1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "locking.h" 17 #include "tree-log.h" 18 #include "inode-map.h" 19 #include "volumes.h" 20 #include "dev-replace.h" 21 #include "qgroup.h" 22 23 #define BTRFS_ROOT_TRANS_TAG 0 24 25 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 26 [TRANS_STATE_RUNNING] = 0U, 27 [TRANS_STATE_BLOCKED] = __TRANS_START, 28 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 29 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 30 __TRANS_ATTACH | 31 __TRANS_JOIN | 32 __TRANS_JOIN_NOSTART), 33 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 34 __TRANS_ATTACH | 35 __TRANS_JOIN | 36 __TRANS_JOIN_NOLOCK | 37 __TRANS_JOIN_NOSTART), 38 [TRANS_STATE_COMPLETED] = (__TRANS_START | 39 __TRANS_ATTACH | 40 __TRANS_JOIN | 41 __TRANS_JOIN_NOLOCK | 42 __TRANS_JOIN_NOSTART), 43 }; 44 45 void btrfs_put_transaction(struct btrfs_transaction *transaction) 46 { 47 WARN_ON(refcount_read(&transaction->use_count) == 0); 48 if (refcount_dec_and_test(&transaction->use_count)) { 49 BUG_ON(!list_empty(&transaction->list)); 50 WARN_ON(!RB_EMPTY_ROOT( 51 &transaction->delayed_refs.href_root.rb_root)); 52 if (transaction->delayed_refs.pending_csums) 53 btrfs_err(transaction->fs_info, 54 "pending csums is %llu", 55 transaction->delayed_refs.pending_csums); 56 /* 57 * If any block groups are found in ->deleted_bgs then it's 58 * because the transaction was aborted and a commit did not 59 * happen (things failed before writing the new superblock 60 * and calling btrfs_finish_extent_commit()), so we can not 61 * discard the physical locations of the block groups. 62 */ 63 while (!list_empty(&transaction->deleted_bgs)) { 64 struct btrfs_block_group_cache *cache; 65 66 cache = list_first_entry(&transaction->deleted_bgs, 67 struct btrfs_block_group_cache, 68 bg_list); 69 list_del_init(&cache->bg_list); 70 btrfs_put_block_group_trimming(cache); 71 btrfs_put_block_group(cache); 72 } 73 WARN_ON(!list_empty(&transaction->dev_update_list)); 74 kfree(transaction); 75 } 76 } 77 78 static noinline void switch_commit_roots(struct btrfs_transaction *trans) 79 { 80 struct btrfs_fs_info *fs_info = trans->fs_info; 81 struct btrfs_root *root, *tmp; 82 83 down_write(&fs_info->commit_root_sem); 84 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 85 dirty_list) { 86 list_del_init(&root->dirty_list); 87 free_extent_buffer(root->commit_root); 88 root->commit_root = btrfs_root_node(root); 89 if (is_fstree(root->root_key.objectid)) 90 btrfs_unpin_free_ino(root); 91 extent_io_tree_release(&root->dirty_log_pages); 92 btrfs_qgroup_clean_swapped_blocks(root); 93 } 94 95 /* We can free old roots now. */ 96 spin_lock(&trans->dropped_roots_lock); 97 while (!list_empty(&trans->dropped_roots)) { 98 root = list_first_entry(&trans->dropped_roots, 99 struct btrfs_root, root_list); 100 list_del_init(&root->root_list); 101 spin_unlock(&trans->dropped_roots_lock); 102 btrfs_drop_and_free_fs_root(fs_info, root); 103 spin_lock(&trans->dropped_roots_lock); 104 } 105 spin_unlock(&trans->dropped_roots_lock); 106 up_write(&fs_info->commit_root_sem); 107 } 108 109 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 110 unsigned int type) 111 { 112 if (type & TRANS_EXTWRITERS) 113 atomic_inc(&trans->num_extwriters); 114 } 115 116 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 117 unsigned int type) 118 { 119 if (type & TRANS_EXTWRITERS) 120 atomic_dec(&trans->num_extwriters); 121 } 122 123 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 124 unsigned int type) 125 { 126 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 127 } 128 129 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 130 { 131 return atomic_read(&trans->num_extwriters); 132 } 133 134 /* 135 * To be called after all the new block groups attached to the transaction 136 * handle have been created (btrfs_create_pending_block_groups()). 137 */ 138 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 139 { 140 struct btrfs_fs_info *fs_info = trans->fs_info; 141 142 if (!trans->chunk_bytes_reserved) 143 return; 144 145 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 146 147 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 148 trans->chunk_bytes_reserved); 149 trans->chunk_bytes_reserved = 0; 150 } 151 152 /* 153 * either allocate a new transaction or hop into the existing one 154 */ 155 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 156 unsigned int type) 157 { 158 struct btrfs_transaction *cur_trans; 159 160 spin_lock(&fs_info->trans_lock); 161 loop: 162 /* The file system has been taken offline. No new transactions. */ 163 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 164 spin_unlock(&fs_info->trans_lock); 165 return -EROFS; 166 } 167 168 cur_trans = fs_info->running_transaction; 169 if (cur_trans) { 170 if (cur_trans->aborted) { 171 spin_unlock(&fs_info->trans_lock); 172 return cur_trans->aborted; 173 } 174 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 175 spin_unlock(&fs_info->trans_lock); 176 return -EBUSY; 177 } 178 refcount_inc(&cur_trans->use_count); 179 atomic_inc(&cur_trans->num_writers); 180 extwriter_counter_inc(cur_trans, type); 181 spin_unlock(&fs_info->trans_lock); 182 return 0; 183 } 184 spin_unlock(&fs_info->trans_lock); 185 186 /* 187 * If we are ATTACH, we just want to catch the current transaction, 188 * and commit it. If there is no transaction, just return ENOENT. 189 */ 190 if (type == TRANS_ATTACH) 191 return -ENOENT; 192 193 /* 194 * JOIN_NOLOCK only happens during the transaction commit, so 195 * it is impossible that ->running_transaction is NULL 196 */ 197 BUG_ON(type == TRANS_JOIN_NOLOCK); 198 199 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 200 if (!cur_trans) 201 return -ENOMEM; 202 203 spin_lock(&fs_info->trans_lock); 204 if (fs_info->running_transaction) { 205 /* 206 * someone started a transaction after we unlocked. Make sure 207 * to redo the checks above 208 */ 209 kfree(cur_trans); 210 goto loop; 211 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 212 spin_unlock(&fs_info->trans_lock); 213 kfree(cur_trans); 214 return -EROFS; 215 } 216 217 cur_trans->fs_info = fs_info; 218 atomic_set(&cur_trans->num_writers, 1); 219 extwriter_counter_init(cur_trans, type); 220 init_waitqueue_head(&cur_trans->writer_wait); 221 init_waitqueue_head(&cur_trans->commit_wait); 222 cur_trans->state = TRANS_STATE_RUNNING; 223 /* 224 * One for this trans handle, one so it will live on until we 225 * commit the transaction. 226 */ 227 refcount_set(&cur_trans->use_count, 2); 228 cur_trans->flags = 0; 229 cur_trans->start_time = ktime_get_seconds(); 230 231 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 232 233 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 234 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 235 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 236 237 /* 238 * although the tree mod log is per file system and not per transaction, 239 * the log must never go across transaction boundaries. 240 */ 241 smp_mb(); 242 if (!list_empty(&fs_info->tree_mod_seq_list)) 243 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 244 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 245 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 246 atomic64_set(&fs_info->tree_mod_seq, 0); 247 248 spin_lock_init(&cur_trans->delayed_refs.lock); 249 250 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 251 INIT_LIST_HEAD(&cur_trans->dev_update_list); 252 INIT_LIST_HEAD(&cur_trans->switch_commits); 253 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 254 INIT_LIST_HEAD(&cur_trans->io_bgs); 255 INIT_LIST_HEAD(&cur_trans->dropped_roots); 256 mutex_init(&cur_trans->cache_write_mutex); 257 spin_lock_init(&cur_trans->dirty_bgs_lock); 258 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 259 spin_lock_init(&cur_trans->dropped_roots_lock); 260 list_add_tail(&cur_trans->list, &fs_info->trans_list); 261 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 262 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode); 263 fs_info->generation++; 264 cur_trans->transid = fs_info->generation; 265 fs_info->running_transaction = cur_trans; 266 cur_trans->aborted = 0; 267 spin_unlock(&fs_info->trans_lock); 268 269 return 0; 270 } 271 272 /* 273 * this does all the record keeping required to make sure that a reference 274 * counted root is properly recorded in a given transaction. This is required 275 * to make sure the old root from before we joined the transaction is deleted 276 * when the transaction commits 277 */ 278 static int record_root_in_trans(struct btrfs_trans_handle *trans, 279 struct btrfs_root *root, 280 int force) 281 { 282 struct btrfs_fs_info *fs_info = root->fs_info; 283 284 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 285 root->last_trans < trans->transid) || force) { 286 WARN_ON(root == fs_info->extent_root); 287 WARN_ON(!force && root->commit_root != root->node); 288 289 /* 290 * see below for IN_TRANS_SETUP usage rules 291 * we have the reloc mutex held now, so there 292 * is only one writer in this function 293 */ 294 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 295 296 /* make sure readers find IN_TRANS_SETUP before 297 * they find our root->last_trans update 298 */ 299 smp_wmb(); 300 301 spin_lock(&fs_info->fs_roots_radix_lock); 302 if (root->last_trans == trans->transid && !force) { 303 spin_unlock(&fs_info->fs_roots_radix_lock); 304 return 0; 305 } 306 radix_tree_tag_set(&fs_info->fs_roots_radix, 307 (unsigned long)root->root_key.objectid, 308 BTRFS_ROOT_TRANS_TAG); 309 spin_unlock(&fs_info->fs_roots_radix_lock); 310 root->last_trans = trans->transid; 311 312 /* this is pretty tricky. We don't want to 313 * take the relocation lock in btrfs_record_root_in_trans 314 * unless we're really doing the first setup for this root in 315 * this transaction. 