1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) Qu Wenruo 2017. All rights reserved. 4 */ 5 6 /* 7 * The module is used to catch unexpected/corrupted tree block data. 8 * Such behavior can be caused either by a fuzzed image or bugs. 9 * 10 * The objective is to do leaf/node validation checks when tree block is read 11 * from disk, and check *every* possible member, so other code won't 12 * need to checking them again. 13 * 14 * Due to the potential and unwanted damage, every checker needs to be 15 * carefully reviewed otherwise so it does not prevent mount of valid images. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/stddef.h> 20 #include <linux/error-injection.h> 21 #include "messages.h" 22 #include "ctree.h" 23 #include "tree-checker.h" 24 #include "disk-io.h" 25 #include "compression.h" 26 #include "volumes.h" 27 #include "misc.h" 28 #include "btrfs_inode.h" 29 #include "fs.h" 30 #include "accessors.h" 31 #include "file-item.h" 32 33 /* 34 * Error message should follow the following format: 35 * corrupt <type>: <identifier>, <reason>[, <bad_value>] 36 * 37 * @type: leaf or node 38 * @identifier: the necessary info to locate the leaf/node. 39 * It's recommended to decode key.objecitd/offset if it's 40 * meaningful. 41 * @reason: describe the error 42 * @bad_value: optional, it's recommended to output bad value and its 43 * expected value (range). 44 * 45 * Since comma is used to separate the components, only space is allowed 46 * inside each component. 47 */ 48 49 /* 50 * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt. 51 * Allows callers to customize the output. 52 */ 53 __printf(3, 4) 54 __cold 55 static void generic_err(const struct extent_buffer *eb, int slot, 56 const char *fmt, ...) 57 { 58 const struct btrfs_fs_info *fs_info = eb->fs_info; 59 struct va_format vaf; 60 va_list args; 61 62 va_start(args, fmt); 63 64 vaf.fmt = fmt; 65 vaf.va = &args; 66 67 btrfs_crit(fs_info, 68 "corrupt %s: root=%llu block=%llu slot=%d, %pV", 69 btrfs_header_level(eb) == 0 ? "leaf" : "node", 70 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf); 71 va_end(args); 72 } 73 74 /* 75 * Customized reporter for extent data item, since its key objectid and 76 * offset has its own meaning. 77 */ 78 __printf(3, 4) 79 __cold 80 static void file_extent_err(const struct extent_buffer *eb, int slot, 81 const char *fmt, ...) 82 { 83 const struct btrfs_fs_info *fs_info = eb->fs_info; 84 struct btrfs_key key; 85 struct va_format vaf; 86 va_list args; 87 88 btrfs_item_key_to_cpu(eb, &key, slot); 89 va_start(args, fmt); 90 91 vaf.fmt = fmt; 92 vaf.va = &args; 93 94 btrfs_crit(fs_info, 95 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV", 96 btrfs_header_level(eb) == 0 ? "leaf" : "node", 97 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 98 key.objectid, key.offset, &vaf); 99 va_end(args); 100 } 101 102 /* 103 * Return 0 if the btrfs_file_extent_##name is aligned to @alignment 104 * Else return 1 105 */ 106 #define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment) \ 107 ({ \ 108 if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), \ 109 (alignment)))) \ 110 file_extent_err((leaf), (slot), \ 111 "invalid %s for file extent, have %llu, should be aligned to %u", \ 112 (#name), btrfs_file_extent_##name((leaf), (fi)), \ 113 (alignment)); \ 114 (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \ 115 }) 116 117 static u64 file_extent_end(struct extent_buffer *leaf, 118 struct btrfs_key *key, 119 struct btrfs_file_extent_item *extent) 120 { 121 u64 end; 122 u64 len; 123 124 if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) { 125 len = btrfs_file_extent_ram_bytes(leaf, extent); 126 end = ALIGN(key->offset + len, leaf->fs_info->sectorsize); 127 } else { 128 len = btrfs_file_extent_num_bytes(leaf, extent); 129 end = key->offset + len; 130 } 131 return end; 132 } 133 134 /* 135 * Customized report for dir_item, the only new important information is 136 * key->objectid, which represents inode number 137 */ 138 __printf(3, 4) 139 __cold 140 static void dir_item_err(const struct extent_buffer *eb, int slot, 141 const char *fmt, ...) 142 { 143 const struct btrfs_fs_info *fs_info = eb->fs_info; 144 struct btrfs_key key; 145 struct va_format vaf; 146 va_list args; 147 148 btrfs_item_key_to_cpu(eb, &key, slot); 149 va_start(args, fmt); 150 151 vaf.fmt = fmt; 152 vaf.va = &args; 153 154 btrfs_crit(fs_info, 155 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV", 156 btrfs_header_level(eb) == 0 ? "leaf" : "node", 157 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 158 key.objectid, &vaf); 159 va_end(args); 160 } 161 162 /* 163 * This functions checks prev_key->objectid, to ensure current key and prev_key 164 * share the same objectid as inode number. 165 * 166 * This is to detect missing INODE_ITEM in subvolume trees. 167 * 168 * Return true if everything is OK or we don't need to check. 169 * Return false if anything is wrong. 170 */ 171 static bool check_prev_ino(struct extent_buffer *leaf, 172 struct btrfs_key *key, int slot, 173 struct btrfs_key *prev_key) 174 { 175 /* No prev key, skip check */ 176 if (slot == 0) 177 return true; 178 179 /* Only these key->types needs to be checked */ 180 ASSERT(key->type == BTRFS_XATTR_ITEM_KEY || 181 key->type == BTRFS_INODE_REF_KEY || 182 key->type == BTRFS_DIR_INDEX_KEY || 183 key->type == BTRFS_DIR_ITEM_KEY || 184 key->type == BTRFS_EXTENT_DATA_KEY); 185 186 /* 187 * Only subvolume trees along with their reloc trees need this check. 188 * Things like log tree doesn't follow this ino requirement. 189 */ 190 if (!is_fstree(btrfs_header_owner(leaf))) 191 return true; 192 193 if (key->objectid == prev_key->objectid) 194 return true; 195 196 /* Error found */ 197 dir_item_err(leaf, slot, 198 "invalid previous key objectid, have %llu expect %llu", 199 prev_key->objectid, key->objectid); 200 return false; 201 } 202 static int check_extent_data_item(struct extent_buffer *leaf, 203 struct btrfs_key *key, int slot, 204 struct btrfs_key *prev_key) 205 { 206 struct btrfs_fs_info *fs_info = leaf->fs_info; 207 struct btrfs_file_extent_item *fi; 208 u32 sectorsize = fs_info->sectorsize; 209 u32 item_size = btrfs_item_size(leaf, slot); 210 u64 extent_end; 211 212 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 213 file_extent_err(leaf, slot, 214 "unaligned file_offset for file extent, have %llu should be aligned to %u", 215 key->offset, sectorsize); 216 return -EUCLEAN; 217 } 218 219 /* 220 * Previous key must have the same key->objectid (ino). 221 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA. 222 * But if objectids mismatch, it means we have a missing 223 * INODE_ITEM. 224 */ 225 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 226 return -EUCLEAN; 227 228 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 229 230 /* 231 * Make sure the item contains at least inline header, so the file 232 * extent type is not some garbage. 233 */ 234 if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) { 235 file_extent_err(leaf, slot, 236 "invalid item size, have %u expect [%zu, %u)", 237 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START, 238 SZ_4K); 239 return -EUCLEAN; 240 } 241 if (unlikely(btrfs_file_extent_type(leaf, fi) >= 242 BTRFS_NR_FILE_EXTENT_TYPES)) { 243 file_extent_err(leaf, slot, 244 "invalid type for file extent, have %u expect range [0, %u]", 245 btrfs_file_extent_type(leaf, fi), 246 BTRFS_NR_FILE_EXTENT_TYPES - 1); 247 return -EUCLEAN; 248 } 249 250 /* 251 * Support for new compression/encryption must introduce incompat flag, 252 * and must be caught in open_ctree(). 