xref: /openbmc/linux/fs/btrfs/transaction.c (revision eb431351)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "dev-replace.h"
22 #include "qgroup.h"
23 #include "block-group.h"
24 
25 #define BTRFS_ROOT_TRANS_TAG 0
26 
27 /*
28  * Transaction states and transitions
29  *
30  * No running transaction (fs tree blocks are not modified)
31  * |
32  * | To next stage:
33  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
34  * V
35  * Transaction N [[TRANS_STATE_RUNNING]]
36  * |
37  * | New trans handles can be attached to transaction N by calling all
38  * | start_transaction() variants.
39  * |
40  * | To next stage:
41  * |  Call btrfs_commit_transaction() on any trans handle attached to
42  * |  transaction N
43  * V
44  * Transaction N [[TRANS_STATE_COMMIT_START]]
45  * |
46  * | Will wait for previous running transaction to completely finish if there
47  * | is one
48  * |
49  * | Then one of the following happes:
50  * | - Wait for all other trans handle holders to release.
51  * |   The btrfs_commit_transaction() caller will do the commit work.
52  * | - Wait for current transaction to be committed by others.
53  * |   Other btrfs_commit_transaction() caller will do the commit work.
54  * |
55  * | At this stage, only btrfs_join_transaction*() variants can attach
56  * | to this running transaction.
57  * | All other variants will wait for current one to finish and attach to
58  * | transaction N+1.
59  * |
60  * | To next stage:
61  * |  Caller is chosen to commit transaction N, and all other trans handle
62  * |  haven been released.
63  * V
64  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
65  * |
66  * | The heavy lifting transaction work is started.
67  * | From running delayed refs (modifying extent tree) to creating pending
68  * | snapshots, running qgroups.
69  * | In short, modify supporting trees to reflect modifications of subvolume
70  * | trees.
71  * |
72  * | At this stage, all start_transaction() calls will wait for this
73  * | transaction to finish and attach to transaction N+1.
74  * |
75  * | To next stage:
76  * |  Until all supporting trees are updated.
77  * V
78  * Transaction N [[TRANS_STATE_UNBLOCKED]]
79  * |						    Transaction N+1
80  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
81  * | need to write them back to disk and update	    |
82  * | super blocks.				    |
83  * |						    |
84  * | At this stage, new transaction is allowed to   |
85  * | start.					    |
86  * | All new start_transaction() calls will be	    |
87  * | attached to transid N+1.			    |
88  * |						    |
89  * | To next stage:				    |
90  * |  Until all tree blocks are super blocks are    |
91  * |  written to block devices			    |
92  * V						    |
93  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
94  *   All tree blocks and super blocks are written.  Transaction N+1
95  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
96  *   data structures will be cleaned up.	    | Life goes on
97  */
98 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
99 	[TRANS_STATE_RUNNING]		= 0U,
100 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
101 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
102 					   __TRANS_ATTACH |
103 					   __TRANS_JOIN |
104 					   __TRANS_JOIN_NOSTART),
105 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
106 					   __TRANS_ATTACH |
107 					   __TRANS_JOIN |
108 					   __TRANS_JOIN_NOLOCK |
109 					   __TRANS_JOIN_NOSTART),
110 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
111 					   __TRANS_ATTACH |
112 					   __TRANS_JOIN |
113 					   __TRANS_JOIN_NOLOCK |
114 					   __TRANS_JOIN_NOSTART),
115 };
116 
117 void btrfs_put_transaction(struct btrfs_transaction *transaction)
118 {
119 	WARN_ON(refcount_read(&transaction->use_count) == 0);
120 	if (refcount_dec_and_test(&transaction->use_count)) {
121 		BUG_ON(!list_empty(&transaction->list));
122 		WARN_ON(!RB_EMPTY_ROOT(
123 				&transaction->delayed_refs.href_root.rb_root));
124 		if (transaction->delayed_refs.pending_csums)
125 			btrfs_err(transaction->fs_info,
126 				  "pending csums is %llu",
127 				  transaction->delayed_refs.pending_csums);
128 		/*
129 		 * If any block groups are found in ->deleted_bgs then it's
130 		 * because the transaction was aborted and a commit did not
131 		 * happen (things failed before writing the new superblock
132 		 * and calling btrfs_finish_extent_commit()), so we can not
133 		 * discard the physical locations of the block groups.
134 		 */
135 		while (!list_empty(&transaction->deleted_bgs)) {
136 			struct btrfs_block_group *cache;
137 
138 			cache = list_first_entry(&transaction->deleted_bgs,
139 						 struct btrfs_block_group,
140 						 bg_list);
141 			list_del_init(&cache->bg_list);
142 			btrfs_put_block_group_trimming(cache);
143 			btrfs_put_block_group(cache);
144 		}
145 		WARN_ON(!list_empty(&transaction->dev_update_list));
146 		kfree(transaction);
147 	}
148 }
149 
150 static noinline void switch_commit_roots(struct btrfs_transaction *trans)
151 {
152 	struct btrfs_fs_info *fs_info = trans->fs_info;
153 	struct btrfs_root *root, *tmp;
154 
155 	down_write(&fs_info->commit_root_sem);
156 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
157 				 dirty_list) {
158 		list_del_init(&root->dirty_list);
159 		free_extent_buffer(root->commit_root);
160 		root->commit_root = btrfs_root_node(root);
161 		if (is_fstree(root->root_key.objectid))
162 			btrfs_unpin_free_ino(root);
163 		extent_io_tree_release(&root->dirty_log_pages);
164 		btrfs_qgroup_clean_swapped_blocks(root);
165 	}
166 
167 	/* We can free old roots now. */
168 	spin_lock(&trans->dropped_roots_lock);
169 	while (!list_empty(&trans->dropped_roots)) {
170 		root = list_first_entry(&trans->dropped_roots,
171 					struct btrfs_root, root_list);
172 		list_del_init(&root->root_list);
173 		spin_unlock(&trans->dropped_roots_lock);
174 		btrfs_drop_and_free_fs_root(fs_info, root);
175 		spin_lock(&trans->dropped_roots_lock);
176 	}
177 	spin_unlock(&trans->dropped_roots_lock);
178 	up_write(&fs_info->commit_root_sem);
179 }
180 
181 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
182 					 unsigned int type)
183 {
184 	if (type & TRANS_EXTWRITERS)
185 		atomic_inc(&trans->num_extwriters);
186 }
187 
188 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
189 					 unsigned int type)
190 {
191 	if (type & TRANS_EXTWRITERS)
192 		atomic_dec(&trans->num_extwriters);
193 }
194 
195 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
196 					  unsigned int type)
197 {
198 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
199 }
200 
201 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
202 {
203 	return atomic_read(&trans->num_extwriters);
204 }
205 
206 /*
207  * To be called after all the new block groups attached to the transaction
208  * handle have been created (btrfs_create_pending_block_groups()).
209  */
210 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
211 {
212 	struct btrfs_fs_info *fs_info = trans->fs_info;
213 
214 	if (!trans->chunk_bytes_reserved)
215 		return;
216 
217 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
218 
219 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
220 				trans->chunk_bytes_reserved);
221 	trans->chunk_bytes_reserved = 0;
222 }
223 
224 /*
225  * either allocate a new transaction or hop into the existing one
226  */
227 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
228 				     unsigned int type)
229 {
230 	struct btrfs_transaction *cur_trans;
231 
232 	spin_lock(&fs_info->trans_lock);
233 loop:
234 	/* The file system has been taken offline. No new transactions. */
235 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
236 		spin_unlock(&fs_info->trans_lock);
237 		return -EROFS;
238 	}
239 
240 	cur_trans = fs_info->running_transaction;
241 	if (cur_trans) {
242 		if (cur_trans->aborted) {
243 			spin_unlock(&fs_info->trans_lock);
244 			return cur_trans->aborted;
245 		}
246 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
247 			spin_unlock(&fs_info->trans_lock);
248 			return -EBUSY;
249 		}
250 		refcount_inc(&cur_trans->use_count);
251 		atomic_inc(&cur_trans->num_writers);
252 		extwriter_counter_inc(cur_trans, type);
253 		spin_unlock(&fs_info->trans_lock);
254 		return 0;
255 	}
256 	spin_unlock(&fs_info->trans_lock);
257 
258 	/*
259 	 * If we are ATTACH, we just want to catch the current transaction,
260 	 * and commit it. If there is no transaction, just return ENOENT.
261 	 */
262 	if (type == TRANS_ATTACH)
263 		return -ENOENT;
264 
265 	/*
266 	 * JOIN_NOLOCK only happens during the transaction commit, so
267 	 * it is impossible that ->running_transaction is NULL
268 	 */
269 	BUG_ON(type == TRANS_JOIN_NOLOCK);
270 
271 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
272 	if (!cur_trans)
273 		return -ENOMEM;
274 
275 	spin_lock(&fs_info->trans_lock);
276 	if (fs_info->running_transaction) {
277 		/*
278 		 * someone started a transaction after we unlocked.  Make sure
279 		 * to redo the checks above
280 		 */
281 		kfree(cur_trans);
282 		goto loop;
283 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
284 		spin_unlock(&fs_info->trans_lock);
285 		kfree(cur_trans);
286 		return -EROFS;
287 	}
288 
289 	cur_trans->fs_info = fs_info;
290 	atomic_set(&cur_trans->num_writers, 1);
291 	extwriter_counter_init(cur_trans, type);
292 	init_waitqueue_head(&cur_trans->writer_wait);
293 	init_waitqueue_head(&cur_trans->commit_wait);
294 	cur_trans->state = TRANS_STATE_RUNNING;
295 	/*
296 	 * One for this trans handle, one so it will live on until we
297 	 * commit the transaction.
298 	 */
299 	refcount_set(&cur_trans->use_count, 2);
300 	cur_trans->flags = 0;
301 	cur_trans->start_time = ktime_get_seconds();
302 
303 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
304 
305 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
306 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
307 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
308 
309 	/*
310 	 * although the tree mod log is per file system and not per transaction,
311 	 * the log must never go across transaction boundaries.