316 * 317 * Normally we'd use root->last_trans as a flag to decide 318 * if we want to take the expensive mutex. 319 * 320 * But, we have to set root->last_trans before we 321 * init the relocation root, otherwise, we trip over warnings 322 * in ctree.c. The solution used here is to flag ourselves 323 * with root IN_TRANS_SETUP. When this is 1, we're still 324 * fixing up the reloc trees and everyone must wait. 325 * 326 * When this is zero, they can trust root->last_trans and fly 327 * through btrfs_record_root_in_trans without having to take the 328 * lock. smp_wmb() makes sure that all the writes above are 329 * done before we pop in the zero below 330 */ 331 btrfs_init_reloc_root(trans, root); 332 smp_mb__before_atomic(); 333 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 334 } 335 return 0; 336 } 337 338 339 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 340 struct btrfs_root *root) 341 { 342 struct btrfs_fs_info *fs_info = root->fs_info; 343 struct btrfs_transaction *cur_trans = trans->transaction; 344 345 /* Add ourselves to the transaction dropped list */ 346 spin_lock(&cur_trans->dropped_roots_lock); 347 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 348 spin_unlock(&cur_trans->dropped_roots_lock); 349 350 /* Make sure we don't try to update the root at commit time */ 351 spin_lock(&fs_info->fs_roots_radix_lock); 352 radix_tree_tag_clear(&fs_info->fs_roots_radix, 353 (unsigned long)root->root_key.objectid, 354 BTRFS_ROOT_TRANS_TAG); 355 spin_unlock(&fs_info->fs_roots_radix_lock); 356 } 357 358 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 359 struct btrfs_root *root) 360 { 361 struct btrfs_fs_info *fs_info = root->fs_info; 362 363 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 364 return 0; 365 366 /* 367 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 368 * and barriers 369 */ 370 smp_rmb(); 371 if (root->last_trans == trans->transid && 372 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 373 return 0; 374 375 mutex_lock(&fs_info->reloc_mutex); 376 record_root_in_trans(trans, root, 0); 377 mutex_unlock(&fs_info->reloc_mutex); 378 379 return 0; 380 } 381 382 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 383 { 384 return (trans->state >= TRANS_STATE_BLOCKED && 385 trans->state < TRANS_STATE_UNBLOCKED && 386 !trans->aborted); 387 } 388 389 /* wait for commit against the current transaction to become unblocked 390 * when this is done, it is safe to start a new transaction, but the current 391 * transaction might not be fully on disk. 392 */ 393 static void wait_current_trans(struct btrfs_fs_info *fs_info) 394 { 395 struct btrfs_transaction *cur_trans; 396 397 spin_lock(&fs_info->trans_lock); 398 cur_trans = fs_info->running_transaction; 399 if (cur_trans && is_transaction_blocked(cur_trans)) { 400 refcount_inc(&cur_trans->use_count); 401 spin_unlock(&fs_info->trans_lock); 402 403 wait_event(fs_info->transaction_wait, 404 cur_trans->state >= TRANS_STATE_UNBLOCKED || 405 cur_trans->aborted); 406 btrfs_put_transaction(cur_trans); 407 } else { 408 spin_unlock(&fs_info->trans_lock); 409 } 410 } 411 412 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 413 { 414 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 415 return 0; 416 417 if (type == TRANS_START) 418 return 1; 419 420 return 0; 421 } 422 423 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 424 { 425 struct btrfs_fs_info *fs_info = root->fs_info; 426 427 if (!fs_info->reloc_ctl || 428 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 429 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 430 root->reloc_root) 431 return false; 432 433 return true; 434 } 435 436 static struct btrfs_trans_handle * 437 start_transaction(struct btrfs_root *root, unsigned int num_items, 438 unsigned int type, enum btrfs_reserve_flush_enum flush, 439 bool enforce_qgroups) 440 { 441 struct btrfs_fs_info *fs_info = root->fs_info; 442 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 443 struct btrfs_trans_handle *h; 444 struct btrfs_transaction *cur_trans; 445 u64 num_bytes = 0; 446 u64 qgroup_reserved = 0; 447 bool reloc_reserved = false; 448 int ret; 449 450 /* Send isn't supposed to start transactions. */ 451 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 452 453 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 454 return ERR_PTR(-EROFS); 455 456 if (current->journal_info) { 457 WARN_ON(type & TRANS_EXTWRITERS); 458 h = current->journal_info; 459 refcount_inc(&h->use_count); 460 WARN_ON(refcount_read(&h->use_count) > 2); 461 h->orig_rsv = h->block_rsv; 462 h->block_rsv = NULL; 463 goto got_it; 464 } 465 466 /* 467 * Do the reservation before we join the transaction so we can do all 468 * the appropriate flushing if need be. 469 */ 470 if (num_items && root != fs_info->chunk_root) { 471 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 472 u64 delayed_refs_bytes = 0; 473 474 qgroup_reserved = num_items * fs_info->nodesize; 475 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 476 enforce_qgroups); 477 if (ret) 478 return ERR_PTR(ret); 479 480 /* 481 * We want to reserve all the bytes we may need all at once, so 482 * we only do 1 enospc flushing cycle per transaction start. We 483 * accomplish this by simply assuming we'll do 2 x num_items 484 * worth of delayed refs updates in this trans handle, and 485 * refill that amount for whatever is missing in the reserve. 486 */ 487 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); 488 if (delayed_refs_rsv->full == 0) { 489 delayed_refs_bytes = num_bytes; 490 num_bytes <<= 1; 491 } 492 493 /* 494 * Do the reservation for the relocation root creation 495 */ 496 if (need_reserve_reloc_root(root)) { 497 num_bytes += fs_info->nodesize; 498 reloc_reserved = true; 499 } 500 501 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush); 502 if (ret) 503 goto reserve_fail; 504 if (delayed_refs_bytes) { 505 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 506 delayed_refs_bytes); 507 num_bytes -= delayed_refs_bytes; 508 } 509 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 510 !delayed_refs_rsv->full) { 511 /* 512 * Some people call with btrfs_start_transaction(root, 0) 513 * because they can be throttled, but have some other mechanism 514 * for reserving space. We still want these guys to refill the 515 * delayed block_rsv so just add 1 items worth of reservation 516 * here. 517 */ 518 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 519 if (ret) 520 goto reserve_fail; 521 } 522 again: 523 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 524 if (!h) { 525 ret = -ENOMEM; 526 goto alloc_fail; 527 } 528 529 /* 530 * If we are JOIN_NOLOCK we're already committing a transaction and 531 * waiting on this guy, so we don't need to do the sb_start_intwrite 532 * because we're already holding a ref. We need this because we could 533 * have raced in and did an fsync() on a file which can kick a commit 534 * and then we deadlock with somebody doing a freeze. 535 * 536 * If we are ATTACH, it means we just want to catch the current 537 * transaction and commit it, so we needn't do sb_start_intwrite(). 538 */ 539 if (type & __TRANS_FREEZABLE) 540 sb_start_intwrite(fs_info->sb); 541 542 if (may_wait_transaction(fs_info, type)) 543 wait_current_trans(fs_info); 544 545 do { 546 ret = join_transaction(fs_info, type); 547 if (ret == -EBUSY) { 548 wait_current_trans(fs_info); 549 if (unlikely(type == TRANS_ATTACH || 550 type == TRANS_JOIN_NOSTART)) 551 ret = -ENOENT; 552 } 553 } while (ret == -EBUSY); 554 555 if (ret < 0) 556 goto join_fail; 557 558 cur_trans = fs_info->running_transaction; 559 560 h->transid = cur_trans->transid; 561 h->transaction = cur_trans; 562 h->root = root; 563 refcount_set(&h->use_count, 1); 564 h->fs_info = root->fs_info; 565 566 h->type = type; 567 h->can_flush_pending_bgs = true; 568 INIT_LIST_HEAD(&h->new_bgs); 569 570 smp_mb(); 571 if (cur_trans->state >= TRANS_STATE_BLOCKED && 572 may_wait_transaction(fs_info, type)) { 573 current->journal_info = h; 574 btrfs_commit_transaction(h); 575 goto again; 576 } 577 578 if (num_bytes) { 579 trace_btrfs_space_reservation(fs_info, "transaction", 580 h->transid, num_bytes, 1); 581 h->block_rsv = &fs_info->trans_block_rsv; 582 h->bytes_reserved = num_bytes; 583 h->reloc_reserved = reloc_reserved; 584 } 585 586 got_it: 587 btrfs_record_root_in_trans(h, root); 588 589 if (!current->journal_info) 590 current->journal_info = h; 591 return h; 592 593 join_fail: 594 if (type & __TRANS_FREEZABLE) 595 sb_end_intwrite(fs_info->sb); 596 kmem_cache_free(btrfs_trans_handle_cachep, h); 597 alloc_fail: 598 if (num_bytes) 599 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 600 num_bytes); 601 reserve_fail: 602 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 603 return ERR_PTR(ret); 604 } 605 606 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 607 unsigned int num_items) 608 { 609 return start_transaction(root, num_items, TRANS_START, 610 BTRFS_RESERVE_FLUSH_ALL, true); 611 } 612 613 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 614 struct btrfs_root *root, 615 unsigned int num_items, 616 int min_factor) 617 { 618 struct btrfs_fs_info *fs_info = root->fs_info; 619 struct btrfs_trans_handle *trans; 620 u64 num_bytes; 621 int ret; 622 623 /* 624 * We have two callers: unlink and block group removal. The 625 * former should succeed even if we will temporarily exceed 626 * quota and the latter operates on the extent root so 627 * qgroup enforcement is ignored anyway. 