xref: /openbmc/linux/fs/btrfs/transaction.c (revision e1e38ea1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "locking.h"
17 #include "tree-log.h"
18 #include "inode-map.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22 
23 #define BTRFS_ROOT_TRANS_TAG 0
24 
25 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
26 	[TRANS_STATE_RUNNING]		= 0U,
27 	[TRANS_STATE_BLOCKED]		=  __TRANS_START,
28 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
29 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
30 					   __TRANS_ATTACH |
31 					   __TRANS_JOIN),
32 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
33 					   __TRANS_ATTACH |
34 					   __TRANS_JOIN |
35 					   __TRANS_JOIN_NOLOCK),
36 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
37 					   __TRANS_ATTACH |
38 					   __TRANS_JOIN |
39 					   __TRANS_JOIN_NOLOCK),
40 };
41 
42 void btrfs_put_transaction(struct btrfs_transaction *transaction)
43 {
44 	WARN_ON(refcount_read(&transaction->use_count) == 0);
45 	if (refcount_dec_and_test(&transaction->use_count)) {
46 		BUG_ON(!list_empty(&transaction->list));
47 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
48 		if (transaction->delayed_refs.pending_csums)
49 			btrfs_err(transaction->fs_info,
50 				  "pending csums is %llu",
51 				  transaction->delayed_refs.pending_csums);
52 		while (!list_empty(&transaction->pending_chunks)) {
53 			struct extent_map *em;
54 
55 			em = list_first_entry(&transaction->pending_chunks,
56 					      struct extent_map, list);
57 			list_del_init(&em->list);
58 			free_extent_map(em);
59 		}
60 		/*
61 		 * If any block groups are found in ->deleted_bgs then it's
62 		 * because the transaction was aborted and a commit did not
63 		 * happen (things failed before writing the new superblock
64 		 * and calling btrfs_finish_extent_commit()), so we can not
65 		 * discard the physical locations of the block groups.
66 		 */
67 		while (!list_empty(&transaction->deleted_bgs)) {
68 			struct btrfs_block_group_cache *cache;
69 
70 			cache = list_first_entry(&transaction->deleted_bgs,
71 						 struct btrfs_block_group_cache,
72 						 bg_list);
73 			list_del_init(&cache->bg_list);
74 			btrfs_put_block_group_trimming(cache);
75 			btrfs_put_block_group(cache);
76 		}
77 		kfree(transaction);
78 	}
79 }
80 
81 static void clear_btree_io_tree(struct extent_io_tree *tree)
82 {
83 	spin_lock(&tree->lock);
84 	/*
85 	 * Do a single barrier for the waitqueue_active check here, the state
86 	 * of the waitqueue should not change once clear_btree_io_tree is
87 	 * called.
88 	 */
89 	smp_mb();
90 	while (!RB_EMPTY_ROOT(&tree->state)) {
91 		struct rb_node *node;
92 		struct extent_state *state;
93 
94 		node = rb_first(&tree->state);
95 		state = rb_entry(node, struct extent_state, rb_node);
96 		rb_erase(&state->rb_node, &tree->state);
97 		RB_CLEAR_NODE(&state->rb_node);
98 		/*
99 		 * btree io trees aren't supposed to have tasks waiting for
100 		 * changes in the flags of extent states ever.
