1 /* 2 * Copyright (C) Qu Wenruo 2017. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program. 15 */ 16 17 /* 18 * The module is used to catch unexpected/corrupted tree block data. 19 * Such behavior can be caused either by a fuzzed image or bugs. 20 * 21 * The objective is to do leaf/node validation checks when tree block is read 22 * from disk, and check *every* possible member, so other code won't 23 * need to checking them again. 24 * 25 * Due to the potential and unwanted damage, every checker needs to be 26 * carefully reviewed otherwise so it does not prevent mount of valid images. 27 */ 28 29 #include "ctree.h" 30 #include "tree-checker.h" 31 #include "disk-io.h" 32 #include "compression.h" 33 34 /* 35 * Error message should follow the following format: 36 * corrupt <type>: <identifier>, <reason>[, <bad_value>] 37 * 38 * @type: leaf or node 39 * @identifier: the necessary info to locate the leaf/node. 40 * It's recommened to decode key.objecitd/offset if it's 41 * meaningful. 42 * @reason: describe the error 43 * @bad_value: optional, it's recommened to output bad value and its 44 * expected value (range). 45 * 46 * Since comma is used to separate the components, only space is allowed 47 * inside each component. 48 */ 49 50 /* 51 * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt. 52 * Allows callers to customize the output. 53 */ 54 __printf(4, 5) 55 __cold 56 static void generic_err(const struct btrfs_fs_info *fs_info, 57 const struct extent_buffer *eb, int slot, 58 const char *fmt, ...) 59 { 60 struct va_format vaf; 61 va_list args; 62 63 va_start(args, fmt); 64 65 vaf.fmt = fmt; 66 vaf.va = &args; 67 68 btrfs_crit(fs_info, 69 "corrupt %s: root=%llu block=%llu slot=%d, %pV", 70 btrfs_header_level(eb) == 0 ? "leaf" : "node", 71 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf); 72 va_end(args); 73 } 74 75 /* 76 * Customized reporter for extent data item, since its key objectid and 77 * offset has its own meaning. 78 */ 79 __printf(4, 5) 80 __cold 81 static void file_extent_err(const struct btrfs_fs_info *fs_info, 82 const struct extent_buffer *eb, int slot, 83 const char *fmt, ...) 84 { 85 struct btrfs_key key; 86 struct va_format vaf; 87 va_list args; 88 89 btrfs_item_key_to_cpu(eb, &key, slot); 90 va_start(args, fmt); 91 92 vaf.fmt = fmt; 93 vaf.va = &args; 94 95 btrfs_crit(fs_info, 96 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV", 97 btrfs_header_level(eb) == 0 ? "leaf" : "node", 98 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 99 key.objectid, key.offset, &vaf); 100 va_end(args); 101 } 102 103 /* 104 * Return 0 if the btrfs_file_extent_##name is aligned to @alignment 105 * Else return 1 106 */ 107 #define CHECK_FE_ALIGNED(fs_info, leaf, slot, fi, name, alignment) \ 108 ({ \ 109 if (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))) \ 110 file_extent_err((fs_info), (leaf), (slot), \ 111 "invalid %s for file extent, have %llu, should be aligned to %u", \ 112 (#name), btrfs_file_extent_##name((leaf), (fi)), \ 113 (alignment)); \ 114 (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \ 115 }) 116 117 static int check_extent_data_item(struct btrfs_fs_info *fs_info, 118 struct extent_buffer *leaf, 119 struct btrfs_key *key, int slot) 120 { 121 struct btrfs_file_extent_item *fi; 122 u32 sectorsize = fs_info->sectorsize; 123 u32 item_size = btrfs_item_size_nr(leaf, slot); 124 125 if (!IS_ALIGNED(key->offset, sectorsize)) { 126 file_extent_err(fs_info, leaf, slot, 127 "unaligned file_offset for file extent, have %llu should be aligned to %u", 128 key->offset, sectorsize); 129 return -EUCLEAN; 130 } 131 132 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 133 134 if (btrfs_file_extent_type(leaf, fi) > BTRFS_FILE_EXTENT_TYPES) { 135 file_extent_err(fs_info, leaf, slot, 136 "invalid type for file extent, have %u expect range [0, %u]", 137 btrfs_file_extent_type(leaf, fi), 138 BTRFS_FILE_EXTENT_TYPES); 139 return -EUCLEAN; 140 } 141 142 /* 143 * Support for new compression/encrption must introduce incompat flag, 144 * and must be caught in open_ctree(). 