628 */ 629 trans = start_transaction(root, num_items, TRANS_START, 630 BTRFS_RESERVE_FLUSH_ALL, false); 631 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 632 return trans; 633 634 trans = btrfs_start_transaction(root, 0); 635 if (IS_ERR(trans)) 636 return trans; 637 638 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); 639 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv, 640 num_bytes, min_factor); 641 if (ret) { 642 btrfs_end_transaction(trans); 643 return ERR_PTR(ret); 644 } 645 646 trans->block_rsv = &fs_info->trans_block_rsv; 647 trans->bytes_reserved = num_bytes; 648 trace_btrfs_space_reservation(fs_info, "transaction", 649 trans->transid, num_bytes, 1); 650 651 return trans; 652 } 653 654 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 655 { 656 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 657 true); 658 } 659 660 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 661 { 662 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 663 BTRFS_RESERVE_NO_FLUSH, true); 664 } 665 666 /* 667 * Similar to regular join but it never starts a transaction when none is 668 * running or after waiting for the current one to finish. 669 */ 670 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 671 { 672 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 673 BTRFS_RESERVE_NO_FLUSH, true); 674 } 675 676 /* 677 * btrfs_attach_transaction() - catch the running transaction 678 * 679 * It is used when we want to commit the current the transaction, but 680 * don't want to start a new one. 681 * 682 * Note: If this function return -ENOENT, it just means there is no 683 * running transaction. But it is possible that the inactive transaction 684 * is still in the memory, not fully on disk. If you hope there is no 685 * inactive transaction in the fs when -ENOENT is returned, you should 686 * invoke 687 * btrfs_attach_transaction_barrier() 688 */ 689 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 690 { 691 return start_transaction(root, 0, TRANS_ATTACH, 692 BTRFS_RESERVE_NO_FLUSH, true); 693 } 694 695 /* 696 * btrfs_attach_transaction_barrier() - catch the running transaction 697 * 698 * It is similar to the above function, the difference is this one 699 * will wait for all the inactive transactions until they fully 700 * complete. 701 */ 702 struct btrfs_trans_handle * 703 btrfs_attach_transaction_barrier(struct btrfs_root *root) 704 { 705 struct btrfs_trans_handle *trans; 706 707 trans = start_transaction(root, 0, TRANS_ATTACH, 708 BTRFS_RESERVE_NO_FLUSH, true); 709 if (trans == ERR_PTR(-ENOENT)) 710 btrfs_wait_for_commit(root->fs_info, 0); 711 712 return trans; 713 } 714 715 /* wait for a transaction commit to be fully complete */ 716 static noinline void wait_for_commit(struct btrfs_transaction *commit) 717 { 718 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 719 } 720 721 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 722 { 723 struct btrfs_transaction *cur_trans = NULL, *t; 724 int ret = 0; 725 726 if (transid) { 727 if (transid <= fs_info->last_trans_committed) 728 goto out; 729 730 /* find specified transaction */ 731 spin_lock(&fs_info->trans_lock); 732 list_for_each_entry(t, &fs_info->trans_list, list) { 733 if (t->transid == transid) { 734 cur_trans = t; 735 refcount_inc(&cur_trans->use_count); 736 ret = 0; 737 break; 738 } 739 if (t->transid > transid) { 740 ret = 0; 741 break; 742 } 743 } 744 spin_unlock(&fs_info->trans_lock); 745 746 /* 747 * The specified transaction doesn't exist, or we 748 * raced with btrfs_commit_transaction 749 */ 750 if (!cur_trans) { 751 if (transid > fs_info->last_trans_committed) 752 ret = -EINVAL; 753 goto out; 754 } 755 } else { 756 /* find newest transaction that is committing | committed */ 757 spin_lock(&fs_info->trans_lock); 758 list_for_each_entry_reverse(t, &fs_info->trans_list, 759 list) { 760 if (t->state >= TRANS_STATE_COMMIT_START) { 761 if (t->state == TRANS_STATE_COMPLETED) 762 break; 763 cur_trans = t; 764 refcount_inc(&cur_trans->use_count); 765 break; 766 } 767 } 768 spin_unlock(&fs_info->trans_lock); 769 if (!cur_trans) 770 goto out; /* nothing committing|committed */ 771 } 772 773 wait_for_commit(cur_trans); 774 btrfs_put_transaction(cur_trans); 775 out: 776 return ret; 777 } 778 779 void btrfs_throttle(struct btrfs_fs_info *fs_info) 780 { 781 wait_current_trans(fs_info); 782 } 783 784 static int should_end_transaction(struct btrfs_trans_handle *trans) 785 { 786 struct btrfs_fs_info *fs_info = trans->fs_info; 787 788 if (btrfs_check_space_for_delayed_refs(fs_info)) 789 return 1; 790 791 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 792 } 793 794 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 795 { 796 struct btrfs_transaction *cur_trans = trans->transaction; 797 798 smp_mb(); 799 if (cur_trans->state >= TRANS_STATE_BLOCKED || 800 cur_trans->delayed_refs.flushing) 801 return 1; 802 803 return should_end_transaction(trans); 804 } 805 806 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 807 808 { 809 struct btrfs_fs_info *fs_info = trans->fs_info; 810 811 if (!trans->block_rsv) { 812 ASSERT(!trans->bytes_reserved); 813 return; 814 } 815 816 if (!trans->bytes_reserved) 817 return; 818 819 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 820 trace_btrfs_space_reservation(fs_info, "transaction", 821 trans->transid, trans->bytes_reserved, 0); 822 btrfs_block_rsv_release(fs_info, trans->block_rsv, 823 trans->bytes_reserved); 824 trans->bytes_reserved = 0; 825 } 826 827 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 828 int throttle) 829 { 830 struct btrfs_fs_info *info = trans->fs_info; 831 struct btrfs_transaction *cur_trans = trans->transaction; 832 int lock = (trans->type != TRANS_JOIN_NOLOCK); 833 int err = 0; 834 835 if (refcount_read(&trans->use_count) > 1) { 836 refcount_dec(&trans->use_count); 837 trans->block_rsv = trans->orig_rsv; 838 return 0; 839 } 840 841 btrfs_trans_release_metadata(trans); 842 trans->block_rsv = NULL; 843 844 btrfs_create_pending_block_groups(trans); 845 846 btrfs_trans_release_chunk_metadata(trans); 847 848 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 849 if (throttle) 850 return btrfs_commit_transaction(trans); 851 else 852 wake_up_process(info->transaction_kthread); 853 } 854 855 if (trans->type & __TRANS_FREEZABLE) 856 sb_end_intwrite(info->sb); 857 858 WARN_ON(cur_trans != info->running_transaction); 859 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 860 atomic_dec(&cur_trans->num_writers); 861 extwriter_counter_dec(cur_trans, trans->type); 862 863 cond_wake_up(&cur_trans->writer_wait); 864 btrfs_put_transaction(cur_trans); 865 866 if (current->journal_info == trans) 867 current->journal_info = NULL; 868 869 if (throttle) 870 btrfs_run_delayed_iputs(info); 871 872 if (trans->aborted || 873 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 874 wake_up_process(info->transaction_kthread); 875 err = -EIO; 876 } 877 878 kmem_cache_free(btrfs_trans_handle_cachep, trans); 879 return err; 880 } 881 882 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 883 { 884 return __btrfs_end_transaction(trans, 0); 885 } 886 887 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 888 { 889 return __btrfs_end_transaction(trans, 1); 890 } 891 892 /* 893 * when btree blocks are allocated, they have some corresponding bits set for 894 * them in one of two extent_io trees. This is used to make sure all of 895 * those extents are sent to disk but does not wait on them 896 */ 897 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 898 struct extent_io_tree *dirty_pages, int mark) 899 { 900 int err = 0; 901 int werr = 0; 902 struct address_space *mapping = fs_info->btree_inode->i_mapping; 903 struct extent_state *cached_state = NULL; 904 u64 start = 0; 905 u64 end; 906 907 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 908 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 909 mark, &cached_state)) { 910 bool wait_writeback = false; 911 912 err = convert_extent_bit(dirty_pages, start, end, 913 EXTENT_NEED_WAIT, 914 mark, &cached_state); 915 /* 916 * convert_extent_bit can return -ENOMEM, which is most of the 917 * time a temporary error. So when it happens, ignore the error 918 * and wait for writeback of this range to finish - because we 919 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 920 * to __btrfs_wait_marked_extents() would not know that 921 * writeback for this range started and therefore wouldn't 922 * wait for it to finish - we don't want to commit a 923 * superblock that points to btree nodes/leafs for which 924 * writeback hasn't finished yet (and without errors). 