1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 #include "qgroup.h" 35 36 #define BTRFS_ROOT_TRANS_TAG 0 37 38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 39 [TRANS_STATE_RUNNING] = 0U, 40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | 41 __TRANS_START), 42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | 43 __TRANS_START | 44 __TRANS_ATTACH), 45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | 46 __TRANS_START | 47 __TRANS_ATTACH | 48 __TRANS_JOIN), 49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | 50 __TRANS_START | 51 __TRANS_ATTACH | 52 __TRANS_JOIN | 53 __TRANS_JOIN_NOLOCK), 54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | 55 __TRANS_START | 56 __TRANS_ATTACH | 57 __TRANS_JOIN | 58 __TRANS_JOIN_NOLOCK), 59 }; 60 61 void btrfs_put_transaction(struct btrfs_transaction *transaction) 62 { 63 WARN_ON(atomic_read(&transaction->use_count) == 0); 64 if (atomic_dec_and_test(&transaction->use_count)) { 65 BUG_ON(!list_empty(&transaction->list)); 66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root)); 67 if (transaction->delayed_refs.pending_csums) 68 printk(KERN_ERR "pending csums is %llu\n", 69 transaction->delayed_refs.pending_csums); 70 while (!list_empty(&transaction->pending_chunks)) { 71 struct extent_map *em; 72 73 em = list_first_entry(&transaction->pending_chunks, 74 struct extent_map, list); 75 list_del_init(&em->list); 76 free_extent_map(em); 77 } 78 kmem_cache_free(btrfs_transaction_cachep, transaction); 79 } 80 } 81 82 static void clear_btree_io_tree(struct extent_io_tree *tree) 83 { 84 spin_lock(&tree->lock); 85 while (!RB_EMPTY_ROOT(&tree->state)) { 86 struct rb_node *node; 87 struct extent_state *state; 88 89 node = rb_first(&tree->state); 90 state = rb_entry(node, struct extent_state, rb_node); 91 rb_erase(&state->rb_node, &tree->state); 92 RB_CLEAR_NODE(&state->rb_node); 93 /* 94 * btree io trees aren't supposed to have tasks waiting for 95 * changes in the flags of extent states ever. 96 */ 97 ASSERT(!waitqueue_active(&state->wq)); 98 free_extent_state(state); 99 100 cond_resched_lock(&tree->lock); 101 } 102 spin_unlock(&tree->lock); 103 } 104 105 static noinline void switch_commit_roots(struct btrfs_transaction *trans, 106 struct btrfs_fs_info *fs_info) 107 { 108 struct btrfs_root *root, *tmp; 109 110 down_write(&fs_info->commit_root_sem); 111 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 112 dirty_list) { 113 list_del_init(&root->dirty_list); 114 free_extent_buffer(root->commit_root); 115 root->commit_root = btrfs_root_node(root); 116 if (is_fstree(root->objectid)) 117 btrfs_unpin_free_ino(root); 118 clear_btree_io_tree(&root->dirty_log_pages); 119 } 120 up_write(&fs_info->commit_root_sem); 121 } 122 123 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 124 unsigned int type) 125 { 126 if (type & TRANS_EXTWRITERS) 127 atomic_inc(&trans->num_extwriters); 128 } 129 130 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 131 unsigned int type) 132 { 133 if (type & TRANS_EXTWRITERS) 134 atomic_dec(&trans->num_extwriters); 135 } 136 137 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 138 unsigned int type) 139 { 140 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 141 } 142 143 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 144 { 145 return atomic_read(&trans->num_extwriters); 146 } 147 148 /* 149 * either allocate a new transaction or hop into the existing one 150 */ 151 static noinline int join_transaction(struct btrfs_root *root, unsigned int type) 152 { 153 struct btrfs_transaction *cur_trans; 154 struct btrfs_fs_info *fs_info = root->fs_info; 155 156 spin_lock(&fs_info->trans_lock); 157 loop: 158 /* The file system has been taken offline. No new transactions. */ 159 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 160 spin_unlock(&fs_info->trans_lock); 161 return -EROFS; 162 } 163 164 cur_trans = fs_info->running_transaction; 165 if (cur_trans) { 166 if (cur_trans->aborted) { 167 spin_unlock(&fs_info->trans_lock); 168 return cur_trans->aborted; 169 } 170 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 171 spin_unlock(&fs_info->trans_lock); 172 return -EBUSY; 173 } 174 atomic_inc(&cur_trans->use_count); 175 atomic_inc(&cur_trans->num_writers); 176 extwriter_counter_inc(cur_trans, type); 177 spin_unlock(&fs_info->trans_lock); 178 return 0; 179 } 180 spin_unlock(&fs_info->trans_lock); 181 182 /* 183 * If we are ATTACH, we just want to catch the current transaction, 184 * and commit it. If there is no transaction, just return ENOENT. 185 */ 186 if (type == TRANS_ATTACH) 187 return -ENOENT; 188 189 /* 190 * JOIN_NOLOCK only happens during the transaction commit, so 191 * it is impossible that ->running_transaction is NULL 192 */ 193 BUG_ON(type == TRANS_JOIN_NOLOCK); 194 195 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 196 if (!cur_trans) 197 return -ENOMEM; 198 199 spin_lock(&fs_info->trans_lock); 200 if (fs_info->running_transaction) { 201 /* 202 * someone started a transaction after we unlocked. Make sure 203 * to redo the checks above 204 */ 205 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 206 goto loop; 207 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 208 spin_unlock(&fs_info->trans_lock); 209 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 210 return -EROFS; 211 } 212 213 atomic_set(&cur_trans->num_writers, 1); 214 extwriter_counter_init(cur_trans, type); 215 init_waitqueue_head(&cur_trans->writer_wait); 216 init_waitqueue_head(&cur_trans->commit_wait); 217 cur_trans->state = TRANS_STATE_RUNNING; 218 /* 219 * One for this trans handle, one so it will live on until we 220 * commit the transaction. 221 */ 222 atomic_set(&cur_trans->use_count, 2); 223 cur_trans->have_free_bgs = 0; 224 cur_trans->start_time = get_seconds(); 225 cur_trans->dirty_bg_run = 0; 226 227 cur_trans->delayed_refs.href_root = RB_ROOT; 228 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 229 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 230 cur_trans->delayed_refs.num_heads_ready = 0; 231 cur_trans->delayed_refs.pending_csums = 0; 232 cur_trans->delayed_refs.num_heads = 0; 233 cur_trans->delayed_refs.flushing = 0; 234 cur_trans->delayed_refs.run_delayed_start = 0; 235 cur_trans->delayed_refs.qgroup_to_skip = 0; 236 237 /* 238 * although the tree mod log is per file system and not per transaction, 239 * the log must never go across transaction boundaries. 240 */ 241 smp_mb(); 242 if (!list_empty(&fs_info->tree_mod_seq_list)) 243 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when " 244 "creating a fresh transaction\n"); 245 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 246 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when " 247 "creating a fresh transaction\n"); 248 atomic64_set(&fs_info->tree_mod_seq, 0); 249 250 spin_lock_init(&cur_trans->delayed_refs.lock); 251 252 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 253 INIT_LIST_HEAD(&cur_trans->pending_chunks); 254 INIT_LIST_HEAD(&cur_trans->switch_commits); 255 INIT_LIST_HEAD(&cur_trans->pending_ordered); 256 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 257 INIT_LIST_HEAD(&cur_trans->io_bgs); 258 mutex_init(&cur_trans->cache_write_mutex); 259 cur_trans->num_dirty_bgs = 0; 260 spin_lock_init(&cur_trans->dirty_bgs_lock); 261 list_add_tail(&cur_trans->list, &fs_info->trans_list); 262 extent_io_tree_init(&cur_trans->dirty_pages, 263 fs_info->btree_inode->i_mapping); 264 fs_info->generation++; 265 cur_trans->transid = fs_info->generation; 266 fs_info->running_transaction = cur_trans; 267 cur_trans->aborted = 0; 268 spin_unlock(&fs_info->trans_lock); 269 270 return 0; 271 } 272 273 /* 274 * this does all the record keeping required to make sure that a reference 275 * counted root is properly recorded in a given transaction. This is required 276 * to make sure the old root from before we joined the transaction is deleted 277 * when the transaction commits 278 */ 279 static int record_root_in_trans(struct btrfs_trans_handle *trans, 280 struct btrfs_root *root) 281 { 282 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 283 root->last_trans < trans->transid) { 284 WARN_ON(root == root->fs_info->extent_root); 285 WARN_ON(root->commit_root != root->node); 286 287 /* 288 * see below for IN_TRANS_SETUP usage rules 289 * we have the reloc mutex held now, so there 290 * is only one writer in this function 291 */ 292 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 293 294 /* make sure readers find IN_TRANS_SETUP before 295 * they find our root->last_trans update 296 */ 297 smp_wmb(); 298 299 spin_lock(&root->fs_info->fs_roots_radix_lock); 300 if (root->last_trans == trans->transid) { 301 spin_unlock(&root->fs_info->fs_roots_radix_lock); 302 return 0; 303 } 304 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 305 (unsigned long)root->root_key.objectid, 306 BTRFS_ROOT_TRANS_TAG); 307 spin_unlock(&root->fs_info->fs_roots_radix_lock); 308 root->last_trans = trans->transid; 309 310 /* this is pretty tricky. We don't want to 311 * take the relocation lock in btrfs_record_root_in_trans 312 * unless we're really doing the first setup for this root in 313 * this transaction. 