xref: /openbmc/linux/fs/btrfs/transaction.c (revision fd589a8f)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "tree-log.h"
29 
30 #define BTRFS_ROOT_TRANS_TAG 0
31 
32 static noinline void put_transaction(struct btrfs_transaction *transaction)
33 {
34 	WARN_ON(transaction->use_count == 0);
35 	transaction->use_count--;
36 	if (transaction->use_count == 0) {
37 		list_del_init(&transaction->list);
38 		memset(transaction, 0, sizeof(*transaction));
39 		kmem_cache_free(btrfs_transaction_cachep, transaction);
40 	}
41 }
42 
43 static noinline void switch_commit_root(struct btrfs_root *root)
44 {
45 	free_extent_buffer(root->commit_root);
46 	root->commit_root = btrfs_root_node(root);
47 }
48 
49 /*
50  * either allocate a new transaction or hop into the existing one
51  */
52 static noinline int join_transaction(struct btrfs_root *root)
53 {
54 	struct btrfs_transaction *cur_trans;
55 	cur_trans = root->fs_info->running_transaction;
56 	if (!cur_trans) {
57 		cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
58 					     GFP_NOFS);
59 		BUG_ON(!cur_trans);
60 		root->fs_info->generation++;
61 		cur_trans->num_writers = 1;
62 		cur_trans->num_joined = 0;
63 		cur_trans->transid = root->fs_info->generation;
64 		init_waitqueue_head(&cur_trans->writer_wait);
65 		init_waitqueue_head(&cur_trans->commit_wait);
66 		cur_trans->in_commit = 0;
67 		cur_trans->blocked = 0;
68 		cur_trans->use_count = 1;
69 		cur_trans->commit_done = 0;
70 		cur_trans->start_time = get_seconds();
71 
72 		cur_trans->delayed_refs.root.rb_node = NULL;
73 		cur_trans->delayed_refs.num_entries = 0;
74 		cur_trans->delayed_refs.num_heads_ready = 0;
75 		cur_trans->delayed_refs.num_heads = 0;
76 		cur_trans->delayed_refs.flushing = 0;
77 		cur_trans->delayed_refs.run_delayed_start = 0;
78 		spin_lock_init(&cur_trans->delayed_refs.lock);
79 
80 		INIT_LIST_HEAD(&cur_trans->pending_snapshots);
81 		list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
82 		extent_io_tree_init(&cur_trans->dirty_pages,
83 				     root->fs_info->btree_inode->i_mapping,
84 				     GFP_NOFS);
85 		spin_lock(&root->fs_info->new_trans_lock);
86 		root->fs_info->running_transaction = cur_trans;
87 		spin_unlock(&root->fs_info->new_trans_lock);
88 	} else {
89 		cur_trans->num_writers++;
90 		cur_trans->num_joined++;
91 	}
92 
93 	return 0;
94 }
95 
96 /*
97  * this does all the record keeping required to make sure that a reference
98  * counted root is properly recorded in a given transaction.  This is required
99  * to make sure the old root from before we joined the transaction is deleted
100  * when the transaction commits
101  */
102 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
103 					 struct btrfs_root *root)
104 {
105 	if (root->ref_cows && root->last_trans < trans->transid) {
106 		WARN_ON(root == root->fs_info->extent_root);
107 		WARN_ON(root->root_item.refs == 0);
108 		WARN_ON(root->commit_root != root->node);
109 
110 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
111 			   (unsigned long)root->root_key.objectid,
112 			   BTRFS_ROOT_TRANS_TAG);
113 		root->last_trans = trans->transid;
114 		btrfs_init_reloc_root(trans, root);
115 	}
116 	return 0;
117 }
118 
119 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
120 			       struct btrfs_root *root)
121 {
122 	if (!root->ref_cows)
123 		return 0;
124 
125 	mutex_lock(&root->fs_info->trans_mutex);
126 	if (root->last_trans == trans->transid) {
127 		mutex_unlock(&root->fs_info->trans_mutex);
128 		return 0;
129 	}
130 
131 	record_root_in_trans(trans, root);
132 	mutex_unlock(&root->fs_info->trans_mutex);
133 	return 0;
134 }
135 
136 /* wait for commit against the current transaction to become unblocked
137  * when this is done, it is safe to start a new transaction, but the current
138  * transaction might not be fully on disk.