925 * We cleanup any entries left in the io tree when committing 926 * the transaction (through extent_io_tree_release()). 927 */ 928 if (err == -ENOMEM) { 929 err = 0; 930 wait_writeback = true; 931 } 932 if (!err) 933 err = filemap_fdatawrite_range(mapping, start, end); 934 if (err) 935 werr = err; 936 else if (wait_writeback) 937 werr = filemap_fdatawait_range(mapping, start, end); 938 free_extent_state(cached_state); 939 cached_state = NULL; 940 cond_resched(); 941 start = end + 1; 942 } 943 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 944 return werr; 945 } 946 947 /* 948 * when btree blocks are allocated, they have some corresponding bits set for 949 * them in one of two extent_io trees. This is used to make sure all of 950 * those extents are on disk for transaction or log commit. We wait 951 * on all the pages and clear them from the dirty pages state tree 952 */ 953 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 954 struct extent_io_tree *dirty_pages) 955 { 956 int err = 0; 957 int werr = 0; 958 struct address_space *mapping = fs_info->btree_inode->i_mapping; 959 struct extent_state *cached_state = NULL; 960 u64 start = 0; 961 u64 end; 962 963 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 964 EXTENT_NEED_WAIT, &cached_state)) { 965 /* 966 * Ignore -ENOMEM errors returned by clear_extent_bit(). 967 * When committing the transaction, we'll remove any entries 968 * left in the io tree. For a log commit, we don't remove them 969 * after committing the log because the tree can be accessed 970 * concurrently - we do it only at transaction commit time when 971 * it's safe to do it (through extent_io_tree_release()). 972 */ 973 err = clear_extent_bit(dirty_pages, start, end, 974 EXTENT_NEED_WAIT, 0, 0, &cached_state); 975 if (err == -ENOMEM) 976 err = 0; 977 if (!err) 978 err = filemap_fdatawait_range(mapping, start, end); 979 if (err) 980 werr = err; 981 free_extent_state(cached_state); 982 cached_state = NULL; 983 cond_resched(); 984 start = end + 1; 985 } 986 if (err) 987 werr = err; 988 return werr; 989 } 990 991 int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 992 struct extent_io_tree *dirty_pages) 993 { 994 bool errors = false; 995 int err; 996 997 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 998 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 999 errors = true; 1000 1001 if (errors && !err) 1002 err = -EIO; 1003 return err; 1004 } 1005 1006 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1007 { 1008 struct btrfs_fs_info *fs_info = log_root->fs_info; 1009 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1010 bool errors = false; 1011 int err; 1012 1013 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1014 1015 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1016 if ((mark & EXTENT_DIRTY) && 1017 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1018 errors = true; 1019 1020 if ((mark & EXTENT_NEW) && 1021 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1022 errors = true; 1023 1024 if (errors && !err) 1025 err = -EIO; 1026 return err; 1027 } 1028 1029 /* 1030 * When btree blocks are allocated the corresponding extents are marked dirty. 1031 * This function ensures such extents are persisted on disk for transaction or 1032 * log commit. 1033 * 1034 * @trans: transaction whose dirty pages we'd like to write 1035 */ 1036 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1037 { 1038 int ret; 1039 int ret2; 1040 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1041 struct btrfs_fs_info *fs_info = trans->fs_info; 1042 struct blk_plug plug; 1043 1044 blk_start_plug(&plug); 1045 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1046 blk_finish_plug(&plug); 1047 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1048 1049 extent_io_tree_release(&trans->transaction->dirty_pages); 1050 1051 if (ret) 1052 return ret; 1053 else if (ret2) 1054 return ret2; 1055 else 1056 return 0; 1057 } 1058 1059 /* 1060 * this is used to update the root pointer in the tree of tree roots. 1061 * 1062 * But, in the case of the extent allocation tree, updating the root 1063 * pointer may allocate blocks which may change the root of the extent 1064 * allocation tree. 1065 * 1066 * So, this loops and repeats and makes sure the cowonly root didn't 1067 * change while the root pointer was being updated in the metadata. 1068 */ 1069 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1070 struct btrfs_root *root) 1071 { 1072 int ret; 1073 u64 old_root_bytenr; 1074 u64 old_root_used; 1075 struct btrfs_fs_info *fs_info = root->fs_info; 1076 struct btrfs_root *tree_root = fs_info->tree_root; 1077 1078 old_root_used = btrfs_root_used(&root->root_item); 1079 1080 while (1) { 1081 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1082 if (old_root_bytenr == root->node->start && 1083 old_root_used == btrfs_root_used(&root->root_item)) 1084 break; 1085 1086 btrfs_set_root_node(&root->root_item, root->node); 1087 ret = btrfs_update_root(trans, tree_root, 1088 &root->root_key, 1089 &root->root_item); 1090 if (ret) 1091 return ret; 1092 1093 old_root_used = btrfs_root_used(&root->root_item); 1094 } 1095 1096 return 0; 1097 } 1098 1099 /* 1100 * update all the cowonly tree roots on disk 1101 * 1102 * The error handling in this function may not be obvious. Any of the 1103 * failures will cause the file system to go offline. We still need 1104 * to clean up the delayed refs. 1105 */ 1106 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1107 { 1108 struct btrfs_fs_info *fs_info = trans->fs_info; 1109 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1110 struct list_head *io_bgs = &trans->transaction->io_bgs; 1111 struct list_head *next; 1112 struct extent_buffer *eb; 1113 int ret; 1114 1115 eb = btrfs_lock_root_node(fs_info->tree_root); 1116 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1117 0, &eb); 1118 btrfs_tree_unlock(eb); 1119 free_extent_buffer(eb); 1120 1121 if (ret) 1122 return ret; 1123 1124 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1125 if (ret) 1126 return ret; 1127 1128 ret = btrfs_run_dev_stats(trans); 1129 if (ret) 1130 return ret; 1131 ret = btrfs_run_dev_replace(trans); 1132 if (ret) 1133 return ret; 1134 ret = btrfs_run_qgroups(trans); 1135 if (ret) 1136 return ret; 1137 1138 ret = btrfs_setup_space_cache(trans); 1139 if (ret) 1140 return ret; 1141 1142 /* run_qgroups might have added some more refs */ 1143 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1144 if (ret) 1145 return ret; 1146 again: 1147 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1148 struct btrfs_root *root; 1149 next = fs_info->dirty_cowonly_roots.next; 1150 list_del_init(next); 1151 root = list_entry(next, struct btrfs_root, dirty_list); 1152 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1153 1154 if (root != fs_info->extent_root) 1155 list_add_tail(&root->dirty_list, 1156 &trans->transaction->switch_commits); 1157 ret = update_cowonly_root(trans, root); 1158 if (ret) 1159 return ret; 1160 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1161 if (ret) 1162 return ret; 1163 } 1164 1165 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1166 ret = btrfs_write_dirty_block_groups(trans); 1167 if (ret) 1168 return ret; 1169 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1170 if (ret) 1171 return ret; 1172 } 1173 1174 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1175 goto again; 1176 1177 list_add_tail(&fs_info->extent_root->dirty_list, 1178 &trans->transaction->switch_commits); 1179 1180 /* Update dev-replace pointer once everything is committed */ 1181 fs_info->dev_replace.committed_cursor_left = 1182 fs_info->dev_replace.cursor_left_last_write_of_item; 1183 1184 return 0; 1185 } 1186 1187 /* 1188 * dead roots are old snapshots that need to be deleted. This allocates 1189 * a dirty root struct and adds it into the list of dead roots that need to 1190 * be deleted 1191 */ 1192 void btrfs_add_dead_root(struct btrfs_root *root) 1193 { 1194 struct btrfs_fs_info *fs_info = root->fs_info; 1195 1196 spin_lock(&fs_info->trans_lock); 1197 if (list_empty(&root->root_list)) 1198 list_add_tail(&root->root_list, &fs_info->dead_roots); 1199 spin_unlock(&fs_info->trans_lock); 1200 } 1201 1202 /* 1203 * update all the cowonly tree roots on disk 1204 */ 1205 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1206 { 1207 struct btrfs_fs_info *fs_info = trans->fs_info; 1208 struct btrfs_root *gang[8]; 1209 int i; 1210 int ret; 1211 int err = 0; 1212 1213 spin_lock(&fs_info->fs_roots_radix_lock); 1214 while (1) { 1215 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1216 (void **)gang, 0, 1217 ARRAY_SIZE(gang), 1218 BTRFS_ROOT_TRANS_TAG); 1219 if (ret == 0) 1220 break; 1221 for (i = 0; i < ret; i++) { 1222 struct btrfs_root *root = gang[i]; 1223 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1224 (unsigned long)root->root_key.objectid, 1225 BTRFS_ROOT_TRANS_TAG); 1226 spin_unlock(&fs_info->fs_roots_radix_lock); 1227 1228 btrfs_free_log(trans, root); 1229 btrfs_update_reloc_root(trans, root); 1230 1231 btrfs_save_ino_cache(root, trans); 1232 1233 /* see comments in should_cow_block() */ 1234 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1235 smp_mb__after_atomic(); 1236 1237 if (root->commit_root != root->node) { 1238 list_add_tail(&root->dirty_list, 1239 &trans->transaction->switch_commits); 1240 btrfs_set_root_node(&root->root_item, 1241 root->node); 1242 } 1243 1244 err = btrfs_update_root(trans, fs_info->tree_root, 1245 &root->root_key, 1246 &root->root_item); 1247 spin_lock(&fs_info->fs_roots_radix_lock); 1248 if (err) 1249 break; 1250 btrfs_qgroup_free_meta_all_pertrans(root); 1251 } 1252 } 1253 spin_unlock(&fs_info->fs_roots_radix_lock); 1254 return err; 1255 } 1256 1257 /* 1258 * defrag a given btree. 