xref: /openbmc/linux/fs/btrfs/transaction.c (revision ee89bd6b)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 
35 #define BTRFS_ROOT_TRANS_TAG 0
36 
37 static void put_transaction(struct btrfs_transaction *transaction)
38 {
39 	WARN_ON(atomic_read(&transaction->use_count) == 0);
40 	if (atomic_dec_and_test(&transaction->use_count)) {
41 		BUG_ON(!list_empty(&transaction->list));
42 		WARN_ON(transaction->delayed_refs.root.rb_node);
43 		kmem_cache_free(btrfs_transaction_cachep, transaction);
44 	}
45 }
46 
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49 	free_extent_buffer(root->commit_root);
50 	root->commit_root = btrfs_root_node(root);
51 }
52 
53 static inline int can_join_transaction(struct btrfs_transaction *trans,
54 				       int type)
55 {
56 	return !(trans->in_commit &&
57 		 type != TRANS_JOIN &&
58 		 type != TRANS_JOIN_NOLOCK);
59 }
60 
61 /*
62  * either allocate a new transaction or hop into the existing one
63  */
64 static noinline int join_transaction(struct btrfs_root *root, int type)
65 {
66 	struct btrfs_transaction *cur_trans;
67 	struct btrfs_fs_info *fs_info = root->fs_info;
68 
69 	spin_lock(&fs_info->trans_lock);
70 loop:
71 	/* The file system has been taken offline. No new transactions. */
72 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
73 		spin_unlock(&fs_info->trans_lock);
74 		return -EROFS;
75 	}
76 
77 	if (fs_info->trans_no_join) {
78 		/*
79 		 * If we are JOIN_NOLOCK we're already committing a current
80 		 * transaction, we just need a handle to deal with something
81 		 * when committing the transaction, such as inode cache and
82 		 * space cache. It is a special case.
83 		 */
84 		if (type != TRANS_JOIN_NOLOCK) {
85 			spin_unlock(&fs_info->trans_lock);
86 			return -EBUSY;
87 		}
88 	}
89 
90 	cur_trans = fs_info->running_transaction;
91 	if (cur_trans) {
92 		if (cur_trans->aborted) {
93 			spin_unlock(&fs_info->trans_lock);
94 			return cur_trans->aborted;
95 		}
96 		if (!can_join_transaction(cur_trans, type)) {
97 			spin_unlock(&fs_info->trans_lock);
98 			return -EBUSY;
99 		}
100 		atomic_inc(&cur_trans->use_count);
101 		atomic_inc(&cur_trans->num_writers);
102 		cur_trans->num_joined++;
103 		spin_unlock(&fs_info->trans_lock);
104 		return 0;
105 	}
106 	spin_unlock(&fs_info->trans_lock);
107 
108 	/*
109 	 * If we are ATTACH, we just want to catch the current transaction,
110 	 * and commit it. If there is no transaction, just return ENOENT.
111 	 */
112 	if (type == TRANS_ATTACH)
113 		return -ENOENT;
114 
115 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
116 	if (!cur_trans)
117 		return -ENOMEM;
118 
119 	spin_lock(&fs_info->trans_lock);
120 	if (fs_info->running_transaction) {
121 		/*
122 		 * someone started a transaction after we unlocked.  Make sure
123 		 * to redo the trans_no_join checks above
124 		 */
125 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
126 		goto loop;
127 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
128 		spin_unlock(&fs_info->trans_lock);
129 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
130 		return -EROFS;
131 	}
132 
133 	atomic_set(&cur_trans->num_writers, 1);
134 	cur_trans->num_joined = 0;
135 	init_waitqueue_head(&cur_trans->writer_wait);
136 	init_waitqueue_head(&cur_trans->commit_wait);
137 	cur_trans->in_commit = 0;
138 	cur_trans->blocked = 0;
139 	/*
140 	 * One for this trans handle, one so it will live on until we
141 	 * commit the transaction.
142 	 */
143 	atomic_set(&cur_trans->use_count, 2);
144 	cur_trans->commit_done = 0;
145 	cur_trans->start_time = get_seconds();
146 
147 	cur_trans->delayed_refs.root = RB_ROOT;
148 	cur_trans->delayed_refs.num_entries = 0;
149 	cur_trans->delayed_refs.num_heads_ready = 0;
150 	cur_trans->delayed_refs.num_heads = 0;
151 	cur_trans->delayed_refs.flushing = 0;
152 	cur_trans->delayed_refs.run_delayed_start = 0;
153 
154 	/*
155 	 * although the tree mod log is per file system and not per transaction,
156 	 * the log must never go across transaction boundaries.
157 	 */
158 	smp_mb();
159 	if (!list_empty(&fs_info->tree_mod_seq_list))
160 		WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
161 			"creating a fresh transaction\n");
162 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
163 		WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
164 			"creating a fresh transaction\n");
165 	atomic64_set(&fs_info->tree_mod_seq, 0);
166 
167 	spin_lock_init(&cur_trans->commit_lock);
168 	spin_lock_init(&cur_trans->delayed_refs.lock);
169 	atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
170 	atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
171 	init_waitqueue_head(&cur_trans->delayed_refs.wait);
172 
173 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
174 	INIT_LIST_HEAD(&cur_trans->ordered_operations);
175 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
176 	extent_io_tree_init(&cur_trans->dirty_pages,
177 			     fs_info->btree_inode->i_mapping);
178 	fs_info->generation++;
179 	cur_trans->transid = fs_info->generation;
180 	fs_info->running_transaction = cur_trans;
181 	cur_trans->aborted = 0;
182 	spin_unlock(&fs_info->trans_lock);
183 
184 	return 0;
185 }
186 
187 /*
188  * this does all the record keeping required to make sure that a reference
189  * counted root is properly recorded in a given transaction.  This is required
190  * to make sure the old root from before we joined the transaction is deleted
191  * when the transaction commits
192  */
193 static int record_root_in_trans(struct btrfs_trans_handle *trans,
194 			       struct btrfs_root *root)
195 {
196 	if (root->ref_cows && root->last_trans < trans->transid) {
197 		WARN_ON(root == root->fs_info->extent_root);
198 		WARN_ON(root->commit_root != root->node);
199 
200 		/*
201 		 * see below for in_trans_setup usage rules
202 		 * we have the reloc mutex held now, so there
203 		 * is only one writer in this function
204 		 */
205 		root->in_trans_setup = 1;
206 
207 		/* make sure readers find in_trans_setup before
208 		 * they find our root->last_trans update
209 		 */
210 		smp_wmb();
211 
212 		spin_lock(&root->fs_info->fs_roots_radix_lock);
213 		if (root->last_trans == trans->transid) {
214 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
215 			return 0;
216 		}
217 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
218 			   (unsigned long)root->root_key.objectid,
219 			   BTRFS_ROOT_TRANS_TAG);
220 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
221 		root->last_trans = trans->transid;
222 
223 		/* this is pretty tricky.  We don't want to
224 		 * take the relocation lock in btrfs_record_root_in_trans
225 		 * unless we're really doing the first setup for this root in
226 		 * this transaction.
227 		 *
228 		 * Normally we'd use root->last_trans as a flag to decide
229 		 * if we want to take the expensive mutex.
230 		 *
231 		 * But, we have to set root->last_trans before we
232 		 * init the relocation root, otherwise, we trip over warnings
233 		 * in ctree.c.  The solution used here is to flag ourselves
234 		 * with root->in_trans_setup.  When this is 1, we're still
235 		 * fixing up the reloc trees and everyone must wait.