314 * 315 * Normally we'd use root->last_trans as a flag to decide 316 * if we want to take the expensive mutex. 317 * 318 * But, we have to set root->last_trans before we 319 * init the relocation root, otherwise, we trip over warnings 320 * in ctree.c. The solution used here is to flag ourselves 321 * with root IN_TRANS_SETUP. When this is 1, we're still 322 * fixing up the reloc trees and everyone must wait. 323 * 324 * When this is zero, they can trust root->last_trans and fly 325 * through btrfs_record_root_in_trans without having to take the 326 * lock. smp_wmb() makes sure that all the writes above are 327 * done before we pop in the zero below 328 */ 329 btrfs_init_reloc_root(trans, root); 330 smp_mb__before_atomic(); 331 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 332 } 333 return 0; 334 } 335 336 337 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 338 struct btrfs_root *root) 339 { 340 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 341 return 0; 342 343 /* 344 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 345 * and barriers 346 */ 347 smp_rmb(); 348 if (root->last_trans == trans->transid && 349 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 350 return 0; 351 352 mutex_lock(&root->fs_info->reloc_mutex); 353 record_root_in_trans(trans, root); 354 mutex_unlock(&root->fs_info->reloc_mutex); 355 356 return 0; 357 } 358 359 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 360 { 361 return (trans->state >= TRANS_STATE_BLOCKED && 362 trans->state < TRANS_STATE_UNBLOCKED && 363 !trans->aborted); 364 } 365 366 /* wait for commit against the current transaction to become unblocked 367 * when this is done, it is safe to start a new transaction, but the current 368 * transaction might not be fully on disk. 369 */ 370 static void wait_current_trans(struct btrfs_root *root) 371 { 372 struct btrfs_transaction *cur_trans; 373 374 spin_lock(&root->fs_info->trans_lock); 375 cur_trans = root->fs_info->running_transaction; 376 if (cur_trans && is_transaction_blocked(cur_trans)) { 377 atomic_inc(&cur_trans->use_count); 378 spin_unlock(&root->fs_info->trans_lock); 379 380 wait_event(root->fs_info->transaction_wait, 381 cur_trans->state >= TRANS_STATE_UNBLOCKED || 382 cur_trans->aborted); 383 btrfs_put_transaction(cur_trans); 384 } else { 385 spin_unlock(&root->fs_info->trans_lock); 386 } 387 } 388 389 static int may_wait_transaction(struct btrfs_root *root, int type) 390 { 391 if (root->fs_info->log_root_recovering) 392 return 0; 393 394 if (type == TRANS_USERSPACE) 395 return 1; 396 397 if (type == TRANS_START && 398 !atomic_read(&root->fs_info->open_ioctl_trans)) 399 return 1; 400 401 return 0; 402 } 403 404 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 405 { 406 if (!root->fs_info->reloc_ctl || 407 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 408 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 409 root->reloc_root) 410 return false; 411 412 return true; 413 } 414 415 static struct btrfs_trans_handle * 416 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type, 417 enum btrfs_reserve_flush_enum flush) 418 { 419 struct btrfs_trans_handle *h; 420 struct btrfs_transaction *cur_trans; 421 u64 num_bytes = 0; 422 u64 qgroup_reserved = 0; 423 bool reloc_reserved = false; 424 int ret; 425 426 /* Send isn't supposed to start transactions. */ 427 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 428 429 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 430 return ERR_PTR(-EROFS); 431 432 if (current->journal_info) { 433 WARN_ON(type & TRANS_EXTWRITERS); 434 h = current->journal_info; 435 h->use_count++; 436 WARN_ON(h->use_count > 2); 437 h->orig_rsv = h->block_rsv; 438 h->block_rsv = NULL; 439 goto got_it; 440 } 441 442 /* 443 * Do the reservation before we join the transaction so we can do all 444 * the appropriate flushing if need be. 445 */ 446 if (num_items > 0 && root != root->fs_info->chunk_root) { 447 if (root->fs_info->quota_enabled && 448 is_fstree(root->root_key.objectid)) { 449 qgroup_reserved = num_items * root->nodesize; 450 ret = btrfs_qgroup_reserve(root, qgroup_reserved); 451 if (ret) 452 return ERR_PTR(ret); 453 } 454 455 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 456 /* 457 * Do the reservation for the relocation root creation 458 */ 459 if (need_reserve_reloc_root(root)) { 460 num_bytes += root->nodesize; 461 reloc_reserved = true; 462 } 463 464 ret = btrfs_block_rsv_add(root, 465 &root->fs_info->trans_block_rsv, 466 num_bytes, flush); 467 if (ret) 468 goto reserve_fail; 469 } 470 again: 471 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 472 if (!h) { 473 ret = -ENOMEM; 474 goto alloc_fail; 475 } 476 477 /* 478 * If we are JOIN_NOLOCK we're already committing a transaction and 479 * waiting on this guy, so we don't need to do the sb_start_intwrite 480 * because we're already holding a ref. We need this because we could 481 * have raced in and did an fsync() on a file which can kick a commit 482 * and then we deadlock with somebody doing a freeze. 483 * 484 * If we are ATTACH, it means we just want to catch the current 485 * transaction and commit it, so we needn't do sb_start_intwrite(). 486 */ 487 if (type & __TRANS_FREEZABLE) 488 sb_start_intwrite(root->fs_info->sb); 489 490 if (may_wait_transaction(root, type)) 491 wait_current_trans(root); 492 493 do { 494 ret = join_transaction(root, type); 495 if (ret == -EBUSY) { 496 wait_current_trans(root); 497 if (unlikely(type == TRANS_ATTACH)) 498 ret = -ENOENT; 499 } 500 } while (ret == -EBUSY); 501 502 if (ret < 0) { 503 /* We must get the transaction if we are JOIN_NOLOCK. */ 504 BUG_ON(type == TRANS_JOIN_NOLOCK); 505 goto join_fail; 506 } 507 508 cur_trans = root->fs_info->running_transaction; 509 510 h->transid = cur_trans->transid; 511 h->transaction = cur_trans; 512 h->blocks_used = 0; 513 h->bytes_reserved = 0; 514 h->chunk_bytes_reserved = 0; 515 h->root = root; 516 h->delayed_ref_updates = 0; 517 h->use_count = 1; 518 h->adding_csums = 0; 519 h->block_rsv = NULL; 520 h->orig_rsv = NULL; 521 h->aborted = 0; 522 h->qgroup_reserved = 0; 523 h->delayed_ref_elem.seq = 0; 524 h->type = type; 525 h->allocating_chunk = false; 526 h->reloc_reserved = false; 527 h->sync = false; 528 INIT_LIST_HEAD(&h->qgroup_ref_list); 529 INIT_LIST_HEAD(&h->new_bgs); 530 INIT_LIST_HEAD(&h->ordered); 531 532 smp_mb(); 533 if (cur_trans->state >= TRANS_STATE_BLOCKED && 534 may_wait_transaction(root, type)) { 535 current->journal_info = h; 536 btrfs_commit_transaction(h, root); 537 goto again; 538 } 539 540 if (num_bytes) { 541 trace_btrfs_space_reservation(root->fs_info, "transaction", 542 h->transid, num_bytes, 1); 543 h->block_rsv = &root->fs_info->trans_block_rsv; 544 h->bytes_reserved = num_bytes; 545 h->reloc_reserved = reloc_reserved; 546 } 547 h->qgroup_reserved = qgroup_reserved; 548 549 got_it: 550 btrfs_record_root_in_trans(h, root); 551 552 if (!current->journal_info && type != TRANS_USERSPACE) 553 current->journal_info = h; 554 return h; 555 556 join_fail: 557 if (type & __TRANS_FREEZABLE) 558 sb_end_intwrite(root->fs_info->sb); 559 kmem_cache_free(btrfs_trans_handle_cachep, h); 560 alloc_fail: 561 if (num_bytes) 562 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 563 num_bytes); 564 reserve_fail: 565 if (qgroup_reserved) 566 btrfs_qgroup_free(root, qgroup_reserved); 567 return ERR_PTR(ret); 568 } 569 570 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 571 int num_items) 572 { 573 return start_transaction(root, num_items, TRANS_START, 574 BTRFS_RESERVE_FLUSH_ALL); 575 } 576 577 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 578 struct btrfs_root *root, int num_items) 579 { 580 return