1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) Qu Wenruo 2017. All rights reserved. 4 */ 5 6 /* 7 * The module is used to catch unexpected/corrupted tree block data. 8 * Such behavior can be caused either by a fuzzed image or bugs. 9 * 10 * The objective is to do leaf/node validation checks when tree block is read 11 * from disk, and check *every* possible member, so other code won't 12 * need to checking them again. 13 * 14 * Due to the potential and unwanted damage, every checker needs to be 15 * carefully reviewed otherwise so it does not prevent mount of valid images. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/stddef.h> 20 #include <linux/error-injection.h> 21 #include "messages.h" 22 #include "ctree.h" 23 #include "tree-checker.h" 24 #include "disk-io.h" 25 #include "compression.h" 26 #include "volumes.h" 27 #include "misc.h" 28 #include "fs.h" 29 #include "accessors.h" 30 #include "file-item.h" 31 #include "inode-item.h" 32 33 /* 34 * Error message should follow the following format: 35 * corrupt <type>: <identifier>, <reason>[, <bad_value>] 36 * 37 * @type: leaf or node 38 * @identifier: the necessary info to locate the leaf/node. 39 * It's recommended to decode key.objecitd/offset if it's 40 * meaningful. 41 * @reason: describe the error 42 * @bad_value: optional, it's recommended to output bad value and its 43 * expected value (range). 44 * 45 * Since comma is used to separate the components, only space is allowed 46 * inside each component. 47 */ 48 49 /* 50 * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt. 51 * Allows callers to customize the output. 52 */ 53 __printf(3, 4) 54 __cold 55 static void generic_err(const struct extent_buffer *eb, int slot, 56 const char *fmt, ...) 57 { 58 const struct btrfs_fs_info *fs_info = eb->fs_info; 59 struct va_format vaf; 60 va_list args; 61 62 va_start(args, fmt); 63 64 vaf.fmt = fmt; 65 vaf.va = &args; 66 67 btrfs_crit(fs_info, 68 "corrupt %s: root=%llu block=%llu slot=%d, %pV", 69 btrfs_header_level(eb) == 0 ? "leaf" : "node", 70 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf); 71 va_end(args); 72 } 73 74 /* 75 * Customized reporter for extent data item, since its key objectid and 76 * offset has its own meaning. 77 */ 78 __printf(3, 4) 79 __cold 80 static void file_extent_err(const struct extent_buffer *eb, int slot, 81 const char *fmt, ...) 82 { 83 const struct btrfs_fs_info *fs_info = eb->fs_info; 84 struct btrfs_key key; 85 struct va_format vaf; 86 va_list args; 87 88 btrfs_item_key_to_cpu(eb, &key, slot); 89 va_start(args, fmt); 90 91 vaf.fmt = fmt; 92 vaf.va = &args; 93 94 btrfs_crit(fs_info, 95 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV", 96 btrfs_header_level(eb) == 0 ? "leaf" : "node", 97 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 98 key.objectid, key.offset, &vaf); 99 va_end(args); 100 } 101 102 /* 103 * Return 0 if the btrfs_file_extent_##name is aligned to @alignment 104 * Else return 1 105 */ 106 #define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment) \ 107 ({ \ 108 if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), \ 109 (alignment)))) \ 110 file_extent_err((leaf), (slot), \ 111 "invalid %s for file extent, have %llu, should be aligned to %u", \ 112 (#name), btrfs_file_extent_##name((leaf), (fi)), \ 113 (alignment)); \ 114 (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \ 115 }) 116 117 static u64 file_extent_end(struct extent_buffer *leaf, 118 struct btrfs_key *key, 119 struct btrfs_file_extent_item *extent) 120 { 121 u64 end; 122 u64 len; 123 124 if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) { 125 len = btrfs_file_extent_ram_bytes(leaf, extent); 126 end = ALIGN(key->offset + len, leaf->fs_info->sectorsize); 127 } else { 128 len = btrfs_file_extent_num_bytes(leaf, extent); 129 end = key->offset + len; 130 } 131 return end; 132 } 133 134 /* 135 * Customized report for dir_item, the only new important information is 136 * key->objectid, which represents inode number 137 */ 138 __printf(3, 4) 139 __cold 140 static void dir_item_err(const struct extent_buffer *eb, int slot, 141 const char *fmt, ...) 142 { 143 const struct btrfs_fs_info *fs_info = eb->fs_info; 144 struct btrfs_key key; 145 struct va_format vaf; 146 va_list args; 147 148 btrfs_item_key_to_cpu(eb, &key, slot); 149 va_start(args, fmt); 150 151 vaf.fmt = fmt; 152 vaf.va = &args; 153 154 btrfs_crit(fs_info, 155 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV", 156 btrfs_header_level(eb) == 0 ? "leaf" : "node", 157 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 158 key.objectid, &vaf); 159 va_end(args); 160 } 161 162 /* 163 * This functions checks prev_key->objectid, to ensure current key and prev_key 164 * share the same objectid as inode number. 165 * 166 * This is to detect missing INODE_ITEM in subvolume trees. 167 * 168 * Return true if everything is OK or we don't need to check. 169 * Return false if anything is wrong. 170 */ 171 static bool check_prev_ino(struct extent_buffer *leaf, 172 struct btrfs_key *key, int slot, 173 struct btrfs_key *prev_key) 174 { 175 /* No prev key, skip check */ 176 if (slot == 0) 177 return true; 178 179 /* Only these key->types needs to be checked */ 180 ASSERT(key->type == BTRFS_XATTR_ITEM_KEY || 181 key->type == BTRFS_INODE_REF_KEY || 182 key->type == BTRFS_DIR_INDEX_KEY || 183 key->type == BTRFS_DIR_ITEM_KEY || 184 key->type == BTRFS_EXTENT_DATA_KEY); 185 186 /* 187 * Only subvolume trees along with their reloc trees need this check. 188 * Things like log tree doesn't follow this ino requirement. 189 */ 190 if (!is_fstree(btrfs_header_owner(leaf))) 191 return true; 192 193 if (key->objectid == prev_key->objectid) 194 return true; 195 196 /* Error found */ 197 dir_item_err(leaf, slot, 198 "invalid previous key objectid, have %llu expect %llu", 199 prev_key->objectid, key->objectid); 200 return false; 201 } 202 static int check_extent_data_item(struct extent_buffer *leaf, 203 struct btrfs_key *key, int slot, 204 struct btrfs_key *prev_key) 205 { 206 struct btrfs_fs_info *fs_info = leaf->fs_info; 207 struct btrfs_file_extent_item *fi; 208 u32 sectorsize = fs_info->sectorsize; 209 u32 item_size = btrfs_item_size(leaf, slot); 210 u64 extent_end; 211 212 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 213 file_extent_err(leaf, slot, 214 "unaligned file_offset for file extent, have %llu should be aligned to %u", 215 key->offset, sectorsize); 216 return -EUCLEAN; 217 } 218 219 /* 220 * Previous key must have the same key->objectid (ino). 221 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA. 222 * But if objectids mismatch, it means we have a missing 223 * INODE_ITEM. 224 */ 225 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 226 return -EUCLEAN; 227 228 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 229 230 /* 231 * Make sure the item contains at least inline header, so the file 232 * extent type is not some garbage. 233 */ 234 if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) { 235 file_extent_err(leaf, slot, 236 "invalid item size, have %u expect [%zu, %u)", 237 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START, 238 SZ_4K); 239 return -EUCLEAN; 240 } 241 if (unlikely(btrfs_file_extent_type(leaf, fi) >= 242 BTRFS_NR_FILE_EXTENT_TYPES)) { 243 file_extent_err(leaf, slot, 244 "invalid type for file extent, have %u expect range [0, %u]", 245 btrfs_file_extent_type(leaf, fi), 246 BTRFS_NR_FILE_EXTENT_TYPES - 1); 247 return -EUCLEAN; 248 } 249 250 /* 251 * Support for new compression/encryption must introduce incompat flag, 252 * and must be caught in open_ctree(). 