236 		 *
237 		 * When this is zero, they can trust root->last_trans and fly
238 		 * through btrfs_record_root_in_trans without having to take the
239 		 * lock.  smp_wmb() makes sure that all the writes above are
240 		 * done before we pop in the zero below
241 		 */
242 		btrfs_init_reloc_root(trans, root);
243 		smp_wmb();
244 		root->in_trans_setup = 0;
245 	}
246 	return 0;
247 }
248 
249 
250 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
251 			       struct btrfs_root *root)
252 {
253 	if (!root->ref_cows)
254 		return 0;
255 
256 	/*
257 	 * see record_root_in_trans for comments about in_trans_setup usage
258 	 * and barriers
259 	 */
260 	smp_rmb();
261 	if (root->last_trans == trans->transid &&
262 	    !root->in_trans_setup)
263 		return 0;
264 
265 	mutex_lock(&root->fs_info->reloc_mutex);
266 	record_root_in_trans(trans, root);
267 	mutex_unlock(&root->fs_info->reloc_mutex);
268 
269 	return 0;
270 }
271 
272 /* wait for commit against the current transaction to become unblocked
273  * when this is done, it is safe to start a new transaction, but the current
274  * transaction might not be fully on disk.
275  */
276 static void wait_current_trans(struct btrfs_root *root)
277 {
278 	struct btrfs_transaction *cur_trans;
279 
280 	spin_lock(&root->fs_info->trans_lock);
281 	cur_trans = root->fs_info->running_transaction;
282 	if (cur_trans && cur_trans->blocked) {
283 		atomic_inc(&cur_trans->use_count);
284 		spin_unlock(&root->fs_info->trans_lock);
285 
286 		wait_event(root->fs_info->transaction_wait,
287 			   !cur_trans->blocked);
288 		put_transaction(cur_trans);
289 	} else {
290 		spin_unlock(&root->fs_info->trans_lock);
291 	}
292 }
293 
294 static int may_wait_transaction(struct btrfs_root *root, int type)
295 {
296 	if (root->fs_info->log_root_recovering)
297 		return 0;
298 
299 	if (type == TRANS_USERSPACE)
300 		return 1;
301 
302 	if (type == TRANS_START &&
303 	    !atomic_read(&root->fs_info->open_ioctl_trans))
304 		return 1;
305 
306 	return 0;
307 }
308 
309 static struct btrfs_trans_handle *
310 start_transaction(struct btrfs_root *root, u64 num_items, int type,
311 		  enum btrfs_reserve_flush_enum flush)
312 {
313 	struct btrfs_trans_handle *h;
314 	struct btrfs_transaction *cur_trans;
315 	u64 num_bytes = 0;
316 	int ret;
317 	u64 qgroup_reserved = 0;
318 
319 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
320 		return ERR_PTR(-EROFS);
321 
322 	if (current->journal_info) {
323 		WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
324 		h = current->journal_info;
325 		h->use_count++;
326 		WARN_ON(h->use_count > 2);
327 		h->orig_rsv = h->block_rsv;
328 		h->block_rsv = NULL;
329 		goto got_it;
330 	}
331 
332 	/*
333 	 * Do the reservation before we join the transaction so we can do all
334 	 * the appropriate flushing if need be.
335 	 */
336 	if (num_items > 0 && root != root->fs_info->chunk_root) {
337 		if (root->fs_info->quota_enabled &&
338 		    is_fstree(root->root_key.objectid)) {
339 			qgroup_reserved = num_items * root->leafsize;
340 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
341 			if (ret)
342 				return ERR_PTR(ret);
343 		}
344 
345 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
346 		ret = btrfs_block_rsv_add(root,
347 					  &root->fs_info->trans_block_rsv,
348 					  num_bytes, flush);
349 		if (ret)
350 			goto reserve_fail;
351 	}
352 again:
353 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
354 	if (!h) {
355 		ret = -ENOMEM;
356 		goto alloc_fail;
357 	}
358 
359 	/*
360 	 * If we are JOIN_NOLOCK we're already committing a transaction and
361 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
362 	 * because we're already holding a ref.  We need this because we could
363 	 * have raced in and did an fsync() on a file which can kick a commit
364 	 * and then we deadlock with somebody doing a freeze.
365 	 *
366 	 * If we are ATTACH, it means we just want to catch the current
367 	 * transaction and commit it, so we needn't do sb_start_intwrite().
368 	 */
369 	if (type < TRANS_JOIN_NOLOCK)
370 		sb_start_intwrite(root->fs_info->sb);
371 
372 	if (may_wait_transaction(root, type))
373 		wait_current_trans(root);
374 
375 	do {
376 		ret = join_transaction(root, type);
377 		if (ret == -EBUSY) {
378 			wait_current_trans(root);
379 			if (unlikely(type == TRANS_ATTACH))
380 				ret = -ENOENT;
381 		}
382 	} while (ret == -EBUSY);
383 
384 	if (ret < 0) {
385 		/* We must get the transaction if we are JOIN_NOLOCK. */
386 		BUG_ON(type == TRANS_JOIN_NOLOCK);
387 		goto join_fail;
388 	}
389 
390 	cur_trans = root->fs_info->running_transaction;
391 
392 	h->transid = cur_trans->transid;
393 	h->transaction = cur_trans;
394 	h->blocks_used = 0;
395 	h->bytes_reserved = 0;
396 	h->root = root;
397 	h->delayed_ref_updates = 0;
398 	h->use_count = 1;
399 	h->adding_csums = 0;
400 	h->block_rsv = NULL;
401 	h->orig_rsv = NULL;
402 	h->aborted = 0;
403 	h->qgroup_reserved = 0;
404 	h->delayed_ref_elem.seq = 0;
405 	h->type = type;
406 	h->allocating_chunk = false;
407 	INIT_LIST_HEAD(&h->qgroup_ref_list);
408 	INIT_LIST_HEAD(&h->new_bgs);
409 
410 	smp_mb();
411 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
412 		btrfs_commit_transaction(h, root);
413 		goto again;
414 	}
415 
416 	if (num_bytes) {
417 		trace_btrfs_space_reservation(root->fs_info, "transaction",
418 					      h->transid, num_bytes, 1);
419 		h->block_rsv = &root->fs_info->trans_block_rsv;
420 		h->bytes_reserved = num_bytes;
421 	}
422 	h->qgroup_reserved = qgroup_reserved;
423 
424 got_it:
425 	btrfs_record_root_in_trans(h, root);
426 
427 	if (!current->journal_info && type != TRANS_USERSPACE)
428 		current->journal_info = h;
429 	return h;
430 
431 join_fail:
432 	if (type < TRANS_JOIN_NOLOCK)
433 		sb_end_intwrite(root->fs_info->sb);
434 	kmem_cache_free(btrfs_trans_handle_cachep, h);
435 alloc_fail:
436 	if (num_bytes)
437 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
438 					num_bytes);
439 reserve_fail:
440 	if (qgroup_reserved)
441 		btrfs_qgroup_free(root, qgroup_reserved);
442 	return ERR_PTR(ret);
443 }
444 
445 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
446 						   int num_items)
447 {
448 	return start_transaction(root, num_items, TRANS_START,
449 				 BTRFS_RESERVE_FLUSH_ALL);
450 }
451 
452 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
453 					struct btrfs_root *root, int num_items)
454 {
455 	return start_transaction(root, num_items, TRANS_START,
456 				 BTRFS_RESERVE_FLUSH_LIMIT);
457 }
458 
459 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
460 {
461 	return start_transaction(root, 0, TRANS_JOIN, 0);
462 }
463 
464 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
465 {
466 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
467 }
468 
469 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
470 {
471 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
472 }
473 
474 /*
475  * btrfs_attach_transaction() - catch the running transaction
476  *
477  * It is used when we want to commit the current the transaction, but
478  * don't want to start a new one.
479  *
480  * Note: If this function return -ENOENT, it just means there is no
481  * running transaction. But it is possible that the inactive transaction
482  * is still in the memory, not fully on disk. If you hope there is no
483  * inactive transaction in the fs when -ENOENT is returned, you should
484  * invoke
485  *     btrfs_attach_transaction_barrier()
486  */
487 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
488 {
489 	return start_transaction(root, 0, TRANS_ATTACH, 0);
490 }
491 
492 /*
493  * btrfs_attach_transaction() - catch the running transaction
494  *
495  * It is similar to the above function, the differentia is this one
496  * will wait for all the inactive transactions until they fully
497  * complete.