start_transaction(root, num_items, TRANS_START, 581 BTRFS_RESERVE_FLUSH_LIMIT); 582 } 583 584 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 585 { 586 return start_transaction(root, 0, TRANS_JOIN, 0); 587 } 588 589 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 590 { 591 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0); 592 } 593 594 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 595 { 596 return start_transaction(root, 0, TRANS_USERSPACE, 0); 597 } 598 599 /* 600 * btrfs_attach_transaction() - catch the running transaction 601 * 602 * It is used when we want to commit the current the transaction, but 603 * don't want to start a new one. 604 * 605 * Note: If this function return -ENOENT, it just means there is no 606 * running transaction. But it is possible that the inactive transaction 607 * is still in the memory, not fully on disk. If you hope there is no 608 * inactive transaction in the fs when -ENOENT is returned, you should 609 * invoke 610 * btrfs_attach_transaction_barrier() 611 */ 612 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 613 { 614 return start_transaction(root, 0, TRANS_ATTACH, 0); 615 } 616 617 /* 618 * btrfs_attach_transaction_barrier() - catch the running transaction 619 * 620 * It is similar to the above function, the differentia is this one 621 * will wait for all the inactive transactions until they fully 622 * complete. 623 */ 624 struct btrfs_trans_handle * 625 btrfs_attach_transaction_barrier(struct btrfs_root *root) 626 { 627 struct btrfs_trans_handle *trans; 628 629 trans = start_transaction(root, 0, TRANS_ATTACH, 0); 630 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 631 btrfs_wait_for_commit(root, 0); 632 633 return trans; 634 } 635 636 /* wait for a transaction commit to be fully complete */ 637 static noinline void wait_for_commit(struct btrfs_root *root, 638 struct btrfs_transaction *commit) 639 { 640 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 641 } 642 643 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 644 { 645 struct btrfs_transaction *cur_trans = NULL, *t; 646 int ret = 0; 647 648 if (transid) { 649 if (transid <= root->fs_info->last_trans_committed) 650 goto out; 651 652 /* find specified transaction */ 653 spin_lock(&root->fs_info->trans_lock); 654 list_for_each_entry(t, &root->fs_info->trans_list, list) { 655 if (t->transid == transid) { 656 cur_trans = t; 657 atomic_inc(&cur_trans->use_count); 658 ret = 0; 659 break; 660 } 661 if (t->transid > transid) { 662 ret = 0; 663 break; 664 } 665 } 666 spin_unlock(&root->fs_info->trans_lock); 667 668 /* 669 * The specified transaction doesn't exist, or we 670 * raced with btrfs_commit_transaction 671 */ 672 if (!cur_trans) { 673 if (transid > root->fs_info->last_trans_committed) 674 ret = -EINVAL; 675 goto out; 676 } 677 } else { 678 /* find newest transaction that is committing | committed */ 679 spin_lock(&root->fs_info->trans_lock); 680 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 681 list) { 682 if (t->state >= TRANS_STATE_COMMIT_START) { 683 if (t->state == TRANS_STATE_COMPLETED) 684 break; 685 cur_trans = t; 686 atomic_inc(&cur_trans->use_count); 687 break; 688 } 689 } 690 spin_unlock(&root->fs_info->trans_lock); 691 if (!cur_trans) 692 goto out; /* nothing committing|committed */ 693 } 694 695 wait_for_commit(root, cur_trans); 696 btrfs_put_transaction(cur_trans); 697 out: 698 return ret; 699 } 700 701 void btrfs_throttle(struct btrfs_root *root) 702 { 703 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 704 wait_current_trans(root); 705 } 706 707 static int should_end_transaction(struct btrfs_trans_handle *trans, 708 struct btrfs_root *root) 709 { 710 if (root->fs_info->global_block_rsv.space_info->full && 711 btrfs_check_space_for_delayed_refs(trans, root)) 712 return 1; 713 714 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 715 } 716 717 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 718 struct btrfs_root *root) 719 { 720 struct btrfs_transaction *cur_trans = trans->transaction; 721 int updates; 722 int err; 723 724 smp_mb(); 725 if (cur_trans->state >= TRANS_STATE_BLOCKED || 726 cur_trans->delayed_refs.flushing) 727 return 1; 728 729 updates = trans->delayed_ref_updates; 730 trans->delayed_ref_updates = 0; 731 if (updates) { 732 err = btrfs_run_delayed_refs(trans, root, updates * 2); 733 if (err) /* Error code will also eval true */ 734 return err; 735 } 736 737 return should_end_transaction(trans, root); 738 } 739 740 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 741 struct btrfs_root *root, int throttle) 742 { 743 struct btrfs_transaction *cur_trans = trans->transaction; 744 struct btrfs_fs_info *info = root->fs_info; 745 unsigned long cur = trans->delayed_ref_updates; 746 int lock = (trans->type != TRANS_JOIN_NOLOCK); 747 int err = 0; 748 int must_run_delayed_refs = 0; 749 750 if (trans->use_count > 1) { 751 trans->use_count--; 752 trans->block_rsv = trans->orig_rsv; 753 return 0; 754 } 755 756 btrfs_trans_release_metadata(trans, root); 757 trans->block_rsv = NULL; 758 759 if (!list_empty(&trans->new_bgs)) 760 btrfs_create_pending_block_groups(trans, root); 761 762 if (!list_empty(&trans->ordered)) { 763 spin_lock(&info->trans_lock); 764 list_splice_init(&trans->ordered, &cur_trans->pending_ordered); 765 spin_unlock(&info->trans_lock); 766 } 767 768 trans->delayed_ref_updates = 0; 769 if (!trans->sync) { 770 must_run_delayed_refs = 771 btrfs_should_throttle_delayed_refs(trans, root); 772 cur = max_t(unsigned long, cur, 32); 773 774 /* 775 * don't make the caller wait if they are from a NOLOCK 776 * or ATTACH transaction, it will deadlock with commit 777 */ 778 if (must_run_delayed_refs == 1 && 779 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH))) 780 must_run_delayed_refs = 2; 781 } 782 783 if (trans->qgroup_reserved) { 784 /* 785 * the same root has to be passed here between start_transaction 786 * and end_transaction. Subvolume quota depends on this. 787 */ 788 btrfs_qgroup_free(trans->root, trans->qgroup_reserved); 789 trans->qgroup_reserved = 0; 790 } 791 792 btrfs_trans_release_metadata(trans, root); 793 trans->block_rsv = NULL; 794 795 if (!list_empty(&trans->new_bgs)) 796 btrfs_create_pending_block_groups(trans, root); 797 798 btrfs_trans_release_chunk_metadata(trans); 799 800 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 801 should_end_transaction(trans, root) && 802 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 803 spin_lock(&info->trans_lock); 804 if (cur_trans->state == TRANS_STATE_RUNNING) 805 cur_trans->state = TRANS_STATE_BLOCKED; 806 spin_unlock(&info->trans_lock); 807 } 808 809 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 810 if (throttle) 811 return btrfs_commit_transaction(trans, root); 812 else 813 wake_up_process(info->transaction_kthread); 814 } 815 816 if (trans->type & __TRANS_FREEZABLE) 817 sb_end_intwrite(root->fs_info->sb); 818 819 WARN_ON(cur_trans != info->running_transaction); 820 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 821 atomic_dec(&cur_trans->num_writers); 822 extwriter_counter_dec(cur_trans, trans->type); 823 824 smp_mb(); 825 if (waitqueue_active(&cur_trans->writer_wait)) 826 wake_up(&cur_trans->writer_wait); 827 btrfs_put_transaction(cur_trans); 828 829 if (current->journal_info == trans) 830 current->journal_info = NULL; 831 832 if (throttle) 833 btrfs_run_delayed_iputs(root); 834 835 if (trans->aborted || 836 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 837 wake_up_process(info->transaction_kthread); 838 err = -EIO; 839 } 840 assert_qgroups_uptodate(trans); 841 842 kmem_cache_free(btrfs_trans_handle_cachep, trans); 843 if (must_run_delayed_refs) { 844 btrfs_async_run_delayed_refs(root, cur, 845 must_run_delayed_refs == 1); 846 } 847 return err; 848 } 849 850 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 851 struct btrfs_root *root) 852 { 853 return __btrfs_end_transaction(trans, root, 0); 854 } 855 856 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 857 struct btrfs_root *root) 858 { 859 return __btrfs_end_transaction(trans, root, 1); 860 } 861 862 /* 863 * when btree blocks are allocated, they have some corresponding bits set for 864 * them in one of two extent_io trees. This is used to make sure all of 865 * those extents are sent to disk but does not wait on them 866 */ 867 int btrfs_write_marked_extents(struct btrfs_root *root, 868 struct extent_io_tree *dirty_pages, int mark) 869 { 870 int err = 0; 871 int werr = 0; 872 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 873 struct extent_state *cached_state = NULL; 874 u64 start = 0; 875 u64 end; 876 877 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 878 mark, &cached_state)) { 879 bool wait_writeback = false; 880 881 err = convert_extent_bit(dirty_pages, start, end, 882 EXTENT_NEED_WAIT, 883 mark, &cached_state, GFP_NOFS); 884 /* 885 * convert_extent_bit can return -ENOMEM, which is most of the 886 * time a temporary error. So when it happens, ignore the error 887 * and wait for writeback of this range to finish - because we 888 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 889 * to btrfs_wait_marked_extents() would not know that writeback 890 * for this range started and therefore wouldn't wait for it to 891 * finish - we don't want to commit a superblock that points to 892 * btree nodes/leafs for which writeback hasn't finished yet 893 * (and without errors). 