253 */ 254 if (unlikely(btrfs_file_extent_compression(leaf, fi) >= 255 BTRFS_NR_COMPRESS_TYPES)) { 256 file_extent_err(leaf, slot, 257 "invalid compression for file extent, have %u expect range [0, %u]", 258 btrfs_file_extent_compression(leaf, fi), 259 BTRFS_NR_COMPRESS_TYPES - 1); 260 return -EUCLEAN; 261 } 262 if (unlikely(btrfs_file_extent_encryption(leaf, fi))) { 263 file_extent_err(leaf, slot, 264 "invalid encryption for file extent, have %u expect 0", 265 btrfs_file_extent_encryption(leaf, fi)); 266 return -EUCLEAN; 267 } 268 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 269 /* Inline extent must have 0 as key offset */ 270 if (unlikely(key->offset)) { 271 file_extent_err(leaf, slot, 272 "invalid file_offset for inline file extent, have %llu expect 0", 273 key->offset); 274 return -EUCLEAN; 275 } 276 277 /* Compressed inline extent has no on-disk size, skip it */ 278 if (btrfs_file_extent_compression(leaf, fi) != 279 BTRFS_COMPRESS_NONE) 280 return 0; 281 282 /* Uncompressed inline extent size must match item size */ 283 if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START + 284 btrfs_file_extent_ram_bytes(leaf, fi))) { 285 file_extent_err(leaf, slot, 286 "invalid ram_bytes for uncompressed inline extent, have %u expect %llu", 287 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START + 288 btrfs_file_extent_ram_bytes(leaf, fi)); 289 return -EUCLEAN; 290 } 291 return 0; 292 } 293 294 /* Regular or preallocated extent has fixed item size */ 295 if (unlikely(item_size != sizeof(*fi))) { 296 file_extent_err(leaf, slot, 297 "invalid item size for reg/prealloc file extent, have %u expect %zu", 298 item_size, sizeof(*fi)); 299 return -EUCLEAN; 300 } 301 if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) || 302 CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) || 303 CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) || 304 CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) || 305 CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize))) 306 return -EUCLEAN; 307 308 /* Catch extent end overflow */ 309 if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi), 310 key->offset, &extent_end))) { 311 file_extent_err(leaf, slot, 312 "extent end overflow, have file offset %llu extent num bytes %llu", 313 key->offset, 314 btrfs_file_extent_num_bytes(leaf, fi)); 315 return -EUCLEAN; 316 } 317 318 /* 319 * Check that no two consecutive file extent items, in the same leaf, 320 * present ranges that overlap each other. 321 */ 322 if (slot > 0 && 323 prev_key->objectid == key->objectid && 324 prev_key->type == BTRFS_EXTENT_DATA_KEY) { 325 struct btrfs_file_extent_item *prev_fi; 326 u64 prev_end; 327 328 prev_fi = btrfs_item_ptr(leaf, slot - 1, 329 struct btrfs_file_extent_item); 330 prev_end = file_extent_end(leaf, prev_key, prev_fi); 331 if (unlikely(prev_end > key->offset)) { 332 file_extent_err(leaf, slot - 1, 333 "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent", 334 prev_end, key->offset); 335 return -EUCLEAN; 336 } 337 } 338 339 return 0; 340 } 341 342 static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key, 343 int slot, struct btrfs_key *prev_key) 344 { 345 struct btrfs_fs_info *fs_info = leaf->fs_info; 346 u32 sectorsize = fs_info->sectorsize; 347 const u32 csumsize = fs_info->csum_size; 348 349 if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) { 350 generic_err(leaf, slot, 351 "invalid key objectid for csum item, have %llu expect %llu", 352 key->objectid, BTRFS_EXTENT_CSUM_OBJECTID); 353 return -EUCLEAN; 354 } 355 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 356 generic_err(leaf, slot, 357 "unaligned key offset for csum item, have %llu should be aligned to %u", 358 key->offset, sectorsize); 359 return -EUCLEAN; 360 } 361 if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) { 362 generic_err(leaf, slot, 363 "unaligned item size for csum item, have %u should be aligned to %u", 364 btrfs_item_size(leaf, slot), csumsize); 365 return -EUCLEAN; 366 } 367 if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) { 368 u64 prev_csum_end; 369 u32 prev_item_size; 370 371 prev_item_size = btrfs_item_size(leaf, slot - 1); 372 prev_csum_end = (prev_item_size / csumsize) * sectorsize; 373 prev_csum_end += prev_key->offset; 374 if (unlikely(prev_csum_end > key->offset)) { 375 generic_err(leaf, slot - 1, 376 "csum end range (%llu) goes beyond the start range (%llu) of the next csum item", 377 prev_csum_end, key->offset); 378 return -EUCLEAN; 379 } 380 } 381 return 0; 382 } 383 384 /* Inode item error output has the same format as dir_item_err() */ 385 #define inode_item_err(eb, slot, fmt, ...) \ 386 dir_item_err(eb, slot, fmt, __VA_ARGS__) 387 388 static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key, 389 int slot) 390 { 391 struct btrfs_key item_key; 392 bool is_inode_item; 393 394 btrfs_item_key_to_cpu(leaf, &item_key, slot); 395 is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY); 396 397 /* For XATTR_ITEM, location key should be all 0 */ 398 if (item_key.type == BTRFS_XATTR_ITEM_KEY) { 399 if (unlikely(key->objectid != 0 || key->type != 0 || 400 key->offset != 0)) 401 return -EUCLEAN; 402 return 0; 403 } 404 405 if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID || 406 key->objectid > BTRFS_LAST_FREE_OBJECTID) && 407 key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID && 408 key->objectid != BTRFS_FREE_INO_OBJECTID)) { 409 if (is_inode_item) { 410 generic_err(leaf, slot, 411 "invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu", 412 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 413 BTRFS_FIRST_FREE_OBJECTID, 414 BTRFS_LAST_FREE_OBJECTID, 415 BTRFS_FREE_INO_OBJECTID); 416 } else { 417 dir_item_err(leaf, slot, 418 "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu", 419 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 420 BTRFS_FIRST_FREE_OBJECTID, 421 BTRFS_LAST_FREE_OBJECTID, 422 BTRFS_FREE_INO_OBJECTID); 423 } 424 return -EUCLEAN; 425 } 426 if (unlikely(key->offset != 0)) { 427 if (is_inode_item) 428 inode_item_err(leaf, slot, 429 "invalid key offset: has %llu expect 0", 430 key->offset); 431 else 432 dir_item_err(leaf, slot, 433 "invalid location key offset:has %llu expect 0", 434 key->offset); 435 return -EUCLEAN; 436 } 437 return 0; 438 } 439 440 static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key, 441 int slot) 442 { 443 struct btrfs_key item_key; 444 bool is_root_item; 445 446 btrfs_item_key_to_cpu(leaf, &item_key, slot); 447 is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY); 448 449 /* 450 * Bad rootid for reloc trees. 451 * 452 * Reloc trees are only for subvolume trees, other trees only need 453 * to be COWed to be relocated. 454 */ 455 if (unlikely(is_root_item && key->objectid == BTRFS_TREE_RELOC_OBJECTID && 456 !is_fstree(key->offset))) { 457 generic_err(leaf, slot, 458 "invalid reloc tree for root %lld, root id is not a subvolume tree", 459 key->offset); 460 return -EUCLEAN; 461 } 462 463 /* No such tree id */ 464 if (unlikely(key->objectid == 0)) { 465 if (is_root_item) 466 generic_err(leaf, slot, "invalid root id 0"); 467 else 468 dir_item_err(leaf, slot, 469 "invalid location key root id 0"); 470 return -EUCLEAN; 471 } 472 473 /* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */ 474 if (unlikely(!is_fstree(key->objectid) && !is_root_item)) { 475 dir_item_err(leaf, slot, 476 "invalid location key objectid, have %llu expect [%llu, %llu]", 477 key->objectid, BTRFS_FIRST_FREE_OBJECTID, 478 BTRFS_LAST_FREE_OBJECTID); 479 return -EUCLEAN; 480 } 481 482 /* 483 * ROOT_ITEM with non-zero offset means this is a snapshot, created at 484 * @offset transid. 485 * Furthermore, for location key in DIR_ITEM, its offset is always -1. 486 * 487 * So here we only check offset for reloc tree whose key->offset must 488 * be a valid tree. 489 */ 490 if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID && 491 key->offset == 0)) { 492 generic_err(leaf, slot, "invalid root id 0 for reloc tree"); 493 return -EUCLEAN; 494 } 495 return 0; 496 } 497 498 static int check_dir_item(struct extent_buffer *leaf, 499 struct btrfs_key *key, struct btrfs_key *prev_key, 500 int slot) 501 { 502 struct btrfs_fs_info *fs_info = leaf->fs_info; 503 struct btrfs_dir_item *di; 504 u32 item_size = btrfs_item_size(leaf, slot); 505 u32 cur = 0; 506 507 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 508 return -EUCLEAN; 509 510 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 511 while (cur < item_size) { 512 struct btrfs_key location_key; 513 u32 name_len; 514 u32 data_len; 515 u32 max_name_len; 516 u32 total_size; 517 u32 name_hash; 518 u8 dir_type; 519 int ret; 520 521 /* header itself should not cross item boundary */ 522 if (unlikely(cur + sizeof(*di) > item_size)) { 523 dir_item_err(leaf, slot, 524 "dir item header crosses item boundary, have %zu boundary %u", 525 cur + sizeof(*di), item_size); 526 return -EUCLEAN; 527 } 528 529 /* Location key check */ 530 btrfs_dir_item_key_to_cpu(leaf, di, &location_key); 531 if (location_key.type == BTRFS_ROOT_ITEM_KEY) { 532 ret = check_root_key(leaf, &location_key, slot); 533 if (unlikely(ret < 0)) 534 return ret; 535 } else if (location_key.type == BTRFS_INODE_ITEM_KEY || 536 location_key.type == 0) { 537 ret = check_inode_key(leaf, &location_key, slot); 538 if (unlikely(ret < 0)) 539 return ret; 540 } else { 541 dir_item_err(leaf, slot, 542 "invalid location key type, have %u, expect %u or %u", 543 location_key.type, BTRFS_ROOT_ITEM_KEY, 544 BTRFS_INODE_ITEM_KEY); 545 return -EUCLEAN; 546 } 547 548 /* dir type check */ 549 dir_type = btrfs_dir_ftype(leaf, di); 550 if (unlikely(dir_type >= BTRFS_FT_MAX)) { 551 dir_item_err(leaf, slot, 552 "invalid dir item type, have %u expect [0, %u)", 553 dir_type, BTRFS_FT_MAX); 554 return -EUCLEAN; 555 } 556 557 if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY && 558 dir_type != BTRFS_FT_XATTR)) { 559 dir_item_err(leaf, slot, 560 "invalid dir item type for XATTR key, have %u expect %u", 561 dir_type, BTRFS_FT_XATTR); 562 return -EUCLEAN; 563 } 564 if (unlikely(dir_type == BTRFS_FT_XATTR && 565 key->type != BTRFS_XATTR_ITEM_KEY)) { 566 dir_item_err(leaf, slot, 567 "xattr dir type found for non-XATTR key"); 568 return -EUCLEAN; 569 } 570 if (dir_type == BTRFS_FT_XATTR) 571 max_name_len = XATTR_NAME_MAX; 572 else 573 max_name_len = BTRFS_NAME_LEN; 574 575 /* Name/data length check */ 576 name_len = btrfs_dir_name_len(leaf, di); 577 data_len = btrfs_dir_data_len(leaf, di); 578 if (unlikely(name_len > max_name_len)) { 579 dir_item_err(leaf, slot, 580 "dir item name len too long, have %u max %u", 581 name_len, max_name_len); 582 return -EUCLEAN; 583 } 584 if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) { 585 dir_item_err(leaf, slot, 586 "dir item name and data len too long, have %u max %u", 587 name_len + data_len, 588 BTRFS_MAX_XATTR_SIZE(fs_info)); 589 return -EUCLEAN; 590 } 591 592 if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) { 593 dir_item_err(leaf, slot, 594 "dir item with invalid data len, have %u expect 0", 595 data_len); 596 return -EUCLEAN; 597 } 598 599 total_size = sizeof(*di) + name_len + data_len; 600 601 /* header and name/data should not cross item boundary */ 602 if (unlikely(cur + total_size > item_size)) { 603 dir_item_err(leaf, slot, 604 "dir item data crosses item boundary, have %u boundary %u", 605 cur + total_size, item_size); 606 return -EUCLEAN; 607 } 608 609 /* 610 * Special check for XATTR/DIR_ITEM, as key->offset is name 611 * hash, should match its name 612 */ 613 if (key->type == BTRFS_DIR_ITEM_KEY || 614 key->type == BTRFS_XATTR_ITEM_KEY) { 615 char namebuf[max(BTRFS_NAME_LEN, XATTR_NAME_MAX)]; 616 617 read_extent_buffer(leaf, namebuf, 618 (unsigned long)(di + 1), name_len); 619 name_hash = btrfs_name_hash(namebuf, name_len); 620 if (unlikely(key->offset != name_hash)) { 621 dir_item_err(leaf, slot, 622 "name hash mismatch with key, have 0x%016x expect 0x%016llx", 623 name_hash, key->offset); 624 return -EUCLEAN; 625 } 626 } 627 cur += total_size; 628 di = (struct btrfs_dir_item *)((void *)di + total_size); 629 } 630 return 0; 631 } 632 633 __printf(3, 4) 634 __cold 635 static void block_group_err(const struct extent_buffer *eb, int slot, 636 const char *fmt, ...) 637 { 638 const struct btrfs_fs_info *fs_info = eb->fs_info; 639 struct btrfs_key key; 640 struct va_format vaf; 641 va_list args; 642 643 btrfs_item_key_to_cpu(eb, &key, slot); 644 va_start(args, fmt); 645 646 vaf.fmt = fmt; 647 vaf.va = &args; 648 649 btrfs_crit(fs_info, 650 "corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV", 651 btrfs_header_level(eb) == 0 ? "leaf" : "node", 652 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 653 key.objectid, key.offset, &vaf); 654 va_end(args); 655 } 656 657 static int check_block_group_item(struct extent_buffer *leaf, 658 struct btrfs_key *key, int slot) 659 { 660 struct btrfs_fs_info *fs_info = leaf->fs_info; 661 struct btrfs_block_group_item bgi; 662 u32 item_size = btrfs_item_size(leaf, slot); 663 u64 chunk_objectid; 664 u64 flags; 665 u64 type; 666 667 /* 668 * Here we don't really care about alignment since extent allocator can 669 * handle it. We care more about the size. 670 */ 671 if (unlikely(key->offset == 0)) { 672 block_group_err(leaf, slot, 673 "invalid block group size 0"); 674 return -EUCLEAN; 675 } 676 677 if (unlikely(item_size != sizeof(bgi))) { 678 block_group_err(leaf, slot, 679 "invalid item size, have %u expect %zu", 680 item_size, sizeof(bgi)); 681 return -EUCLEAN; 682 } 683 684 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 685 sizeof(bgi)); 686 chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi); 687 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 688 /* 689 * We don't init the nr_global_roots until we load the global 690 * roots, so this could be 0 at mount time. If it's 0 we'll 691 * just assume we're fine, and later we'll check against our 692 * actual value. 693 */ 694 if (unlikely(fs_info->nr_global_roots && 695 chunk_objectid >= fs_info->nr_global_roots)) { 696 block_group_err(leaf, slot, 697 "invalid block group global root id, have %llu, needs to be <= %llu", 698 chunk_objectid, 699 fs_info->nr_global_roots); 700 return -EUCLEAN; 701 } 702 } else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) { 703 block_group_err(leaf, slot, 704 "invalid block group chunk objectid, have %llu expect %llu", 705 btrfs_stack_block_group_chunk_objectid(&bgi), 706 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 707 return -EUCLEAN; 708 } 709 710 if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) { 711 block_group_err(leaf, slot, 712 "invalid block group used, have %llu expect [0, %llu)", 713 btrfs_stack_block_group_used(&bgi), key->offset); 714 return -EUCLEAN; 715 } 716 717 flags = btrfs_stack_block_group_flags(&bgi); 718 if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) { 719 block_group_err(leaf, slot, 720 "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set", 721 flags & BTRFS_BLOCK_GROUP_PROFILE_MASK, 722 hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)); 723 return -EUCLEAN; 724 } 725 726 type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 727 if (unlikely(type != BTRFS_BLOCK_GROUP_DATA && 728 type != BTRFS_BLOCK_GROUP_METADATA && 729 type != BTRFS_BLOCK_GROUP_SYSTEM && 730 type != (BTRFS_BLOCK_GROUP_METADATA | 731 BTRFS_BLOCK_GROUP_DATA))) { 732 block_group_err(leaf, slot, 733 "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx", 734 type, hweight64(type), 735 BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA, 736 BTRFS_BLOCK_GROUP_SYSTEM, 737 BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA); 738 return -EUCLEAN; 739 } 740 return 0; 741 } 742 743 __printf(4, 5) 744 __cold 745 static void chunk_err(const struct extent_buffer *leaf, 746 const struct btrfs_chunk *chunk, u64 logical, 747 const char *fmt, ...) 748 { 749 const struct btrfs_fs_info *fs_info = leaf->fs_info; 750 bool is_sb; 751 struct va_format vaf; 752 va_list args; 753 int i; 754 int slot = -1; 755 756 /* Only superblock eb is able to have such small offset */ 757 is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET); 758 759 if (!is_sb) { 760 /* 761 * Get the slot number by iterating through all slots, this 762 * would provide better readability. 763 */ 764 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 765 if (btrfs_item_ptr_offset(leaf, i) == 766 (unsigned long)chunk) { 767 slot = i; 768 break; 769 } 770 } 771 } 772 va_start(args, fmt); 773 vaf.fmt = fmt; 774 vaf.va = &args; 775 776 if (is_sb) 777 btrfs_crit(fs_info, 778 "corrupt superblock syschunk array: chunk_start=%llu, %pV", 779 logical, &vaf); 780 else 781 btrfs_crit(fs_info, 782 "corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV", 783 BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot, 784 logical, &vaf); 785 va_end(args); 786 } 787 788 /* 789 * The common chunk check which could also work on super block sys chunk array. 790 * 791 * Return -EUCLEAN if anything is corrupted. 