498  */
499 struct btrfs_trans_handle *
500 btrfs_attach_transaction_barrier(struct btrfs_root *root)
501 {
502 	struct btrfs_trans_handle *trans;
503 
504 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
505 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
506 		btrfs_wait_for_commit(root, 0);
507 
508 	return trans;
509 }
510 
511 /* wait for a transaction commit to be fully complete */
512 static noinline void wait_for_commit(struct btrfs_root *root,
513 				    struct btrfs_transaction *commit)
514 {
515 	wait_event(commit->commit_wait, commit->commit_done);
516 }
517 
518 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
519 {
520 	struct btrfs_transaction *cur_trans = NULL, *t;
521 	int ret = 0;
522 
523 	if (transid) {
524 		if (transid <= root->fs_info->last_trans_committed)
525 			goto out;
526 
527 		ret = -EINVAL;
528 		/* find specified transaction */
529 		spin_lock(&root->fs_info->trans_lock);
530 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
531 			if (t->transid == transid) {
532 				cur_trans = t;
533 				atomic_inc(&cur_trans->use_count);
534 				ret = 0;
535 				break;
536 			}
537 			if (t->transid > transid) {
538 				ret = 0;
539 				break;
540 			}
541 		}
542 		spin_unlock(&root->fs_info->trans_lock);
543 		/* The specified transaction doesn't exist */
544 		if (!cur_trans)
545 			goto out;
546 	} else {
547 		/* find newest transaction that is committing | committed */
548 		spin_lock(&root->fs_info->trans_lock);
549 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
550 					    list) {
551 			if (t->in_commit) {
552 				if (t->commit_done)
553 					break;
554 				cur_trans = t;
555 				atomic_inc(&cur_trans->use_count);
556 				break;
557 			}
558 		}
559 		spin_unlock(&root->fs_info->trans_lock);
560 		if (!cur_trans)
561 			goto out;  /* nothing committing|committed */
562 	}
563 
564 	wait_for_commit(root, cur_trans);
565 	put_transaction(cur_trans);
566 out:
567 	return ret;
568 }
569 
570 void btrfs_throttle(struct btrfs_root *root)
571 {
572 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
573 		wait_current_trans(root);
574 }
575 
576 static int should_end_transaction(struct btrfs_trans_handle *trans,
577 				  struct btrfs_root *root)
578 {
579 	int ret;
580 
581 	ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
582 	return ret ? 1 : 0;
583 }
584 
585 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
586 				 struct btrfs_root *root)
587 {
588 	struct btrfs_transaction *cur_trans = trans->transaction;
589 	int updates;
590 	int err;
591 
592 	smp_mb();
593 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
594 		return 1;
595 
596 	updates = trans->delayed_ref_updates;
597 	trans->delayed_ref_updates = 0;
598 	if (updates) {
599 		err = btrfs_run_delayed_refs(trans, root, updates);
600 		if (err) /* Error code will also eval true */
601 			return err;
602 	}
603 
604 	return should_end_transaction(trans, root);
605 }
606 
607 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
608 			  struct btrfs_root *root, int throttle)
609 {
610 	struct btrfs_transaction *cur_trans = trans->transaction;
611 	struct btrfs_fs_info *info = root->fs_info;
612 	int count = 0;
613 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
614 	int err = 0;
615 
616 	if (--trans->use_count) {
617 		trans->block_rsv = trans->orig_rsv;
618 		return 0;
619 	}
620 
621 	/*
622 	 * do the qgroup accounting as early as possible
623 	 */
624 	err = btrfs_delayed_refs_qgroup_accounting(trans, info);
625 
626 	btrfs_trans_release_metadata(trans, root);
627 	trans->block_rsv = NULL;
628 
629 	if (trans->qgroup_reserved) {
630 		/*
631 		 * the same root has to be passed here between start_transaction
632 		 * and end_transaction. Subvolume quota depends on this.
633 		 */
634 		btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
635 		trans->qgroup_reserved = 0;
636 	}
637 
638 	if (!list_empty(&trans->new_bgs))
639 		btrfs_create_pending_block_groups(trans, root);
640 
641 	while (count < 1) {
642 		unsigned long cur = trans->delayed_ref_updates;
643 		trans->delayed_ref_updates = 0;
644 		if (cur &&
645 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
646 			trans->delayed_ref_updates = 0;
647 			btrfs_run_delayed_refs(trans, root, cur);
648 		} else {
649 			break;
650 		}
651 		count++;
652 	}
653 
654 	btrfs_trans_release_metadata(trans, root);
655 	trans->block_rsv = NULL;
656 
657 	if (!list_empty(&trans->new_bgs))
658 		btrfs_create_pending_block_groups(trans, root);
659 
660 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
661 	    should_end_transaction(trans, root)) {
662 		trans->transaction->blocked = 1;
663 		smp_wmb();
664 	}
665 
666 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
667 		if (throttle) {
668 			/*
669 			 * We may race with somebody else here so end up having
670 			 * to call end_transaction on ourselves again, so inc
671 			 * our use_count.
672 			 */
673 			trans->use_count++;
674 			return btrfs_commit_transaction(trans, root);
675 		} else {
676 			wake_up_process(info->transaction_kthread);
677 		}
678 	}
679 
680 	if (trans->type < TRANS_JOIN_NOLOCK)
681 		sb_end_intwrite(root->fs_info->sb);
682 
683 	WARN_ON(cur_trans != info->running_transaction);
684 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
685 	atomic_dec(&cur_trans->num_writers);
686 
687 	smp_mb();
688 	if (waitqueue_active(&cur_trans->writer_wait))
689 		wake_up(&cur_trans->writer_wait);
690 	put_transaction(cur_trans);
691 
692 	if (current->journal_info == trans)
693 		current->journal_info = NULL;
694 
695 	if (throttle)
696 		btrfs_run_delayed_iputs(root);
697 
698 	if (trans->aborted ||
699 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
700 		err = -EIO;
701 	assert_qgroups_uptodate(trans);
702 
703 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
704 	return err;
705 }
706 
707 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
708 			  struct btrfs_root *root)
709 {
710 	return __btrfs_end_transaction(trans, root, 0);
711 }
712 
713 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
714 				   struct btrfs_root *root)
715 {
716 	return __btrfs_end_transaction(trans, root, 1);
717 }
718 
719 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
720 				struct btrfs_root *root)
721 {
722 	return __btrfs_end_transaction(trans, root, 1);
723 }
724 
725 /*
726  * when btree blocks are allocated, they have some corresponding bits set for
727  * them in one of two extent_io trees.  This is used to make sure all of
728  * those extents are sent to disk but does not wait on them
729  */
730 int btrfs_write_marked_extents(struct btrfs_root *root,
731 			       struct extent_io_tree *dirty_pages, int mark)
732 {
733 	int err = 0;
734 	int werr = 0;
735 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
736 	struct extent_state *cached_state = NULL;
737 	u64 start = 0;
738 	u64 end;
739 	struct blk_plug plug;
740 
741 	blk_start_plug(&plug);
742 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
743 				      mark, &cached_state)) {
744 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
745 				   mark, &cached_state, GFP_NOFS);
746 		cached_state = NULL;
747 		err = filemap_fdatawrite_range(mapping, start, end);
748 		if (err)
749 			werr = err;
750 		cond_resched();
751 		start = end + 1;
752 	}
753 	if (err)
754 		werr = err;
755 	blk_finish_plug(&plug);
756 	return werr;
757 }
758 
759 /*
760  * when btree blocks are allocated, they have some corresponding bits set for
761  * them in one of two extent_io trees.  This is used to make sure all of
762  * those extents are on disk for transaction or log commit.  We wait
763  * on all the pages and clear them from the dirty pages state tree
764  */
765 int btrfs_wait_marked_extents(struct btrfs_root *root,
766 			      struct extent_io_tree *dirty_pages, int mark)
767 {
768 	int err = 0;
769 	int werr = 0;
770 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
771 	struct extent_state *cached_state = NULL;
772 	u64 start = 0;
773 	u64 end;
774 
775 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
776 				      EXTENT_NEED_WAIT, &cached_state)) {
777 		clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
778 				 0, 0, &cached_state, GFP_NOFS);
779 		err = filemap_fdatawait_range(mapping, start, end);
780 		if (err)
781 			werr = err;
782 		cond_resched();
783 		start = end + 1;
784 	}
785 	if (err)
786 		werr = err;
787 	return werr;
788 }
789 
790 /*
791  * when btree blocks are allocated, they have some corresponding bits set for
792  * them in one of two extent_io trees.  This is used to make sure all of
793  * those extents are on disk for transaction or log commit
794  */
795 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
796 				struct extent_io_tree *dirty_pages, int mark)
797 {
798 	int ret;
799 	int ret2;
800 
801 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
802 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
803 
804 	if (ret)
805 		return ret;
806 	if (ret2)
807 		return ret2;
808 	return 0;
809 }
810 
811 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
812 				     struct btrfs_root *root)
813 {
814 	if (!trans || !trans->transaction) {
815 		struct inode *btree_inode;
816 		btree_inode = root->fs_info->btree_inode;
817 		return filemap_write_and_wait(btree_inode->i_mapping);
818 	}
819 	return btrfs_write_and_wait_marked_extents(root,
820 					   &trans->transaction->dirty_pages,
821 					   EXTENT_DIRTY);
822 }
823 
824 /*
825  * this is used to update the root pointer in the tree of tree roots.