101 		 */
102 		ASSERT(!waitqueue_active(&state->wq));
103 		free_extent_state(state);
104 
105 		cond_resched_lock(&tree->lock);
106 	}
107 	spin_unlock(&tree->lock);
108 }
109 
110 static noinline void switch_commit_roots(struct btrfs_transaction *trans)
111 {
112 	struct btrfs_fs_info *fs_info = trans->fs_info;
113 	struct btrfs_root *root, *tmp;
114 
115 	down_write(&fs_info->commit_root_sem);
116 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
117 				 dirty_list) {
118 		list_del_init(&root->dirty_list);
119 		free_extent_buffer(root->commit_root);
120 		root->commit_root = btrfs_root_node(root);
121 		if (is_fstree(root->objectid))
122 			btrfs_unpin_free_ino(root);
123 		clear_btree_io_tree(&root->dirty_log_pages);
124 	}
125 
126 	/* We can free old roots now. */
127 	spin_lock(&trans->dropped_roots_lock);
128 	while (!list_empty(&trans->dropped_roots)) {
129 		root = list_first_entry(&trans->dropped_roots,
130 					struct btrfs_root, root_list);
131 		list_del_init(&root->root_list);
132 		spin_unlock(&trans->dropped_roots_lock);
133 		btrfs_drop_and_free_fs_root(fs_info, root);
134 		spin_lock(&trans->dropped_roots_lock);
135 	}
136 	spin_unlock(&trans->dropped_roots_lock);
137 	up_write(&fs_info->commit_root_sem);
138 }
139 
140 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
141 					 unsigned int type)
142 {
143 	if (type & TRANS_EXTWRITERS)
144 		atomic_inc(&trans->num_extwriters);
145 }
146 
147 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
148 					 unsigned int type)
149 {
150 	if (type & TRANS_EXTWRITERS)
151 		atomic_dec(&trans->num_extwriters);
152 }
153 
154 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
155 					  unsigned int type)
156 {
157 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
158 }
159 
160 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
161 {
162 	return atomic_read(&trans->num_extwriters);
163 }
164 
165 /*
166  * either allocate a new transaction or hop into the existing one
167  */
168 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
169 				     unsigned int type)
170 {
171 	struct btrfs_transaction *cur_trans;
172 
173 	spin_lock(&fs_info->trans_lock);
174 loop:
175 	/* The file system has been taken offline. No new transactions. */
176 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
177 		spin_unlock(&fs_info->trans_lock);
178 		return -EROFS;
179 	}
180 
181 	cur_trans = fs_info->running_transaction;
182 	if (cur_trans) {
183 		if (cur_trans->aborted) {
184 			spin_unlock(&fs_info->trans_lock);
185 			return cur_trans->aborted;
186 		}
187 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
188 			spin_unlock(&fs_info->trans_lock);
189 			return -EBUSY;
190 		}
191 		refcount_inc(&cur_trans->use_count);
192 		atomic_inc(&cur_trans->num_writers);
193 		extwriter_counter_inc(cur_trans, type);
194 		spin_unlock(&fs_info->trans_lock);
195 		return 0;
196 	}
197 	spin_unlock(&fs_info->trans_lock);
198 
199 	/*
200 	 * If we are ATTACH, we just want to catch the current transaction,
201 	 * and commit it. If there is no transaction, just return ENOENT.
202 	 */
203 	if (type == TRANS_ATTACH)
204 		return -ENOENT;
205 
206 	/*
207 	 * JOIN_NOLOCK only happens during the transaction commit, so
208 	 * it is impossible that ->running_transaction is NULL
209 	 */
210 	BUG_ON(type == TRANS_JOIN_NOLOCK);
211 
212 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
213 	if (!cur_trans)
214 		return -ENOMEM;
215 
216 	spin_lock(&fs_info->trans_lock);
217 	if (fs_info->running_transaction) {
218 		/*
219 		 * someone started a transaction after we unlocked.  Make sure
220 		 * to redo the checks above
221 		 */
222 		kfree(cur_trans);
223 		goto loop;
224 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
225 		spin_unlock(&fs_info->trans_lock);
226 		kfree(cur_trans);
227 		return -EROFS;
228 	}
229 
230 	cur_trans->fs_info = fs_info;
231 	atomic_set(&cur_trans->num_writers, 1);
232 	extwriter_counter_init(cur_trans, type);
233 	init_waitqueue_head(&cur_trans->writer_wait);
234 	init_waitqueue_head(&cur_trans->commit_wait);
235 	init_waitqueue_head(&cur_trans->pending_wait);
236 	cur_trans->state = TRANS_STATE_RUNNING;
237 	/*
238 	 * One for this trans handle, one so it will live on until we
239 	 * commit the transaction.
