xref: /openbmc/linux/fs/btrfs/transaction.c (revision f94059f8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22 #include "block-group.h"
23 #include "space-info.h"
24 #include "zoned.h"
25 
26 #define BTRFS_ROOT_TRANS_TAG				XA_MARK_0
27 
28 /*
29  * Transaction states and transitions
30  *
31  * No running transaction (fs tree blocks are not modified)
32  * |
33  * | To next stage:
34  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35  * V
36  * Transaction N [[TRANS_STATE_RUNNING]]
37  * |
38  * | New trans handles can be attached to transaction N by calling all
39  * | start_transaction() variants.
40  * |
41  * | To next stage:
42  * |  Call btrfs_commit_transaction() on any trans handle attached to
43  * |  transaction N
44  * V
45  * Transaction N [[TRANS_STATE_COMMIT_START]]
46  * |
47  * | Will wait for previous running transaction to completely finish if there
48  * | is one
49  * |
50  * | Then one of the following happes:
51  * | - Wait for all other trans handle holders to release.
52  * |   The btrfs_commit_transaction() caller will do the commit work.
53  * | - Wait for current transaction to be committed by others.
54  * |   Other btrfs_commit_transaction() caller will do the commit work.
55  * |
56  * | At this stage, only btrfs_join_transaction*() variants can attach
57  * | to this running transaction.
58  * | All other variants will wait for current one to finish and attach to
59  * | transaction N+1.
60  * |
61  * | To next stage:
62  * |  Caller is chosen to commit transaction N, and all other trans handle
63  * |  haven been released.
64  * V
65  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66  * |
67  * | The heavy lifting transaction work is started.
68  * | From running delayed refs (modifying extent tree) to creating pending
69  * | snapshots, running qgroups.
70  * | In short, modify supporting trees to reflect modifications of subvolume
71  * | trees.
72  * |
73  * | At this stage, all start_transaction() calls will wait for this
74  * | transaction to finish and attach to transaction N+1.
75  * |
76  * | To next stage:
77  * |  Until all supporting trees are updated.
78  * V
79  * Transaction N [[TRANS_STATE_UNBLOCKED]]
80  * |						    Transaction N+1
81  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
82  * | need to write them back to disk and update	    |
83  * | super blocks.				    |
84  * |						    |
85  * | At this stage, new transaction is allowed to   |
86  * | start.					    |
87  * | All new start_transaction() calls will be	    |
88  * | attached to transid N+1.			    |
89  * |						    |
90  * | To next stage:				    |
91  * |  Until all tree blocks are super blocks are    |
92  * |  written to block devices			    |
93  * V						    |
94  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
95  *   All tree blocks and super blocks are written.  Transaction N+1
96  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
97  *   data structures will be cleaned up.	    | Life goes on
98  */
99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100 	[TRANS_STATE_RUNNING]		= 0U,
101 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
102 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
103 					   __TRANS_ATTACH |
104 					   __TRANS_JOIN |
105 					   __TRANS_JOIN_NOSTART),
106 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
107 					   __TRANS_ATTACH |
108 					   __TRANS_JOIN |
109 					   __TRANS_JOIN_NOLOCK |
110 					   __TRANS_JOIN_NOSTART),
111 	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
112 					   __TRANS_ATTACH |
113 					   __TRANS_JOIN |
114 					   __TRANS_JOIN_NOLOCK |
115 					   __TRANS_JOIN_NOSTART),
116 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
117 					   __TRANS_ATTACH |
118 					   __TRANS_JOIN |
119 					   __TRANS_JOIN_NOLOCK |
120 					   __TRANS_JOIN_NOSTART),
121 };
122 
123 void btrfs_put_transaction(struct btrfs_transaction *transaction)
124 {
125 	WARN_ON(refcount_read(&transaction->use_count) == 0);
126 	if (refcount_dec_and_test(&transaction->use_count)) {
127 		BUG_ON(!list_empty(&transaction->list));
128 		WARN_ON(!RB_EMPTY_ROOT(
129 				&transaction->delayed_refs.href_root.rb_root));
130 		WARN_ON(!RB_EMPTY_ROOT(
131 				&transaction->delayed_refs.dirty_extent_root));
132 		if (transaction->delayed_refs.pending_csums)
133 			btrfs_err(transaction->fs_info,
134 				  "pending csums is %llu",
135 				  transaction->delayed_refs.pending_csums);
136 		/*
137 		 * If any block groups are found in ->deleted_bgs then it's
138 		 * because the transaction was aborted and a commit did not
139 		 * happen (things failed before writing the new superblock
140 		 * and calling btrfs_finish_extent_commit()), so we can not
141 		 * discard the physical locations of the block groups.
142 		 */
143 		while (!list_empty(&transaction->deleted_bgs)) {
144 			struct btrfs_block_group *cache;
145 
146 			cache = list_first_entry(&transaction->deleted_bgs,
147 						 struct btrfs_block_group,
148 						 bg_list);
149 			list_del_init(&cache->bg_list);
150 			btrfs_unfreeze_block_group(cache);
151 			btrfs_put_block_group(cache);
152 		}
153 		WARN_ON(!list_empty(&transaction->dev_update_list));
154 		kfree(transaction);
155 	}
156 }
157 
158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
159 {
160 	struct btrfs_transaction *cur_trans = trans->transaction;
161 	struct btrfs_fs_info *fs_info = trans->fs_info;
162 	struct btrfs_root *root, *tmp;
163 	struct btrfs_caching_control *caching_ctl, *next;
164 
165 	/*
166 	 * At this point no one can be using this transaction to modify any tree
167 	 * and no one can start another transaction to modify any tree either.
168 	 */
169 	ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
170 
171 	down_write(&fs_info->commit_root_sem);
172 
173 	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
174 		fs_info->last_reloc_trans = trans->transid;
175 
176 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
177 				 dirty_list) {
178 		list_del_init(&root->dirty_list);
179 		free_extent_buffer(root->commit_root);
180 		root->commit_root = btrfs_root_node(root);
181 		extent_io_tree_release(&root->dirty_log_pages);
182 		btrfs_qgroup_clean_swapped_blocks(root);
183 	}
184 
185 	/* We can free old roots now. */
186 	spin_lock(&cur_trans->dropped_roots_lock);
187 	while (!list_empty(&cur_trans->dropped_roots)) {
188 		root = list_first_entry(&cur_trans->dropped_roots,
189 					struct btrfs_root, root_list);
190 		list_del_init(&root->root_list);
191 		spin_unlock(&cur_trans->dropped_roots_lock);
192 		btrfs_free_log(trans, root);
193 		btrfs_drop_and_free_fs_root(fs_info, root);
194 		spin_lock(&cur_trans->dropped_roots_lock);
195 	}
196 	spin_unlock(&cur_trans->dropped_roots_lock);
197 
198 	/*
199 	 * We have to update the last_byte_to_unpin under the commit_root_sem,
200 	 * at the same time we swap out the commit roots.
201 	 *
202 	 * This is because we must have a real view of the last spot the caching
203 	 * kthreads were while caching.  Consider the following views of the
204 	 * extent tree for a block group
205 	 *
206 	 * commit root
207 	 * +----+----+----+----+----+----+----+
208 	 * |\\\\|    |\\\\|\\\\|    |\\\\|\\\\|
209 	 * +----+----+----+----+----+----+----+
210 	 * 0    1    2    3    4    5    6    7
211 	 *
212 	 * new commit root
213 	 * +----+----+----+----+----+----+----+
214 	 * |    |    |    |\\\\|    |    |\\\\|
215 	 * +----+----+----+----+----+----+----+
216 	 * 0    1    2    3    4    5    6    7
217 	 *
218 	 * If the cache_ctl->progress was at 3, then we are only allowed to
219 	 * unpin [0,1) and [2,3], because the caching thread has already
220 	 * processed those extents.  We are not allowed to unpin [5,6), because
221 	 * the caching thread will re-start it's search from 3, and thus find
222 	 * the hole from [4,6) to add to the free space cache.
223 	 */
224 	write_lock(&fs_info->block_group_cache_lock);
225 	list_for_each_entry_safe(caching_ctl, next,
226 				 &fs_info->caching_block_groups, list) {
227 		struct btrfs_block_group *cache = caching_ctl->block_group;
228 
229 		if (btrfs_block_group_done(cache)) {
230 			cache->last_byte_to_unpin = (u64)-1;
231 			list_del_init(&caching_ctl->list);
232 			btrfs_put_caching_control(caching_ctl);
233 		} else {
234 			cache->last_byte_to_unpin = caching_ctl->progress;
235 		}
236 	}
237 	write_unlock(&fs_info->block_group_cache_lock);
238 	up_write(&fs_info->commit_root_sem);
239 }
240 
241 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
242 					 unsigned int type)
243 {
244 	if (type & TRANS_EXTWRITERS)
245 		atomic_inc(&trans->num_extwriters);
246 }
247 
248 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
249 					 unsigned int type)
250 {
251 	if (type & TRANS_EXTWRITERS)
252 		atomic_dec(&trans->num_extwriters);
253 }
254 
255 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
256 					  unsigned int type)
257 {
258 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
259 }
260 
261 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
262 {
263 	return atomic_read(&trans->num_extwriters);
264 }
265 
266 /*
267  * To be called after doing the chunk btree updates right after allocating a new
268  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
269  * chunk after all chunk btree updates and after finishing the second phase of
270  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
271  * group had its chunk item insertion delayed to the second phase.
272  */
273 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
274 {
275 	struct btrfs_fs_info *fs_info = trans->fs_info;
276 
277 	if (!trans->chunk_bytes_reserved)
278 		return;
279 
280 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
281 				trans->chunk_bytes_reserved, NULL);
282 	trans->chunk_bytes_reserved = 0;
283 }
284 
285 /*
286  * either allocate a new transaction or hop into the existing one
287  */
288 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
289 				     unsigned int type)
290 {
291 	struct btrfs_transaction *cur_trans;
292 
293 	spin_lock(&fs_info->trans_lock);
294 loop:
295 	/* The file system has been taken offline. No new transactions. */
296 	if (BTRFS_FS_ERROR(fs_info)) {
297 		spin_unlock(&fs_info->trans_lock);
298 		return -EROFS;
299 	}
300 
301 	cur_trans = fs_info->running_transaction;
302 	if (cur_trans) {
303 		if (TRANS_ABORTED(cur_trans)) {
304 			spin_unlock(&fs_info->trans_lock);
305 			return cur_trans->aborted;
306 		}
307 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
308 			spin_unlock(&fs_info->trans_lock);
309 			return -EBUSY;
310 		}
311 		refcount_inc(&cur_trans->use_count);
312 		atomic_inc(&cur_trans->num_writers);
313 		extwriter_counter_inc(cur_trans, type);
314 		spin_unlock(&fs_info->trans_lock);
315 		return 0;
316 	}
317 	spin_unlock(&fs_info->trans_lock);
318 
319 	/*
320 	 * If we are ATTACH, we just want to catch the current transaction,
321 	 * and commit it. If there is no transaction, just return ENOENT.