792 * Return 0 if everything is OK. 793 */ 794 int btrfs_check_chunk_valid(struct extent_buffer *leaf, 795 struct btrfs_chunk *chunk, u64 logical) 796 { 797 struct btrfs_fs_info *fs_info = leaf->fs_info; 798 u64 length; 799 u64 chunk_end; 800 u64 stripe_len; 801 u16 num_stripes; 802 u16 sub_stripes; 803 u64 type; 804 u64 features; 805 bool mixed = false; 806 int raid_index; 807 int nparity; 808 int ncopies; 809 810 length = btrfs_chunk_length(leaf, chunk); 811 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 812 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 813 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 814 type = btrfs_chunk_type(leaf, chunk); 815 raid_index = btrfs_bg_flags_to_raid_index(type); 816 ncopies = btrfs_raid_array[raid_index].ncopies; 817 nparity = btrfs_raid_array[raid_index].nparity; 818 819 if (unlikely(!num_stripes)) { 820 chunk_err(leaf, chunk, logical, 821 "invalid chunk num_stripes, have %u", num_stripes); 822 return -EUCLEAN; 823 } 824 if (unlikely(num_stripes < ncopies)) { 825 chunk_err(leaf, chunk, logical, 826 "invalid chunk num_stripes < ncopies, have %u < %d", 827 num_stripes, ncopies); 828 return -EUCLEAN; 829 } 830 if (unlikely(nparity && num_stripes == nparity)) { 831 chunk_err(leaf, chunk, logical, 832 "invalid chunk num_stripes == nparity, have %u == %d", 833 num_stripes, nparity); 834 return -EUCLEAN; 835 } 836 if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) { 837 chunk_err(leaf, chunk, logical, 838 "invalid chunk logical, have %llu should aligned to %u", 839 logical, fs_info->sectorsize); 840 return -EUCLEAN; 841 } 842 if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) { 843 chunk_err(leaf, chunk, logical, 844 "invalid chunk sectorsize, have %u expect %u", 845 btrfs_chunk_sector_size(leaf, chunk), 846 fs_info->sectorsize); 847 return -EUCLEAN; 848 } 849 if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) { 850 chunk_err(leaf, chunk, logical, 851 "invalid chunk length, have %llu", length); 852 return -EUCLEAN; 853 } 854 if (unlikely(check_add_overflow(logical, length, &chunk_end))) { 855 chunk_err(leaf, chunk, logical, 856 "invalid chunk logical start and length, have logical start %llu length %llu", 857 logical, length); 858 return -EUCLEAN; 859 } 860 if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) { 861 chunk_err(leaf, chunk, logical, 862 "invalid chunk stripe length: %llu", 863 stripe_len); 864 return -EUCLEAN; 865 } 866 /* 867 * We artificially limit the chunk size, so that the number of stripes 868 * inside a chunk can be fit into a U32. The current limit (256G) is 869 * way too large for real world usage anyway, and it's also much larger 870 * than our existing limit (10G). 871 * 872 * Thus it should be a good way to catch obvious bitflips. 873 */ 874 if (unlikely(length >= btrfs_stripe_nr_to_offset(U32_MAX))) { 875 chunk_err(leaf, chunk, logical, 876 "chunk length too large: have %llu limit %llu", 877 length, btrfs_stripe_nr_to_offset(U32_MAX)); 878 return -EUCLEAN; 879 } 880 if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 881 BTRFS_BLOCK_GROUP_PROFILE_MASK))) { 882 chunk_err(leaf, chunk, logical, 883 "unrecognized chunk type: 0x%llx", 884 ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 885 BTRFS_BLOCK_GROUP_PROFILE_MASK) & 886 btrfs_chunk_type(leaf, chunk)); 887 return -EUCLEAN; 888 } 889 890 if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) && 891 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) { 892 chunk_err(leaf, chunk, logical, 893 "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set", 894 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 895 return -EUCLEAN; 896 } 897 if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) { 898 chunk_err(leaf, chunk, logical, 899 "missing chunk type flag, have 0x%llx one bit must be set in 0x%llx", 900 type, BTRFS_BLOCK_GROUP_TYPE_MASK); 901 return -EUCLEAN; 902 } 903 904 if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) && 905 (type & (BTRFS_BLOCK_GROUP_METADATA | 906 BTRFS_BLOCK_GROUP_DATA)))) { 907 chunk_err(leaf, chunk, logical, 908 "system chunk with data or metadata type: 0x%llx", 909 type); 910 return -EUCLEAN; 911 } 912 913 features = btrfs_super_incompat_flags(fs_info->super_copy); 914 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 915 mixed = true; 916 917 if (!mixed) { 918 if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) && 919 (type & BTRFS_BLOCK_GROUP_DATA))) { 920 chunk_err(leaf, chunk, logical, 921 "mixed chunk type in non-mixed mode: 0x%llx", type); 922 return -EUCLEAN; 923 } 924 } 925 926 if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 && 927 sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) || 928 (type & BTRFS_BLOCK_GROUP_RAID1 && 929 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) || 930 (type & BTRFS_BLOCK_GROUP_RAID1C3 && 931 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) || 932 (type & BTRFS_BLOCK_GROUP_RAID1C4 && 933 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) || 934 (type & BTRFS_BLOCK_GROUP_RAID5 && 935 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) || 936 (type & BTRFS_BLOCK_GROUP_RAID6 && 937 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) || 938 (type & BTRFS_BLOCK_GROUP_DUP && 939 num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) || 940 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 && 941 num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) { 942 chunk_err(leaf, chunk, logical, 943 "invalid num_stripes:sub_stripes %u:%u for profile %llu", 944 num_stripes, sub_stripes, 945 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 946 return -EUCLEAN; 947 } 948 949 return 0; 950 } 951 952 /* 953 * Enhanced version of chunk item checker. 954 * 955 * The common btrfs_check_chunk_valid() doesn't check item size since it needs 956 * to work on super block sys_chunk_array which doesn't have full item ptr. 957 */ 958 static int check_leaf_chunk_item(struct extent_buffer *leaf, 959 struct btrfs_chunk *chunk, 960 struct btrfs_key *key, int slot) 961 { 962 int num_stripes; 963 964 if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) { 965 chunk_err(leaf, chunk, key->offset, 966 "invalid chunk item size: have %u expect [%zu, %u)", 967 btrfs_item_size(leaf, slot), 968 sizeof(struct btrfs_chunk), 969 BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); 970 return -EUCLEAN; 971 } 972 973 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 974 /* Let btrfs_check_chunk_valid() handle this error type */ 975 if (num_stripes == 0) 976 goto out; 977 978 if (unlikely(btrfs_chunk_item_size(num_stripes) != 979 btrfs_item_size(leaf, slot))) { 980 chunk_err(leaf, chunk, key->offset, 981 "invalid chunk item size: have %u expect %lu", 982 btrfs_item_size(leaf, slot), 983 btrfs_chunk_item_size(num_stripes)); 984 return -EUCLEAN; 985 } 986 out: 987 return btrfs_check_chunk_valid(leaf, chunk, key->offset); 988 } 989 990 __printf(3, 4) 991 __cold 992 static void dev_item_err(const struct extent_buffer *eb, int slot, 993 const char *fmt, ...) 994 { 995 struct btrfs_key key; 996 struct va_format vaf; 997 va_list args; 998 999 btrfs_item_key_to_cpu(eb, &key, slot); 1000 va_start(args, fmt); 1001 1002 vaf.fmt = fmt; 1003 vaf.va = &args; 1004 1005 btrfs_crit(eb->fs_info, 1006 "corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV", 1007 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1008 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 1009 key.objectid, &vaf); 1010 va_end(args); 1011 } 1012 1013 static int check_dev_item(struct extent_buffer *leaf, 1014 struct btrfs_key *key, int slot) 1015 { 1016 struct btrfs_dev_item *ditem; 1017 const u32 item_size = btrfs_item_size(leaf, slot); 1018 1019 if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) { 1020 dev_item_err(leaf, slot, 1021 "invalid objectid: has=%llu expect=%llu", 1022 key->objectid, BTRFS_DEV_ITEMS_OBJECTID); 1023 return -EUCLEAN; 1024 } 1025 1026 if (unlikely(item_size != sizeof(*ditem))) { 1027 dev_item_err(leaf, slot, "invalid item size: has %u expect %zu", 1028 item_size, sizeof(*ditem)); 1029 return -EUCLEAN; 1030 } 1031 1032 ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item); 1033 if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) { 1034 dev_item_err(leaf, slot, 1035 "devid mismatch: key has=%llu item has=%llu", 1036 key->offset, btrfs_device_id(leaf, ditem)); 1037 return -EUCLEAN; 1038 } 1039 1040 /* 1041 * For device total_bytes, we don't have reliable way to check it, as 1042 * it can be 0 for device removal. Device size check can only be done 1043 * by dev extents check. 1044 */ 1045 if (unlikely(btrfs_device_bytes_used(leaf, ditem) > 1046 btrfs_device_total_bytes(leaf, ditem))) { 1047 dev_item_err(leaf, slot, 1048 "invalid bytes used: have %llu expect [0, %llu]", 1049 btrfs_device_bytes_used(leaf, ditem), 1050 btrfs_device_total_bytes(leaf, ditem)); 1051 return -EUCLEAN; 1052 } 1053 /* 1054 * Remaining members like io_align/type/gen/dev_group aren't really 1055 * utilized. Skip them to make later usage of them easier. 