1259 * Every leaf in the btree is read and defragged. 1260 */ 1261 int btrfs_defrag_root(struct btrfs_root *root) 1262 { 1263 struct btrfs_fs_info *info = root->fs_info; 1264 struct btrfs_trans_handle *trans; 1265 int ret; 1266 1267 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1268 return 0; 1269 1270 while (1) { 1271 trans = btrfs_start_transaction(root, 0); 1272 if (IS_ERR(trans)) 1273 return PTR_ERR(trans); 1274 1275 ret = btrfs_defrag_leaves(trans, root); 1276 1277 btrfs_end_transaction(trans); 1278 btrfs_btree_balance_dirty(info); 1279 cond_resched(); 1280 1281 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1282 break; 1283 1284 if (btrfs_defrag_cancelled(info)) { 1285 btrfs_debug(info, "defrag_root cancelled"); 1286 ret = -EAGAIN; 1287 break; 1288 } 1289 } 1290 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1291 return ret; 1292 } 1293 1294 /* 1295 * Do all special snapshot related qgroup dirty hack. 1296 * 1297 * Will do all needed qgroup inherit and dirty hack like switch commit 1298 * roots inside one transaction and write all btree into disk, to make 1299 * qgroup works. 1300 */ 1301 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1302 struct btrfs_root *src, 1303 struct btrfs_root *parent, 1304 struct btrfs_qgroup_inherit *inherit, 1305 u64 dst_objectid) 1306 { 1307 struct btrfs_fs_info *fs_info = src->fs_info; 1308 int ret; 1309 1310 /* 1311 * Save some performance in the case that qgroups are not 1312 * enabled. If this check races with the ioctl, rescan will 1313 * kick in anyway. 1314 */ 1315 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1316 return 0; 1317 1318 /* 1319 * Ensure dirty @src will be committed. Or, after coming 1320 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1321 * recorded root will never be updated again, causing an outdated root 1322 * item. 1323 */ 1324 record_root_in_trans(trans, src, 1); 1325 1326 /* 1327 * We are going to commit transaction, see btrfs_commit_transaction() 1328 * comment for reason locking tree_log_mutex 1329 */ 1330 mutex_lock(&fs_info->tree_log_mutex); 1331 1332 ret = commit_fs_roots(trans); 1333 if (ret) 1334 goto out; 1335 ret = btrfs_qgroup_account_extents(trans); 1336 if (ret < 0) 1337 goto out; 1338 1339 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1340 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1341 inherit); 1342 if (ret < 0) 1343 goto out; 1344 1345 /* 1346 * Now we do a simplified commit transaction, which will: 1347 * 1) commit all subvolume and extent tree 1348 * To ensure all subvolume and extent tree have a valid 1349 * commit_root to accounting later insert_dir_item() 1350 * 2) write all btree blocks onto disk 1351 * This is to make sure later btree modification will be cowed 1352 * Or commit_root can be populated and cause wrong qgroup numbers 1353 * In this simplified commit, we don't really care about other trees 1354 * like chunk and root tree, as they won't affect qgroup. 1355 * And we don't write super to avoid half committed status. 1356 */ 1357 ret = commit_cowonly_roots(trans); 1358 if (ret) 1359 goto out; 1360 switch_commit_roots(trans->transaction); 1361 ret = btrfs_write_and_wait_transaction(trans); 1362 if (ret) 1363 btrfs_handle_fs_error(fs_info, ret, 1364 "Error while writing out transaction for qgroup"); 1365 1366 out: 1367 mutex_unlock(&fs_info->tree_log_mutex); 1368 1369 /* 1370 * Force parent root to be updated, as we recorded it before so its 1371 * last_trans == cur_transid. 1372 * Or it won't be committed again onto disk after later 1373 * insert_dir_item() 1374 */ 1375 if (!ret) 1376 record_root_in_trans(trans, parent, 1); 1377 return ret; 1378 } 1379 1380 /* 1381 * new snapshots need to be created at a very specific time in the 1382 * transaction commit. This does the actual creation. 1383 * 1384 * Note: 1385 * If the error which may affect the commitment of the current transaction 1386 * happens, we should return the error number. If the error which just affect 1387 * the creation of the pending snapshots, just return 0. 1388 */ 1389 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1390 struct btrfs_pending_snapshot *pending) 1391 { 1392 1393 struct btrfs_fs_info *fs_info = trans->fs_info; 1394 struct btrfs_key key; 1395 struct btrfs_root_item *new_root_item; 1396 struct btrfs_root *tree_root = fs_info->tree_root; 1397 struct btrfs_root *root = pending->root; 1398 struct btrfs_root *parent_root; 1399 struct btrfs_block_rsv *rsv; 1400 struct inode *parent_inode; 1401 struct btrfs_path *path; 1402 struct btrfs_dir_item *dir_item; 1403 struct dentry *dentry; 1404 struct extent_buffer *tmp; 1405 struct extent_buffer *old; 1406 struct timespec64 cur_time; 1407 int ret = 0; 1408 u64 to_reserve = 0; 1409 u64 index = 0; 1410 u64 objectid; 1411 u64 root_flags; 1412 uuid_le new_uuid; 1413 1414 ASSERT(pending->path); 1415 path = pending->path; 1416 1417 ASSERT(pending->root_item); 1418 new_root_item = pending->root_item; 1419 1420 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1421 if (pending->error) 1422 goto no_free_objectid; 1423 1424 /* 1425 * Make qgroup to skip current new snapshot's qgroupid, as it is 1426 * accounted by later btrfs_qgroup_inherit(). 1427 */ 1428 btrfs_set_skip_qgroup(trans, objectid); 1429 1430 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1431 1432 if (to_reserve > 0) { 1433 pending->error = btrfs_block_rsv_add(root, 1434 &pending->block_rsv, 1435 to_reserve, 1436 BTRFS_RESERVE_NO_FLUSH); 1437 if (pending->error) 1438 goto clear_skip_qgroup; 1439 } 1440 1441 key.objectid = objectid; 1442 key.offset = (u64)-1; 1443 key.type = BTRFS_ROOT_ITEM_KEY; 1444 1445 rsv = trans->block_rsv; 1446 trans->block_rsv = &pending->block_rsv; 1447 trans->bytes_reserved = trans->block_rsv->reserved; 1448 trace_btrfs_space_reservation(fs_info, "transaction", 1449 trans->transid, 1450 trans->bytes_reserved, 1); 1451 dentry = pending->dentry; 1452 parent_inode = pending->dir; 1453 parent_root = BTRFS_I(parent_inode)->root; 1454 record_root_in_trans(trans, parent_root, 0); 1455 1456 cur_time = current_time(parent_inode); 1457 1458 /* 1459 * insert the directory item 1460 */ 1461 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1462 BUG_ON(ret); /* -ENOMEM */ 1463 1464 /* check if there is a file/dir which has the same name. */ 1465 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1466 btrfs_ino(BTRFS_I(parent_inode)), 1467 dentry->d_name.name, 1468 dentry->d_name.len, 0); 1469 if (dir_item != NULL && !IS_ERR(dir_item)) { 1470 pending->error = -EEXIST; 1471 goto dir_item_existed; 1472 } else if (IS_ERR(dir_item)) { 1473 ret = PTR_ERR(dir_item); 1474 btrfs_abort_transaction(trans, ret); 1475 goto fail; 1476 } 1477 btrfs_release_path(path); 1478 1479 /* 1480 * pull in the delayed directory update 1481 * and the delayed inode item 1482 * otherwise we corrupt the FS during 1483 * snapshot 1484 */ 1485 ret = btrfs_run_delayed_items(trans); 1486 if (ret) { /* Transaction aborted */ 1487 btrfs_abort_transaction(trans, ret); 1488 goto fail; 1489 } 1490 1491 record_root_in_trans(trans, root, 0); 1492 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1493 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1494 btrfs_check_and_init_root_item(new_root_item); 1495 1496 root_flags = btrfs_root_flags(new_root_item); 1497 if (pending->readonly) 1498 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1499 else 1500 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1501 btrfs_set_root_flags(new_root_item, root_flags); 1502 1503 btrfs_set_root_generation_v2(new_root_item, 1504 trans->transid); 1505 uuid_le_gen(&new_uuid); 1506 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1507 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1508 BTRFS_UUID_SIZE); 1509 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1510 memset(new_root_item->received_uuid, 0, 1511 sizeof(new_root_item->received_uuid)); 1512 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1513 