312 	 */
313 	smp_mb();
314 	if (!list_empty(&fs_info->tree_mod_seq_list))
315 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
316 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
317 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
318 	atomic64_set(&fs_info->tree_mod_seq, 0);
319 
320 	spin_lock_init(&cur_trans->delayed_refs.lock);
321 
322 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
323 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
324 	INIT_LIST_HEAD(&cur_trans->switch_commits);
325 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
326 	INIT_LIST_HEAD(&cur_trans->io_bgs);
327 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
328 	mutex_init(&cur_trans->cache_write_mutex);
329 	spin_lock_init(&cur_trans->dirty_bgs_lock);
330 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
331 	spin_lock_init(&cur_trans->dropped_roots_lock);
332 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
333 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
334 			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
335 	fs_info->generation++;
336 	cur_trans->transid = fs_info->generation;
337 	fs_info->running_transaction = cur_trans;
338 	cur_trans->aborted = 0;
339 	spin_unlock(&fs_info->trans_lock);
340 
341 	return 0;
342 }
343 
344 /*
345  * this does all the record keeping required to make sure that a reference
346  * counted root is properly recorded in a given transaction.  This is required
347  * to make sure the old root from before we joined the transaction is deleted
348  * when the transaction commits
349  */
350 static int record_root_in_trans(struct btrfs_trans_handle *trans,
351 			       struct btrfs_root *root,
352 			       int force)
353 {
354 	struct btrfs_fs_info *fs_info = root->fs_info;
355 
356 	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
357 	    root->last_trans < trans->transid) || force) {
358 		WARN_ON(root == fs_info->extent_root);
359 		WARN_ON(!force && root->commit_root != root->node);
360 
361 		/*
362 		 * see below for IN_TRANS_SETUP usage rules
363 		 * we have the reloc mutex held now, so there
364 		 * is only one writer in this function
365 		 */
366 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
367 
368 		/* make sure readers find IN_TRANS_SETUP before
369 		 * they find our root->last_trans update
370 		 */
371 		smp_wmb();
372 
373 		spin_lock(&fs_info->fs_roots_radix_lock);
374 		if (root->last_trans == trans->transid && !force) {
375 			spin_unlock(&fs_info->fs_roots_radix_lock);
376 			return 0;
377 		}
378 		radix_tree_tag_set(&fs_info->fs_roots_radix,
379 				   (unsigned long)root->root_key.objectid,
380 				   BTRFS_ROOT_TRANS_TAG);
381 		spin_unlock(&fs_info->fs_roots_radix_lock);
382 		root->last_trans = trans->transid;
383 
384 		/* this is pretty tricky.  We don't want to
385 		 * take the relocation lock in btrfs_record_root_in_trans
386 		 * unless we're really doing the first setup for this root in
387 		 * this transaction.
388 		 *
389 		 * Normally we'd use root->last_trans as a flag to decide
390 		 * if we want to take the expensive mutex.
391 		 *
392 		 * But, we have to set root->last_trans before we
393 		 * init the relocation root, otherwise, we trip over warnings
394 		 * in ctree.c.  The solution used here is to flag ourselves
395 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
396 		 * fixing up the reloc trees and everyone must wait.
397 		 *
398 		 * When this is zero, they can trust root->last_trans and fly
399 		 * through btrfs_record_root_in_trans without having to take the
400 		 * lock.  smp_wmb() makes sure that all the writes above are
401 		 * done before we pop in the zero below
402 		 */
403 		btrfs_init_reloc_root(trans, root);
404 		smp_mb__before_atomic();
405 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
406 	}
407 	return 0;
408 }
409 
410 
411 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
412 			    struct btrfs_root *root)
413 {
414 	struct btrfs_fs_info *fs_info = root->fs_info;
415 	struct btrfs_transaction *cur_trans = trans->transaction;
416 
417 	/* Add ourselves to the transaction dropped list */
418 	spin_lock(&cur_trans->dropped_roots_lock);
419 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
420 	spin_unlock(&cur_trans->dropped_roots_lock);
421 
422 	/* Make sure we don't try to update the root at commit time */
423 	spin_lock(&fs_info->fs_roots_radix_lock);
424 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
425 			     (unsigned long)root->root_key.objectid,
426 			     BTRFS_ROOT_TRANS_TAG);
427 	spin_unlock(&fs_info->fs_roots_radix_lock);
428 }
429 
430 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
431 			       struct btrfs_root *root)
432 {
433 	struct btrfs_fs_info *fs_info = root->fs_info;
434 
435 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
436 		return 0;
437 
438 	/*
439 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
440 	 * and barriers
441 	 */
442 	smp_rmb();
443 	if (root->last_trans == trans->transid &&
444 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
445 		return 0;
446 
447 	mutex_lock(&fs_info->reloc_mutex);
448 	record_root_in_trans(trans, root, 0);
449 	mutex_unlock(&fs_info->reloc_mutex);
450 
451 	return 0;
452 }
453 
454 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
455 {
456 	return (trans->state >= TRANS_STATE_COMMIT_START &&
457 		trans->state < TRANS_STATE_UNBLOCKED &&
458 		!trans->aborted);
459 }
460 
461 /* wait for commit against the current transaction to become unblocked
462  * when this is done, it is safe to start a new transaction, but the current
463  * transaction might not be fully on disk.
464  */
465 static void wait_current_trans(struct btrfs_fs_info *fs_info)
466 {
467 	struct btrfs_transaction *cur_trans;
468 
469 	spin_lock(&fs_info->trans_lock);
470 	cur_trans = fs_info->running_transaction;
471 	if (cur_trans && is_transaction_blocked(cur_trans)) {
472 		refcount_inc(&cur_trans->use_count);
473 		spin_unlock(&fs_info->trans_lock);
474 
475 		wait_event(fs_info->transaction_wait,
476 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
477 			   cur_trans->aborted);
478 		btrfs_put_transaction(cur_trans);
479 	} else {
480 		spin_unlock(&fs_info->trans_lock);
481 	}
482 }
483 
484 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
485 {
486 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
487 		return 0;
488 
489 	if (type == TRANS_START)
490 		return 1;
491 
492 	return 0;
493 }
494 
495 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
496 {
497 	struct btrfs_fs_info *fs_info = root->fs_info;
498 
499 	if (!fs_info->reloc_ctl ||
500 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
501 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
502 	    root->reloc_root)
503 		return false;
504 
505 	return true;
506 }
507 
508 static struct btrfs_trans_handle *
509 start_transaction(struct btrfs_root *root, unsigned int num_items,
510 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
511 		  bool enforce_qgroups)
512 {
513 	struct btrfs_fs_info *fs_info = root->fs_info;
514 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
515 	struct btrfs_trans_handle *h;
516 	struct btrfs_transaction *cur_trans;
517 	u64 num_bytes = 0;
518 	u64 qgroup_reserved = 0;
519 	bool reloc_reserved = false;
520 	int ret;
521 
522 	/* Send isn't supposed to start transactions. */
523 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
524 
525 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
526 		return ERR_PTR(-EROFS);
527 
528 	if (current->journal_info) {
529 		WARN_ON(type & TRANS_EXTWRITERS);
530 		h = current->journal_info;
531 		refcount_inc(&h->use_count);
532 		WARN_ON(refcount_read(&h->use_count) > 2);
533 		h->orig_rsv = h->block_rsv;
534 		h->block_rsv = NULL;
535 		goto got_it;
536 	}
537 
538 	/*
539 	 * Do the reservation before we join the transaction so we can do all
540 	 * the appropriate flushing if need be.
541 	 */
542 	if (num_items && root != fs_info->chunk_root) {
543 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
544 		u64 delayed_refs_bytes = 0;
545 
546 		qgroup_reserved = num_items * fs_info->nodesize;
547 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
548 				enforce_qgroups);
549 		if (ret)
550 			return ERR_PTR(ret);
551 
552 		/*
553 		 * We want to reserve all the bytes we may need all at once, so
554 		 * we only do 1 enospc flushing cycle per transaction start.  We
555 		 * accomplish this by simply assuming we'll do 2 x num_items
556 		 * worth of delayed refs updates in this trans handle, and
557 		 * refill that amount for whatever is missing in the reserve.
558 		 */
559 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
560 		if (delayed_refs_rsv->full == 0) {
561 			delayed_refs_bytes = num_bytes;
562 			num_bytes <<= 1;
563 		}
564 
565 		/*
566 		 * Do the reservation for the relocation root creation
567 		 */
568 		if (need_reserve_reloc_root(root)) {
569 			num_bytes += fs_info->nodesize;
570 			reloc_reserved = true;
571 		}
572 
573 		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
574 		if (ret)
575 			goto reserve_fail;
576 		if (delayed_refs_bytes) {
577 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
578 							  delayed_refs_bytes);
579 			num_bytes -= delayed_refs_bytes;
580 		}
581 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
582 		   !delayed_refs_rsv->full) {
583 		/*
584 		 * Some people call with btrfs_start_transaction(root, 0)
585 		 * because they can be throttled, but have some other mechanism
586 		 * for reserving space.  We still want these guys to refill the
587 		 * delayed block_rsv so just add 1 items worth of reservation
588 		 * here.
589 		 */
590 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
591 		if (ret)
592 			goto reserve_fail;
593 	}
594 again:
595 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
596 	if (!h) {
597 		ret = -ENOMEM;
598 		goto alloc_fail;
599 	}
600 
601 	/*
602 	 * If we are JOIN_NOLOCK we're already committing a transaction and
603 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
604 	 * because we're already holding a ref.  We need this because we could
605 	 * have raced in and did an fsync() on a file which can kick a commit
606 	 * and then we deadlock with somebody doing a freeze.
607 	 *
608 	 * If we are ATTACH, it means we just want to catch the current
609 	 * transaction and commit it, so we needn't do sb_start_intwrite().