826  *
827  * But, in the case of the extent allocation tree, updating the root
828  * pointer may allocate blocks which may change the root of the extent
829  * allocation tree.
830  *
831  * So, this loops and repeats and makes sure the cowonly root didn't
832  * change while the root pointer was being updated in the metadata.
833  */
834 static int update_cowonly_root(struct btrfs_trans_handle *trans,
835 			       struct btrfs_root *root)
836 {
837 	int ret;
838 	u64 old_root_bytenr;
839 	u64 old_root_used;
840 	struct btrfs_root *tree_root = root->fs_info->tree_root;
841 
842 	old_root_used = btrfs_root_used(&root->root_item);
843 	btrfs_write_dirty_block_groups(trans, root);
844 
845 	while (1) {
846 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
847 		if (old_root_bytenr == root->node->start &&
848 		    old_root_used == btrfs_root_used(&root->root_item))
849 			break;
850 
851 		btrfs_set_root_node(&root->root_item, root->node);
852 		ret = btrfs_update_root(trans, tree_root,
853 					&root->root_key,
854 					&root->root_item);
855 		if (ret)
856 			return ret;
857 
858 		old_root_used = btrfs_root_used(&root->root_item);
859 		ret = btrfs_write_dirty_block_groups(trans, root);
860 		if (ret)
861 			return ret;
862 	}
863 
864 	if (root != root->fs_info->extent_root)
865 		switch_commit_root(root);
866 
867 	return 0;
868 }
869 
870 /*
871  * update all the cowonly tree roots on disk
872  *
873  * The error handling in this function may not be obvious. Any of the
874  * failures will cause the file system to go offline. We still need
875  * to clean up the delayed refs.
876  */
877 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
878 					 struct btrfs_root *root)
879 {
880 	struct btrfs_fs_info *fs_info = root->fs_info;
881 	struct list_head *next;
882 	struct extent_buffer *eb;
883 	int ret;
884 
885 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
886 	if (ret)
887 		return ret;
888 
889 	eb = btrfs_lock_root_node(fs_info->tree_root);
890 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
891 			      0, &eb);
892 	btrfs_tree_unlock(eb);
893 	free_extent_buffer(eb);
894 
895 	if (ret)
896 		return ret;
897 
898 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
899 	if (ret)
900 		return ret;
901 
902 	ret = btrfs_run_dev_stats(trans, root->fs_info);
903 	WARN_ON(ret);
904 	ret = btrfs_run_dev_replace(trans, root->fs_info);
905 	WARN_ON(ret);
906 
907 	ret = btrfs_run_qgroups(trans, root->fs_info);
908 	BUG_ON(ret);
909 
910 	/* run_qgroups might have added some more refs */
911 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
912 	BUG_ON(ret);
913 
914 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
915 		next = fs_info->dirty_cowonly_roots.next;
916 		list_del_init(next);
917 		root = list_entry(next, struct btrfs_root, dirty_list);
918 
919 		ret = update_cowonly_root(trans, root);
920 		if (ret)
921 			return ret;
922 	}
923 
924 	down_write(&fs_info->extent_commit_sem);
925 	switch_commit_root(fs_info->extent_root);
926 	up_write(&fs_info->extent_commit_sem);
927 
928 	btrfs_after_dev_replace_commit(fs_info);
929 
930 	return 0;
931 }
932 
933 /*
934  * dead roots are old snapshots that need to be deleted.  This allocates
935  * a dirty root struct and adds it into the list of dead roots that need to
936  * be deleted
937  */
938 int btrfs_add_dead_root(struct btrfs_root *root)
939 {
940 	spin_lock(&root->fs_info->trans_lock);
941 	list_add_tail(&root->root_list, &root->fs_info->dead_roots);
942 	spin_unlock(&root->fs_info->trans_lock);
943 	return 0;
944 }
945 
946 /*
947  * update all the cowonly tree roots on disk
948  */
949 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
950 				    struct btrfs_root *root)
951 {
952 	struct btrfs_root *gang[8];
953 	struct btrfs_fs_info *fs_info = root->fs_info;
954 	int i;
955 	int ret;
956 	int err = 0;
957 
958 	spin_lock(&fs_info->fs_roots_radix_lock);
959 	while (1) {
960 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
961 						 (void **)gang, 0,
962 						 ARRAY_SIZE(gang),
963 						 BTRFS_ROOT_TRANS_TAG);
964 		if (ret == 0)
965 			break;
966 		for (i = 0; i < ret; i++) {
967 			root = gang[i];
968 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
969 					(unsigned long)root->root_key.objectid,
970 					BTRFS_ROOT_TRANS_TAG);
971 			spin_unlock(&fs_info->fs_roots_radix_lock);
972 
973 			btrfs_free_log(trans, root);
974 			btrfs_update_reloc_root(trans, root);
975 			btrfs_orphan_commit_root(trans, root);
976 
977 			btrfs_save_ino_cache(root, trans);
978 
979 			/* see comments in should_cow_block() */
980 			root->force_cow = 0;
981 			smp_wmb();
982 
983 			if (root->commit_root != root->node) {
984 				mutex_lock(&root->fs_commit_mutex);
985 				switch_commit_root(root);
986 				btrfs_unpin_free_ino(root);
987 				mutex_unlock(&root->fs_commit_mutex);
988 
989 				btrfs_set_root_node(&root->root_item,
990 						    root->node);
991 			}
992 
993 			err = btrfs_update_root(trans, fs_info->tree_root,
994 						&root->root_key,
995 						&root->root_item);
996 			spin_lock(&fs_info->fs_roots_radix_lock);
997 			if (err)
998 				break;
999 		}
1000 	}
1001 	spin_unlock(&fs_info->fs_roots_radix_lock);
1002 	return err;
1003 }
1004 
1005 /*
1006  * defrag a given btree.
1007  * Every leaf in the btree is read and defragged.