322 	 */
323 	if (type == TRANS_ATTACH)
324 		return -ENOENT;
325 
326 	/*
327 	 * JOIN_NOLOCK only happens during the transaction commit, so
328 	 * it is impossible that ->running_transaction is NULL
329 	 */
330 	BUG_ON(type == TRANS_JOIN_NOLOCK);
331 
332 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
333 	if (!cur_trans)
334 		return -ENOMEM;
335 
336 	spin_lock(&fs_info->trans_lock);
337 	if (fs_info->running_transaction) {
338 		/*
339 		 * someone started a transaction after we unlocked.  Make sure
340 		 * to redo the checks above
341 		 */
342 		kfree(cur_trans);
343 		goto loop;
344 	} else if (BTRFS_FS_ERROR(fs_info)) {
345 		spin_unlock(&fs_info->trans_lock);
346 		kfree(cur_trans);
347 		return -EROFS;
348 	}
349 
350 	cur_trans->fs_info = fs_info;
351 	atomic_set(&cur_trans->pending_ordered, 0);
352 	init_waitqueue_head(&cur_trans->pending_wait);
353 	atomic_set(&cur_trans->num_writers, 1);
354 	extwriter_counter_init(cur_trans, type);
355 	init_waitqueue_head(&cur_trans->writer_wait);
356 	init_waitqueue_head(&cur_trans->commit_wait);
357 	cur_trans->state = TRANS_STATE_RUNNING;
358 	/*
359 	 * One for this trans handle, one so it will live on until we
360 	 * commit the transaction.
361 	 */
362 	refcount_set(&cur_trans->use_count, 2);
363 	cur_trans->flags = 0;
364 	cur_trans->start_time = ktime_get_seconds();
365 
366 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
367 
368 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
369 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
370 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
371 
372 	/*
373 	 * although the tree mod log is per file system and not per transaction,
374 	 * the log must never go across transaction boundaries.
375 	 */
376 	smp_mb();
377 	if (!list_empty(&fs_info->tree_mod_seq_list))
378 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
379 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
380 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
381 	atomic64_set(&fs_info->tree_mod_seq, 0);
382 
383 	spin_lock_init(&cur_trans->delayed_refs.lock);
384 
385 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
386 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
387 	INIT_LIST_HEAD(&cur_trans->switch_commits);
388 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
389 	INIT_LIST_HEAD(&cur_trans->io_bgs);
390 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
391 	mutex_init(&cur_trans->cache_write_mutex);
392 	spin_lock_init(&cur_trans->dirty_bgs_lock);
393 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
394 	spin_lock_init(&cur_trans->dropped_roots_lock);
395 	INIT_LIST_HEAD(&cur_trans->releasing_ebs);
396 	spin_lock_init(&cur_trans->releasing_ebs_lock);
397 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
398 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
399 			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
400 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
401 			IO_TREE_FS_PINNED_EXTENTS, NULL);
402 	fs_info->generation++;
403 	cur_trans->transid = fs_info->generation;
404 	fs_info->running_transaction = cur_trans;
405 	cur_trans->aborted = 0;
406 	spin_unlock(&fs_info->trans_lock);
407 
408 	return 0;
409 }
410 
411 /*
412  * This does all the record keeping required to make sure that a shareable root
413  * is properly recorded in a given transaction.  This is required to make sure
414  * the old root from before we joined the transaction is deleted when the
415  * transaction commits.
416  */
417 static int record_root_in_trans(struct btrfs_trans_handle *trans,
418 			       struct btrfs_root *root,
419 			       int force)
420 {
421 	struct btrfs_fs_info *fs_info = root->fs_info;
422 	int ret = 0;
423 
424 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
425 	    root->last_trans < trans->transid) || force) {
426 		WARN_ON(!force && root->commit_root != root->node);
427 
428 		/*
429 		 * see below for IN_TRANS_SETUP usage rules
430 		 * we have the reloc mutex held now, so there
431 		 * is only one writer in this function
432 		 */
433 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
434 
435 		/* make sure readers find IN_TRANS_SETUP before
436 		 * they find our root->last_trans update
437 		 */
438 		smp_wmb();
439 
440 		spin_lock(&fs_info->fs_roots_lock);
441 		if (root->last_trans == trans->transid && !force) {
442 			spin_unlock(&fs_info->fs_roots_lock);
443 			return 0;
444 		}
445 		xa_set_mark(&fs_info->fs_roots,
446 			    (unsigned long)root->root_key.objectid,
447 			    BTRFS_ROOT_TRANS_TAG);
448 		spin_unlock(&fs_info->fs_roots_lock);
449 		root->last_trans = trans->transid;
450 
451 		/* this is pretty tricky.  We don't want to
452 		 * take the relocation lock in btrfs_record_root_in_trans
453 		 * unless we're really doing the first setup for this root in
454 		 * this transaction.
455 		 *
456 		 * Normally we'd use root->last_trans as a flag to decide
457 		 * if we want to take the expensive mutex.
458 		 *
459 		 * But, we have to set root->last_trans before we
460 		 * init the relocation root, otherwise, we trip over warnings
461 		 * in ctree.c.  The solution used here is to flag ourselves
462 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
463 		 * fixing up the reloc trees and everyone must wait.
464 		 *
465 		 * When this is zero, they can trust root->last_trans and fly
466 		 * through btrfs_record_root_in_trans without having to take the
467 		 * lock.  smp_wmb() makes sure that all the writes above are
468 		 * done before we pop in the zero below
469 		 */
470 		ret = btrfs_init_reloc_root(trans, root);
471 		smp_mb__before_atomic();
472 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
473 	}
474 	return ret;
475 }
476 
477 
478 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
479 			    struct btrfs_root *root)
480 {
481 	struct btrfs_fs_info *fs_info = root->fs_info;
482 	struct btrfs_transaction *cur_trans = trans->transaction;
483 
484 	/* Add ourselves to the transaction dropped list */
485 	spin_lock(&cur_trans->dropped_roots_lock);
486 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
487 	spin_unlock(&cur_trans->dropped_roots_lock);
488 
489 	/* Make sure we don't try to update the root at commit time */
490 	xa_clear_mark(&fs_info->fs_roots,
491 		      (unsigned long)root->root_key.objectid,
492 		      BTRFS_ROOT_TRANS_TAG);
493 }
494 
495 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
496 			       struct btrfs_root *root)
497 {
498 	struct btrfs_fs_info *fs_info = root->fs_info;
499 	int ret;
500 
501 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
502 		return 0;
503 
504 	/*
505 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
506 	 * and barriers
507 	 */
508 	smp_rmb();
509 	if (root->last_trans == trans->transid &&
510 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
511 		return 0;
512 
513 	mutex_lock(&fs_info->reloc_mutex);
514 	ret = record_root_in_trans(trans, root, 0);
515 	mutex_unlock(&fs_info->reloc_mutex);
516 
517 	return ret;
518 }
519 
520 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
521 {
522 	return (trans->state >= TRANS_STATE_COMMIT_START &&
523 		trans->state < TRANS_STATE_UNBLOCKED &&
524 		!TRANS_ABORTED(trans));
525 }
526 
527 /* wait for commit against the current transaction to become unblocked
528  * when this is done, it is safe to start a new transaction, but the current
529  * transaction might not be fully on disk.
530  */
531 static void wait_current_trans(struct btrfs_fs_info *fs_info)
532 {
533 	struct btrfs_transaction *cur_trans;
534 
535 	spin_lock(&fs_info->trans_lock);
536 	cur_trans = fs_info->running_transaction;
537 	if (cur_trans && is_transaction_blocked(cur_trans)) {
538 		refcount_inc(&cur_trans->use_count);
539 		spin_unlock(&fs_info->trans_lock);
540 
541 		wait_event(fs_info->transaction_wait,
542 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
543 			   TRANS_ABORTED(cur_trans));
544 		btrfs_put_transaction(cur_trans);
545 	} else {
546 		spin_unlock(&fs_info->trans_lock);
547 	}
548 }
549 
550 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
551 {
552 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
553 		return 0;
554 
555 	if (type == TRANS_START)
556 		return 1;
557 
558 	return 0;
559 }
560 
561 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
562 {
563 	struct btrfs_fs_info *fs_info = root->fs_info;
564 
565 	if (!fs_info->reloc_ctl ||
566 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
567 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
568 	    root->reloc_root)
569 		return false;
570 
571 	return true;
572 }
573 
574 static struct btrfs_trans_handle *
575 start_transaction(struct btrfs_root *root, unsigned int num_items,
576 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
577 		  bool enforce_qgroups)
578 {
579 	struct btrfs_fs_info *fs_info = root->fs_info;
580 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
581 	struct btrfs_trans_handle *h;
582 	struct btrfs_transaction *cur_trans;
583 	u64 num_bytes = 0;
584 	u64 qgroup_reserved = 0;
585 	bool reloc_reserved = false;
586 	bool do_chunk_alloc = false;
587 	int ret;
588 
589 	if (BTRFS_FS_ERROR(fs_info))
590 		return ERR_PTR(-EROFS);
591 
592 	if (current->journal_info) {
593 		WARN_ON(type & TRANS_EXTWRITERS);
594 		h = current->journal_info;
595 		refcount_inc(&h->use_count);
596 		WARN_ON(refcount_read(&h->use_count) > 2);
597 		h->orig_rsv = h->block_rsv;
598 		h->block_rsv = NULL;
599 		goto got_it;
600 	}
601 
602 	/*
603 	 * Do the reservation before we join the transaction so we can do all
604 	 * the appropriate flushing if need be.
605 	 */
606 	if (num_items && root != fs_info->chunk_root) {
607 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
608 		u64 delayed_refs_bytes = 0;
609 
610 		qgroup_reserved = num_items * fs_info->nodesize;
611 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
612 				enforce_qgroups);
613 		if (ret)
614 			return ERR_PTR(ret);
615 
616 		/*
617 		 * We want to reserve all the bytes we may need all at once, so
618 		 * we only do 1 enospc flushing cycle per transaction start.  We
619 		 * accomplish this by simply assuming we'll do 2 x num_items
620 		 * worth of delayed refs updates in this trans handle, and
621 		 * refill that amount for whatever is missing in the reserve.