894 * We cleanup any entries left in the io tree when committing 895 * the transaction (through clear_btree_io_tree()). 896 */ 897 if (err == -ENOMEM) { 898 err = 0; 899 wait_writeback = true; 900 } 901 if (!err) 902 err = filemap_fdatawrite_range(mapping, start, end); 903 if (err) 904 werr = err; 905 else if (wait_writeback) 906 werr = filemap_fdatawait_range(mapping, start, end); 907 free_extent_state(cached_state); 908 cached_state = NULL; 909 cond_resched(); 910 start = end + 1; 911 } 912 return werr; 913 } 914 915 /* 916 * when btree blocks are allocated, they have some corresponding bits set for 917 * them in one of two extent_io trees. This is used to make sure all of 918 * those extents are on disk for transaction or log commit. We wait 919 * on all the pages and clear them from the dirty pages state tree 920 */ 921 int btrfs_wait_marked_extents(struct btrfs_root *root, 922 struct extent_io_tree *dirty_pages, int mark) 923 { 924 int err = 0; 925 int werr = 0; 926 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 927 struct extent_state *cached_state = NULL; 928 u64 start = 0; 929 u64 end; 930 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 931 bool errors = false; 932 933 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 934 EXTENT_NEED_WAIT, &cached_state)) { 935 /* 936 * Ignore -ENOMEM errors returned by clear_extent_bit(). 937 * When committing the transaction, we'll remove any entries 938 * left in the io tree. For a log commit, we don't remove them 939 * after committing the log because the tree can be accessed 940 * concurrently - we do it only at transaction commit time when 941 * it's safe to do it (through clear_btree_io_tree()). 942 */ 943 err = clear_extent_bit(dirty_pages, start, end, 944 EXTENT_NEED_WAIT, 945 0, 0, &cached_state, GFP_NOFS); 946 if (err == -ENOMEM) 947 err = 0; 948 if (!err) 949 err = filemap_fdatawait_range(mapping, start, end); 950 if (err) 951 werr = err; 952 free_extent_state(cached_state); 953 cached_state = NULL; 954 cond_resched(); 955 start = end + 1; 956 } 957 if (err) 958 werr = err; 959 960 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 961 if ((mark & EXTENT_DIRTY) && 962 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, 963 &btree_ino->runtime_flags)) 964 errors = true; 965 966 if ((mark & EXTENT_NEW) && 967 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, 968 &btree_ino->runtime_flags)) 969 errors = true; 970 } else { 971 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR, 972 &btree_ino->runtime_flags)) 973 errors = true; 974 } 975 976 if (errors && !werr) 977 werr = -EIO; 978 979 return werr; 980 } 981 982 /* 983 * when btree blocks are allocated, they have some corresponding bits set for 984 * them in one of two extent_io trees. This is used to make sure all of 985 * those extents are on disk for transaction or log commit 986 */ 987 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 988 struct extent_io_tree *dirty_pages, int mark) 989 { 990 int ret; 991 int ret2; 992 struct blk_plug plug; 993 994 blk_start_plug(&plug); 995 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 996 blk_finish_plug(&plug); 997 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 998 999 if (ret) 1000 return ret; 1001 if (ret2) 1002 return ret2; 1003 return 0; 1004 } 1005 1006 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 1007 struct btrfs_root *root) 1008 { 1009 int ret; 1010 1011 ret = btrfs_write_and_wait_marked_extents(root, 1012 &trans->transaction->dirty_pages, 1013 EXTENT_DIRTY); 1014 clear_btree_io_tree(&trans->transaction->dirty_pages); 1015 1016 return ret; 1017 } 1018 1019 /* 1020 * this is used to update the root pointer in the tree of tree roots. 1021 * 1022 * But, in the case of the extent allocation tree, updating the root 1023 * pointer may allocate blocks which may change the root of the extent 1024 * allocation tree. 1025 * 1026 * So, this loops and repeats and makes sure the cowonly root didn't 1027 * change while the root pointer was being updated in the metadata. 1028 */ 1029 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1030 struct btrfs_root *root) 1031 { 1032 int ret; 1033 u64 old_root_bytenr; 1034 u64 old_root_used; 1035 struct btrfs_root *tree_root = root->fs_info->tree_root; 1036 1037 old_root_used = btrfs_root_used(&root->root_item); 1038 1039 while (1) { 1040 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1041 if (old_root_bytenr == root->node->start && 1042 old_root_used == btrfs_root_used(&root->root_item)) 1043 break; 1044 1045 btrfs_set_root_node(&root->root_item, root->node); 1046 ret = btrfs_update_root(trans, tree_root, 1047 &root->root_key, 1048 &root->root_item); 1049 if (ret) 1050 return ret; 1051 1052 old_root_used = btrfs_root_used(&root->root_item); 1053 } 1054 1055 return 0; 1056 } 1057 1058 /* 1059 * update all the cowonly tree roots on disk 1060 * 1061 * The error handling in this function may not be obvious. Any of the 1062 * failures will cause the file system to go offline. We still need 1063 * to clean up the delayed refs. 1064 */ 1065 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 1066 struct btrfs_root *root) 1067 { 1068 struct btrfs_fs_info *fs_info = root->fs_info; 1069 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1070 struct list_head *io_bgs = &trans->transaction->io_bgs; 1071 struct list_head *next; 1072 struct extent_buffer *eb; 1073 int ret; 1074 1075 eb = btrfs_lock_root_node(fs_info->tree_root); 1076 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1077 0, &eb); 1078 btrfs_tree_unlock(eb); 1079 free_extent_buffer(eb); 1080 1081 if (ret) 1082 return ret; 1083 1084 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1085 if (ret) 1086 return ret; 1087 1088 ret = btrfs_run_dev_stats(trans, root->fs_info); 1089 if (ret) 1090 return ret; 1091 ret = btrfs_run_dev_replace(trans, root->fs_info); 1092 if (ret) 1093 return ret; 1094 ret = btrfs_run_qgroups(trans, root->fs_info); 1095 if (ret) 1096 return ret; 1097 1098 ret = btrfs_setup_space_cache(trans, root); 1099 if (ret) 1100 return ret; 1101 1102 /* run_qgroups might have added some more refs */ 1103 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1104 if (ret) 1105 return ret; 1106 again: 1107 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1108 next = fs_info->dirty_cowonly_roots.next; 1109 list_del_init(next); 1110 root = list_entry(next, struct btrfs_root, dirty_list); 1111 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1112 1113 if (root != fs_info->extent_root) 1114 list_add_tail(&root->dirty_list, 1115 &trans->transaction->switch_commits); 1116 ret = update_cowonly_root(trans, root); 1117 if (ret) 1118 return ret; 1119 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1120 if (ret) 1121 return ret; 1122 } 1123 1124 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1125 ret = btrfs_write_dirty_block_groups(trans, root); 1126 if (ret) 1127 return ret; 1128 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1129 if (ret) 1130 return ret; 1131 } 1132 1133 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1134 goto again; 1135 1136 list_add_tail(&fs_info->extent_root->dirty_list, 1137 &trans->transaction->switch_commits); 1138 btrfs_after_dev_replace_commit(fs_info); 1139 1140 return 0; 1141 } 1142 1143 /* 1144 * dead roots are old snapshots that need to be deleted. This allocates 1145 * a dirty root struct and adds it into the list of dead roots that need