xref: /openbmc/linux/fs/btrfs/transaction.c (revision e3d786a3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "locking.h"
17 #include "tree-log.h"
18 #include "inode-map.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22 
23 #define BTRFS_ROOT_TRANS_TAG 0
24 
25 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
26 	[TRANS_STATE_RUNNING]		= 0U,
27 	[TRANS_STATE_BLOCKED]		=  __TRANS_START,
28 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
29 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
30 					   __TRANS_ATTACH |
31 					   __TRANS_JOIN),
32 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
33 					   __TRANS_ATTACH |
34 					   __TRANS_JOIN |
35 					   __TRANS_JOIN_NOLOCK),
36 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
37 					   __TRANS_ATTACH |
38 					   __TRANS_JOIN |
39 					   __TRANS_JOIN_NOLOCK),
40 };
41 
42 void btrfs_put_transaction(struct btrfs_transaction *transaction)
43 {
44 	WARN_ON(refcount_read(&transaction->use_count) == 0);
45 	if (refcount_dec_and_test(&transaction->use_count)) {
46 		BUG_ON(!list_empty(&transaction->list));
47 		WARN_ON(!RB_EMPTY_ROOT(
48 				&transaction->delayed_refs.href_root.rb_root));
49 		if (transaction->delayed_refs.pending_csums)
50 			btrfs_err(transaction->fs_info,
51 				  "pending csums is %llu",
52 				  transaction->delayed_refs.pending_csums);
53 		while (!list_empty(&transaction->pending_chunks)) {
54 			struct extent_map *em;
55 
56 			em = list_first_entry(&transaction->pending_chunks,
57 					      struct extent_map, list);
58 			list_del_init(&em->list);
59 			free_extent_map(em);
60 		}
61 		/*
62 		 * If any block groups are found in ->deleted_bgs then it's
63 		 * because the transaction was aborted and a commit did not
64 		 * happen (things failed before writing the new superblock
65 		 * and calling btrfs_finish_extent_commit()), so we can not
66 		 * discard the physical locations of the block groups.
67 		 */
68 		while (!list_empty(&transaction->deleted_bgs)) {
69 			struct btrfs_block_group_cache *cache;
70 
71 			cache = list_first_entry(&transaction->deleted_bgs,
72 						 struct btrfs_block_group_cache,
73 						 bg_list);
74 			list_del_init(&cache->bg_list);
75 			btrfs_put_block_group_trimming(cache);
76 			btrfs_put_block_group(cache);
77 		}
78 		kfree(transaction);
79 	}
80 }
81 
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 	spin_lock(&tree->lock);
85 	/*
86 	 * Do a single barrier for the waitqueue_active check here, the state
87 	 * of the waitqueue should not change once clear_btree_io_tree is
88 	 * called.
89 	 */
90 	smp_mb();
91 	while (!RB_EMPTY_ROOT(&tree->state)) {
92 		struct rb_node *node;
93 		struct extent_state *state;
94 
95 		node = rb_first(&tree->state);
96 		state = rb_entry(node, struct extent_state, rb_node);
97 		rb_erase(&state->rb_node, &tree->state);
98 		RB_CLEAR_NODE(&state->rb_node);
99 		/*
100 		 * btree io trees aren't supposed to have tasks waiting for
101 		 * changes in the flags of extent states ever.
102 		 */
103 		ASSERT(!waitqueue_active(&state->wq));
104 		free_extent_state(state);
105 
106 		cond_resched_lock(&tree->lock);
107 	}
108 	spin_unlock(&tree->lock);
109 }
110 
111 static noinline void switch_commit_roots(struct btrfs_transaction *trans)
112 {
113 	struct btrfs_fs_info *fs_info = trans->fs_info;
114 	struct btrfs_root *root, *tmp;
115 
116 	down_write(&fs_info->commit_root_sem);
117 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
118 				 dirty_list) {
119 		list_del_init(&root->dirty_list);
120 		free_extent_buffer(root->commit_root);
121 		root->commit_root = btrfs_root_node(root);
122 		if (is_fstree(root->root_key.objectid))
123 			btrfs_unpin_free_ino(root);
124 		clear_btree_io_tree(&root->dirty_log_pages);
125 	}
126 
127 	/* We can free old roots now. */
128 	spin_lock(&trans->dropped_roots_lock);
129 	while (!list_empty(&trans->dropped_roots)) {
130 		root = list_first_entry(&trans->dropped_roots,
131 					struct btrfs_root, root_list);
132 		list_del_init(&root->root_list);
133 		spin_unlock(&trans->dropped_roots_lock);
134 		btrfs_drop_and_free_fs_root(fs_info, root);
135 		spin_lock(&trans->dropped_roots_lock);
136 	}
137 	spin_unlock(&trans->dropped_roots_lock);
138 	up_write(&fs_info->commit_root_sem);
139 }
140 
141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
142 					 unsigned int type)
143 {
144 	if (type & TRANS_EXTWRITERS)
145 		atomic_inc(&trans->num_extwriters);
146 }
147 
148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
149 					 unsigned int type)
150 {
151 	if (type & TRANS_EXTWRITERS)
152 		atomic_dec(&trans->num_extwriters);
153 }
154 
155 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
156 					  unsigned int type)
157 {
158 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
159 }
160 
161 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
162 {
163 	return atomic_read(&trans->num_extwriters);
164 }
165 
166 /*
167  * either allocate a new transaction or hop into the existing one
168  */
169 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
170 				     unsigned int type)
171 {
172 	struct btrfs_transaction *cur_trans;
173 
174 	spin_lock(&fs_info->trans_lock);
175 loop:
176 	/* The file system has been taken offline. No new transactions. */
177 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
178 		spin_unlock(&fs_info->trans_lock);
179 		return -EROFS;
180 	}
181 
182 	cur_trans = fs_info->running_transaction;
183 	if (cur_trans) {
184 		if (cur_trans->aborted) {
185 			spin_unlock(&fs_info->trans_lock);
186 			return cur_trans->aborted;
187 		}
188 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
189 			spin_unlock(&fs_info->trans_lock);
190 			return -EBUSY;
191 		}
192 		refcount_inc(&cur_trans->use_count);
193 		atomic_inc(&cur_trans->num_writers);
194 		extwriter_counter_inc(cur_trans, type);
195 		spin_unlock(&fs_info->trans_lock);
196 		return 0;
197 	}
198 	spin_unlock(&fs_info->trans_lock);
199 
200 	/*
201 	 * If we are ATTACH, we just want to catch the current transaction,
202 	 * and commit it. If there is no transaction, just return ENOENT.
203 	 */
204 	if (type == TRANS_ATTACH)
205 		return -ENOENT;
206 
207 	/*
208 	 * JOIN_NOLOCK only happens during the transaction commit, so
209 	 * it is impossible that ->running_transaction is NULL
210 	 */
211 	BUG_ON(type == TRANS_JOIN_NOLOCK);
212 
213 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
214 	if (!cur_trans)
215 		return -ENOMEM;
216 
217 	spin_lock(&fs_info->trans_lock);
218 	if (fs_info->running_transaction) {
219 		/*
220 		 * someone started a transaction after we unlocked.  Make sure
221 		 * to redo the checks above
222 		 */
223 		kfree(cur_trans);
224 		goto loop;
225 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
226 		spin_unlock(&fs_info->trans_lock);
227 		kfree(cur_trans);
228 		return -EROFS;
229 	}
230 
231 	cur_trans->fs_info = fs_info;
232 	atomic_set(&cur_trans->num_writers, 1);
233 	extwriter_counter_init(cur_trans, type);
234 	init_waitqueue_head(&cur_trans->writer_wait);
235 	init_waitqueue_head(&cur_trans->commit_wait);
236 	init_waitqueue_head(&cur_trans->pending_wait);
237 	cur_trans->state = TRANS_STATE_RUNNING;
238 	/*
239 	 * One for this trans handle, one so it will live on until we
240 	 * commit the transaction.
241 	 */
242 	refcount_set(&cur_trans->use_count, 2);
243 	atomic_set(&cur_trans->pending_ordered, 0);
244 	cur_trans->flags = 0;
245 	cur_trans->start_time = ktime_get_seconds();
246 
247 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
248 
249 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
250 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
251 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
252 
253 	/*
254 	 * although the tree mod log is per file system and not per transaction,
255 	 * the log must never go across transaction boundaries.
