1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) Qu Wenruo 2017. All rights reserved. 4 */ 5 6 /* 7 * The module is used to catch unexpected/corrupted tree block data. 8 * Such behavior can be caused either by a fuzzed image or bugs. 9 * 10 * The objective is to do leaf/node validation checks when tree block is read 11 * from disk, and check *every* possible member, so other code won't 12 * need to checking them again. 13 * 14 * Due to the potential and unwanted damage, every checker needs to be 15 * carefully reviewed otherwise so it does not prevent mount of valid images. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/stddef.h> 20 #include <linux/error-injection.h> 21 #include "ctree.h" 22 #include "tree-checker.h" 23 #include "disk-io.h" 24 #include "compression.h" 25 #include "volumes.h" 26 #include "misc.h" 27 #include "btrfs_inode.h" 28 29 /* 30 * Error message should follow the following format: 31 * corrupt <type>: <identifier>, <reason>[, <bad_value>] 32 * 33 * @type: leaf or node 34 * @identifier: the necessary info to locate the leaf/node. 35 * It's recommended to decode key.objecitd/offset if it's 36 * meaningful. 37 * @reason: describe the error 38 * @bad_value: optional, it's recommended to output bad value and its 39 * expected value (range). 40 * 41 * Since comma is used to separate the components, only space is allowed 42 * inside each component. 43 */ 44 45 /* 46 * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt. 47 * Allows callers to customize the output. 48 */ 49 __printf(3, 4) 50 __cold 51 static void generic_err(const struct extent_buffer *eb, int slot, 52 const char *fmt, ...) 53 { 54 const struct btrfs_fs_info *fs_info = eb->fs_info; 55 struct va_format vaf; 56 va_list args; 57 58 va_start(args, fmt); 59 60 vaf.fmt = fmt; 61 vaf.va = &args; 62 63 btrfs_crit(fs_info, 64 "corrupt %s: root=%llu block=%llu slot=%d, %pV", 65 btrfs_header_level(eb) == 0 ? "leaf" : "node", 66 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf); 67 va_end(args); 68 } 69 70 /* 71 * Customized reporter for extent data item, since its key objectid and 72 * offset has its own meaning. 73 */ 74 __printf(3, 4) 75 __cold 76 static void file_extent_err(const struct extent_buffer *eb, int slot, 77 const char *fmt, ...) 78 { 79 const struct btrfs_fs_info *fs_info = eb->fs_info; 80 struct btrfs_key key; 81 struct va_format vaf; 82 va_list args; 83 84 btrfs_item_key_to_cpu(eb, &key, slot); 85 va_start(args, fmt); 86 87 vaf.fmt = fmt; 88 vaf.va = &args; 89 90 btrfs_crit(fs_info, 91 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV", 92 btrfs_header_level(eb) == 0 ? "leaf" : "node", 93 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 94 key.objectid, key.offset, &vaf); 95 va_end(args); 96 } 97 98 /* 99 * Return 0 if the btrfs_file_extent_##name is aligned to @alignment 100 * Else return 1 101 */ 102 #define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment) \ 103 ({ \ 104 if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), \ 105 (alignment)))) \ 106 file_extent_err((leaf), (slot), \ 107 "invalid %s for file extent, have %llu, should be aligned to %u", \ 108 (#name), btrfs_file_extent_##name((leaf), (fi)), \ 109 (alignment)); \ 110 (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \ 111 }) 112 113 static u64 file_extent_end(struct extent_buffer *leaf, 114 struct btrfs_key *key, 115 struct btrfs_file_extent_item *extent) 116 { 117 u64 end; 118 u64 len; 119 120 if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) { 121 len = btrfs_file_extent_ram_bytes(leaf, extent); 122 end = ALIGN(key->offset + len, leaf->fs_info->sectorsize); 123 } else { 124 len = btrfs_file_extent_num_bytes(leaf, extent); 125 end = key->offset + len; 126 } 127 return end; 128 } 129 130 /* 131 * Customized report for dir_item, the only new important information is 132 * key->objectid, which represents inode number 133 */ 134 __printf(3, 4) 135 __cold 136 static void dir_item_err(const struct extent_buffer *eb, int slot, 137 const char *fmt, ...) 138 { 139 const struct btrfs_fs_info *fs_info = eb->fs_info; 140 struct btrfs_key key; 141 struct va_format vaf; 142 va_list args; 143 144 btrfs_item_key_to_cpu(eb, &key, slot); 145 va_start(args, fmt); 146 147 vaf.fmt = fmt; 148 vaf.va = &args; 149 150 btrfs_crit(fs_info, 151 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV", 152 btrfs_header_level(eb) == 0 ? "leaf" : "node", 153 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 154 key.objectid, &vaf); 155 va_end(args); 156 } 157 158 /* 159 * This functions checks prev_key->objectid, to ensure current key and prev_key 160 * share the same objectid as inode number. 161 * 162 * This is to detect missing INODE_ITEM in subvolume trees. 163 * 164 * Return true if everything is OK or we don't need to check. 165 * Return false if anything is wrong. 166 */ 167 static bool check_prev_ino(struct extent_buffer *leaf, 168 struct btrfs_key *key, int slot, 169 struct btrfs_key *prev_key) 170 { 171 /* No prev key, skip check */ 172 if (slot == 0) 173 return true; 174 175 /* Only these key->types needs to be checked */ 176 ASSERT(key->type == BTRFS_XATTR_ITEM_KEY || 177 key->type == BTRFS_INODE_REF_KEY || 178 key->type == BTRFS_DIR_INDEX_KEY || 179 key->type == BTRFS_DIR_ITEM_KEY || 180 key->type == BTRFS_EXTENT_DATA_KEY); 181 182 /* 183 * Only subvolume trees along with their reloc trees need this check. 184 * Things like log tree doesn't follow this ino requirement. 185 */ 186 if (!is_fstree(btrfs_header_owner(leaf))) 187 return true; 188 189 if (key->objectid == prev_key->objectid) 190 return true; 191 192 /* Error found */ 193 dir_item_err(leaf, slot, 194 "invalid previous key objectid, have %llu expect %llu", 195 prev_key->objectid, key->objectid); 196 return false; 197 } 198 static int check_extent_data_item(struct extent_buffer *leaf, 199 struct btrfs_key *key, int slot, 200 struct btrfs_key *prev_key) 201 { 202 struct btrfs_fs_info *fs_info = leaf->fs_info; 203 struct btrfs_file_extent_item *fi; 204 u32 sectorsize = fs_info->sectorsize; 205 u32 item_size = btrfs_item_size(leaf, slot); 206 u64 extent_end; 207 208 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 209 file_extent_err(leaf, slot, 210 "unaligned file_offset for file extent, have %llu should be aligned to %u", 211 key->offset, sectorsize); 212 return -EUCLEAN; 213 } 214 215 /* 216 * Previous key must have the same key->objectid (ino). 217 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA. 218 * But if objectids mismatch, it means we have a missing 219 * INODE_ITEM. 220 */ 221 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 222 return -EUCLEAN; 223 224 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 225 226 /* 227 * Make sure the item contains at least inline header, so the file 228 * extent type is not some garbage. 229 */ 230 if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) { 231 file_extent_err(leaf, slot, 232 "invalid item size, have %u expect [%zu, %u)", 233 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START, 234 SZ_4K); 235 return -EUCLEAN; 236 } 237 if (unlikely(btrfs_file_extent_type(leaf, fi) >= 238 BTRFS_NR_FILE_EXTENT_TYPES)) { 239 file_extent_err(leaf, slot, 240 "invalid type for file extent, have %u expect range [0, %u]", 241 btrfs_file_extent_type(leaf, fi), 242 BTRFS_NR_FILE_EXTENT_TYPES - 1); 243 return -EUCLEAN; 244 } 245 246 /* 247 * Support for new compression/encryption must introduce incompat flag, 248 * and must be caught in open_ctree(). 