610 	 */
611 	if (type & __TRANS_FREEZABLE)
612 		sb_start_intwrite(fs_info->sb);
613 
614 	if (may_wait_transaction(fs_info, type))
615 		wait_current_trans(fs_info);
616 
617 	do {
618 		ret = join_transaction(fs_info, type);
619 		if (ret == -EBUSY) {
620 			wait_current_trans(fs_info);
621 			if (unlikely(type == TRANS_ATTACH ||
622 				     type == TRANS_JOIN_NOSTART))
623 				ret = -ENOENT;
624 		}
625 	} while (ret == -EBUSY);
626 
627 	if (ret < 0)
628 		goto join_fail;
629 
630 	cur_trans = fs_info->running_transaction;
631 
632 	h->transid = cur_trans->transid;
633 	h->transaction = cur_trans;
634 	h->root = root;
635 	refcount_set(&h->use_count, 1);
636 	h->fs_info = root->fs_info;
637 
638 	h->type = type;
639 	h->can_flush_pending_bgs = true;
640 	INIT_LIST_HEAD(&h->new_bgs);
641 
642 	smp_mb();
643 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
644 	    may_wait_transaction(fs_info, type)) {
645 		current->journal_info = h;
646 		btrfs_commit_transaction(h);
647 		goto again;
648 	}
649 
650 	if (num_bytes) {
651 		trace_btrfs_space_reservation(fs_info, "transaction",
652 					      h->transid, num_bytes, 1);
653 		h->block_rsv = &fs_info->trans_block_rsv;
654 		h->bytes_reserved = num_bytes;
655 		h->reloc_reserved = reloc_reserved;
656 	}
657 
658 got_it:
659 	btrfs_record_root_in_trans(h, root);
660 
661 	if (!current->journal_info)
662 		current->journal_info = h;
663 	return h;
664 
665 join_fail:
666 	if (type & __TRANS_FREEZABLE)
667 		sb_end_intwrite(fs_info->sb);
668 	kmem_cache_free(btrfs_trans_handle_cachep, h);
669 alloc_fail:
670 	if (num_bytes)
671 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
672 					num_bytes);
673 reserve_fail:
674 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
675 	return ERR_PTR(ret);
676 }
677 
678 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
679 						   unsigned int num_items)
680 {
681 	return start_transaction(root, num_items, TRANS_START,
682 				 BTRFS_RESERVE_FLUSH_ALL, true);
683 }
684 
685 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
686 					struct btrfs_root *root,
687 					unsigned int num_items,
688 					int min_factor)
689 {
690 	struct btrfs_fs_info *fs_info = root->fs_info;
691 	struct btrfs_trans_handle *trans;
692 	u64 num_bytes;
693 	int ret;
694 
695 	/*
696 	 * We have two callers: unlink and block group removal.  The
697 	 * former should succeed even if we will temporarily exceed
698 	 * quota and the latter operates on the extent root so
699 	 * qgroup enforcement is ignored anyway.
700 	 */
701 	trans = start_transaction(root, num_items, TRANS_START,
702 				  BTRFS_RESERVE_FLUSH_ALL, false);
703 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
704 		return trans;
705 
706 	trans = btrfs_start_transaction(root, 0);
707 	if (IS_ERR(trans))
708 		return trans;
709 
710 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
711 	ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
712 				       num_bytes, min_factor);
713 	if (ret) {
714 		btrfs_end_transaction(trans);
715 		return ERR_PTR(ret);
716 	}
717 
718 	trans->block_rsv = &fs_info->trans_block_rsv;
719 	trans->bytes_reserved = num_bytes;
720 	trace_btrfs_space_reservation(fs_info, "transaction",
721 				      trans->transid, num_bytes, 1);
722 
723 	return trans;
724 }
725 
726 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
727 {
728 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
729 				 true);
730 }
731 
732 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
733 {
734 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
735 				 BTRFS_RESERVE_NO_FLUSH, true);
736 }
737 
738 /*
739  * Similar to regular join but it never starts a transaction when none is
740  * running or after waiting for the current one to finish.
741  */
742 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
743 {
744 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
745 				 BTRFS_RESERVE_NO_FLUSH, true);
746 }
747 
748 /*
749  * btrfs_attach_transaction() - catch the running transaction
750  *
751  * It is used when we want to commit the current the transaction, but
752  * don't want to start a new one.
753  *
754  * Note: If this function return -ENOENT, it just means there is no
755  * running transaction. But it is possible that the inactive transaction
756  * is still in the memory, not fully on disk. If you hope there is no
757  * inactive transaction in the fs when -ENOENT is returned, you should
758  * invoke
759  *     btrfs_attach_transaction_barrier()
760  */
761 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
762 {
763 	return start_transaction(root, 0, TRANS_ATTACH,
764 				 BTRFS_RESERVE_NO_FLUSH, true);
765 }
766 
767 /*
768  * btrfs_attach_transaction_barrier() - catch the running transaction
769  *
770  * It is similar to the above function, the difference is this one
771  * will wait for all the inactive transactions until they fully
772  * complete.
773  */
774 struct btrfs_trans_handle *
775 btrfs_attach_transaction_barrier(struct btrfs_root *root)
776 {
777 	struct btrfs_trans_handle *trans;
778 
779 	trans = start_transaction(root, 0, TRANS_ATTACH,
780 				  BTRFS_RESERVE_NO_FLUSH, true);
781 	if (trans == ERR_PTR(-ENOENT))
782 		btrfs_wait_for_commit(root->fs_info, 0);
783 
784 	return trans;
785 }
786 
787 /* wait for a transaction commit to be fully complete */
788 static noinline void wait_for_commit(struct btrfs_transaction *commit)
789 {
790 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
791 }
792 
793 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
794 {
795 	struct btrfs_transaction *cur_trans = NULL, *t;
796 	int ret = 0;
797 
798 	if (transid) {
799 		if (transid <= fs_info->last_trans_committed)
800 			goto out;
801 
802 		/* find specified transaction */
803 		spin_lock(&fs_info->trans_lock);
804 		list_for_each_entry(t, &fs_info->trans_list, list) {
805 			if (t->transid == transid) {
806 				cur_trans = t;
807 				refcount_inc(&cur_trans->use_count);
808 				ret = 0;
809 				break;
810 			}
811 			if (t->transid > transid) {
812 				ret = 0;
813 				break;
814 			}
815 		}
816 		spin_unlock(&fs_info->trans_lock);
817 
818 		/*
819 		 * The specified transaction doesn't exist, or we
820 		 * raced with btrfs_commit_transaction
821 		 */
822 		if (!cur_trans) {
823 			if (transid > fs_info->last_trans_committed)
824 				ret = -EINVAL;
825 			goto out;
826 		}
827 	} else {
828 		/* find newest transaction that is committing | committed */
829 		spin_lock(&fs_info->trans_lock);
830 		list_for_each_entry_reverse(t, &fs_info->trans_list,
831 					    list) {
832 			if (t->state >= TRANS_STATE_COMMIT_START) {
833 				if (t->state == TRANS_STATE_COMPLETED)
834 					break;
835 				cur_trans = t;
836 				refcount_inc(&cur_trans->use_count);
837 				break;
838 			}
839 		}
840 		spin_unlock(&fs_info->trans_lock);
841 		if (!cur_trans)
842 			goto out;  /* nothing committing|committed */
843 	}
844 
845 	wait_for_commit(cur_trans);
846 	btrfs_put_transaction(cur_trans);
847 out:
848 	return ret;
849 }
850 
851 void btrfs_throttle(struct btrfs_fs_info *fs_info)
852 {
853 	wait_current_trans(fs_info);
854 }
855 
856 static int should_end_transaction(struct btrfs_trans_handle *trans)
857 {
858 	struct btrfs_fs_info *fs_info = trans->fs_info;
859 
860 	if (btrfs_check_space_for_delayed_refs(fs_info))
861 		return 1;
862 
863 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
864 }
865 
866 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
867 {
868 	struct btrfs_transaction *cur_trans = trans->transaction;
869 
870 	smp_mb();
871 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
872 	    cur_trans->delayed_refs.flushing)
873 		return 1;
874 
875 	return should_end_transaction(trans);
876 }
877 
878 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
879 
880 {
881 	struct btrfs_fs_info *fs_info = trans->fs_info;
882 
883 	if (!trans->block_rsv) {
884 		ASSERT(!trans->bytes_reserved);
885 		return;
886 	}
887 
888 	if (!trans->bytes_reserved)
889 		return;
890 
891 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
892 	trace_btrfs_space_reservation(fs_info, "transaction",
893 				      trans->transid, trans->bytes_reserved, 0);
894 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
895 				trans->bytes_reserved);
896 	trans->bytes_reserved = 0;
897 }
898 
899 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
900 				   int throttle)
901 {
902 	struct btrfs_fs_info *info = trans->fs_info;
903 	struct btrfs_transaction *cur_trans = trans->transaction;
904 	int err = 0;
905 
906 	if (refcount_read(&trans->use_count) > 1) {
907 		refcount_dec(&trans->use_count);
908 		trans->block_rsv = trans->orig_rsv;
909 		return 0;
910 	}
911 
912 	btrfs_trans_release_metadata(trans);
913 	trans->block_rsv = NULL;
914 
915 	btrfs_create_pending_block_groups(trans);
916 
917 	btrfs_trans_release_chunk_metadata(trans);
918 
919 	if (trans->type & __TRANS_FREEZABLE)
920 		sb_end_intwrite(info->sb);
921 
922 	WARN_ON(cur_trans != info->running_transaction);
923 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
924 	atomic_dec(&cur_trans->num_writers);
925 	extwriter_counter_dec(cur_trans, trans->type);
926 
927 	cond_wake_up(&cur_trans->writer_wait);
928 	btrfs_put_transaction(cur_trans);
929 
930 	if (current->journal_info == trans)
931 		current->journal_info = NULL;
932 
933 	if (throttle)
934 		btrfs_run_delayed_iputs(info);
935 
936 	if (trans->aborted ||
937 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
938 		wake_up_process(info->transaction_kthread);
939 		err = -EIO;
940 	}
941 
942 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
943 	return err;
944 }
945 
946 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
947 {
948 	return __btrfs_end_transaction(trans, 0);
949 }
950 
951 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
952 {
953 	return __btrfs_end_transaction(trans, 1);
954 }
955 
956 /*
957  * when btree blocks are allocated, they have some corresponding bits set for
958  * them in one of two extent_io trees.  This is used to make sure all of
959  * those extents are sent to disk but does not wait on them
960  */
961 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
962 			       struct extent_io_tree *dirty_pages, int mark)
963 {
964 	int err = 0;
965 	int werr = 0;
966 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
967 	struct extent_state *cached_state = NULL;
968 	u64 start = 0;
969 	u64 end;
970 
971 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
972 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
973 				      mark, &cached_state)) {
974 		bool wait_writeback = false;
975 
976 		err = convert_extent_bit(dirty_pages, start, end,
977 					 EXTENT_NEED_WAIT,
978 					 mark, &cached_state);
979 		/*
980 		 * convert_extent_bit can return -ENOMEM, which is most of the
981 		 * time a temporary error. So when it happens, ignore the error
982 		 * and wait for writeback of this range to finish - because we
983 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
984 		 * to __btrfs_wait_marked_extents() would not know that
985 		 * writeback for this range started and therefore wouldn't
986 		 * wait for it to finish - we don't want to commit a
987 		 * superblock that points to btree nodes/leafs for which
988 		 * writeback hasn't finished yet (and without errors).