256 	 */
257 	smp_mb();
258 	if (!list_empty(&fs_info->tree_mod_seq_list))
259 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
260 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
261 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
262 	atomic64_set(&fs_info->tree_mod_seq, 0);
263 
264 	spin_lock_init(&cur_trans->delayed_refs.lock);
265 
266 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
267 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
268 	INIT_LIST_HEAD(&cur_trans->switch_commits);
269 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
270 	INIT_LIST_HEAD(&cur_trans->io_bgs);
271 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
272 	mutex_init(&cur_trans->cache_write_mutex);
273 	cur_trans->num_dirty_bgs = 0;
274 	spin_lock_init(&cur_trans->dirty_bgs_lock);
275 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
276 	spin_lock_init(&cur_trans->dropped_roots_lock);
277 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
278 	extent_io_tree_init(&cur_trans->dirty_pages,
279 			     fs_info->btree_inode);
280 	fs_info->generation++;
281 	cur_trans->transid = fs_info->generation;
282 	fs_info->running_transaction = cur_trans;
283 	cur_trans->aborted = 0;
284 	spin_unlock(&fs_info->trans_lock);
285 
286 	return 0;
287 }
288 
289 /*
290  * this does all the record keeping required to make sure that a reference
291  * counted root is properly recorded in a given transaction.  This is required
292  * to make sure the old root from before we joined the transaction is deleted
293  * when the transaction commits
294  */
295 static int record_root_in_trans(struct btrfs_trans_handle *trans,
296 			       struct btrfs_root *root,
297 			       int force)
298 {
299 	struct btrfs_fs_info *fs_info = root->fs_info;
300 
301 	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
302 	    root->last_trans < trans->transid) || force) {
303 		WARN_ON(root == fs_info->extent_root);
304 		WARN_ON(!force && root->commit_root != root->node);
305 
306 		/*
307 		 * see below for IN_TRANS_SETUP usage rules
308 		 * we have the reloc mutex held now, so there
309 		 * is only one writer in this function
310 		 */
311 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
312 
313 		/* make sure readers find IN_TRANS_SETUP before
314 		 * they find our root->last_trans update
315 		 */
316 		smp_wmb();
317 
318 		spin_lock(&fs_info->fs_roots_radix_lock);
319 		if (root->last_trans == trans->transid && !force) {
320 			spin_unlock(&fs_info->fs_roots_radix_lock);
321 			return 0;
322 		}
323 		radix_tree_tag_set(&fs_info->fs_roots_radix,
324 				   (unsigned long)root->root_key.objectid,
325 				   BTRFS_ROOT_TRANS_TAG);
326 		spin_unlock(&fs_info->fs_roots_radix_lock);
327 		root->last_trans = trans->transid;
328 
329 		/* this is pretty tricky.  We don't want to
330 		 * take the relocation lock in btrfs_record_root_in_trans
331 		 * unless we're really doing the first setup for this root in
332 		 * this transaction.
333 		 *
334 		 * Normally we'd use root->last_trans as a flag to decide
335 		 * if we want to take the expensive mutex.
336 		 *
337 		 * But, we have to set root->last_trans before we
338 		 * init the relocation root, otherwise, we trip over warnings
339 		 * in ctree.c.  The solution used here is to flag ourselves
340 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
341 		 * fixing up the reloc trees and everyone must wait.
342 		 *
343 		 * When this is zero, they can trust root->last_trans and fly
344 		 * through btrfs_record_root_in_trans without having to take the
345 		 * lock.  smp_wmb() makes sure that all the writes above are
346 		 * done before we pop in the zero below
347 		 */
348 		btrfs_init_reloc_root(trans, root);
349 		smp_mb__before_atomic();
350 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
351 	}
352 	return 0;
353 }
354 
355 
356 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
357 			    struct btrfs_root *root)
358 {
359 	struct btrfs_fs_info *fs_info = root->fs_info;
360 	struct btrfs_transaction *cur_trans = trans->transaction;
361 
362 	/* Add ourselves to the transaction dropped list */
363 	spin_lock(&cur_trans->dropped_roots_lock);
364 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
365 	spin_unlock(&cur_trans->dropped_roots_lock);
366 
367 	/* Make sure we don't try to update the root at commit time */
368 	spin_lock(&fs_info->fs_roots_radix_lock);
369 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
370 			     (unsigned long)root->root_key.objectid,
371 			     BTRFS_ROOT_TRANS_TAG);
372 	spin_unlock(&fs_info->fs_roots_radix_lock);
373 }
374 
375 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
376 			       struct btrfs_root *root)
377 {
378 	struct btrfs_fs_info *fs_info = root->fs_info;
379 
380 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
381 		return 0;
382 
383 	/*
384 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
385 	 * and barriers
386 	 */
387 	smp_rmb();
388 	if (root->last_trans == trans->transid &&
389 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
390 		return 0;
391 
392 	mutex_lock(&fs_info->reloc_mutex);
393 	record_root_in_trans(trans, root, 0);
394 	mutex_unlock(&fs_info->reloc_mutex);
395 
396 	return 0;
397 }
398 
399 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
400 {
401 	return (trans->state >= TRANS_STATE_BLOCKED &&
402 		trans->state < TRANS_STATE_UNBLOCKED &&
403 		!trans->aborted);
404 }
405 
406 /* wait for commit against the current transaction to become unblocked
407  * when this is done, it is safe to start a new transaction, but the current
408  * transaction might not be fully on disk.
409  */
410 static void wait_current_trans(struct btrfs_fs_info *fs_info)
411 {
412 	struct btrfs_transaction *cur_trans;
413 
414 	spin_lock(&fs_info->trans_lock);
415 	cur_trans = fs_info->running_transaction;
416 	if (cur_trans && is_transaction_blocked(cur_trans)) {
417 		refcount_inc(&cur_trans->use_count);
418 		spin_unlock(&fs_info->trans_lock);
419 
420 		wait_event(fs_info->transaction_wait,
421 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
422 			   cur_trans->aborted);
423 		btrfs_put_transaction(cur_trans);
424 	} else {
425 		spin_unlock(&fs_info->trans_lock);
426 	}
427 }
428 
429 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
430 {
431 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
432 		return 0;
433 
434 	if (type == TRANS_START)
435 		return 1;
436 
437 	return 0;
438 }
439 
440 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
441 {
442 	struct btrfs_fs_info *fs_info = root->fs_info;
443 
444 	if (!fs_info->reloc_ctl ||
445 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
446 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
447 	    root->reloc_root)
448 		return false;
449 
450 	return true;
451 }
452 
453 static struct btrfs_trans_handle *
454 start_transaction(struct btrfs_root *root, unsigned int num_items,
455 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
456 		  bool enforce_qgroups)
457 {
458 	struct btrfs_fs_info *fs_info = root->fs_info;
459 
460 	struct btrfs_trans_handle *h;
461 	struct btrfs_transaction *cur_trans;
462 	u64 num_bytes = 0;
463 	u64 qgroup_reserved = 0;
464 	bool reloc_reserved = false;
465 	int ret;
466 
467 	/* Send isn't supposed to start transactions. */
468 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
469 
470 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
471 		return ERR_PTR(-EROFS);
472 
473 	if (current->journal_info) {
474 		WARN_ON(type & TRANS_EXTWRITERS);
475 		h = current->journal_info;
476 		refcount_inc(&h->use_count);
477 		WARN_ON(refcount_read(&h->use_count) > 2);
478 		h->orig_rsv = h->block_rsv;
479 		h->block_rsv = NULL;
480 		goto got_it;
481 	}
482 
483 	/*
484 	 * Do the reservation before we join the transaction so we can do all
485 	 * the appropriate flushing if need be.
486 	 */
487 	if (num_items && root != fs_info->chunk_root) {
488 		qgroup_reserved = num_items * fs_info->nodesize;
489 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
490 				enforce_qgroups);
491 		if (ret)
492 			return ERR_PTR(ret);
493 
494 		num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
495 		/*
496 		 * Do the reservation for the relocation root creation
497 		 */
498 		if (need_reserve_reloc_root(root)) {
499 			num_bytes += fs_info->nodesize;
500 			reloc_reserved = true;
501 		}
502 
503 		ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
504 					  num_bytes, flush);
505 		if (ret)
506 			goto reserve_fail;
507 	}
508 again:
509 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
510 	if (!h) {
511 		ret = -ENOMEM;
512 		goto alloc_fail;
513 	}
514 
515 	/*
516 	 * If we are JOIN_NOLOCK we're already committing a transaction and
517 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
518 	 * because we're already holding a ref.  We need this because we could
519 	 * have raced in and did an fsync() on a file which can kick a commit
520 	 * and then we deadlock with somebody doing a freeze.
521 	 *
522 	 * If we are ATTACH, it means we just want to catch the current
523 	 * transaction and commit it, so we needn't do sb_start_intwrite().
524 	 */
525 	if (type & __TRANS_FREEZABLE)
526 		sb_start_intwrite(fs_info->sb);
527 
528 	if (may_wait_transaction(fs_info, type))
529 		wait_current_trans(fs_info);
530 
531 	do {
532 		ret = join_transaction(fs_info, type);
533 		if (ret == -EBUSY) {
534 			wait_current_trans(fs_info);
535 			if (unlikely(type == TRANS_ATTACH))
536 				ret = -ENOENT;
537 		}
538 	} while (ret == -EBUSY);
539 
540 	if (ret < 0)
541 		goto join_fail;
542 
543 	cur_trans = fs_info->running_transaction;
544 
545 	h->transid = cur_trans->transid;
546 	h->transaction = cur_trans;
547 	h->root = root;
548 	refcount_set(&h->use_count, 1);
549 	h->fs_info = root->fs_info;
550 
551 	h->type = type;
552 	h->can_flush_pending_bgs = true;
553 	INIT_LIST_HEAD(&h->new_bgs);
554 
555 	smp_mb();
556 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
557 	    may_wait_transaction(fs_info, type)) {
558 		current->journal_info = h;
559 		btrfs_commit_transaction(h);
560 		goto again;
561 	}
562 
563 	if (num_bytes) {
564 		trace_btrfs_space_reservation(fs_info, "transaction",
565 					      h->transid, num_bytes, 1);
566 		h->block_rsv = &fs_info->trans_block_rsv;
567 		h->bytes_reserved = num_bytes;
568 		h->reloc_reserved = reloc_reserved;
569 	}
570 
571 got_it:
572 	btrfs_record_root_in_trans(h, root);
573 
574 	if (!current->journal_info)
575 		current->journal_info = h;
576 	return h;
577 
578 join_fail:
579 	if (type & __TRANS_FREEZABLE)
580 		sb_end_intwrite(fs_info->sb);
581 	kmem_cache_free(btrfs_trans_handle_cachep, h);
582 alloc_fail:
583 	if (num_bytes)
584 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
585 					num_bytes);
586 reserve_fail:
587 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
588 	return ERR_PTR(ret);
589 }
590 
591 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
592 						   unsigned int num_items)
593 {
594 	return start_transaction(root, num_items, TRANS_START,
595 				 BTRFS_RESERVE_FLUSH_ALL, true);
596 }
597 
598 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
599 					struct btrfs_root *root,
600 					unsigned int num_items,
601 					int min_factor)
602 {
603 	struct btrfs_fs_info *fs_info = root->fs_info;
604 	struct btrfs_trans_handle *trans;
605 	u64 num_bytes;
606 	int ret;
607 
608 	/*
609 	 * We have two callers: unlink and block group removal.  The
610 	 * former should succeed even if we will temporarily exceed
611 	 * quota and the latter operates on the extent root so
612 	 * qgroup enforcement is ignored anyway.