622 		 */
623 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
624 		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
625 		    delayed_refs_rsv->full == 0) {
626 			delayed_refs_bytes = num_bytes;
627 			num_bytes <<= 1;
628 		}
629 
630 		/*
631 		 * Do the reservation for the relocation root creation
632 		 */
633 		if (need_reserve_reloc_root(root)) {
634 			num_bytes += fs_info->nodesize;
635 			reloc_reserved = true;
636 		}
637 
638 		ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
639 		if (ret)
640 			goto reserve_fail;
641 		if (delayed_refs_bytes) {
642 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
643 							  delayed_refs_bytes);
644 			num_bytes -= delayed_refs_bytes;
645 		}
646 
647 		if (rsv->space_info->force_alloc)
648 			do_chunk_alloc = true;
649 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
650 		   !delayed_refs_rsv->full) {
651 		/*
652 		 * Some people call with btrfs_start_transaction(root, 0)
653 		 * because they can be throttled, but have some other mechanism
654 		 * for reserving space.  We still want these guys to refill the
655 		 * delayed block_rsv so just add 1 items worth of reservation
656 		 * here.
657 		 */
658 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
659 		if (ret)
660 			goto reserve_fail;
661 	}
662 again:
663 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
664 	if (!h) {
665 		ret = -ENOMEM;
666 		goto alloc_fail;
667 	}
668 
669 	/*
670 	 * If we are JOIN_NOLOCK we're already committing a transaction and
671 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
672 	 * because we're already holding a ref.  We need this because we could
673 	 * have raced in and did an fsync() on a file which can kick a commit
674 	 * and then we deadlock with somebody doing a freeze.
675 	 *
676 	 * If we are ATTACH, it means we just want to catch the current
677 	 * transaction and commit it, so we needn't do sb_start_intwrite().
678 	 */
679 	if (type & __TRANS_FREEZABLE)
680 		sb_start_intwrite(fs_info->sb);
681 
682 	if (may_wait_transaction(fs_info, type))
683 		wait_current_trans(fs_info);
684 
685 	do {
686 		ret = join_transaction(fs_info, type);
687 		if (ret == -EBUSY) {
688 			wait_current_trans(fs_info);
689 			if (unlikely(type == TRANS_ATTACH ||
690 				     type == TRANS_JOIN_NOSTART))
691 				ret = -ENOENT;
692 		}
693 	} while (ret == -EBUSY);
694 
695 	if (ret < 0)
696 		goto join_fail;
697 
698 	cur_trans = fs_info->running_transaction;
699 
700 	h->transid = cur_trans->transid;
701 	h->transaction = cur_trans;
702 	refcount_set(&h->use_count, 1);
703 	h->fs_info = root->fs_info;
704 
705 	h->type = type;
706 	INIT_LIST_HEAD(&h->new_bgs);
707 
708 	smp_mb();
709 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
710 	    may_wait_transaction(fs_info, type)) {
711 		current->journal_info = h;
712 		btrfs_commit_transaction(h);
713 		goto again;
714 	}
715 
716 	if (num_bytes) {
717 		trace_btrfs_space_reservation(fs_info, "transaction",
718 					      h->transid, num_bytes, 1);
719 		h->block_rsv = &fs_info->trans_block_rsv;
720 		h->bytes_reserved = num_bytes;
721 		h->reloc_reserved = reloc_reserved;
722 	}
723 
724 got_it:
725 	if (!current->journal_info)
726 		current->journal_info = h;
727 
728 	/*
729 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
730 	 * ALLOC_FORCE the first run through, and then we won't allocate for
731 	 * anybody else who races in later.  We don't care about the return
732 	 * value here.
733 	 */
734 	if (do_chunk_alloc && num_bytes) {
735 		u64 flags = h->block_rsv->space_info->flags;
736 
737 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
738 				  CHUNK_ALLOC_NO_FORCE);
739 	}
740 
741 	/*
742 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
743 	 * call btrfs_join_transaction() while we're also starting a
744 	 * transaction.
745 	 *
746 	 * Thus it need to be called after current->journal_info initialized,
747 	 * or we can deadlock.
748 	 */
749 	ret = btrfs_record_root_in_trans(h, root);
750 	if (ret) {
751 		/*
752 		 * The transaction handle is fully initialized and linked with
753 		 * other structures so it needs to be ended in case of errors,
754 		 * not just freed.
755 		 */
756 		btrfs_end_transaction(h);
757 		return ERR_PTR(ret);
758 	}
759 
760 	return h;
761 
762 join_fail:
763 	if (type & __TRANS_FREEZABLE)
764 		sb_end_intwrite(fs_info->sb);
765 	kmem_cache_free(btrfs_trans_handle_cachep, h);
766 alloc_fail:
767 	if (num_bytes)
768 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
769 					num_bytes, NULL);
770 reserve_fail:
771 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
772 	return ERR_PTR(ret);
773 }
774 
775 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
776 						   unsigned int num_items)
777 {
778 	return start_transaction(root, num_items, TRANS_START,
779 				 BTRFS_RESERVE_FLUSH_ALL, true);
780 }
781 
782 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
783 					struct btrfs_root *root,
784 					unsigned int num_items)
785 {
786 	return start_transaction(root, num_items, TRANS_START,
787 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
788 }
789 
790 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
791 {
792 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
793 				 true);
794 }
795 
796 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
797 {
798 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
799 				 BTRFS_RESERVE_NO_FLUSH, true);
800 }
801 
802 /*
803  * Similar to regular join but it never starts a transaction when none is
804  * running or after waiting for the current one to finish.
805  */
806 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
807 {
808 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
809 				 BTRFS_RESERVE_NO_FLUSH, true);
810 }
811 
812 /*
813  * btrfs_attach_transaction() - catch the running transaction
814  *
815  * It is used when we want to commit the current the transaction, but
816  * don't want to start a new one.
817  *
818  * Note: If this function return -ENOENT, it just means there is no
819  * running transaction. But it is possible that the inactive transaction
820  * is still in the memory, not fully on disk. If you hope there is no
821  * inactive transaction in the fs when -ENOENT is returned, you should
822  * invoke
823  *     btrfs_attach_transaction_barrier()
824  */
825 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
826 {
827 	return start_transaction(root, 0, TRANS_ATTACH,
828 				 BTRFS_RESERVE_NO_FLUSH, true);
829 }
830 
831 /*
832  * btrfs_attach_transaction_barrier() - catch the running transaction
833  *
834  * It is similar to the above function, the difference is this one
835  * will wait for all the inactive transactions until they fully
836  * complete.
837  */
838 struct btrfs_trans_handle *
839 btrfs_attach_transaction_barrier(struct btrfs_root *root)
840 {
841 	struct btrfs_trans_handle *trans;
842 
843 	trans = start_transaction(root, 0, TRANS_ATTACH,
844 				  BTRFS_RESERVE_NO_FLUSH, true);
845 	if (trans == ERR_PTR(-ENOENT))
846 		btrfs_wait_for_commit(root->fs_info, 0);
847 
848 	return trans;
849 }
850 
851 /* Wait for a transaction commit to reach at least the given state. */
852 static noinline void wait_for_commit(struct btrfs_transaction *commit,
853 				     const enum btrfs_trans_state min_state)
854 {
855 	struct btrfs_fs_info *fs_info = commit->fs_info;
856 	u64 transid = commit->transid;
857 	bool put = false;
858 
859 	while (1) {
860 		wait_event(commit->commit_wait, commit->state >= min_state);
861 		if (put)
862 			btrfs_put_transaction(commit);
863 
864 		if (min_state < TRANS_STATE_COMPLETED)
865 			break;
866 
867 		/*
868 		 * A transaction isn't really completed until all of the
869 		 * previous transactions are completed, but with fsync we can
870 		 * end up with SUPER_COMMITTED transactions before a COMPLETED
871 		 * transaction. Wait for those.