139  */
140 static void wait_current_trans(struct btrfs_root *root)
141 {
142 	struct btrfs_transaction *cur_trans;
143 
144 	cur_trans = root->fs_info->running_transaction;
145 	if (cur_trans && cur_trans->blocked) {
146 		DEFINE_WAIT(wait);
147 		cur_trans->use_count++;
148 		while (1) {
149 			prepare_to_wait(&root->fs_info->transaction_wait, &wait,
150 					TASK_UNINTERRUPTIBLE);
151 			if (cur_trans->blocked) {
152 				mutex_unlock(&root->fs_info->trans_mutex);
153 				schedule();
154 				mutex_lock(&root->fs_info->trans_mutex);
155 				finish_wait(&root->fs_info->transaction_wait,
156 					    &wait);
157 			} else {
158 				finish_wait(&root->fs_info->transaction_wait,
159 					    &wait);
160 				break;
161 			}
162 		}
163 		put_transaction(cur_trans);
164 	}
165 }
166 
167 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
168 					     int num_blocks, int wait)
169 {
170 	struct btrfs_trans_handle *h =
171 		kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
172 	int ret;
173 
174 	mutex_lock(&root->fs_info->trans_mutex);
175 	if (!root->fs_info->log_root_recovering &&
176 	    ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
177 		wait_current_trans(root);
178 	ret = join_transaction(root);
179 	BUG_ON(ret);
180 
181 	h->transid = root->fs_info->running_transaction->transid;
182 	h->transaction = root->fs_info->running_transaction;
183 	h->blocks_reserved = num_blocks;
184 	h->blocks_used = 0;
185 	h->block_group = 0;
186 	h->alloc_exclude_nr = 0;
187 	h->alloc_exclude_start = 0;
188 	h->delayed_ref_updates = 0;
189 
190 	root->fs_info->running_transaction->use_count++;
191 	record_root_in_trans(h, root);
192 	mutex_unlock(&root->fs_info->trans_mutex);
193 	return h;
194 }
195 
196 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
197 						   int num_blocks)
198 {
199 	return start_transaction(root, num_blocks, 1);
200 }
201 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
202 						   int num_blocks)
203 {
204 	return start_transaction(root, num_blocks, 0);
205 }
206 
207 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
208 							 int num_blocks)
209 {
210 	return start_transaction(r, num_blocks, 2);
211 }
212 
213 /* wait for a transaction commit to be fully complete */
214 static noinline int wait_for_commit(struct btrfs_root *root,
215 				    struct btrfs_transaction *commit)
216 {
217 	DEFINE_WAIT(wait);
218 	mutex_lock(&root->fs_info->trans_mutex);
219 	while (!commit->commit_done) {
220 		prepare_to_wait(&commit->commit_wait, &wait,
221 				TASK_UNINTERRUPTIBLE);
222 		if (commit->commit_done)
223 			break;
224 		mutex_unlock(&root->fs_info->trans_mutex);
225 		schedule();
226 		mutex_lock(&root->fs_info->trans_mutex);
227 	}
228 	mutex_unlock(&root->fs_info->trans_mutex);
229 	finish_wait(&commit->commit_wait, &wait);
230 	return 0;
231 }
232 
233 #if 0
234 /*
235  * rate limit against the drop_snapshot code.  This helps to slow down new
236  * operations if the drop_snapshot code isn't able to keep up.