613 	 */
614 	trans = start_transaction(root, num_items, TRANS_START,
615 				  BTRFS_RESERVE_FLUSH_ALL, false);
616 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
617 		return trans;
618 
619 	trans = btrfs_start_transaction(root, 0);
620 	if (IS_ERR(trans))
621 		return trans;
622 
623 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
624 	ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
625 				       num_bytes, min_factor);
626 	if (ret) {
627 		btrfs_end_transaction(trans);
628 		return ERR_PTR(ret);
629 	}
630 
631 	trans->block_rsv = &fs_info->trans_block_rsv;
632 	trans->bytes_reserved = num_bytes;
633 	trace_btrfs_space_reservation(fs_info, "transaction",
634 				      trans->transid, num_bytes, 1);
635 
636 	return trans;
637 }
638 
639 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
640 {
641 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
642 				 true);
643 }
644 
645 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
646 {
647 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
648 				 BTRFS_RESERVE_NO_FLUSH, true);
649 }
650 
651 /*
652  * btrfs_attach_transaction() - catch the running transaction
653  *
654  * It is used when we want to commit the current the transaction, but
655  * don't want to start a new one.
656  *
657  * Note: If this function return -ENOENT, it just means there is no
658  * running transaction. But it is possible that the inactive transaction
659  * is still in the memory, not fully on disk. If you hope there is no
660  * inactive transaction in the fs when -ENOENT is returned, you should
661  * invoke
662  *     btrfs_attach_transaction_barrier()
663  */
664 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
665 {
666 	return start_transaction(root, 0, TRANS_ATTACH,
667 				 BTRFS_RESERVE_NO_FLUSH, true);
668 }
669 
670 /*
671  * btrfs_attach_transaction_barrier() - catch the running transaction
672  *
673  * It is similar to the above function, the differentia is this one
674  * will wait for all the inactive transactions until they fully
675  * complete.
676  */
677 struct btrfs_trans_handle *
678 btrfs_attach_transaction_barrier(struct btrfs_root *root)
679 {
680 	struct btrfs_trans_handle *trans;
681 
682 	trans = start_transaction(root, 0, TRANS_ATTACH,
683 				  BTRFS_RESERVE_NO_FLUSH, true);
684 	if (trans == ERR_PTR(-ENOENT))
685 		btrfs_wait_for_commit(root->fs_info, 0);
686 
687 	return trans;
688 }
689 
690 /* wait for a transaction commit to be fully complete */
691 static noinline void wait_for_commit(struct btrfs_transaction *commit)
692 {
693 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
694 }
695 
696 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
697 {
698 	struct btrfs_transaction *cur_trans = NULL, *t;
699 	int ret = 0;
700 
701 	if (transid) {
702 		if (transid <= fs_info->last_trans_committed)
703 			goto out;
704 
705 		/* find specified transaction */
706 		spin_lock(&fs_info->trans_lock);
707 		list_for_each_entry(t, &fs_info->trans_list, list) {
708 			if (t->transid == transid) {
709 				cur_trans = t;
710 				refcount_inc(&cur_trans->use_count);
711 				ret = 0;
712 				break;
713 			}
714 			if (t->transid > transid) {
715 				ret = 0;
716 				break;
717 			}
718 		}
719 		spin_unlock(&fs_info->trans_lock);
720 
721 		/*
722 		 * The specified transaction doesn't exist, or we
723 		 * raced with btrfs_commit_transaction
724 		 */
725 		if (!cur_trans) {
726 			if (transid > fs_info->last_trans_committed)
727 				ret = -EINVAL;
728 			goto out;
729 		}
730 	} else {
731 		/* find newest transaction that is committing | committed */
732 		spin_lock(&fs_info->trans_lock);
733 		list_for_each_entry_reverse(t, &fs_info->trans_list,
734 					    list) {
735 			if (t->state >= TRANS_STATE_COMMIT_START) {
736 				if (t->state == TRANS_STATE_COMPLETED)
737 					break;
738 				cur_trans = t;
739 				refcount_inc(&cur_trans->use_count);
740 				break;
741 			}
742 		}
743 		spin_unlock(&fs_info->trans_lock);
744 		if (!cur_trans)
745 			goto out;  /* nothing committing|committed */
746 	}
747 
748 	wait_for_commit(cur_trans);
749 	btrfs_put_transaction(cur_trans);
750 out:
751 	return ret;
752 }
753 
754 void btrfs_throttle(struct btrfs_fs_info *fs_info)
755 {
756 	wait_current_trans(fs_info);
757 }
758 
759 static int should_end_transaction(struct btrfs_trans_handle *trans)
760 {
761 	struct btrfs_fs_info *fs_info = trans->fs_info;
762 
763 	if (btrfs_check_space_for_delayed_refs(trans))
764 		return 1;
765 
766 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
767 }
768 
769 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
770 {
771 	struct btrfs_transaction *cur_trans = trans->transaction;
772 	int updates;
773 	int err;
774 
775 	smp_mb();
776 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
777 	    cur_trans->delayed_refs.flushing)
778 		return 1;
779 
780 	updates = trans->delayed_ref_updates;
781 	trans->delayed_ref_updates = 0;
782 	if (updates) {
783 		err = btrfs_run_delayed_refs(trans, updates * 2);
784 		if (err) /* Error code will also eval true */
785 			return err;
786 	}
787 
788 	return should_end_transaction(trans);
789 }
790 
791 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
792 
793 {
794 	struct btrfs_fs_info *fs_info = trans->fs_info;
795 
796 	if (!trans->block_rsv) {
797 		ASSERT(!trans->bytes_reserved);
798 		return;
799 	}
800 
801 	if (!trans->bytes_reserved)
802 		return;
803 
804 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
805 	trace_btrfs_space_reservation(fs_info, "transaction",
806 				      trans->transid, trans->bytes_reserved, 0);
807 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
808 				trans->bytes_reserved);
809 	trans->bytes_reserved = 0;
810 }
811 
812 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
813 				   int throttle)
814 {
815 	struct btrfs_fs_info *info = trans->fs_info;
816 	struct btrfs_transaction *cur_trans = trans->transaction;
817 	u64 transid = trans->transid;
818 	unsigned long cur = trans->delayed_ref_updates;
819 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
820 	int err = 0;
821 	int must_run_delayed_refs = 0;
822 
823 	if (refcount_read(&trans->use_count) > 1) {
824 		refcount_dec(&trans->use_count);
825 		trans->block_rsv = trans->orig_rsv;
826 		return 0;
827 	}
828 
829 	btrfs_trans_release_metadata(trans);
830 	trans->block_rsv = NULL;
831 
832 	if (!list_empty(&trans->new_bgs))
833 		btrfs_create_pending_block_groups(trans);
834 
835 	trans->delayed_ref_updates = 0;
836 	if (!trans->sync) {
837 		must_run_delayed_refs =
838 			btrfs_should_throttle_delayed_refs(trans);
839 		cur = max_t(unsigned long, cur, 32);
840 
841 		/*
842 		 * don't make the caller wait if they are from a NOLOCK
843 		 * or ATTACH transaction, it will deadlock with commit
844 		 */
845 		if (must_run_delayed_refs == 1 &&
846 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
847 			must_run_delayed_refs = 2;
848 	}
849 
850 	btrfs_trans_release_metadata(trans);
851 	trans->block_rsv = NULL;
852 
853 	if (!list_empty(&trans->new_bgs))
854 		btrfs_create_pending_block_groups(trans);
855 
856 	btrfs_trans_release_chunk_metadata(trans);
857 
858 	if (lock && should_end_transaction(trans) &&
859 	    READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
860 		spin_lock(&info->trans_lock);
861 		if (cur_trans->state == TRANS_STATE_RUNNING)
862 			cur_trans->state = TRANS_STATE_BLOCKED;
863 		spin_unlock(&info->trans_lock);
864 	}
865 
866 	if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
867 		if (throttle)
868 			return btrfs_commit_transaction(trans);
869 		else
870 			wake_up_process(info->transaction_kthread);
871 	}
872 
873 	if (trans->type & __TRANS_FREEZABLE)
874 		sb_end_intwrite(info->sb);
875 
876 	WARN_ON(cur_trans != info->running_transaction);
877 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
878 	atomic_dec(&cur_trans->num_writers);
879 	extwriter_counter_dec(cur_trans, trans->type);
880 
881 	cond_wake_up(&cur_trans->writer_wait);
882 	btrfs_put_transaction(cur_trans);
883 
884 	if (current->journal_info == trans)
885 		current->journal_info = NULL;
886 
887 	if (throttle)
888 		btrfs_run_delayed_iputs(info);
889 
890 	if (trans->aborted ||
891 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
892 		wake_up_process(info->transaction_kthread);
893 		err = -EIO;
894 	}
895 
896 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
897 	if (must_run_delayed_refs) {
898 		btrfs_async_run_delayed_refs(info, cur, transid,
899 					     must_run_delayed_refs == 1);
900 	}
901 	return err;
902 }
903 
904 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
905 {
906 	return __btrfs_end_transaction(trans, 0);
907 }
908 
909 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
910 {
911 	return __btrfs_end_transaction(trans, 1);
912 }
913 
914 /*
915  * when btree blocks are allocated, they have some corresponding bits set for
916  * them in one of two extent_io trees.  This is used to make sure all of
917  * those extents are sent to disk but does not wait on them
918  */
919 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
920 			       struct extent_io_tree *dirty_pages, int mark)
921 {
922 	int err = 0;
923 	int werr = 0;
924 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
925 	struct extent_state *cached_state = NULL;
926 	u64 start = 0;
927 	u64 end;
928 
929 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
930 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
931 				      mark, &cached_state)) {
932 		bool wait_writeback = false;
933 
934 		err = convert_extent_bit(dirty_pages, start, end,
935 					 EXTENT_NEED_WAIT,
936 					 mark, &cached_state);
937 		/*
938 		 * convert_extent_bit can return -ENOMEM, which is most of the
939 		 * time a temporary error. So when it happens, ignore the error
940 		 * and wait for writeback of this range to finish - because we
941 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
942 		 * to __btrfs_wait_marked_extents() would not know that
943 		 * writeback for this range started and therefore wouldn't
944 		 * wait for it to finish - we don't want to commit a
945 		 * superblock that points to btree nodes/leafs for which
946 		 * writeback hasn't finished yet (and without errors).