1008  */
1009 int btrfs_defrag_root(struct btrfs_root *root)
1010 {
1011 	struct btrfs_fs_info *info = root->fs_info;
1012 	struct btrfs_trans_handle *trans;
1013 	int ret;
1014 
1015 	if (xchg(&root->defrag_running, 1))
1016 		return 0;
1017 
1018 	while (1) {
1019 		trans = btrfs_start_transaction(root, 0);
1020 		if (IS_ERR(trans))
1021 			return PTR_ERR(trans);
1022 
1023 		ret = btrfs_defrag_leaves(trans, root);
1024 
1025 		btrfs_end_transaction(trans, root);
1026 		btrfs_btree_balance_dirty(info->tree_root);
1027 		cond_resched();
1028 
1029 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1030 			break;
1031 
1032 		if (btrfs_defrag_cancelled(root->fs_info)) {
1033 			printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1034 			ret = -EAGAIN;
1035 			break;
1036 		}
1037 	}
1038 	root->defrag_running = 0;
1039 	return ret;
1040 }
1041 
1042 /*
1043  * new snapshots need to be created at a very specific time in the
1044  * transaction commit.  This does the actual creation.
1045  *
1046  * Note:
1047  * If the error which may affect the commitment of the current transaction
1048  * happens, we should return the error number. If the error which just affect
1049  * the creation of the pending snapshots, just return 0.
1050  */
1051 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1052 				   struct btrfs_fs_info *fs_info,
1053 				   struct btrfs_pending_snapshot *pending)
1054 {
1055 	struct btrfs_key key;
1056 	struct btrfs_root_item *new_root_item;
1057 	struct btrfs_root *tree_root = fs_info->tree_root;
1058 	struct btrfs_root *root = pending->root;
1059 	struct btrfs_root *parent_root;
1060 	struct btrfs_block_rsv *rsv;
1061 	struct inode *parent_inode;
1062 	struct btrfs_path *path;
1063 	struct btrfs_dir_item *dir_item;
1064 	struct dentry *dentry;
1065 	struct extent_buffer *tmp;
1066 	struct extent_buffer *old;
1067 	struct timespec cur_time = CURRENT_TIME;
1068 	int ret = 0;
1069 	u64 to_reserve = 0;
1070 	u64 index = 0;
1071 	u64 objectid;
1072 	u64 root_flags;
1073 	uuid_le new_uuid;
1074 
1075 	path = btrfs_alloc_path();
1076 	if (!path) {
1077 		pending->error = -ENOMEM;
1078 		return 0;
1079 	}
1080 
1081 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1082 	if (!new_root_item) {
1083 		pending->error = -ENOMEM;
1084 		goto root_item_alloc_fail;
1085 	}
1086 
1087 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1088 	if (pending->error)
1089 		goto no_free_objectid;
1090 
1091 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1092 
1093 	if (to_reserve > 0) {
1094 		pending->error = btrfs_block_rsv_add(root,
1095 						     &pending->block_rsv,
1096 						     to_reserve,
1097 						     BTRFS_RESERVE_NO_FLUSH);
1098 		if (pending->error)
1099 			goto no_free_objectid;
1100 	}
1101 
1102 	pending->error = btrfs_qgroup_inherit(trans, fs_info,
1103 					      root->root_key.objectid,
1104 					      objectid, pending->inherit);
1105 	if (pending->error)
1106 		goto no_free_objectid;
1107 
1108 	key.objectid = objectid;
1109 	key.offset = (u64)-1;
1110 	key.type = BTRFS_ROOT_ITEM_KEY;
1111 
1112 	rsv = trans->block_rsv;
1113 	trans->block_rsv = &pending->block_rsv;
1114 	trans->bytes_reserved = trans->block_rsv->reserved;
1115 
1116 	dentry = pending->dentry;
1117 	parent_inode = pending->dir;
1118 	parent_root = BTRFS_I(parent_inode)->root;
1119 	record_root_in_trans(trans, parent_root);
1120 
1121 	/*
1122 	 * insert the directory item
1123 	 */
1124 	ret = btrfs_set_inode_index(parent_inode, &index);
1125 	BUG_ON(ret); /* -ENOMEM */
1126 
1127 	/* check if there is a file/dir which has the same name. */
1128 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1129 					 btrfs_ino(parent_inode),
1130 					 dentry->d_name.name,
1131 					 dentry->d_name.len, 0);
1132 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1133 		pending->error = -EEXIST;
1134 		goto dir_item_existed;
1135 	} else if (IS_ERR(dir_item)) {
1136 		ret = PTR_ERR(dir_item);
1137 		btrfs_abort_transaction(trans, root, ret);
1138 		goto fail;
1139 	}
1140 	btrfs_release_path(path);
1141 
1142 	/*
1143 	 * pull in the delayed directory update
1144 	 * and the delayed inode item
1145 	 * otherwise we corrupt the FS during
1146 	 * snapshot
1147 	 */
1148 	ret = btrfs_run_delayed_items(trans, root);
1149 	if (ret) {	/* Transaction aborted */
1150 		btrfs_abort_transaction(trans, root, ret);
1151 		goto fail;
1152 	}
1153 
1154 	record_root_in_trans(trans, root);
1155 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1156 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1157 	btrfs_check_and_init_root_item(new_root_item);
1158 
1159 	root_flags = btrfs_root_flags(new_root_item);
1160 	if (pending->readonly)
1161 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1162 	else
1163 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1164 	btrfs_set_root_flags(new_root_item, root_flags);
1165 
1166 	btrfs_set_root_generation_v2(new_root_item,
1167 			trans->transid);
1168 	uuid_le_gen(&new_uuid);
1169 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1170 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1171 			BTRFS_UUID_SIZE);
1172 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1173 		memset(new_root_item->received_uuid, 0,
1174 		       sizeof(new_root_item->received_uuid));
1175 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1176 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1177 		btrfs_set_root_stransid(new_root_item, 0);
1178 		btrfs_set_root_rtransid(new_root_item, 0);
1179 	}
1180 	new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1181 	new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1182 	btrfs_set_root_otransid(new_root_item, trans->transid);
1183 
1184 	old = btrfs_lock_root_node(root);
1185 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1186 	if (ret) {
1187 		btrfs_tree_unlock(old);
1188 		free_extent_buffer(old);
1189 		btrfs_abort_transaction(trans, root, ret);
1190 		goto fail;
1191 	}
1192 
1193 	btrfs_set_lock_blocking(old);
1194 
1195 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1196 	/* clean up in any case */
1197 	btrfs_tree_unlock(old);
1198 	free_extent_buffer(old);
1199 	if (ret) {
1200 		btrfs_abort_transaction(trans, root, ret);
1201 		goto fail;
1202 	}
1203 
1204 	/* see comments in should_cow_block() */
1205 	root->force_cow = 1;
1206 	smp_wmb();
1207 
1208 	btrfs_set_root_node(new_root_item, tmp);
1209 	/* record when the snapshot was created in key.offset */
1210 	key.offset = trans->transid;
1211 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1212 	btrfs_tree_unlock(tmp);
1213 	free_extent_buffer(tmp);
1214 	if (ret) {
1215 		btrfs_abort_transaction(trans, root, ret);
1216 		goto fail;
1217 	}
1218 
1219 	/*
1220 	 * insert root back/forward references
1221 	 */
1222 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1223 				 parent_root->root_key.objectid,
1224 				 btrfs_ino(parent_inode), index,
1225 				 dentry->d_name.name, dentry->d_name.len);
1226 	if (ret) {
1227 		btrfs_abort_transaction(trans, root, ret);
1228 		goto fail;
1229 	}
1230 
1231 	key.offset = (u64)-1;
1232 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1233 	if (IS_ERR(pending->snap)) {
1234 		ret = PTR_ERR(pending->snap);
1235 		btrfs_abort_transaction(trans, root, ret);
1236 		goto fail;
1237 	}
1238 
1239 	ret = btrfs_reloc_post_snapshot(trans, pending);
1240 	if (ret) {
1241 		btrfs_abort_transaction(trans, root, ret);
1242 		goto fail;
1243 	}
1244 
1245 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1246 	if (ret) {
1247 		btrfs_abort_transaction(trans, root, ret);
1248 		goto fail;
1249 	}
1250 
1251 	ret = btrfs_insert_dir_item(trans, parent_root,
1252 				    dentry->d_name.name, dentry->d_name.len,
1253 				    parent_inode, &key,
1254 				    BTRFS_FT_DIR, index);
1255 	/* We have check then name at the beginning, so it is impossible. */
1256 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1257 	if (ret) {