145 */ 146 if (btrfs_file_extent_compression(leaf, fi) > BTRFS_COMPRESS_TYPES) { 147 file_extent_err(fs_info, leaf, slot, 148 "invalid compression for file extent, have %u expect range [0, %u]", 149 btrfs_file_extent_compression(leaf, fi), 150 BTRFS_COMPRESS_TYPES); 151 return -EUCLEAN; 152 } 153 if (btrfs_file_extent_encryption(leaf, fi)) { 154 file_extent_err(fs_info, leaf, slot, 155 "invalid encryption for file extent, have %u expect 0", 156 btrfs_file_extent_encryption(leaf, fi)); 157 return -EUCLEAN; 158 } 159 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 160 /* Inline extent must have 0 as key offset */ 161 if (key->offset) { 162 file_extent_err(fs_info, leaf, slot, 163 "invalid file_offset for inline file extent, have %llu expect 0", 164 key->offset); 165 return -EUCLEAN; 166 } 167 168 /* Compressed inline extent has no on-disk size, skip it */ 169 if (btrfs_file_extent_compression(leaf, fi) != 170 BTRFS_COMPRESS_NONE) 171 return 0; 172 173 /* Uncompressed inline extent size must match item size */ 174 if (item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START + 175 btrfs_file_extent_ram_bytes(leaf, fi)) { 176 file_extent_err(fs_info, leaf, slot, 177 "invalid ram_bytes for uncompressed inline extent, have %u expect %llu", 178 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START + 179 btrfs_file_extent_ram_bytes(leaf, fi)); 180 return -EUCLEAN; 181 } 182 return 0; 183 } 184 185 /* Regular or preallocated extent has fixed item size */ 186 if (item_size != sizeof(*fi)) { 187 file_extent_err(fs_info, leaf, slot, 188 "invalid item size for reg/prealloc file extent, have %u expect %zu", 189 item_size, sizeof(*fi)); 190 return -EUCLEAN; 191 } 192 if (CHECK_FE_ALIGNED(fs_info, leaf, slot, fi, ram_bytes, sectorsize) || 193 CHECK_FE_ALIGNED(fs_info, leaf, slot, fi, disk_bytenr, sectorsize) || 194 CHECK_FE_ALIGNED(fs_info, leaf, slot, fi, disk_num_bytes, sectorsize) || 195 CHECK_FE_ALIGNED(fs_info, leaf, slot, fi, offset, sectorsize) || 196 CHECK_FE_ALIGNED(fs_info, leaf, slot, fi, num_bytes, sectorsize)) 197 return -EUCLEAN; 198 return 0; 199 } 200 201 static int check_csum_item(struct btrfs_fs_info *fs_info, 202 struct extent_buffer *leaf, struct btrfs_key *key, 203 int slot) 204 { 205 u32 sectorsize = fs_info->sectorsize; 206 u32 csumsize = btrfs_super_csum_size(fs_info->super_copy); 207 208 if (key->objectid != BTRFS_EXTENT_CSUM_OBJECTID) { 209 generic_err(fs_info, leaf, slot, 210 "invalid key objectid for csum item, have %llu expect %llu", 211 key->objectid, BTRFS_EXTENT_CSUM_OBJECTID); 212 return -EUCLEAN; 213 } 214 if (!IS_ALIGNED(key->offset, sectorsize)) { 215 generic_err(fs_info, leaf, slot, 216 "unaligned key offset for csum item, have %llu should be aligned to %u", 217 key->offset, sectorsize); 218 return -EUCLEAN; 219 } 220 if (!IS_ALIGNED(btrfs_item_size_nr(leaf, slot), csumsize)) { 221 generic_err(fs_info, leaf, slot, 222 "unaligned item size for csum item, have %u should be aligned to %u", 223 btrfs_item_size_nr(leaf, slot), csumsize); 224 return -EUCLEAN; 225 } 226 return 0; 227 } 228 229 /* 230 * Customized reported for dir_item, only important new info is key->objectid, 231 * which represents inode number 232 */ 233 __printf(4, 5) 234 __cold 235 static void dir_item_err(const struct btrfs_fs_info *fs_info, 236 const struct extent_buffer *eb, int slot, 237 const char *fmt, ...) 