253 */ 254 if (unlikely(btrfs_file_extent_compression(leaf, fi) >= 255 BTRFS_NR_COMPRESS_TYPES)) { 256 file_extent_err(leaf, slot, 257 "invalid compression for file extent, have %u expect range [0, %u]", 258 btrfs_file_extent_compression(leaf, fi), 259 BTRFS_NR_COMPRESS_TYPES - 1); 260 return -EUCLEAN; 261 } 262 if (unlikely(btrfs_file_extent_encryption(leaf, fi))) { 263 file_extent_err(leaf, slot, 264 "invalid encryption for file extent, have %u expect 0", 265 btrfs_file_extent_encryption(leaf, fi)); 266 return -EUCLEAN; 267 } 268 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 269 /* Inline extent must have 0 as key offset */ 270 if (unlikely(key->offset)) { 271 file_extent_err(leaf, slot, 272 "invalid file_offset for inline file extent, have %llu expect 0", 273 key->offset); 274 return -EUCLEAN; 275 } 276 277 /* Compressed inline extent has no on-disk size, skip it */ 278 if (btrfs_file_extent_compression(leaf, fi) != 279 BTRFS_COMPRESS_NONE) 280 return 0; 281 282 /* Uncompressed inline extent size must match item size */ 283 if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START + 284 btrfs_file_extent_ram_bytes(leaf, fi))) { 285 file_extent_err(leaf, slot, 286 "invalid ram_bytes for uncompressed inline extent, have %u expect %llu", 287 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START + 288 btrfs_file_extent_ram_bytes(leaf, fi)); 289 return -EUCLEAN; 290 } 291 return 0; 292 } 293 294 /* Regular or preallocated extent has fixed item size */ 295 if (unlikely(item_size != sizeof(*fi))) { 296 file_extent_err(leaf, slot, 297 "invalid item size for reg/prealloc file extent, have %u expect %zu", 298 item_size, sizeof(*fi)); 299 return -EUCLEAN; 300 } 301 if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) || 302 CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) || 303 CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) || 304 CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) || 305 CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize))) 306 return -EUCLEAN; 307 308 /* Catch extent end overflow */ 309 if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi), 310 key->offset, &extent_end))) { 311 file_extent_err(leaf, slot, 312 "extent end overflow, have file offset %llu extent num bytes %llu", 313 key->offset, 314 btrfs_file_extent_num_bytes(leaf, fi)); 315 return -EUCLEAN; 316 } 317 318 /* 319 * Check that no two consecutive file extent items, in the same leaf, 320 * present ranges that overlap each other. 321 */ 322 if (slot > 0 && 323 prev_key->objectid == key->objectid && 324 prev_key->type == BTRFS_EXTENT_DATA_KEY) { 325 struct btrfs_file_extent_item *prev_fi; 326 u64 prev_end; 327 328 prev_fi = btrfs_item_ptr(leaf, slot - 1, 329 struct btrfs_file_extent_item); 330 prev_end = file_extent_end(leaf, prev_key, prev_fi); 331 if (unlikely(prev_end > key->offset)) { 332 file_extent_err(leaf, slot - 1, 333 "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent", 334 prev_end, key->offset); 335 return -EUCLEAN; 336 } 337 } 338 339 return 0; 340 } 341 342 static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key, 343 int slot, struct btrfs_key *prev_key) 344 { 345 struct btrfs_fs_info *fs_info = leaf->fs_info; 346 u32 sectorsize = fs_info->sectorsize; 347 const u32 csumsize = fs_info->csum_size; 348 349 if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) { 350 generic_err(leaf, slot, 351 "invalid key objectid for csum item, have %llu expect %llu", 352 key->objectid, BTRFS_EXTENT_CSUM_OBJECTID); 353 return -EUCLEAN; 354 } 355 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 356 generic_err(leaf, slot, 357 "unaligned key offset for csum item, have %llu should be aligned to %u", 358 key->offset, sectorsize); 359 return -EUCLEAN; 360 } 361 if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) { 362 generic_err(leaf, slot, 363 "unaligned item size for csum item, have %u should be aligned to %u", 364 btrfs_item_size(leaf, slot), csumsize); 365 return -EUCLEAN; 366 } 367 if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) { 368 u64 prev_csum_end; 369 u32 prev_item_size; 370 371 prev_item_size = btrfs_item_size(leaf, slot - 1); 372 prev_csum_end = (prev_item_size / csumsize) * sectorsize; 373 prev_csum_end += prev_key->offset; 374 if (unlikely(prev_csum_end > key->offset)) { 375 generic_err(leaf, slot - 1, 376 "csum end range (%llu) goes beyond the start range (%llu) of the next csum item", 377 prev_csum_end, key->offset); 378 return -EUCLEAN; 379 } 380 } 381 return 0; 382 } 383 384 /* Inode item error output has the same format as dir_item_err() */ 385 #define inode_item_err(eb, slot, fmt, ...) \ 386 dir_item_err(eb, slot, fmt, __VA_ARGS__) 387 388 static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key, 389 int slot) 390 { 391 struct btrfs_key item_key; 392 bool is_inode_item; 393 394 btrfs_item_key_to_cpu(leaf, &item_key, slot); 395 is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY); 396 397 /* For XATTR_ITEM, location key should be all 0 */ 398 if (item_key.type == BTRFS_XATTR_ITEM_KEY) { 399 if (unlikely(key->objectid != 0 || key->type != 0 || 400 key->offset != 0)) 401 return -EUCLEAN; 402 return 0; 403 } 404 405 if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID || 406 key->objectid > BTRFS_LAST_FREE_OBJECTID) && 407 key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID && 408 key->objectid != BTRFS_FREE_INO_OBJECTID)) { 409 if (is_inode_item) { 410 generic_err(leaf, slot, 411 "invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu", 412 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 413 BTRFS_FIRST_FREE_OBJECTID, 414 BTRFS_LAST_FREE_OBJECTID, 415 BTRFS_FREE_INO_OBJECTID); 416 } else { 417 dir_item_err(leaf, slot, 418 "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu", 419 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 420 BTRFS_FIRST_FREE_OBJECTID, 421 BTRFS_LAST_FREE_OBJECTID, 422 BTRFS_FREE_INO_OBJECTID); 423 } 424 return -EUCLEAN; 425 } 426 if (unlikely(key->offset != 0)) { 427 if (is_inode_item) 428 inode_item_err(leaf, slot, 429 "invalid key offset: has %llu expect 0", 430 key->offset); 431 else 432 dir_item_err(leaf, slot, 433 "invalid location key offset:has %llu expect 0", 434 key->offset); 435 return -EUCLEAN; 436 } 437 return 0; 438 } 439 440 static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key, 441 int slot) 442 { 443 struct btrfs_key item_key; 444 bool is_root_item; 445 446 btrfs_item_key_to_cpu(leaf, &item_key, slot); 447 is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY); 448 449 /* No such tree id */ 450 if (unlikely(key->objectid == 0)) { 451 if (is_root_item) 452 generic_err(leaf, slot, "invalid root id 0"); 453 else 454 dir_item_err(leaf, slot, 455 "invalid location key root id 0"); 456 return -EUCLEAN; 457 } 458 459 /* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */ 460 if (unlikely(!is_fstree(key->objectid) && !is_root_item)) { 461 dir_item_err(leaf, slot, 462 "invalid location key objectid, have %llu expect [%llu, %llu]", 463 key->objectid, BTRFS_FIRST_FREE_OBJECTID, 464 BTRFS_LAST_FREE_OBJECTID); 465 return -EUCLEAN; 466 } 467 468 /* 469 * ROOT_ITEM with non-zero offset means this is a snapshot, created at 470 * @offset transid. 471 * Furthermore, for location key in DIR_ITEM, its offset is always -1. 