to 1146 * be deleted 1147 */ 1148 void btrfs_add_dead_root(struct btrfs_root *root) 1149 { 1150 spin_lock(&root->fs_info->trans_lock); 1151 if (list_empty(&root->root_list)) 1152 list_add_tail(&root->root_list, &root->fs_info->dead_roots); 1153 spin_unlock(&root->fs_info->trans_lock); 1154 } 1155 1156 /* 1157 * update all the cowonly tree roots on disk 1158 */ 1159 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 1160 struct btrfs_root *root) 1161 { 1162 struct btrfs_root *gang[8]; 1163 struct btrfs_fs_info *fs_info = root->fs_info; 1164 int i; 1165 int ret; 1166 int err = 0; 1167 1168 spin_lock(&fs_info->fs_roots_radix_lock); 1169 while (1) { 1170 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1171 (void **)gang, 0, 1172 ARRAY_SIZE(gang), 1173 BTRFS_ROOT_TRANS_TAG); 1174 if (ret == 0) 1175 break; 1176 for (i = 0; i < ret; i++) { 1177 root = gang[i]; 1178 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1179 (unsigned long)root->root_key.objectid, 1180 BTRFS_ROOT_TRANS_TAG); 1181 spin_unlock(&fs_info->fs_roots_radix_lock); 1182 1183 btrfs_free_log(trans, root); 1184 btrfs_update_reloc_root(trans, root); 1185 btrfs_orphan_commit_root(trans, root); 1186 1187 btrfs_save_ino_cache(root, trans); 1188 1189 /* see comments in should_cow_block() */ 1190 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1191 smp_mb__after_atomic(); 1192 1193 if (root->commit_root != root->node) { 1194 list_add_tail(&root->dirty_list, 1195 &trans->transaction->switch_commits); 1196 btrfs_set_root_node(&root->root_item, 1197 root->node); 1198 } 1199 1200 err = btrfs_update_root(trans, fs_info->tree_root, 1201 &root->root_key, 1202 &root->root_item); 1203 spin_lock(&fs_info->fs_roots_radix_lock); 1204 if (err) 1205 break; 1206 } 1207 } 1208 spin_unlock(&fs_info->fs_roots_radix_lock); 1209 return err; 1210 } 1211 1212 /* 1213 * defrag a given btree. 1214 * Every leaf in the btree is read and defragged. 1215 */ 1216 int btrfs_defrag_root(struct btrfs_root *root) 1217 { 1218 struct btrfs_fs_info *info = root->fs_info; 1219 struct btrfs_trans_handle *trans; 1220 int ret; 1221 1222 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1223 return 0; 1224 1225 while (1) { 1226 trans = btrfs_start_transaction(root, 0); 1227 if (IS_ERR(trans)) 1228 return PTR_ERR(trans); 1229 1230 ret = btrfs_defrag_leaves(trans, root); 1231 1232 btrfs_end_transaction(trans, root); 1233 btrfs_btree_balance_dirty(info->tree_root); 1234 cond_resched(); 1235 1236 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 1237 break; 1238 1239 if (btrfs_defrag_cancelled(root->fs_info)) { 1240 pr_debug("BTRFS: defrag_root cancelled\n"); 1241 ret = -EAGAIN; 1242 break; 1243 } 1244 } 1245 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1246 return ret; 1247 } 1248 1249 /* 1250 * new snapshots need to be created at a very specific time in the 1251 * transaction commit. This does the actual creation. 1252 * 1253 * Note: 1254 * If the error which may affect the commitment of the current transaction 1255 * happens, we should return the error number. If the error which just affect 1256 * the creation of the pending snapshots, just return 0. 1257 */ 1258 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1259 struct btrfs_fs_info *fs_info, 1260 struct btrfs_pending_snapshot *pending) 1261 { 1262 struct btrfs_key key; 1263 struct btrfs_root_item *new_root_item; 1264 struct btrfs_root *tree_root = fs_info->tree_root; 1265 struct btrfs_root *root = pending->root; 1266 struct btrfs_root *parent_root; 1267 struct btrfs_block_rsv *rsv; 1268 struct inode *parent_inode; 1269 struct btrfs_path *path; 1270 struct btrfs_dir_item *dir_item; 1271 struct dentry *dentry; 1272 struct extent_buffer *tmp; 1273 struct extent_buffer *old; 1274 struct timespec cur_time = CURRENT_TIME; 1275 int ret = 0; 1276 u64 to_reserve = 0; 1277 u64 index = 0; 1278 u64 objectid; 1279 u64 root_flags; 1280 uuid_le new_uuid; 1281 1282 path = btrfs_alloc_path(); 1283 if (!path) { 1284 pending->error = -ENOMEM; 1285 return 0; 1286 } 1287 1288 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 1289 if (!new_root_item) { 1290 pending->error = -ENOMEM; 1291 goto root_item_alloc_fail; 1292 } 1293 1294 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1295 if (pending->error) 1296 goto no_free_objectid; 1297 1298 /* 1299 * Make qgroup to skip current new snapshot's qgroupid, as it is 1300 * accounted by later btrfs_qgroup_inherit(). 1301 */ 1302 btrfs_set_skip_qgroup(trans, objectid); 1303 1304 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve); 1305 1306 if (to_reserve > 0) { 1307 pending->error = btrfs_block_rsv_add(root, 1308 &pending->block_rsv, 1309 to_reserve, 1310 BTRFS_RESERVE_NO_FLUSH); 1311 if (pending->error) 1312 goto clear_skip_qgroup; 1313 } 1314 1315 key.objectid = objectid; 1316 key.offset = (u64)-1; 1317 key.type = BTRFS_ROOT_ITEM_KEY; 1318 1319 rsv = trans->block_rsv; 1320 trans->block_rsv = &pending->block_rsv; 1321 trans->bytes_reserved = trans->block_rsv->reserved; 1322 1323 dentry = pending->dentry; 1324 parent_inode = pending->dir; 1325 parent_root = BTRFS_I(parent_inode)->root; 1326 record_root_in_trans(trans, parent_root); 1327 1328 /* 1329 * insert the directory item 1330 */ 1331 ret = btrfs_set_inode_index(parent_inode, &index); 1332 BUG_ON(ret); /* -ENOMEM */ 1333 1334 /* check if there is a file/dir which has the same name. */ 1335 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1336 btrfs_ino(parent_inode), 1337 dentry->d_name.name, 1338 dentry->d_name.len, 0); 1339 if (dir_item != NULL && !IS_ERR(dir_item)) { 1340 pending->error = -EEXIST; 1341 goto dir_item_existed; 1342 } else if (IS_ERR(dir_item)) { 1343 ret = PTR_ERR(dir_item); 1344 btrfs_abort_transaction(trans, root, ret); 1345 goto fail; 1346 } 1347 btrfs_release_path(path); 1348 1349 /* 1350 * pull in the delayed directory update 1351 * and the delayed inode item 1352 * otherwise we corrupt the FS during 1353 * snapshot 1354 */ 1355 ret = btrfs_run_delayed_items(trans, root); 1356 if (ret) { /* Transaction aborted */ 1357 btrfs_abort_transaction(trans, root, ret); 1358 goto fail; 1359 } 1360 1361 record_root_in_trans(trans, root); 1362 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1363 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1364 btrfs_check_and_init_root_item(new_root_item); 1365 1366 root_flags = btrfs_root_flags(new_root_item); 1367 if (pending->readonly) 1368 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1369 else 1370 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1371 btrfs_set_root_flags(new_root_item, root_flags); 1372 1373 btrfs_set_root_generation_v2(new_root_item, 1374 trans->transid); 1375 uuid_le_gen(&new_uuid); 1376 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1377 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1378 BTRFS_UUID_SIZE); 1379 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1380 memset(new_root_item->received_uuid, 0, 1381 sizeof(new_root_item->received_uuid)); 1382 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1383 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1384 btrfs_set_root_stransid(new_root_item, 0); 1385 btrfs_set_root_rtransid(new_root_item, 0); 1386 } 1387 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1388 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1389 btrfs_set_root_otransid(new_root_item, trans->transid); 1390 1391 old = btrfs_lock_root_node(root); 1392 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1393 if (ret) { 1394 btrfs_tree_unlock(old); 1395 free_extent_buffer(old); 1396 btrfs_abort_transaction(trans, root, ret); 1397 goto fail; 1398 } 1399 1400 btrfs_set_lock_blocking(old); 1401 1402 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1403 /* clean up in any case */ 1404 btrfs_tree_unlock(old); 1405 free_extent_buffer(old); 1406 if (ret) { 1407 btrfs_abort_transaction(trans, root, ret); 1408 goto fail; 1409 } 1410 /* see comments in should_cow_block() */ 1411 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1412 smp_wmb(); 1413 1414 btrfs_set_root_node(new_root_item, tmp); 1415 /* record when the snapshot was created in key.offset */ 1416 key.offset = trans->transid; 1417 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1418 btrfs_tree_unlock(tmp); 1419 free_extent_buffer(tmp); 1420 if (ret) { 1421 btrfs_abort_transaction(trans, root, ret); 1422 goto fail; 1423 } 1424 1425 /* 1426 * insert root back/forward