238 { 239 struct btrfs_key key; 240 struct va_format vaf; 241 va_list args; 242 243 btrfs_item_key_to_cpu(eb, &key, slot); 244 va_start(args, fmt); 245 246 vaf.fmt = fmt; 247 vaf.va = &args; 248 249 btrfs_crit(fs_info, 250 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV", 251 btrfs_header_level(eb) == 0 ? "leaf" : "node", 252 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 253 key.objectid, &vaf); 254 va_end(args); 255 } 256 257 static int check_dir_item(struct btrfs_fs_info *fs_info, 258 struct extent_buffer *leaf, 259 struct btrfs_key *key, int slot) 260 { 261 struct btrfs_dir_item *di; 262 u32 item_size = btrfs_item_size_nr(leaf, slot); 263 u32 cur = 0; 264 265 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 266 while (cur < item_size) { 267 u32 name_len; 268 u32 data_len; 269 u32 max_name_len; 270 u32 total_size; 271 u32 name_hash; 272 u8 dir_type; 273 274 /* header itself should not cross item boundary */ 275 if (cur + sizeof(*di) > item_size) { 276 dir_item_err(fs_info, leaf, slot, 277 "dir item header crosses item boundary, have %zu boundary %u", 278 cur + sizeof(*di), item_size); 279 return -EUCLEAN; 280 } 281 282 /* dir type check */ 283 dir_type = btrfs_dir_type(leaf, di); 284 if (dir_type >= BTRFS_FT_MAX) { 285 dir_item_err(fs_info, leaf, slot, 286 "invalid dir item type, have %u expect [0, %u)", 287 dir_type, BTRFS_FT_MAX); 288 return -EUCLEAN; 289 } 290 291 if (key->type == BTRFS_XATTR_ITEM_KEY && 292 dir_type != BTRFS_FT_XATTR) { 293 dir_item_err(fs_info, leaf, slot, 294 "invalid dir item type for XATTR key, have %u expect %u", 295 dir_type, BTRFS_FT_XATTR); 296 return -EUCLEAN; 297 } 298 if (dir_type == BTRFS_FT_XATTR && 299 key->type != BTRFS_XATTR_ITEM_KEY) { 300 dir_item_err(fs_info, leaf, slot, 301 "xattr dir type found for non-XATTR key"); 302 return -EUCLEAN; 303 } 304 if (dir_type == BTRFS_FT_XATTR) 305 max_name_len = XATTR_NAME_MAX; 306 else 307 max_name_len = BTRFS_NAME_LEN; 308 309 /* Name/data length check */ 310 name_len = btrfs_dir_name_len(leaf, di); 311 data_len = btrfs_dir_data_len(leaf, di); 312 if (name_len > max_name_len) { 313 dir_item_err(fs_info, leaf, slot, 314 "dir item name len too long, have %u max %u", 315 name_len, max_name_len); 316 return -EUCLEAN; 317 } 318 if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info)) { 319 dir_item_err(fs_info, leaf, slot, 320 "dir item name and data len too long, have %u max %u", 321 name_len + data_len, 322 BTRFS_MAX_XATTR_SIZE(fs_info)); 323 return -EUCLEAN; 324 } 325 326 if (data_len && dir_type != BTRFS_FT_XATTR) { 327 dir_item_err(fs_info, leaf, slot, 328 "dir item with invalid data len, have %u expect 0", 329 data_len); 330 return -EUCLEAN; 331 } 332 333 total_size = sizeof(*di) + name_len + data_len; 334 335 /* header and name/data should not cross item boundary */ 336 if (cur + total_size > item_size) { 337 dir_item_err(fs_info, leaf, slot, 338 "dir item data crosses item boundary, have %u boundary %u", 339 cur + total_size, item_size); 340 return -EUCLEAN; 341 } 342 343 /* 344 * Special check for XATTR/DIR_ITEM, as key->offset is name 345 * hash, should match its name 346 */ 347 if (key->type == BTRFS_DIR_ITEM_KEY || 348 key->type == BTRFS_XATTR_ITEM_KEY) { 349 