249 */ 250 if (unlikely(btrfs_file_extent_compression(leaf, fi) >= 251 BTRFS_NR_COMPRESS_TYPES)) { 252 file_extent_err(leaf, slot, 253 "invalid compression for file extent, have %u expect range [0, %u]", 254 btrfs_file_extent_compression(leaf, fi), 255 BTRFS_NR_COMPRESS_TYPES - 1); 256 return -EUCLEAN; 257 } 258 if (unlikely(btrfs_file_extent_encryption(leaf, fi))) { 259 file_extent_err(leaf, slot, 260 "invalid encryption for file extent, have %u expect 0", 261 btrfs_file_extent_encryption(leaf, fi)); 262 return -EUCLEAN; 263 } 264 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 265 /* Inline extent must have 0 as key offset */ 266 if (unlikely(key->offset)) { 267 file_extent_err(leaf, slot, 268 "invalid file_offset for inline file extent, have %llu expect 0", 269 key->offset); 270 return -EUCLEAN; 271 } 272 273 /* Compressed inline extent has no on-disk size, skip it */ 274 if (btrfs_file_extent_compression(leaf, fi) != 275 BTRFS_COMPRESS_NONE) 276 return 0; 277 278 /* Uncompressed inline extent size must match item size */ 279 if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START + 280 btrfs_file_extent_ram_bytes(leaf, fi))) { 281 file_extent_err(leaf, slot, 282 "invalid ram_bytes for uncompressed inline extent, have %u expect %llu", 283 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START + 284 btrfs_file_extent_ram_bytes(leaf, fi)); 285 return -EUCLEAN; 286 } 287 return 0; 288 } 289 290 /* Regular or preallocated extent has fixed item size */ 291 if (unlikely(item_size != sizeof(*fi))) { 292 file_extent_err(leaf, slot, 293 "invalid item size for reg/prealloc file extent, have %u expect %zu", 294 item_size, sizeof(*fi)); 295 return -EUCLEAN; 296 } 297 if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) || 298 CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) || 299 CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) || 300 CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) || 301 CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize))) 302 return -EUCLEAN; 303 304 /* Catch extent end overflow */ 305 if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi), 306 key->offset, &extent_end))) { 307 file_extent_err(leaf, slot, 308 "extent end overflow, have file offset %llu extent num bytes %llu", 309 key->offset, 310 btrfs_file_extent_num_bytes(leaf, fi)); 311 return -EUCLEAN; 312 } 313 314 /* 315 * Check that no two consecutive file extent items, in the same leaf, 316 * present ranges that overlap each other. 317 */ 318 if (slot > 0 && 319 prev_key->objectid == key->objectid && 320 prev_key->type == BTRFS_EXTENT_DATA_KEY) { 321 struct btrfs_file_extent_item *prev_fi; 322 u64 prev_end; 323 324 prev_fi = btrfs_item_ptr(leaf, slot - 1, 325 struct btrfs_file_extent_item); 326 prev_end = file_extent_end(leaf, prev_key, prev_fi); 327 if (unlikely(prev_end > key->offset)) { 328 file_extent_err(leaf, slot - 1, 329 "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent", 330 prev_end, key->offset); 331 return -EUCLEAN; 332 } 333 } 334 335 return 0; 336 } 337 338 static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key, 339 int slot, struct btrfs_key *prev_key) 340 { 341 struct btrfs_fs_info *fs_info = leaf->fs_info; 342 u32 sectorsize = fs_info->sectorsize; 343 const u32 csumsize = fs_info->csum_size; 344 345 if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) { 346 generic_err(leaf, slot, 347 "invalid key objectid for csum item, have %llu expect %llu", 348 key->objectid, BTRFS_EXTENT_CSUM_OBJECTID); 349 return -EUCLEAN; 350 } 351 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 352 generic_err(leaf, slot, 353 "unaligned key offset for csum item, have %llu should be aligned to %u", 354 key->offset, sectorsize); 355 return -EUCLEAN; 356 } 357 if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) { 358 generic_err(leaf, slot, 359 "unaligned item size for csum item, have %u should be aligned to %u", 360 btrfs_item_size(leaf, slot), csumsize); 361 return -EUCLEAN; 362 } 363 if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) { 364 u64 prev_csum_end; 365 u32 prev_item_size; 366 367 prev_item_size = btrfs_item_size(leaf, slot - 1); 368 prev_csum_end = (prev_item_size / csumsize) * sectorsize; 369 prev_csum_end += prev_key->offset; 370 if (unlikely(prev_csum_end > key->offset)) { 371 generic_err(leaf, slot - 1, 372 "csum end range (%llu) goes beyond the start range (%llu) of the next csum item", 373 prev_csum_end, key->offset); 374 return -EUCLEAN; 375 } 376 } 377 return 0; 378 } 379 380 /* Inode item error output has the same format as dir_item_err() */ 381 #define inode_item_err(eb, slot, fmt, ...) \ 382 dir_item_err(eb, slot, fmt, __VA_ARGS__) 383 384 static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key, 385 int slot) 386 { 387 struct btrfs_key item_key; 388 bool is_inode_item; 389 390 btrfs_item_key_to_cpu(leaf, &item_key, slot); 391 is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY); 392 393 /* For XATTR_ITEM, location key should be all 0 */ 394 if (item_key.type == BTRFS_XATTR_ITEM_KEY) { 395 if (unlikely(key->objectid != 0 || key->type != 0 || 396 key->offset != 0)) 397 return -EUCLEAN; 398 return 0; 399 } 400 401 if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID || 402 key->objectid > BTRFS_LAST_FREE_OBJECTID) && 403 key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID && 404 key->objectid != BTRFS_FREE_INO_OBJECTID)) { 405 if (is_inode_item) { 406 generic_err(leaf, slot, 407 "invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu", 408 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 409 BTRFS_FIRST_FREE_OBJECTID, 410 BTRFS_LAST_FREE_OBJECTID, 411 BTRFS_FREE_INO_OBJECTID); 412 } else { 413 dir_item_err(leaf, slot, 414 "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu", 415 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 416 BTRFS_FIRST_FREE_OBJECTID, 417 BTRFS_LAST_FREE_OBJECTID, 418 BTRFS_FREE_INO_OBJECTID); 419 } 420 return -EUCLEAN; 421 } 422 if (unlikely(key->offset != 0)) { 423 if (is_inode_item) 424 inode_item_err(leaf, slot, 425 "invalid key offset: has %llu expect 0", 426 key->offset); 427 else 428 dir_item_err(leaf, slot, 429 "invalid location key offset:has %llu expect 0", 430 key->offset); 431 return -EUCLEAN; 432 } 433 return 0; 434 } 435 436 static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key, 437 int slot) 438 { 439 struct btrfs_key item_key; 440 bool is_root_item; 441 442 btrfs_item_key_to_cpu(leaf, &item_key, slot); 443 is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY); 444 445 /* No such tree id */ 446 if (unlikely(key->objectid == 0)) { 447 if (is_root_item) 448 generic_err(leaf, slot, "invalid root id 0"); 449 else 450 dir_item_err(leaf, slot, 451 "invalid location key root id 0"); 452 return -EUCLEAN; 453 } 454 455 /* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */ 456 if (unlikely(!is_fstree(key->objectid) && !is_root_item)) { 457 dir_item_err(leaf, slot, 458 "invalid location key objectid, have %llu expect [%llu, %llu]", 459 key->objectid, BTRFS_FIRST_FREE_OBJECTID, 460 BTRFS_LAST_FREE_OBJECTID); 461 return -EUCLEAN; 462 } 463 464 /* 465 * ROOT_ITEM with non-zero offset means this is a snapshot, created at 466 * @offset transid. 467 * Furthermore, for location key in DIR_ITEM, its offset is always -1. 