1056 */ 1057 return 0; 1058 } 1059 1060 static int check_inode_item(struct extent_buffer *leaf, 1061 struct btrfs_key *key, int slot) 1062 { 1063 struct btrfs_fs_info *fs_info = leaf->fs_info; 1064 struct btrfs_inode_item *iitem; 1065 u64 super_gen = btrfs_super_generation(fs_info->super_copy); 1066 u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777); 1067 const u32 item_size = btrfs_item_size(leaf, slot); 1068 u32 mode; 1069 int ret; 1070 u32 flags; 1071 u32 ro_flags; 1072 1073 ret = check_inode_key(leaf, key, slot); 1074 if (unlikely(ret < 0)) 1075 return ret; 1076 1077 if (unlikely(item_size != sizeof(*iitem))) { 1078 generic_err(leaf, slot, "invalid item size: has %u expect %zu", 1079 item_size, sizeof(*iitem)); 1080 return -EUCLEAN; 1081 } 1082 1083 iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item); 1084 1085 /* Here we use super block generation + 1 to handle log tree */ 1086 if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) { 1087 inode_item_err(leaf, slot, 1088 "invalid inode generation: has %llu expect (0, %llu]", 1089 btrfs_inode_generation(leaf, iitem), 1090 super_gen + 1); 1091 return -EUCLEAN; 1092 } 1093 /* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */ 1094 if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) { 1095 inode_item_err(leaf, slot, 1096 "invalid inode transid: has %llu expect [0, %llu]", 1097 btrfs_inode_transid(leaf, iitem), super_gen + 1); 1098 return -EUCLEAN; 1099 } 1100 1101 /* 1102 * For size and nbytes it's better not to be too strict, as for dir 1103 * item its size/nbytes can easily get wrong, but doesn't affect 1104 * anything in the fs. So here we skip the check. 1105 */ 1106 mode = btrfs_inode_mode(leaf, iitem); 1107 if (unlikely(mode & ~valid_mask)) { 1108 inode_item_err(leaf, slot, 1109 "unknown mode bit detected: 0x%x", 1110 mode & ~valid_mask); 1111 return -EUCLEAN; 1112 } 1113 1114 /* 1115 * S_IFMT is not bit mapped so we can't completely rely on 1116 * is_power_of_2/has_single_bit_set, but it can save us from checking 1117 * FIFO/CHR/DIR/REG. Only needs to check BLK, LNK and SOCKS 1118 */ 1119 if (!has_single_bit_set(mode & S_IFMT)) { 1120 if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) { 1121 inode_item_err(leaf, slot, 1122 "invalid mode: has 0%o expect valid S_IF* bit(s)", 1123 mode & S_IFMT); 1124 return -EUCLEAN; 1125 } 1126 } 1127 if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) { 1128 inode_item_err(leaf, slot, 1129 "invalid nlink: has %u expect no more than 1 for dir", 1130 btrfs_inode_nlink(leaf, iitem)); 1131 return -EUCLEAN; 1132 } 1133 btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags); 1134 if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) { 1135 inode_item_err(leaf, slot, 1136 "unknown incompat flags detected: 0x%x", flags); 1137 return -EUCLEAN; 1138 } 1139 if (unlikely(!sb_rdonly(fs_info->sb) && 1140 (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) { 1141 inode_item_err(leaf, slot, 1142 "unknown ro-compat flags detected on writeable mount: 0x%x", 1143 ro_flags); 1144 return -EUCLEAN; 1145 } 1146 return 0; 1147 } 1148 1149 static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key, 1150 int slot) 1151 { 1152 struct btrfs_fs_info *fs_info = leaf->fs_info; 1153 struct btrfs_root_item ri = { 0 }; 1154 const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY | 1155 BTRFS_ROOT_SUBVOL_DEAD; 1156 int ret; 1157 1158 ret = check_root_key(leaf, key, slot); 1159 if (unlikely(ret < 0)) 1160 return ret; 1161 1162 if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) && 1163 btrfs_item_size(leaf, slot) != 1164 btrfs_legacy_root_item_size())) { 1165 generic_err(leaf, slot, 1166 "invalid root item size, have %u expect %zu or %u", 1167 btrfs_item_size(leaf, slot), sizeof(ri), 1168 btrfs_legacy_root_item_size()); 1169 return -EUCLEAN; 1170 } 1171 1172 /* 1173 * For legacy root item, the members starting at generation_v2 will be 1174 * all filled with 0. 1175 * And since we allow geneartion_v2 as 0, it will still pass the check. 1176 */ 1177 read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot), 1178 btrfs_item_size(leaf, slot)); 1179 1180 /* Generation related */ 1181 if (unlikely(btrfs_root_generation(&ri) > 1182 btrfs_super_generation(fs_info->super_copy) + 1)) { 1183 generic_err(leaf, slot, 1184 "invalid root generation, have %llu expect (0, %llu]", 1185 btrfs_root_generation(&ri), 1186 btrfs_super_generation(fs_info->super_copy) + 1); 1187 return -EUCLEAN; 1188 } 1189 if (unlikely(btrfs_root_generation_v2(&ri) > 1190 btrfs_super_generation(fs_info->super_copy) + 1)) { 1191 generic_err(leaf, slot, 1192 "invalid root v2 generation, have %llu expect (0, %llu]", 1193 btrfs_root_generation_v2(&ri), 1194 btrfs_super_generation(fs_info->super_copy) + 1); 1195 return -EUCLEAN; 1196 } 1197 if (unlikely(btrfs_root_last_snapshot(&ri) > 1198 btrfs_super_generation(fs_info->super_copy) + 1)) { 1199 generic_err(leaf, slot, 1200 "invalid root last_snapshot, have %llu expect (0, %llu]", 1201 btrfs_root_last_snapshot(&ri), 1202 btrfs_super_generation(fs_info->super_copy) + 1); 1203 return -EUCLEAN; 1204 } 1205 1206 /* Alignment and level check */ 1207 if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) { 1208 generic_err(leaf, slot, 1209 "invalid root bytenr, have %llu expect to be aligned to %u", 1210 btrfs_root_bytenr(&ri), fs_info->sectorsize); 1211 return -EUCLEAN; 1212 } 1213 if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) { 1214 generic_err(leaf, slot, 1215 "invalid root level, have %u expect [0, %u]", 1216 btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1); 1217 return -EUCLEAN; 1218 } 1219 if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) { 1220 generic_err(leaf, slot, 1221 "invalid root level, have %u expect [0, %u]", 1222 btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1); 1223 return -EUCLEAN; 1224 } 1225 1226 /* Flags check */ 1227 if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) { 1228 generic_err(leaf, slot, 1229 "invalid root flags, have 0x%llx expect mask 0x%llx", 1230 btrfs_root_flags(&ri), valid_root_flags); 1231 return -EUCLEAN; 1232 } 1233 return 0; 1234 } 1235 1236 __printf(3,4) 1237 __cold 1238 static void extent_err(const struct extent_buffer *eb, int slot, 1239 const char *fmt, ...) 1240 { 1241 struct btrfs_key key; 1242 struct va_format vaf; 1243 va_list args; 1244 u64 bytenr; 1245 u64 len; 1246 1247 btrfs_item_key_to_cpu(eb, &key, slot); 1248 bytenr = key.objectid; 1249 if (key.type == BTRFS_METADATA_ITEM_KEY || 1250 key.type == BTRFS_TREE_BLOCK_REF_KEY || 1251 key.type == BTRFS_SHARED_BLOCK_REF_KEY) 1252 len = eb->fs_info->nodesize; 1253 else 1254 len = key.offset; 1255 va_start(args, fmt); 1256 1257 vaf.fmt = fmt; 1258 vaf.va = &args; 1259 1260 btrfs_crit(eb->fs_info, 1261 "corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV", 1262 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1263 eb->start, slot, bytenr, len, &vaf); 1264 va_end(args); 1265 } 1266 1267 static int check_extent_item(struct extent_buffer *leaf, 1268 struct btrfs_key *key, int slot, 1269 struct btrfs_key *prev_key) 1270 { 1271 struct btrfs_fs_info *fs_info = leaf->fs_info; 1272 struct btrfs_extent_item *ei; 1273 bool is_tree_block = false; 1274 unsigned long ptr; /* Current pointer inside inline refs */ 1275 unsigned long end; /* Extent item end */ 1276 const u32 item_size = btrfs_item_size(leaf, slot); 1277 u64 flags; 1278 u64 generation; 1279 u64 total_refs; /* Total refs in btrfs_extent_item */ 1280 u64 inline_refs = 0; /* found total inline refs */ 1281 1282 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && 1283 !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) { 1284 generic_err(leaf, slot, 1285 "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled"); 1286 return -EUCLEAN; 1287 } 1288 /* key->objectid is the bytenr for both key types */ 1289 if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) { 1290 generic_err(leaf, slot, 1291 "invalid key objectid, have %llu expect to be aligned to %u", 1292 key->objectid, fs_info->sectorsize); 1293 return -EUCLEAN; 1294 } 1295 1296 /* key->offset is tree level for METADATA_ITEM_KEY */ 1297 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && 1298 key->offset >= BTRFS_MAX_LEVEL)) { 1299 extent_err(leaf, slot, 1300 "invalid tree level, have %llu expect [0, %u]", 1301 key->offset, BTRFS_MAX_LEVEL - 1); 1302 return -EUCLEAN; 1303 } 1304 1305 /* 1306 * EXTENT/METADATA_ITEM consists of: 1307 * 1) One btrfs_extent_item 1308 * Records the total refs, type and generation of the extent. 