char namebuf[max(BTRFS_NAME_LEN, XATTR_NAME_MAX)]; 350 351 read_extent_buffer(leaf, namebuf, 352 (unsigned long)(di + 1), name_len); 353 name_hash = btrfs_name_hash(namebuf, name_len); 354 if (key->offset != name_hash) { 355 dir_item_err(fs_info, leaf, slot, 356 "name hash mismatch with key, have 0x%016x expect 0x%016llx", 357 name_hash, key->offset); 358 return -EUCLEAN; 359 } 360 } 361 cur += total_size; 362 di = (struct btrfs_dir_item *)((void *)di + total_size); 363 } 364 return 0; 365 } 366 367 /* 368 * Common point to switch the item-specific validation. 369 */ 370 static int check_leaf_item(struct btrfs_fs_info *fs_info, 371 struct extent_buffer *leaf, 372 struct btrfs_key *key, int slot) 373 { 374 int ret = 0; 375 376 switch (key->type) { 377 case BTRFS_EXTENT_DATA_KEY: 378 ret = check_extent_data_item(fs_info, leaf, key, slot); 379 break; 380 case BTRFS_EXTENT_CSUM_KEY: 381 ret = check_csum_item(fs_info, leaf, key, slot); 382 break; 383 case BTRFS_DIR_ITEM_KEY: 384 case BTRFS_DIR_INDEX_KEY: 385 case BTRFS_XATTR_ITEM_KEY: 386 ret = check_dir_item(fs_info, leaf, key, slot); 387 break; 388 } 389 return ret; 390 } 391 392 static int check_leaf(struct btrfs_fs_info *fs_info, struct extent_buffer *leaf, 393 bool check_item_data) 394 { 395 /* No valid key type is 0, so all key should be larger than this key */ 396 struct btrfs_key prev_key = {0, 0, 0}; 397 struct btrfs_key key; 398 u32 nritems = btrfs_header_nritems(leaf); 399 int slot; 400 401 /* 402 * Extent buffers from a relocation tree have a owner field that 403 * corresponds to the subvolume tree they are based on. So just from an 404 * extent buffer alone we can not find out what is the id of the 405 * corresponding subvolume tree, so we can not figure out if the extent 406 * buffer corresponds to the root of the relocation tree or not. So 407 * skip this check for relocation trees. 408 */ 409 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) { 410 struct btrfs_root *check_root; 411 412 key.objectid = btrfs_header_owner(leaf); 413 key.type = BTRFS_ROOT_ITEM_KEY; 414 key.offset = (u64)-1; 415 416 check_root = btrfs_get_fs_root(fs_info, &key, false); 417 /* 418 * The only reason we also check NULL here is that during 419 * open_ctree() some roots has not yet been set up. 420 */ 421 if (!IS_ERR_OR_NULL(check_root)) { 422 struct extent_buffer *eb; 423 424 eb = btrfs_root_node(check_root); 425 /* if leaf is the root, then it's fine */ 426 if (leaf != eb) { 427 generic_err(fs_info, leaf, 0, 428 "invalid nritems, have %u should not be 0 for non-root leaf", 429 nritems); 430 free_extent_buffer(eb); 431 return -EUCLEAN; 432 } 433 free_extent_buffer(eb); 434 } 435 return 0; 436 } 437 438 if (nritems == 0) 439 return 0; 440 441 /* 442 * Check the following things to make sure this is a good leaf, and 443 * leaf users won't need to bother with similar sanity checks: 444 * 445 * 1) key ordering 446 * 2) item offset and size 447 * No overlap, no hole, all inside the leaf. 448 * 3) item content 449 * If possible, do comprehensive sanity check. 450 * NOTE: All checks must only rely on the item data itself. 451 */ 452 for (slot = 0; slot < nritems; slot++) { 453 u32 item_end_expected; 454 int ret; 455 456 btrfs_item_key_to_cpu(leaf, &key, slot); 457 458 /* Make sure the keys are in the right order */ 459 if (btrfs_comp_cpu_keys(&prev_key, &key) >= 0) { 460 generic_err(fs_info, leaf, slot, 461 "bad key order, prev (%llu %u %llu) current (%llu %u %llu)", 462 prev_key.objectid, prev_key.type, 463 prev_key.offset, key.objectid, key.type, 464 key.offset); 465 return -EUCLEAN; 466 } 467 468 /* 469 * Make sure the offset and ends are right, remember that the 470 * item data starts at the end of the leaf and grows towards the 471 * front. 