989 		 * We cleanup any entries left in the io tree when committing
990 		 * the transaction (through extent_io_tree_release()).
991 		 */
992 		if (err == -ENOMEM) {
993 			err = 0;
994 			wait_writeback = true;
995 		}
996 		if (!err)
997 			err = filemap_fdatawrite_range(mapping, start, end);
998 		if (err)
999 			werr = err;
1000 		else if (wait_writeback)
1001 			werr = filemap_fdatawait_range(mapping, start, end);
1002 		free_extent_state(cached_state);
1003 		cached_state = NULL;
1004 		cond_resched();
1005 		start = end + 1;
1006 	}
1007 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1008 	return werr;
1009 }
1010 
1011 /*
1012  * when btree blocks are allocated, they have some corresponding bits set for
1013  * them in one of two extent_io trees.  This is used to make sure all of
1014  * those extents are on disk for transaction or log commit.  We wait
1015  * on all the pages and clear them from the dirty pages state tree
1016  */
1017 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1018 				       struct extent_io_tree *dirty_pages)
1019 {
1020 	int err = 0;
1021 	int werr = 0;
1022 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1023 	struct extent_state *cached_state = NULL;
1024 	u64 start = 0;
1025 	u64 end;
1026 
1027 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1028 				      EXTENT_NEED_WAIT, &cached_state)) {
1029 		/*
1030 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1031 		 * When committing the transaction, we'll remove any entries
1032 		 * left in the io tree. For a log commit, we don't remove them
1033 		 * after committing the log because the tree can be accessed
1034 		 * concurrently - we do it only at transaction commit time when
1035 		 * it's safe to do it (through extent_io_tree_release()).
1036 		 */
1037 		err = clear_extent_bit(dirty_pages, start, end,
1038 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1039 		if (err == -ENOMEM)
1040 			err = 0;
1041 		if (!err)
1042 			err = filemap_fdatawait_range(mapping, start, end);
1043 		if (err)
1044 			werr = err;
1045 		free_extent_state(cached_state);
1046 		cached_state = NULL;
1047 		cond_resched();
1048 		start = end + 1;
1049 	}
1050 	if (err)
1051 		werr = err;
1052 	return werr;
1053 }
1054 
1055 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1056 		       struct extent_io_tree *dirty_pages)
1057 {
1058 	bool errors = false;
1059 	int err;
1060 
1061 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1062 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1063 		errors = true;
1064 
1065 	if (errors && !err)
1066 		err = -EIO;
1067 	return err;
1068 }
1069 
1070 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1071 {
1072 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1073 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1074 	bool errors = false;
1075 	int err;
1076 
1077 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1078 
1079 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1080 	if ((mark & EXTENT_DIRTY) &&
1081 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1082 		errors = true;
1083 
1084 	if ((mark & EXTENT_NEW) &&
1085 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1086 		errors = true;
1087 
1088 	if (errors && !err)
1089 		err = -EIO;
1090 	return err;
1091 }
1092 
1093 /*
1094  * When btree blocks are allocated the corresponding extents are marked dirty.
1095  * This function ensures such extents are persisted on disk for transaction or
1096  * log commit.
1097  *
1098  * @trans: transaction whose dirty pages we'd like to write
1099  */
1100 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1101 {
1102 	int ret;
1103 	int ret2;
1104 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1105 	struct btrfs_fs_info *fs_info = trans->fs_info;
1106 	struct blk_plug plug;
1107 
1108 	blk_start_plug(&plug);
1109 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1110 	blk_finish_plug(&plug);
1111 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1112 
1113 	extent_io_tree_release(&trans->transaction->dirty_pages);
1114 
1115 	if (ret)
1116 		return ret;
1117 	else if (ret2)
1118 		return ret2;
1119 	else
1120 		return 0;
1121 }
1122 
1123 /*
1124  * this is used to update the root pointer in the tree of tree roots.
1125  *
1126  * But, in the case of the extent allocation tree, updating the root
1127  * pointer may allocate blocks which may change the root of the extent
1128  * allocation tree.
1129  *
1130  * So, this loops and repeats and makes sure the cowonly root didn't
1131  * change while the root pointer was being updated in the metadata.
1132  */
1133 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1134 			       struct btrfs_root *root)
1135 {
1136 	int ret;
1137 	u64 old_root_bytenr;
1138 	u64 old_root_used;
1139 	struct btrfs_fs_info *fs_info = root->fs_info;
1140 	struct btrfs_root *tree_root = fs_info->tree_root;
1141 
1142 	old_root_used = btrfs_root_used(&root->root_item);
1143 
1144 	while (1) {
1145 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1146 		if (old_root_bytenr == root->node->start &&
1147 		    old_root_used == btrfs_root_used(&root->root_item))
1148 			break;
1149 
1150 		btrfs_set_root_node(&root->root_item, root->node);
1151 		ret = btrfs_update_root(trans, tree_root,
1152 					&root->root_key,
1153 					&root->root_item);
1154 		if (ret)
1155 			return ret;
1156 
1157 		old_root_used = btrfs_root_used(&root->root_item);
1158 	}
1159 
1160 	return 0;
1161 }
1162 
1163 /*
1164  * update all the cowonly tree roots on disk
1165  *
1166  * The error handling in this function may not be obvious. Any of the
1167  * failures will cause the file system to go offline. We still need
1168  * to clean up the delayed refs.
1169  */
1170 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1171 {
1172 	struct btrfs_fs_info *fs_info = trans->fs_info;
1173 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1174 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1175 	struct list_head *next;
1176 	struct extent_buffer *eb;
1177 	int ret;
1178 
1179 	eb = btrfs_lock_root_node(fs_info->tree_root);
1180 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1181 			      0, &eb);
1182 	btrfs_tree_unlock(eb);
1183 	free_extent_buffer(eb);
1184 
1185 	if (ret)
1186 		return ret;
1187 
1188 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1189 	if (ret)
1190 		return ret;
1191 
1192 	ret = btrfs_run_dev_stats(trans);
1193 	if (ret)
1194 		return ret;
1195 	ret = btrfs_run_dev_replace(trans);
1196 	if (ret)
1197 		return ret;
1198 	ret = btrfs_run_qgroups(trans);
1199 	if (ret)
1200 		return ret;
1201 
1202 	ret = btrfs_setup_space_cache(trans);
1203 	if (ret)
1204 		return ret;
1205 
1206 	/* run_qgroups might have added some more refs */
1207 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1208 	if (ret)
1209 		return ret;
1210 again:
1211 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1212 		struct btrfs_root *root;
1213 		next = fs_info->dirty_cowonly_roots.next;
1214 		list_del_init(next);
1215 		root = list_entry(next, struct btrfs_root, dirty_list);
1216 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1217 
1218 		if (root != fs_info->extent_root)
1219 			list_add_tail(&root->dirty_list,
1220 				      &trans->transaction->switch_commits);
1221 		ret = update_cowonly_root(trans, root);
1222 		if (ret)
1223 			return ret;
1224 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1225 		if (ret)
1226 			return ret;
1227 	}
1228 
1229 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1230 		ret = btrfs_write_dirty_block_groups(trans);
1231 		if (ret)
1232 			return ret;
1233 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1234 		if (ret)
1235 			return ret;
1236 	}
1237 
1238 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1239 		goto again;
1240 
1241 	list_add_tail(&fs_info->extent_root->dirty_list,
1242 		      &trans->transaction->switch_commits);
1243 
1244 	/* Update dev-replace pointer once everything is committed */
1245 	fs_info->dev_replace.committed_cursor_left =
1246 		fs_info->dev_replace.cursor_left_last_write_of_item;
1247 
1248 	return 0;
1249 }
1250 
1251 /*
1252  * dead roots are old snapshots that need to be deleted.  This allocates
1253  * a dirty root struct and adds it into the list of dead roots that need to
1254  * be deleted
1255  */
1256 void btrfs_add_dead_root(struct btrfs_root *root)
1257 {
1258 	struct btrfs_fs_info *fs_info = root->fs_info;
1259 
1260 	spin_lock(&fs_info->trans_lock);
1261 	if (list_empty(&root->root_list))
1262 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1263 	spin_unlock(&fs_info->trans_lock);
1264 }
1265 
1266 /*
1267  * update all the cowonly tree roots on disk
1268  */
1269 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1270 {
1271 	struct btrfs_fs_info *fs_info = trans->fs_info;
1272 	struct btrfs_root *gang[8];
1273 	int i;
1274 	int ret;
1275 	int err = 0;
1276 
1277 	spin_lock(&fs_info->fs_roots_radix_lock);
1278 	while (1) {
1279 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1280 						 (void **)gang, 0,
1281 						 ARRAY_SIZE(gang),
1282 						 BTRFS_ROOT_TRANS_TAG);
1283 		if (ret == 0)
1284 			break;
1285 		for (i = 0; i < ret; i++) {
1286 			struct btrfs_root *root = gang[i];
1287 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1288 					(unsigned long)root->root_key.objectid,
1289 					BTRFS_ROOT_TRANS_TAG);
1290 			spin_unlock(&fs_info->fs_roots_radix_lock);
1291 
1292 			btrfs_free_log(trans, root);
1293 			btrfs_update_reloc_root(trans, root);
1294 
1295 			btrfs_save_ino_cache(root, trans);
1296 
1297 			/* see comments in should_cow_block() */
1298 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1299 			smp_mb__after_atomic();
1300 
1301 			if (root->commit_root != root->node) {
1302 				list_add_tail(&root->dirty_list,
1303 					&trans->transaction->switch_commits);
1304 				btrfs_set_root_node(&root->root_item,
1305 						    root->node);
1306 			}
1307 
1308 			err = btrfs_update_root(trans, fs_info->tree_root,
1309 						&root->root_key,
1310 						&root->root_item);
1311 			spin_lock(&fs_info->fs_roots_radix_lock);
1312 			if (err)
1313 				break;
1314 			btrfs_qgroup_free_meta_all_pertrans(root);
1315 		}
1316 	}
1317 	spin_unlock(&fs_info->fs_roots_radix_lock);
1318 	return err;
1319 }
1320 
1321 /*
1322  * defrag a given btree.