237  */
238 static void throttle_on_drops(struct btrfs_root *root)
239 {
240 	struct btrfs_fs_info *info = root->fs_info;
241 	int harder_count = 0;
242 
243 harder:
244 	if (atomic_read(&info->throttles)) {
245 		DEFINE_WAIT(wait);
246 		int thr;
247 		thr = atomic_read(&info->throttle_gen);
248 
249 		do {
250 			prepare_to_wait(&info->transaction_throttle,
251 					&wait, TASK_UNINTERRUPTIBLE);
252 			if (!atomic_read(&info->throttles)) {
253 				finish_wait(&info->transaction_throttle, &wait);
254 				break;
255 			}
256 			schedule();
257 			finish_wait(&info->transaction_throttle, &wait);
258 		} while (thr == atomic_read(&info->throttle_gen));
259 		harder_count++;
260 
261 		if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
262 		    harder_count < 2)
263 			goto harder;
264 
265 		if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
266 		    harder_count < 10)
267 			goto harder;
268 
269 		if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
270 		    harder_count < 20)
271 			goto harder;
272 	}
273 }
274 #endif
275 
276 void btrfs_throttle(struct btrfs_root *root)
277 {
278 	mutex_lock(&root->fs_info->trans_mutex);
279 	if (!root->fs_info->open_ioctl_trans)
280 		wait_current_trans(root);
281 	mutex_unlock(&root->fs_info->trans_mutex);
282 }
283 
284 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
285 			  struct btrfs_root *root, int throttle)
286 {
287 	struct btrfs_transaction *cur_trans;
288 	struct btrfs_fs_info *info = root->fs_info;
289 	int count = 0;
290 
291 	while (count < 4) {
292 		unsigned long cur = trans->delayed_ref_updates;
293 		trans->delayed_ref_updates = 0;
294 		if (cur &&
295 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
296 			trans->delayed_ref_updates = 0;
297 
298 			/*
299 			 * do a full flush if the transaction is trying
300 			 * to close
301 			 */
302 			if (trans->transaction->delayed_refs.flushing)
303 				cur = 0;
304 			btrfs_run_delayed_refs(trans, root, cur);
305 		} else {
306 			break;
307 		}
308 		count++;
309 	}
310 
311 	mutex_lock(&info->trans_mutex);
312 	cur_trans = info->running_transaction;
313 	WARN_ON(cur_trans != trans->transaction);
314 	WARN_ON(cur_trans->num_writers < 1);
315 	cur_trans->num_writers--;
316 
317 	if (waitqueue_active(&cur_trans->writer_wait))
318 		wake_up(&cur_trans->writer_wait);
319 	put_transaction(cur_trans);
320 	mutex_unlock(&info->trans_mutex);
321 	memset(trans, 0, sizeof(*trans));
322 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
323 
324 	return 0;
325 }
326 
327 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
328 			  struct btrfs_root *root)
329 {
330 	return __btrfs_end_transaction(trans, root, 0);
331 }
332 
333 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
334 				   struct btrfs_root *root)
335 {
336 	return __btrfs_end_transaction(trans, root, 1);
337 }
338 
339 /*
340  * when btree blocks are allocated, they have some corresponding bits set for
341  * them in one of two extent_io trees.  This is used to make sure all of
342  * those extents are on disk for transaction or log commit
343  */
344 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
345 					struct extent_io_tree *dirty_pages)
346 {
347 	int ret;
348 	int err = 0;
349 	int werr = 0;
350 	struct page *page;
351 	struct inode *btree_inode = root->fs_info->btree_inode;
352 	u64 start = 0;
353 	u64 end;
354 	unsigned long index;
355 
356 	while (1) {
357 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
358 					    EXTENT_DIRTY);
359 		if (ret)
360 			break;
361 		while (start <= end) {
362 			cond_resched();
363 
364 			index = start >> PAGE_CACHE_SHIFT;
365 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
366 			page = find_get_page(btree_inode->i_mapping, index);
367 			if (!page)
368 				continue;
369 
370 			btree_lock_page_hook(page);
371 			if (!page->mapping) {
372 				unlock_page(page);
373 				page_cache_release(page);
374 				continue;
375 			}
376 
377 			if (PageWriteback(page)) {
378 				if (PageDirty(page))
379 					wait_on_page_writeback(page);
380 				else {
381 					unlock_page(page);
382 					page_cache_release(page);
383 					continue;
384 				}
385 			}
386 			err = write_one_page(page, 0);
387 			if (err)
388 				werr = err;
389 			page_cache_release(page);
390 		}
391 	}
392 	while (1) {
393 		ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
394 					    EXTENT_DIRTY);
395 		if (ret)
396 			break;
397 
398 		clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
399 		while (start <= end) {
400 			index = start >> PAGE_CACHE_SHIFT;
401 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
402 			page = find_get_page(btree_inode->i_mapping, index);
403 			if (!page)
404 				continue;
405 			if (PageDirty(page)) {
406 				btree_lock_page_hook(page);
407 				wait_on_page_writeback(page);
408 				err = write_one_page(page, 0);
409 				if (err)
410 					werr = err;
411 			}
412 			wait_on_page_writeback(page);
413 			page_cache_release(page);
414 			cond_resched();
415 		}
416 	}
417 	if (err)
418 		werr = err;
419 	return werr;
420 }
421 
422 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
423 				     struct btrfs_root *root)
424 {
425 	if (!trans || !trans->transaction) {
426 		struct inode *btree_inode;
427 		btree_inode = root->fs_info->btree_inode;
428 		return filemap_write_and_wait(btree_inode->i_mapping);
429 	}
430 	return btrfs_write_and_wait_marked_extents(root,
431 					   &trans->transaction->dirty_pages);
432 }
433 
434 /*
435  * this is used to update the root pointer in the tree of tree roots.