872 		 */
873 
874 		spin_lock(&fs_info->trans_lock);
875 		commit = list_first_entry_or_null(&fs_info->trans_list,
876 						  struct btrfs_transaction,
877 						  list);
878 		if (!commit || commit->transid > transid) {
879 			spin_unlock(&fs_info->trans_lock);
880 			break;
881 		}
882 		refcount_inc(&commit->use_count);
883 		put = true;
884 		spin_unlock(&fs_info->trans_lock);
885 	}
886 }
887 
888 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
889 {
890 	struct btrfs_transaction *cur_trans = NULL, *t;
891 	int ret = 0;
892 
893 	if (transid) {
894 		if (transid <= fs_info->last_trans_committed)
895 			goto out;
896 
897 		/* find specified transaction */
898 		spin_lock(&fs_info->trans_lock);
899 		list_for_each_entry(t, &fs_info->trans_list, list) {
900 			if (t->transid == transid) {
901 				cur_trans = t;
902 				refcount_inc(&cur_trans->use_count);
903 				ret = 0;
904 				break;
905 			}
906 			if (t->transid > transid) {
907 				ret = 0;
908 				break;
909 			}
910 		}
911 		spin_unlock(&fs_info->trans_lock);
912 
913 		/*
914 		 * The specified transaction doesn't exist, or we
915 		 * raced with btrfs_commit_transaction
916 		 */
917 		if (!cur_trans) {
918 			if (transid > fs_info->last_trans_committed)
919 				ret = -EINVAL;
920 			goto out;
921 		}
922 	} else {
923 		/* find newest transaction that is committing | committed */
924 		spin_lock(&fs_info->trans_lock);
925 		list_for_each_entry_reverse(t, &fs_info->trans_list,
926 					    list) {
927 			if (t->state >= TRANS_STATE_COMMIT_START) {
928 				if (t->state == TRANS_STATE_COMPLETED)
929 					break;
930 				cur_trans = t;
931 				refcount_inc(&cur_trans->use_count);
932 				break;
933 			}
934 		}
935 		spin_unlock(&fs_info->trans_lock);
936 		if (!cur_trans)
937 			goto out;  /* nothing committing|committed */
938 	}
939 
940 	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
941 	btrfs_put_transaction(cur_trans);
942 out:
943 	return ret;
944 }
945 
946 void btrfs_throttle(struct btrfs_fs_info *fs_info)
947 {
948 	wait_current_trans(fs_info);
949 }
950 
951 static bool should_end_transaction(struct btrfs_trans_handle *trans)
952 {
953 	struct btrfs_fs_info *fs_info = trans->fs_info;
954 
955 	if (btrfs_check_space_for_delayed_refs(fs_info))
956 		return true;
957 
958 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
959 }
960 
961 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
962 {
963 	struct btrfs_transaction *cur_trans = trans->transaction;
964 
965 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
966 	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
967 		return true;
968 
969 	return should_end_transaction(trans);
970 }
971 
972 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
973 
974 {
975 	struct btrfs_fs_info *fs_info = trans->fs_info;
976 
977 	if (!trans->block_rsv) {
978 		ASSERT(!trans->bytes_reserved);
979 		return;
980 	}
981 
982 	if (!trans->bytes_reserved)
983 		return;
984 
985 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
986 	trace_btrfs_space_reservation(fs_info, "transaction",
987 				      trans->transid, trans->bytes_reserved, 0);
988 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
989 				trans->bytes_reserved, NULL);
990 	trans->bytes_reserved = 0;
991 }
992 
993 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
994 				   int throttle)
995 {
996 	struct btrfs_fs_info *info = trans->fs_info;
997 	struct btrfs_transaction *cur_trans = trans->transaction;
998 	int err = 0;
999 
1000 	if (refcount_read(&trans->use_count) > 1) {
1001 		refcount_dec(&trans->use_count);
1002 		trans->block_rsv = trans->orig_rsv;
1003 		return 0;
1004 	}
1005 
1006 	btrfs_trans_release_metadata(trans);
1007 	trans->block_rsv = NULL;
1008 
1009 	btrfs_create_pending_block_groups(trans);
1010 
1011 	btrfs_trans_release_chunk_metadata(trans);
1012 
1013 	if (trans->type & __TRANS_FREEZABLE)
1014 		sb_end_intwrite(info->sb);
1015 
1016 	WARN_ON(cur_trans != info->running_transaction);
1017 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1018 	atomic_dec(&cur_trans->num_writers);
1019 	extwriter_counter_dec(cur_trans, trans->type);
1020 
1021 	cond_wake_up(&cur_trans->writer_wait);
1022 	btrfs_put_transaction(cur_trans);
1023 
1024 	if (current->journal_info == trans)
1025 		current->journal_info = NULL;
1026 
1027 	if (throttle)
1028 		btrfs_run_delayed_iputs(info);
1029 
1030 	if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1031 		wake_up_process(info->transaction_kthread);
1032 		if (TRANS_ABORTED(trans))
1033 			err = trans->aborted;
1034 		else
1035 			err = -EROFS;
1036 	}
1037 
1038 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1039 	return err;
1040 }
1041 
1042 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1043 {
1044 	return __btrfs_end_transaction(trans, 0);
1045 }
1046 
1047 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1048 {
1049 	return __btrfs_end_transaction(trans, 1);
1050 }
1051 
1052 /*
1053  * when btree blocks are allocated, they have some corresponding bits set for
1054  * them in one of two extent_io trees.  This is used to make sure all of
1055  * those extents are sent to disk but does not wait on them
1056  */
1057 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1058 			       struct extent_io_tree *dirty_pages, int mark)
1059 {
1060 	int err = 0;
1061 	int werr = 0;
1062 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1063 	struct extent_state *cached_state = NULL;
1064 	u64 start = 0;
1065 	u64 end;
1066 
1067 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1068 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1069 				      mark, &cached_state)) {
1070 		bool wait_writeback = false;
1071 
1072 		err = convert_extent_bit(dirty_pages, start, end,
1073 					 EXTENT_NEED_WAIT,
1074 					 mark, &cached_state);
1075 		/*
1076 		 * convert_extent_bit can return -ENOMEM, which is most of the
1077 		 * time a temporary error. So when it happens, ignore the error
1078 		 * and wait for writeback of this range to finish - because we
1079 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1080 		 * to __btrfs_wait_marked_extents() would not know that
1081 		 * writeback for this range started and therefore wouldn't
1082 		 * wait for it to finish - we don't want to commit a
1083 		 * superblock that points to btree nodes/leafs for which
1084 		 * writeback hasn't finished yet (and without errors).
1085 		 * We cleanup any entries left in the io tree when committing
1086 		 * the transaction (through extent_io_tree_release()).
1087 		 */
1088 		if (err == -ENOMEM) {
1089 			err = 0;
1090 			wait_writeback = true;
1091 		}
1092 		if (!err)
1093 			err = filemap_fdatawrite_range(mapping, start, end);
1094 		if (err)
1095 			werr = err;
1096 		else if (wait_writeback)
1097 			werr = filemap_fdatawait_range(mapping, start, end);
1098 		free_extent_state(cached_state);
1099 		cached_state = NULL;
1100 		cond_resched();
1101 		start = end + 1;
1102 	}
1103 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1104 	return werr;
1105 }
1106 
1107 /*
1108  * when btree blocks are allocated, they have some corresponding bits set for
1109  * them in one of two extent_io trees.  This is used to make sure all of
1110  * those extents are on disk for transaction or log commit.  We wait
1111  * on all the pages and clear them from the dirty pages state tree
1112  */
1113 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1114 				       struct extent_io_tree *dirty_pages)
1115 {
1116 	int err = 0;
1117 	int werr = 0;
1118 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1119 	struct extent_state *cached_state = NULL;
1120 	u64 start = 0;
1121 	u64 end;
1122 
1123 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1124 				      EXTENT_NEED_WAIT, &cached_state)) {
1125 		/*
1126 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1127 		 * When committing the transaction, we'll remove any entries
1128 		 * left in the io tree. For a log commit, we don't remove them
1129 		 * after committing the log because the tree can be accessed
1130 		 * concurrently - we do it only at transaction commit time when
1131 		 * it's safe to do it (through extent_io_tree_release()).
1132 		 */
1133 		err = clear_extent_bit(dirty_pages, start, end,
1134 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1135 		if (err == -ENOMEM)
1136 			err = 0;
1137 		if (!err)
1138 			err = filemap_fdatawait_range(mapping, start, end);
1139 		if (err)
1140 			werr = err;
1141 		free_extent_state(cached_state);
1142 		cached_state = NULL;
1143 		cond_resched();
1144 		start = end + 1;
1145 	}
1146 	if (err)
1147 		werr = err;
1148 	return werr;
1149 }
1150 
1151 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1152 		       struct extent_io_tree *dirty_pages)
1153 {
1154 	bool errors = false;
1155 	int err;
1156 
1157 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1158 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1159 		errors = true;
1160 
1161 	if (errors && !err)
1162 		err = -EIO;
1163 	return err;
1164 }
1165 
1166 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1167 {
1168 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1169 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1170 	bool errors = false;
1171 	int err;
1172 
1173 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1174 
1175 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1176 	if ((mark & EXTENT_DIRTY) &&
1177 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1178 		errors = true;
1179 
1180 	if ((mark & EXTENT_NEW) &&
1181 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1182 		errors = true;
1183 
1184 	if (errors && !err)
1185 		err = -EIO;
1186 	return err;
1187 }
1188 
1189 /*
1190  * When btree blocks are allocated the corresponding extents are marked dirty.
1191  * This function ensures such extents are persisted on disk for transaction or
1192  * log commit.
1193  *
1194  * @trans: transaction whose dirty pages we'd like to write
1195  */
1196 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1197 {
1198 	int ret;
1199 	int ret2;
1200 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1201 	struct btrfs_fs_info *fs_info = trans->fs_info;
1202 	struct blk_plug plug;
1203 
1204 	blk_start_plug(&plug);
1205 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1206 	blk_finish_plug(&plug);
1207 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1208 
1209 	extent_io_tree_release(&trans->transaction->dirty_pages);
1210 
1211 	if (ret)
1212 		return ret;
1213 	else if (ret2)
1214 		return ret2;
1215 	else
1216 		return 0;
1217 }
1218 
1219 /*
1220  * this is used to update the root pointer in the tree of tree roots.
1221  *
1222  * But, in the case of the extent allocation tree, updating the root
1223  * pointer may allocate blocks which may change the root of the extent
1224  * allocation tree.
1225  *
1226  * So, this loops and repeats and makes sure the cowonly root didn't
1227  * change while the root pointer was being updated in the metadata.
1228  */
1229 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1230 			       struct btrfs_root *root)
1231 {
1232 	int ret;
1233 	u64 old_root_bytenr;
1234 	u64 old_root_used;
1235 	struct btrfs_fs_info *fs_info = root->fs_info;
1236 	struct btrfs_root *tree_root = fs_info->tree_root;
1237 
1238 	old_root_used = btrfs_root_used(&root->root_item);
1239 
1240 	while (1) {
1241 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1242 		if (old_root_bytenr == root->node->start &&
1243 		    old_root_used == btrfs_root_used(&root->root_item))
1244 			break;
1245 
1246 		btrfs_set_root_node(&root->root_item, root->node);
1247 		ret = btrfs_update_root(trans, tree_root,
1248 					&root->root_key,
1249 					&root->root_item);
1250 		if (ret)
1251 			return ret;
1252 
1253 		old_root_used = btrfs_root_used(&root->root_item);
1254 	}
1255 
1256 	return 0;
1257 }
1258 
1259 /*
1260  * update all the cowonly tree roots on disk
1261  *
1262  * The error handling in this function may not be obvious. Any of the
1263  * failures will cause the file system to go offline. We still need
1264  * to clean up the delayed refs.
1265  */
1266 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1267 {
1268 	struct btrfs_fs_info *fs_info = trans->fs_info;
1269 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1270 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1271 	struct list_head *next;
1272 	struct extent_buffer *eb;
1273 	int ret;
1274 
1275 	/*
1276 	 * At this point no one can be using this transaction to modify any tree
1277 	 * and no one can start another transaction to modify any tree either.
1278 	 */
1279 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1280 
1281 	eb = btrfs_lock_root_node(fs_info->tree_root);
1282 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1283 			      0, &eb, BTRFS_NESTING_COW);
1284 	btrfs_tree_unlock(eb);
1285 	free_extent_buffer(eb);
1286 
1287 	if (ret)
1288 		return ret;
1289 
1290 	ret = btrfs_run_dev_stats(trans);
1291 	if (ret)
1292 		return ret;
1293 	ret = btrfs_run_dev_replace(trans);
1294 	if (ret)
1295 		return ret;
1296 	ret = btrfs_run_qgroups(trans);
1297 	if (ret)
1298 		return ret;
1299 
1300 	ret = btrfs_setup_space_cache(trans);
1301 	if (ret)
1302 		return ret;
1303 
1304 again:
1305 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1306 		struct btrfs_root *root;
1307 		next = fs_info->dirty_cowonly_roots.next;
1308 		list_del_init(next);
1309 		root = list_entry(next, struct btrfs_root, dirty_list);
1310 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1311 
1312 		list_add_tail(&root->dirty_list,
1313 			      &trans->transaction->switch_commits);
1314 		ret = update_cowonly_root(trans, root);
1315 		if (ret)
1316 			return ret;
1317 	}
1318 
1319 	/* Now flush any delayed refs generated by updating all of the roots */
1320 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1321 	if (ret)
1322 		return ret;
1323 
1324 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1325 		ret = btrfs_write_dirty_block_groups(trans);
1326 		if (ret)
1327 			return ret;
1328 
1329 		/*
1330 		 * We're writing the dirty block groups, which could generate
1331 		 * delayed refs, which could generate more dirty block groups,
1332 		 * so we want to keep this flushing in this loop to make sure
1333 		 * everything gets run.