468 * 469 * So here we only check offset for reloc tree whose key->offset must 470 * be a valid tree. 471 */ 472 if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID && 473 key->offset == 0)) { 474 generic_err(leaf, slot, "invalid root id 0 for reloc tree"); 475 return -EUCLEAN; 476 } 477 return 0; 478 } 479 480 static int check_dir_item(struct extent_buffer *leaf, 481 struct btrfs_key *key, struct btrfs_key *prev_key, 482 int slot) 483 { 484 struct btrfs_fs_info *fs_info = leaf->fs_info; 485 struct btrfs_dir_item *di; 486 u32 item_size = btrfs_item_size(leaf, slot); 487 u32 cur = 0; 488 489 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 490 return -EUCLEAN; 491 492 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 493 while (cur < item_size) { 494 struct btrfs_key location_key; 495 u32 name_len; 496 u32 data_len; 497 u32 max_name_len; 498 u32 total_size; 499 u32 name_hash; 500 u8 dir_type; 501 int ret; 502 503 /* header itself should not cross item boundary */ 504 if (unlikely(cur + sizeof(*di) > item_size)) { 505 dir_item_err(leaf, slot, 506 "dir item header crosses item boundary, have %zu boundary %u", 507 cur + sizeof(*di), item_size); 508 return -EUCLEAN; 509 } 510 511 /* Location key check */ 512 btrfs_dir_item_key_to_cpu(leaf, di, &location_key); 513 if (location_key.type == BTRFS_ROOT_ITEM_KEY) { 514 ret = check_root_key(leaf, &location_key, slot); 515 if (unlikely(ret < 0)) 516 return ret; 517 } else if (location_key.type == BTRFS_INODE_ITEM_KEY || 518 location_key.type == 0) { 519 ret = check_inode_key(leaf, &location_key, slot); 520 if (unlikely(ret < 0)) 521 return ret; 522 } else { 523 dir_item_err(leaf, slot, 524 "invalid location key type, have %u, expect %u or %u", 525 location_key.type, BTRFS_ROOT_ITEM_KEY, 526 BTRFS_INODE_ITEM_KEY); 527 return -EUCLEAN; 528 } 529 530 /* dir type check */ 531 dir_type = btrfs_dir_type(leaf, di); 532 if (unlikely(dir_type >= BTRFS_FT_MAX)) { 533 dir_item_err(leaf, slot, 534 "invalid dir item type, have %u expect [0, %u)", 535 dir_type, BTRFS_FT_MAX); 536 return -EUCLEAN; 537 } 538 539 if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY && 540 dir_type != BTRFS_FT_XATTR)) { 541 dir_item_err(leaf, slot, 542 "invalid dir item type for XATTR key, have %u expect %u", 543 dir_type, BTRFS_FT_XATTR); 544 return -EUCLEAN; 545 } 546 if (unlikely(dir_type == BTRFS_FT_XATTR && 547 key->type != BTRFS_XATTR_ITEM_KEY)) { 548 dir_item_err(leaf, slot, 549 "xattr dir type found for non-XATTR key"); 550 return -EUCLEAN; 551 } 552 if (dir_type == BTRFS_FT_XATTR) 553 max_name_len = XATTR_NAME_MAX; 554 else 555 max_name_len = BTRFS_NAME_LEN; 556 557 /* Name/data length check */ 558 name_len = btrfs_dir_name_len(leaf, di); 559 data_len = btrfs_dir_data_len(leaf, di); 560 if (unlikely(name_len > max_name_len)) { 561 dir_item_err(leaf, slot, 562 "dir item name len too long, have %u max %u", 563 name_len, max_name_len); 564 return -EUCLEAN; 565 } 566 if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) { 567 dir_item_err(leaf, slot, 568 "dir item name and data len too long, have %u max %u", 569 name_len + data_len, 570 BTRFS_MAX_XATTR_SIZE(fs_info)); 571 return -EUCLEAN; 572 } 573 574 if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) { 575 dir_item_err(leaf, slot, 576 "dir item with invalid data len, have %u expect 0", 577 data_len); 578 return -EUCLEAN; 579 } 580 581 total_size = sizeof(*di) + name_len + data_len; 582 583 /* header and name/data should not cross item boundary */ 584 if (unlikely(cur + total_size > item_size)) { 585 dir_item_err(leaf, slot, 586 "dir item data crosses item boundary, have %u boundary %u", 587 cur + total_size, item_size); 588 return -EUCLEAN; 589 } 590 591 /* 592 * Special check for XATTR/DIR_ITEM, as key->offset is name 593 * hash, should match its name 594 */ 595 if (key->type == BTRFS_DIR_ITEM_KEY || 596 key->type == BTRFS_XATTR_ITEM_KEY) { 597 char namebuf[max(BTRFS_NAME_LEN, XATTR_NAME_MAX)]; 598 599 read_extent_buffer(leaf, namebuf, 600 (unsigned long)(di + 1), name_len); 601 name_hash = btrfs_name_hash(namebuf, name_len); 602 if (unlikely(key->offset != name_hash)) { 603 dir_item_err(leaf, slot, 604 "name hash mismatch with key, have 0x%016x expect 0x%016llx", 605 name_hash, key->offset); 606 return -EUCLEAN; 607 } 608 } 609 cur += total_size; 610 di = (struct btrfs_dir_item *)((void *)di + total_size); 611 } 612 return 0; 613 } 614 615 __printf(3, 4) 616 __cold 617 static void block_group_err(const struct extent_buffer *eb, int slot, 618 const char *fmt, ...) 619 { 620 const struct btrfs_fs_info *fs_info = eb->fs_info; 621 struct btrfs_key key; 622 struct va_format vaf; 623 va_list args; 624 625 btrfs_item_key_to_cpu(eb, &key, slot); 626 va_start(args, fmt); 627 628 vaf.fmt = fmt; 629 vaf.va = &args; 630 631 btrfs_crit(fs_info, 632 "corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV", 633 btrfs_header_level(eb) == 0 ? "leaf" : "node", 634 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 635 key.objectid, key.offset, &vaf); 636 va_end(args); 637 } 638 639 static int check_block_group_item(struct extent_buffer *leaf, 640 struct btrfs_key *key, int slot) 641 { 642 struct btrfs_fs_info *fs_info = leaf->fs_info; 643 struct btrfs_block_group_item bgi; 644 u32 item_size = btrfs_item_size(leaf, slot); 645 u64 chunk_objectid; 646 u64 flags; 647 u64 type; 648 649 /* 650 * Here we don't really care about alignment since extent allocator can 651 * handle it. We care more about the size. 652 */ 653 if (unlikely(key->offset == 0)) { 654 block_group_err(leaf, slot, 655 "invalid block group size 0"); 656 return -EUCLEAN; 657 } 658 659 if (unlikely(item_size != sizeof(bgi))) { 660 block_group_err(leaf, slot, 661 "invalid item size, have %u expect %zu", 662 item_size, sizeof(bgi)); 663 return -EUCLEAN; 664 } 665 666 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 667 sizeof(bgi)); 668 chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi); 669 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 670 /* 671 * We don't init the nr_global_roots until we load the global 672 * roots, so this could be 0 at mount time. If it's 0 we'll 673 * just assume we're fine, and later we'll check against our 674 * actual value. 675 */ 676 if (unlikely(fs_info->nr_global_roots && 677 chunk_objectid >= fs_info->nr_global_roots)) { 678 block_group_err(leaf, slot, 679 "invalid block group global root id, have %llu, needs to be <= %llu", 680 chunk_objectid, 681 fs_info->nr_global_roots); 682 return -EUCLEAN; 683 } 684 } else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) { 685 block_group_err(leaf, slot, 686 "invalid block group chunk objectid, have %llu expect %llu", 687 btrfs_stack_block_group_chunk_objectid(&bgi), 688 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 689 return -EUCLEAN; 690 } 691 692 if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) { 693 block_group_err(leaf, slot, 694 "invalid block group used, have %llu expect [0, %llu)", 695 btrfs_stack_block_group_used(&bgi), key->offset); 696 return -EUCLEAN; 697 } 698 699 flags = btrfs_stack_block_group_flags(&bgi); 700 if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) { 701 block_group_err(leaf, slot, 702 "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set", 703 flags & BTRFS_BLOCK_GROUP_PROFILE_MASK, 704 hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)); 705 return -EUCLEAN; 706 } 707 708 type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 709 if (unlikely(type != BTRFS_BLOCK_GROUP_DATA && 710 type != BTRFS_BLOCK_GROUP_METADATA && 711 type != BTRFS_BLOCK_GROUP_SYSTEM && 712 type != (BTRFS_BLOCK_GROUP_METADATA | 713 BTRFS_BLOCK_GROUP_DATA))) { 714 block_group_err(leaf, slot, 715 "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx", 716 type, hweight64(type), 717 BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA, 718 BTRFS_BLOCK_GROUP_SYSTEM, 719 BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA); 720 return -EUCLEAN; 721 } 722 return 0; 723 } 724 725 __printf(4, 5) 726 __cold 727 static void chunk_err(const struct extent_buffer *leaf, 728 const struct btrfs_chunk *chunk, u64 logical, 729 const char *fmt, ...) 730 { 731 const struct btrfs_fs_info *fs_info = leaf->fs_info; 732 bool is_sb; 733 struct va_format vaf; 734 va_list args; 735 int i; 736 int slot = -1; 737 738 /* Only superblock eb is able to have such small offset */ 739 is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET); 740 741 if (!is_sb) { 742 /* 743 * Get the slot number by iterating through all slots, this 744 * would provide better readability. 