947 		 * We cleanup any entries left in the io tree when committing
948 		 * the transaction (through clear_btree_io_tree()).
949 		 */
950 		if (err == -ENOMEM) {
951 			err = 0;
952 			wait_writeback = true;
953 		}
954 		if (!err)
955 			err = filemap_fdatawrite_range(mapping, start, end);
956 		if (err)
957 			werr = err;
958 		else if (wait_writeback)
959 			werr = filemap_fdatawait_range(mapping, start, end);
960 		free_extent_state(cached_state);
961 		cached_state = NULL;
962 		cond_resched();
963 		start = end + 1;
964 	}
965 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
966 	return werr;
967 }
968 
969 /*
970  * when btree blocks are allocated, they have some corresponding bits set for
971  * them in one of two extent_io trees.  This is used to make sure all of
972  * those extents are on disk for transaction or log commit.  We wait
973  * on all the pages and clear them from the dirty pages state tree
974  */
975 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
976 				       struct extent_io_tree *dirty_pages)
977 {
978 	int err = 0;
979 	int werr = 0;
980 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
981 	struct extent_state *cached_state = NULL;
982 	u64 start = 0;
983 	u64 end;
984 
985 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
986 				      EXTENT_NEED_WAIT, &cached_state)) {
987 		/*
988 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
989 		 * When committing the transaction, we'll remove any entries
990 		 * left in the io tree. For a log commit, we don't remove them
991 		 * after committing the log because the tree can be accessed
992 		 * concurrently - we do it only at transaction commit time when
993 		 * it's safe to do it (through clear_btree_io_tree()).
994 		 */
995 		err = clear_extent_bit(dirty_pages, start, end,
996 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
997 		if (err == -ENOMEM)
998 			err = 0;
999 		if (!err)
1000 			err = filemap_fdatawait_range(mapping, start, end);
1001 		if (err)
1002 			werr = err;
1003 		free_extent_state(cached_state);
1004 		cached_state = NULL;
1005 		cond_resched();
1006 		start = end + 1;
1007 	}
1008 	if (err)
1009 		werr = err;
1010 	return werr;
1011 }
1012 
1013 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1014 		       struct extent_io_tree *dirty_pages)
1015 {
1016 	bool errors = false;
1017 	int err;
1018 
1019 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1020 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1021 		errors = true;
1022 
1023 	if (errors && !err)
1024 		err = -EIO;
1025 	return err;
1026 }
1027 
1028 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1029 {
1030 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1031 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1032 	bool errors = false;
1033 	int err;
1034 
1035 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1036 
1037 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1038 	if ((mark & EXTENT_DIRTY) &&
1039 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1040 		errors = true;
1041 
1042 	if ((mark & EXTENT_NEW) &&
1043 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1044 		errors = true;
1045 
1046 	if (errors && !err)
1047 		err = -EIO;
1048 	return err;
1049 }
1050 
1051 /*
1052  * When btree blocks are allocated the corresponding extents are marked dirty.
1053  * This function ensures such extents are persisted on disk for transaction or
1054  * log commit.
1055  *
1056  * @trans: transaction whose dirty pages we'd like to write
1057  */
1058 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1059 {
1060 	int ret;
1061 	int ret2;
1062 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1063 	struct btrfs_fs_info *fs_info = trans->fs_info;
1064 	struct blk_plug plug;
1065 
1066 	blk_start_plug(&plug);
1067 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1068 	blk_finish_plug(&plug);
1069 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1070 
1071 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1072 
1073 	if (ret)
1074 		return ret;
1075 	else if (ret2)
1076 		return ret2;
1077 	else
1078 		return 0;
1079 }
1080 
1081 /*
1082  * this is used to update the root pointer in the tree of tree roots.
1083  *
1084  * But, in the case of the extent allocation tree, updating the root
1085  * pointer may allocate blocks which may change the root of the extent
1086  * allocation tree.
1087  *
1088  * So, this loops and repeats and makes sure the cowonly root didn't
1089  * change while the root pointer was being updated in the metadata.
1090  */
1091 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1092 			       struct btrfs_root *root)
1093 {
1094 	int ret;
1095 	u64 old_root_bytenr;
1096 	u64 old_root_used;
1097 	struct btrfs_fs_info *fs_info = root->fs_info;
1098 	struct btrfs_root *tree_root = fs_info->tree_root;
1099 
1100 	old_root_used = btrfs_root_used(&root->root_item);
1101 
1102 	while (1) {
1103 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1104 		if (old_root_bytenr == root->node->start &&
1105 		    old_root_used == btrfs_root_used(&root->root_item))
1106 			break;
1107 
1108 		btrfs_set_root_node(&root->root_item, root->node);
1109 		ret = btrfs_update_root(trans, tree_root,
1110 					&root->root_key,
1111 					&root->root_item);
1112 		if (ret)
1113 			return ret;
1114 
1115 		old_root_used = btrfs_root_used(&root->root_item);
1116 	}
1117 
1118 	return 0;
1119 }
1120 
1121 /*
1122  * update all the cowonly tree roots on disk
1123  *
1124  * The error handling in this function may not be obvious. Any of the
1125  * failures will cause the file system to go offline. We still need
1126  * to clean up the delayed refs.
1127  */
1128 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1129 {
1130 	struct btrfs_fs_info *fs_info = trans->fs_info;
1131 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1132 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1133 	struct list_head *next;
1134 	struct extent_buffer *eb;
1135 	int ret;
1136 
1137 	eb = btrfs_lock_root_node(fs_info->tree_root);
1138 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1139 			      0, &eb);
1140 	btrfs_tree_unlock(eb);
1141 	free_extent_buffer(eb);
1142 
1143 	if (ret)
1144 		return ret;
1145 
1146 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1147 	if (ret)
1148 		return ret;
1149 
1150 	ret = btrfs_run_dev_stats(trans, fs_info);
1151 	if (ret)
1152 		return ret;
1153 	ret = btrfs_run_dev_replace(trans, fs_info);
1154 	if (ret)
1155 		return ret;
1156 	ret = btrfs_run_qgroups(trans);
1157 	if (ret)
1158 		return ret;
1159 
1160 	ret = btrfs_setup_space_cache(trans, fs_info);
1161 	if (ret)
1162 		return ret;
1163 
1164 	/* run_qgroups might have added some more refs */
1165 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1166 	if (ret)
1167 		return ret;
1168 again:
1169 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1170 		struct btrfs_root *root;
1171 		next = fs_info->dirty_cowonly_roots.next;
1172 		list_del_init(next);
1173 		root = list_entry(next, struct btrfs_root, dirty_list);
1174 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1175 
1176 		if (root != fs_info->extent_root)
1177 			list_add_tail(&root->dirty_list,
1178 				      &trans->transaction->switch_commits);
1179 		ret = update_cowonly_root(trans, root);
1180 		if (ret)
1181 			return ret;
1182 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1183 		if (ret)
1184 			return ret;
1185 	}
1186 
1187 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1188 		ret = btrfs_write_dirty_block_groups(trans, fs_info);
1189 		if (ret)
1190 			return ret;
1191 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1192 		if (ret)
1193 			return ret;
1194 	}
1195 
1196 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1197 		goto again;
1198 
1199 	list_add_tail(&fs_info->extent_root->dirty_list,
1200 		      &trans->transaction->switch_commits);
1201 
1202 	/* Update dev-replace pointer once everything is committed */
1203 	fs_info->dev_replace.committed_cursor_left =
1204 		fs_info->dev_replace.cursor_left_last_write_of_item;
1205 
1206 	return 0;
1207 }
1208 
1209 /*
1210  * dead roots are old snapshots that need to be deleted.  This allocates
1211  * a dirty root struct and adds it into the list of dead roots that need to
1212  * be deleted
1213  */
1214 void btrfs_add_dead_root(struct btrfs_root *root)
1215 {
1216 	struct btrfs_fs_info *fs_info = root->fs_info;
1217 
1218 	spin_lock(&fs_info->trans_lock);
1219 	if (list_empty(&root->root_list))
1220 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1221 	spin_unlock(&fs_info->trans_lock);
1222 }
1223 
1224 /*
1225  * update all the cowonly tree roots on disk
1226  */
1227 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1228 {
1229 	struct btrfs_fs_info *fs_info = trans->fs_info;
1230 	struct btrfs_root *gang[8];
1231 	int i;
1232 	int ret;
1233 	int err = 0;
1234 
1235 	spin_lock(&fs_info->fs_roots_radix_lock);
1236 	while (1) {
1237 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1238 						 (void **)gang, 0,
1239 						 ARRAY_SIZE(gang),
1240 						 BTRFS_ROOT_TRANS_TAG);
1241 		if (ret == 0)
1242 			break;
1243 		for (i = 0; i < ret; i++) {
1244 			struct btrfs_root *root = gang[i];
1245 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1246 					(unsigned long)root->root_key.objectid,
1247 					BTRFS_ROOT_TRANS_TAG);
1248 			spin_unlock(&fs_info->fs_roots_radix_lock);
1249 
1250 			btrfs_free_log(trans, root);
1251 			btrfs_update_reloc_root(trans, root);
1252 
1253 			btrfs_save_ino_cache(root, trans);
1254 
1255 			/* see comments in should_cow_block() */
1256 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1257 			smp_mb__after_atomic();
1258 
1259 			if (root->commit_root != root->node) {
1260 				list_add_tail(&root->dirty_list,
1261 					&trans->transaction->switch_commits);
1262 				btrfs_set_root_node(&root->root_item,
1263 						    root->node);
1264 			}
1265 
1266 			err = btrfs_update_root(trans, fs_info->tree_root,
1267 						&root->root_key,
1268 						&root->root_item);
1269 			spin_lock(&fs_info->fs_roots_radix_lock);
1270 			if (err)
1271 				break;
1272 			btrfs_qgroup_free_meta_all_pertrans(root);
1273 		}
1274 	}
1275 	spin_unlock(&fs_info->fs_roots_radix_lock);
1276 	return err;
1277 }
1278 
1279 /*
1280  * defrag a given btree.