472 * 473 * So here we only check offset for reloc tree whose key->offset must 474 * be a valid tree. 475 */ 476 if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID && 477 key->offset == 0)) { 478 generic_err(leaf, slot, "invalid root id 0 for reloc tree"); 479 return -EUCLEAN; 480 } 481 return 0; 482 } 483 484 static int check_dir_item(struct extent_buffer *leaf, 485 struct btrfs_key *key, struct btrfs_key *prev_key, 486 int slot) 487 { 488 struct btrfs_fs_info *fs_info = leaf->fs_info; 489 struct btrfs_dir_item *di; 490 u32 item_size = btrfs_item_size(leaf, slot); 491 u32 cur = 0; 492 493 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 494 return -EUCLEAN; 495 496 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 497 while (cur < item_size) { 498 struct btrfs_key location_key; 499 u32 name_len; 500 u32 data_len; 501 u32 max_name_len; 502 u32 total_size; 503 u32 name_hash; 504 u8 dir_type; 505 int ret; 506 507 /* header itself should not cross item boundary */ 508 if (unlikely(cur + sizeof(*di) > item_size)) { 509 dir_item_err(leaf, slot, 510 "dir item header crosses item boundary, have %zu boundary %u", 511 cur + sizeof(*di), item_size); 512 return -EUCLEAN; 513 } 514 515 /* Location key check */ 516 btrfs_dir_item_key_to_cpu(leaf, di, &location_key); 517 if (location_key.type == BTRFS_ROOT_ITEM_KEY) { 518 ret = check_root_key(leaf, &location_key, slot); 519 if (unlikely(ret < 0)) 520 return ret; 521 } else if (location_key.type == BTRFS_INODE_ITEM_KEY || 522 location_key.type == 0) { 523 ret = check_inode_key(leaf, &location_key, slot); 524 if (unlikely(ret < 0)) 525 return ret; 526 } else { 527 dir_item_err(leaf, slot, 528 "invalid location key type, have %u, expect %u or %u", 529 location_key.type, BTRFS_ROOT_ITEM_KEY, 530 BTRFS_INODE_ITEM_KEY); 531 return -EUCLEAN; 532 } 533 534 /* dir type check */ 535 dir_type = btrfs_dir_ftype(leaf, di); 536 if (unlikely(dir_type >= BTRFS_FT_MAX)) { 537 dir_item_err(leaf, slot, 538 "invalid dir item type, have %u expect [0, %u)", 539 dir_type, BTRFS_FT_MAX); 540 return -EUCLEAN; 541 } 542 543 if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY && 544 dir_type != BTRFS_FT_XATTR)) { 545 dir_item_err(leaf, slot, 546 "invalid dir item type for XATTR key, have %u expect %u", 547 dir_type, BTRFS_FT_XATTR); 548 return -EUCLEAN; 549 } 550 if (unlikely(dir_type == BTRFS_FT_XATTR && 551 key->type != BTRFS_XATTR_ITEM_KEY)) { 552 dir_item_err(leaf, slot, 553 "xattr dir type found for non-XATTR key"); 554 return -EUCLEAN; 555 } 556 if (dir_type == BTRFS_FT_XATTR) 557 max_name_len = XATTR_NAME_MAX; 558 else 559 max_name_len = BTRFS_NAME_LEN; 560 561 /* Name/data length check */ 562 name_len = btrfs_dir_name_len(leaf, di); 563 data_len = btrfs_dir_data_len(leaf, di); 564 if (unlikely(name_len > max_name_len)) { 565 dir_item_err(leaf, slot, 566 "dir item name len too long, have %u max %u", 567 name_len, max_name_len); 568 return -EUCLEAN; 569 } 570 if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) { 571 dir_item_err(leaf, slot, 572 "dir item name and data len too long, have %u max %u", 573 name_len + data_len, 574 BTRFS_MAX_XATTR_SIZE(fs_info)); 575 return -EUCLEAN; 576 } 577 578 if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) { 579 dir_item_err(leaf, slot, 580 "dir item with invalid data len, have %u expect 0", 581 data_len); 582 return -EUCLEAN; 583 } 584 585 total_size = sizeof(*di) + name_len + data_len; 586 587 /* header and name/data should not cross item boundary */ 588 if (unlikely(cur + total_size > item_size)) { 589 dir_item_err(leaf, slot, 590 "dir item data crosses item boundary, have %u boundary %u", 591 cur + total_size, item_size); 592 return -EUCLEAN; 593 } 594 595 /* 596 * Special check for XATTR/DIR_ITEM, as key->offset is name 597 * hash, should match its name 598 */ 599 if (key->type == BTRFS_DIR_ITEM_KEY || 600 key->type == BTRFS_XATTR_ITEM_KEY) { 601 char namebuf[max(BTRFS_NAME_LEN, XATTR_NAME_MAX)]; 602 603 read_extent_buffer(leaf, namebuf, 604 (unsigned long)(di + 1), name_len); 605 name_hash = btrfs_name_hash(namebuf, name_len); 606 if (unlikely(key->offset != name_hash)) { 607 dir_item_err(leaf, slot, 608 "name hash mismatch with key, have 0x%016x expect 0x%016llx", 609 name_hash, key->offset); 610 return -EUCLEAN; 611 } 612 } 613 cur += total_size; 614 di = (struct btrfs_dir_item *)((void *)di + total_size); 615 } 616 return 0; 617 } 618 619 __printf(3, 4) 620 __cold 621 static void block_group_err(const struct extent_buffer *eb, int slot, 622 const char *fmt, ...) 623 { 624 const struct btrfs_fs_info *fs_info = eb->fs_info; 625 struct btrfs_key key; 626 struct va_format vaf; 627 va_list args; 628 629 btrfs_item_key_to_cpu(eb, &key, slot); 630 va_start(args, fmt); 631 632 vaf.fmt = fmt; 633 vaf.va = &args; 634 635 btrfs_crit(fs_info, 636 "corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV", 637 btrfs_header_level(eb) == 0 ? "leaf" : "node", 638 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 639 key.objectid, key.offset, &vaf); 640 va_end(args); 641 } 642 643 static int check_block_group_item(struct extent_buffer *leaf, 644 struct btrfs_key *key, int slot) 645 { 646 struct btrfs_fs_info *fs_info = leaf->fs_info; 647 struct btrfs_block_group_item bgi; 648 u32 item_size = btrfs_item_size(leaf, slot); 649 u64 chunk_objectid; 650 u64 flags; 651 u64 type; 652 653 /* 654 * Here we don't really care about alignment since extent allocator can 655 * handle it. We care more about the size. 656 */ 657 if (unlikely(key->offset == 0)) { 658 block_group_err(leaf, slot, 659 "invalid block group size 0"); 660 return -EUCLEAN; 661 } 662 663 if (unlikely(item_size != sizeof(bgi))) { 664 block_group_err(leaf, slot, 665 "invalid item size, have %u expect %zu", 666 item_size, sizeof(bgi)); 667 return -EUCLEAN; 668 } 669 670 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 671 sizeof(bgi)); 672 chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi); 673 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 674 /* 675 * We don't init the nr_global_roots until we load the global 676 * roots, so this could be 0 at mount time. If it's 0 we'll 677 * just assume we're fine, and later we'll check against our 678 * actual value. 679 */ 680 if (unlikely(fs_info->nr_global_roots && 681 chunk_objectid >= fs_info->nr_global_roots)) { 682 block_group_err(leaf, slot, 683 "invalid block group global root id, have %llu, needs to be <= %llu", 684 chunk_objectid, 685 fs_info->nr_global_roots); 686 return -EUCLEAN; 687 } 688 } else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) { 689 block_group_err(leaf, slot, 690 "invalid block group chunk objectid, have %llu expect %llu", 691 btrfs_stack_block_group_chunk_objectid(&bgi), 692 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 693 return -EUCLEAN; 694 } 695 696 if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) { 697 block_group_err(leaf, slot, 698 "invalid block group used, have %llu expect [0, %llu)", 699 btrfs_stack_block_group_used(&bgi), key->offset); 700 return -EUCLEAN; 701 } 702 703 flags = btrfs_stack_block_group_flags(&bgi); 704 if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) { 705 block_group_err(leaf, slot, 706 "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set", 707 flags & BTRFS_BLOCK_GROUP_PROFILE_MASK, 708 hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)); 709 return -EUCLEAN; 710 } 711 712 type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 713 if (unlikely(type != BTRFS_BLOCK_GROUP_DATA && 714 type != BTRFS_BLOCK_GROUP_METADATA && 715 type != BTRFS_BLOCK_GROUP_SYSTEM && 716 type != (BTRFS_BLOCK_GROUP_METADATA | 717 BTRFS_BLOCK_GROUP_DATA))) { 718 block_group_err(leaf, slot, 719 "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx", 720 type, hweight64(type), 721 BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA, 722 BTRFS_BLOCK_GROUP_SYSTEM, 723 BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA); 724 return -EUCLEAN; 725 } 726 return 0; 727 } 728 729 __printf(4, 5) 730 __cold 731 static void chunk_err(const struct extent_buffer *leaf, 732 const struct btrfs_chunk *chunk, u64 logical, 733 const char *fmt, ...) 734 { 735 const struct btrfs_fs_info *fs_info = leaf->fs_info; 736 bool is_sb; 737 struct va_format vaf; 738 va_list args; 739 int i; 740 int slot = -1; 741 742 /* Only superblock eb is able to have such small offset */ 743 is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET); 744 745 if (!is_sb) { 746 /* 747 * Get the slot number by iterating through all slots, this 748 * would provide better readability. 