745 */ 746 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 747 if (btrfs_item_ptr_offset(leaf, i) == 748 (unsigned long)chunk) { 749 slot = i; 750 break; 751 } 752 } 753 } 754 va_start(args, fmt); 755 vaf.fmt = fmt; 756 vaf.va = &args; 757 758 if (is_sb) 759 btrfs_crit(fs_info, 760 "corrupt superblock syschunk array: chunk_start=%llu, %pV", 761 logical, &vaf); 762 else 763 btrfs_crit(fs_info, 764 "corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV", 765 BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot, 766 logical, &vaf); 767 va_end(args); 768 } 769 770 /* 771 * The common chunk check which could also work on super block sys chunk array. 772 * 773 * Return -EUCLEAN if anything is corrupted. 774 * Return 0 if everything is OK. 775 */ 776 int btrfs_check_chunk_valid(struct extent_buffer *leaf, 777 struct btrfs_chunk *chunk, u64 logical) 778 { 779 struct btrfs_fs_info *fs_info = leaf->fs_info; 780 u64 length; 781 u64 chunk_end; 782 u64 stripe_len; 783 u16 num_stripes; 784 u16 sub_stripes; 785 u64 type; 786 u64 features; 787 bool mixed = false; 788 int raid_index; 789 int nparity; 790 int ncopies; 791 792 length = btrfs_chunk_length(leaf, chunk); 793 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 794 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 795 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 796 type = btrfs_chunk_type(leaf, chunk); 797 raid_index = btrfs_bg_flags_to_raid_index(type); 798 ncopies = btrfs_raid_array[raid_index].ncopies; 799 nparity = btrfs_raid_array[raid_index].nparity; 800 801 if (unlikely(!num_stripes)) { 802 chunk_err(leaf, chunk, logical, 803 "invalid chunk num_stripes, have %u", num_stripes); 804 return -EUCLEAN; 805 } 806 if (unlikely(num_stripes < ncopies)) { 807 chunk_err(leaf, chunk, logical, 808 "invalid chunk num_stripes < ncopies, have %u < %d", 809 num_stripes, ncopies); 810 return -EUCLEAN; 811 } 812 if (unlikely(nparity && num_stripes == nparity)) { 813 chunk_err(leaf, chunk, logical, 814 "invalid chunk num_stripes == nparity, have %u == %d", 815 num_stripes, nparity); 816 return -EUCLEAN; 817 } 818 if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) { 819 chunk_err(leaf, chunk, logical, 820 "invalid chunk logical, have %llu should aligned to %u", 821 logical, fs_info->sectorsize); 822 return -EUCLEAN; 823 } 824 if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) { 825 chunk_err(leaf, chunk, logical, 826 "invalid chunk sectorsize, have %u expect %u", 827 btrfs_chunk_sector_size(leaf, chunk), 828 fs_info->sectorsize); 829 return -EUCLEAN; 830 } 831 if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) { 832 chunk_err(leaf, chunk, logical, 833 "invalid chunk length, have %llu", length); 834 return -EUCLEAN; 835 } 836 if (unlikely(check_add_overflow(logical, length, &chunk_end))) { 837 chunk_err(leaf, chunk, logical, 838 "invalid chunk logical start and length, have logical start %llu length %llu", 839 logical, length); 840 return -EUCLEAN; 841 } 842 if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) { 843 chunk_err(leaf, chunk, logical, 844 "invalid chunk stripe length: %llu", 845 stripe_len); 846 return -EUCLEAN; 847 } 848 if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 849 BTRFS_BLOCK_GROUP_PROFILE_MASK))) { 850 chunk_err(leaf, chunk, logical, 851 "unrecognized chunk type: 0x%llx", 852 ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 853 BTRFS_BLOCK_GROUP_PROFILE_MASK) & 854 btrfs_chunk_type(leaf, chunk)); 855 return -EUCLEAN; 856 } 857 858 if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) && 859 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) { 860 chunk_err(leaf, chunk, logical, 861 "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set", 862 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 863 return -EUCLEAN; 864 } 865 if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) { 866 chunk_err(leaf, chunk, logical, 867 "missing chunk type flag, have 0x%llx one bit must be set in 0x%llx", 868 type, BTRFS_BLOCK_GROUP_TYPE_MASK); 869 return -EUCLEAN; 870 } 871 872 if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) && 873 (type & (BTRFS_BLOCK_GROUP_METADATA | 874 BTRFS_BLOCK_GROUP_DATA)))) { 875 chunk_err(leaf, chunk, logical, 876 "system chunk with data or metadata type: 0x%llx", 877 type); 878 return -EUCLEAN; 879 } 880 881 features = btrfs_super_incompat_flags(fs_info->super_copy); 882 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 883 mixed = true; 884 885 if (!mixed) { 886 if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) && 887 (type & BTRFS_BLOCK_GROUP_DATA))) { 888 chunk_err(leaf, chunk, logical, 889 "mixed chunk type in non-mixed mode: 0x%llx", type); 890 return -EUCLEAN; 891 } 892 } 893 894 if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 && 895 sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) || 896 (type & BTRFS_BLOCK_GROUP_RAID1 && 897 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) || 898 (type & BTRFS_BLOCK_GROUP_RAID1C3 && 899 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) || 900 (type & BTRFS_BLOCK_GROUP_RAID1C4 && 901 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) || 902 (type & BTRFS_BLOCK_GROUP_RAID5 && 903 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) || 904 (type & BTRFS_BLOCK_GROUP_RAID6 && 905 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) || 906 (type & BTRFS_BLOCK_GROUP_DUP && 907 num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) || 908 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 && 909 num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) { 910 chunk_err(leaf, chunk, logical, 911 "invalid num_stripes:sub_stripes %u:%u for profile %llu", 912 num_stripes, sub_stripes, 913 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 914 return -EUCLEAN; 915 } 916 917 return 0; 918 } 919 920 /* 921 * Enhanced version of chunk item checker. 922 * 923 * The common btrfs_check_chunk_valid() doesn't check item size since it needs 924 * to work on super block sys_chunk_array which doesn't have full item ptr. 925 */ 926 static int check_leaf_chunk_item(struct extent_buffer *leaf, 927 struct btrfs_chunk *chunk, 928 struct btrfs_key *key, int slot) 929 { 930 int num_stripes; 931 932 if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) { 933 chunk_err(leaf, chunk, key->offset, 934 "invalid chunk item size: have %u expect [%zu, %u)", 935 btrfs_item_size(leaf, slot), 936 sizeof(struct btrfs_chunk), 937 BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); 938 return -EUCLEAN; 939 } 940 941 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 942 /* Let btrfs_check_chunk_valid() handle this error type */ 943 if (num_stripes == 0) 944 goto out; 945 946 if (unlikely(btrfs_chunk_item_size(num_stripes) != 947 btrfs_item_size(leaf, slot))) { 948 chunk_err(leaf, chunk, key->offset, 949 "invalid chunk item size: have %u expect %lu", 950 btrfs_item_size(leaf, slot), 951 btrfs_chunk_item_size(num_stripes)); 952 return -EUCLEAN; 953 } 954 out: 955 return btrfs_check_chunk_valid(leaf, chunk, key->offset); 956 } 957 958 __printf(3, 4) 959 __cold 960 static void dev_item_err(const struct extent_buffer *eb, int slot, 961 const char *fmt, ...) 962 { 963 struct btrfs_key key; 964 struct va_format vaf; 965 va_list args; 966 967 btrfs_item_key_to_cpu(eb, &key, slot); 968 va_start(args, fmt); 969 970 vaf.fmt = fmt; 971 vaf.va = &args; 972 973 btrfs_crit(eb->fs_info, 974 "corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV", 975 btrfs_header_level(eb) == 0 ? "leaf" : "node", 976 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 977 key.objectid, &vaf); 978 va_end(args); 979 } 980 981 static int check_dev_item(struct extent_buffer *leaf, 982 struct btrfs_key *key, int slot) 983 { 984 struct btrfs_dev_item *ditem; 985 const u32 item_size = btrfs_item_size(leaf, slot); 986 987 if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) { 988 dev_item_err(leaf, slot, 989 "invalid objectid: has=%llu expect=%llu", 990 key->objectid, BTRFS_DEV_ITEMS_OBJECTID); 991 return -EUCLEAN; 992 } 993 994 if (unlikely(item_size != sizeof(*ditem))) { 995 dev_item_err(leaf, slot, "invalid item size: has %u expect %zu", 996 item_size, sizeof(*ditem)); 997 return -EUCLEAN; 998 } 999 1000 ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item); 1001 if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) { 1002 dev_item_err(leaf, slot, 1003 "devid mismatch: key has=%llu item has=%llu", 1004 key->offset, btrfs_device_id(leaf, ditem)); 1005 return -EUCLEAN; 1006 } 1007 1008 /* 1009 * For device total_bytes, we don't have reliable way to check it, as 1010 * it can be 0 for device removal. Device size check can only be done 1011 * by dev extents check. 