1258 		btrfs_abort_transaction(trans, root, ret);
1259 		goto fail;
1260 	}
1261 
1262 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1263 					 dentry->d_name.len * 2);
1264 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1265 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1266 	if (ret)
1267 		btrfs_abort_transaction(trans, root, ret);
1268 fail:
1269 	pending->error = ret;
1270 dir_item_existed:
1271 	trans->block_rsv = rsv;
1272 	trans->bytes_reserved = 0;
1273 no_free_objectid:
1274 	kfree(new_root_item);
1275 root_item_alloc_fail:
1276 	btrfs_free_path(path);
1277 	return ret;
1278 }
1279 
1280 /*
1281  * create all the snapshots we've scheduled for creation
1282  */
1283 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1284 					     struct btrfs_fs_info *fs_info)
1285 {
1286 	struct btrfs_pending_snapshot *pending, *next;
1287 	struct list_head *head = &trans->transaction->pending_snapshots;
1288 	int ret = 0;
1289 
1290 	list_for_each_entry_safe(pending, next, head, list) {
1291 		list_del(&pending->list);
1292 		ret = create_pending_snapshot(trans, fs_info, pending);
1293 		if (ret)
1294 			break;
1295 	}
1296 	return ret;
1297 }
1298 
1299 static void update_super_roots(struct btrfs_root *root)
1300 {
1301 	struct btrfs_root_item *root_item;
1302 	struct btrfs_super_block *super;
1303 
1304 	super = root->fs_info->super_copy;
1305 
1306 	root_item = &root->fs_info->chunk_root->root_item;
1307 	super->chunk_root = root_item->bytenr;
1308 	super->chunk_root_generation = root_item->generation;
1309 	super->chunk_root_level = root_item->level;
1310 
1311 	root_item = &root->fs_info->tree_root->root_item;
1312 	super->root = root_item->bytenr;
1313 	super->generation = root_item->generation;
1314 	super->root_level = root_item->level;
1315 	if (btrfs_test_opt(root, SPACE_CACHE))
1316 		super->cache_generation = root_item->generation;
1317 }
1318 
1319 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1320 {
1321 	int ret = 0;
1322 	spin_lock(&info->trans_lock);
1323 	if (info->running_transaction)
1324 		ret = info->running_transaction->in_commit;
1325 	spin_unlock(&info->trans_lock);
1326 	return ret;
1327 }
1328 
1329 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1330 {
1331 	int ret = 0;
1332 	spin_lock(&info->trans_lock);
1333 	if (info->running_transaction)
1334 		ret = info->running_transaction->blocked;
1335 	spin_unlock(&info->trans_lock);
1336 	return ret;
1337 }
1338 
1339 /*
1340  * wait for the current transaction commit to start and block subsequent
1341  * transaction joins
1342  */
1343 static void wait_current_trans_commit_start(struct btrfs_root *root,
1344 					    struct btrfs_transaction *trans)
1345 {
1346 	wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1347 }
1348 
1349 /*
1350  * wait for the current transaction to start and then become unblocked.
1351  * caller holds ref.
1352  */
1353 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1354 					 struct btrfs_transaction *trans)
1355 {
1356 	wait_event(root->fs_info->transaction_wait,
1357 		   trans->commit_done || (trans->in_commit && !trans->blocked));
1358 }
1359 
1360 /*
1361  * commit transactions asynchronously. once btrfs_commit_transaction_async
1362  * returns, any subsequent transaction will not be allowed to join.
1363  */
1364 struct btrfs_async_commit {
1365 	struct btrfs_trans_handle *newtrans;
1366 	struct btrfs_root *root;
1367 	struct work_struct work;
1368 };
1369 
1370 static void do_async_commit(struct work_struct *work)
1371 {
1372 	struct btrfs_async_commit *ac =
1373 		container_of(work, struct btrfs_async_commit, work);
1374 
1375 	/*
1376 	 * We've got freeze protection passed with the transaction.
1377 	 * Tell lockdep about it.
1378 	 */
1379 	if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1380 		rwsem_acquire_read(
1381 		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1382 		     0, 1, _THIS_IP_);
1383 
1384 	current->journal_info = ac->newtrans;
1385 
1386 	btrfs_commit_transaction(ac->newtrans, ac->root);
1387 	kfree(ac);
1388 }
1389 
1390 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1391 				   struct btrfs_root *root,
1392 				   int wait_for_unblock)
1393 {
1394 	struct btrfs_async_commit *ac;
1395 	struct btrfs_transaction *cur_trans;
1396 
1397 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1398 	if (!ac)
1399 		return -ENOMEM;
1400 
1401 	INIT_WORK(&ac->work, do_async_commit);
1402 	ac->root = root;
1403 	ac->newtrans = btrfs_join_transaction(root);
1404 	if (IS_ERR(ac->newtrans)) {
1405 		int err = PTR_ERR(ac->newtrans);
1406 		kfree(ac);
1407 		return err;
1408 	}
1409 
1410 	/* take transaction reference */
1411 	cur_trans = trans->transaction;
1412 	atomic_inc(&cur_trans->use_count);
1413 
1414 	btrfs_end_transaction(trans, root);
1415 
1416 	/*
1417 	 * Tell lockdep we've released the freeze rwsem, since the
1418 	 * async commit thread will be the one to unlock it.
1419 	 */
1420 	if (trans->type < TRANS_JOIN_NOLOCK)
1421 		rwsem_release(
1422 			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1423 			1, _THIS_IP_);
1424 
1425 	schedule_work(&ac->work);
1426 
1427 	/* wait for transaction to start and unblock */
1428 	if (wait_for_unblock)
1429 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1430 	else
1431 		wait_current_trans_commit_start(root, cur_trans);
1432 
1433 	if (current->journal_info == trans)
1434 		current->journal_info = NULL;
1435 
1436 	put_transaction(cur_trans);
1437 	return 0;
1438 }
1439 
1440 
1441 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1442 				struct btrfs_root *root, int err)
1443 {
1444 	struct btrfs_transaction *cur_trans = trans->transaction;
1445 	DEFINE_WAIT(wait);
1446 
1447 	WARN_ON(trans->use_count > 1);
1448 
1449 	btrfs_abort_transaction(trans, root, err);
1450 
1451 	spin_lock(&root->fs_info->trans_lock);
1452 
1453 	if (list_empty(&cur_trans->list)) {
1454 		spin_unlock(&root->fs_info->trans_lock);
1455 		btrfs_end_transaction(trans, root);
1456 		return;
1457 	}
1458 
1459 	list_del_init(&cur_trans->list);
1460 	if (cur_trans == root->fs_info->running_transaction) {
1461 		root->fs_info->trans_no_join = 1;
1462 		spin_unlock(&root->fs_info->trans_lock);
1463 		wait_event(cur_trans->writer_wait,
1464 			   atomic_read(&cur_trans->num_writers) == 1);
1465 
1466 		spin_lock(&root->fs_info->trans_lock);
1467 		root->fs_info->running_transaction = NULL;
1468 	}
1469 	spin_unlock(&root->fs_info->trans_lock);
1470 
1471 	btrfs_cleanup_one_transaction(trans->transaction, root);
1472 
1473 	put_transaction(cur_trans);
1474 	put_transaction(cur_trans);
1475 
1476 	trace_btrfs_transaction_commit(root);
1477 
1478 	btrfs_scrub_continue(root);
1479 
1480 	if (current->journal_info == trans)
1481 		current->journal_info = NULL;
1482 
1483 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1484 
1485 	spin_lock(&root->fs_info->trans_lock);
1486 	root->fs_info->trans_no_join = 0;
1487 	spin_unlock(&root->fs_info->trans_lock);
1488 }
1489 
1490 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1491 					  struct btrfs_root *root)
1492 {
1493 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1494 	int snap_pending = 0;
1495 	int ret;
1496 
1497 	if (!flush_on_commit) {
1498 		spin_lock(&root->fs_info->trans_lock);
1499 		if (!list_empty(&trans->transaction->pending_snapshots))
1500 			snap_pending = 1;
1501 		spin_unlock(&root->fs_info->trans_lock);
1502 	}
1503 
1504 	if (flush_on_commit || snap_pending) {
1505 		ret = btrfs_start_delalloc_inodes(root, 1);
1506 		if (ret)
1507 			return ret;
1508 		btrfs_wait_ordered_extents(root, 1);
1509 	}
1510 
1511 	ret = btrfs_run_delayed_items(trans, root);
1512 	if (ret)
1513 		return ret;
1514 
1515 	/*
1516 	 * running the delayed items may have added new refs. account
1517 	 * them now so that they hinder processing of more delayed refs
1518 	 * as little as possible.