1334 		 */
1335 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1336 		if (ret)
1337 			return ret;
1338 	}
1339 
1340 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1341 		goto again;
1342 
1343 	/* Update dev-replace pointer once everything is committed */
1344 	fs_info->dev_replace.committed_cursor_left =
1345 		fs_info->dev_replace.cursor_left_last_write_of_item;
1346 
1347 	return 0;
1348 }
1349 
1350 /*
1351  * If we had a pending drop we need to see if there are any others left in our
1352  * dead roots list, and if not clear our bit and wake any waiters.
1353  */
1354 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1355 {
1356 	/*
1357 	 * We put the drop in progress roots at the front of the list, so if the
1358 	 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1359 	 * up.
1360 	 */
1361 	spin_lock(&fs_info->trans_lock);
1362 	if (!list_empty(&fs_info->dead_roots)) {
1363 		struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1364 							   struct btrfs_root,
1365 							   root_list);
1366 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1367 			spin_unlock(&fs_info->trans_lock);
1368 			return;
1369 		}
1370 	}
1371 	spin_unlock(&fs_info->trans_lock);
1372 
1373 	btrfs_wake_unfinished_drop(fs_info);
1374 }
1375 
1376 /*
1377  * dead roots are old snapshots that need to be deleted.  This allocates
1378  * a dirty root struct and adds it into the list of dead roots that need to
1379  * be deleted
1380  */
1381 void btrfs_add_dead_root(struct btrfs_root *root)
1382 {
1383 	struct btrfs_fs_info *fs_info = root->fs_info;
1384 
1385 	spin_lock(&fs_info->trans_lock);
1386 	if (list_empty(&root->root_list)) {
1387 		btrfs_grab_root(root);
1388 
1389 		/* We want to process the partially complete drops first. */
1390 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1391 			list_add(&root->root_list, &fs_info->dead_roots);
1392 		else
1393 			list_add_tail(&root->root_list, &fs_info->dead_roots);
1394 	}
1395 	spin_unlock(&fs_info->trans_lock);
1396 }
1397 
1398 /*
1399  * Update each subvolume root and its relocation root, if it exists, in the tree
1400  * of tree roots. Also free log roots if they exist.
1401  */
1402 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1403 {
1404 	struct btrfs_fs_info *fs_info = trans->fs_info;
1405 	struct btrfs_root *root;
1406 	unsigned long index;
1407 
1408 	/*
1409 	 * At this point no one can be using this transaction to modify any tree
1410 	 * and no one can start another transaction to modify any tree either.
1411 	 */
1412 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1413 
1414 	spin_lock(&fs_info->fs_roots_lock);
1415 	xa_for_each_marked(&fs_info->fs_roots, index, root, BTRFS_ROOT_TRANS_TAG) {
1416 		int ret;
1417 
1418 		/*
1419 		 * At this point we can neither have tasks logging inodes
1420 		 * from a root nor trying to commit a log tree.
1421 		 */
1422 		ASSERT(atomic_read(&root->log_writers) == 0);
1423 		ASSERT(atomic_read(&root->log_commit[0]) == 0);
1424 		ASSERT(atomic_read(&root->log_commit[1]) == 0);
1425 
1426 		xa_clear_mark(&fs_info->fs_roots,
1427 			      (unsigned long)root->root_key.objectid,
1428 			      BTRFS_ROOT_TRANS_TAG);
1429 		spin_unlock(&fs_info->fs_roots_lock);
1430 
1431 		btrfs_free_log(trans, root);
1432 		ret = btrfs_update_reloc_root(trans, root);
1433 		if (ret)
1434 			return ret;
1435 
1436 		/* See comments in should_cow_block() */
1437 		clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1438 		smp_mb__after_atomic();
1439 
1440 		if (root->commit_root != root->node) {
1441 			list_add_tail(&root->dirty_list,
1442 				      &trans->transaction->switch_commits);
1443 			btrfs_set_root_node(&root->root_item, root->node);
1444 		}
1445 
1446 		ret = btrfs_update_root(trans, fs_info->tree_root,
1447 					&root->root_key, &root->root_item);
1448 		if (ret)
1449 			return ret;
1450 		spin_lock(&fs_info->fs_roots_lock);
1451 		btrfs_qgroup_free_meta_all_pertrans(root);
1452 	}
1453 	spin_unlock(&fs_info->fs_roots_lock);
1454 	return 0;
1455 }
1456 
1457 /*
1458  * defrag a given btree.
1459  * Every leaf in the btree is read and defragged.
1460  */
1461 int btrfs_defrag_root(struct btrfs_root *root)
1462 {
1463 	struct btrfs_fs_info *info = root->fs_info;
1464 	struct btrfs_trans_handle *trans;
1465 	int ret;
1466 
1467 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1468 		return 0;
1469 
1470 	while (1) {
1471 		trans = btrfs_start_transaction(root, 0);
1472 		if (IS_ERR(trans)) {
1473 			ret = PTR_ERR(trans);
1474 			break;
1475 		}
1476 
1477 		ret = btrfs_defrag_leaves(trans, root);
1478 
1479 		btrfs_end_transaction(trans);
1480 		btrfs_btree_balance_dirty(info);
1481 		cond_resched();
1482 
1483 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1484 			break;
1485 
1486 		if (btrfs_defrag_cancelled(info)) {
1487 			btrfs_debug(info, "defrag_root cancelled");
1488 			ret = -EAGAIN;
1489 			break;
1490 		}
1491 	}
1492 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1493 	return ret;
1494 }
1495 
1496 /*
1497  * Do all special snapshot related qgroup dirty hack.
1498  *
1499  * Will do all needed qgroup inherit and dirty hack like switch commit
1500  * roots inside one transaction and write all btree into disk, to make
1501  * qgroup works.
1502  */
1503 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1504 				   struct btrfs_root *src,
1505 				   struct btrfs_root *parent,
1506 				   struct btrfs_qgroup_inherit *inherit,
1507 				   u64 dst_objectid)
1508 {
1509 	struct btrfs_fs_info *fs_info = src->fs_info;
1510 	int ret;
1511 
1512 	/*
1513 	 * Save some performance in the case that qgroups are not
1514 	 * enabled. If this check races with the ioctl, rescan will
1515 	 * kick in anyway.
1516 	 */
1517 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1518 		return 0;
1519 
1520 	/*
1521 	 * Ensure dirty @src will be committed.  Or, after coming
1522 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1523 	 * recorded root will never be updated again, causing an outdated root
1524 	 * item.
1525 	 */
1526 	ret = record_root_in_trans(trans, src, 1);
1527 	if (ret)
1528 		return ret;
1529 
1530 	/*
1531 	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1532 	 * src root, so we must run the delayed refs here.
1533 	 *
1534 	 * However this isn't particularly fool proof, because there's no
1535 	 * synchronization keeping us from changing the tree after this point
1536 	 * before we do the qgroup_inherit, or even from making changes while
1537 	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1538 	 * for now flush the delayed refs to narrow the race window where the
1539 	 * qgroup counters could end up wrong.
1540 	 */
1541 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1542 	if (ret) {
1543 		btrfs_abort_transaction(trans, ret);
1544 		return ret;
1545 	}
1546 
1547 	ret = commit_fs_roots(trans);
1548 	if (ret)
1549 		goto out;
1550 	ret = btrfs_qgroup_account_extents(trans);
1551 	if (ret < 0)
1552 		goto out;
1553 
1554 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1555 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1556 				   inherit);
1557 	if (ret < 0)
1558 		goto out;
1559 
1560 	/*
1561 	 * Now we do a simplified commit transaction, which will:
1562 	 * 1) commit all subvolume and extent tree
1563 	 *    To ensure all subvolume and extent tree have a valid
1564 	 *    commit_root to accounting later insert_dir_item()
1565 	 * 2) write all btree blocks onto disk
1566 	 *    This is to make sure later btree modification will be cowed
1567 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1568 	 * In this simplified commit, we don't really care about other trees
1569 	 * like chunk and root tree, as they won't affect qgroup.
1570 	 * And we don't write super to avoid half committed status.
1571 	 */
1572 	ret = commit_cowonly_roots(trans);
1573 	if (ret)
1574 		goto out;
1575 	switch_commit_roots(trans);
1576 	ret = btrfs_write_and_wait_transaction(trans);
1577 	if (ret)
1578 		btrfs_handle_fs_error(fs_info, ret,
1579 			"Error while writing out transaction for qgroup");
1580 
1581 out:
1582 	/*
1583 	 * Force parent root to be updated, as we recorded it before so its
1584 	 * last_trans == cur_transid.
1585 	 * Or it won't be committed again onto disk after later
1586 	 * insert_dir_item()
1587 	 */
1588 	if (!ret)
1589 		ret = record_root_in_trans(trans, parent, 1);
1590 	return ret;
1591 }
1592 
1593 /*
1594  * new snapshots need to be created at a very specific time in the
1595  * transaction commit.  This does the actual creation.
1596  *
1597  * Note:
1598  * If the error which may affect the commitment of the current transaction
1599  * happens, we should return the error number. If the error which just affect
1600  * the creation of the pending snapshots, just return 0.
1601  */
1602 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1603 				   struct btrfs_pending_snapshot *pending)
1604 {
1605 
1606 	struct btrfs_fs_info *fs_info = trans->fs_info;
1607 	struct btrfs_key key;
1608 	struct btrfs_root_item *new_root_item;
1609 	struct btrfs_root *tree_root = fs_info->tree_root;
1610 	struct btrfs_root *root = pending->root;
1611 	struct btrfs_root *parent_root;
1612 	struct btrfs_block_rsv *rsv;
1613 	struct inode *parent_inode;
1614 	struct btrfs_path *path;
1615 	struct btrfs_dir_item *dir_item;
1616 	struct dentry *dentry;
1617 	struct extent_buffer *tmp;
1618 	struct extent_buffer *old;
1619 	struct timespec64 cur_time;
1620 	int ret = 0;
1621 	u64 to_reserve = 0;
1622 	u64 index = 0;
1623 	u64 objectid;
1624 	u64 root_flags;
1625 
1626 	ASSERT(pending->path);
1627 	path = pending->path;
1628 
1629 	ASSERT(pending->root_item);
1630 	new_root_item = pending->root_item;
1631 
1632 	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1633 	if (pending->error)
1634 		goto no_free_objectid;
1635 
1636 	/*
1637 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1638 	 * accounted by later btrfs_qgroup_inherit().