1012 */ 1013 if (unlikely(btrfs_device_bytes_used(leaf, ditem) > 1014 btrfs_device_total_bytes(leaf, ditem))) { 1015 dev_item_err(leaf, slot, 1016 "invalid bytes used: have %llu expect [0, %llu]", 1017 btrfs_device_bytes_used(leaf, ditem), 1018 btrfs_device_total_bytes(leaf, ditem)); 1019 return -EUCLEAN; 1020 } 1021 /* 1022 * Remaining members like io_align/type/gen/dev_group aren't really 1023 * utilized. Skip them to make later usage of them easier. 1024 */ 1025 return 0; 1026 } 1027 1028 static int check_inode_item(struct extent_buffer *leaf, 1029 struct btrfs_key *key, int slot) 1030 { 1031 struct btrfs_fs_info *fs_info = leaf->fs_info; 1032 struct btrfs_inode_item *iitem; 1033 u64 super_gen = btrfs_super_generation(fs_info->super_copy); 1034 u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777); 1035 const u32 item_size = btrfs_item_size(leaf, slot); 1036 u32 mode; 1037 int ret; 1038 u32 flags; 1039 u32 ro_flags; 1040 1041 ret = check_inode_key(leaf, key, slot); 1042 if (unlikely(ret < 0)) 1043 return ret; 1044 1045 if (unlikely(item_size != sizeof(*iitem))) { 1046 generic_err(leaf, slot, "invalid item size: has %u expect %zu", 1047 item_size, sizeof(*iitem)); 1048 return -EUCLEAN; 1049 } 1050 1051 iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item); 1052 1053 /* Here we use super block generation + 1 to handle log tree */ 1054 if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) { 1055 inode_item_err(leaf, slot, 1056 "invalid inode generation: has %llu expect (0, %llu]", 1057 btrfs_inode_generation(leaf, iitem), 1058 super_gen + 1); 1059 return -EUCLEAN; 1060 } 1061 /* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */ 1062 if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) { 1063 inode_item_err(leaf, slot, 1064 "invalid inode transid: has %llu expect [0, %llu]", 1065 btrfs_inode_transid(leaf, iitem), super_gen + 1); 1066 return -EUCLEAN; 1067 } 1068 1069 /* 1070 * For size and nbytes it's better not to be too strict, as for dir 1071 * item its size/nbytes can easily get wrong, but doesn't affect 1072 * anything in the fs. So here we skip the check. 1073 */ 1074 mode = btrfs_inode_mode(leaf, iitem); 1075 if (unlikely(mode & ~valid_mask)) { 1076 inode_item_err(leaf, slot, 1077 "unknown mode bit detected: 0x%x", 1078 mode & ~valid_mask); 1079 return -EUCLEAN; 1080 } 1081 1082 /* 1083 * S_IFMT is not bit mapped so we can't completely rely on 1084 * is_power_of_2/has_single_bit_set, but it can save us from checking 1085 * FIFO/CHR/DIR/REG. Only needs to check BLK, LNK and SOCKS 1086 */ 1087 if (!has_single_bit_set(mode & S_IFMT)) { 1088 if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) { 1089 inode_item_err(leaf, slot, 1090 "invalid mode: has 0%o expect valid S_IF* bit(s)", 1091 mode & S_IFMT); 1092 return -EUCLEAN; 1093 } 1094 } 1095 if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) { 1096 inode_item_err(leaf, slot, 1097 "invalid nlink: has %u expect no more than 1 for dir", 1098 btrfs_inode_nlink(leaf, iitem)); 1099 return -EUCLEAN; 1100 } 1101 btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags); 1102 if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) { 1103 inode_item_err(leaf, slot, 1104 "unknown incompat flags detected: 0x%x", flags); 1105 return -EUCLEAN; 1106 } 1107 if (unlikely(!sb_rdonly(fs_info->sb) && 1108 (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) { 1109 inode_item_err(leaf, slot, 1110 "unknown ro-compat flags detected on writeable mount: 0x%x", 1111 ro_flags); 1112 return -EUCLEAN; 1113 } 1114 return 0; 1115 } 1116 1117 static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key, 1118 int slot) 1119 { 1120 struct btrfs_fs_info *fs_info = leaf->fs_info; 1121 struct btrfs_root_item ri = { 0 }; 1122 const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY | 1123 BTRFS_ROOT_SUBVOL_DEAD; 1124 int ret; 1125 1126 ret = check_root_key(leaf, key, slot); 1127 if (unlikely(ret < 0)) 1128 return ret; 1129 1130 if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) && 1131 btrfs_item_size(leaf, slot) != 1132 btrfs_legacy_root_item_size())) { 1133 generic_err(leaf, slot, 1134 "invalid root item size, have %u expect %zu or %u", 1135 btrfs_item_size(leaf, slot), sizeof(ri), 1136 btrfs_legacy_root_item_size()); 1137 return -EUCLEAN; 1138 } 1139 1140 /* 1141 * For legacy root item, the members starting at generation_v2 will be 1142 * all filled with 0. 1143 * And since we allow geneartion_v2 as 0, it will still pass the check. 1144 */ 1145 read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot), 1146 btrfs_item_size(leaf, slot)); 1147 1148 /* Generation related */ 1149 if (unlikely(btrfs_root_generation(&ri) > 1150 btrfs_super_generation(fs_info->super_copy) + 1)) { 1151 generic_err(leaf, slot, 1152 "invalid root generation, have %llu expect (0, %llu]", 1153 btrfs_root_generation(&ri), 1154 btrfs_super_generation(fs_info->super_copy) + 1); 1155 return -EUCLEAN; 1156 } 1157 if (unlikely(btrfs_root_generation_v2(&ri) > 1158 btrfs_super_generation(fs_info->super_copy) + 1)) { 1159 generic_err(leaf, slot, 1160 "invalid root v2 generation, have %llu expect (0, %llu]", 1161 btrfs_root_generation_v2(&ri), 1162 btrfs_super_generation(fs_info->super_copy) + 1); 1163 return -EUCLEAN; 1164 } 1165 if (unlikely(btrfs_root_last_snapshot(&ri) > 1166 btrfs_super_generation(fs_info->super_copy) + 1)) { 1167 generic_err(leaf, slot, 1168 "invalid root last_snapshot, have %llu expect (0, %llu]", 1169 btrfs_root_last_snapshot(&ri), 1170 btrfs_super_generation(fs_info->super_copy) + 1); 1171 return -EUCLEAN; 1172 } 1173 1174 /* Alignment and level check */ 1175 if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) { 1176 generic_err(leaf, slot, 1177 "invalid root bytenr, have %llu expect to be aligned to %u", 1178 btrfs_root_bytenr(&ri), fs_info->sectorsize); 1179 return -EUCLEAN; 1180 } 1181 if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) { 1182 generic_err(leaf, slot, 1183 "invalid root level, have %u expect [0, %u]", 1184 btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1); 1185 return -EUCLEAN; 1186 } 1187 if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) { 1188 generic_err(leaf, slot, 1189 "invalid root level, have %u expect [0, %u]", 1190 btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1); 1191 return -EUCLEAN; 1192 } 1193 1194 /* Flags check */ 1195 if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) { 1196 generic_err(leaf, slot, 1197 "invalid root flags, have 0x%llx expect mask 0x%llx", 1198 btrfs_root_flags(&ri), valid_root_flags); 1199 return -EUCLEAN; 1200 } 1201 return 0; 1202 } 1203 1204 __printf(3,4) 1205 __cold 1206 static void extent_err(const struct extent_buffer *eb, int slot, 1207 const char *fmt, ...) 