1309 * 1310 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only) 1311 * Records the first key and level of the tree block. 1312 * 1313 * 2) Zero or more btrfs_extent_inline_ref(s) 1314 * Each inline ref has one btrfs_extent_inline_ref shows: 1315 * 2.1) The ref type, one of the 4 1316 * TREE_BLOCK_REF Tree block only 1317 * SHARED_BLOCK_REF Tree block only 1318 * EXTENT_DATA_REF Data only 1319 * SHARED_DATA_REF Data only 1320 * 2.2) Ref type specific data 1321 * Either using btrfs_extent_inline_ref::offset, or specific 1322 * data structure. 1323 */ 1324 if (unlikely(item_size < sizeof(*ei))) { 1325 extent_err(leaf, slot, 1326 "invalid item size, have %u expect [%zu, %u)", 1327 item_size, sizeof(*ei), 1328 BTRFS_LEAF_DATA_SIZE(fs_info)); 1329 return -EUCLEAN; 1330 } 1331 end = item_size + btrfs_item_ptr_offset(leaf, slot); 1332 1333 /* Checks against extent_item */ 1334 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1335 flags = btrfs_extent_flags(leaf, ei); 1336 total_refs = btrfs_extent_refs(leaf, ei); 1337 generation = btrfs_extent_generation(leaf, ei); 1338 if (unlikely(generation > 1339 btrfs_super_generation(fs_info->super_copy) + 1)) { 1340 extent_err(leaf, slot, 1341 "invalid generation, have %llu expect (0, %llu]", 1342 generation, 1343 btrfs_super_generation(fs_info->super_copy) + 1); 1344 return -EUCLEAN; 1345 } 1346 if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA | 1347 BTRFS_EXTENT_FLAG_TREE_BLOCK)))) { 1348 extent_err(leaf, slot, 1349 "invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx", 1350 flags, BTRFS_EXTENT_FLAG_DATA | 1351 BTRFS_EXTENT_FLAG_TREE_BLOCK); 1352 return -EUCLEAN; 1353 } 1354 is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK); 1355 if (is_tree_block) { 1356 if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY && 1357 key->offset != fs_info->nodesize)) { 1358 extent_err(leaf, slot, 1359 "invalid extent length, have %llu expect %u", 1360 key->offset, fs_info->nodesize); 1361 return -EUCLEAN; 1362 } 1363 } else { 1364 if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) { 1365 extent_err(leaf, slot, 1366 "invalid key type, have %u expect %u for data backref", 1367 key->type, BTRFS_EXTENT_ITEM_KEY); 1368 return -EUCLEAN; 1369 } 1370 if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) { 1371 extent_err(leaf, slot, 1372 "invalid extent length, have %llu expect aligned to %u", 1373 key->offset, fs_info->sectorsize); 1374 return -EUCLEAN; 1375 } 1376 if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1377 extent_err(leaf, slot, 1378 "invalid extent flag, data has full backref set"); 1379 return -EUCLEAN; 1380 } 1381 } 1382 ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1); 1383 1384 /* Check the special case of btrfs_tree_block_info */ 1385 if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) { 1386 struct btrfs_tree_block_info *info; 1387 1388 info = (struct btrfs_tree_block_info *)ptr; 1389 if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) { 1390 extent_err(leaf, slot, 1391 "invalid tree block info level, have %u expect [0, %u]", 1392 btrfs_tree_block_level(leaf, info), 1393 BTRFS_MAX_LEVEL - 1); 1394 return -EUCLEAN; 1395 } 1396 ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1); 1397 } 1398 1399 /* Check inline refs */ 1400 while (ptr < end) { 1401 struct btrfs_extent_inline_ref *iref; 1402 struct btrfs_extent_data_ref *dref; 1403 struct btrfs_shared_data_ref *sref; 1404 u64 dref_offset; 1405 u64 inline_offset; 1406 u8 inline_type; 1407 1408 if (unlikely(ptr + sizeof(*iref) > end)) { 1409 extent_err(leaf, slot, 1410 "inline ref item overflows extent item, ptr %lu iref size %zu end %lu", 1411 ptr, sizeof(*iref), end); 1412 return -EUCLEAN; 1413 } 1414 iref = (struct btrfs_extent_inline_ref *)ptr; 1415 inline_type = btrfs_extent_inline_ref_type(leaf, iref); 1416 inline_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1417 if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) { 1418 extent_err(leaf, slot, 1419 "inline ref item overflows extent item, ptr %lu iref size %u end %lu", 1420 ptr, btrfs_extent_inline_ref_size(inline_type), end); 1421 return -EUCLEAN; 1422 } 1423 1424 switch (inline_type) { 1425 /* inline_offset is subvolid of the owner, no need to check */ 1426 case BTRFS_TREE_BLOCK_REF_KEY: 1427 inline_refs++; 1428 break; 1429 /* Contains parent bytenr */ 1430 case BTRFS_SHARED_BLOCK_REF_KEY: 1431 if (unlikely(!IS_ALIGNED(inline_offset, 1432 fs_info->sectorsize))) { 1433 extent_err(leaf, slot, 1434 "invalid tree parent bytenr, have %llu expect aligned to %u", 1435 inline_offset, fs_info->sectorsize); 1436 return -EUCLEAN; 1437 } 1438 inline_refs++; 1439 break; 1440 /* 1441 * Contains owner subvolid, owner key objectid, adjusted offset. 1442 * The only obvious corruption can happen in that offset. 1443 */ 1444 case BTRFS_EXTENT_DATA_REF_KEY: 1445 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1446 dref_offset = btrfs_extent_data_ref_offset(leaf, dref); 1447 if (unlikely(!IS_ALIGNED(dref_offset, 1448 fs_info->sectorsize))) { 1449 extent_err(leaf, slot, 1450 "invalid data ref offset, have %llu expect aligned to %u", 1451 dref_offset, fs_info->sectorsize); 1452 return -EUCLEAN; 1453 } 1454 inline_refs += btrfs_extent_data_ref_count(leaf, dref); 1455 break; 1456 /* Contains parent bytenr and ref count */ 1457 case BTRFS_SHARED_DATA_REF_KEY: 1458 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1459 if (unlikely(!IS_ALIGNED(inline_offset, 1460 fs_info->sectorsize))) { 1461 extent_err(leaf, slot, 1462 "invalid data parent bytenr, have %llu expect aligned to %u", 1463 inline_offset, fs_info->sectorsize); 1464 return -EUCLEAN; 1465 } 1466 inline_refs += btrfs_shared_data_ref_count(leaf, sref); 1467 break; 1468 default: 1469 extent_err(leaf, slot, "unknown inline ref type: %u", 1470 inline_type); 1471 return -EUCLEAN; 1472 } 1473 ptr += btrfs_extent_inline_ref_size(inline_type); 1474 } 1475 /* No padding is allowed */ 1476 if (unlikely(ptr != end)) { 1477 extent_err(leaf, slot, 1478 "invalid extent item size, padding bytes found"); 1479 return -EUCLEAN; 1480 } 1481 1482 /* Finally, check the inline refs against total refs */ 1483 if (unlikely(inline_refs > total_refs)) { 1484 extent_err(leaf, slot, 1485 "invalid extent refs, have %llu expect >= inline %llu", 1486 total_refs, inline_refs); 1487 return -EUCLEAN; 1488 } 1489 1490 if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) || 1491 (prev_key->type == BTRFS_METADATA_ITEM_KEY)) { 1492 u64 prev_end = prev_key->objectid; 1493 1494 if (prev_key->type == BTRFS_METADATA_ITEM_KEY) 1495 prev_end += fs_info->nodesize; 1496 else 1497 prev_end += prev_key->offset; 1498 1499 if (unlikely(prev_end > key->objectid)) { 1500 extent_err(leaf, slot, 1501 "previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]", 1502 prev_key->objectid, prev_key->type, 1503 prev_key->offset, key->objectid, key->type, 1504 key->offset); 1505 return -EUCLEAN; 1506 } 1507 } 1508 1509 return 0; 1510 } 1511 1512 static int check_simple_keyed_refs(struct extent_buffer *leaf, 1513 struct btrfs_key *key, int slot) 1514 { 1515 u32 expect_item_size = 0; 1516 1517 if (key->type == BTRFS_SHARED_DATA_REF_KEY) 1518 expect_item_size = sizeof(struct btrfs_shared_data_ref); 1519 1520 if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) { 1521 generic_err(leaf, slot, 1522 "invalid item size, have %u expect %u for key type %u", 1523 btrfs_item_size(leaf, slot), 1524 expect_item_size, key->type); 1525 return -EUCLEAN; 1526 } 1527 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1528 generic_err(leaf, slot, 1529 "invalid key objectid for shared block ref, have %llu expect aligned to %u", 1530 key->objectid, leaf->fs_info->sectorsize); 1531 return -EUCLEAN; 1532 } 1533 if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY && 1534 !