1639 	 */
1640 	btrfs_set_skip_qgroup(trans, objectid);
1641 
1642 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1643 
1644 	if (to_reserve > 0) {
1645 		pending->error = btrfs_block_rsv_add(fs_info,
1646 						     &pending->block_rsv,
1647 						     to_reserve,
1648 						     BTRFS_RESERVE_NO_FLUSH);
1649 		if (pending->error)
1650 			goto clear_skip_qgroup;
1651 	}
1652 
1653 	key.objectid = objectid;
1654 	key.offset = (u64)-1;
1655 	key.type = BTRFS_ROOT_ITEM_KEY;
1656 
1657 	rsv = trans->block_rsv;
1658 	trans->block_rsv = &pending->block_rsv;
1659 	trans->bytes_reserved = trans->block_rsv->reserved;
1660 	trace_btrfs_space_reservation(fs_info, "transaction",
1661 				      trans->transid,
1662 				      trans->bytes_reserved, 1);
1663 	dentry = pending->dentry;
1664 	parent_inode = pending->dir;
1665 	parent_root = BTRFS_I(parent_inode)->root;
1666 	ret = record_root_in_trans(trans, parent_root, 0);
1667 	if (ret)
1668 		goto fail;
1669 	cur_time = current_time(parent_inode);
1670 
1671 	/*
1672 	 * insert the directory item
1673 	 */
1674 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1675 	BUG_ON(ret); /* -ENOMEM */
1676 
1677 	/* check if there is a file/dir which has the same name. */
1678 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1679 					 btrfs_ino(BTRFS_I(parent_inode)),
1680 					 dentry->d_name.name,
1681 					 dentry->d_name.len, 0);
1682 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1683 		pending->error = -EEXIST;
1684 		goto dir_item_existed;
1685 	} else if (IS_ERR(dir_item)) {
1686 		ret = PTR_ERR(dir_item);
1687 		btrfs_abort_transaction(trans, ret);
1688 		goto fail;
1689 	}
1690 	btrfs_release_path(path);
1691 
1692 	/*
1693 	 * pull in the delayed directory update
1694 	 * and the delayed inode item
1695 	 * otherwise we corrupt the FS during
1696 	 * snapshot
1697 	 */
1698 	ret = btrfs_run_delayed_items(trans);
1699 	if (ret) {	/* Transaction aborted */
1700 		btrfs_abort_transaction(trans, ret);
1701 		goto fail;
1702 	}
1703 
1704 	ret = record_root_in_trans(trans, root, 0);
1705 	if (ret) {
1706 		btrfs_abort_transaction(trans, ret);
1707 		goto fail;
1708 	}
1709 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1710 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1711 	btrfs_check_and_init_root_item(new_root_item);
1712 
1713 	root_flags = btrfs_root_flags(new_root_item);
1714 	if (pending->readonly)
1715 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1716 	else
1717 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1718 	btrfs_set_root_flags(new_root_item, root_flags);
1719 
1720 	btrfs_set_root_generation_v2(new_root_item,
1721 			trans->transid);
1722 	generate_random_guid(new_root_item->uuid);
1723 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1724 			BTRFS_UUID_SIZE);
1725 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1726 		memset(new_root_item->received_uuid, 0,
1727 		       sizeof(new_root_item->received_uuid));
1728 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1729 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1730 		btrfs_set_root_stransid(new_root_item, 0);
1731 		btrfs_set_root_rtransid(new_root_item, 0);
1732 	}
1733 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1734 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1735 	btrfs_set_root_otransid(new_root_item, trans->transid);
1736 
1737 	old = btrfs_lock_root_node(root);
1738 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1739 			      BTRFS_NESTING_COW);
1740 	if (ret) {
1741 		btrfs_tree_unlock(old);
1742 		free_extent_buffer(old);
1743 		btrfs_abort_transaction(trans, ret);
1744 		goto fail;
1745 	}
1746 
1747 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1748 	/* clean up in any case */
1749 	btrfs_tree_unlock(old);
1750 	free_extent_buffer(old);
1751 	if (ret) {
1752 		btrfs_abort_transaction(trans, ret);
1753 		goto fail;
1754 	}
1755 	/* see comments in should_cow_block() */
1756 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1757 	smp_wmb();
1758 
1759 	btrfs_set_root_node(new_root_item, tmp);
1760 	/* record when the snapshot was created in key.offset */
1761 	key.offset = trans->transid;
1762 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1763 	btrfs_tree_unlock(tmp);
1764 	free_extent_buffer(tmp);
1765 	if (ret) {
1766 		btrfs_abort_transaction(trans, ret);
1767 		goto fail;
1768 	}
1769 
1770 	/*
1771 	 * insert root back/forward references
1772 	 */
1773 	ret = btrfs_add_root_ref(trans, objectid,
1774 				 parent_root->root_key.objectid,
1775 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1776 				 dentry->d_name.name, dentry->d_name.len);
1777 	if (ret) {
1778 		btrfs_abort_transaction(trans, ret);
1779 		goto fail;
1780 	}
1781 
1782 	key.offset = (u64)-1;
1783 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1784 	if (IS_ERR(pending->snap)) {
1785 		ret = PTR_ERR(pending->snap);
1786 		pending->snap = NULL;
1787 		btrfs_abort_transaction(trans, ret);
1788 		goto fail;
1789 	}
1790 
1791 	ret = btrfs_reloc_post_snapshot(trans, pending);
1792 	if (ret) {
1793 		btrfs_abort_transaction(trans, ret);
1794 		goto fail;
1795 	}
1796 
1797 	/*
1798 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1799 	 * snapshot hack to do fast snapshot.
1800 	 * To co-operate with that hack, we do hack again.
1801 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1802 	 */
1803 	ret = qgroup_account_snapshot(trans, root, parent_root,
1804 				      pending->inherit, objectid);
1805 	if (ret < 0)
1806 		goto fail;
1807 
1808 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1809 				    dentry->d_name.len, BTRFS_I(parent_inode),
1810 				    &key, BTRFS_FT_DIR, index);
1811 	/* We have check then name at the beginning, so it is impossible. */
1812 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1813 	if (ret) {
1814 		btrfs_abort_transaction(trans, ret);
1815 		goto fail;
1816 	}
1817 
1818 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1819 					 dentry->d_name.len * 2);
1820 	parent_inode->i_mtime = parent_inode->i_ctime =
1821 		current_time(parent_inode);
1822 	ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1823 	if (ret) {
1824 		btrfs_abort_transaction(trans, ret);
1825 		goto fail;
1826 	}
1827 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1828 				  BTRFS_UUID_KEY_SUBVOL,
1829 				  objectid);
1830 	if (ret) {
1831 		btrfs_abort_transaction(trans, ret);
1832 		goto fail;
1833 	}
1834 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1835 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1836 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1837 					  objectid);
1838 		if (ret && ret != -EEXIST) {
1839 			btrfs_abort_transaction(trans, ret);
1840 			goto fail;
1841 		}
1842 	}
1843 
1844 fail:
1845 	pending->error = ret;
1846 dir_item_existed:
1847 	trans->block_rsv = rsv;
1848 	trans->bytes_reserved = 0;
1849 clear_skip_qgroup:
1850 	btrfs_clear_skip_qgroup(trans);
1851 no_free_objectid:
1852 	kfree(new_root_item);
1853 	pending->root_item = NULL;
1854 	btrfs_free_path(path);
1855 	pending->path = NULL;
1856 
1857 	return ret;
1858 }
1859 
1860 /*
1861  * create all the snapshots we've scheduled for creation
1862  */
1863 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1864 {
1865 	struct btrfs_pending_snapshot *pending, *next;
1866 	struct list_head *head = &trans->transaction->pending_snapshots;
1867 	int ret = 0;
1868 
1869 	list_for_each_entry_safe(pending, next, head, list) {
1870 		list_del(&pending->list);
1871 		ret = create_pending_snapshot(trans, pending);
1872 		if (ret)
1873 			break;
1874 	}
1875 	return ret;
1876 }
1877 
1878 static void update_super_roots(struct btrfs_fs_info *fs_info)
1879 {
1880 	struct btrfs_root_item *root_item;
1881 	struct btrfs_super_block *super;
1882 
1883 	super = fs_info->super_copy;
1884 
1885 	root_item = &fs_info->chunk_root->root_item;
1886 	super->chunk_root = root_item->bytenr;
1887 	super->chunk_root_generation = root_item->generation;
1888 	super->chunk_root_level = root_item->level;
1889 
1890 	root_item = &fs_info->tree_root->root_item;
1891 	super->root = root_item->bytenr;
1892 	super->generation = root_item->generation;
1893 	super->root_level = root_item->level;
1894 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1895 		super->cache_generation = root_item->generation;
1896 	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1897 		super->cache_generation = 0;
1898 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1899 		super->uuid_tree_generation = root_item->generation;
1900 
1901 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
1902 		root_item = &fs_info->block_group_root->root_item;
1903 
1904 		super->block_group_root = root_item->bytenr;
1905 		super->block_group_root_generation = root_item->generation;
1906 		super->block_group_root_level = root_item->level;
1907 	}
1908 }
1909 
1910 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1911 {
1912 	struct btrfs_transaction *trans;
1913 	int ret = 0;
1914 
1915 	spin_lock(&info->trans_lock);
1916 	trans = info->running_transaction;
1917 	if (trans)
1918 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1919 	spin_unlock(&info->trans_lock);
1920 	return ret;
1921 }
1922 
1923 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1924 {
1925 	struct btrfs_transaction *trans;
1926 	int ret = 0;
1927 
1928 	spin_lock(&info->trans_lock);
1929 	trans = info->running_transaction;
1930 	if (trans)
1931 		ret = is_transaction_blocked(trans);
1932 	spin_unlock(&info->trans_lock);
1933 	return ret;
1934 }
1935 
1936 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1937 {
1938 	struct btrfs_fs_info *fs_info = trans->fs_info;
1939 	struct btrfs_transaction *cur_trans;
1940 
1941 	/* Kick the transaction kthread. */
1942 	set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1943 	wake_up_process(fs_info->transaction_kthread);
1944 
1945 	/* take transaction reference */
1946 	cur_trans = trans->transaction;
1947 	refcount_inc(&cur_trans->use_count);
1948 
1949 	btrfs_end_transaction(trans);
1950 
1951 	/*
1952 	 * Wait for the current transaction commit to start and block
1953 	 * subsequent transaction joins
1954 	 */
1955 	wait_event(fs_info->transaction_blocked_wait,
1956 		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
1957 		   TRANS_ABORTED(cur_trans));
1958 	btrfs_put_transaction(cur_trans);
1959 }
1960 
1961 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1962 {
1963 	struct btrfs_fs_info *fs_info = trans->fs_info;
1964 	struct btrfs_transaction *cur_trans = trans->transaction;
1965 
1966 	WARN_ON(refcount_read(&trans->use_count) > 1);
1967 
1968 	btrfs_abort_transaction(trans, err);
1969 
1970 	spin_lock(&fs_info->trans_lock);
1971 
1972 	/*
1973 	 * If the transaction is removed from the list, it means this
1974 	 * transaction has been committed successfully, so it is impossible
1975 	 * to call the cleanup function.