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1514 btrfs_set_root_stransid(new_root_item, 0); 1515 btrfs_set_root_rtransid(new_root_item, 0); 1516 } 1517 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1518 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1519 btrfs_set_root_otransid(new_root_item, trans->transid); 1520 1521 old = btrfs_lock_root_node(root); 1522 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1523 if (ret) { 1524 btrfs_tree_unlock(old); 1525 free_extent_buffer(old); 1526 btrfs_abort_transaction(trans, ret); 1527 goto fail; 1528 } 1529 1530 btrfs_set_lock_blocking_write(old); 1531 1532 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1533 /* clean up in any case */ 1534 btrfs_tree_unlock(old); 1535 free_extent_buffer(old); 1536 if (ret) { 1537 btrfs_abort_transaction(trans, ret); 1538 goto fail; 1539 } 1540 /* see comments in should_cow_block() */ 1541 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1542 smp_wmb(); 1543 1544 btrfs_set_root_node(new_root_item, tmp); 1545 /* record when the snapshot was created in key.offset */ 1546 key.offset = trans->transid; 1547 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1548 btrfs_tree_unlock(tmp); 1549 free_extent_buffer(tmp); 1550 if (ret) { 1551 btrfs_abort_transaction(trans, ret); 1552 goto fail; 1553 } 1554 1555 /* 1556 * insert root back/forward references 1557 */ 1558 ret = btrfs_add_root_ref(trans, objectid, 1559 parent_root->root_key.objectid, 1560 btrfs_ino(BTRFS_I(parent_inode)), index, 1561 dentry->d_name.name, dentry->d_name.len); 1562 if (ret) { 1563 btrfs_abort_transaction(trans, ret); 1564 goto fail; 1565 } 1566 1567 key.offset = (u64)-1; 1568 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key); 1569 if (IS_ERR(pending->snap)) { 1570 ret = PTR_ERR(pending->snap); 1571 btrfs_abort_transaction(trans, ret); 1572 goto fail; 1573 } 1574 1575 ret = btrfs_reloc_post_snapshot(trans, pending); 1576 if (ret) { 1577 btrfs_abort_transaction(trans, ret); 1578 goto fail; 1579 } 1580 1581 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1582 if (ret) { 1583 btrfs_abort_transaction(trans, ret); 1584 goto fail; 1585 } 1586 1587 /* 1588 * Do special qgroup accounting for snapshot, as we do some qgroup 1589 * snapshot hack to do fast snapshot. 1590 * To co-operate with that hack, we do hack again. 1591 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1592 */ 1593 ret = qgroup_account_snapshot(trans, root, parent_root, 1594 pending->inherit, objectid); 1595 if (ret < 0) 1596 goto fail; 1597 1598 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1599 dentry->d_name.len, BTRFS_I(parent_inode), 1600 &key, BTRFS_FT_DIR, index); 1601 /* We have check then name at the beginning, so it is impossible. */ 1602 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1603 if (ret) { 1604 btrfs_abort_transaction(trans, ret); 1605 goto fail; 1606 } 1607 1608 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1609 dentry->d_name.len * 2); 1610 parent_inode->i_mtime = parent_inode->i_ctime = 1611 current_time(parent_inode); 1612 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1613 if (ret) { 1614 btrfs_abort_transaction(trans, ret); 1615 goto fail; 1616 } 1617 ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL, 1618 objectid); 1619 if (ret) { 1620 btrfs_abort_transaction(trans, ret); 1621 goto fail; 1622 } 1623 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1624 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1625 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1626 objectid); 1627 if (ret && ret != -EEXIST) { 1628 btrfs_abort_transaction(trans, ret); 1629 goto fail; 1630 } 1631 } 1632 1633 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1634 if (ret) { 1635 btrfs_abort_transaction(trans, ret); 1636 goto fail; 1637 } 1638 1639 fail: 1640 pending->error = ret; 1641 dir_item_existed: 1642 trans->block_rsv = rsv; 1643 trans->bytes_reserved = 0; 1644 clear_skip_qgroup: 1645 btrfs_clear_skip_qgroup(trans); 1646 no_free_objectid: 1647 kfree(new_root_item); 1648 pending->root_item = NULL; 1649 btrfs_free_path(path); 1650 pending->path = NULL; 1651 1652 return ret; 1653 } 1654 1655 /* 1656 * create all the snapshots we've scheduled for creation 1657 */ 1658 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1659 { 1660 struct btrfs_pending_snapshot *pending, *next; 1661 struct list_head *head = &trans->transaction->pending_snapshots; 1662 int ret = 0; 1663 1664 list_for_each_entry_safe(pending, next, head, list) { 1665 list_del(&pending->list); 1666 ret = create_pending_snapshot(trans, pending); 1667 if (ret) 1668 break; 1669 } 1670 return ret; 1671 } 1672 1673 static void update_super_roots(struct btrfs_fs_info *fs_info) 1674 { 1675 struct btrfs_root_item *root_item; 1676 struct btrfs_super_block *super; 1677 1678 super = fs_info->super_copy; 1679 1680 root_item = &fs_info->chunk_root->root_item; 1681 super->chunk_root = root_item->bytenr; 1682 super->chunk_root_generation = root_item->generation; 1683 super->chunk_root_level = root_item->level; 1684 1685 root_item = &fs_info->tree_root->root_item; 1686 super->root = root_item->bytenr; 1687 super->generation = root_item->generation; 1688 super->root_level = root_item->level; 1689 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1690 super->cache_generation = root_item->generation; 1691 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1692 super->uuid_tree_generation = root_item->generation; 1693 } 1694 1695 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1696 { 1697 struct btrfs_transaction *trans; 1698 int ret = 0; 1699 1700 spin_lock(&info->trans_lock); 1701 trans = info->running_transaction; 1702 if (trans) 1703 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1704 spin_unlock(&info->trans_lock); 1705 return ret; 1706 } 1707 1708 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1709 { 1710 struct btrfs_transaction *trans; 1711 int ret = 0; 1712 1713 spin_lock(&info->trans_lock); 1714 trans = info->running_transaction; 1715 if (trans) 1716 ret = is_transaction_blocked(trans); 1717 spin_unlock(&info->trans_lock); 1718 return ret; 1719 } 1720 1721 /* 1722 * wait for the current transaction commit to start and block subsequent 1723 * transaction joins 1724 */ 1725 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, 1726 struct btrfs_transaction *trans) 1727 { 1728 wait_event(fs_info->transaction_blocked_wait, 1729 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted); 1730 } 1731 1732 /* 1733 * wait for the current transaction to start and then become unblocked. 1734 * caller holds ref. 1735 */ 1736 static void wait_current_trans_commit_start_and_unblock( 1737 struct btrfs_fs_info *fs_info, 1738 struct btrfs_transaction *trans) 1739 { 1740 wait_event(fs_info->transaction_wait, 1741 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted); 1742 } 1743 1744 /* 1745 * commit transactions asynchronously. once btrfs_commit_transaction_async 1746 * returns, any subsequent transaction will not be allowed to join. 1747 */ 1748 struct btrfs_async_commit { 1749 struct btrfs_trans_handle *newtrans; 1750 struct work_struct work; 1751 }; 1752 1753 static void do_async_commit(struct work_struct *work) 1754 { 1755 struct btrfs_async_commit *ac = 1756 container_of(work, struct btrfs_async_commit, work); 1757 1758 /* 1759 * We've got freeze protection passed with the transaction. 1760 * Tell lockdep about it. 1761 */ 1762 if (ac->newtrans->type & __TRANS_FREEZABLE) 1763 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1764 1765 current->journal_info = ac->newtrans; 1766 1767 btrfs_commit_transaction(ac->newtrans); 1768 kfree(ac); 1769 } 1770 1771 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1772 int wait_for_unblock) 1773 { 1774 struct btrfs_fs_info *fs_info = trans->fs_info; 1775 struct btrfs_async_commit *ac; 1776 struct btrfs_transaction *cur_trans; 1777 1778 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1779 if (!ac) 1780 return -ENOMEM; 1781 1782 INIT_WORK(&ac->work, do_async_commit); 1783 ac->newtrans = btrfs_join_transaction(trans->root); 1784 if (IS_ERR(ac->newtrans)) { 1785 int err = PTR_ERR(ac->newtrans); 1786 kfree(ac); 1787 return err; 1788 } 1789 1790 /* take transaction reference */ 1791 cur_trans = trans->transaction; 1792 refcount_inc(&cur_trans->use_count); 1793 1794 btrfs_end_transaction(trans); 1795 1796 /* 1797 * Tell lockdep we've released the freeze rwsem, since the 1798 * async commit thread will be the one to unlock it. 1799 */ 1800 if (ac->newtrans->type & __TRANS_FREEZABLE) 1801 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1802 1803 schedule_work(&ac->work); 1804 1805 /* wait for transaction to start and unblock */ 1806 if (wait_for_unblock) 1807 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); 1808 else 1809 wait_current_trans_commit_start(fs_info, cur_trans); 1810 1811 if (current->journal_info == trans) 1812 current->journal_info = NULL; 1813 1814 btrfs_put_transaction(cur_trans); 1815 return 0; 1816 } 1817 1818 1819 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1820 { 1821 struct btrfs_fs_info *fs_info = trans->fs_info; 1822 struct btrfs_transaction *cur_trans = trans->transaction; 1823 1824 WARN_ON(refcount_read(&trans->use_count) > 1); 1825 1826 btrfs_abort_transaction(trans, err); 1827 1828 spin_lock(&fs_info->trans_lock); 1829 1830 /* 1831 * If the transaction is removed from the list, it means this 1832 * transaction has been committed successfully, so it is impossible 1833 * to call the cleanup function. 