1519 	 */
1520 	btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1521 
1522 	/*
1523 	 * rename don't use btrfs_join_transaction, so, once we
1524 	 * set the transaction to blocked above, we aren't going
1525 	 * to get any new ordered operations.  We can safely run
1526 	 * it here and no for sure that nothing new will be added
1527 	 * to the list
1528 	 */
1529 	ret = btrfs_run_ordered_operations(trans, root, 1);
1530 
1531 	return ret;
1532 }
1533 
1534 /*
1535  * btrfs_transaction state sequence:
1536  *    in_commit = 0, blocked = 0  (initial)
1537  *    in_commit = 1, blocked = 1
1538  *    blocked = 0
1539  *    commit_done = 1
1540  */
1541 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1542 			     struct btrfs_root *root)
1543 {
1544 	unsigned long joined = 0;
1545 	struct btrfs_transaction *cur_trans = trans->transaction;
1546 	struct btrfs_transaction *prev_trans = NULL;
1547 	DEFINE_WAIT(wait);
1548 	int ret;
1549 	int should_grow = 0;
1550 	unsigned long now = get_seconds();
1551 
1552 	ret = btrfs_run_ordered_operations(trans, root, 0);
1553 	if (ret) {
1554 		btrfs_abort_transaction(trans, root, ret);
1555 		btrfs_end_transaction(trans, root);
1556 		return ret;
1557 	}
1558 
1559 	/* Stop the commit early if ->aborted is set */
1560 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1561 		ret = cur_trans->aborted;
1562 		btrfs_end_transaction(trans, root);
1563 		return ret;
1564 	}
1565 
1566 	/* make a pass through all the delayed refs we have so far
1567 	 * any runnings procs may add more while we are here
1568 	 */
1569 	ret = btrfs_run_delayed_refs(trans, root, 0);
1570 	if (ret) {
1571 		btrfs_end_transaction(trans, root);
1572 		return ret;
1573 	}
1574 
1575 	btrfs_trans_release_metadata(trans, root);
1576 	trans->block_rsv = NULL;
1577 	if (trans->qgroup_reserved) {
1578 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1579 		trans->qgroup_reserved = 0;
1580 	}
1581 
1582 	cur_trans = trans->transaction;
1583 
1584 	/*
1585 	 * set the flushing flag so procs in this transaction have to
1586 	 * start sending their work down.
1587 	 */
1588 	cur_trans->delayed_refs.flushing = 1;
1589 
1590 	if (!list_empty(&trans->new_bgs))
1591 		btrfs_create_pending_block_groups(trans, root);
1592 
1593 	ret = btrfs_run_delayed_refs(trans, root, 0);
1594 	if (ret) {
1595 		btrfs_end_transaction(trans, root);
1596 		return ret;
1597 	}
1598 
1599 	spin_lock(&cur_trans->commit_lock);
1600 	if (cur_trans->in_commit) {
1601 		spin_unlock(&cur_trans->commit_lock);
1602 		atomic_inc(&cur_trans->use_count);
1603 		ret = btrfs_end_transaction(trans, root);
1604 
1605 		wait_for_commit(root, cur_trans);
1606 
1607 		put_transaction(cur_trans);
1608 
1609 		return ret;
1610 	}
1611 
1612 	trans->transaction->in_commit = 1;
1613 	trans->transaction->blocked = 1;
1614 	spin_unlock(&cur_trans->commit_lock);
1615 	wake_up(&root->fs_info->transaction_blocked_wait);
1616 
1617 	spin_lock(&root->fs_info->trans_lock);
1618 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1619 		prev_trans = list_entry(cur_trans->list.prev,
1620 					struct btrfs_transaction, list);
1621 		if (!prev_trans->commit_done) {
1622 			atomic_inc(&prev_trans->use_count);
1623 			spin_unlock(&root->fs_info->trans_lock);
1624 
1625 			wait_for_commit(root, prev_trans);
1626 
1627 			put_transaction(prev_trans);
1628 		} else {
1629 			spin_unlock(&root->fs_info->trans_lock);
1630 		}
1631 	} else {
1632 		spin_unlock(&root->fs_info->trans_lock);
1633 	}
1634 
1635 	if (!btrfs_test_opt(root, SSD) &&
1636 	    (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1637 		should_grow = 1;
1638 
1639 	do {
1640 		joined = cur_trans->num_joined;
1641 
1642 		WARN_ON(cur_trans != trans->transaction);
1643 
1644 		ret = btrfs_flush_all_pending_stuffs(trans, root);
1645 		if (ret)
1646 			goto cleanup_transaction;
1647 
1648 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1649 				TASK_UNINTERRUPTIBLE);
1650 
1651 		if (atomic_read(&cur_trans->num_writers) > 1)
1652 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1653 		else if (should_grow)
1654 			schedule_timeout(1);
1655 
1656 		finish_wait(&cur_trans->writer_wait, &wait);
1657 	} while (atomic_read(&cur_trans->num_writers) > 1 ||
1658 		 (should_grow && cur_trans->num_joined != joined));
1659 
1660 	ret = btrfs_flush_all_pending_stuffs(trans, root);
1661 	if (ret)
1662 		goto cleanup_transaction;
1663 
1664 	/*
1665 	 * Ok now we need to make sure to block out any other joins while we
1666 	 * commit the transaction.  We could have started a join before setting
1667 	 * no_join so make sure to wait for num_writers to == 1 again.
1668 	 */
1669 	spin_lock(&root->fs_info->trans_lock);
1670 	root->fs_info->trans_no_join = 1;
1671 	spin_unlock(&root->fs_info->trans_lock);
1672 	wait_event(cur_trans->writer_wait,
1673 		   atomic_read(&cur_trans->num_writers) == 1);
1674 
1675 	/* ->aborted might be set after the previous check, so check it */
1676 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1677 		ret = cur_trans->aborted;
1678 		goto cleanup_transaction;
1679 	}
1680 	/*
1681 	 * the reloc mutex makes sure that we stop
1682 	 * the balancing code from coming in and moving
1683 	 * extents around in the middle of the commit
1684 	 */
1685 	mutex_lock(&root->fs_info->reloc_mutex);
1686 
1687 	/*
1688 	 * We needn't worry about the delayed items because we will
1689 	 * deal with them in create_pending_snapshot(), which is the
1690 	 * core function of the snapshot creation.
1691 	 */
1692 	ret = create_pending_snapshots(trans, root->fs_info);
1693 	if (ret) {
1694 		mutex_unlock(&root->fs_info->reloc_mutex);
1695 		goto cleanup_transaction;
1696 	}
1697 
1698 	/*
1699 	 * We insert the dir indexes of the snapshots and update the inode
1700 	 * of the snapshots' parents after the snapshot creation, so there
1701 	 * are some delayed items which are not dealt with. Now deal with
1702 	 * them.
1703 	 *
1704 	 * We needn't worry that this operation will corrupt the snapshots,
1705 	 * because all the tree which are snapshoted will be forced to COW
1706 	 * the nodes and leaves.