1208 { 1209 struct btrfs_key key; 1210 struct va_format vaf; 1211 va_list args; 1212 u64 bytenr; 1213 u64 len; 1214 1215 btrfs_item_key_to_cpu(eb, &key, slot); 1216 bytenr = key.objectid; 1217 if (key.type == BTRFS_METADATA_ITEM_KEY || 1218 key.type == BTRFS_TREE_BLOCK_REF_KEY || 1219 key.type == BTRFS_SHARED_BLOCK_REF_KEY) 1220 len = eb->fs_info->nodesize; 1221 else 1222 len = key.offset; 1223 va_start(args, fmt); 1224 1225 vaf.fmt = fmt; 1226 vaf.va = &args; 1227 1228 btrfs_crit(eb->fs_info, 1229 "corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV", 1230 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1231 eb->start, slot, bytenr, len, &vaf); 1232 va_end(args); 1233 } 1234 1235 static int check_extent_item(struct extent_buffer *leaf, 1236 struct btrfs_key *key, int slot, 1237 struct btrfs_key *prev_key) 1238 { 1239 struct btrfs_fs_info *fs_info = leaf->fs_info; 1240 struct btrfs_extent_item *ei; 1241 bool is_tree_block = false; 1242 unsigned long ptr; /* Current pointer inside inline refs */ 1243 unsigned long end; /* Extent item end */ 1244 const u32 item_size = btrfs_item_size(leaf, slot); 1245 u64 flags; 1246 u64 generation; 1247 u64 total_refs; /* Total refs in btrfs_extent_item */ 1248 u64 inline_refs = 0; /* found total inline refs */ 1249 1250 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && 1251 !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) { 1252 generic_err(leaf, slot, 1253 "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled"); 1254 return -EUCLEAN; 1255 } 1256 /* key->objectid is the bytenr for both key types */ 1257 if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) { 1258 generic_err(leaf, slot, 1259 "invalid key objectid, have %llu expect to be aligned to %u", 1260 key->objectid, fs_info->sectorsize); 1261 return -EUCLEAN; 1262 } 1263 1264 /* key->offset is tree level for METADATA_ITEM_KEY */ 1265 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && 1266 key->offset >= BTRFS_MAX_LEVEL)) { 1267 extent_err(leaf, slot, 1268 "invalid tree level, have %llu expect [0, %u]", 1269 key->offset, BTRFS_MAX_LEVEL - 1); 1270 return -EUCLEAN; 1271 } 1272 1273 /* 1274 * EXTENT/METADATA_ITEM consists of: 1275 * 1) One btrfs_extent_item 1276 * Records the total refs, type and generation of the extent. 1277 * 1278 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only) 1279 * Records the first key and level of the tree block. 1280 * 1281 * 2) Zero or more btrfs_extent_inline_ref(s) 1282 * Each inline ref has one btrfs_extent_inline_ref shows: 1283 * 2.1) The ref type, one of the 4 1284 * TREE_BLOCK_REF Tree block only 1285 * SHARED_BLOCK_REF Tree block only 1286 * EXTENT_DATA_REF Data only 1287 * SHARED_DATA_REF Data only 1288 * 2.2) Ref type specific data 1289 * Either using btrfs_extent_inline_ref::offset, or specific 1290 * data structure. 1291 */ 1292 if (unlikely(item_size < sizeof(*ei))) { 1293 extent_err(leaf, slot, 1294 "invalid item size, have %u expect [%zu, %u)", 1295 item_size, sizeof(*ei), 1296 BTRFS_LEAF_DATA_SIZE(fs_info)); 1297 return -EUCLEAN; 1298 } 1299 end = item_size + btrfs_item_ptr_offset(leaf, slot); 1300 1301 /* Checks against extent_item */ 1302 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1303 flags = btrfs_extent_flags(leaf, ei); 1304 total_refs = btrfs_extent_refs(leaf, ei); 1305 generation = btrfs_extent_generation(leaf, ei); 1306 if (unlikely(generation > 1307 btrfs_super_generation(fs_info->super_copy) + 1)) { 1308 extent_err(leaf, slot, 1309 "invalid generation, have %llu expect (0, %llu]", 1310 generation, 1311 btrfs_super_generation(fs_info->super_copy) + 1); 1312 return -EUCLEAN; 1313 } 1314 if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA | 1315 BTRFS_EXTENT_FLAG_TREE_BLOCK)))) { 1316 extent_err(leaf, slot, 1317 "invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx", 1318 flags, BTRFS_EXTENT_FLAG_DATA | 1319 BTRFS_EXTENT_FLAG_TREE_BLOCK); 1320 return -EUCLEAN; 1321 } 1322 is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK); 1323 if (is_tree_block) { 1324 if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY && 1325 key->offset != fs_info->nodesize)) { 1326 extent_err(leaf, slot, 1327 "invalid extent length, have %llu expect %u", 1328 key->offset, fs_info->nodesize); 1329 return -EUCLEAN; 1330 } 1331 } else { 1332 if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) { 1333 extent_err(leaf, slot, 1334 "invalid key type, have %u expect %u for data backref", 1335 key->type, BTRFS_EXTENT_ITEM_KEY); 1336 return -EUCLEAN; 1337 } 1338 if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) { 1339 extent_err(leaf, slot, 1340 "invalid extent length, have %llu expect aligned to %u", 1341 key->offset, fs_info->sectorsize); 1342 return -EUCLEAN; 1343 } 1344 if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1345 extent_err(leaf, slot, 1346 "invalid extent flag, data has full backref set"); 1347 return -EUCLEAN; 1348 } 1349 } 1350 ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1); 1351 1352 /* Check the special case of btrfs_tree_block_info */ 1353 if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) { 1354 struct btrfs_tree_block_info *info; 1355 1356 info = (struct btrfs_tree_block_info *)ptr; 1357 if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) { 1358 extent_err(leaf, slot, 1359 "invalid tree block info level, have %u expect [0, %u]", 1360 btrfs_tree_block_level(leaf, info), 1361 BTRFS_MAX_LEVEL - 1); 1362 return -EUCLEAN; 1363 } 1364 ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1); 1365 } 1366 1367 /* Check inline refs */ 1368 while (ptr < end) { 1369 struct btrfs_extent_inline_ref *iref; 1370 struct btrfs_extent_data_ref *dref; 1371 struct btrfs_shared_data_ref *sref; 1372 u64 dref_offset; 1373 u64 inline_offset; 1374 u8 inline_type; 1375 1376 if (unlikely(ptr + sizeof(*iref) > end)) { 1377 extent_err(leaf, slot, 1378 "inline ref item overflows extent item, ptr %lu iref size %zu end %lu", 1379 ptr, sizeof(*iref), end); 1380 return -EUCLEAN; 1381 } 1382 iref = (struct btrfs_extent_inline_ref *)ptr; 1383 inline_type = btrfs_extent_inline_ref_type(leaf, iref); 1384 inline_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1385 if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) { 1386 extent_err(leaf, slot, 1387 "inline ref item overflows extent item, ptr %lu iref size %u end %lu", 1388 ptr, inline_type, end); 1389 return -EUCLEAN; 1390 } 1391 1392 switch (inline_type) { 1393 /* inline_offset is subvolid of the owner, no need to check */ 1394 case BTRFS_TREE_BLOCK_REF_KEY: 1395 inline_refs++; 1396 break; 1397 /* Contains parent bytenr */ 1398 case BTRFS_SHARED_BLOCK_REF_KEY: 1399 if (unlikely(!IS_ALIGNED(inline_offset, 1400 fs_info->sectorsize))) { 1401 extent_err(leaf, slot, 1402 "invalid tree parent bytenr, have %llu expect aligned to %u", 1403 inline_offset, fs_info->sectorsize); 1404 return -EUCLEAN; 1405 } 1406 inline_refs++; 1407 break; 1408 /* 1409 * Contains owner subvolid, owner key objectid, adjusted offset. 1410 * The only obvious corruption can happen in that offset. 1411 */ 1412 case BTRFS_EXTENT_DATA_REF_KEY: 1413 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1414 dref_offset = btrfs_extent_data_ref_offset(leaf, dref); 1415 if (unlikely(!IS_ALIGNED(dref_offset, 1416 fs_info->sectorsize))) { 1417 extent_err(leaf, slot, 1418 "invalid data ref offset, have %llu expect aligned to %u", 1419 dref_offset, fs_info->sectorsize); 1420 return -EUCLEAN; 1421 } 1422 inline_refs += btrfs_extent_data_ref_count(leaf, dref); 1423 break; 1424 /* Contains parent bytenr and ref count */ 1425 case BTRFS_SHARED_DATA_REF_KEY: 1426 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1427 if (unlikely(!IS_ALIGNED(inline_offset, 1428 fs_info->sectorsize))) { 1429 extent_err(leaf, slot, 1430 "invalid data parent bytenr, have %llu expect aligned to %u", 1431 inline_offset, fs_info->sectorsize); 1432 return -EUCLEAN; 1433 } 1434 inline_refs += btrfs_shared_data_ref_count(leaf, sref); 1435 break; 1436 default: 1437 extent_err(leaf, slot, "unknown inline ref type: %u", 1438 inline_type); 1439 return -EUCLEAN; 1440 } 1441 ptr += btrfs_extent_inline_ref_size(inline_type); 1442 } 1443 /* No padding is allowed */ 1444 if (unlikely(ptr != end)) { 1445 