1834 */ 1835 BUG_ON(list_empty(&cur_trans->list)); 1836 1837 list_del_init(&cur_trans->list); 1838 if (cur_trans == fs_info->running_transaction) { 1839 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1840 spin_unlock(&fs_info->trans_lock); 1841 wait_event(cur_trans->writer_wait, 1842 atomic_read(&cur_trans->num_writers) == 1); 1843 1844 spin_lock(&fs_info->trans_lock); 1845 } 1846 spin_unlock(&fs_info->trans_lock); 1847 1848 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1849 1850 spin_lock(&fs_info->trans_lock); 1851 if (cur_trans == fs_info->running_transaction) 1852 fs_info->running_transaction = NULL; 1853 spin_unlock(&fs_info->trans_lock); 1854 1855 if (trans->type & __TRANS_FREEZABLE) 1856 sb_end_intwrite(fs_info->sb); 1857 btrfs_put_transaction(cur_trans); 1858 btrfs_put_transaction(cur_trans); 1859 1860 trace_btrfs_transaction_commit(trans->root); 1861 1862 if (current->journal_info == trans) 1863 current->journal_info = NULL; 1864 btrfs_scrub_cancel(fs_info); 1865 1866 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1867 } 1868 1869 /* 1870 * Release reserved delayed ref space of all pending block groups of the 1871 * transaction and remove them from the list 1872 */ 1873 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 1874 { 1875 struct btrfs_fs_info *fs_info = trans->fs_info; 1876 struct btrfs_block_group_cache *block_group, *tmp; 1877 1878 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 1879 btrfs_delayed_refs_rsv_release(fs_info, 1); 1880 list_del_init(&block_group->bg_list); 1881 } 1882 } 1883 1884 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans) 1885 { 1886 struct btrfs_fs_info *fs_info = trans->fs_info; 1887 1888 /* 1889 * We use writeback_inodes_sb here because if we used 1890 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 1891 * Currently are holding the fs freeze lock, if we do an async flush 1892 * we'll do btrfs_join_transaction() and deadlock because we need to 1893 * wait for the fs freeze lock. Using the direct flushing we benefit 1894 * from already being in a transaction and our join_transaction doesn't 1895 * have to re-take the fs freeze lock. 1896 */ 1897 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) { 1898 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 1899 } else { 1900 struct btrfs_pending_snapshot *pending; 1901 struct list_head *head = &trans->transaction->pending_snapshots; 1902 1903 /* 1904 * Flush dellaloc for any root that is going to be snapshotted. 1905 * This is done to avoid a corrupted version of files, in the 1906 * snapshots, that had both buffered and direct IO writes (even 1907 * if they were done sequentially) due to an unordered update of 1908 * the inode's size on disk. 1909 */ 1910 list_for_each_entry(pending, head, list) { 1911 int ret; 1912 1913 ret = btrfs_start_delalloc_snapshot(pending->root); 1914 if (ret) 1915 return ret; 1916 } 1917 } 1918 return 0; 1919 } 1920 1921 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans) 1922 { 1923 struct btrfs_fs_info *fs_info = trans->fs_info; 1924 1925 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) { 1926 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1927 } else { 1928 struct btrfs_pending_snapshot *pending; 1929 struct list_head *head = &trans->transaction->pending_snapshots; 1930 1931 /* 1932 * Wait for any dellaloc that we started previously for the roots 1933 * that are going to be snapshotted. This is to avoid a corrupted 1934 * version of files in the snapshots that had both buffered and 1935 * direct IO writes (even if they were done sequentially). 1936 */ 1937 list_for_each_entry(pending, head, list) 1938 btrfs_wait_ordered_extents(pending->root, 1939 U64_MAX, 0, U64_MAX); 1940 } 1941 } 1942 1943 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 1944 { 1945 struct btrfs_fs_info *fs_info = trans->fs_info; 1946 struct btrfs_transaction *cur_trans = trans->transaction; 1947 struct btrfs_transaction *prev_trans = NULL; 1948 int ret; 1949 1950 /* Stop the commit early if ->aborted is set */ 1951 if (unlikely(READ_ONCE(cur_trans->aborted))) { 1952 ret = cur_trans->aborted; 1953 btrfs_end_transaction(trans); 1954 return ret; 1955 } 1956 1957 btrfs_trans_release_metadata(trans); 1958 trans->block_rsv = NULL; 1959 1960 /* make a pass through all the delayed refs we have so far 1961 * any runnings procs may add more while we are here 1962 */ 1963 ret = btrfs_run_delayed_refs(trans, 0); 1964 if (ret) { 1965 btrfs_end_transaction(trans); 1966 return ret; 1967 } 1968 1969 cur_trans = trans->transaction; 1970 1971 /* 1972 * set the flushing flag so procs in this transaction have to 1973 * start sending their work down. 1974 */ 1975 cur_trans->delayed_refs.flushing = 1; 1976 smp_wmb(); 1977 1978 btrfs_create_pending_block_groups(trans); 1979 1980 ret = btrfs_run_delayed_refs(trans, 0); 1981 if (ret) { 1982 btrfs_end_transaction(trans); 1983 return ret; 1984 } 1985 1986 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 1987 int run_it = 0; 1988 1989 /* this mutex is also taken before trying to set 1990 * block groups readonly. We need to make sure 1991 * that nobody has set a block group readonly 1992 * after a extents from that block group have been 1993 * allocated for cache files. btrfs_set_block_group_ro 1994 * will wait for the transaction to commit if it 1995 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 1996 * 1997 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 1998 * only one process starts all the block group IO. It wouldn't 1999 * hurt to have more than one go through, but there's no 2000 * real advantage to it either. 2001 */ 2002 mutex_lock(&fs_info->ro_block_group_mutex); 2003 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2004 &cur_trans->flags)) 2005 run_it = 1; 2006 mutex_unlock(&fs_info->ro_block_group_mutex); 2007 2008 if (run_it) { 2009 ret = btrfs_start_dirty_block_groups(trans); 2010 if (ret) { 2011 btrfs_end_transaction(trans); 2012 return ret; 2013 } 2014 } 2015 } 2016 2017 spin_lock(&fs_info->trans_lock); 2018 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2019 spin_unlock(&fs_info->trans_lock); 2020 refcount_inc(&cur_trans->use_count); 2021 ret = btrfs_end_transaction(trans); 2022 2023 wait_for_commit(cur_trans); 2024 2025 if (unlikely(cur_trans->aborted)) 2026 ret = cur_trans->aborted; 2027 2028 btrfs_put_transaction(cur_trans); 2029 2030 return ret; 2031 } 2032 2033 cur_trans->state = TRANS_STATE_COMMIT_START; 2034 wake_up(&fs_info->transaction_blocked_wait); 2035 2036 if (cur_trans->list.prev != &fs_info->trans_list) { 2037 prev_trans = list_entry(cur_trans->list.prev, 2038 struct btrfs_transaction, list); 2039 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2040 refcount_inc(&prev_trans->use_count); 2041 spin_unlock(&fs_info->trans_lock); 2042 2043 wait_for_commit(prev_trans); 2044 ret = prev_trans->aborted; 2045 2046 btrfs_put_transaction(prev_trans); 2047 if (ret) 2048 goto cleanup_transaction; 2049 } else { 2050 spin_unlock(&fs_info->trans_lock); 2051 } 2052 } else { 2053 spin_unlock(&fs_info->trans_lock); 2054 /* 2055 * The previous transaction was aborted and was already removed 2056 * from the list of transactions at fs_info->trans_list. So we 2057 * abort to prevent writing a new superblock that reflects a 2058 * corrupt state (pointing to trees with unwritten nodes/leafs). 2059 */ 2060 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) { 2061 ret = -EROFS; 2062 goto cleanup_transaction; 2063 } 2064 } 2065 2066 extwriter_counter_dec(cur_trans, trans->type); 2067 2068 ret = btrfs_start_delalloc_flush(trans); 2069 if (ret) 2070 goto cleanup_transaction; 2071 2072 ret = btrfs_run_delayed_items(trans); 2073 if (ret) 2074 goto cleanup_transaction; 2075 2076 wait_event(cur_trans->writer_wait, 2077 extwriter_counter_read(cur_trans) == 0); 2078 2079 /* some pending stuffs might be added after the previous flush. */ 2080 ret = btrfs_run_delayed_items(trans); 2081 if (ret) 2082 goto cleanup_transaction; 2083 2084 btrfs_wait_delalloc_flush(trans); 2085 2086 btrfs_scrub_pause(fs_info); 2087 /* 2088 * Ok now we need to make sure to block out any other joins while we 2089 * commit the transaction. We could have started a join before setting 2090 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2091 */ 2092 spin_lock(&fs_info->trans_lock); 2093 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2094 spin_unlock(&fs_info->trans_lock); 2095 wait_event(cur_trans->writer_wait, 2096 atomic_read(&cur_trans->num_writers) == 1); 2097 2098 /* ->aborted might be set after the previous check, so check it */ 2099 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2100 ret = cur_trans->aborted; 2101 goto scrub_continue; 2102 } 2103 /* 2104 * the reloc mutex makes sure that we stop 2105 * the balancing code from coming in and moving 2106 * extents around in the middle of the commit 2107 */ 2108 mutex_lock(&fs_info->reloc_mutex); 2109 2110 /* 2111 * We needn't worry about the delayed items because we will 2112 * deal with them in create_pending_snapshot(), which is the 2113 * core function of the snapshot creation. 