749 */ 750 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 751 if (btrfs_item_ptr_offset(leaf, i) == 752 (unsigned long)chunk) { 753 slot = i; 754 break; 755 } 756 } 757 } 758 va_start(args, fmt); 759 vaf.fmt = fmt; 760 vaf.va = &args; 761 762 if (is_sb) 763 btrfs_crit(fs_info, 764 "corrupt superblock syschunk array: chunk_start=%llu, %pV", 765 logical, &vaf); 766 else 767 btrfs_crit(fs_info, 768 "corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV", 769 BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot, 770 logical, &vaf); 771 va_end(args); 772 } 773 774 /* 775 * The common chunk check which could also work on super block sys chunk array. 776 * 777 * Return -EUCLEAN if anything is corrupted. 778 * Return 0 if everything is OK. 779 */ 780 int btrfs_check_chunk_valid(struct extent_buffer *leaf, 781 struct btrfs_chunk *chunk, u64 logical) 782 { 783 struct btrfs_fs_info *fs_info = leaf->fs_info; 784 u64 length; 785 u64 chunk_end; 786 u64 stripe_len; 787 u16 num_stripes; 788 u16 sub_stripes; 789 u64 type; 790 u64 features; 791 bool mixed = false; 792 int raid_index; 793 int nparity; 794 int ncopies; 795 796 length = btrfs_chunk_length(leaf, chunk); 797 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 798 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 799 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 800 type = btrfs_chunk_type(leaf, chunk); 801 raid_index = btrfs_bg_flags_to_raid_index(type); 802 ncopies = btrfs_raid_array[raid_index].ncopies; 803 nparity = btrfs_raid_array[raid_index].nparity; 804 805 if (unlikely(!num_stripes)) { 806 chunk_err(leaf, chunk, logical, 807 "invalid chunk num_stripes, have %u", num_stripes); 808 return -EUCLEAN; 809 } 810 if (unlikely(num_stripes < ncopies)) { 811 chunk_err(leaf, chunk, logical, 812 "invalid chunk num_stripes < ncopies, have %u < %d", 813 num_stripes, ncopies); 814 return -EUCLEAN; 815 } 816 if (unlikely(nparity && num_stripes == nparity)) { 817 chunk_err(leaf, chunk, logical, 818 "invalid chunk num_stripes == nparity, have %u == %d", 819 num_stripes, nparity); 820 return -EUCLEAN; 821 } 822 if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) { 823 chunk_err(leaf, chunk, logical, 824 "invalid chunk logical, have %llu should aligned to %u", 825 logical, fs_info->sectorsize); 826 return -EUCLEAN; 827 } 828 if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) { 829 chunk_err(leaf, chunk, logical, 830 "invalid chunk sectorsize, have %u expect %u", 831 btrfs_chunk_sector_size(leaf, chunk), 832 fs_info->sectorsize); 833 return -EUCLEAN; 834 } 835 if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) { 836 chunk_err(leaf, chunk, logical, 837 "invalid chunk length, have %llu", length); 838 return -EUCLEAN; 839 } 840 if (unlikely(check_add_overflow(logical, length, &chunk_end))) { 841 chunk_err(leaf, chunk, logical, 842 "invalid chunk logical start and length, have logical start %llu length %llu", 843 logical, length); 844 return -EUCLEAN; 845 } 846 if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) { 847 chunk_err(leaf, chunk, logical, 848 "invalid chunk stripe length: %llu", 849 stripe_len); 850 return -EUCLEAN; 851 } 852 if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 853 BTRFS_BLOCK_GROUP_PROFILE_MASK))) { 854 chunk_err(leaf, chunk, logical, 855 "unrecognized chunk type: 0x%llx", 856 ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 857 BTRFS_BLOCK_GROUP_PROFILE_MASK) & 858 btrfs_chunk_type(leaf, chunk)); 859 return -EUCLEAN; 860 } 861 862 if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) && 863 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) { 864 chunk_err(leaf, chunk, logical, 865 "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set", 866 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 867 return -EUCLEAN; 868 } 869 if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) { 870 chunk_err(leaf, chunk, logical, 871 "missing chunk type flag, have 0x%llx one bit must be set in 0x%llx", 872 type, BTRFS_BLOCK_GROUP_TYPE_MASK); 873 return -EUCLEAN; 874 } 875 876 if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) && 877 (type & (BTRFS_BLOCK_GROUP_METADATA | 878 BTRFS_BLOCK_GROUP_DATA)))) { 879 chunk_err(leaf, chunk, logical, 880 "system chunk with data or metadata type: 0x%llx", 881 type); 882 return -EUCLEAN; 883 } 884 885 features = btrfs_super_incompat_flags(fs_info->super_copy); 886 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 887 mixed = true; 888 889 if (!mixed) { 890 if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) && 891 (type & BTRFS_BLOCK_GROUP_DATA))) { 892 chunk_err(leaf, chunk, logical, 893 "mixed chunk type in non-mixed mode: 0x%llx", type); 894 return -EUCLEAN; 895 } 896 } 897 898 if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 && 899 sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) || 900 (type & BTRFS_BLOCK_GROUP_RAID1 && 901 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) || 902 (type & BTRFS_BLOCK_GROUP_RAID1C3 && 903 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) || 904 (type & BTRFS_BLOCK_GROUP_RAID1C4 && 905 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) || 906 (type & BTRFS_BLOCK_GROUP_RAID5 && 907 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) || 908 (type & BTRFS_BLOCK_GROUP_RAID6 && 909 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) || 910 (type & BTRFS_BLOCK_GROUP_DUP && 911 num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) || 912 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 && 913 num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) { 914 chunk_err(leaf, chunk, logical, 915 "invalid num_stripes:sub_stripes %u:%u for profile %llu", 916 num_stripes, sub_stripes, 917 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 918 return -EUCLEAN; 919 } 920 921 return 0; 922 } 923 924 /* 925 * Enhanced version of chunk item checker. 926 * 927 * The common btrfs_check_chunk_valid() doesn't check item size since it needs 928 * to work on super block sys_chunk_array which doesn't have full item ptr. 929 */ 930 static int check_leaf_chunk_item(struct extent_buffer *leaf, 931 struct btrfs_chunk *chunk, 932 struct btrfs_key *key, int slot) 933 { 934 int num_stripes; 935 936 if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) { 937 chunk_err(leaf, chunk, key->offset, 938 "invalid chunk item size: have %u expect [%zu, %u)", 939 btrfs_item_size(leaf, slot), 940 sizeof(struct btrfs_chunk), 941 BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); 942 return -EUCLEAN; 943 } 944 945 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 946 /* Let btrfs_check_chunk_valid() handle this error type */ 947 if (num_stripes == 0) 948 goto out; 949 950 if (unlikely(btrfs_chunk_item_size(num_stripes) != 951 btrfs_item_size(leaf, slot))) { 952 chunk_err(leaf, chunk, key->offset, 953 "invalid chunk item size: have %u expect %lu", 954 btrfs_item_size(leaf, slot), 955 btrfs_chunk_item_size(num_stripes)); 956 return -EUCLEAN; 957 } 958 out: 959 return btrfs_check_chunk_valid(leaf, chunk, key->offset); 960 } 961 962 __printf(3, 4) 963 __cold 964 static void dev_item_err(const struct extent_buffer *eb, int slot, 965 const char *fmt, ...) 