extent_err(leaf, slot, 1446 "invalid extent item size, padding bytes found"); 1447 return -EUCLEAN; 1448 } 1449 1450 /* Finally, check the inline refs against total refs */ 1451 if (unlikely(inline_refs > total_refs)) { 1452 extent_err(leaf, slot, 1453 "invalid extent refs, have %llu expect >= inline %llu", 1454 total_refs, inline_refs); 1455 return -EUCLEAN; 1456 } 1457 1458 if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) || 1459 (prev_key->type == BTRFS_METADATA_ITEM_KEY)) { 1460 u64 prev_end = prev_key->objectid; 1461 1462 if (prev_key->type == BTRFS_METADATA_ITEM_KEY) 1463 prev_end += fs_info->nodesize; 1464 else 1465 prev_end += prev_key->offset; 1466 1467 if (unlikely(prev_end > key->objectid)) { 1468 extent_err(leaf, slot, 1469 "previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]", 1470 prev_key->objectid, prev_key->type, 1471 prev_key->offset, key->objectid, key->type, 1472 key->offset); 1473 return -EUCLEAN; 1474 } 1475 } 1476 1477 return 0; 1478 } 1479 1480 static int check_simple_keyed_refs(struct extent_buffer *leaf, 1481 struct btrfs_key *key, int slot) 1482 { 1483 u32 expect_item_size = 0; 1484 1485 if (key->type == BTRFS_SHARED_DATA_REF_KEY) 1486 expect_item_size = sizeof(struct btrfs_shared_data_ref); 1487 1488 if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) { 1489 generic_err(leaf, slot, 1490 "invalid item size, have %u expect %u for key type %u", 1491 btrfs_item_size(leaf, slot), 1492 expect_item_size, key->type); 1493 return -EUCLEAN; 1494 } 1495 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1496 generic_err(leaf, slot, 1497 "invalid key objectid for shared block ref, have %llu expect aligned to %u", 1498 key->objectid, leaf->fs_info->sectorsize); 1499 return -EUCLEAN; 1500 } 1501 if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY && 1502 !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) { 1503 extent_err(leaf, slot, 1504 "invalid tree parent bytenr, have %llu expect aligned to %u", 1505 key->offset, leaf->fs_info->sectorsize); 1506 return -EUCLEAN; 1507 } 1508 return 0; 1509 } 1510 1511 static int check_extent_data_ref(struct extent_buffer *leaf, 1512 struct btrfs_key *key, int slot) 1513 { 1514 struct btrfs_extent_data_ref *dref; 1515 unsigned long ptr = btrfs_item_ptr_offset(leaf, slot); 1516 const unsigned long end = ptr + btrfs_item_size(leaf, slot); 1517 1518 if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) { 1519 generic_err(leaf, slot, 1520 "invalid item size, have %u expect aligned to %zu for key type %u", 1521 btrfs_item_size(leaf, slot), 1522 sizeof(*dref), key->type); 1523 return -EUCLEAN; 1524 } 1525 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1526 generic_err(leaf, slot, 1527 "invalid key objectid for shared block ref, have %llu expect aligned to %u", 1528 key->objectid, leaf->fs_info->sectorsize); 1529 return -EUCLEAN; 1530 } 1531 for (; ptr < end; ptr += sizeof(*dref)) { 1532 u64 offset; 1533 1534 /* 1535 * We cannot check the extent_data_ref hash due to possible 1536 * overflow from the leaf due to hash collisions. 1537 */ 1538 dref = (struct btrfs_extent_data_ref *)ptr; 1539 offset = btrfs_extent_data_ref_offset(leaf, dref); 1540 if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) { 1541 extent_err(leaf, slot, 1542 "invalid extent data backref offset, have %llu expect aligned to %u", 1543 offset, leaf->fs_info->sectorsize); 1544 return -EUCLEAN; 1545 } 1546 } 1547 return 0; 1548 } 1549 1550 #define inode_ref_err(eb, slot, fmt, args...) \ 1551 inode_item_err(eb, slot, fmt, ##args) 1552 static int check_inode_ref(struct extent_buffer *leaf, 1553 struct btrfs_key *key, struct btrfs_key *prev_key, 1554 int slot) 1555 { 1556 struct btrfs_inode_ref *iref; 1557 unsigned long ptr; 1558 unsigned long end; 1559 1560 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 1561 return -EUCLEAN; 1562 /* namelen can't be 0, so item_size == sizeof() is also invalid */ 1563 if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) { 1564 inode_ref_err(leaf, slot, 1565 "invalid item size, have %u expect (%zu, %u)", 1566 btrfs_item_size(leaf, slot), 1567 sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); 1568 return -EUCLEAN; 1569 } 1570 1571 ptr = btrfs_item_ptr_offset(leaf, slot); 1572 end = ptr + btrfs_item_size(leaf, slot); 1573 while (ptr < end) { 1574 u16 namelen; 1575 1576 if (unlikely(ptr + sizeof(iref) > end)) { 1577 inode_ref_err(leaf, slot, 1578 "inode ref overflow, ptr %lu end %lu inode_ref_size %zu", 1579 ptr, end, sizeof(iref)); 1580 return -EUCLEAN; 1581 } 1582 1583 iref = (struct btrfs_inode_ref *)ptr; 1584 namelen = btrfs_inode_ref_name_len(leaf, iref); 1585 if (unlikely(ptr + sizeof(*iref) + namelen > end)) { 1586 inode_ref_err(leaf, slot, 1587 "inode ref overflow, ptr %lu end %lu namelen %u", 1588 ptr, end, namelen); 1589 return -EUCLEAN; 1590 } 1591 1592 /* 1593 * NOTE: In theory we should record all found index numbers 1594 * to find any duplicated indexes, but that will be too time 1595 * consuming for inodes with too many hard links. 1596 */ 1597 ptr += sizeof(*iref) + namelen; 1598 } 1599 return 0; 1600 } 1601 1602 /* 1603 * Common point to switch the item-specific validation. 1604 */ 1605 static int check_leaf_item(struct extent_buffer *leaf, 1606 struct btrfs_key *key, int slot, 1607 struct btrfs_key *prev_key) 1608 { 1609 int ret = 0; 1610 struct btrfs_chunk *chunk; 1611 1612 switch (key->type) { 1613 case BTRFS_EXTENT_DATA_KEY: 1614 ret = check_extent_data_item(leaf, key, slot, prev_key); 1615 break; 1616 case BTRFS_EXTENT_CSUM_KEY: 1617 ret = check_csum_item(leaf, key, slot, prev_key); 1618 break; 1619 case BTRFS_DIR_ITEM_KEY: 1620 case BTRFS_DIR_INDEX_KEY: 1621 case BTRFS_XATTR_ITEM_KEY: 1622 ret = check_dir_item(leaf, key, prev_key, slot); 1623 break; 1624 case BTRFS_INODE_REF_KEY: 1625 ret = check_inode_ref(leaf, key, prev_key, slot); 1626 break; 1627 case BTRFS_BLOCK_GROUP_ITEM_KEY: 1628 ret = check_block_group_item(leaf, key, slot); 1629 break; 1630 case BTRFS_CHUNK_ITEM_KEY: 1631 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 1632 ret = check_leaf_chunk_item(leaf, chunk, key, slot); 1633 break; 1634 case BTRFS_DEV_ITEM_KEY: 1635 ret = check_dev_item(leaf, key, slot); 1636 break; 1637 case BTRFS_INODE_ITEM_KEY: 1638 ret = check_inode_item(leaf, key, slot); 1639 break; 1640 case BTRFS_ROOT_ITEM_KEY: 1641 ret = check_root_item(leaf, key, slot); 1642 break; 1643 case BTRFS_EXTENT_ITEM_KEY: 1644 case BTRFS_METADATA_ITEM_KEY: 1645 ret = check_extent_item(leaf, key, slot, prev_key); 1646 break; 1647 case BTRFS_TREE_BLOCK_REF_KEY: 1648 case BTRFS_SHARED_DATA_REF_KEY: 1649 case BTRFS_SHARED_BLOCK_REF_KEY: 1650 ret = check_simple_keyed_refs(leaf, key, slot); 1651 break; 1652 case BTRFS_EXTENT_DATA_REF_KEY: 1653 ret = check_extent_data_ref(leaf, key, slot); 1654 break; 1655 } 1656 return ret; 1657 } 1658 1659 static int check_leaf(struct extent_buffer *leaf, bool check_item_data) 1660 { 1661 struct btrfs_fs_info *fs_info = leaf->fs_info; 1662 /* No valid key type is 0, so all key should be larger than this key */ 1663 struct btrfs_key prev_key = {0, 0, 0}; 1664 struct btrfs_key key; 1665 u32 nritems = btrfs_header_nritems(leaf); 1666 int slot; 1667 1668 if (unlikely(btrfs_header_level(leaf) != 0)) { 1669 generic_err(leaf, 0, 1670 "invalid level for leaf, have %d expect 0", 1671 btrfs_header_level(leaf)); 1672 return -EUCLEAN; 1673 } 1674 1675 /* 1676 * Extent buffers from a relocation tree have a owner field that 1677 * corresponds to the subvolume tree they are based on. So just from an 1678 * extent buffer alone we can not find out what is the id of the 1679 * corresponding subvolume tree, so we can not figure out if the extent 1680 * buffer corresponds to the root of the relocation tree or not. So 1681 * skip this check for relocation trees. 