2114 */ 2115 ret = create_pending_snapshots(trans); 2116 if (ret) { 2117 mutex_unlock(&fs_info->reloc_mutex); 2118 goto scrub_continue; 2119 } 2120 2121 /* 2122 * We insert the dir indexes of the snapshots and update the inode 2123 * of the snapshots' parents after the snapshot creation, so there 2124 * are some delayed items which are not dealt with. Now deal with 2125 * them. 2126 * 2127 * We needn't worry that this operation will corrupt the snapshots, 2128 * because all the tree which are snapshoted will be forced to COW 2129 * the nodes and leaves. 2130 */ 2131 ret = btrfs_run_delayed_items(trans); 2132 if (ret) { 2133 mutex_unlock(&fs_info->reloc_mutex); 2134 goto scrub_continue; 2135 } 2136 2137 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2138 if (ret) { 2139 mutex_unlock(&fs_info->reloc_mutex); 2140 goto scrub_continue; 2141 } 2142 2143 /* 2144 * make sure none of the code above managed to slip in a 2145 * delayed item 2146 */ 2147 btrfs_assert_delayed_root_empty(fs_info); 2148 2149 WARN_ON(cur_trans != trans->transaction); 2150 2151 /* btrfs_commit_tree_roots is responsible for getting the 2152 * various roots consistent with each other. Every pointer 2153 * in the tree of tree roots has to point to the most up to date 2154 * root for every subvolume and other tree. So, we have to keep 2155 * the tree logging code from jumping in and changing any 2156 * of the trees. 2157 * 2158 * At this point in the commit, there can't be any tree-log 2159 * writers, but a little lower down we drop the trans mutex 2160 * and let new people in. By holding the tree_log_mutex 2161 * from now until after the super is written, we avoid races 2162 * with the tree-log code. 2163 */ 2164 mutex_lock(&fs_info->tree_log_mutex); 2165 2166 ret = commit_fs_roots(trans); 2167 if (ret) { 2168 mutex_unlock(&fs_info->tree_log_mutex); 2169 mutex_unlock(&fs_info->reloc_mutex); 2170 goto scrub_continue; 2171 } 2172 2173 /* 2174 * Since the transaction is done, we can apply the pending changes 2175 * before the next transaction. 2176 */ 2177 btrfs_apply_pending_changes(fs_info); 2178 2179 /* commit_fs_roots gets rid of all the tree log roots, it is now 2180 * safe to free the root of tree log roots 2181 */ 2182 btrfs_free_log_root_tree(trans, fs_info); 2183 2184 /* 2185 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates 2186 * new delayed refs. Must handle them or qgroup can be wrong. 2187 */ 2188 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2189 if (ret) { 2190 mutex_unlock(&fs_info->tree_log_mutex); 2191 mutex_unlock(&fs_info->reloc_mutex); 2192 goto scrub_continue; 2193 } 2194 2195 /* 2196 * Since fs roots are all committed, we can get a quite accurate 2197 * new_roots. So let's do quota accounting. 2198 */ 2199 ret = btrfs_qgroup_account_extents(trans); 2200 if (ret < 0) { 2201 mutex_unlock(&fs_info->tree_log_mutex); 2202 mutex_unlock(&fs_info->reloc_mutex); 2203 goto scrub_continue; 2204 } 2205 2206 ret = commit_cowonly_roots(trans); 2207 if (ret) { 2208 mutex_unlock(&fs_info->tree_log_mutex); 2209 mutex_unlock(&fs_info->reloc_mutex); 2210 goto scrub_continue; 2211 } 2212 2213 /* 2214 * The tasks which save the space cache and inode cache may also 2215 * update ->aborted, check it. 2216 */ 2217 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2218 ret = cur_trans->aborted; 2219 mutex_unlock(&fs_info->tree_log_mutex); 2220 mutex_unlock(&fs_info->reloc_mutex); 2221 goto scrub_continue; 2222 } 2223 2224 btrfs_prepare_extent_commit(fs_info); 2225 2226 cur_trans = fs_info->running_transaction; 2227 2228 btrfs_set_root_node(&fs_info->tree_root->root_item, 2229 fs_info->tree_root->node); 2230 list_add_tail(&fs_info->tree_root->dirty_list, 2231 &cur_trans->switch_commits); 2232 2233 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2234 fs_info->chunk_root->node); 2235 list_add_tail(&fs_info->chunk_root->dirty_list, 2236 &cur_trans->switch_commits); 2237 2238 switch_commit_roots(cur_trans); 2239 2240 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2241 ASSERT(list_empty(&cur_trans->io_bgs)); 2242 update_super_roots(fs_info); 2243 2244 btrfs_set_super_log_root(fs_info->super_copy, 0); 2245 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2246 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2247 sizeof(*fs_info->super_copy)); 2248 2249 btrfs_commit_device_sizes(cur_trans); 2250 2251 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2252 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2253 2254 btrfs_trans_release_chunk_metadata(trans); 2255 2256 spin_lock(&fs_info->trans_lock); 2257 cur_trans->state = TRANS_STATE_UNBLOCKED; 2258 fs_info->running_transaction = NULL; 2259 spin_unlock(&fs_info->trans_lock); 2260 mutex_unlock(&fs_info->reloc_mutex); 2261 2262 wake_up(&fs_info->transaction_wait); 2263 2264 ret = btrfs_write_and_wait_transaction(trans); 2265 if (ret) { 2266 btrfs_handle_fs_error(fs_info, ret, 2267 "Error while writing out transaction"); 2268 mutex_unlock(&fs_info->tree_log_mutex); 2269 goto scrub_continue; 2270 } 2271 2272 ret = write_all_supers(fs_info, 0); 2273 /* 2274 * the super is written, we can safely allow the tree-loggers 2275 * to go about their business 2276 */ 2277 mutex_unlock(&fs_info->tree_log_mutex); 2278 if (ret) 2279 goto scrub_continue; 2280 2281 btrfs_finish_extent_commit(trans); 2282 2283 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2284 btrfs_clear_space_info_full(fs_info); 2285 2286 fs_info->last_trans_committed = cur_trans->transid; 2287 /* 2288 * We needn't acquire the lock here because there is no other task 2289 * which can change it. 2290 */ 2291 cur_trans->state = TRANS_STATE_COMPLETED; 2292 wake_up(&cur_trans->commit_wait); 2293 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags); 2294 2295 spin_lock(&fs_info->trans_lock); 2296 list_del_init(&cur_trans->list); 2297 spin_unlock(&fs_info->trans_lock); 2298 2299 btrfs_put_transaction(cur_trans); 2300 btrfs_put_transaction(cur_trans); 2301 2302 if (trans->type & __TRANS_FREEZABLE) 2303 sb_end_intwrite(fs_info->sb); 2304 2305 trace_btrfs_transaction_commit(trans->root); 2306 2307 btrfs_scrub_continue(fs_info); 2308 2309 if (current->journal_info == trans) 2310 current->journal_info = NULL; 2311 2312 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2313 2314 return ret; 2315 2316 scrub_continue: 2317 btrfs_scrub_continue(fs_info); 2318 cleanup_transaction: 2319 btrfs_trans_release_metadata(trans); 2320 btrfs_cleanup_pending_block_groups(trans); 2321 btrfs_trans_release_chunk_metadata(trans); 2322 trans->block_rsv = NULL; 2323 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2324 if (current->journal_info == trans) 2325 current->journal_info = NULL; 2326 cleanup_transaction(trans, ret); 2327 2328 return ret; 2329 } 2330 2331 /* 2332 * return < 0 if error 2333 * 0 if there are no more dead_roots at the time of call 2334 * 1 there are more to be processed, call me again 2335 * 2336 * The return value indicates there are certainly more snapshots to delete, but 2337 * if there comes a new one during processing, it may return 0. We don't mind, 2338 * because btrfs_commit_super will poke cleaner thread and it will process it a 2339 * few seconds later. 2340 */ 2341 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2342 { 2343 int ret; 2344 struct btrfs_fs_info *fs_info = root->fs_info; 2345 2346 spin_lock(&fs_info->trans_lock); 2347 if (list_empty(&fs_info->dead_roots)) { 2348 spin_unlock(&fs_info->trans_lock); 2349 return 0; 2350 } 2351 root = list_first_entry(&fs_info->dead_roots, 2352 struct btrfs_root, root_list); 2353 list_del_init(&root->root_list); 2354 spin_unlock(&fs_info->trans_lock); 2355 2356 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2357 2358 btrfs_kill_all_delayed_nodes(root); 2359 2360 if (btrfs_header_backref_rev(root->node) < 2361 BTRFS_MIXED_BACKREF_REV) 2362 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2363 else 2364 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2365 2366 return (ret < 0) ? 0 : 1; 2367 } 2368 2369 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2370 { 2371 unsigned long prev; 2372 unsigned long bit; 2373 2374 prev = xchg(&fs_info->pending_changes, 0); 2375 if (!prev) 2376 return; 2377 2378 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2379 if (prev & bit) 2380 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2381 prev &= ~bit; 2382 2383 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2384 if (prev & bit) 2385 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2386 prev &= ~bit; 2387 2388 bit = 1 << BTRFS_PENDING_COMMIT; 2389 if (prev & bit) 2390 btrfs_debug(fs_info, "pending commit done"); 2391 prev &= ~bit; 2392 2393 if (prev) 2394 btrfs_warn(fs_info, 2395 "unknown pending changes left 0x%lx, ignoring", prev); 2396 } 2397