966 { 967 struct btrfs_key key; 968 struct va_format vaf; 969 va_list args; 970 971 btrfs_item_key_to_cpu(eb, &key, slot); 972 va_start(args, fmt); 973 974 vaf.fmt = fmt; 975 vaf.va = &args; 976 977 btrfs_crit(eb->fs_info, 978 "corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV", 979 btrfs_header_level(eb) == 0 ? "leaf" : "node", 980 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 981 key.objectid, &vaf); 982 va_end(args); 983 } 984 985 static int check_dev_item(struct extent_buffer *leaf, 986 struct btrfs_key *key, int slot) 987 { 988 struct btrfs_dev_item *ditem; 989 const u32 item_size = btrfs_item_size(leaf, slot); 990 991 if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) { 992 dev_item_err(leaf, slot, 993 "invalid objectid: has=%llu expect=%llu", 994 key->objectid, BTRFS_DEV_ITEMS_OBJECTID); 995 return -EUCLEAN; 996 } 997 998 if (unlikely(item_size != sizeof(*ditem))) { 999 dev_item_err(leaf, slot, "invalid item size: has %u expect %zu", 1000 item_size, sizeof(*ditem)); 1001 return -EUCLEAN; 1002 } 1003 1004 ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item); 1005 if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) { 1006 dev_item_err(leaf, slot, 1007 "devid mismatch: key has=%llu item has=%llu", 1008 key->offset, btrfs_device_id(leaf, ditem)); 1009 return -EUCLEAN; 1010 } 1011 1012 /* 1013 * For device total_bytes, we don't have reliable way to check it, as 1014 * it can be 0 for device removal. Device size check can only be done 1015 * by dev extents check. 1016 */ 1017 if (unlikely(btrfs_device_bytes_used(leaf, ditem) > 1018 btrfs_device_total_bytes(leaf, ditem))) { 1019 dev_item_err(leaf, slot, 1020 "invalid bytes used: have %llu expect [0, %llu]", 1021 btrfs_device_bytes_used(leaf, ditem), 1022 btrfs_device_total_bytes(leaf, ditem)); 1023 return -EUCLEAN; 1024 } 1025 /* 1026 * Remaining members like io_align/type/gen/dev_group aren't really 1027 * utilized. Skip them to make later usage of them easier. 1028 */ 1029 return 0; 1030 } 1031 1032 static int check_inode_item(struct extent_buffer *leaf, 1033 struct btrfs_key *key, int slot) 1034 { 1035 struct btrfs_fs_info *fs_info = leaf->fs_info; 1036 struct btrfs_inode_item *iitem; 1037 u64 super_gen = btrfs_super_generation(fs_info->super_copy); 1038 u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777); 1039 const u32 item_size = btrfs_item_size(leaf, slot); 1040 u32 mode; 1041 int ret; 1042 u32 flags; 1043 u32 ro_flags; 1044 1045 ret = check_inode_key(leaf, key, slot); 1046 if (unlikely(ret < 0)) 1047 return ret; 1048 1049 if (unlikely(item_size != sizeof(*iitem))) { 1050 generic_err(leaf, slot, "invalid item size: has %u expect %zu", 1051 item_size, sizeof(*iitem)); 1052 return -EUCLEAN; 1053 } 1054 1055 iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item); 1056 1057 /* Here we use super block generation + 1 to handle log tree */ 1058 if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) { 1059 inode_item_err(leaf, slot, 1060 "invalid inode generation: has %llu expect (0, %llu]", 1061 btrfs_inode_generation(leaf, iitem), 1062 super_gen + 1); 1063 return -EUCLEAN; 1064 } 1065 /* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */ 1066 if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) { 1067 inode_item_err(leaf, slot, 1068 "invalid inode transid: has %llu expect [0, %llu]", 1069 btrfs_inode_transid(leaf, iitem), super_gen + 1); 1070 return -EUCLEAN; 1071 } 1072 1073 /* 1074 * For size and nbytes it's better not to be too strict, as for dir 1075 * item its size/nbytes can easily get wrong, but doesn't affect 1076 * anything in the fs. So here we skip the check. 1077 */ 1078 mode = btrfs_inode_mode(leaf, iitem); 1079 if (unlikely(mode & ~valid_mask)) { 1080 inode_item_err(leaf, slot, 1081 "unknown mode bit detected: 0x%x", 1082 mode & ~valid_mask); 1083 return -EUCLEAN; 1084 } 1085 1086 /* 1087 * S_IFMT is not bit mapped so we can't completely rely on 1088 * is_power_of_2/has_single_bit_set, but it can save us from checking 1089 * FIFO/CHR/DIR/REG. Only needs to check BLK, LNK and SOCKS 1090 */ 1091 if (!has_single_bit_set(mode & S_IFMT)) { 1092 if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) { 1093 inode_item_err(leaf, slot, 1094 "invalid mode: has 0%o expect valid S_IF* bit(s)", 1095 mode & S_IFMT); 1096 return -EUCLEAN; 1097 } 1098 } 1099 if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) { 1100 inode_item_err(leaf, slot, 1101 "invalid nlink: has %u expect no more than 1 for dir", 1102 btrfs_inode_nlink(leaf, iitem)); 1103 return -EUCLEAN; 1104 } 1105 btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags); 1106 if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) { 1107 inode_item_err(leaf, slot, 1108 "unknown incompat flags detected: 0x%x", flags); 1109 return -EUCLEAN; 1110 } 1111 if (unlikely(!sb_rdonly(fs_info->sb) && 1112 (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) { 1113 inode_item_err(leaf, slot, 1114 "unknown ro-compat flags detected on writeable mount: 0x%x", 1115 ro_flags); 1116 return -EUCLEAN; 1117 } 1118 return 0; 1119 } 1120 1121 static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key, 1122 int slot) 1123 { 1124 struct btrfs_fs_info *fs_info = leaf->fs_info; 1125 struct btrfs_root_item ri = { 0 }; 1126 const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY | 1127 BTRFS_ROOT_SUBVOL_DEAD; 1128 int ret; 1129 1130 ret = check_root_key(leaf, key, slot); 1131 if (unlikely(ret < 0)) 1132 return ret; 1133 1134 if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) && 1135 btrfs_item_size(leaf, slot) != 1136 btrfs_legacy_root_item_size())) { 1137 generic_err(leaf, slot, 1138 "invalid root item size, have %u expect %zu or %u", 1139 btrfs_item_size(leaf, slot), sizeof(ri), 1140 btrfs_legacy_root_item_size()); 1141 return -EUCLEAN; 1142 } 1143 1144 /* 1145 * For legacy root item, the members starting at generation_v2 will be 1146 * all filled with 0. 1147 * And since we allow geneartion_v2 as 0, it will still pass the check. 1148 */ 1149 read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot), 1150 btrfs_item_size(leaf, slot)); 1151 1152 /* Generation related */ 1153 if (unlikely(btrfs_root_generation(&ri) > 1154 btrfs_super_generation(fs_info->super_copy) + 1)) { 1155 generic_err(leaf, slot, 1156 "invalid root generation, have %llu expect (0, %llu]", 1157 btrfs_root_generation(&ri), 1158 btrfs_super_generation(fs_info->super_copy) + 1); 1159 return -EUCLEAN; 1160 } 1161 if (unlikely(btrfs_root_generation_v2(&ri) > 1162 btrfs_super_generation(fs_info->super_copy) + 1)) { 1163 generic_err(leaf, slot, 1164 "invalid root v2 generation, have %llu expect (0, %llu]", 1165 btrfs_root_generation_v2(&ri), 1166 btrfs_super_generation(fs_info->super_copy) + 1); 1167 return -EUCLEAN; 1168 } 1169 if (unlikely(btrfs_root_last_snapshot(&ri) > 1170 btrfs_super_generation(fs_info->super_copy) + 1)) { 1171 generic_err(leaf, slot, 1172 "invalid root last_snapshot, have %llu expect (0, %llu]", 1173 btrfs_root_last_snapshot(&ri), 1174 btrfs_super_generation(fs_info->super_copy) + 1); 1175 return -EUCLEAN; 1176 } 1177 1178 /* Alignment and level check */ 1179 if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) { 1180 generic_err(leaf, slot, 1181 "invalid root bytenr, have %llu expect to be aligned to %u", 1182 btrfs_root_bytenr(&ri), fs_info->sectorsize); 1183 return -EUCLEAN; 1184 } 1185 if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) { 1186 generic_err(leaf, slot, 1187 "invalid root level, have %u expect [0, %u]", 1188 btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1); 1189 return -EUCLEAN; 1190 } 1191 if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) { 1192 generic_err(leaf, slot, 1193 "invalid root level, have %u expect [0, %u]", 1194 btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1); 1195 return -EUCLEAN; 1196 } 1197 1198 /* Flags check */ 1199 if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) { 1200 generic_err(leaf, slot, 1201 "invalid root flags, have 0x%llx expect mask 0x%llx", 1202 btrfs_root_flags(&ri), valid_root_flags); 1203 return -EUCLEAN; 1204 } 1205 return 0; 1206 } 1207 1208 __printf(3,4) 1209 __cold 1210 static void extent_err(const struct extent_buffer *eb, int slot, 1211 const char *fmt, ...) 