references 1427 */ 1428 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1429 parent_root->root_key.objectid, 1430 btrfs_ino(parent_inode), index, 1431 dentry->d_name.name, dentry->d_name.len); 1432 if (ret) { 1433 btrfs_abort_transaction(trans, root, ret); 1434 goto fail; 1435 } 1436 1437 key.offset = (u64)-1; 1438 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1439 if (IS_ERR(pending->snap)) { 1440 ret = PTR_ERR(pending->snap); 1441 btrfs_abort_transaction(trans, root, ret); 1442 goto fail; 1443 } 1444 1445 ret = btrfs_reloc_post_snapshot(trans, pending); 1446 if (ret) { 1447 btrfs_abort_transaction(trans, root, ret); 1448 goto fail; 1449 } 1450 1451 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1452 if (ret) { 1453 btrfs_abort_transaction(trans, root, ret); 1454 goto fail; 1455 } 1456 1457 ret = btrfs_insert_dir_item(trans, parent_root, 1458 dentry->d_name.name, dentry->d_name.len, 1459 parent_inode, &key, 1460 BTRFS_FT_DIR, index); 1461 /* We have check then name at the beginning, so it is impossible. */ 1462 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1463 if (ret) { 1464 btrfs_abort_transaction(trans, root, ret); 1465 goto fail; 1466 } 1467 1468 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1469 dentry->d_name.len * 2); 1470 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 1471 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1472 if (ret) { 1473 btrfs_abort_transaction(trans, root, ret); 1474 goto fail; 1475 } 1476 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b, 1477 BTRFS_UUID_KEY_SUBVOL, objectid); 1478 if (ret) { 1479 btrfs_abort_transaction(trans, root, ret); 1480 goto fail; 1481 } 1482 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1483 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 1484 new_root_item->received_uuid, 1485 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1486 objectid); 1487 if (ret && ret != -EEXIST) { 1488 btrfs_abort_transaction(trans, root, ret); 1489 goto fail; 1490 } 1491 } 1492 1493 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1494 if (ret) { 1495 btrfs_abort_transaction(trans, root, ret); 1496 goto fail; 1497 } 1498 1499 /* 1500 * account qgroup counters before qgroup_inherit() 1501 */ 1502 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info); 1503 if (ret) 1504 goto fail; 1505 ret = btrfs_qgroup_account_extents(trans, fs_info); 1506 if (ret) 1507 goto fail; 1508 ret = btrfs_qgroup_inherit(trans, fs_info, 1509 root->root_key.objectid, 1510 objectid, pending->inherit); 1511 if (ret) { 1512 btrfs_abort_transaction(trans, root, ret); 1513 goto fail; 1514 } 1515 1516 fail: 1517 pending->error = ret; 1518 dir_item_existed: 1519 trans->block_rsv = rsv; 1520 trans->bytes_reserved = 0; 1521 clear_skip_qgroup: 1522 btrfs_clear_skip_qgroup(trans); 1523 no_free_objectid: 1524 kfree(new_root_item); 1525 root_item_alloc_fail: 1526 btrfs_free_path(path); 1527 return ret; 1528 } 1529 1530 /* 1531 * create all the snapshots we've scheduled for creation 1532 */ 1533 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1534 struct btrfs_fs_info *fs_info) 1535 { 1536 struct btrfs_pending_snapshot *pending, *next; 1537 struct list_head *head = &trans->transaction->pending_snapshots; 1538 int ret = 0; 1539 1540 list_for_each_entry_safe(pending, next, head, list) { 1541 list_del(&pending->list); 1542 ret = create_pending_snapshot(trans, fs_info, pending); 1543 if (ret) 1544 break; 1545 } 1546 return ret; 1547 } 1548 1549 static void update_super_roots(struct btrfs_root *root) 1550 { 1551 struct btrfs_root_item *root_item; 1552 struct btrfs_super_block *super; 1553 1554 super = root->fs_info->super_copy; 1555 1556 root_item = &root->fs_info->chunk_root->root_item; 1557 super->chunk_root = root_item->bytenr; 1558 super->chunk_root_generation = root_item->generation; 1559 super->chunk_root_level = root_item->level; 1560 1561 root_item = &root->fs_info->tree_root->root_item; 1562 super->root = root_item->bytenr; 1563 super->generation = root_item->generation; 1564 super->root_level = root_item->level; 1565 if (btrfs_test_opt(root, SPACE_CACHE)) 1566 super->cache_generation = root_item->generation; 1567 if (root->fs_info->update_uuid_tree_gen) 1568 super->uuid_tree_generation = root_item->generation; 1569 } 1570 1571 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1572 { 1573 struct btrfs_transaction *trans; 1574 int ret = 0; 1575 1576 spin_lock(&info->trans_lock); 1577 trans = info->running_transaction; 1578 if (trans) 1579 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1580 spin_unlock(&info->trans_lock); 1581 return ret; 1582 } 1583 1584 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1585 { 1586 struct btrfs_transaction *trans; 1587 int ret = 0; 1588 1589 spin_lock(&info->trans_lock); 1590 trans = info->running_transaction; 1591 if (trans) 1592 ret = is_transaction_blocked(trans); 1593 spin_unlock(&info->trans_lock); 1594 return ret; 1595 } 1596 1597 /* 1598 * wait for the current transaction commit to start and block subsequent 1599 * transaction joins 1600 */ 1601 static void wait_current_trans_commit_start(struct btrfs_root *root, 1602 struct btrfs_transaction *trans) 1603 { 1604 wait_event(root->fs_info->transaction_blocked_wait, 1605 trans->state >= TRANS_STATE_COMMIT_START || 1606 trans->aborted); 1607 } 1608 1609 /* 1610 * wait for the current transaction to start and then become unblocked. 1611 * caller holds ref. 1612 */ 1613 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1614 struct btrfs_transaction *trans) 1615 { 1616 wait_event(root->fs_info->transaction_wait, 1617 trans->state >= TRANS_STATE_UNBLOCKED || 1618 trans->aborted); 1619 } 1620 1621 /* 1622 * commit transactions asynchronously. once btrfs_commit_transaction_async 1623 * returns, any subsequent transaction will not be allowed to join. 1624 */ 1625 struct btrfs_async_commit { 1626 struct btrfs_trans_handle *newtrans; 1627 struct btrfs_root *root; 1628 struct work_struct work; 1629 }; 1630 1631 static void do_async_commit(struct work_struct *work) 1632 { 1633 struct btrfs_async_commit *ac = 1634 container_of(work, struct btrfs_async_commit, work); 1635 1636 /* 1637 * We've got freeze protection passed with the transaction. 1638 * Tell lockdep about it. 1639 */ 1640 if (ac->newtrans->type & __TRANS_FREEZABLE) 1641 rwsem_acquire_read( 1642 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1643 0, 1, _THIS_IP_); 1644 1645 current->journal_info = ac->newtrans; 1646 1647 btrfs_commit_transaction(ac->newtrans, ac->root); 1648 kfree(ac); 1649 } 1650 1651 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1652 struct btrfs_root *root, 1653 int wait_for_unblock) 1654 { 1655 struct btrfs_async_commit *ac; 1656 struct btrfs_transaction *cur_trans; 1657 1658 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1659 if (!ac) 1660 return -ENOMEM; 1661 1662 INIT_WORK(&ac->work, do_async_commit); 1663 ac->root = root; 1664 ac->newtrans = btrfs_join_transaction(root); 1665 if (IS_ERR(ac->newtrans)) { 1666 int err = PTR_ERR(ac->newtrans); 1667 kfree(ac); 1668 return err; 1669 } 1670 1671 /* take transaction reference */ 1672 cur_trans = trans->transaction; 1673 atomic_inc(&cur_trans->use_count); 1674 1675 btrfs_end_transaction(trans, root); 1676 1677 /* 1678 * Tell lockdep we've released the freeze rwsem, since the 1679 * async commit thread will be the one to unlock it. 1680 */ 1681 if (ac->newtrans->type & __TRANS_FREEZABLE) 1682 rwsem_release( 1683 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1684 1, _THIS_IP_); 1685 1686 schedule_work(&ac->work); 1687 1688 /* wait for transaction to start and unblock */ 1689 if (wait_for_unblock) 1690 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1691 else 1692 wait_current_trans_commit_start(root, cur_trans); 1693 1694 if (current->journal_info == trans) 1695 current->journal_info = NULL; 1696 1697 btrfs_put_transaction(cur_trans); 1698 return 0; 1699 } 1700 1701 1702 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1703 struct btrfs_root *root, int err) 1704 { 1705 struct btrfs_transaction *cur_trans = trans->transaction; 1706 DEFINE_WAIT(wait); 1707 1708 WARN_ON(trans->use_count > 1); 1709 1710 btrfs_abort_transaction(trans, root, err); 1711 1712 spin_lock(&root->fs_info->trans_lock); 1713 1714 /* 1715 * If the transaction is removed from the list, it means this 1716 * transaction has been committed successfully, so it is impossible 1717 * to call the cleanup function. 