1976 	 */
1977 	BUG_ON(list_empty(&cur_trans->list));
1978 
1979 	if (cur_trans == fs_info->running_transaction) {
1980 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1981 		spin_unlock(&fs_info->trans_lock);
1982 		wait_event(cur_trans->writer_wait,
1983 			   atomic_read(&cur_trans->num_writers) == 1);
1984 
1985 		spin_lock(&fs_info->trans_lock);
1986 	}
1987 
1988 	/*
1989 	 * Now that we know no one else is still using the transaction we can
1990 	 * remove the transaction from the list of transactions. This avoids
1991 	 * the transaction kthread from cleaning up the transaction while some
1992 	 * other task is still using it, which could result in a use-after-free
1993 	 * on things like log trees, as it forces the transaction kthread to
1994 	 * wait for this transaction to be cleaned up by us.
1995 	 */
1996 	list_del_init(&cur_trans->list);
1997 
1998 	spin_unlock(&fs_info->trans_lock);
1999 
2000 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2001 
2002 	spin_lock(&fs_info->trans_lock);
2003 	if (cur_trans == fs_info->running_transaction)
2004 		fs_info->running_transaction = NULL;
2005 	spin_unlock(&fs_info->trans_lock);
2006 
2007 	if (trans->type & __TRANS_FREEZABLE)
2008 		sb_end_intwrite(fs_info->sb);
2009 	btrfs_put_transaction(cur_trans);
2010 	btrfs_put_transaction(cur_trans);
2011 
2012 	trace_btrfs_transaction_commit(fs_info);
2013 
2014 	if (current->journal_info == trans)
2015 		current->journal_info = NULL;
2016 	btrfs_scrub_cancel(fs_info);
2017 
2018 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2019 }
2020 
2021 /*
2022  * Release reserved delayed ref space of all pending block groups of the
2023  * transaction and remove them from the list
2024  */
2025 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2026 {
2027        struct btrfs_fs_info *fs_info = trans->fs_info;
2028        struct btrfs_block_group *block_group, *tmp;
2029 
2030        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2031                btrfs_delayed_refs_rsv_release(fs_info, 1);
2032                list_del_init(&block_group->bg_list);
2033        }
2034 }
2035 
2036 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2037 {
2038 	/*
2039 	 * We use try_to_writeback_inodes_sb() here because if we used
2040 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2041 	 * Currently are holding the fs freeze lock, if we do an async flush
2042 	 * we'll do btrfs_join_transaction() and deadlock because we need to
2043 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2044 	 * from already being in a transaction and our join_transaction doesn't
2045 	 * have to re-take the fs freeze lock.
2046 	 *
2047 	 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2048 	 * if it can read lock sb->s_umount. It will always be able to lock it,
2049 	 * except when the filesystem is being unmounted or being frozen, but in
2050 	 * those cases sync_filesystem() is called, which results in calling
2051 	 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2052 	 * Note that we don't call writeback_inodes_sb() directly, because it
2053 	 * will emit a warning if sb->s_umount is not locked.
2054 	 */
2055 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2056 		try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2057 	return 0;
2058 }
2059 
2060 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2061 {
2062 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2063 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2064 }
2065 
2066 /*
2067  * Add a pending snapshot associated with the given transaction handle to the
2068  * respective handle. This must be called after the transaction commit started
2069  * and while holding fs_info->trans_lock.
2070  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2071  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2072  * returns an error.
2073  */
2074 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2075 {
2076 	struct btrfs_transaction *cur_trans = trans->transaction;
2077 
2078 	if (!trans->pending_snapshot)
2079 		return;
2080 
2081 	lockdep_assert_held(&trans->fs_info->trans_lock);
2082 	ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2083 
2084 	list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2085 }
2086 
2087 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2088 {
2089 	struct btrfs_fs_info *fs_info = trans->fs_info;
2090 	struct btrfs_transaction *cur_trans = trans->transaction;
2091 	struct btrfs_transaction *prev_trans = NULL;
2092 	int ret;
2093 
2094 	ASSERT(refcount_read(&trans->use_count) == 1);
2095 
2096 	/* Stop the commit early if ->aborted is set */
2097 	if (TRANS_ABORTED(cur_trans)) {
2098 		ret = cur_trans->aborted;
2099 		btrfs_end_transaction(trans);
2100 		return ret;
2101 	}
2102 
2103 	btrfs_trans_release_metadata(trans);
2104 	trans->block_rsv = NULL;
2105 
2106 	/*
2107 	 * We only want one transaction commit doing the flushing so we do not
2108 	 * waste a bunch of time on lock contention on the extent root node.
2109 	 */
2110 	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2111 			      &cur_trans->delayed_refs.flags)) {
2112 		/*
2113 		 * Make a pass through all the delayed refs we have so far.
2114 		 * Any running threads may add more while we are here.
2115 		 */
2116 		ret = btrfs_run_delayed_refs(trans, 0);
2117 		if (ret) {
2118 			btrfs_end_transaction(trans);
2119 			return ret;
2120 		}
2121 	}
2122 
2123 	btrfs_create_pending_block_groups(trans);
2124 
2125 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2126 		int run_it = 0;
2127 
2128 		/* this mutex is also taken before trying to set
2129 		 * block groups readonly.  We need to make sure
2130 		 * that nobody has set a block group readonly
2131 		 * after a extents from that block group have been
2132 		 * allocated for cache files.  btrfs_set_block_group_ro
2133 		 * will wait for the transaction to commit if it
2134 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2135 		 *
2136 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2137 		 * only one process starts all the block group IO.  It wouldn't
2138 		 * hurt to have more than one go through, but there's no
2139 		 * real advantage to it either.
2140 		 */
2141 		mutex_lock(&fs_info->ro_block_group_mutex);
2142 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2143 				      &cur_trans->flags))
2144 			run_it = 1;
2145 		mutex_unlock(&fs_info->ro_block_group_mutex);
2146 
2147 		if (run_it) {
2148 			ret = btrfs_start_dirty_block_groups(trans);
2149 			if (ret) {
2150 				btrfs_end_transaction(trans);
2151 				return ret;
2152 			}
2153 		}
2154 	}
2155 
2156 	spin_lock(&fs_info->trans_lock);
2157 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2158 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2159 
2160 		add_pending_snapshot(trans);
2161 
2162 		spin_unlock(&fs_info->trans_lock);
2163 		refcount_inc(&cur_trans->use_count);
2164 
2165 		if (trans->in_fsync)
2166 			want_state = TRANS_STATE_SUPER_COMMITTED;
2167 		ret = btrfs_end_transaction(trans);
2168 		wait_for_commit(cur_trans, want_state);
2169 
2170 		if (TRANS_ABORTED(cur_trans))
2171 			ret = cur_trans->aborted;
2172 
2173 		btrfs_put_transaction(cur_trans);
2174 
2175 		return ret;
2176 	}
2177 
2178 	cur_trans->state = TRANS_STATE_COMMIT_START;
2179 	wake_up(&fs_info->transaction_blocked_wait);
2180 
2181 	if (cur_trans->list.prev != &fs_info->trans_list) {
2182 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2183 
2184 		if (trans->in_fsync)
2185 			want_state = TRANS_STATE_SUPER_COMMITTED;
2186 
2187 		prev_trans = list_entry(cur_trans->list.prev,
2188 					struct btrfs_transaction, list);
2189 		if (prev_trans->state < want_state) {
2190 			refcount_inc(&prev_trans->use_count);
2191 			spin_unlock(&fs_info->trans_lock);
2192 
2193 			wait_for_commit(prev_trans, want_state);
2194 
2195 			ret = READ_ONCE(prev_trans->aborted);
2196 
2197 			btrfs_put_transaction(prev_trans);
2198 			if (ret)
2199 				goto cleanup_transaction;
2200 		} else {
2201 			spin_unlock(&fs_info->trans_lock);
2202 		}
2203 	} else {
2204 		spin_unlock(&fs_info->trans_lock);
2205 		/*
2206 		 * The previous transaction was aborted and was already removed
2207 		 * from the list of transactions at fs_info->trans_list. So we
2208 		 * abort to prevent writing a new superblock that reflects a
2209 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2210 		 */
2211 		if (BTRFS_FS_ERROR(fs_info)) {
2212 			ret = -EROFS;
2213 			goto cleanup_transaction;
2214 		}
2215 	}
2216 
2217 	extwriter_counter_dec(cur_trans, trans->type);
2218 
2219 	ret = btrfs_start_delalloc_flush(fs_info);
2220 	if (ret)
2221 		goto cleanup_transaction;
2222 
2223 	ret = btrfs_run_delayed_items(trans);
2224 	if (ret)
2225 		goto cleanup_transaction;
2226 
2227 	wait_event(cur_trans->writer_wait,
2228 		   extwriter_counter_read(cur_trans) == 0);
2229 
2230 	/* some pending stuffs might be added after the previous flush. */
2231 	ret = btrfs_run_delayed_items(trans);
2232 	if (ret)
2233 		goto cleanup_transaction;
2234 
2235 	btrfs_wait_delalloc_flush(fs_info);
2236 
2237 	/*
2238 	 * Wait for all ordered extents started by a fast fsync that joined this
2239 	 * transaction. Otherwise if this transaction commits before the ordered
2240 	 * extents complete we lose logged data after a power failure.
