new
6434 	 * names for this file/dir will get recorded
6435 	 */
6436 	if (dir->logged_trans == trans->transid)
6437 		return;
6438 
6439 	/*
6440 	 * if the inode we're about to unlink was logged,
6441 	 * the log will be properly updated for any new names
6442 	 */
6443 	if (inode->logged_trans == trans->transid)
6444 		return;
6445 
6446 	/*
6447 	 * when renaming files across directories, if the directory
6448 	 * there we're unlinking from gets fsync'd later on, there's
6449 	 * no way to find the destination directory later and fsync it
6450 	 * properly.  So, we have to be conservative and force commits
6451 	 * so the new name gets discovered.
6452 	 */
6453 	if (for_rename)
6454 		goto record;
6455 
6456 	/* we can safely do the unlink without any special recording */
6457 	return;
6458 
6459 record:
6460 	mutex_lock(&dir->log_mutex);
6461 	dir->last_unlink_trans = trans->transid;
6462 	mutex_unlock(&dir->log_mutex);
6463 }
6464 
6465 /*
6466  * Make sure that if someone attempts to fsync the parent directory of a deleted
6467  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6468  * that after replaying the log tree of the parent directory's root we will not
6469  * see the snapshot anymore and at log replay time we will not see any log tree
6470  * corresponding to the deleted snapshot's root, which could lead to replaying
6471  * it after replaying the log tree of the parent directory (which would replay
6472  * the snapshot delete operation).
6473  *
6474  * Must be called before the actual snapshot destroy operation (updates to the
6475  * parent root and tree of tree roots trees, etc) are done.
6476  */
6477 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6478 				   struct btrfs_inode *dir)
6479 {
6480 	mutex_lock(&dir->log_mutex);
6481 	dir->last_unlink_trans = trans->transid;
6482 	mutex_unlock(&dir->log_mutex);
6483 }
6484 
6485 /*
6486  * Call this after adding a new name for a file and it will properly
6487  * update the log to reflect the new name.
6488  */
6489 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6490 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6491 			struct dentry *parent)
6492 {
6493 	struct btrfs_log_ctx ctx;
6494 
6495 	/*
6496 	 * this will force the logging code to walk the dentry chain
6497 	 * up for the file
6498 	 */
6499 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6500 		inode->last_unlink_trans = trans->transid;
6501 
6502 	/*
6503 	 * if this inode hasn't been logged and directory we're renaming it
6504 	 * from hasn't been logged, we don't need to log it
6505 	 */
6506 	if (inode->logged_trans < trans->transid &&
6507 	    (!old_dir || old_dir->logged_trans < trans->transid))
6508 		return;
6509 
6510 	/*
6511 	 * If we are doing a rename (old_dir is not NULL) from a directory that
6512 	 * was previously logged, make sure the next log attempt on the directory
6513 	 * is not skipped and logs the inode again. This is because the log may
6514 	 * not currently be authoritative for a range including the old
6515 	 * BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY keys, so we want to make
6516 	 * sure after a log replay we do not end up with both the new and old
6517 	 * dentries around (in case the inode is a directory we would have a
6518 	 * directory with two hard links and 2 inode references for different
6519 	 * parents). The next log attempt of old_dir will happen at
6520 	 * btrfs_log_all_parents(), called through btrfs_log_inode_parent()
6521 	 * below, because we have previously set inode->last_unlink_trans to the
6522 	 * current transaction ID, either here or at btrfs_record_unlink_dir() in
6523 	 * case inode is a directory.
6524 	 */
6525 	if (old_dir)
6526 		old_dir->logged_trans = 0;
6527 
6528 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6529 	ctx.logging_new_name = true;
6530 	/*
6531 	 * We don't care about the return value. If we fail to log the new name
6532 	 * then we know the next attempt to sync the log will fallback to a full
6533 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6534 	 * we don't need to worry about getting a log committed that has an
6535 	 * inconsistent state after a rename operation.
6536 	 */
6537 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
6538 }
6539 
6540