1323  * Every leaf in the btree is read and defragged.
1324  */
1325 int btrfs_defrag_root(struct btrfs_root *root)
1326 {
1327 	struct btrfs_fs_info *info = root->fs_info;
1328 	struct btrfs_trans_handle *trans;
1329 	int ret;
1330 
1331 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1332 		return 0;
1333 
1334 	while (1) {
1335 		trans = btrfs_start_transaction(root, 0);
1336 		if (IS_ERR(trans))
1337 			return PTR_ERR(trans);
1338 
1339 		ret = btrfs_defrag_leaves(trans, root);
1340 
1341 		btrfs_end_transaction(trans);
1342 		btrfs_btree_balance_dirty(info);
1343 		cond_resched();
1344 
1345 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1346 			break;
1347 
1348 		if (btrfs_defrag_cancelled(info)) {
1349 			btrfs_debug(info, "defrag_root cancelled");
1350 			ret = -EAGAIN;
1351 			break;
1352 		}
1353 	}
1354 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1355 	return ret;
1356 }
1357 
1358 /*
1359  * Do all special snapshot related qgroup dirty hack.
1360  *
1361  * Will do all needed qgroup inherit and dirty hack like switch commit
1362  * roots inside one transaction and write all btree into disk, to make
1363  * qgroup works.
1364  */
1365 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1366 				   struct btrfs_root *src,
1367 				   struct btrfs_root *parent,
1368 				   struct btrfs_qgroup_inherit *inherit,
1369 				   u64 dst_objectid)
1370 {
1371 	struct btrfs_fs_info *fs_info = src->fs_info;
1372 	int ret;
1373 
1374 	/*
1375 	 * Save some performance in the case that qgroups are not
1376 	 * enabled. If this check races with the ioctl, rescan will
1377 	 * kick in anyway.
1378 	 */
1379 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1380 		return 0;
1381 
1382 	/*
1383 	 * Ensure dirty @src will be committed.  Or, after coming
1384 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1385 	 * recorded root will never be updated again, causing an outdated root
1386 	 * item.
1387 	 */
1388 	record_root_in_trans(trans, src, 1);
1389 
1390 	/*
1391 	 * We are going to commit transaction, see btrfs_commit_transaction()
1392 	 * comment for reason locking tree_log_mutex
1393 	 */
1394 	mutex_lock(&fs_info->tree_log_mutex);
1395 
1396 	ret = commit_fs_roots(trans);
1397 	if (ret)
1398 		goto out;
1399 	ret = btrfs_qgroup_account_extents(trans);
1400 	if (ret < 0)
1401 		goto out;
1402 
1403 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1404 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1405 				   inherit);
1406 	if (ret < 0)
1407 		goto out;
1408 
1409 	/*
1410 	 * Now we do a simplified commit transaction, which will:
1411 	 * 1) commit all subvolume and extent tree
1412 	 *    To ensure all subvolume and extent tree have a valid
1413 	 *    commit_root to accounting later insert_dir_item()
1414 	 * 2) write all btree blocks onto disk
1415 	 *    This is to make sure later btree modification will be cowed
1416 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1417 	 * In this simplified commit, we don't really care about other trees
1418 	 * like chunk and root tree, as they won't affect qgroup.
1419 	 * And we don't write super to avoid half committed status.
1420 	 */
1421 	ret = commit_cowonly_roots(trans);
1422 	if (ret)
1423 		goto out;
1424 	switch_commit_roots(trans->transaction);
1425 	ret = btrfs_write_and_wait_transaction(trans);
1426 	if (ret)
1427 		btrfs_handle_fs_error(fs_info, ret,
1428 			"Error while writing out transaction for qgroup");
1429 
1430 out:
1431 	mutex_unlock(&fs_info->tree_log_mutex);
1432 
1433 	/*
1434 	 * Force parent root to be updated, as we recorded it before so its
1435 	 * last_trans == cur_transid.
1436 	 * Or it won't be committed again onto disk after later
1437 	 * insert_dir_item()
1438 	 */
1439 	if (!ret)
1440 		record_root_in_trans(trans, parent, 1);
1441 	return ret;
1442 }
1443 
1444 /*
1445  * new snapshots need to be created at a very specific time in the
1446  * transaction commit.  This does the actual creation.
1447  *
1448  * Note:
1449  * If the error which may affect the commitment of the current transaction
1450  * happens, we should return the error number. If the error which just affect
1451  * the creation of the pending snapshots, just return 0.
1452  */
1453 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1454 				   struct btrfs_pending_snapshot *pending)
1455 {
1456 
1457 	struct btrfs_fs_info *fs_info = trans->fs_info;
1458 	struct btrfs_key key;
1459 	struct btrfs_root_item *new_root_item;
1460 	struct btrfs_root *tree_root = fs_info->tree_root;
1461 	struct btrfs_root *root = pending->root;
1462 	struct btrfs_root *parent_root;
1463 	struct btrfs_block_rsv *rsv;
1464 	struct inode *parent_inode;
1465 	struct btrfs_path *path;
1466 	struct btrfs_dir_item *dir_item;
1467 	struct dentry *dentry;
1468 	struct extent_buffer *tmp;
1469 	struct extent_buffer *old;
1470 	struct timespec64 cur_time;
1471 	int ret = 0;
1472 	u64 to_reserve = 0;
1473 	u64 index = 0;
1474 	u64 objectid;
1475 	u64 root_flags;
1476 	uuid_le new_uuid;
1477 
1478 	ASSERT(pending->path);
1479 	path = pending->path;
1480 
1481 	ASSERT(pending->root_item);
1482 	new_root_item = pending->root_item;
1483 
1484 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1485 	if (pending->error)
1486 		goto no_free_objectid;
1487 
1488 	/*
1489 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1490 	 * accounted by later btrfs_qgroup_inherit().
1491 	 */
1492 	btrfs_set_skip_qgroup(trans, objectid);
1493 
1494 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1495 
1496 	if (to_reserve > 0) {
1497 		pending->error = btrfs_block_rsv_add(root,
1498 						     &pending->block_rsv,
1499 						     to_reserve,
1500 						     BTRFS_RESERVE_NO_FLUSH);
1501 		if (pending->error)
1502 			goto clear_skip_qgroup;
1503 	}
1504 
1505 	key.objectid = objectid;
1506 	key.offset = (u64)-1;
1507 	key.type = BTRFS_ROOT_ITEM_KEY;
1508 
1509 	rsv = trans->block_rsv;
1510 	trans->block_rsv = &pending->block_rsv;
1511 	trans->bytes_reserved = trans->block_rsv->reserved;
1512 	trace_btrfs_space_reservation(fs_info, "transaction",
1513 				      trans->transid,
1514 				      trans->bytes_reserved, 1);
1515 	dentry = pending->dentry;
1516 	parent_inode = pending->dir;
1517 	parent_root = BTRFS_I(parent_inode)->root;
1518 	record_root_in_trans(trans, parent_root, 0);
1519 
1520 	cur_time = current_time(parent_inode);
1521 
1522 	/*
1523 	 * insert the directory item
1524 	 */
1525 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1526 	BUG_ON(ret); /* -ENOMEM */
1527 
1528 	/* check if there is a file/dir which has the same name. */
1529 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1530 					 btrfs_ino(BTRFS_I(parent_inode)),
1531 					 dentry->d_name.name,
1532 					 dentry->d_name.len, 0);
1533 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1534 		pending->error = -EEXIST;
1535 		goto dir_item_existed;
1536 	} else if (IS_ERR(dir_item)) {
1537 		ret = PTR_ERR(dir_item);
1538 		btrfs_abort_transaction(trans, ret);
1539 		goto fail;
1540 	}
1541 	btrfs_release_path(path);
1542 
1543 	/*
1544 	 * pull in the delayed directory update
1545 	 * and the delayed inode item
1546 	 * otherwise we corrupt the FS during
1547 	 * snapshot
1548 	 */
1549 	ret = btrfs_run_delayed_items(trans);
1550 	if (ret) {	/* Transaction aborted */
1551 		btrfs_abort_transaction(trans, ret);
1552 		goto fail;
1553 	}
1554 
1555 	record_root_in_trans(trans, root, 0);
1556 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1557 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1558 	btrfs_check_and_init_root_item(new_root_item);
1559 
1560 	root_flags = btrfs_root_flags(new_root_item);
1561 	if (pending->readonly)
1562 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1563 	else
1564 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1565 	btrfs_set_root_flags(new_root_item, root_flags);
1566 
1567 	btrfs_set_root_generation_v2(new_root_item,
1568 			trans->transid);
1569 	uuid_le_gen(&new_uuid);
1570 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1571 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1572 			BTRFS_UUID_SIZE);
1573 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1574 		memset(new_root_item->received_uuid, 0,
1575 		       sizeof(new_root_item->received_uuid));
1576 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1577 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1578 		btrfs_set_root_stransid(new_root_item, 0);
1579 		btrfs_set_root_rtransid(new_root_item, 0);
1580 	}
1581 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1582 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1583 	btrfs_set_root_otransid(new_root_item, trans->transid);
1584 
1585 	old = btrfs_lock_root_node(root);
1586 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1587 	if (ret) {
1588 		btrfs_tree_unlock(old);
1589 		free_extent_buffer(old);
1590 		btrfs_abort_transaction(trans, ret);
1591 		goto fail;
1592 	}
1593 
1594 	btrfs_set_lock_blocking_write(old);
1595 
1596 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1597 	/* clean up in any case */
1598 	btrfs_tree_unlock(old);
1599 	free_extent_buffer(old);
1600 	if (ret) {
1601 		btrfs_abort_transaction(trans, ret);
1602 		goto fail;
1603 	}
1604 	/* see comments in should_cow_block() */
1605 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1606 	smp_wmb();
1607 
1608 	btrfs_set_root_node(new_root_item, tmp);
1609 	/* record when the snapshot was created in key.offset */
1610 	key.offset = trans->transid;
1611 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1612 	btrfs_tree_unlock(tmp);
1613 	free_extent_buffer(tmp);
1614 	if (ret) {
1615 		btrfs_abort_transaction(trans, ret);
1616 		goto fail;
1617 	}
1618 
1619 	/*
1620 	 * insert root back/forward references
1621 	 */
1622 	ret = btrfs_add_root_ref(trans, objectid,
1623 				 parent_root->root_key.objectid,
1624 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1625 				 dentry->d_name.name, dentry->d_name.len);
1626 	if (ret) {
1627 		btrfs_abort_transaction(trans, ret);
1628 		goto fail;
1629 	}
1630 
1631 	key.offset = (u64)-1;
1632 	pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1633 	if (IS_ERR(pending->snap)) {
1634 		ret = PTR_ERR(pending->snap);
1635 		btrfs_abort_transaction(trans, ret);
1636 		goto fail;
1637 	}
1638 
1639 	ret = btrfs_reloc_post_snapshot(trans, pending);
1640 	if (ret) {
1641 		btrfs_abort_transaction(trans, ret);
1642 		goto fail;
1643 	}
1644 
1645 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1646 	if (ret) {
1647 		btrfs_abort_transaction(trans, ret);
1648 		goto fail;
1649 	}
1650 
1651 	/*
1652 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1653 	 * snapshot hack to do fast snapshot.