240 	 */
241 	refcount_set(&cur_trans->use_count, 2);
242 	atomic_set(&cur_trans->pending_ordered, 0);
243 	cur_trans->flags = 0;
244 	cur_trans->start_time = ktime_get_seconds();
245 
246 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
247 
248 	cur_trans->delayed_refs.href_root = RB_ROOT;
249 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
250 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
251 
252 	/*
253 	 * although the tree mod log is per file system and not per transaction,
254 	 * the log must never go across transaction boundaries.
255 	 */
256 	smp_mb();
257 	if (!list_empty(&fs_info->tree_mod_seq_list))
258 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
259 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
260 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
261 	atomic64_set(&fs_info->tree_mod_seq, 0);
262 
263 	spin_lock_init(&cur_trans->delayed_refs.lock);
264 
265 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
266 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
267 	INIT_LIST_HEAD(&cur_trans->switch_commits);
268 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
269 	INIT_LIST_HEAD(&cur_trans->io_bgs);
270 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
271 	mutex_init(&cur_trans->cache_write_mutex);
272 	cur_trans->num_dirty_bgs = 0;
273 	spin_lock_init(&cur_trans->dirty_bgs_lock);
274 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
275 	spin_lock_init(&cur_trans->dropped_roots_lock);
276 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
277 	extent_io_tree_init(&cur_trans->dirty_pages,
278 			     fs_info->btree_inode);
279 	fs_info->generation++;
280 	cur_trans->transid = fs_info->generation;
281 	fs_info->running_transaction = cur_trans;
282 	cur_trans->aborted = 0;
283 	spin_unlock(&fs_info->trans_lock);
284 
285 	return 0;
286 }
287 
288 /*
289  * this does all the record keeping required to make sure that a reference
290  * counted root is properly recorded in a given transaction.  This is required
291  * to make sure the old root from before we joined the transaction is deleted
292  * when the transaction commits
293  */
294 static int record_root_in_trans(struct btrfs_trans_handle *trans,
295 			       struct btrfs_root *root,
296 			       int force)
297 {
298 	struct btrfs_fs_info *fs_info = root->fs_info;
299 
300 	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
301 	    root->last_trans < trans->transid) || force) {
302 		WARN_ON(root == fs_info->extent_root);
303 		WARN_ON(!force && root->commit_root != root->node);
304 
305 		/*
306 		 * see below for IN_TRANS_SETUP usage rules
307 		 * we have the reloc mutex held now, so there
308 		 * is only one writer in this function
309 		 */
310 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
311 
312 		/* make sure readers find IN_TRANS_SETUP before
313 		 * they find our root->last_trans update
314 		 */
315 		smp_wmb();
316 
317 		spin_lock(&fs_info->fs_roots_radix_lock);
318 		if (root->last_trans == trans->transid && !force) {
319 			spin_unlock(&fs_info->fs_roots_radix_lock);
320 			return 0;
321 		}
322 		radix_tree_tag_set(&fs_info->fs_roots_radix,
323 				   (unsigned long)root->root_key.objectid,
324 				   BTRFS_ROOT_TRANS_TAG);
325 		spin_unlock(&fs_info->fs_roots_radix_lock);
326 		root->last_trans = trans->transid;
327 
328 		/* this is pretty tricky.  We don't want to
329 		 * take the relocation lock in btrfs_record_root_in_trans
330 		 * unless we're really doing the first setup for this root in
331 		 * this transaction.
332 		 *
333 		 * Normally we'd use root->last_trans as a flag to decide
334 		 * if we want to take the expensive mutex.
335 		 *
336 		 * But, we have to set root->last_trans before we
337 		 * init the relocation root, otherwise, we trip over warnings
338 		 * in ctree.c.  The solution used here is to flag ourselves
339 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
340 		 * fixing up the reloc trees and everyone must wait.