1718 */ 1719 BUG_ON(list_empty(&cur_trans->list)); 1720 1721 list_del_init(&cur_trans->list); 1722 if (cur_trans == root->fs_info->running_transaction) { 1723 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1724 spin_unlock(&root->fs_info->trans_lock); 1725 wait_event(cur_trans->writer_wait, 1726 atomic_read(&cur_trans->num_writers) == 1); 1727 1728 spin_lock(&root->fs_info->trans_lock); 1729 } 1730 spin_unlock(&root->fs_info->trans_lock); 1731 1732 btrfs_cleanup_one_transaction(trans->transaction, root); 1733 1734 spin_lock(&root->fs_info->trans_lock); 1735 if (cur_trans == root->fs_info->running_transaction) 1736 root->fs_info->running_transaction = NULL; 1737 spin_unlock(&root->fs_info->trans_lock); 1738 1739 if (trans->type & __TRANS_FREEZABLE) 1740 sb_end_intwrite(root->fs_info->sb); 1741 btrfs_put_transaction(cur_trans); 1742 btrfs_put_transaction(cur_trans); 1743 1744 trace_btrfs_transaction_commit(root); 1745 1746 if (current->journal_info == trans) 1747 current->journal_info = NULL; 1748 btrfs_scrub_cancel(root->fs_info); 1749 1750 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1751 } 1752 1753 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1754 { 1755 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1756 return btrfs_start_delalloc_roots(fs_info, 1, -1); 1757 return 0; 1758 } 1759 1760 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1761 { 1762 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1763 btrfs_wait_ordered_roots(fs_info, -1); 1764 } 1765 1766 static inline void 1767 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans, 1768 struct btrfs_fs_info *fs_info) 1769 { 1770 struct btrfs_ordered_extent *ordered; 1771 1772 spin_lock(&fs_info->trans_lock); 1773 while (!list_empty(&cur_trans->pending_ordered)) { 1774 ordered = list_first_entry(&cur_trans->pending_ordered, 1775 struct btrfs_ordered_extent, 1776 trans_list); 1777 list_del_init(&ordered->trans_list); 1778 spin_unlock(&fs_info->trans_lock); 1779 1780 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE, 1781 &ordered->flags)); 1782 btrfs_put_ordered_extent(ordered); 1783 spin_lock(&fs_info->trans_lock); 1784 } 1785 spin_unlock(&fs_info->trans_lock); 1786 } 1787 1788 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1789 struct btrfs_root *root) 1790 { 1791 struct btrfs_transaction *cur_trans = trans->transaction; 1792 struct btrfs_transaction *prev_trans = NULL; 1793 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 1794 int ret; 1795 1796 /* Stop the commit early if ->aborted is set */ 1797 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1798 ret = cur_trans->aborted; 1799 btrfs_end_transaction(trans, root); 1800 return ret; 1801 } 1802 1803 /* make a pass through all the delayed refs we have so far 1804 * any runnings procs may add more while we are here 1805 */ 1806 ret = btrfs_run_delayed_refs(trans, root, 0); 1807 if (ret) { 1808 btrfs_end_transaction(trans, root); 1809 return ret; 1810 } 1811 1812 btrfs_trans_release_metadata(trans, root); 1813 trans->block_rsv = NULL; 1814 if (trans->qgroup_reserved) { 1815 btrfs_qgroup_free(root, trans->qgroup_reserved); 1816 trans->qgroup_reserved = 0; 1817 } 1818 1819 cur_trans = trans->transaction; 1820 1821 /* 1822 * set the flushing flag so procs in this transaction have to 1823 * start sending their work down. 1824 */ 1825 cur_trans->delayed_refs.flushing = 1; 1826 smp_wmb(); 1827 1828 if (!list_empty(&trans->new_bgs)) 1829 btrfs_create_pending_block_groups(trans, root); 1830 1831 ret = btrfs_run_delayed_refs(trans, root, 0); 1832 if (ret) { 1833 btrfs_end_transaction(trans, root); 1834 return ret; 1835 } 1836 1837 if (!cur_trans->dirty_bg_run) { 1838 int run_it = 0; 1839 1840 /* this mutex is also taken before trying to set 1841 * block groups readonly. We need to make sure 1842 * that nobody has set a block group readonly 1843 * after a extents from that block group have been 1844 * allocated for cache files. btrfs_set_block_group_ro 1845 * will wait for the transaction to commit if it 1846 * finds dirty_bg_run = 1 1847 * 1848 * The dirty_bg_run flag is also used to make sure only 1849 * one process starts all the block group IO. It wouldn't 1850 * hurt to have more than one go through, but there's no 1851 * real advantage to it either. 1852 */ 1853 mutex_lock(&root->fs_info->ro_block_group_mutex); 1854 if (!cur_trans->dirty_bg_run) { 1855 run_it = 1; 1856 cur_trans->dirty_bg_run = 1; 1857 } 1858 mutex_unlock(&root->fs_info->ro_block_group_mutex); 1859 1860 if (run_it) 1861 ret = btrfs_start_dirty_block_groups(trans, root); 1862 } 1863 if (ret) { 1864 btrfs_end_transaction(trans, root); 1865 return ret; 1866 } 1867 1868 spin_lock(&root->fs_info->trans_lock); 1869 list_splice_init(&trans->ordered, &cur_trans->pending_ordered); 1870 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 1871 spin_unlock(&root->fs_info->trans_lock); 1872 atomic_inc(&cur_trans->use_count); 1873 ret = btrfs_end_transaction(trans, root); 1874 1875 wait_for_commit(root, cur_trans); 1876 1877 if (unlikely(cur_trans->aborted)) 1878 ret = cur_trans->aborted; 1879 1880 btrfs_put_transaction(cur_trans); 1881 1882 return ret; 1883 } 1884 1885 cur_trans->state = TRANS_STATE_COMMIT_START; 1886 wake_up(&root->fs_info->transaction_blocked_wait); 1887 1888 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1889 prev_trans = list_entry(cur_trans->list.prev, 1890 struct btrfs_transaction, list); 1891 if (prev_trans->state != TRANS_STATE_COMPLETED) { 1892 atomic_inc(&prev_trans->use_count); 1893 spin_unlock(&root->fs_info->trans_lock); 1894 1895 wait_for_commit(root, prev_trans); 1896 1897 btrfs_put_transaction(prev_trans); 1898 } else { 1899 spin_unlock(&root->fs_info->trans_lock); 1900 } 1901 } else { 1902 spin_unlock(&root->fs_info->trans_lock); 1903 } 1904 1905 extwriter_counter_dec(cur_trans, trans->type); 1906 1907 ret = btrfs_start_delalloc_flush(root->fs_info); 1908 if (ret) 1909 goto cleanup_transaction; 1910 1911 ret = btrfs_run_delayed_items(trans, root); 1912 if (ret) 1913 goto cleanup_transaction; 1914 1915 wait_event(cur_trans->writer_wait, 1916 extwriter_counter_read(cur_trans) == 0); 1917 1918 /* some pending stuffs might be added after the previous flush. */ 1919 ret = btrfs_run_delayed_items(trans, root); 1920 if (ret) 1921 goto cleanup_transaction; 1922 1923 btrfs_wait_delalloc_flush(root->fs_info); 1924 1925 btrfs_wait_pending_ordered(cur_trans, root->fs_info); 1926 1927 btrfs_scrub_pause(root); 1928 /* 1929 * Ok now we need to make sure to block out any other joins while we 1930 * commit the transaction. We could have started a join before setting 1931 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 1932 */ 1933 spin_lock(&root->fs_info->trans_lock); 1934 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1935 spin_unlock(&root->fs_info->trans_lock); 1936 wait_event(cur_trans->writer_wait, 1937 atomic_read(&cur_trans->num_writers) == 1); 1938 1939 /* ->aborted might be set after the previous check, so check it */ 1940 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1941 ret = cur_trans->aborted; 1942 goto scrub_continue; 1943 } 1944 /* 1945 * the reloc mutex makes sure that we stop 1946 * the balancing code from coming in and moving 1947 * extents around in the middle of the commit 1948 */ 1949 mutex_lock(&root->fs_info->reloc_mutex); 1950 1951 /* 1952 * We needn't worry about the delayed items because we will 1953 * deal with them in create_pending_snapshot(), which is the 1954 * core function of the snapshot creation. 1955 */ 1956 ret = create_pending_snapshots(trans, root->fs_info); 1957 if (ret) { 1958 mutex_unlock(&root->fs_info->reloc_mutex); 1959 goto scrub_continue; 1960 } 1961 1962 /* 1963 * We insert the dir indexes of the snapshots and update the inode 1964 * of the snapshots' parents after the snapshot creation, so there 1965 * are some delayed items which are not dealt with. Now deal with 1966 * them. 1967 * 1968 * We needn't worry that this operation will corrupt the snapshots, 1969 * because all the tree which are snapshoted will be forced to COW 1970 * the nodes and leaves. 