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) { 1535 extent_err(leaf, slot, 1536 "invalid tree parent bytenr, have %llu expect aligned to %u", 1537 key->offset, leaf->fs_info->sectorsize); 1538 return -EUCLEAN; 1539 } 1540 return 0; 1541 } 1542 1543 static int check_extent_data_ref(struct extent_buffer *leaf, 1544 struct btrfs_key *key, int slot) 1545 { 1546 struct btrfs_extent_data_ref *dref; 1547 unsigned long ptr = btrfs_item_ptr_offset(leaf, slot); 1548 const unsigned long end = ptr + btrfs_item_size(leaf, slot); 1549 1550 if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) { 1551 generic_err(leaf, slot, 1552 "invalid item size, have %u expect aligned to %zu for key type %u", 1553 btrfs_item_size(leaf, slot), 1554 sizeof(*dref), key->type); 1555 return -EUCLEAN; 1556 } 1557 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1558 generic_err(leaf, slot, 1559 "invalid key objectid for shared block ref, have %llu expect aligned to %u", 1560 key->objectid, leaf->fs_info->sectorsize); 1561 return -EUCLEAN; 1562 } 1563 for (; ptr < end; ptr += sizeof(*dref)) { 1564 u64 offset; 1565 1566 /* 1567 * We cannot check the extent_data_ref hash due to possible 1568 * overflow from the leaf due to hash collisions. 1569 */ 1570 dref = (struct btrfs_extent_data_ref *)ptr; 1571 offset = btrfs_extent_data_ref_offset(leaf, dref); 1572 if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) { 1573 extent_err(leaf, slot, 1574 "invalid extent data backref offset, have %llu expect aligned to %u", 1575 offset, leaf->fs_info->sectorsize); 1576 return -EUCLEAN; 1577 } 1578 } 1579 return 0; 1580 } 1581 1582 #define inode_ref_err(eb, slot, fmt, args...) \ 1583 inode_item_err(eb, slot, fmt, ##args) 1584 static int check_inode_ref(struct extent_buffer *leaf, 1585 struct btrfs_key *key, struct btrfs_key *prev_key, 1586 int slot) 1587 { 1588 struct btrfs_inode_ref *iref; 1589 unsigned long ptr; 1590 unsigned long end; 1591 1592 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 1593 return -EUCLEAN; 1594 /* namelen can't be 0, so item_size == sizeof() is also invalid */ 1595 if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) { 1596 inode_ref_err(leaf, slot, 1597 "invalid item size, have %u expect (%zu, %u)", 1598 btrfs_item_size(leaf, slot), 1599 sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); 1600 return -EUCLEAN; 1601 } 1602 1603 ptr = btrfs_item_ptr_offset(leaf, slot); 1604 end = ptr + btrfs_item_size(leaf, slot); 1605 while (ptr < end) { 1606 u16 namelen; 1607 1608 if (unlikely(ptr + sizeof(iref) > end)) { 1609 inode_ref_err(leaf, slot, 1610 "inode ref overflow, ptr %lu end %lu inode_ref_size %zu", 1611 ptr, end, sizeof(iref)); 1612 return -EUCLEAN; 1613 } 1614 1615 iref = (struct btrfs_inode_ref *)ptr; 1616 namelen = btrfs_inode_ref_name_len(leaf, iref); 1617 if (unlikely(ptr + sizeof(*iref) + namelen > end)) { 1618 inode_ref_err(leaf, slot, 1619 "inode ref overflow, ptr %lu end %lu namelen %u", 1620 ptr, end, namelen); 1621 return -EUCLEAN; 1622 } 1623 1624 /* 1625 * NOTE: In theory we should record all found index numbers 1626 * to find any duplicated indexes, but that will be too time 1627 * consuming for inodes with too many hard links. 1628 */ 1629 ptr += sizeof(*iref) + namelen; 1630 } 1631 return 0; 1632 } 1633 1634 /* 1635 * Common point to switch the item-specific validation. 1636 */ 1637 static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf, 1638 struct btrfs_key *key, 1639 int slot, 1640 struct btrfs_key *prev_key) 1641 { 1642 int ret = 0; 1643 struct btrfs_chunk *chunk; 1644 1645 switch (key->type) { 1646 case BTRFS_EXTENT_DATA_KEY: 1647 ret = check_extent_data_item(leaf, key, slot, prev_key); 1648 break; 1649 case BTRFS_EXTENT_CSUM_KEY: 1650 ret = check_csum_item(leaf, key, slot, prev_key); 1651 break; 1652 case BTRFS_DIR_ITEM_KEY: 1653 case BTRFS_DIR_INDEX_KEY: 1654 case BTRFS_XATTR_ITEM_KEY: 1655 ret = check_dir_item(leaf, key, prev_key, slot); 1656 break; 1657 case BTRFS_INODE_REF_KEY: 1658 ret = check_inode_ref(leaf, key, prev_key, slot); 1659 break; 1660 case BTRFS_BLOCK_GROUP_ITEM_KEY: 1661 ret = check_block_group_item(leaf, key, slot); 1662 break; 1663 case BTRFS_CHUNK_ITEM_KEY: 1664 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 1665 ret = check_leaf_chunk_item(leaf, chunk, key, slot); 1666 break; 1667 case BTRFS_DEV_ITEM_KEY: 1668 ret = check_dev_item(leaf, key, slot); 1669 break; 1670 case BTRFS_INODE_ITEM_KEY: 1671 ret = check_inode_item(leaf, key, slot); 1672 break; 1673 case BTRFS_ROOT_ITEM_KEY: 1674 ret = check_root_item(leaf, key, slot); 1675 break; 1676 case BTRFS_EXTENT_ITEM_KEY: 1677 case BTRFS_METADATA_ITEM_KEY: 1678 ret = check_extent_item(leaf, key, slot, prev_key); 1679 break; 1680 case BTRFS_TREE_BLOCK_REF_KEY: 1681 case BTRFS_SHARED_DATA_REF_KEY: 1682 case BTRFS_SHARED_BLOCK_REF_KEY: 1683 ret = check_simple_keyed_refs(leaf, key, slot); 1684 break; 1685 case BTRFS_EXTENT_DATA_REF_KEY: 1686 ret = check_extent_data_ref(leaf, key, slot); 1687 break; 1688 } 1689 1690 if (ret) 1691 return BTRFS_TREE_BLOCK_INVALID_ITEM; 1692 return BTRFS_TREE_BLOCK_CLEAN; 1693 } 1694 1695 enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf) 1696 { 1697 struct btrfs_fs_info *fs_info = leaf->fs_info; 1698 /* No valid key type is 0, so all key should be larger than this key */ 1699 struct btrfs_key prev_key = {0, 0, 0}; 1700 struct btrfs_key key; 1701 u32 nritems = btrfs_header_nritems(leaf); 1702 int slot; 1703 1704 if (unlikely(btrfs_header_level(leaf) != 0)) { 1705 generic_err(leaf, 0, 1706 "invalid level for leaf, have %d expect 0", 1707 btrfs_header_level(leaf)); 1708 return BTRFS_TREE_BLOCK_INVALID_LEVEL; 1709 } 1710 1711 /* 1712 * Extent buffers from a relocation tree have a owner field that 1713 * corresponds to the subvolume tree they are based on. So just from an 1714 * extent buffer alone we can not find out what is the id of the 1715 * corresponding subvolume tree, so we can not figure out if the extent 1716 * buffer corresponds to the root of the relocation tree or not. So 1717 * skip this check for relocation trees. 1718 */ 1719 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) { 1720 u64 owner = btrfs_header_owner(leaf); 1721 1722 /* These trees must never be empty */ 1723 if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID || 1724 owner == BTRFS_CHUNK_TREE_OBJECTID || 1725 owner == BTRFS_DEV_TREE_OBJECTID || 1726 owner == BTRFS_FS_TREE_OBJECTID || 1727 owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) { 1728 generic_err(leaf, 0, 1729 "invalid root, root %llu must never be empty", 1730 owner); 1731 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 1732 } 1733 1734 /* Unknown tree */ 1735 if (unlikely(owner == 0)) { 1736 generic_err(leaf, 0, 1737 "invalid owner, root 0 is not defined"); 1738 return BTRFS_TREE_BLOCK_INVALID_OWNER; 1739 } 1740 1741 /* EXTENT_TREE_V2 can have empty extent trees. */ 1742 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 1743 return BTRFS_TREE_BLOCK_CLEAN; 1744 1745 if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) { 1746 generic_err(leaf, 0, 1747 "invalid root, root %llu must never be empty", 1748 owner); 1749 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 1750 } 1751 1752 return BTRFS_TREE_BLOCK_CLEAN; 1753 } 1754 1755 if (unlikely(nritems == 0)) 1756 return BTRFS_TREE_BLOCK_CLEAN; 1757 1758 /* 1759 * Check the following things to make sure this is a good leaf, and 1760 * leaf users won't need to bother with similar sanity checks: 1761 * 1762 * 1) key ordering 1763 * 2) item offset and size 1764 * No overlap, no hole, all inside the leaf. 1765 * 3) item content 1766 * If possible, do comprehensive sanity check. 1767 * NOTE: All checks must only rely on the item data itself. 1768 */ 1769 for (slot = 0; slot < nritems; slot++) { 1770 u32 item_end_expected; 1771 u64 item_data_end; 1772 1773 btrfs_item_key_to_cpu(leaf, &key, slot); 1774 1775 /* Make sure the keys are in the right order */ 1776 if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) { 1777 generic_err(leaf, slot, 1778 "bad key order, prev (%llu %u %llu) current (%llu %u %llu)", 1779 prev_key.objectid, prev_key.type, 1780 prev_key.offset, key.objectid, key.type, 1781 key.offset); 1782 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER; 1783 } 1784 1785 item_data_end = (u64)btrfs_item_offset(leaf, slot) + 1786 btrfs_item_size(leaf, slot); 1787 /* 1788 * Make sure the offset and ends are right, remember that the 1789 * item data starts at the end of the leaf and grows towards the 1790 * front. 