1212 { 1213 struct btrfs_key key; 1214 struct va_format vaf; 1215 va_list args; 1216 u64 bytenr; 1217 u64 len; 1218 1219 btrfs_item_key_to_cpu(eb, &key, slot); 1220 bytenr = key.objectid; 1221 if (key.type == BTRFS_METADATA_ITEM_KEY || 1222 key.type == BTRFS_TREE_BLOCK_REF_KEY || 1223 key.type == BTRFS_SHARED_BLOCK_REF_KEY) 1224 len = eb->fs_info->nodesize; 1225 else 1226 len = key.offset; 1227 va_start(args, fmt); 1228 1229 vaf.fmt = fmt; 1230 vaf.va = &args; 1231 1232 btrfs_crit(eb->fs_info, 1233 "corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV", 1234 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1235 eb->start, slot, bytenr, len, &vaf); 1236 va_end(args); 1237 } 1238 1239 static int check_extent_item(struct extent_buffer *leaf, 1240 struct btrfs_key *key, int slot, 1241 struct btrfs_key *prev_key) 1242 { 1243 struct btrfs_fs_info *fs_info = leaf->fs_info; 1244 struct btrfs_extent_item *ei; 1245 bool is_tree_block = false; 1246 unsigned long ptr; /* Current pointer inside inline refs */ 1247 unsigned long end; /* Extent item end */ 1248 const u32 item_size = btrfs_item_size(leaf, slot); 1249 u64 flags; 1250 u64 generation; 1251 u64 total_refs; /* Total refs in btrfs_extent_item */ 1252 u64 inline_refs = 0; /* found total inline refs */ 1253 1254 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && 1255 !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) { 1256 generic_err(leaf, slot, 1257 "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled"); 1258 return -EUCLEAN; 1259 } 1260 /* key->objectid is the bytenr for both key types */ 1261 if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) { 1262 generic_err(leaf, slot, 1263 "invalid key objectid, have %llu expect to be aligned to %u", 1264 key->objectid, fs_info->sectorsize); 1265 return -EUCLEAN; 1266 } 1267 1268 /* key->offset is tree level for METADATA_ITEM_KEY */ 1269 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && 1270 key->offset >= BTRFS_MAX_LEVEL)) { 1271 extent_err(leaf, slot, 1272 "invalid tree level, have %llu expect [0, %u]", 1273 key->offset, BTRFS_MAX_LEVEL - 1); 1274 return -EUCLEAN; 1275 } 1276 1277 /* 1278 * EXTENT/METADATA_ITEM consists of: 1279 * 1) One btrfs_extent_item 1280 * Records the total refs, type and generation of the extent. 1281 * 1282 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only) 1283 * Records the first key and level of the tree block. 1284 * 1285 * 2) Zero or more btrfs_extent_inline_ref(s) 1286 * Each inline ref has one btrfs_extent_inline_ref shows: 1287 * 2.1) The ref type, one of the 4 1288 * TREE_BLOCK_REF Tree block only 1289 * SHARED_BLOCK_REF Tree block only 1290 * EXTENT_DATA_REF Data only 1291 * SHARED_DATA_REF Data only 1292 * 2.2) Ref type specific data 1293 * Either using btrfs_extent_inline_ref::offset, or specific 1294 * data structure. 1295 */ 1296 if (unlikely(item_size < sizeof(*ei))) { 1297 extent_err(leaf, slot, 1298 "invalid item size, have %u expect [%zu, %u)", 1299 item_size, sizeof(*ei), 1300 BTRFS_LEAF_DATA_SIZE(fs_info)); 1301 return -EUCLEAN; 1302 } 1303 end = item_size + btrfs_item_ptr_offset(leaf, slot); 1304 1305 /* Checks against extent_item */ 1306 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1307 flags = btrfs_extent_flags(leaf, ei); 1308 total_refs = btrfs_extent_refs(leaf, ei); 1309 generation = btrfs_extent_generation(leaf, ei); 1310 if (unlikely(generation > 1311 btrfs_super_generation(fs_info->super_copy) + 1)) { 1312 extent_err(leaf, slot, 1313 "invalid generation, have %llu expect (0, %llu]", 1314 generation, 1315 btrfs_super_generation(fs_info->super_copy) + 1); 1316 return -EUCLEAN; 1317 } 1318 if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA | 1319 BTRFS_EXTENT_FLAG_TREE_BLOCK)))) { 1320 extent_err(leaf, slot, 1321 "invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx", 1322 flags, BTRFS_EXTENT_FLAG_DATA | 1323 BTRFS_EXTENT_FLAG_TREE_BLOCK); 1324 return -EUCLEAN; 1325 } 1326 is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK); 1327 if (is_tree_block) { 1328 if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY && 1329 key->offset != fs_info->nodesize)) { 1330 extent_err(leaf, slot, 1331 "invalid extent length, have %llu expect %u", 1332 key->offset, fs_info->nodesize); 1333 return -EUCLEAN; 1334 } 1335 } else { 1336 if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) { 1337 extent_err(leaf, slot, 1338 "invalid key type, have %u expect %u for data backref", 1339 key->type, BTRFS_EXTENT_ITEM_KEY); 1340 return -EUCLEAN; 1341 } 1342 if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) { 1343 extent_err(leaf, slot, 1344 "invalid extent length, have %llu expect aligned to %u", 1345 key->offset, fs_info->sectorsize); 1346 return -EUCLEAN; 1347 } 1348 if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1349 extent_err(leaf, slot, 1350 "invalid extent flag, data has full backref set"); 1351 return -EUCLEAN; 1352 } 1353 } 1354 ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1); 1355 1356 /* Check the special case of btrfs_tree_block_info */ 1357 if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) { 1358 struct btrfs_tree_block_info *info; 1359 1360 info = (struct btrfs_tree_block_info *)ptr; 1361 if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) { 1362 extent_err(leaf, slot, 1363 "invalid tree block info level, have %u expect [0, %u]", 1364 btrfs_tree_block_level(leaf, info), 1365 BTRFS_MAX_LEVEL - 1); 1366 return -EUCLEAN; 1367 } 1368 ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1); 1369 } 1370 1371 /* Check inline refs */ 1372 while (ptr < end) { 1373 struct btrfs_extent_inline_ref *iref; 1374 struct btrfs_extent_data_ref *dref; 1375 struct btrfs_shared_data_ref *sref; 1376 u64 dref_offset; 1377 u64 inline_offset; 1378 u8 inline_type; 1379 1380 if (unlikely(ptr + sizeof(*iref) > end)) { 1381 extent_err(leaf, slot, 1382 "inline ref item overflows extent item, ptr %lu iref size %zu end %lu", 1383 ptr, sizeof(*iref), end); 1384 return -EUCLEAN; 1385 } 1386 iref = (struct btrfs_extent_inline_ref *)ptr; 1387 inline_type = btrfs_extent_inline_ref_type(leaf, iref); 1388 inline_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1389 if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) { 1390 extent_err(leaf, slot, 1391 "inline ref item overflows extent item, ptr %lu iref size %u end %lu", 1392 ptr, inline_type, end); 1393 return -EUCLEAN; 1394 } 1395 1396 switch (inline_type) { 1397 /* inline_offset is subvolid of the owner, no need to check */ 1398 case BTRFS_TREE_BLOCK_REF_KEY: 1399 inline_refs++; 1400 break; 1401 /* Contains parent bytenr */ 1402 case BTRFS_SHARED_BLOCK_REF_KEY: 1403 if (unlikely(!IS_ALIGNED(inline_offset, 1404 fs_info->sectorsize))) { 1405 extent_err(leaf, slot, 1406 "invalid tree parent bytenr, have %llu expect aligned to %u", 1407 inline_offset, fs_info->sectorsize); 1408 return -EUCLEAN; 1409 } 1410 inline_refs++; 1411 break; 1412 /* 1413 * Contains owner subvolid, owner key objectid, adjusted offset. 1414 * The only obvious corruption can happen in that offset. 