436  *
437  * But, in the case of the extent allocation tree, updating the root
438  * pointer may allocate blocks which may change the root of the extent
439  * allocation tree.
440  *
441  * So, this loops and repeats and makes sure the cowonly root didn't
442  * change while the root pointer was being updated in the metadata.
443  */
444 static int update_cowonly_root(struct btrfs_trans_handle *trans,
445 			       struct btrfs_root *root)
446 {
447 	int ret;
448 	u64 old_root_bytenr;
449 	struct btrfs_root *tree_root = root->fs_info->tree_root;
450 
451 	btrfs_write_dirty_block_groups(trans, root);
452 
453 	while (1) {
454 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
455 		if (old_root_bytenr == root->node->start)
456 			break;
457 
458 		btrfs_set_root_node(&root->root_item, root->node);
459 		ret = btrfs_update_root(trans, tree_root,
460 					&root->root_key,
461 					&root->root_item);
462 		BUG_ON(ret);
463 
464 		ret = btrfs_write_dirty_block_groups(trans, root);
465 		BUG_ON(ret);
466 	}
467 
468 	if (root != root->fs_info->extent_root)
469 		switch_commit_root(root);
470 
471 	return 0;
472 }
473 
474 /*
475  * update all the cowonly tree roots on disk
476  */
477 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
478 					 struct btrfs_root *root)
479 {
480 	struct btrfs_fs_info *fs_info = root->fs_info;
481 	struct list_head *next;
482 	struct extent_buffer *eb;
483 	int ret;
484 
485 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
486 	BUG_ON(ret);
487 
488 	eb = btrfs_lock_root_node(fs_info->tree_root);
489 	btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
490 	btrfs_tree_unlock(eb);
491 	free_extent_buffer(eb);
492 
493 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
494 	BUG_ON(ret);
495 
496 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
497 		next = fs_info->dirty_cowonly_roots.next;
498 		list_del_init(next);
499 		root = list_entry(next, struct btrfs_root, dirty_list);
500 
501 		update_cowonly_root(trans, root);
502 	}
503 
504 	down_write(&fs_info->extent_commit_sem);
505 	switch_commit_root(fs_info->extent_root);
506 	up_write(&fs_info->extent_commit_sem);
507 
508 	return 0;
509 }
510 
511 /*
512  * dead roots are old snapshots that need to be deleted.  This allocates
513  * a dirty root struct and adds it into the list of dead roots that need to
514  * be deleted
515  */
516 int btrfs_add_dead_root(struct btrfs_root *root)
517 {
518 	mutex_lock(&root->fs_info->trans_mutex);
519 	list_add(&root->root_list, &root->fs_info->dead_roots);
520 	mutex_unlock(&root->fs_info->trans_mutex);
521 	return 0;
522 }
523 
524 /*
525  * update all the cowonly tree roots on disk
526  */
527 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
528 				    struct btrfs_root *root)
529 {
530 	struct btrfs_root *gang[8];
531 	struct btrfs_fs_info *fs_info = root->fs_info;
532 	int i;
533 	int ret;
534 	int err = 0;
535 
536 	while (1) {
537 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
538 						 (void **)gang, 0,
539 						 ARRAY_SIZE(gang),
540 						 BTRFS_ROOT_TRANS_TAG);
541 		if (ret == 0)
542 			break;
543 		for (i = 0; i < ret; i++) {
544 			root = gang[i];
545 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
546 					(unsigned long)root->root_key.objectid,
547 					BTRFS_ROOT_TRANS_TAG);
548 
549 			btrfs_free_log(trans, root);
550 			btrfs_update_reloc_root(trans, root);
551 
552 			if (root->commit_root != root->node) {
553 				switch_commit_root(root);
554 				btrfs_set_root_node(&root->root_item,
555 						    root->node);
556 			}
557 
558 			err = btrfs_update_root(trans, fs_info->tree_root,
559 						&root->root_key,
560 						&root->root_item);
561 			if (err)
562 				break;
563 		}
564 	}
565 	return err;
566 }
567 
568 /*
569  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
570  * otherwise every leaf in the btree is read and defragged.