1791 */ 1792 if (slot == 0) 1793 item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info); 1794 else 1795 item_end_expected = btrfs_item_offset(leaf, 1796 slot - 1); 1797 if (unlikely(item_data_end != item_end_expected)) { 1798 generic_err(leaf, slot, 1799 "unexpected item end, have %llu expect %u", 1800 item_data_end, item_end_expected); 1801 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 1802 } 1803 1804 /* 1805 * Check to make sure that we don't point outside of the leaf, 1806 * just in case all the items are consistent to each other, but 1807 * all point outside of the leaf. 1808 */ 1809 if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) { 1810 generic_err(leaf, slot, 1811 "slot end outside of leaf, have %llu expect range [0, %u]", 1812 item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info)); 1813 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 1814 } 1815 1816 /* Also check if the item pointer overlaps with btrfs item. */ 1817 if (unlikely(btrfs_item_ptr_offset(leaf, slot) < 1818 btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) { 1819 generic_err(leaf, slot, 1820 "slot overlaps with its data, item end %lu data start %lu", 1821 btrfs_item_nr_offset(leaf, slot) + 1822 sizeof(struct btrfs_item), 1823 btrfs_item_ptr_offset(leaf, slot)); 1824 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 1825 } 1826 1827 /* 1828 * We only want to do this if WRITTEN is set, otherwise the leaf 1829 * may be in some intermediate state and won't appear valid. 1830 */ 1831 if (btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_WRITTEN)) { 1832 enum btrfs_tree_block_status ret; 1833 1834 /* 1835 * Check if the item size and content meet other 1836 * criteria 1837 */ 1838 ret = check_leaf_item(leaf, &key, slot, &prev_key); 1839 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 1840 return ret; 1841 } 1842 1843 prev_key.objectid = key.objectid; 1844 prev_key.type = key.type; 1845 prev_key.offset = key.offset; 1846 } 1847 1848 return BTRFS_TREE_BLOCK_CLEAN; 1849 } 1850 1851 int btrfs_check_leaf(struct extent_buffer *leaf) 1852 { 1853 enum btrfs_tree_block_status ret; 1854 1855 ret = __btrfs_check_leaf(leaf); 1856 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 1857 return -EUCLEAN; 1858 return 0; 1859 } 1860 ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO); 1861 1862 enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node) 1863 { 1864 struct btrfs_fs_info *fs_info = node->fs_info; 1865 unsigned long nr = btrfs_header_nritems(node); 1866 struct btrfs_key key, next_key; 1867 int slot; 1868 int level = btrfs_header_level(node); 1869 u64 bytenr; 1870 1871 if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) { 1872 generic_err(node, 0, 1873 "invalid level for node, have %d expect [1, %d]", 1874 level, BTRFS_MAX_LEVEL - 1); 1875 return BTRFS_TREE_BLOCK_INVALID_LEVEL; 1876 } 1877 if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) { 1878 btrfs_crit(fs_info, 1879 "corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]", 1880 btrfs_header_owner(node), node->start, 1881 nr == 0 ? "small" : "large", nr, 1882 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1883 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 1884 } 1885 1886 for (slot = 0; slot < nr - 1; slot++) { 1887 bytenr = btrfs_node_blockptr(node, slot); 1888 btrfs_node_key_to_cpu(node, &key, slot); 1889 btrfs_node_key_to_cpu(node, &next_key, slot + 1); 1890 1891 if (unlikely(!bytenr)) { 1892 generic_err(node, slot, 1893 "invalid NULL node pointer"); 1894 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR; 1895 } 1896 if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) { 1897 generic_err(node, slot, 1898 "unaligned pointer, have %llu should be aligned to %u", 1899 bytenr, fs_info->sectorsize); 1900 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR; 1901 } 1902 1903 if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) { 1904 generic_err(node, slot, 1905 "bad key order, current (%llu %u %llu) next (%llu %u %llu)", 1906 key.objectid, key.type, key.offset, 1907 next_key.objectid, next_key.type, 1908 next_key.offset); 1909 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER; 1910 } 1911 } 1912 return BTRFS_TREE_BLOCK_CLEAN; 1913 } 1914 1915 int btrfs_check_node(struct extent_buffer *node) 1916 { 1917 enum btrfs_tree_block_status ret; 1918 1919 ret = __btrfs_check_node(node); 1920 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 1921 return -EUCLEAN; 1922 return 0; 1923 } 1924 ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO); 1925 1926 int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner) 1927 { 1928 const bool is_subvol = is_fstree(root_owner); 1929 const u64 eb_owner = btrfs_header_owner(eb); 1930 1931 /* 1932 * Skip dummy fs, as selftests don't create unique ebs for each dummy 1933 * root. 1934 */ 1935 if (test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &eb->fs_info->fs_state)) 1936 return 0; 1937 /* 1938 * There are several call sites (backref walking, qgroup, and data 1939 * reloc) passing 0 as @root_owner, as they are not holding the 1940 * tree root. In that case, we can not do a reliable ownership check, 1941 * so just exit. 1942 */ 1943 if (root_owner == 0) 1944 return 0; 1945 /* 1946 * These trees use key.offset as their owner, our callers don't have 1947 * the extra capacity to pass key.offset here. So we just skip them. 1948 */ 1949 if (root_owner == BTRFS_TREE_LOG_OBJECTID || 1950 root_owner == BTRFS_TREE_RELOC_OBJECTID) 1951 return 0; 1952 1953 if (!is_subvol) { 1954 /* For non-subvolume trees, the eb owner should match root owner */ 1955 if (unlikely(root_owner != eb_owner)) { 1956 btrfs_crit(eb->fs_info, 1957 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu", 1958 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1959 root_owner, btrfs_header_bytenr(eb), eb_owner, 1960 root_owner); 1961 return -EUCLEAN; 1962 } 1963 return 0; 1964 } 1965 1966 /* 1967 * For subvolume trees, owners can mismatch, but they should all belong 1968 * to subvolume trees. 1969 */ 1970 if (unlikely(is_subvol != is_fstree(eb_owner))) { 1971 btrfs_crit(eb->fs_info, 1972 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]", 1973 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1974 root_owner, btrfs_header_bytenr(eb), eb_owner, 1975 BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID); 1976 return -EUCLEAN; 1977 } 1978 return 0; 1979 } 1980 1981 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 1982 struct btrfs_key *first_key, u64 parent_transid) 1983 { 1984 struct btrfs_fs_info *fs_info = eb->fs_info; 1985 int found_level; 1986 struct btrfs_key found_key; 1987 int ret; 1988 1989 found_level = btrfs_header_level(eb); 1990 if (found_level != level) { 1991 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 1992 KERN_ERR "BTRFS: tree level check failed\n"); 1993 btrfs_err(fs_info, 1994 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 1995 eb->start, level, found_level); 1996 return -EIO; 1997 } 1998 1999 if (!first_key) 2000 return 0; 2001 2002 /* 2003 * For live tree block (new tree blocks in current transaction), 2004 * we need proper lock context to avoid race, which is impossible here. 2005 * So we only checks tree blocks which is read from disk, whose 2006 * generation <= fs_info->last_trans_committed. 2007 */ 2008 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 2009 return 0; 2010 2011 /* We have @first_key, so this @eb must have at least one item */ 2012 if (btrfs_header_nritems(eb) == 0) { 2013 btrfs_err(fs_info, 2014 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 2015 eb->start); 2016 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2017 return -EUCLEAN; 2018 } 2019 2020 if (found_level) 2021 btrfs_node_key_to_cpu(eb, &found_key, 0); 2022 else 2023 btrfs_item_key_to_cpu(eb, &found_key, 0); 2024 ret = btrfs_comp_cpu_keys(first_key, &found_key); 2025 2026 if (ret) { 2027 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 2028 KERN_ERR "BTRFS: tree first key check failed\n"); 2029 btrfs_err(fs_info, 2030 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 2031 eb->start, parent_transid, first_key->objectid, 2032 first_key->type, first_key->offset, 2033 found_key.objectid, found_key.type, 2034 found_key.offset); 2035 } 2036 return ret; 2037 } 2038