1654 	 * To co-operate with that hack, we do hack again.
1655 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1656 	 */
1657 	ret = qgroup_account_snapshot(trans, root, parent_root,
1658 				      pending->inherit, objectid);
1659 	if (ret < 0)
1660 		goto fail;
1661 
1662 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1663 				    dentry->d_name.len, BTRFS_I(parent_inode),
1664 				    &key, BTRFS_FT_DIR, index);
1665 	/* We have check then name at the beginning, so it is impossible. */
1666 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1667 	if (ret) {
1668 		btrfs_abort_transaction(trans, ret);
1669 		goto fail;
1670 	}
1671 
1672 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1673 					 dentry->d_name.len * 2);
1674 	parent_inode->i_mtime = parent_inode->i_ctime =
1675 		current_time(parent_inode);
1676 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1677 	if (ret) {
1678 		btrfs_abort_transaction(trans, ret);
1679 		goto fail;
1680 	}
1681 	ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1682 				  objectid);
1683 	if (ret) {
1684 		btrfs_abort_transaction(trans, ret);
1685 		goto fail;
1686 	}
1687 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1688 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1689 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1690 					  objectid);
1691 		if (ret && ret != -EEXIST) {
1692 			btrfs_abort_transaction(trans, ret);
1693 			goto fail;
1694 		}
1695 	}
1696 
1697 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1698 	if (ret) {
1699 		btrfs_abort_transaction(trans, ret);
1700 		goto fail;
1701 	}
1702 
1703 fail:
1704 	pending->error = ret;
1705 dir_item_existed:
1706 	trans->block_rsv = rsv;
1707 	trans->bytes_reserved = 0;
1708 clear_skip_qgroup:
1709 	btrfs_clear_skip_qgroup(trans);
1710 no_free_objectid:
1711 	kfree(new_root_item);
1712 	pending->root_item = NULL;
1713 	btrfs_free_path(path);
1714 	pending->path = NULL;
1715 
1716 	return ret;
1717 }
1718 
1719 /*
1720  * create all the snapshots we've scheduled for creation
1721  */
1722 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1723 {
1724 	struct btrfs_pending_snapshot *pending, *next;
1725 	struct list_head *head = &trans->transaction->pending_snapshots;
1726 	int ret = 0;
1727 
1728 	list_for_each_entry_safe(pending, next, head, list) {
1729 		list_del(&pending->list);
1730 		ret = create_pending_snapshot(trans, pending);
1731 		if (ret)
1732 			break;
1733 	}
1734 	return ret;
1735 }
1736 
1737 static void update_super_roots(struct btrfs_fs_info *fs_info)
1738 {
1739 	struct btrfs_root_item *root_item;
1740 	struct btrfs_super_block *super;
1741 
1742 	super = fs_info->super_copy;
1743 
1744 	root_item = &fs_info->chunk_root->root_item;
1745 	super->chunk_root = root_item->bytenr;
1746 	super->chunk_root_generation = root_item->generation;
1747 	super->chunk_root_level = root_item->level;
1748 
1749 	root_item = &fs_info->tree_root->root_item;
1750 	super->root = root_item->bytenr;
1751 	super->generation = root_item->generation;
1752 	super->root_level = root_item->level;
1753 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1754 		super->cache_generation = root_item->generation;
1755 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1756 		super->uuid_tree_generation = root_item->generation;
1757 }
1758 
1759 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1760 {
1761 	struct btrfs_transaction *trans;
1762 	int ret = 0;
1763 
1764 	spin_lock(&info->trans_lock);
1765 	trans = info->running_transaction;
1766 	if (trans)
1767 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1768 	spin_unlock(&info->trans_lock);
1769 	return ret;
1770 }
1771 
1772 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1773 {
1774 	struct btrfs_transaction *trans;
1775 	int ret = 0;
1776 
1777 	spin_lock(&info->trans_lock);
1778 	trans = info->running_transaction;
1779 	if (trans)
1780 		ret = is_transaction_blocked(trans);
1781 	spin_unlock(&info->trans_lock);
1782 	return ret;
1783 }
1784 
1785 /*
1786  * wait for the current transaction commit to start and block subsequent
1787  * transaction joins
1788  */
1789 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1790 					    struct btrfs_transaction *trans)
1791 {
1792 	wait_event(fs_info->transaction_blocked_wait,
1793 		   trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1794 }
1795 
1796 /*
1797  * wait for the current transaction to start and then become unblocked.
1798  * caller holds ref.
1799  */
1800 static void wait_current_trans_commit_start_and_unblock(
1801 					struct btrfs_fs_info *fs_info,
1802 					struct btrfs_transaction *trans)
1803 {
1804 	wait_event(fs_info->transaction_wait,
1805 		   trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1806 }
1807 
1808 /*
1809  * commit transactions asynchronously. once btrfs_commit_transaction_async
1810  * returns, any subsequent transaction will not be allowed to join.
1811  */
1812 struct btrfs_async_commit {
1813 	struct btrfs_trans_handle *newtrans;
1814 	struct work_struct work;
1815 };
1816 
1817 static void do_async_commit(struct work_struct *work)
1818 {
1819 	struct btrfs_async_commit *ac =
1820 		container_of(work, struct btrfs_async_commit, work);
1821 
1822 	/*
1823 	 * We've got freeze protection passed with the transaction.
1824 	 * Tell lockdep about it.
1825 	 */
1826 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1827 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1828 
1829 	current->journal_info = ac->newtrans;
1830 
1831 	btrfs_commit_transaction(ac->newtrans);
1832 	kfree(ac);
1833 }
1834 
1835 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1836 				   int wait_for_unblock)
1837 {
1838 	struct btrfs_fs_info *fs_info = trans->fs_info;
1839 	struct btrfs_async_commit *ac;
1840 	struct btrfs_transaction *cur_trans;
1841 
1842 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1843 	if (!ac)
1844 		return -ENOMEM;
1845 
1846 	INIT_WORK(&ac->work, do_async_commit);
1847 	ac->newtrans = btrfs_join_transaction(trans->root);
1848 	if (IS_ERR(ac->newtrans)) {
1849 		int err = PTR_ERR(ac->newtrans);
1850 		kfree(ac);
1851 		return err;
1852 	}
1853 
1854 	/* take transaction reference */
1855 	cur_trans = trans->transaction;
1856 	refcount_inc(&cur_trans->use_count);
1857 
1858 	btrfs_end_transaction(trans);
1859 
1860 	/*
1861 	 * Tell lockdep we've released the freeze rwsem, since the
1862 	 * async commit thread will be the one to unlock it.
1863 	 */
1864 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1865 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1866 
1867 	schedule_work(&ac->work);
1868 
1869 	/* wait for transaction to start and unblock */
1870 	if (wait_for_unblock)
1871 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1872 	else
1873 		wait_current_trans_commit_start(fs_info, cur_trans);
1874 
1875 	if (current->journal_info == trans)
1876 		current->journal_info = NULL;
1877 
1878 	btrfs_put_transaction(cur_trans);
1879 	return 0;
1880 }
1881 
1882 
1883 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1884 {
1885 	struct btrfs_fs_info *fs_info = trans->fs_info;
1886 	struct btrfs_transaction *cur_trans = trans->transaction;
1887 
1888 	WARN_ON(refcount_read(&trans->use_count) > 1);
1889 
1890 	btrfs_abort_transaction(trans, err);
1891 
1892 	spin_lock(&fs_info->trans_lock);
1893 
1894 	/*
1895 	 * If the transaction is removed from the list, it means this
1896 	 * transaction has been committed successfully, so it is impossible
1897 	 * to call the cleanup function.