1707 	 */
1708 	ret = btrfs_run_delayed_items(trans, root);
1709 	if (ret) {
1710 		mutex_unlock(&root->fs_info->reloc_mutex);
1711 		goto cleanup_transaction;
1712 	}
1713 
1714 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1715 	if (ret) {
1716 		mutex_unlock(&root->fs_info->reloc_mutex);
1717 		goto cleanup_transaction;
1718 	}
1719 
1720 	/*
1721 	 * make sure none of the code above managed to slip in a
1722 	 * delayed item
1723 	 */
1724 	btrfs_assert_delayed_root_empty(root);
1725 
1726 	WARN_ON(cur_trans != trans->transaction);
1727 
1728 	btrfs_scrub_pause(root);
1729 	/* btrfs_commit_tree_roots is responsible for getting the
1730 	 * various roots consistent with each other.  Every pointer
1731 	 * in the tree of tree roots has to point to the most up to date
1732 	 * root for every subvolume and other tree.  So, we have to keep
1733 	 * the tree logging code from jumping in and changing any
1734 	 * of the trees.
1735 	 *
1736 	 * At this point in the commit, there can't be any tree-log
1737 	 * writers, but a little lower down we drop the trans mutex
1738 	 * and let new people in.  By holding the tree_log_mutex
1739 	 * from now until after the super is written, we avoid races
1740 	 * with the tree-log code.
1741 	 */
1742 	mutex_lock(&root->fs_info->tree_log_mutex);
1743 
1744 	ret = commit_fs_roots(trans, root);
1745 	if (ret) {
1746 		mutex_unlock(&root->fs_info->tree_log_mutex);
1747 		mutex_unlock(&root->fs_info->reloc_mutex);
1748 		goto cleanup_transaction;
1749 	}
1750 
1751 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1752 	 * safe to free the root of tree log roots
1753 	 */
1754 	btrfs_free_log_root_tree(trans, root->fs_info);
1755 
1756 	ret = commit_cowonly_roots(trans, root);
1757 	if (ret) {
1758 		mutex_unlock(&root->fs_info->tree_log_mutex);
1759 		mutex_unlock(&root->fs_info->reloc_mutex);
1760 		goto cleanup_transaction;
1761 	}
1762 
1763 	/*
1764 	 * The tasks which save the space cache and inode cache may also
1765 	 * update ->aborted, check it.
1766 	 */
1767 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1768 		ret = cur_trans->aborted;
1769 		mutex_unlock(&root->fs_info->tree_log_mutex);
1770 		mutex_unlock(&root->fs_info->reloc_mutex);
1771 		goto cleanup_transaction;
1772 	}
1773 
1774 	btrfs_prepare_extent_commit(trans, root);
1775 
1776 	cur_trans = root->fs_info->running_transaction;
1777 
1778 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1779 			    root->fs_info->tree_root->node);
1780 	switch_commit_root(root->fs_info->tree_root);
1781 
1782 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1783 			    root->fs_info->chunk_root->node);
1784 	switch_commit_root(root->fs_info->chunk_root);
1785 
1786 	assert_qgroups_uptodate(trans);
1787 	update_super_roots(root);
1788 
1789 	if (!root->fs_info->log_root_recovering) {
1790 		btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1791 		btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1792 	}
1793 
1794 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1795 	       sizeof(*root->fs_info->super_copy));
1796 
1797 	trans->transaction->blocked = 0;
1798 	spin_lock(&root->fs_info->trans_lock);
1799 	root->fs_info->running_transaction = NULL;
1800 	root->fs_info->trans_no_join = 0;
1801 	spin_unlock(&root->fs_info->trans_lock);
1802 	mutex_unlock(&root->fs_info->reloc_mutex);
1803 
1804 	wake_up(&root->fs_info->transaction_wait);
1805 
1806 	ret = btrfs_write_and_wait_transaction(trans, root);
1807 	if (ret) {
1808 		btrfs_error(root->fs_info, ret,
1809 			    "Error while writing out transaction");
1810 		mutex_unlock(&root->fs_info->tree_log_mutex);
1811 		goto cleanup_transaction;
1812 	}
1813 
1814 	ret = write_ctree_super(trans, root, 0);
1815 	if (ret) {
1816 		mutex_unlock(&root->fs_info->tree_log_mutex);
1817 		goto cleanup_transaction;
1818 	}
1819 
1820 	/*
1821 	 * the super is written, we can safely allow the tree-loggers
1822 	 * to go about their business
1823 	 */
1824 	mutex_unlock(&root->fs_info->tree_log_mutex);
1825 
1826 	btrfs_finish_extent_commit(trans, root);
1827 
1828 	cur_trans->commit_done = 1;
1829 
1830 	root->fs_info->last_trans_committed = cur_trans->transid;
1831 
1832 	wake_up(&cur_trans->commit_wait);
1833 
1834 	spin_lock(&root->fs_info->trans_lock);
1835 	list_del_init(&cur_trans->list);
1836 	spin_unlock(&root->fs_info->trans_lock);
1837 
1838 	put_transaction(cur_trans);
1839 	put_transaction(cur_trans);
1840 
1841 	if (trans->type < TRANS_JOIN_NOLOCK)
1842 		sb_end_intwrite(root->fs_info->sb);
1843 
1844 	trace_btrfs_transaction_commit(root);
1845 
1846 	btrfs_scrub_continue(root);
1847 
1848 	if (current->journal_info == trans)
1849 		current->journal_info = NULL;
1850 
1851 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1852 
1853 	if (current != root->fs_info->transaction_kthread)
1854 		btrfs_run_delayed_iputs(root);
1855 
1856 	return ret;
1857 
1858 cleanup_transaction:
1859 	btrfs_trans_release_metadata(trans, root);
1860 	trans->block_rsv = NULL;
1861 	if (trans->qgroup_reserved) {
1862 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1863 		trans->qgroup_reserved = 0;
1864 	}
1865 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1866 	if (current->journal_info == trans)
1867 		current->journal_info = NULL;
1868 	cleanup_transaction(trans, root, ret);
1869 
1870 	return ret;
1871 }
1872 
1873 /*
1874  * return < 0 if error
1875  * 0 if there are no more dead_roots at the time of call
1876  * 1 there are more to be processed, call me again
1877  *
1878  * The return value indicates there are certainly more snapshots to delete, but
1879  * if there comes a new one during processing, it may return 0. We don't mind,
1880  * because btrfs_commit_super will poke cleaner thread and it will process it a
1881  * few seconds later.
1882  */
1883 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1884 {
1885 	int ret;
1886 	struct btrfs_fs_info *fs_info = root->fs_info;
1887 
1888 	if (fs_info->sb->s_flags & MS_RDONLY) {
1889 		pr_debug("btrfs: cleaner called for RO fs!\n");
1890 		return 0;
1891 	}
1892 
1893 	spin_lock(&fs_info->trans_lock);
1894 	if (list_empty(&fs_info->dead_roots)) {
1895 		spin_unlock(&fs_info->trans_lock);
1896 		return 0;
1897 	}
1898 	root = list_first_entry(&fs_info->dead_roots,
1899 			struct btrfs_root, root_list);
1900 	list_del(&root->root_list);
1901 	spin_unlock(&fs_info->trans_lock);
1902 
1903 	pr_debug("btrfs: cleaner removing %llu\n",
1904 			(unsigned long long)root->objectid);
1905 
1906 	btrfs_kill_all_delayed_nodes(root);
1907 
1908 	if (btrfs_header_backref_rev(root->node) <
1909 			BTRFS_MIXED_BACKREF_REV)
1910 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1911 	else
1912 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
1913 	/*
1914 	 * If we encounter a transaction abort during snapshot cleaning, we
1915 	 * don't want to crash here
1916 	 */
1917 	BUG_ON(ret < 0 && ret != -EAGAIN && ret != -EROFS);
1918 	return 1;
1919 }
1920