1415 */ 1416 case BTRFS_EXTENT_DATA_REF_KEY: 1417 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1418 dref_offset = btrfs_extent_data_ref_offset(leaf, dref); 1419 if (unlikely(!IS_ALIGNED(dref_offset, 1420 fs_info->sectorsize))) { 1421 extent_err(leaf, slot, 1422 "invalid data ref offset, have %llu expect aligned to %u", 1423 dref_offset, fs_info->sectorsize); 1424 return -EUCLEAN; 1425 } 1426 inline_refs += btrfs_extent_data_ref_count(leaf, dref); 1427 break; 1428 /* Contains parent bytenr and ref count */ 1429 case BTRFS_SHARED_DATA_REF_KEY: 1430 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1431 if (unlikely(!IS_ALIGNED(inline_offset, 1432 fs_info->sectorsize))) { 1433 extent_err(leaf, slot, 1434 "invalid data parent bytenr, have %llu expect aligned to %u", 1435 inline_offset, fs_info->sectorsize); 1436 return -EUCLEAN; 1437 } 1438 inline_refs += btrfs_shared_data_ref_count(leaf, sref); 1439 break; 1440 default: 1441 extent_err(leaf, slot, "unknown inline ref type: %u", 1442 inline_type); 1443 return -EUCLEAN; 1444 } 1445 ptr += btrfs_extent_inline_ref_size(inline_type); 1446 } 1447 /* No padding is allowed */ 1448 if (unlikely(ptr != end)) { 1449 extent_err(leaf, slot, 1450 "invalid extent item size, padding bytes found"); 1451 return -EUCLEAN; 1452 } 1453 1454 /* Finally, check the inline refs against total refs */ 1455 if (unlikely(inline_refs > total_refs)) { 1456 extent_err(leaf, slot, 1457 "invalid extent refs, have %llu expect >= inline %llu", 1458 total_refs, inline_refs); 1459 return -EUCLEAN; 1460 } 1461 1462 if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) || 1463 (prev_key->type == BTRFS_METADATA_ITEM_KEY)) { 1464 u64 prev_end = prev_key->objectid; 1465 1466 if (prev_key->type == BTRFS_METADATA_ITEM_KEY) 1467 prev_end += fs_info->nodesize; 1468 else 1469 prev_end += prev_key->offset; 1470 1471 if (unlikely(prev_end > key->objectid)) { 1472 extent_err(leaf, slot, 1473 "previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]", 1474 prev_key->objectid, prev_key->type, 1475 prev_key->offset, key->objectid, key->type, 1476 key->offset); 1477 return -EUCLEAN; 1478 } 1479 } 1480 1481 return 0; 1482 } 1483 1484 static int check_simple_keyed_refs(struct extent_buffer *leaf, 1485 struct btrfs_key *key, int slot) 1486 { 1487 u32 expect_item_size = 0; 1488 1489 if (key->type == BTRFS_SHARED_DATA_REF_KEY) 1490 expect_item_size = sizeof(struct btrfs_shared_data_ref); 1491 1492 if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) { 1493 generic_err(leaf, slot, 1494 "invalid item size, have %u expect %u for key type %u", 1495 btrfs_item_size(leaf, slot), 1496 expect_item_size, key->type); 1497 return -EUCLEAN; 1498 } 1499 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1500 generic_err(leaf, slot, 1501 "invalid key objectid for shared block ref, have %llu expect aligned to %u", 1502 key->objectid, leaf->fs_info->sectorsize); 1503 return -EUCLEAN; 1504 } 1505 if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY && 1506 !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) { 1507 extent_err(leaf, slot, 1508 "invalid tree parent bytenr, have %llu expect aligned to %u", 1509 key->offset, leaf->fs_info->sectorsize); 1510 return -EUCLEAN; 1511 } 1512 return 0; 1513 } 1514 1515 static int check_extent_data_ref(struct extent_buffer *leaf, 1516 struct btrfs_key *key, int slot) 1517 { 1518 struct btrfs_extent_data_ref *dref; 1519 unsigned long ptr = btrfs_item_ptr_offset(leaf, slot); 1520 const unsigned long end = ptr + btrfs_item_size(leaf, slot); 1521 1522 if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) { 1523 generic_err(leaf, slot, 1524 "invalid item size, have %u expect aligned to %zu for key type %u", 1525 btrfs_item_size(leaf, slot), 1526 sizeof(*dref), key->type); 1527 return -EUCLEAN; 1528 } 1529 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1530 generic_err(leaf, slot, 1531 "invalid key objectid for shared block ref, have %llu expect aligned to %u", 1532 key->objectid, leaf->fs_info->sectorsize); 1533 return -EUCLEAN; 1534 } 1535 for (; ptr < end; ptr += sizeof(*dref)) { 1536 u64 offset; 1537 1538 /* 1539 * We cannot check the extent_data_ref hash due to possible 1540 * overflow from the leaf due to hash collisions. 1541 */ 1542 dref = (struct btrfs_extent_data_ref *)ptr; 1543 offset = btrfs_extent_data_ref_offset(leaf, dref); 1544 if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) { 1545 extent_err(leaf, slot, 1546 "invalid extent data backref offset, have %llu expect aligned to %u", 1547 offset, leaf->fs_info->sectorsize); 1548 return -EUCLEAN; 1549 } 1550 } 1551 return 0; 1552 } 1553 1554 #define inode_ref_err(eb, slot, fmt, args...) \ 1555 inode_item_err(eb, slot, fmt, ##args) 1556 static int check_inode_ref(struct extent_buffer *leaf, 1557 struct btrfs_key *key, struct btrfs_key *prev_key, 1558 int slot) 1559 { 1560 struct btrfs_inode_ref *iref; 1561 unsigned long ptr; 1562 unsigned long end; 1563 1564 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 1565 return -EUCLEAN; 1566 /* namelen can't be 0, so item_size == sizeof() is also invalid */ 1567 if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) { 1568 inode_ref_err(leaf, slot, 1569 "invalid item size, have %u expect (%zu, %u)", 1570 btrfs_item_size(leaf, slot), 1571 sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); 1572 return -EUCLEAN; 1573 } 1574 1575 ptr = btrfs_item_ptr_offset(leaf, slot); 1576 end = ptr + btrfs_item_size(leaf, slot); 1577 while (ptr < end) { 1578 u16 namelen; 1579 1580 if (unlikely(ptr + sizeof(iref) > end)) { 1581 inode_ref_err(leaf, slot, 1582 "inode ref overflow, ptr %lu end %lu inode_ref_size %zu", 1583 ptr, end, sizeof(iref)); 1584 return -EUCLEAN; 1585 } 1586 1587 iref = (struct btrfs_inode_ref *)ptr; 1588 namelen = btrfs_inode_ref_name_len(leaf, iref); 1589 if (unlikely(ptr + sizeof(*iref) + namelen > end)) { 1590 inode_ref_err(leaf, slot, 1591 "inode ref overflow, ptr %lu end %lu namelen %u", 1592 ptr, end, namelen); 1593 return -EUCLEAN; 1594 } 1595 1596 /* 1597 * NOTE: In theory we should record all found index numbers 1598 * to find any duplicated indexes, but that will be too time 1599 * consuming for inodes with too many hard links. 1600 */ 1601 ptr += sizeof(*iref) + namelen; 1602 } 1603 return 0; 1604 } 1605 1606 /* 1607 * Common point to switch the item-specific validation. 1608 */ 1609 static int check_leaf_item(struct extent_buffer *leaf, 1610 struct btrfs_key *key, int slot, 1611 struct btrfs_key *prev_key) 1612 { 1613 int ret = 0; 1614 struct btrfs_chunk *chunk; 1615 1616 switch (key->type) { 1617 case BTRFS_EXTENT_DATA_KEY: 1618 ret = check_extent_data_item(leaf, key, slot, prev_key); 1619 break; 1620 case BTRFS_EXTENT_CSUM_KEY: 1621 ret = check_csum_item(leaf, key, slot, prev_key); 1622 break; 1623 case BTRFS_DIR_ITEM_KEY: 1624 case BTRFS_DIR_INDEX_KEY: 1625 case BTRFS_XATTR_ITEM_KEY: 1626 ret = check_dir_item(leaf, key, prev_key, slot); 1627 break; 1628 case BTRFS_INODE_REF_KEY: 1629 ret = check_inode_ref(leaf, key, prev_key, slot); 1630 break; 1631 case BTRFS_BLOCK_GROUP_ITEM_KEY: 1632 ret = check_block_group_item(leaf, key, slot); 1633 break; 1634 case BTRFS_CHUNK_ITEM_KEY: 1635 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 1636 ret = check_leaf_chunk_item(leaf, chunk, key, slot); 1637 break; 1638 case BTRFS_DEV_ITEM_KEY: 1639 ret = check_dev_item(leaf, key, slot); 1640 break; 1641 case BTRFS_INODE_ITEM_KEY: 1642 ret = check_inode_item(leaf, key, slot); 1643 break; 1644 case BTRFS_ROOT_ITEM_KEY: 1645 ret = check_root_item(leaf, key, slot); 1646 break; 1647 case BTRFS_EXTENT_ITEM_KEY: 1648 case BTRFS_METADATA_ITEM_KEY: 1649 ret = check_extent_item(leaf, key, slot, prev_key); 1650 break; 1651 case BTRFS_TREE_BLOCK_REF_KEY: 1652 case BTRFS_SHARED_DATA_REF_KEY: 1653 case BTRFS_SHARED_BLOCK_REF_KEY: 1654 ret = check_simple_keyed_refs(leaf, key, slot); 1655 break; 1656 case BTRFS_EXTENT_DATA_REF_KEY: 1657 ret = check_extent_data_ref(leaf, key, slot); 1658 break; 1659 } 1660 return ret; 1661 } 1662 1663 static int check_leaf(struct extent_buffer *leaf, bool check_item_data) 1664 { 1665 struct btrfs_fs_info *fs_info = leaf->fs_info; 1666 /* No valid key type is 0, so all key should be larger than this key */ 1667 struct btrfs_key prev_key = {0, 0, 0}; 1668 struct btrfs_key key; 1669 u32 nritems = btrfs_header_nritems(leaf); 1670 int slot; 1671 1672 if (unlikely(btrfs_header_level(leaf) != 0)) { 1673 generic_err(leaf, 0, 1674 "invalid level for leaf, have %d expect 0", 1675 btrfs_header_level(leaf)); 1676 return -EUCLEAN; 1677 } 1678 1679 /* 1680 * Extent buffers from a relocation tree have a owner field that 1681 * corresponds to the subvolume tree they are based on. So just from an 1682 * extent buffer alone we can not find out what is the id of the 1683 * corresponding subvolume tree, so we can not figure out if the extent 1684 * buffer corresponds to the root of the relocation tree or not. So 1685 * skip this check for relocation trees. 