1281  * Every leaf in the btree is read and defragged.
1282  */
1283 int btrfs_defrag_root(struct btrfs_root *root)
1284 {
1285 	struct btrfs_fs_info *info = root->fs_info;
1286 	struct btrfs_trans_handle *trans;
1287 	int ret;
1288 
1289 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1290 		return 0;
1291 
1292 	while (1) {
1293 		trans = btrfs_start_transaction(root, 0);
1294 		if (IS_ERR(trans))
1295 			return PTR_ERR(trans);
1296 
1297 		ret = btrfs_defrag_leaves(trans, root);
1298 
1299 		btrfs_end_transaction(trans);
1300 		btrfs_btree_balance_dirty(info);
1301 		cond_resched();
1302 
1303 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1304 			break;
1305 
1306 		if (btrfs_defrag_cancelled(info)) {
1307 			btrfs_debug(info, "defrag_root cancelled");
1308 			ret = -EAGAIN;
1309 			break;
1310 		}
1311 	}
1312 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1313 	return ret;
1314 }
1315 
1316 /*
1317  * Do all special snapshot related qgroup dirty hack.
1318  *
1319  * Will do all needed qgroup inherit and dirty hack like switch commit
1320  * roots inside one transaction and write all btree into disk, to make
1321  * qgroup works.
1322  */
1323 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1324 				   struct btrfs_root *src,
1325 				   struct btrfs_root *parent,
1326 				   struct btrfs_qgroup_inherit *inherit,
1327 				   u64 dst_objectid)
1328 {
1329 	struct btrfs_fs_info *fs_info = src->fs_info;
1330 	int ret;
1331 
1332 	/*
1333 	 * Save some performance in the case that qgroups are not
1334 	 * enabled. If this check races with the ioctl, rescan will
1335 	 * kick in anyway.
1336 	 */
1337 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1338 		return 0;
1339 
1340 	/*
1341 	 * Ensure dirty @src will be commited.  Or, after comming
1342 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1343 	 * recorded root will never be updated again, causing an outdated root
1344 	 * item.
1345 	 */
1346 	record_root_in_trans(trans, src, 1);
1347 
1348 	/*
1349 	 * We are going to commit transaction, see btrfs_commit_transaction()
1350 	 * comment for reason locking tree_log_mutex
1351 	 */
1352 	mutex_lock(&fs_info->tree_log_mutex);
1353 
1354 	ret = commit_fs_roots(trans);
1355 	if (ret)
1356 		goto out;
1357 	ret = btrfs_qgroup_account_extents(trans);
1358 	if (ret < 0)
1359 		goto out;
1360 
1361 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1362 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1363 				   inherit);
1364 	if (ret < 0)
1365 		goto out;
1366 
1367 	/*
1368 	 * Now we do a simplified commit transaction, which will:
1369 	 * 1) commit all subvolume and extent tree
1370 	 *    To ensure all subvolume and extent tree have a valid
1371 	 *    commit_root to accounting later insert_dir_item()
1372 	 * 2) write all btree blocks onto disk
1373 	 *    This is to make sure later btree modification will be cowed
1374 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1375 	 * In this simplified commit, we don't really care about other trees
1376 	 * like chunk and root tree, as they won't affect qgroup.
1377 	 * And we don't write super to avoid half committed status.
1378 	 */
1379 	ret = commit_cowonly_roots(trans);
1380 	if (ret)
1381 		goto out;
1382 	switch_commit_roots(trans->transaction);
1383 	ret = btrfs_write_and_wait_transaction(trans);
1384 	if (ret)
1385 		btrfs_handle_fs_error(fs_info, ret,
1386 			"Error while writing out transaction for qgroup");
1387 
1388 out:
1389 	mutex_unlock(&fs_info->tree_log_mutex);
1390 
1391 	/*
1392 	 * Force parent root to be updated, as we recorded it before so its
1393 	 * last_trans == cur_transid.
1394 	 * Or it won't be committed again onto disk after later
1395 	 * insert_dir_item()
1396 	 */
1397 	if (!ret)
1398 		record_root_in_trans(trans, parent, 1);
1399 	return ret;
1400 }
1401 
1402 /*
1403  * new snapshots need to be created at a very specific time in the
1404  * transaction commit.  This does the actual creation.
1405  *
1406  * Note:
1407  * If the error which may affect the commitment of the current transaction
1408  * happens, we should return the error number. If the error which just affect
1409  * the creation of the pending snapshots, just return 0.
1410  */
1411 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1412 				   struct btrfs_pending_snapshot *pending)
1413 {
1414 
1415 	struct btrfs_fs_info *fs_info = trans->fs_info;
1416 	struct btrfs_key key;
1417 	struct btrfs_root_item *new_root_item;
1418 	struct btrfs_root *tree_root = fs_info->tree_root;
1419 	struct btrfs_root *root = pending->root;
1420 	struct btrfs_root *parent_root;
1421 	struct btrfs_block_rsv *rsv;
1422 	struct inode *parent_inode;
1423 	struct btrfs_path *path;
1424 	struct btrfs_dir_item *dir_item;
1425 	struct dentry *dentry;
1426 	struct extent_buffer *tmp;
1427 	struct extent_buffer *old;
1428 	struct timespec64 cur_time;
1429 	int ret = 0;
1430 	u64 to_reserve = 0;
1431 	u64 index = 0;
1432 	u64 objectid;
1433 	u64 root_flags;
1434 	uuid_le new_uuid;
1435 
1436 	ASSERT(pending->path);
1437 	path = pending->path;
1438 
1439 	ASSERT(pending->root_item);
1440 	new_root_item = pending->root_item;
1441 
1442 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1443 	if (pending->error)
1444 		goto no_free_objectid;
1445 
1446 	/*
1447 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1448 	 * accounted by later btrfs_qgroup_inherit().