472 */ 473 if (slot == 0) 474 item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info); 475 else 476 item_end_expected = btrfs_item_offset_nr(leaf, 477 slot - 1); 478 if (btrfs_item_end_nr(leaf, slot) != item_end_expected) { 479 generic_err(fs_info, leaf, slot, 480 "unexpected item end, have %u expect %u", 481 btrfs_item_end_nr(leaf, slot), 482 item_end_expected); 483 return -EUCLEAN; 484 } 485 486 /* 487 * Check to make sure that we don't point outside of the leaf, 488 * just in case all the items are consistent to each other, but 489 * all point outside of the leaf. 490 */ 491 if (btrfs_item_end_nr(leaf, slot) > 492 BTRFS_LEAF_DATA_SIZE(fs_info)) { 493 generic_err(fs_info, leaf, slot, 494 "slot end outside of leaf, have %u expect range [0, %u]", 495 btrfs_item_end_nr(leaf, slot), 496 BTRFS_LEAF_DATA_SIZE(fs_info)); 497 return -EUCLEAN; 498 } 499 500 /* Also check if the item pointer overlaps with btrfs item. */ 501 if (btrfs_item_nr_offset(slot) + sizeof(struct btrfs_item) > 502 btrfs_item_ptr_offset(leaf, slot)) { 503 generic_err(fs_info, leaf, slot, 504 "slot overlaps with its data, item end %lu data start %lu", 505 btrfs_item_nr_offset(slot) + 506 sizeof(struct btrfs_item), 507 btrfs_item_ptr_offset(leaf, slot)); 508 return -EUCLEAN; 509 } 510 511 if (check_item_data) { 512 /* 513 * Check if the item size and content meet other 514 * criteria 515 */ 516 ret = check_leaf_item(fs_info, leaf, &key, slot); 517 if (ret < 0) 518 return ret; 519 } 520 521 prev_key.objectid = key.objectid; 522 prev_key.type = key.type; 523 prev_key.offset = key.offset; 524 } 525 526 return 0; 527 } 528 529 int btrfs_check_leaf_full(struct btrfs_fs_info *fs_info, 530 struct extent_buffer *leaf) 531 { 532 return check_leaf(fs_info, leaf, true); 533 } 534 535 int btrfs_check_leaf_relaxed(struct btrfs_fs_info *fs_info, 536 struct extent_buffer *leaf) 537 { 538 return check_leaf(fs_info, leaf, false); 539 } 540 541 int btrfs_check_node(struct btrfs_fs_info *fs_info, struct extent_buffer *node) 542 { 543 unsigned long nr = btrfs_header_nritems(node); 544 struct btrfs_key key, next_key; 545 int slot; 546 u64 bytenr; 547 int ret = 0; 548 549 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info)) { 550 btrfs_crit(fs_info, 551 "corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]", 552 btrfs_header_owner(node), node->start, 553 nr == 0 ? "small" : "large", nr, 554 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 555 return -EUCLEAN; 556 } 557 558 for (slot = 0; slot < nr - 1; slot++) { 559 bytenr = btrfs_node_blockptr(node, slot); 560 btrfs_node_key_to_cpu(node, &key, slot); 561 btrfs_node_key_to_cpu(node, &next_key, slot + 1); 562 563 if (!bytenr) { 564 generic_err(fs_info, node, slot, 565 "invalid NULL node pointer"); 566 ret = -EUCLEAN; 567 goto out; 568 } 569 if (!IS_ALIGNED(bytenr, fs_info->sectorsize)) { 570 generic_err(fs_info, node, slot, 571 "unaligned pointer, have %llu should be aligned to %u", 572 bytenr, fs_info->sectorsize); 573 ret = -EUCLEAN; 574 goto out; 575 } 576 577 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) { 578 generic_err(fs_info, node, slot, 579 "bad key order, current (%llu %u %llu) next (%llu %u %llu)", 580 key.objectid, key.type, key.offset, 581 next_key.objectid, next_key.type, 582 next_key.offset); 583 ret = -EUCLEAN; 584 goto out; 585 } 586 } 587 out: 588 return ret; 589 } 590