1971 */ 1972 ret = btrfs_run_delayed_items(trans, root); 1973 if (ret) { 1974 mutex_unlock(&root->fs_info->reloc_mutex); 1975 goto scrub_continue; 1976 } 1977 1978 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1979 if (ret) { 1980 mutex_unlock(&root->fs_info->reloc_mutex); 1981 goto scrub_continue; 1982 } 1983 1984 /* Reocrd old roots for later qgroup accounting */ 1985 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info); 1986 if (ret) { 1987 mutex_unlock(&root->fs_info->reloc_mutex); 1988 goto scrub_continue; 1989 } 1990 1991 /* 1992 * make sure none of the code above managed to slip in a 1993 * delayed item 1994 */ 1995 btrfs_assert_delayed_root_empty(root); 1996 1997 WARN_ON(cur_trans != trans->transaction); 1998 1999 /* btrfs_commit_tree_roots is responsible for getting the 2000 * various roots consistent with each other. Every pointer 2001 * in the tree of tree roots has to point to the most up to date 2002 * root for every subvolume and other tree. So, we have to keep 2003 * the tree logging code from jumping in and changing any 2004 * of the trees. 2005 * 2006 * At this point in the commit, there can't be any tree-log 2007 * writers, but a little lower down we drop the trans mutex 2008 * and let new people in. By holding the tree_log_mutex 2009 * from now until after the super is written, we avoid races 2010 * with the tree-log code. 2011 */ 2012 mutex_lock(&root->fs_info->tree_log_mutex); 2013 2014 ret = commit_fs_roots(trans, root); 2015 if (ret) { 2016 mutex_unlock(&root->fs_info->tree_log_mutex); 2017 mutex_unlock(&root->fs_info->reloc_mutex); 2018 goto scrub_continue; 2019 } 2020 2021 /* 2022 * Since the transaction is done, we can apply the pending changes 2023 * before the next transaction. 2024 */ 2025 btrfs_apply_pending_changes(root->fs_info); 2026 2027 /* commit_fs_roots gets rid of all the tree log roots, it is now 2028 * safe to free the root of tree log roots 2029 */ 2030 btrfs_free_log_root_tree(trans, root->fs_info); 2031 2032 /* 2033 * Since fs roots are all committed, we can get a quite accurate 2034 * new_roots. So let's do quota accounting. 2035 */ 2036 ret = btrfs_qgroup_account_extents(trans, root->fs_info); 2037 if (ret < 0) { 2038 mutex_unlock(&root->fs_info->tree_log_mutex); 2039 mutex_unlock(&root->fs_info->reloc_mutex); 2040 goto scrub_continue; 2041 } 2042 2043 ret = commit_cowonly_roots(trans, root); 2044 if (ret) { 2045 mutex_unlock(&root->fs_info->tree_log_mutex); 2046 mutex_unlock(&root->fs_info->reloc_mutex); 2047 goto scrub_continue; 2048 } 2049 2050 /* 2051 * The tasks which save the space cache and inode cache may also 2052 * update ->aborted, check it. 2053 */ 2054 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 2055 ret = cur_trans->aborted; 2056 mutex_unlock(&root->fs_info->tree_log_mutex); 2057 mutex_unlock(&root->fs_info->reloc_mutex); 2058 goto scrub_continue; 2059 } 2060 2061 btrfs_prepare_extent_commit(trans, root); 2062 2063 cur_trans = root->fs_info->running_transaction; 2064 2065 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 2066 root->fs_info->tree_root->node); 2067 list_add_tail(&root->fs_info->tree_root->dirty_list, 2068 &cur_trans->switch_commits); 2069 2070 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 2071 root->fs_info->chunk_root->node); 2072 list_add_tail(&root->fs_info->chunk_root->dirty_list, 2073 &cur_trans->switch_commits); 2074 2075 switch_commit_roots(cur_trans, root->fs_info); 2076 2077 assert_qgroups_uptodate(trans); 2078 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2079 ASSERT(list_empty(&cur_trans->io_bgs)); 2080 update_super_roots(root); 2081 2082 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 2083 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 2084 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 2085 sizeof(*root->fs_info->super_copy)); 2086 2087 btrfs_update_commit_device_size(root->fs_info); 2088 btrfs_update_commit_device_bytes_used(root, cur_trans); 2089 2090 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 2091 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 2092 2093 btrfs_trans_release_chunk_metadata(trans); 2094 2095 spin_lock(&root->fs_info->trans_lock); 2096 cur_trans->state = TRANS_STATE_UNBLOCKED; 2097 root->fs_info->running_transaction = NULL; 2098 spin_unlock(&root->fs_info->trans_lock); 2099 mutex_unlock(&root->fs_info->reloc_mutex); 2100 2101 wake_up(&root->fs_info->transaction_wait); 2102 2103 ret = btrfs_write_and_wait_transaction(trans, root); 2104 if (ret) { 2105 btrfs_error(root->fs_info, ret, 2106 "Error while writing out transaction"); 2107 mutex_unlock(&root->fs_info->tree_log_mutex); 2108 goto scrub_continue; 2109 } 2110 2111 ret = write_ctree_super(trans, root, 0); 2112 if (ret) { 2113 mutex_unlock(&root->fs_info->tree_log_mutex); 2114 goto scrub_continue; 2115 } 2116 2117 /* 2118 * the super is written, we can safely allow the tree-loggers 2119 * to go about their business 2120 */ 2121 mutex_unlock(&root->fs_info->tree_log_mutex); 2122 2123 btrfs_finish_extent_commit(trans, root); 2124 2125 if (cur_trans->have_free_bgs) 2126 btrfs_clear_space_info_full(root->fs_info); 2127 2128 root->fs_info->last_trans_committed = cur_trans->transid; 2129 /* 2130 * We needn't acquire the lock here because there is no other task 2131 * which can change it. 2132 */ 2133 cur_trans->state = TRANS_STATE_COMPLETED; 2134 wake_up(&cur_trans->commit_wait); 2135 2136 spin_lock(&root->fs_info->trans_lock); 2137 list_del_init(&cur_trans->list); 2138 spin_unlock(&root->fs_info->trans_lock); 2139 2140 btrfs_put_transaction(cur_trans); 2141 btrfs_put_transaction(cur_trans); 2142 2143 if (trans->type & __TRANS_FREEZABLE) 2144 sb_end_intwrite(root->fs_info->sb); 2145 2146 trace_btrfs_transaction_commit(root); 2147 2148 btrfs_scrub_continue(root); 2149 2150 if (current->journal_info == trans) 2151 current->journal_info = NULL; 2152 2153 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2154 2155 if (current != root->fs_info->transaction_kthread && 2156 current != root->fs_info->cleaner_kthread) 2157 btrfs_run_delayed_iputs(root); 2158 2159 return ret; 2160 2161 scrub_continue: 2162 btrfs_scrub_continue(root); 2163 cleanup_transaction: 2164 btrfs_trans_release_metadata(trans, root); 2165 btrfs_trans_release_chunk_metadata(trans); 2166 trans->block_rsv = NULL; 2167 if (trans->qgroup_reserved) { 2168 btrfs_qgroup_free(root, trans->qgroup_reserved); 2169 trans->qgroup_reserved = 0; 2170 } 2171 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction."); 2172 if (current->journal_info == trans) 2173 current->journal_info = NULL; 2174 cleanup_transaction(trans, root, ret); 2175 2176 return ret; 2177 } 2178 2179 /* 2180 * return < 0 if error 2181 * 0 if there are no more dead_roots at the time of call 2182 * 1 there are more to be processed, call me again 2183 * 2184 * The return value indicates there are certainly more snapshots to delete, but 2185 * if there comes a new one during processing, it may return 0. We don't mind, 2186 * because btrfs_commit_super will poke cleaner thread and it will process it a 2187 * few seconds later. 2188 */ 2189 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2190 { 2191 int ret; 2192 struct btrfs_fs_info *fs_info = root->fs_info; 2193 2194 spin_lock(&fs_info->trans_lock); 2195 if (list_empty(&fs_info->dead_roots)) { 2196 spin_unlock(&fs_info->trans_lock); 2197 return 0; 2198 } 2199 root = list_first_entry(&fs_info->dead_roots, 2200 struct btrfs_root, root_list); 2201 list_del_init(&root->root_list); 2202 spin_unlock(&fs_info->trans_lock); 2203 2204 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid); 2205 2206 btrfs_kill_all_delayed_nodes(root); 2207 2208 if (btrfs_header_backref_rev(root->node) < 2209 BTRFS_MIXED_BACKREF_REV) 2210 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2211 else 2212 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2213 2214 return (ret < 0) ? 0 : 1; 2215 } 2216 2217 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2218 { 2219 unsigned long prev; 2220 unsigned long bit; 2221 2222 prev = xchg(&fs_info->pending_changes, 0); 2223 if (!prev) 2224 return; 2225 2226 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2227 if (prev & bit) 2228 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2229 prev &= ~bit; 2230 2231 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2232 if (prev & bit) 2233 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2234 prev &= ~bit; 2235 2236 bit = 1 << BTRFS_PENDING_COMMIT; 2237 if (prev & bit) 2238 btrfs_debug(fs_info, "pending commit done"); 2239 prev &= ~bit; 2240 2241 if (prev) 2242 btrfs_warn(fs_info, 2243 "unknown pending changes left 0x%lx, ignoring", prev); 2244 } 2245