1449 	 */
1450 	btrfs_set_skip_qgroup(trans, objectid);
1451 
1452 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1453 
1454 	if (to_reserve > 0) {
1455 		pending->error = btrfs_block_rsv_add(root,
1456 						     &pending->block_rsv,
1457 						     to_reserve,
1458 						     BTRFS_RESERVE_NO_FLUSH);
1459 		if (pending->error)
1460 			goto clear_skip_qgroup;
1461 	}
1462 
1463 	key.objectid = objectid;
1464 	key.offset = (u64)-1;
1465 	key.type = BTRFS_ROOT_ITEM_KEY;
1466 
1467 	rsv = trans->block_rsv;
1468 	trans->block_rsv = &pending->block_rsv;
1469 	trans->bytes_reserved = trans->block_rsv->reserved;
1470 	trace_btrfs_space_reservation(fs_info, "transaction",
1471 				      trans->transid,
1472 				      trans->bytes_reserved, 1);
1473 	dentry = pending->dentry;
1474 	parent_inode = pending->dir;
1475 	parent_root = BTRFS_I(parent_inode)->root;
1476 	record_root_in_trans(trans, parent_root, 0);
1477 
1478 	cur_time = current_time(parent_inode);
1479 
1480 	/*
1481 	 * insert the directory item
1482 	 */
1483 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1484 	BUG_ON(ret); /* -ENOMEM */
1485 
1486 	/* check if there is a file/dir which has the same name. */
1487 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1488 					 btrfs_ino(BTRFS_I(parent_inode)),
1489 					 dentry->d_name.name,
1490 					 dentry->d_name.len, 0);
1491 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1492 		pending->error = -EEXIST;
1493 		goto dir_item_existed;
1494 	} else if (IS_ERR(dir_item)) {
1495 		ret = PTR_ERR(dir_item);
1496 		btrfs_abort_transaction(trans, ret);
1497 		goto fail;
1498 	}
1499 	btrfs_release_path(path);
1500 
1501 	/*
1502 	 * pull in the delayed directory update
1503 	 * and the delayed inode item
1504 	 * otherwise we corrupt the FS during
1505 	 * snapshot
1506 	 */
1507 	ret = btrfs_run_delayed_items(trans);
1508 	if (ret) {	/* Transaction aborted */
1509 		btrfs_abort_transaction(trans, ret);
1510 		goto fail;
1511 	}
1512 
1513 	record_root_in_trans(trans, root, 0);
1514 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1515 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1516 	btrfs_check_and_init_root_item(new_root_item);
1517 
1518 	root_flags = btrfs_root_flags(new_root_item);
1519 	if (pending->readonly)
1520 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1521 	else
1522 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1523 	btrfs_set_root_flags(new_root_item, root_flags);
1524 
1525 	btrfs_set_root_generation_v2(new_root_item,
1526 			trans->transid);
1527 	uuid_le_gen(&new_uuid);
1528 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1529 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1530 			BTRFS_UUID_SIZE);
1531 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1532 		memset(new_root_item->received_uuid, 0,
1533 		       sizeof(new_root_item->received_uuid));
1534 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1535 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1536 		btrfs_set_root_stransid(new_root_item, 0);
1537 		btrfs_set_root_rtransid(new_root_item, 0);
1538 	}
1539 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1540 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1541 	btrfs_set_root_otransid(new_root_item, trans->transid);
1542 
1543 	old = btrfs_lock_root_node(root);
1544 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1545 	if (ret) {
1546 		btrfs_tree_unlock(old);
1547 		free_extent_buffer(old);
1548 		btrfs_abort_transaction(trans, ret);
1549 		goto fail;
1550 	}
1551 
1552 	btrfs_set_lock_blocking(old);
1553 
1554 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1555 	/* clean up in any case */
1556 	btrfs_tree_unlock(old);
1557 	free_extent_buffer(old);
1558 	if (ret) {
1559 		btrfs_abort_transaction(trans, ret);
1560 		goto fail;
1561 	}
1562 	/* see comments in should_cow_block() */
1563 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1564 	smp_wmb();
1565 
1566 	btrfs_set_root_node(new_root_item, tmp);
1567 	/* record when the snapshot was created in key.offset */
1568 	key.offset = trans->transid;
1569 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1570 	btrfs_tree_unlock(tmp);
1571 	free_extent_buffer(tmp);
1572 	if (ret) {
1573 		btrfs_abort_transaction(trans, ret);
1574 		goto fail;
1575 	}
1576 
1577 	/*
1578 	 * insert root back/forward references
1579 	 */
1580 	ret = btrfs_add_root_ref(trans, objectid,
1581 				 parent_root->root_key.objectid,
1582 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1583 				 dentry->d_name.name, dentry->d_name.len);
1584 	if (ret) {
1585 		btrfs_abort_transaction(trans, ret);
1586 		goto fail;
1587 	}
1588 
1589 	key.offset = (u64)-1;
1590 	pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1591 	if (IS_ERR(pending->snap)) {
1592 		ret = PTR_ERR(pending->snap);
1593 		btrfs_abort_transaction(trans, ret);
1594 		goto fail;
1595 	}
1596 
1597 	ret = btrfs_reloc_post_snapshot(trans, pending);
1598 	if (ret) {
1599 		btrfs_abort_transaction(trans, ret);
1600 		goto fail;
1601 	}
1602 
1603 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1604 	if (ret) {
1605 		btrfs_abort_transaction(trans, ret);
1606 		goto fail;
1607 	}
1608 
1609 	/*
1610 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1611 	 * snapshot hack to do fast snapshot.
1612 	 * To co-operate with that hack, we do hack again.
1613 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1614 	 */
1615 	ret = qgroup_account_snapshot(trans, root, parent_root,
1616 				      pending->inherit, objectid);
1617 	if (ret < 0)
1618 		goto fail;
1619 
1620 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1621 				    dentry->d_name.len, BTRFS_I(parent_inode),
1622 				    &key, BTRFS_FT_DIR, index);
1623 	/* We have check then name at the beginning, so it is impossible. */
1624 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1625 	if (ret) {
1626 		btrfs_abort_transaction(trans, ret);
1627 		goto fail;
1628 	}
1629 
1630 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1631 					 dentry->d_name.len * 2);
1632 	parent_inode->i_mtime = parent_inode->i_ctime =
1633 		current_time(parent_inode);
1634 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1635 	if (ret) {
1636 		btrfs_abort_transaction(trans, ret);
1637 		goto fail;
1638 	}
1639 	ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1640 				  objectid);
1641 	if (ret) {
1642 		btrfs_abort_transaction(trans, ret);
1643 		goto fail;
1644 	}
1645 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1646 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1647 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1648 					  objectid);
1649 		if (ret && ret != -EEXIST) {
1650 			btrfs_abort_transaction(trans, ret);
1651 			goto fail;
1652 		}
1653 	}
1654 
1655 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1656 	if (ret) {
1657 		btrfs_abort_transaction(trans, ret);
1658 		goto fail;
1659 	}
1660 
1661 fail:
1662 	pending->error = ret;
1663 dir_item_existed:
1664 	trans->block_rsv = rsv;
1665 	trans->bytes_reserved = 0;
1666 clear_skip_qgroup:
1667 	btrfs_clear_skip_qgroup(trans);
1668 no_free_objectid:
1669 	kfree(new_root_item);
1670 	pending->root_item = NULL;
1671 	btrfs_free_path(path);
1672 	pending->path = NULL;
1673 
1674 	return ret;
1675 }
1676 
1677 /*
1678  * create all the snapshots we've scheduled for creation
1679  */
1680 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1681 {
1682 	struct btrfs_pending_snapshot *pending, *next;
1683 	struct list_head *head = &trans->transaction->pending_snapshots;
1684 	int ret = 0;
1685 
1686 	list_for_each_entry_safe(pending, next, head, list) {
1687 		list_del(&pending->list);
1688 		ret = create_pending_snapshot(trans, pending);
1689 		if (ret)
1690 			break;
1691 	}
1692 	return ret;
1693 }
1694 
1695 static void update_super_roots(struct btrfs_fs_info *fs_info)
1696 {
1697 	struct btrfs_root_item *root_item;
1698 	struct btrfs_super_block *super;
1699 
1700 	super = fs_info->super_copy;
1701 
1702 	root_item = &fs_info->chunk_root->root_item;
1703 	super->chunk_root = root_item->bytenr;
1704 	super->chunk_root_generation = root_item->generation;
1705 	super->chunk_root_level = root_item->level;
1706 
1707 	root_item = &fs_info->tree_root->root_item;
1708 	super->root = root_item->bytenr;
1709 	super->generation = root_item->generation;
1710 	super->root_level = root_item->level;
1711 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1712 		super->cache_generation = root_item->generation;
1713 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1714 		super->uuid_tree_generation = root_item->generation;
1715 }
1716 
1717 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1718 {
1719 	struct btrfs_transaction *trans;
1720 	int ret = 0;
1721 
1722 	spin_lock(&info->trans_lock);
1723 	trans = info->running_transaction;
1724 	if (trans)
1725 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1726 	spin_unlock(&info->trans_lock);
1727 	return ret;
1728 }
1729 
1730 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1731 {
1732 	struct btrfs_transaction *trans;
1733 	int ret = 0;
1734 
1735 	spin_lock(&info->trans_lock);
1736 	trans = info->running_transaction;
1737 	if (trans)
1738 		ret = is_transaction_blocked(trans);
1739 	spin_unlock(&info->trans_lock);
1740 	return ret;
1741 }
1742 
1743 /*
1744  * wait for the current transaction commit to start and block subsequent
1745  * transaction joins
1746  */
1747 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1748 					    struct btrfs_transaction *trans)
1749 {
1750 	wait_event(fs_info->transaction_blocked_wait,
1751 		   trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1752 }
1753 
1754 /*
1755  * wait for the current transaction to start and then become unblocked.
1756  * caller holds ref.
1757  */
1758 static void wait_current_trans_commit_start_and_unblock(
1759 					struct btrfs_fs_info *fs_info,
1760 					struct btrfs_transaction *trans)
1761 {
1762 	wait_event(fs_info->transaction_wait,
1763 		   trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1764 }
1765 
1766 /*
1767  * commit transactions asynchronously. once btrfs_commit_transaction_async
1768  * returns, any subsequent transaction will not be allowed to join.
1769  */
1770 struct btrfs_async_commit {
1771 	struct btrfs_trans_handle *newtrans;
1772 	struct work_struct work;
1773 };
1774 
1775 static void do_async_commit(struct work_struct *work)
1776 {
1777 	struct btrfs_async_commit *ac =
1778 		container_of(work, struct btrfs_async_commit, work);
1779 
1780 	/*
1781 	 * We've got freeze protection passed with the transaction.
1782 	 * Tell lockdep about it.
1783 	 */
1784 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1785 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1786 
1787 	current->journal_info = ac->newtrans;
1788 
1789 	btrfs_commit_transaction(ac->newtrans);
1790 	kfree(ac);
1791 }
1792 
1793 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1794 				   int wait_for_unblock)
1795 {
1796 	struct btrfs_fs_info *fs_info = trans->fs_info;
1797 	struct btrfs_async_commit *ac;
1798 	struct btrfs_transaction *cur_trans;
1799 
1800 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1801 	if (!ac)
1802 		return -ENOMEM;
1803 
1804 	INIT_WORK(&ac->work, do_async_commit);
1805 	ac->newtrans = btrfs_join_transaction(trans->root);
1806 	if (IS_ERR(ac->newtrans)) {
1807 		int err = PTR_ERR(ac->newtrans);
1808 		kfree(ac);
1809 		return err;
1810 	}
1811 
1812 	/* take transaction reference */
1813 	cur_trans = trans->transaction;
1814 	refcount_inc(&cur_trans->use_count);
1815 
1816 	btrfs_end_transaction(trans);
1817 
1818 	/*
1819 	 * Tell lockdep we've released the freeze rwsem, since the
1820 	 * async commit thread will be the one to unlock it.