571  */
572 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
573 {
574 	struct btrfs_fs_info *info = root->fs_info;
575 	int ret;
576 	struct btrfs_trans_handle *trans;
577 	unsigned long nr;
578 
579 	smp_mb();
580 	if (root->defrag_running)
581 		return 0;
582 	trans = btrfs_start_transaction(root, 1);
583 	while (1) {
584 		root->defrag_running = 1;
585 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
586 		nr = trans->blocks_used;
587 		btrfs_end_transaction(trans, root);
588 		btrfs_btree_balance_dirty(info->tree_root, nr);
589 		cond_resched();
590 
591 		trans = btrfs_start_transaction(root, 1);
592 		if (root->fs_info->closing || ret != -EAGAIN)
593 			break;
594 	}
595 	root->defrag_running = 0;
596 	smp_mb();
597 	btrfs_end_transaction(trans, root);
598 	return 0;
599 }
600 
601 #if 0
602 /*
603  * when dropping snapshots, we generate a ton of delayed refs, and it makes
604  * sense not to join the transaction while it is trying to flush the current
605  * queue of delayed refs out.
606  *
607  * This is used by the drop snapshot code only
608  */
609 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
610 {
611 	DEFINE_WAIT(wait);
612 
613 	mutex_lock(&info->trans_mutex);
614 	while (info->running_transaction &&
615 	       info->running_transaction->delayed_refs.flushing) {
616 		prepare_to_wait(&info->transaction_wait, &wait,
617 				TASK_UNINTERRUPTIBLE);
618 		mutex_unlock(&info->trans_mutex);
619 
620 		schedule();
621 
622 		mutex_lock(&info->trans_mutex);
623 		finish_wait(&info->transaction_wait, &wait);
624 	}
625 	mutex_unlock(&info->trans_mutex);
626 	return 0;
627 }
628 
629 /*
630  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
631  * all of them
632  */
633 int btrfs_drop_dead_root(struct btrfs_root *root)
634 {
635 	struct btrfs_trans_handle *trans;
636 	struct btrfs_root *tree_root = root->fs_info->tree_root;
637 	unsigned long nr;
638 	int ret;
639 
640 	while (1) {
641 		/*
642 		 * we don't want to jump in and create a bunch of
643 		 * delayed refs if the transaction is starting to close
644 		 */
645 		wait_transaction_pre_flush(tree_root->fs_info);
646 		trans = btrfs_start_transaction(tree_root, 1);
647 
648 		/*
649 		 * we've joined a transaction, make sure it isn't
650 		 * closing right now
651 		 */
652 		if (trans->transaction->delayed_refs.flushing) {
653 			btrfs_end_transaction(trans, tree_root);
654 			continue;
655 		}
656 
657 		ret = btrfs_drop_snapshot(trans, root);
658 		if (ret != -EAGAIN)
659 			break;
660 
661 		ret = btrfs_update_root(trans, tree_root,
662 					&root->root_key,
663 					&root->root_item);
664 		if (ret)
665 			break;
666 
667 		nr = trans->blocks_used;
668 		ret = btrfs_end_transaction(trans, tree_root);
669 		BUG_ON(ret);
670 
671 		btrfs_btree_balance_dirty(tree_root, nr);
672 		cond_resched();
673 	}
674 	BUG_ON(ret);
675 
676 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
677 	BUG_ON(ret);
678 
679 	nr = trans->blocks_used;
680 	ret = btrfs_end_transaction(trans, tree_root);
681 	BUG_ON(ret);
682 
683 	free_extent_buffer(root->node);
684 	free_extent_buffer(root->commit_root);
685 	kfree(root);
686 
687 	btrfs_btree_balance_dirty(tree_root, nr);
688 	return ret;
689 }
690 #endif
691 
692 /*
693  * new snapshots need to be created at a very specific time in the
694  * transaction commit.  This does the actual creation
695  */
696 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
697 				   struct btrfs_fs_info *fs_info,
698 				   struct btrfs_pending_snapshot *pending)
699 {
700 	struct btrfs_key key;
701 	struct btrfs_root_item *new_root_item;
702 	struct btrfs_root *tree_root = fs_info->tree_root;
703 	struct btrfs_root *root = pending->root;
704 	struct extent_buffer *tmp;
705 	struct extent_buffer *old;
706 	int ret;
707 	u64 objectid;
708 
709 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
710 	if (!new_root_item) {
711 		ret = -ENOMEM;
712 		goto fail;
713 	}
714 	ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
715 	if (ret)
716 		goto fail;
717 
718 	record_root_in_trans(trans, root);
719 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
720 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
721 
722 	key.objectid = objectid;
723 	key.offset = 0;
724 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
725 
726 	old = btrfs_lock_root_node(root);
727 	btrfs_cow_block(trans, root, old, NULL, 0, &old);
728 	btrfs_set_lock_blocking(old);
729 
730 	btrfs_copy_root(trans, root, old, &tmp, objectid);
731 	btrfs_tree_unlock(old);
732 	free_extent_buffer(old);
733 
734 	btrfs_set_root_node(new_root_item, tmp);
735 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
736 				new_root_item);
737 	btrfs_tree_unlock(tmp);