2241 	 */
2242 	wait_event(cur_trans->pending_wait,
2243 		   atomic_read(&cur_trans->pending_ordered) == 0);
2244 
2245 	btrfs_scrub_pause(fs_info);
2246 	/*
2247 	 * Ok now we need to make sure to block out any other joins while we
2248 	 * commit the transaction.  We could have started a join before setting
2249 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2250 	 */
2251 	spin_lock(&fs_info->trans_lock);
2252 	add_pending_snapshot(trans);
2253 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2254 	spin_unlock(&fs_info->trans_lock);
2255 	wait_event(cur_trans->writer_wait,
2256 		   atomic_read(&cur_trans->num_writers) == 1);
2257 
2258 	/*
2259 	 * We've started the commit, clear the flag in case we were triggered to
2260 	 * do an async commit but somebody else started before the transaction
2261 	 * kthread could do the work.
2262 	 */
2263 	clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2264 
2265 	if (TRANS_ABORTED(cur_trans)) {
2266 		ret = cur_trans->aborted;
2267 		goto scrub_continue;
2268 	}
2269 	/*
2270 	 * the reloc mutex makes sure that we stop
2271 	 * the balancing code from coming in and moving
2272 	 * extents around in the middle of the commit
2273 	 */
2274 	mutex_lock(&fs_info->reloc_mutex);
2275 
2276 	/*
2277 	 * We needn't worry about the delayed items because we will
2278 	 * deal with them in create_pending_snapshot(), which is the
2279 	 * core function of the snapshot creation.
2280 	 */
2281 	ret = create_pending_snapshots(trans);
2282 	if (ret)
2283 		goto unlock_reloc;
2284 
2285 	/*
2286 	 * We insert the dir indexes of the snapshots and update the inode
2287 	 * of the snapshots' parents after the snapshot creation, so there
2288 	 * are some delayed items which are not dealt with. Now deal with
2289 	 * them.
2290 	 *
2291 	 * We needn't worry that this operation will corrupt the snapshots,
2292 	 * because all the tree which are snapshoted will be forced to COW
2293 	 * the nodes and leaves.
2294 	 */
2295 	ret = btrfs_run_delayed_items(trans);
2296 	if (ret)
2297 		goto unlock_reloc;
2298 
2299 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2300 	if (ret)
2301 		goto unlock_reloc;
2302 
2303 	/*
2304 	 * make sure none of the code above managed to slip in a
2305 	 * delayed item
2306 	 */
2307 	btrfs_assert_delayed_root_empty(fs_info);
2308 
2309 	WARN_ON(cur_trans != trans->transaction);
2310 
2311 	ret = commit_fs_roots(trans);
2312 	if (ret)
2313 		goto unlock_reloc;
2314 
2315 	/*
2316 	 * Since the transaction is done, we can apply the pending changes
2317 	 * before the next transaction.
2318 	 */
2319 	btrfs_apply_pending_changes(fs_info);
2320 
2321 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2322 	 * safe to free the root of tree log roots
2323 	 */
2324 	btrfs_free_log_root_tree(trans, fs_info);
2325 
2326 	/*
2327 	 * Since fs roots are all committed, we can get a quite accurate
2328 	 * new_roots. So let's do quota accounting.
2329 	 */
2330 	ret = btrfs_qgroup_account_extents(trans);
2331 	if (ret < 0)
2332 		goto unlock_reloc;
2333 
2334 	ret = commit_cowonly_roots(trans);
2335 	if (ret)
2336 		goto unlock_reloc;
2337 
2338 	/*
2339 	 * The tasks which save the space cache and inode cache may also
2340 	 * update ->aborted, check it.
2341 	 */
2342 	if (TRANS_ABORTED(cur_trans)) {
2343 		ret = cur_trans->aborted;
2344 		goto unlock_reloc;
2345 	}
2346 
2347 	cur_trans = fs_info->running_transaction;
2348 
2349 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2350 			    fs_info->tree_root->node);
2351 	list_add_tail(&fs_info->tree_root->dirty_list,
2352 		      &cur_trans->switch_commits);
2353 
2354 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2355 			    fs_info->chunk_root->node);
2356 	list_add_tail(&fs_info->chunk_root->dirty_list,
2357 		      &cur_trans->switch_commits);
2358 
2359 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2360 		btrfs_set_root_node(&fs_info->block_group_root->root_item,
2361 				    fs_info->block_group_root->node);
2362 		list_add_tail(&fs_info->block_group_root->dirty_list,
2363 			      &cur_trans->switch_commits);
2364 	}
2365 
2366 	switch_commit_roots(trans);
2367 
2368 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2369 	ASSERT(list_empty(&cur_trans->io_bgs));
2370 	update_super_roots(fs_info);
2371 
2372 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2373 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2374 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2375 	       sizeof(*fs_info->super_copy));
2376 
2377 	btrfs_commit_device_sizes(cur_trans);
2378 
2379 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2380 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2381 
2382 	btrfs_trans_release_chunk_metadata(trans);
2383 
2384 	/*
2385 	 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2386 	 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2387 	 * make sure that before we commit our superblock, no other task can
2388 	 * start a new transaction and commit a log tree before we commit our
2389 	 * superblock. Anyone trying to commit a log tree locks this mutex before
2390 	 * writing its superblock.
2391 	 */
2392 	mutex_lock(&fs_info->tree_log_mutex);
2393 
2394 	spin_lock(&fs_info->trans_lock);
2395 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2396 	fs_info->running_transaction = NULL;
2397 	spin_unlock(&fs_info->trans_lock);
2398 	mutex_unlock(&fs_info->reloc_mutex);
2399 
2400 	wake_up(&fs_info->transaction_wait);
2401 
2402 	ret = btrfs_write_and_wait_transaction(trans);
2403 	if (ret) {
2404 		btrfs_handle_fs_error(fs_info, ret,
2405 				      "Error while writing out transaction");
2406 		mutex_unlock(&fs_info->tree_log_mutex);
2407 		goto scrub_continue;
2408 	}
2409 
2410 	/*
2411 	 * At this point, we should have written all the tree blocks allocated
2412 	 * in this transaction. So it's now safe to free the redirtyied extent
2413 	 * buffers.
2414 	 */
2415 	btrfs_free_redirty_list(cur_trans);
2416 
2417 	ret = write_all_supers(fs_info, 0);
2418 	/*
2419 	 * the super is written, we can safely allow the tree-loggers
2420 	 * to go about their business
2421 	 */
2422 	mutex_unlock(&fs_info->tree_log_mutex);
2423 	if (ret)
2424 		goto scrub_continue;
2425 
2426 	/*
2427 	 * We needn't acquire the lock here because there is no other task
2428 	 * which can change it.
2429 	 */
2430 	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2431 	wake_up(&cur_trans->commit_wait);
2432 
2433 	btrfs_finish_extent_commit(trans);
2434 
2435 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2436 		btrfs_clear_space_info_full(fs_info);
2437 
2438 	fs_info->last_trans_committed = cur_trans->transid;
2439 	/*
2440 	 * We needn't acquire the lock here because there is no other task
2441 	 * which can change it.
2442 	 */
2443 	cur_trans->state = TRANS_STATE_COMPLETED;
2444 	wake_up(&cur_trans->commit_wait);
2445 
2446 	spin_lock(&fs_info->trans_lock);
2447 	list_del_init(&cur_trans->list);
2448 	spin_unlock(&fs_info->trans_lock);
2449 
2450 	btrfs_put_transaction(cur_trans);
2451 	btrfs_put_transaction(cur_trans);
2452 
2453 	if (trans->type & __TRANS_FREEZABLE)
2454 		sb_end_intwrite(fs_info->sb);
2455 
2456 	trace_btrfs_transaction_commit(fs_info);
2457 
2458 	btrfs_scrub_continue(fs_info);
2459 
2460 	if (current->journal_info == trans)
2461 		current->journal_info = NULL;
2462 
2463 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2464 
2465 	return ret;
2466 
2467 unlock_reloc:
2468 	mutex_unlock(&fs_info->reloc_mutex);
2469 scrub_continue:
2470 	btrfs_scrub_continue(fs_info);
2471 cleanup_transaction:
2472 	btrfs_trans_release_metadata(trans);
2473 	btrfs_cleanup_pending_block_groups(trans);
2474 	btrfs_trans_release_chunk_metadata(trans);
2475 	trans->block_rsv = NULL;
2476 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2477 	if (current->journal_info == trans)
2478 		current->journal_info = NULL;
2479 	cleanup_transaction(trans, ret);
2480 
2481 	return ret;
2482 }
2483 
2484 /*
2485  * return < 0 if error
2486  * 0 if there are no more dead_roots at the time of call
2487  * 1 there are more to be processed, call me again
2488  *
2489  * The return value indicates there are certainly more snapshots to delete, but
2490  * if there comes a new one during processing, it may return 0. We don't mind,
2491  * because btrfs_commit_super will poke cleaner thread and it will process it a
2492  * few seconds later.
2493  */
2494 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2495 {
2496 	struct btrfs_root *root;
2497 	int ret;
2498 
2499 	spin_lock(&fs_info->trans_lock);
2500 	if (list_empty(&fs_info->dead_roots)) {
2501 		spin_unlock(&fs_info->trans_lock);
2502 		return 0;
2503 	}
2504 	root = list_first_entry(&fs_info->dead_roots,
2505 			struct btrfs_root, root_list);
2506 	list_del_init(&root->root_list);
2507 	spin_unlock(&fs_info->trans_lock);
2508 
2509 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2510 
2511 	btrfs_kill_all_delayed_nodes(root);
2512 
2513 	if (btrfs_header_backref_rev(root->node) <
2514 			BTRFS_MIXED_BACKREF_REV)
2515 		ret = btrfs_drop_snapshot(root, 0, 0);
2516 	else
2517 		ret = btrfs_drop_snapshot(root, 1, 0);
2518 
2519 	btrfs_put_root(root);
2520 	return (ret < 0) ? 0 : 1;
2521 }
2522 
2523 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2524 {
2525 	unsigned long prev;
2526 	unsigned long bit;
2527 
2528 	prev = xchg(&fs_info->pending_changes, 0);
2529 	if (!prev)
2530 		return;
2531 
2532 	bit = 1 << BTRFS_PENDING_COMMIT;
2533 	if (prev & bit)
2534 		btrfs_debug(fs_info, "pending commit done");
2535 	prev &= ~bit;
2536 
2537 	if (prev)
2538 		btrfs_warn(fs_info,
2539 			"unknown pending changes left 0x%lx, ignoring", prev);
2540 }
2541