1821 	 */
1822 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1823 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1824 
1825 	schedule_work(&ac->work);
1826 
1827 	/* wait for transaction to start and unblock */
1828 	if (wait_for_unblock)
1829 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1830 	else
1831 		wait_current_trans_commit_start(fs_info, cur_trans);
1832 
1833 	if (current->journal_info == trans)
1834 		current->journal_info = NULL;
1835 
1836 	btrfs_put_transaction(cur_trans);
1837 	return 0;
1838 }
1839 
1840 
1841 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1842 {
1843 	struct btrfs_fs_info *fs_info = trans->fs_info;
1844 	struct btrfs_transaction *cur_trans = trans->transaction;
1845 	DEFINE_WAIT(wait);
1846 
1847 	WARN_ON(refcount_read(&trans->use_count) > 1);
1848 
1849 	btrfs_abort_transaction(trans, err);
1850 
1851 	spin_lock(&fs_info->trans_lock);
1852 
1853 	/*
1854 	 * If the transaction is removed from the list, it means this
1855 	 * transaction has been committed successfully, so it is impossible
1856 	 * to call the cleanup function.
1857 	 */
1858 	BUG_ON(list_empty(&cur_trans->list));
1859 
1860 	list_del_init(&cur_trans->list);
1861 	if (cur_trans == fs_info->running_transaction) {
1862 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1863 		spin_unlock(&fs_info->trans_lock);
1864 		wait_event(cur_trans->writer_wait,
1865 			   atomic_read(&cur_trans->num_writers) == 1);
1866 
1867 		spin_lock(&fs_info->trans_lock);
1868 	}
1869 	spin_unlock(&fs_info->trans_lock);
1870 
1871 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1872 
1873 	spin_lock(&fs_info->trans_lock);
1874 	if (cur_trans == fs_info->running_transaction)
1875 		fs_info->running_transaction = NULL;
1876 	spin_unlock(&fs_info->trans_lock);
1877 
1878 	if (trans->type & __TRANS_FREEZABLE)
1879 		sb_end_intwrite(fs_info->sb);
1880 	btrfs_put_transaction(cur_trans);
1881 	btrfs_put_transaction(cur_trans);
1882 
1883 	trace_btrfs_transaction_commit(trans->root);
1884 
1885 	if (current->journal_info == trans)
1886 		current->journal_info = NULL;
1887 	btrfs_scrub_cancel(fs_info);
1888 
1889 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1890 }
1891 
1892 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1893 {
1894 	/*
1895 	 * We use writeback_inodes_sb here because if we used
1896 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1897 	 * Currently are holding the fs freeze lock, if we do an async flush
1898 	 * we'll do btrfs_join_transaction() and deadlock because we need to
1899 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
1900 	 * from already being in a transaction and our join_transaction doesn't
1901 	 * have to re-take the fs freeze lock.
1902 	 */
1903 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1904 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1905 	return 0;
1906 }
1907 
1908 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1909 {
1910 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1911 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1912 }
1913 
1914 static inline void
1915 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1916 {
1917 	wait_event(cur_trans->pending_wait,
1918 		   atomic_read(&cur_trans->pending_ordered) == 0);
1919 }
1920 
1921 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1922 {
1923 	struct btrfs_fs_info *fs_info = trans->fs_info;
1924 	struct btrfs_transaction *cur_trans = trans->transaction;
1925 	struct btrfs_transaction *prev_trans = NULL;
1926 	int ret;
1927 
1928 	/* Stop the commit early if ->aborted is set */
1929 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
1930 		ret = cur_trans->aborted;
1931 		btrfs_end_transaction(trans);
1932 		return ret;
1933 	}
1934 
1935 	btrfs_trans_release_metadata(trans);
1936 	trans->block_rsv = NULL;
1937 
1938 	/* make a pass through all the delayed refs we have so far
1939 	 * any runnings procs may add more while we are here
1940 	 */
1941 	ret = btrfs_run_delayed_refs(trans, 0);
1942 	if (ret) {
1943 		btrfs_end_transaction(trans);
1944 		return ret;
1945 	}
1946 
1947 	cur_trans = trans->transaction;
1948 
1949 	/*
1950 	 * set the flushing flag so procs in this transaction have to
1951 	 * start sending their work down.
1952 	 */
1953 	cur_trans->delayed_refs.flushing = 1;
1954 	smp_wmb();
1955 
1956 	if (!list_empty(&trans->new_bgs))
1957 		btrfs_create_pending_block_groups(trans);
1958 
1959 	ret = btrfs_run_delayed_refs(trans, 0);
1960 	if (ret) {
1961 		btrfs_end_transaction(trans);
1962 		return ret;
1963 	}
1964 
1965 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1966 		int run_it = 0;
1967 
1968 		/* this mutex is also taken before trying to set
1969 		 * block groups readonly.  We need to make sure
1970 		 * that nobody has set a block group readonly
1971 		 * after a extents from that block group have been
1972 		 * allocated for cache files.  btrfs_set_block_group_ro
1973 		 * will wait for the transaction to commit if it
1974 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1975 		 *
1976 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1977 		 * only one process starts all the block group IO.  It wouldn't
1978 		 * hurt to have more than one go through, but there's no
1979 		 * real advantage to it either.
1980 		 */
1981 		mutex_lock(&fs_info->ro_block_group_mutex);
1982 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1983 				      &cur_trans->flags))
1984 			run_it = 1;
1985 		mutex_unlock(&fs_info->ro_block_group_mutex);
1986 
1987 		if (run_it) {
1988 			ret = btrfs_start_dirty_block_groups(trans);
1989 			if (ret) {
1990 				btrfs_end_transaction(trans);
1991 				return ret;
1992 			}
1993 		}
1994 	}
1995 
1996 	spin_lock(&fs_info->trans_lock);
1997 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1998 		spin_unlock(&fs_info->trans_lock);
1999 		refcount_inc(&cur_trans->use_count);
2000 		ret = btrfs_end_transaction(trans);
2001 
2002 		wait_for_commit(cur_trans);
2003 
2004 		if (unlikely(cur_trans->aborted))
2005 			ret = cur_trans->aborted;
2006 
2007 		btrfs_put_transaction(cur_trans);
2008 
2009 		return ret;
2010 	}
2011 
2012 	cur_trans->state = TRANS_STATE_COMMIT_START;
2013 	wake_up(&fs_info->transaction_blocked_wait);
2014 
2015 	if (cur_trans->list.prev != &fs_info->trans_list) {
2016 		prev_trans = list_entry(cur_trans->list.prev,
2017 					struct btrfs_transaction, list);
2018 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2019 			refcount_inc(&prev_trans->use_count);
2020 			spin_unlock(&fs_info->trans_lock);
2021 
2022 			wait_for_commit(prev_trans);
2023 			ret = prev_trans->aborted;
2024 
2025 			btrfs_put_transaction(prev_trans);
2026 			if (ret)
2027 				goto cleanup_transaction;
2028 		} else {
2029 			spin_unlock(&fs_info->trans_lock);
2030 		}
2031 	} else {
2032 		spin_unlock(&fs_info->trans_lock);
2033 	}
2034 
2035 	extwriter_counter_dec(cur_trans, trans->type);
2036 
2037 	ret = btrfs_start_delalloc_flush(fs_info);
2038 	if (ret)
2039 		goto cleanup_transaction;
2040 
2041 	ret = btrfs_run_delayed_items(trans);
2042 	if (ret)
2043 		goto cleanup_transaction;
2044 
2045 	wait_event(cur_trans->writer_wait,
2046 		   extwriter_counter_read(cur_trans) == 0);
2047 
2048 	/* some pending stuffs might be added after the previous flush. */
2049 	ret = btrfs_run_delayed_items(trans);
2050 	if (ret)
2051 		goto cleanup_transaction;
2052 
2053 	btrfs_wait_delalloc_flush(fs_info);
2054 
2055 	btrfs_wait_pending_ordered(cur_trans);
2056 
2057 	btrfs_scrub_pause(fs_info);
2058 	/*
2059 	 * Ok now we need to make sure to block out any other joins while we
2060 	 * commit the transaction.  We could have started a join before setting
2061 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2062 	 */
2063 	spin_lock(&fs_info->trans_lock);
2064 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2065 	spin_unlock(&fs_info->trans_lock);
2066 	wait_event(cur_trans->writer_wait,
2067 		   atomic_read(&cur_trans->num_writers) == 1);
2068 
2069 	/* ->aborted might be set after the previous check, so check it */
2070 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2071 		ret = cur_trans->aborted;
2072 		goto scrub_continue;
2073 	}
2074 	/*
2075 	 * the reloc mutex makes sure that we stop
2076 	 * the balancing code from coming in and moving
2077 	 * extents around in the middle of the commit
2078 	 */
2079 	mutex_lock(&fs_info->reloc_mutex);
2080 
2081 	/*
2082 	 * We needn't worry about the delayed items because we will
2083 	 * deal with them in create_pending_snapshot(), which is the
2084 	 * core function of the snapshot creation.
2085 	 */
2086 	ret = create_pending_snapshots(trans);
2087 	if (ret) {
2088 		mutex_unlock(&fs_info->reloc_mutex);
2089 		goto scrub_continue;
2090 	}
2091 
2092 	/*
2093 	 * We insert the dir indexes of the snapshots and update the inode
2094 	 * of the snapshots' parents after the snapshot creation, so there
2095 	 * are some delayed items which are not dealt with. Now deal with
2096 	 * them.