738 	free_extent_buffer(tmp);
739 	if (ret)
740 		goto fail;
741 
742 	key.offset = (u64)-1;
743 	memcpy(&pending->root_key, &key, sizeof(key));
744 fail:
745 	kfree(new_root_item);
746 	return ret;
747 }
748 
749 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
750 				   struct btrfs_pending_snapshot *pending)
751 {
752 	int ret;
753 	int namelen;
754 	u64 index = 0;
755 	struct btrfs_trans_handle *trans;
756 	struct inode *parent_inode;
757 	struct inode *inode;
758 	struct btrfs_root *parent_root;
759 
760 	parent_inode = pending->dentry->d_parent->d_inode;
761 	parent_root = BTRFS_I(parent_inode)->root;
762 	trans = btrfs_join_transaction(parent_root, 1);
763 
764 	/*
765 	 * insert the directory item
766 	 */
767 	namelen = strlen(pending->name);
768 	ret = btrfs_set_inode_index(parent_inode, &index);
769 	ret = btrfs_insert_dir_item(trans, parent_root,
770 			    pending->name, namelen,
771 			    parent_inode->i_ino,
772 			    &pending->root_key, BTRFS_FT_DIR, index);
773 
774 	if (ret)
775 		goto fail;
776 
777 	btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
778 	ret = btrfs_update_inode(trans, parent_root, parent_inode);
779 	BUG_ON(ret);
780 
781 	/* add the backref first */
782 	ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
783 				 pending->root_key.objectid,
784 				 BTRFS_ROOT_BACKREF_KEY,
785 				 parent_root->root_key.objectid,
786 				 parent_inode->i_ino, index, pending->name,
787 				 namelen);
788 
789 	BUG_ON(ret);
790 
791 	/* now add the forward ref */
792 	ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
793 				 parent_root->root_key.objectid,
794 				 BTRFS_ROOT_REF_KEY,
795 				 pending->root_key.objectid,
796 				 parent_inode->i_ino, index, pending->name,
797 				 namelen);
798 
799 	inode = btrfs_lookup_dentry(parent_inode, pending->dentry);
800 	d_instantiate(pending->dentry, inode);
801 fail:
802 	btrfs_end_transaction(trans, fs_info->fs_root);
803 	return ret;
804 }
805 
806 /*
807  * create all the snapshots we've scheduled for creation
808  */
809 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
810 					     struct btrfs_fs_info *fs_info)
811 {
812 	struct btrfs_pending_snapshot *pending;
813 	struct list_head *head = &trans->transaction->pending_snapshots;
814 	int ret;
815 
816 	list_for_each_entry(pending, head, list) {
817 		ret = create_pending_snapshot(trans, fs_info, pending);
818 		BUG_ON(ret);
819 	}
820 	return 0;
821 }
822 
823 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
824 					     struct btrfs_fs_info *fs_info)
825 {
826 	struct btrfs_pending_snapshot *pending;
827 	struct list_head *head = &trans->transaction->pending_snapshots;
828 	int ret;
829 
830 	while (!list_empty(head)) {
831 		pending = list_entry(head->next,
832 				     struct btrfs_pending_snapshot, list);
833 		ret = finish_pending_snapshot(fs_info, pending);
834 		BUG_ON(ret);
835 		list_del(&pending->list);
836 		kfree(pending->name);
837 		kfree(pending);
838 	}
839 	return 0;
840 }
841 
842 static void update_super_roots(struct btrfs_root *root)
843 {
844 	struct btrfs_root_item *root_item;
845 	struct btrfs_super_block *super;
846 
847 	super = &root->fs_info->super_copy;
848 
849 	root_item = &root->fs_info->chunk_root->root_item;
850 	super->chunk_root = root_item->bytenr;
851 	super->chunk_root_generation = root_item->generation;
852 	super->chunk_root_level = root_item->level;
853 
854 	root_item = &root->fs_info->tree_root->root_item;
855 	super->root = root_item->bytenr;
856 	super->generation = root_item->generation;
857 	super->root_level = root_item->level;
858 }
859 
860 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
861 {
862 	int ret = 0;
863 	spin_lock(&info->new_trans_lock);
864 	if (info->running_transaction)
865 		ret = info->running_transaction->in_commit;
866 	spin_unlock(&info->new_trans_lock);
867 	return ret;
868 }
869 
870 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
871 			     struct btrfs_root *root)
872 {
873 	unsigned long joined = 0;
874 	unsigned long timeout = 1;
875 	struct btrfs_transaction *cur_trans;
876 	struct btrfs_transaction *prev_trans = NULL;
877 	struct extent_io_tree *pinned_copy;
878 	DEFINE_WAIT(wait);
879 	int ret;
880 	int should_grow = 0;
881 	unsigned long now = get_seconds();
882 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
883 
884 	btrfs_run_ordered_operations(root, 0);
885 
886 	/* make a pass through all the delayed refs we have so far
887 	 * any runnings procs may add more while we are here
888 	 */
889 	ret = btrfs_run_delayed_refs(trans, root, 0);
890 	BUG_ON(ret);
891 
892 	cur_trans = trans->transaction;
893 	/*
894 	 * set the flushing flag so procs in this transaction have to
895 	 * start sending their work down.