1682 */ 1683 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) { 1684 u64 owner = btrfs_header_owner(leaf); 1685 1686 /* These trees must never be empty */ 1687 if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID || 1688 owner == BTRFS_CHUNK_TREE_OBJECTID || 1689 owner == BTRFS_DEV_TREE_OBJECTID || 1690 owner == BTRFS_FS_TREE_OBJECTID || 1691 owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) { 1692 generic_err(leaf, 0, 1693 "invalid root, root %llu must never be empty", 1694 owner); 1695 return -EUCLEAN; 1696 } 1697 1698 /* Unknown tree */ 1699 if (unlikely(owner == 0)) { 1700 generic_err(leaf, 0, 1701 "invalid owner, root 0 is not defined"); 1702 return -EUCLEAN; 1703 } 1704 1705 /* EXTENT_TREE_V2 can have empty extent trees. */ 1706 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 1707 return 0; 1708 1709 if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) { 1710 generic_err(leaf, 0, 1711 "invalid root, root %llu must never be empty", 1712 owner); 1713 return -EUCLEAN; 1714 } 1715 1716 return 0; 1717 } 1718 1719 if (unlikely(nritems == 0)) 1720 return 0; 1721 1722 /* 1723 * Check the following things to make sure this is a good leaf, and 1724 * leaf users won't need to bother with similar sanity checks: 1725 * 1726 * 1) key ordering 1727 * 2) item offset and size 1728 * No overlap, no hole, all inside the leaf. 1729 * 3) item content 1730 * If possible, do comprehensive sanity check. 1731 * NOTE: All checks must only rely on the item data itself. 1732 */ 1733 for (slot = 0; slot < nritems; slot++) { 1734 u32 item_end_expected; 1735 u64 item_data_end; 1736 int ret; 1737 1738 btrfs_item_key_to_cpu(leaf, &key, slot); 1739 1740 /* Make sure the keys are in the right order */ 1741 if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) { 1742 generic_err(leaf, slot, 1743 "bad key order, prev (%llu %u %llu) current (%llu %u %llu)", 1744 prev_key.objectid, prev_key.type, 1745 prev_key.offset, key.objectid, key.type, 1746 key.offset); 1747 return -EUCLEAN; 1748 } 1749 1750 item_data_end = (u64)btrfs_item_offset(leaf, slot) + 1751 btrfs_item_size(leaf, slot); 1752 /* 1753 * Make sure the offset and ends are right, remember that the 1754 * item data starts at the end of the leaf and grows towards the 1755 * front. 1756 */ 1757 if (slot == 0) 1758 item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info); 1759 else 1760 item_end_expected = btrfs_item_offset(leaf, 1761 slot - 1); 1762 if (unlikely(item_data_end != item_end_expected)) { 1763 generic_err(leaf, slot, 1764 "unexpected item end, have %llu expect %u", 1765 item_data_end, item_end_expected); 1766 return -EUCLEAN; 1767 } 1768 1769 /* 1770 * Check to make sure that we don't point outside of the leaf, 1771 * just in case all the items are consistent to each other, but 1772 * all point outside of the leaf. 1773 */ 1774 if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) { 1775 generic_err(leaf, slot, 1776 "slot end outside of leaf, have %llu expect range [0, %u]", 1777 item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info)); 1778 return -EUCLEAN; 1779 } 1780 1781 /* Also check if the item pointer overlaps with btrfs item. */ 1782 if (unlikely(btrfs_item_ptr_offset(leaf, slot) < 1783 btrfs_item_nr_offset(slot) + sizeof(struct btrfs_item))) { 1784 generic_err(leaf, slot, 1785 "slot overlaps with its data, item end %lu data start %lu", 1786 btrfs_item_nr_offset(slot) + 1787 sizeof(struct btrfs_item), 1788 btrfs_item_ptr_offset(leaf, slot)); 1789 return -EUCLEAN; 1790 } 1791 1792 if (check_item_data) { 1793 /* 1794 * Check if the item size and content meet other 1795 * criteria 1796 */ 1797 ret = check_leaf_item(leaf, &key, slot, &prev_key); 1798 if (unlikely(ret < 0)) 1799 return ret; 1800 } 1801 1802 prev_key.objectid = key.objectid; 1803 prev_key.type = key.type; 1804 prev_key.offset = key.offset; 1805 } 1806 1807 return 0; 1808 } 1809 1810 int btrfs_check_leaf_full(struct extent_buffer *leaf) 1811 { 1812 return check_leaf(leaf, true); 1813 } 1814 ALLOW_ERROR_INJECTION(btrfs_check_leaf_full, ERRNO); 1815 1816 int btrfs_check_leaf_relaxed(struct extent_buffer *leaf) 1817 { 1818 return check_leaf(leaf, false); 1819 } 1820 1821 int btrfs_check_node(struct extent_buffer *node) 1822 { 1823 struct btrfs_fs_info *fs_info = node->fs_info; 1824 unsigned long nr = btrfs_header_nritems(node); 1825 struct btrfs_key key, next_key; 1826 int slot; 1827 int level = btrfs_header_level(node); 1828 u64 bytenr; 1829 int ret = 0; 1830 1831 if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) { 1832 generic_err(node, 0, 1833 "invalid level for node, have %d expect [1, %d]", 1834 level, BTRFS_MAX_LEVEL - 1); 1835 return -EUCLEAN; 1836 } 1837 if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) { 1838 btrfs_crit(fs_info, 1839 "corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]", 1840 btrfs_header_owner(node), node->start, 1841 nr == 0 ? "small" : "large", nr, 1842 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1843 return -EUCLEAN; 1844 } 1845 1846 for (slot = 0; slot < nr - 1; slot++) { 1847 bytenr = btrfs_node_blockptr(node, slot); 1848 btrfs_node_key_to_cpu(node, &key, slot); 1849 btrfs_node_key_to_cpu(node, &next_key, slot + 1); 1850 1851 if (unlikely(!bytenr)) { 1852 generic_err(node, slot, 1853 "invalid NULL node pointer"); 1854 ret = -EUCLEAN; 1855 goto out; 1856 } 1857 if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) { 1858 generic_err(node, slot, 1859 "unaligned pointer, have %llu should be aligned to %u", 1860 bytenr, fs_info->sectorsize); 1861 ret = -EUCLEAN; 1862 goto out; 1863 } 1864 1865 if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) { 1866 generic_err(node, slot, 1867 "bad key order, current (%llu %u %llu) next (%llu %u %llu)", 1868 key.objectid, key.type, key.offset, 1869 next_key.objectid, next_key.type, 1870 next_key.offset); 1871 ret = -EUCLEAN; 1872 goto out; 1873 } 1874 } 1875 out: 1876 return ret; 1877 } 1878 ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO); 1879 1880 int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner) 1881 { 1882 const bool is_subvol = is_fstree(root_owner); 1883 const u64 eb_owner = btrfs_header_owner(eb); 1884 1885 /* 1886 * Skip dummy fs, as selftests don't create unique ebs for each dummy 1887 * root. 1888 */ 1889 if (test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &eb->fs_info->fs_state)) 1890 return 0; 1891 /* 1892 * There are several call sites (backref walking, qgroup, and data 1893 * reloc) passing 0 as @root_owner, as they are not holding the 1894 * tree root. In that case, we can not do a reliable ownership check, 1895 * so just exit. 1896 */ 1897 if (root_owner == 0) 1898 return 0; 1899 /* 1900 * These trees use key.offset as their owner, our callers don't have 1901 * the extra capacity to pass key.offset here. So we just skip them. 1902 */ 1903 if (root_owner == BTRFS_TREE_LOG_OBJECTID || 1904 root_owner == BTRFS_TREE_RELOC_OBJECTID) 1905 return 0; 1906 1907 if (!is_subvol) { 1908 /* For non-subvolume trees, the eb owner should match root owner */ 1909 if (unlikely(root_owner != eb_owner)) { 1910 btrfs_crit(eb->fs_info, 1911 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu", 1912 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1913 root_owner, btrfs_header_bytenr(eb), eb_owner, 1914 root_owner); 1915 return -EUCLEAN; 1916 } 1917 return 0; 1918 } 1919 1920 /* 1921 * For subvolume trees, owners can mismatch, but they should all belong 1922 * to subvolume trees. 1923 */ 1924 if (unlikely(is_subvol != is_fstree(eb_owner))) { 1925 btrfs_crit(eb->fs_info, 1926 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]", 1927 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1928 root_owner, btrfs_header_bytenr(eb), eb_owner, 1929 BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID); 1930 return -EUCLEAN; 1931 } 1932 return 0; 1933 } 1934