1898 	 */
1899 	BUG_ON(list_empty(&cur_trans->list));
1900 
1901 	list_del_init(&cur_trans->list);
1902 	if (cur_trans == fs_info->running_transaction) {
1903 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1904 		spin_unlock(&fs_info->trans_lock);
1905 		wait_event(cur_trans->writer_wait,
1906 			   atomic_read(&cur_trans->num_writers) == 1);
1907 
1908 		spin_lock(&fs_info->trans_lock);
1909 	}
1910 	spin_unlock(&fs_info->trans_lock);
1911 
1912 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1913 
1914 	spin_lock(&fs_info->trans_lock);
1915 	if (cur_trans == fs_info->running_transaction)
1916 		fs_info->running_transaction = NULL;
1917 	spin_unlock(&fs_info->trans_lock);
1918 
1919 	if (trans->type & __TRANS_FREEZABLE)
1920 		sb_end_intwrite(fs_info->sb);
1921 	btrfs_put_transaction(cur_trans);
1922 	btrfs_put_transaction(cur_trans);
1923 
1924 	trace_btrfs_transaction_commit(trans->root);
1925 
1926 	if (current->journal_info == trans)
1927 		current->journal_info = NULL;
1928 	btrfs_scrub_cancel(fs_info);
1929 
1930 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1931 }
1932 
1933 /*
1934  * Release reserved delayed ref space of all pending block groups of the
1935  * transaction and remove them from the list
1936  */
1937 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1938 {
1939        struct btrfs_fs_info *fs_info = trans->fs_info;
1940        struct btrfs_block_group *block_group, *tmp;
1941 
1942        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1943                btrfs_delayed_refs_rsv_release(fs_info, 1);
1944                list_del_init(&block_group->bg_list);
1945        }
1946 }
1947 
1948 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1949 {
1950 	struct btrfs_fs_info *fs_info = trans->fs_info;
1951 
1952 	/*
1953 	 * We use writeback_inodes_sb here because if we used
1954 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1955 	 * Currently are holding the fs freeze lock, if we do an async flush
1956 	 * we'll do btrfs_join_transaction() and deadlock because we need to
1957 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
1958 	 * from already being in a transaction and our join_transaction doesn't
1959 	 * have to re-take the fs freeze lock.
1960 	 */
1961 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1962 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1963 	} else {
1964 		struct btrfs_pending_snapshot *pending;
1965 		struct list_head *head = &trans->transaction->pending_snapshots;
1966 
1967 		/*
1968 		 * Flush dellaloc for any root that is going to be snapshotted.
1969 		 * This is done to avoid a corrupted version of files, in the
1970 		 * snapshots, that had both buffered and direct IO writes (even
1971 		 * if they were done sequentially) due to an unordered update of
1972 		 * the inode's size on disk.
1973 		 */
1974 		list_for_each_entry(pending, head, list) {
1975 			int ret;
1976 
1977 			ret = btrfs_start_delalloc_snapshot(pending->root);
1978 			if (ret)
1979 				return ret;
1980 		}
1981 	}
1982 	return 0;
1983 }
1984 
1985 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1986 {
1987 	struct btrfs_fs_info *fs_info = trans->fs_info;
1988 
1989 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1990 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1991 	} else {
1992 		struct btrfs_pending_snapshot *pending;
1993 		struct list_head *head = &trans->transaction->pending_snapshots;
1994 
1995 		/*
1996 		 * Wait for any dellaloc that we started previously for the roots
1997 		 * that are going to be snapshotted. This is to avoid a corrupted
1998 		 * version of files in the snapshots that had both buffered and
1999 		 * direct IO writes (even if they were done sequentially).
2000 		 */
2001 		list_for_each_entry(pending, head, list)
2002 			btrfs_wait_ordered_extents(pending->root,
2003 						   U64_MAX, 0, U64_MAX);
2004 	}
2005 }
2006 
2007 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2008 {
2009 	struct btrfs_fs_info *fs_info = trans->fs_info;
2010 	struct btrfs_transaction *cur_trans = trans->transaction;
2011 	struct btrfs_transaction *prev_trans = NULL;
2012 	int ret;
2013 
2014 	ASSERT(refcount_read(&trans->use_count) == 1);
2015 
2016 	/* Stop the commit early if ->aborted is set */
2017 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2018 		ret = cur_trans->aborted;
2019 		btrfs_end_transaction(trans);
2020 		return ret;
2021 	}
2022 
2023 	btrfs_trans_release_metadata(trans);
2024 	trans->block_rsv = NULL;
2025 
2026 	/* make a pass through all the delayed refs we have so far
2027 	 * any runnings procs may add more while we are here
2028 	 */
2029 	ret = btrfs_run_delayed_refs(trans, 0);
2030 	if (ret) {
2031 		btrfs_end_transaction(trans);
2032 		return ret;
2033 	}
2034 
2035 	cur_trans = trans->transaction;
2036 
2037 	/*
2038 	 * set the flushing flag so procs in this transaction have to
2039 	 * start sending their work down.
2040 	 */
2041 	cur_trans->delayed_refs.flushing = 1;
2042 	smp_wmb();
2043 
2044 	btrfs_create_pending_block_groups(trans);
2045 
2046 	ret = btrfs_run_delayed_refs(trans, 0);
2047 	if (ret) {
2048 		btrfs_end_transaction(trans);
2049 		return ret;
2050 	}
2051 
2052 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2053 		int run_it = 0;
2054 
2055 		/* this mutex is also taken before trying to set
2056 		 * block groups readonly.  We need to make sure
2057 		 * that nobody has set a block group readonly
2058 		 * after a extents from that block group have been
2059 		 * allocated for cache files.  btrfs_set_block_group_ro
2060 		 * will wait for the transaction to commit if it
2061 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2062 		 *
2063 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2064 		 * only one process starts all the block group IO.  It wouldn't
2065 		 * hurt to have more than one go through, but there's no
2066 		 * real advantage to it either.
2067 		 */
2068 		mutex_lock(&fs_info->ro_block_group_mutex);
2069 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2070 				      &cur_trans->flags))
2071 			run_it = 1;
2072 		mutex_unlock(&fs_info->ro_block_group_mutex);
2073 
2074 		if (run_it) {
2075 			ret = btrfs_start_dirty_block_groups(trans);
2076 			if (ret) {
2077 				btrfs_end_transaction(trans);
2078 				return ret;
2079 			}
2080 		}
2081 	}
2082 
2083 	spin_lock(&fs_info->trans_lock);
2084 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2085 		spin_unlock(&fs_info->trans_lock);
2086 		refcount_inc(&cur_trans->use_count);
2087 		ret = btrfs_end_transaction(trans);
2088 
2089 		wait_for_commit(cur_trans);
2090 
2091 		if (unlikely(cur_trans->aborted))
2092 			ret = cur_trans->aborted;
2093 
2094 		btrfs_put_transaction(cur_trans);
2095 
2096 		return ret;
2097 	}
2098 
2099 	cur_trans->state = TRANS_STATE_COMMIT_START;
2100 	wake_up(&fs_info->transaction_blocked_wait);
2101 
2102 	if (cur_trans->list.prev != &fs_info->trans_list) {
2103 		prev_trans = list_entry(cur_trans->list.prev,
2104 					struct btrfs_transaction, list);
2105 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2106 			refcount_inc(&prev_trans->use_count);
2107 			spin_unlock(&fs_info->trans_lock);
2108 
2109 			wait_for_commit(prev_trans);
2110 			ret = prev_trans->aborted;
2111 
2112 			btrfs_put_transaction(prev_trans);
2113 			if (ret)
2114 				goto cleanup_transaction;
2115 		} else {
2116 			spin_unlock(&fs_info->trans_lock);
2117 		}
2118 	} else {
2119 		spin_unlock(&fs_info->trans_lock);
2120 		/*
2121 		 * The previous transaction was aborted and was already removed
2122 		 * from the list of transactions at fs_info->trans_list. So we
2123 		 * abort to prevent writing a new superblock that reflects a
2124 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2125 		 */
2126 		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2127 			ret = -EROFS;
2128 			goto cleanup_transaction;
2129 		}
2130 	}
2131 
2132 	extwriter_counter_dec(cur_trans, trans->type);
2133 
2134 	ret = btrfs_start_delalloc_flush(trans);
2135 	if (ret)
2136 		goto cleanup_transaction;
2137 
2138 	ret = btrfs_run_delayed_items(trans);
2139 	if (ret)
2140 		goto cleanup_transaction;
2141 
2142 	wait_event(cur_trans->writer_wait,
2143 		   extwriter_counter_read(cur_trans) == 0);
2144 
2145 	/* some pending stuffs might be added after the previous flush. */
2146 	ret = btrfs_run_delayed_items(trans);
2147 	if (ret)
2148 		goto cleanup_transaction;
2149 
2150 	btrfs_wait_delalloc_flush(trans);
2151 
2152 	btrfs_scrub_pause(fs_info);
2153 	/*
2154 	 * Ok now we need to make sure to block out any other joins while we
2155 	 * commit the transaction.  We could have started a join before setting
2156 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2157 	 */
2158 	spin_lock(&fs_info->trans_lock);
2159 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2160 	spin_unlock(&fs_info->trans_lock);
2161 	wait_event(cur_trans->writer_wait,
2162 		   atomic_read(&cur_trans->num_writers) == 1);
2163 
2164 	/* ->aborted might be set after the previous check, so check it */
2165 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2166 		ret = cur_trans->aborted;
2167 		goto scrub_continue;
2168 	}
2169 	/*
2170 	 * the reloc mutex makes sure that we stop
2171 	 * the balancing code from coming in and moving
2172 	 * extents around in the middle of the commit
2173 	 */
2174 	mutex_lock(&fs_info->reloc_mutex);
2175 
2176 	/*
2177 	 * We needn't worry about the delayed items because we will
2178 	 * deal with them in create_pending_snapshot(), which is the
2179 	 * core function of the snapshot creation.