896 	 */
897 	cur_trans->delayed_refs.flushing = 1;
898 
899 	ret = btrfs_run_delayed_refs(trans, root, 0);
900 	BUG_ON(ret);
901 
902 	mutex_lock(&root->fs_info->trans_mutex);
903 	if (cur_trans->in_commit) {
904 		cur_trans->use_count++;
905 		mutex_unlock(&root->fs_info->trans_mutex);
906 		btrfs_end_transaction(trans, root);
907 
908 		ret = wait_for_commit(root, cur_trans);
909 		BUG_ON(ret);
910 
911 		mutex_lock(&root->fs_info->trans_mutex);
912 		put_transaction(cur_trans);
913 		mutex_unlock(&root->fs_info->trans_mutex);
914 
915 		return 0;
916 	}
917 
918 	pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS);
919 	if (!pinned_copy)
920 		return -ENOMEM;
921 
922 	extent_io_tree_init(pinned_copy,
923 			     root->fs_info->btree_inode->i_mapping, GFP_NOFS);
924 
925 	trans->transaction->in_commit = 1;
926 	trans->transaction->blocked = 1;
927 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
928 		prev_trans = list_entry(cur_trans->list.prev,
929 					struct btrfs_transaction, list);
930 		if (!prev_trans->commit_done) {
931 			prev_trans->use_count++;
932 			mutex_unlock(&root->fs_info->trans_mutex);
933 
934 			wait_for_commit(root, prev_trans);
935 
936 			mutex_lock(&root->fs_info->trans_mutex);
937 			put_transaction(prev_trans);
938 		}
939 	}
940 
941 	if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
942 		should_grow = 1;
943 
944 	do {
945 		int snap_pending = 0;
946 		joined = cur_trans->num_joined;
947 		if (!list_empty(&trans->transaction->pending_snapshots))
948 			snap_pending = 1;
949 
950 		WARN_ON(cur_trans != trans->transaction);
951 		prepare_to_wait(&cur_trans->writer_wait, &wait,
952 				TASK_UNINTERRUPTIBLE);
953 
954 		if (cur_trans->num_writers > 1)
955 			timeout = MAX_SCHEDULE_TIMEOUT;
956 		else if (should_grow)
957 			timeout = 1;
958 
959 		mutex_unlock(&root->fs_info->trans_mutex);
960 
961 		if (flush_on_commit) {
962 			btrfs_start_delalloc_inodes(root);
963 			ret = btrfs_wait_ordered_extents(root, 0);
964 			BUG_ON(ret);
965 		} else if (snap_pending) {
966 			ret = btrfs_wait_ordered_extents(root, 1);
967 			BUG_ON(ret);
968 		}
969 
970 		/*
971 		 * rename don't use btrfs_join_transaction, so, once we
972 		 * set the transaction to blocked above, we aren't going
973 		 * to get any new ordered operations.  We can safely run
974 		 * it here and no for sure that nothing new will be added
975 		 * to the list
976 		 */
977 		btrfs_run_ordered_operations(root, 1);
978 
979 		smp_mb();
980 		if (cur_trans->num_writers > 1 || should_grow)
981 			schedule_timeout(timeout);
982 
983 		mutex_lock(&root->fs_info->trans_mutex);
984 		finish_wait(&cur_trans->writer_wait, &wait);
985 	} while (cur_trans->num_writers > 1 ||
986 		 (should_grow && cur_trans->num_joined != joined));
987 
988 	ret = create_pending_snapshots(trans, root->fs_info);
989 	BUG_ON(ret);
990 
991 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
992 	BUG_ON(ret);
993 
994 	WARN_ON(cur_trans != trans->transaction);
995 
996 	/* btrfs_commit_tree_roots is responsible for getting the
997 	 * various roots consistent with each other.  Every pointer
998 	 * in the tree of tree roots has to point to the most up to date
999 	 * root for every subvolume and other tree.  So, we have to keep
1000 	 * the tree logging code from jumping in and changing any
1001 	 * of the trees.