2097 	 *
2098 	 * We needn't worry that this operation will corrupt the snapshots,
2099 	 * because all the tree which are snapshoted will be forced to COW
2100 	 * the nodes and leaves.
2101 	 */
2102 	ret = btrfs_run_delayed_items(trans);
2103 	if (ret) {
2104 		mutex_unlock(&fs_info->reloc_mutex);
2105 		goto scrub_continue;
2106 	}
2107 
2108 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2109 	if (ret) {
2110 		mutex_unlock(&fs_info->reloc_mutex);
2111 		goto scrub_continue;
2112 	}
2113 
2114 	/*
2115 	 * make sure none of the code above managed to slip in a
2116 	 * delayed item
2117 	 */
2118 	btrfs_assert_delayed_root_empty(fs_info);
2119 
2120 	WARN_ON(cur_trans != trans->transaction);
2121 
2122 	/* btrfs_commit_tree_roots is responsible for getting the
2123 	 * various roots consistent with each other.  Every pointer
2124 	 * in the tree of tree roots has to point to the most up to date
2125 	 * root for every subvolume and other tree.  So, we have to keep
2126 	 * the tree logging code from jumping in and changing any
2127 	 * of the trees.
2128 	 *
2129 	 * At this point in the commit, there can't be any tree-log
2130 	 * writers, but a little lower down we drop the trans mutex
2131 	 * and let new people in.  By holding the tree_log_mutex
2132 	 * from now until after the super is written, we avoid races
2133 	 * with the tree-log code.
2134 	 */
2135 	mutex_lock(&fs_info->tree_log_mutex);
2136 
2137 	ret = commit_fs_roots(trans);
2138 	if (ret) {
2139 		mutex_unlock(&fs_info->tree_log_mutex);
2140 		mutex_unlock(&fs_info->reloc_mutex);
2141 		goto scrub_continue;
2142 	}
2143 
2144 	/*
2145 	 * Since the transaction is done, we can apply the pending changes
2146 	 * before the next transaction.
2147 	 */
2148 	btrfs_apply_pending_changes(fs_info);
2149 
2150 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2151 	 * safe to free the root of tree log roots
2152 	 */
2153 	btrfs_free_log_root_tree(trans, fs_info);
2154 
2155 	/*
2156 	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2157 	 * new delayed refs. Must handle them or qgroup can be wrong.
2158 	 */
2159 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2160 	if (ret) {
2161 		mutex_unlock(&fs_info->tree_log_mutex);
2162 		mutex_unlock(&fs_info->reloc_mutex);
2163 		goto scrub_continue;
2164 	}
2165 
2166 	/*
2167 	 * Since fs roots are all committed, we can get a quite accurate
2168 	 * new_roots. So let's do quota accounting.
2169 	 */
2170 	ret = btrfs_qgroup_account_extents(trans);
2171 	if (ret < 0) {
2172 		mutex_unlock(&fs_info->tree_log_mutex);
2173 		mutex_unlock(&fs_info->reloc_mutex);
2174 		goto scrub_continue;
2175 	}
2176 
2177 	ret = commit_cowonly_roots(trans);
2178 	if (ret) {
2179 		mutex_unlock(&fs_info->tree_log_mutex);
2180 		mutex_unlock(&fs_info->reloc_mutex);
2181 		goto scrub_continue;
2182 	}
2183 
2184 	/*
2185 	 * The tasks which save the space cache and inode cache may also
2186 	 * update ->aborted, check it.
2187 	 */
2188 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2189 		ret = cur_trans->aborted;
2190 		mutex_unlock(&fs_info->tree_log_mutex);
2191 		mutex_unlock(&fs_info->reloc_mutex);
2192 		goto scrub_continue;
2193 	}
2194 
2195 	btrfs_prepare_extent_commit(fs_info);
2196 
2197 	cur_trans = fs_info->running_transaction;
2198 
2199 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2200 			    fs_info->tree_root->node);
2201 	list_add_tail(&fs_info->tree_root->dirty_list,
2202 		      &cur_trans->switch_commits);
2203 
2204 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2205 			    fs_info->chunk_root->node);
2206 	list_add_tail(&fs_info->chunk_root->dirty_list,
2207 		      &cur_trans->switch_commits);
2208 
2209 	switch_commit_roots(cur_trans);
2210 
2211 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2212 	ASSERT(list_empty(&cur_trans->io_bgs));
2213 	update_super_roots(fs_info);
2214 
2215 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2216 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2217 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2218 	       sizeof(*fs_info->super_copy));
2219 
2220 	btrfs_update_commit_device_size(fs_info);
2221 	btrfs_update_commit_device_bytes_used(cur_trans);
2222 
2223 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2224 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2225 
2226 	btrfs_trans_release_chunk_metadata(trans);
2227 
2228 	spin_lock(&fs_info->trans_lock);
2229 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2230 	fs_info->running_transaction = NULL;
2231 	spin_unlock(&fs_info->trans_lock);
2232 	mutex_unlock(&fs_info->reloc_mutex);
2233 
2234 	wake_up(&fs_info->transaction_wait);
2235 
2236 	ret = btrfs_write_and_wait_transaction(trans);
2237 	if (ret) {
2238 		btrfs_handle_fs_error(fs_info, ret,
2239 				      "Error while writing out transaction");
2240 		mutex_unlock(&fs_info->tree_log_mutex);
2241 		goto scrub_continue;
2242 	}
2243 
2244 	ret = write_all_supers(fs_info, 0);
2245 	/*
2246 	 * the super is written, we can safely allow the tree-loggers
2247 	 * to go about their business
2248 	 */
2249 	mutex_unlock(&fs_info->tree_log_mutex);
2250 	if (ret)
2251 		goto scrub_continue;
2252 
2253 	btrfs_finish_extent_commit(trans);
2254 
2255 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2256 		btrfs_clear_space_info_full(fs_info);
2257 
2258 	fs_info->last_trans_committed = cur_trans->transid;
2259 	/*
2260 	 * We needn't acquire the lock here because there is no other task
2261 	 * which can change it.
2262 	 */
2263 	cur_trans->state = TRANS_STATE_COMPLETED;
2264 	wake_up(&cur_trans->commit_wait);
2265 	clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2266 
2267 	spin_lock(&fs_info->trans_lock);
2268 	list_del_init(&cur_trans->list);
2269 	spin_unlock(&fs_info->trans_lock);
2270 
2271 	btrfs_put_transaction(cur_trans);
2272 	btrfs_put_transaction(cur_trans);
2273 
2274 	if (trans->type & __TRANS_FREEZABLE)
2275 		sb_end_intwrite(fs_info->sb);
2276 
2277 	trace_btrfs_transaction_commit(trans->root);
2278 
2279 	btrfs_scrub_continue(fs_info);
2280 
2281 	if (current->journal_info == trans)
2282 		current->journal_info = NULL;
2283 
2284 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2285 
2286 	return ret;
2287 
2288 scrub_continue:
2289 	btrfs_scrub_continue(fs_info);
2290 cleanup_transaction:
2291 	btrfs_trans_release_metadata(trans);
2292 	btrfs_trans_release_chunk_metadata(trans);
2293 	trans->block_rsv = NULL;
2294 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2295 	if (current->journal_info == trans)
2296 		current->journal_info = NULL;
2297 	cleanup_transaction(trans, ret);
2298 
2299 	return ret;
2300 }
2301 
2302 /*
2303  * return < 0 if error
2304  * 0 if there are no more dead_roots at the time of call
2305  * 1 there are more to be processed, call me again
2306  *
2307  * The return value indicates there are certainly more snapshots to delete, but
2308  * if there comes a new one during processing, it may return 0. We don't mind,
2309  * because btrfs_commit_super will poke cleaner thread and it will process it a
2310  * few seconds later.
2311  */
2312 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2313 {
2314 	int ret;
2315 	struct btrfs_fs_info *fs_info = root->fs_info;
2316 
2317 	spin_lock(&fs_info->trans_lock);
2318 	if (list_empty(&fs_info->dead_roots)) {
2319 		spin_unlock(&fs_info->trans_lock);
2320 		return 0;
2321 	}
2322 	root = list_first_entry(&fs_info->dead_roots,
2323 			struct btrfs_root, root_list);
2324 	list_del_init(&root->root_list);
2325 	spin_unlock(&fs_info->trans_lock);
2326 
2327 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2328 
2329 	btrfs_kill_all_delayed_nodes(root);
2330 
2331 	if (btrfs_header_backref_rev(root->node) <
2332 			BTRFS_MIXED_BACKREF_REV)
2333 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2334 	else
2335 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2336 
2337 	return (ret < 0) ? 0 : 1;
2338 }
2339 
2340 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2341 {
2342 	unsigned long prev;
2343 	unsigned long bit;
2344 
2345 	prev = xchg(&fs_info->pending_changes, 0);
2346 	if (!prev)
2347 		return;
2348 
2349 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2350 	if (prev & bit)
2351 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2352 	prev &= ~bit;
2353 
2354 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2355 	if (prev & bit)
2356 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2357 	prev &= ~bit;
2358 
2359 	bit = 1 << BTRFS_PENDING_COMMIT;
2360 	if (prev & bit)
2361 		btrfs_debug(fs_info, "pending commit done");
2362 	prev &= ~bit;
2363 
2364 	if (prev)
2365 		btrfs_warn(fs_info,
2366 			"unknown pending changes left 0x%lx, ignoring", prev);
2367 }
2368