2180 	 */
2181 	ret = create_pending_snapshots(trans);
2182 	if (ret) {
2183 		mutex_unlock(&fs_info->reloc_mutex);
2184 		goto scrub_continue;
2185 	}
2186 
2187 	/*
2188 	 * We insert the dir indexes of the snapshots and update the inode
2189 	 * of the snapshots' parents after the snapshot creation, so there
2190 	 * are some delayed items which are not dealt with. Now deal with
2191 	 * them.
2192 	 *
2193 	 * We needn't worry that this operation will corrupt the snapshots,
2194 	 * because all the tree which are snapshoted will be forced to COW
2195 	 * the nodes and leaves.
2196 	 */
2197 	ret = btrfs_run_delayed_items(trans);
2198 	if (ret) {
2199 		mutex_unlock(&fs_info->reloc_mutex);
2200 		goto scrub_continue;
2201 	}
2202 
2203 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2204 	if (ret) {
2205 		mutex_unlock(&fs_info->reloc_mutex);
2206 		goto scrub_continue;
2207 	}
2208 
2209 	/*
2210 	 * make sure none of the code above managed to slip in a
2211 	 * delayed item
2212 	 */
2213 	btrfs_assert_delayed_root_empty(fs_info);
2214 
2215 	WARN_ON(cur_trans != trans->transaction);
2216 
2217 	/* btrfs_commit_tree_roots is responsible for getting the
2218 	 * various roots consistent with each other.  Every pointer
2219 	 * in the tree of tree roots has to point to the most up to date
2220 	 * root for every subvolume and other tree.  So, we have to keep
2221 	 * the tree logging code from jumping in and changing any
2222 	 * of the trees.
2223 	 *
2224 	 * At this point in the commit, there can't be any tree-log
2225 	 * writers, but a little lower down we drop the trans mutex
2226 	 * and let new people in.  By holding the tree_log_mutex
2227 	 * from now until after the super is written, we avoid races
2228 	 * with the tree-log code.
2229 	 */
2230 	mutex_lock(&fs_info->tree_log_mutex);
2231 
2232 	ret = commit_fs_roots(trans);
2233 	if (ret) {
2234 		mutex_unlock(&fs_info->tree_log_mutex);
2235 		mutex_unlock(&fs_info->reloc_mutex);
2236 		goto scrub_continue;
2237 	}
2238 
2239 	/*
2240 	 * Since the transaction is done, we can apply the pending changes
2241 	 * before the next transaction.
2242 	 */
2243 	btrfs_apply_pending_changes(fs_info);
2244 
2245 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2246 	 * safe to free the root of tree log roots
2247 	 */
2248 	btrfs_free_log_root_tree(trans, fs_info);
2249 
2250 	/*
2251 	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2252 	 * new delayed refs. Must handle them or qgroup can be wrong.
2253 	 */
2254 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2255 	if (ret) {
2256 		mutex_unlock(&fs_info->tree_log_mutex);
2257 		mutex_unlock(&fs_info->reloc_mutex);
2258 		goto scrub_continue;
2259 	}
2260 
2261 	/*
2262 	 * Since fs roots are all committed, we can get a quite accurate
2263 	 * new_roots. So let's do quota accounting.
2264 	 */
2265 	ret = btrfs_qgroup_account_extents(trans);
2266 	if (ret < 0) {
2267 		mutex_unlock(&fs_info->tree_log_mutex);
2268 		mutex_unlock(&fs_info->reloc_mutex);
2269 		goto scrub_continue;
2270 	}
2271 
2272 	ret = commit_cowonly_roots(trans);
2273 	if (ret) {
2274 		mutex_unlock(&fs_info->tree_log_mutex);
2275 		mutex_unlock(&fs_info->reloc_mutex);
2276 		goto scrub_continue;
2277 	}
2278 
2279 	/*
2280 	 * The tasks which save the space cache and inode cache may also
2281 	 * update ->aborted, check it.
2282 	 */
2283 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2284 		ret = cur_trans->aborted;
2285 		mutex_unlock(&fs_info->tree_log_mutex);
2286 		mutex_unlock(&fs_info->reloc_mutex);
2287 		goto scrub_continue;
2288 	}
2289 
2290 	btrfs_prepare_extent_commit(fs_info);
2291 
2292 	cur_trans = fs_info->running_transaction;
2293 
2294 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2295 			    fs_info->tree_root->node);
2296 	list_add_tail(&fs_info->tree_root->dirty_list,
2297 		      &cur_trans->switch_commits);
2298 
2299 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2300 			    fs_info->chunk_root->node);
2301 	list_add_tail(&fs_info->chunk_root->dirty_list,
2302 		      &cur_trans->switch_commits);
2303 
2304 	switch_commit_roots(cur_trans);
2305 
2306 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2307 	ASSERT(list_empty(&cur_trans->io_bgs));
2308 	update_super_roots(fs_info);
2309 
2310 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2311 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2312 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2313 	       sizeof(*fs_info->super_copy));
2314 
2315 	btrfs_commit_device_sizes(cur_trans);
2316 
2317 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2318 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2319 
2320 	btrfs_trans_release_chunk_metadata(trans);
2321 
2322 	spin_lock(&fs_info->trans_lock);
2323 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2324 	fs_info->running_transaction = NULL;
2325 	spin_unlock(&fs_info->trans_lock);
2326 	mutex_unlock(&fs_info->reloc_mutex);
2327 
2328 	wake_up(&fs_info->transaction_wait);
2329 
2330 	ret = btrfs_write_and_wait_transaction(trans);
2331 	if (ret) {
2332 		btrfs_handle_fs_error(fs_info, ret,
2333 				      "Error while writing out transaction");
2334 		mutex_unlock(&fs_info->tree_log_mutex);
2335 		goto scrub_continue;
2336 	}
2337 
2338 	ret = write_all_supers(fs_info, 0);
2339 	/*
2340 	 * the super is written, we can safely allow the tree-loggers
2341 	 * to go about their business
2342 	 */
2343 	mutex_unlock(&fs_info->tree_log_mutex);
2344 	if (ret)
2345 		goto scrub_continue;
2346 
2347 	btrfs_finish_extent_commit(trans);
2348 
2349 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2350 		btrfs_clear_space_info_full(fs_info);
2351 
2352 	fs_info->last_trans_committed = cur_trans->transid;
2353 	/*
2354 	 * We needn't acquire the lock here because there is no other task
2355 	 * which can change it.
2356 	 */
2357 	cur_trans->state = TRANS_STATE_COMPLETED;
2358 	wake_up(&cur_trans->commit_wait);
2359 	clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2360 
2361 	spin_lock(&fs_info->trans_lock);
2362 	list_del_init(&cur_trans->list);
2363 	spin_unlock(&fs_info->trans_lock);
2364 
2365 	btrfs_put_transaction(cur_trans);
2366 	btrfs_put_transaction(cur_trans);
2367 
2368 	if (trans->type & __TRANS_FREEZABLE)
2369 		sb_end_intwrite(fs_info->sb);
2370 
2371 	trace_btrfs_transaction_commit(trans->root);
2372 
2373 	btrfs_scrub_continue(fs_info);
2374 
2375 	if (current->journal_info == trans)
2376 		current->journal_info = NULL;
2377 
2378 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2379 
2380 	return ret;
2381 
2382 scrub_continue:
2383 	btrfs_scrub_continue(fs_info);
2384 cleanup_transaction:
2385 	btrfs_trans_release_metadata(trans);
2386 	btrfs_cleanup_pending_block_groups(trans);
2387 	btrfs_trans_release_chunk_metadata(trans);
2388 	trans->block_rsv = NULL;
2389 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2390 	if (current->journal_info == trans)
2391 		current->journal_info = NULL;
2392 	cleanup_transaction(trans, ret);
2393 
2394 	return ret;
2395 }
2396 
2397 /*
2398  * return < 0 if error
2399  * 0 if there are no more dead_roots at the time of call
2400  * 1 there are more to be processed, call me again
2401  *
2402  * The return value indicates there are certainly more snapshots to delete, but
2403  * if there comes a new one during processing, it may return 0. We don't mind,
2404  * because btrfs_commit_super will poke cleaner thread and it will process it a
2405  * few seconds later.
2406  */
2407 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2408 {
2409 	int ret;
2410 	struct btrfs_fs_info *fs_info = root->fs_info;
2411 
2412 	spin_lock(&fs_info->trans_lock);
2413 	if (list_empty(&fs_info->dead_roots)) {
2414 		spin_unlock(&fs_info->trans_lock);
2415 		return 0;
2416 	}
2417 	root = list_first_entry(&fs_info->dead_roots,
2418 			struct btrfs_root, root_list);
2419 	list_del_init(&root->root_list);
2420 	spin_unlock(&fs_info->trans_lock);
2421 
2422 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2423 
2424 	btrfs_kill_all_delayed_nodes(root);
2425 
2426 	if (btrfs_header_backref_rev(root->node) <
2427 			BTRFS_MIXED_BACKREF_REV)
2428 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2429 	else
2430 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2431 
2432 	return (ret < 0) ? 0 : 1;
2433 }
2434 
2435 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2436 {
2437 	unsigned long prev;
2438 	unsigned long bit;
2439 
2440 	prev = xchg(&fs_info->pending_changes, 0);
2441 	if (!prev)
2442 		return;
2443 
2444 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2445 	if (prev & bit)
2446 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2447 	prev &= ~bit;
2448 
2449 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2450 	if (prev & bit)
2451 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2452 	prev &= ~bit;
2453 
2454 	bit = 1 << BTRFS_PENDING_COMMIT;
2455 	if (prev & bit)
2456 		btrfs_debug(fs_info, "pending commit done");
2457 	prev &= ~bit;
2458 
2459 	if (prev)
2460 		btrfs_warn(fs_info,
2461 			"unknown pending changes left 0x%lx, ignoring", prev);
2462 }
2463