1002 	 *
1003 	 * At this point in the commit, there can't be any tree-log
1004 	 * writers, but a little lower down we drop the trans mutex
1005 	 * and let new people in.  By holding the tree_log_mutex
1006 	 * from now until after the super is written, we avoid races
1007 	 * with the tree-log code.
1008 	 */
1009 	mutex_lock(&root->fs_info->tree_log_mutex);
1010 
1011 	ret = commit_fs_roots(trans, root);
1012 	BUG_ON(ret);
1013 
1014 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1015 	 * safe to free the root of tree log roots
1016 	 */
1017 	btrfs_free_log_root_tree(trans, root->fs_info);
1018 
1019 	ret = commit_cowonly_roots(trans, root);
1020 	BUG_ON(ret);
1021 
1022 	cur_trans = root->fs_info->running_transaction;
1023 	spin_lock(&root->fs_info->new_trans_lock);
1024 	root->fs_info->running_transaction = NULL;
1025 	spin_unlock(&root->fs_info->new_trans_lock);
1026 
1027 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1028 			    root->fs_info->tree_root->node);
1029 	switch_commit_root(root->fs_info->tree_root);
1030 
1031 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1032 			    root->fs_info->chunk_root->node);
1033 	switch_commit_root(root->fs_info->chunk_root);
1034 
1035 	update_super_roots(root);
1036 
1037 	if (!root->fs_info->log_root_recovering) {
1038 		btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1039 		btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1040 	}
1041 
1042 	memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1043 	       sizeof(root->fs_info->super_copy));
1044 
1045 	btrfs_copy_pinned(root, pinned_copy);
1046 
1047 	trans->transaction->blocked = 0;
1048 
1049 	wake_up(&root->fs_info->transaction_wait);
1050 
1051 	mutex_unlock(&root->fs_info->trans_mutex);
1052 	ret = btrfs_write_and_wait_transaction(trans, root);
1053 	BUG_ON(ret);
1054 	write_ctree_super(trans, root, 0);
1055 
1056 	/*
1057 	 * the super is written, we can safely allow the tree-loggers
1058 	 * to go about their business
1059 	 */
1060 	mutex_unlock(&root->fs_info->tree_log_mutex);
1061 
1062 	btrfs_finish_extent_commit(trans, root, pinned_copy);
1063 	kfree(pinned_copy);
1064 
1065 	/* do the directory inserts of any pending snapshot creations */
1066 	finish_pending_snapshots(trans, root->fs_info);
1067 
1068 	mutex_lock(&root->fs_info->trans_mutex);
1069 
1070 	cur_trans->commit_done = 1;
1071 
1072 	root->fs_info->last_trans_committed = cur_trans->transid;
1073 
1074 	wake_up(&cur_trans->commit_wait);
1075 
1076 	put_transaction(cur_trans);
1077 	put_transaction(cur_trans);
1078 
1079 	mutex_unlock(&root->fs_info->trans_mutex);
1080 
1081 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1082 	return ret;
1083 }
1084 
1085 /*
1086  * interface function to delete all the snapshots we have scheduled for deletion
1087  */
1088 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1089 {
1090 	LIST_HEAD(list);
1091 	struct btrfs_fs_info *fs_info = root->fs_info;
1092 
1093 	mutex_lock(&fs_info->trans_mutex);
1094 	list_splice_init(&fs_info->dead_roots, &list);
1095 	mutex_unlock(&fs_info->trans_mutex);
1096 
1097 	while (!list_empty(&list)) {
1098 		root = list_entry(list.next, struct btrfs_root, root_list);
1099 		list_del_init(&root->root_list);
1100 		btrfs_drop_snapshot(root, 0);
1101 	}
1102 	return 0;
1103 }
1104