1686 */ 1687 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) { 1688 u64 owner = btrfs_header_owner(leaf); 1689 1690 /* These trees must never be empty */ 1691 if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID || 1692 owner == BTRFS_CHUNK_TREE_OBJECTID || 1693 owner == BTRFS_DEV_TREE_OBJECTID || 1694 owner == BTRFS_FS_TREE_OBJECTID || 1695 owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) { 1696 generic_err(leaf, 0, 1697 "invalid root, root %llu must never be empty", 1698 owner); 1699 return -EUCLEAN; 1700 } 1701 1702 /* Unknown tree */ 1703 if (unlikely(owner == 0)) { 1704 generic_err(leaf, 0, 1705 "invalid owner, root 0 is not defined"); 1706 return -EUCLEAN; 1707 } 1708 1709 /* EXTENT_TREE_V2 can have empty extent trees. */ 1710 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 1711 return 0; 1712 1713 if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) { 1714 generic_err(leaf, 0, 1715 "invalid root, root %llu must never be empty", 1716 owner); 1717 return -EUCLEAN; 1718 } 1719 1720 return 0; 1721 } 1722 1723 if (unlikely(nritems == 0)) 1724 return 0; 1725 1726 /* 1727 * Check the following things to make sure this is a good leaf, and 1728 * leaf users won't need to bother with similar sanity checks: 1729 * 1730 * 1) key ordering 1731 * 2) item offset and size 1732 * No overlap, no hole, all inside the leaf. 1733 * 3) item content 1734 * If possible, do comprehensive sanity check. 1735 * NOTE: All checks must only rely on the item data itself. 1736 */ 1737 for (slot = 0; slot < nritems; slot++) { 1738 u32 item_end_expected; 1739 u64 item_data_end; 1740 int ret; 1741 1742 btrfs_item_key_to_cpu(leaf, &key, slot); 1743 1744 /* Make sure the keys are in the right order */ 1745 if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) { 1746 generic_err(leaf, slot, 1747 "bad key order, prev (%llu %u %llu) current (%llu %u %llu)", 1748 prev_key.objectid, prev_key.type, 1749 prev_key.offset, key.objectid, key.type, 1750 key.offset); 1751 return -EUCLEAN; 1752 } 1753 1754 item_data_end = (u64)btrfs_item_offset(leaf, slot) + 1755 btrfs_item_size(leaf, slot); 1756 /* 1757 * Make sure the offset and ends are right, remember that the 1758 * item data starts at the end of the leaf and grows towards the 1759 * front. 1760 */ 1761 if (slot == 0) 1762 item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info); 1763 else 1764 item_end_expected = btrfs_item_offset(leaf, 1765 slot - 1); 1766 if (unlikely(item_data_end != item_end_expected)) { 1767 generic_err(leaf, slot, 1768 "unexpected item end, have %llu expect %u", 1769 item_data_end, item_end_expected); 1770 return -EUCLEAN; 1771 } 1772 1773 /* 1774 * Check to make sure that we don't point outside of the leaf, 1775 * just in case all the items are consistent to each other, but 1776 * all point outside of the leaf. 1777 */ 1778 if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) { 1779 generic_err(leaf, slot, 1780 "slot end outside of leaf, have %llu expect range [0, %u]", 1781 item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info)); 1782 return -EUCLEAN; 1783 } 1784 1785 /* Also check if the item pointer overlaps with btrfs item. */ 1786 if (unlikely(btrfs_item_ptr_offset(leaf, slot) < 1787 btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) { 1788 generic_err(leaf, slot, 1789 "slot overlaps with its data, item end %lu data start %lu", 1790 btrfs_item_nr_offset(leaf, slot) + 1791 sizeof(struct btrfs_item), 1792 btrfs_item_ptr_offset(leaf, slot)); 1793 return -EUCLEAN; 1794 } 1795 1796 if (check_item_data) { 1797 /* 1798 * Check if the item size and content meet other 1799 * criteria 1800 */ 1801 ret = check_leaf_item(leaf, &key, slot, &prev_key); 1802 if (unlikely(ret < 0)) 1803 return ret; 1804 } 1805 1806 prev_key.objectid = key.objectid; 1807 prev_key.type = key.type; 1808 prev_key.offset = key.offset; 1809 } 1810 1811 return 0; 1812 } 1813 1814 int btrfs_check_leaf_full(struct extent_buffer *leaf) 1815 { 1816 return check_leaf(leaf, true); 1817 } 1818 ALLOW_ERROR_INJECTION(btrfs_check_leaf_full, ERRNO); 1819 1820 int btrfs_check_leaf_relaxed(struct extent_buffer *leaf) 1821 { 1822 return check_leaf(leaf, false); 1823 } 1824 1825 int btrfs_check_node(struct extent_buffer *node) 1826 { 1827 struct btrfs_fs_info *fs_info = node->fs_info; 1828 unsigned long nr = btrfs_header_nritems(node); 1829 struct btrfs_key key, next_key; 1830 int slot; 1831 int level = btrfs_header_level(node); 1832 u64 bytenr; 1833 int ret = 0; 1834 1835 if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) { 1836 generic_err(node, 0, 1837 "invalid level for node, have %d expect [1, %d]", 1838 level, BTRFS_MAX_LEVEL - 1); 1839 return -EUCLEAN; 1840 } 1841 if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) { 1842 btrfs_crit(fs_info, 1843 "corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]", 1844 btrfs_header_owner(node), node->start, 1845 nr == 0 ? "small" : "large", nr, 1846 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1847 return -EUCLEAN; 1848 } 1849 1850 for (slot = 0; slot < nr - 1; slot++) { 1851 bytenr = btrfs_node_blockptr(node, slot); 1852 btrfs_node_key_to_cpu(node, &key, slot); 1853 btrfs_node_key_to_cpu(node, &next_key, slot + 1); 1854 1855 if (unlikely(!bytenr)) { 1856 generic_err(node, slot, 1857 "invalid NULL node pointer"); 1858 ret = -EUCLEAN; 1859 goto out; 1860 } 1861 if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) { 1862 generic_err(node, slot, 1863 "unaligned pointer, have %llu should be aligned to %u", 1864 bytenr, fs_info->sectorsize); 1865 ret = -EUCLEAN; 1866 goto out; 1867 } 1868 1869 if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) { 1870 generic_err(node, slot, 1871 "bad key order, current (%llu %u %llu) next (%llu %u %llu)", 1872 key.objectid, key.type, key.offset, 1873 next_key.objectid, next_key.type, 1874 next_key.offset); 1875 ret = -EUCLEAN; 1876 goto out; 1877 } 1878 } 1879 out: 1880 return ret; 1881 } 1882 ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO); 1883 1884 int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner) 1885 { 1886 const bool is_subvol = is_fstree(root_owner); 1887 const u64 eb_owner = btrfs_header_owner(eb); 1888 1889 /* 1890 * Skip dummy fs, as selftests don't create unique ebs for each dummy 1891 * root. 1892 */ 1893 if (test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &eb->fs_info->fs_state)) 1894 return 0; 1895 /* 1896 * There are several call sites (backref walking, qgroup, and data 1897 * reloc) passing 0 as @root_owner, as they are not holding the 1898 * tree root. In that case, we can not do a reliable ownership check, 1899 * so just exit. 1900 */ 1901 if (root_owner == 0) 1902 return 0; 1903 /* 1904 * These trees use key.offset as their owner, our callers don't have 1905 * the extra capacity to pass key.offset here. So we just skip them. 1906 */ 1907 if (root_owner == BTRFS_TREE_LOG_OBJECTID || 1908 root_owner == BTRFS_TREE_RELOC_OBJECTID) 1909 return 0; 1910 1911 if (!is_subvol) { 1912 /* For non-subvolume trees, the eb owner should match root owner */ 1913 if (unlikely(root_owner != eb_owner)) { 1914 btrfs_crit(eb->fs_info, 1915 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu", 1916 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1917 root_owner, btrfs_header_bytenr(eb), eb_owner, 1918 root_owner); 1919 return -EUCLEAN; 1920 } 1921 return 0; 1922 } 1923 1924 /* 1925 * For subvolume trees, owners can mismatch, but they should all belong 1926 * to subvolume trees. 1927 */ 1928 if (unlikely(is_subvol != is_fstree(eb_owner))) { 1929 btrfs_crit(eb->fs_info, 1930 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]", 1931 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1932 root_owner, btrfs_header_bytenr(eb), eb_owner, 1933 BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID); 1934 return -EUCLEAN; 1935 } 1936 return 0; 1937 } 1938