341 		 *
342 		 * When this is zero, they can trust root->last_trans and fly
343 		 * through btrfs_record_root_in_trans without having to take the
344 		 * lock.  smp_wmb() makes sure that all the writes above are
345 		 * done before we pop in the zero below
346 		 */
347 		btrfs_init_reloc_root(trans, root);
348 		smp_mb__before_atomic();
349 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
350 	}
351 	return 0;
352 }
353 
354 
355 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
356 			    struct btrfs_root *root)
357 {
358 	struct btrfs_fs_info *fs_info = root->fs_info;
359 	struct btrfs_transaction *cur_trans = trans->transaction;
360 
361 	/* Add ourselves to the transaction dropped list */
362 	spin_lock(&cur_trans->dropped_roots_lock);
363 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
364 	spin_unlock(&cur_trans->dropped_roots_lock);
365 
366 	/* Make sure we don't try to update the root at commit time */
367 	spin_lock(&fs_info->fs_roots_radix_lock);
368 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
369 			     (unsigned long)root->root_key.objectid,
370 			     BTRFS_ROOT_TRANS_TAG);
371 	spin_unlock(&fs_info->fs_roots_radix_lock);
372 }
373 
374 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
375 			       struct btrfs_root *root)
376 {
377 	struct btrfs_fs_info *fs_info = root->fs_info;
378 
379 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
380 		return 0;
381 
382 	/*
383 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
384 	 * and barriers
385 	 */
386 	smp_rmb();
387 	if (root->last_trans == trans->transid &&
388 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
389 		return 0;
390 
391 	mutex_lock(&fs_info->reloc_mutex);
392 	record_root_in_trans(trans, root, 0);
393 	mutex_unlock(&fs_info->reloc_mutex);
394 
395 	return 0;
396 }
397 
398 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
399 {
400 	return (trans->state >= TRANS_STATE_BLOCKED &&
401 		trans->state < TRANS_STATE_UNBLOCKED &&
402 		!trans->aborted);
403 }
404 
405 /* wait for commit against the current transaction to become unblocked
406  * when this is done, it is safe to start a new transaction, but the current
407  * transaction might not be fully on disk.
408  */
409 static void wait_current_trans(struct btrfs_fs_info *fs_info)
410 {
411 	struct btrfs_transaction *cur_trans;
412 
413 	spin_lock(&fs_info->trans_lock);
414 	cur_trans = fs_info->running_transaction;
415 	if (cur_trans && is_transaction_blocked(cur_trans)) {
416 		refcount_inc(&cur_trans->use_count);
417 		spin_unlock(&fs_info->trans_lock);
418 
419 		wait_event(fs_info->transaction_wait,
420 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
421 			   cur_trans->aborted);
422 		btrfs_put_transaction(cur_trans);
423 	} else {
424 		spin_unlock(&fs_info->trans_lock);
425 	}
426 }
427 
428 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
429 {
430 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
431 		return 0;
432 
433 	if (type == TRANS_START)
434 		return 1;
435 
436 	return 0;
437 }
438 
439 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
440 {
441 	struct btrfs_fs_info *fs_info = root->fs_info;
442 
443 	if (!fs_info->reloc_ctl ||
444 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
445 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
446 	    root->reloc_root)
447 		return false;
448 
449 	return true;
450 }
451 
452 static struct btrfs_trans_handle *
453 start_transaction(struct btrfs_root *root, unsigned int num_items,
454 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
455 		  bool enforce_qgroups)
456 {
457 	struct btrfs_fs_info *fs_info = root->fs_info;
458 
459 	struct btrfs_trans_handle *h;
460 	struct btrfs_transaction *cur_trans;
461 	u64 num_bytes = 0;
462 	u64 qgroup_reserved = 0;
463 	bool reloc_reserved = false;
464 	int ret;
465 
466 	/* Send isn't supposed to start transactions. */
467 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
468 
469 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
470 		return ERR_PTR(-EROFS);
471 
472 	if (current->journal_info) {
473 		WARN_ON(type & TRANS_EXTWRITERS);
474 		h = current->journal_info;
475 		refcount_inc(&h->use_count);
476 		WARN_ON(refcount_read(&h->use_count) > 2);
477 		h->orig_rsv = h->block_rsv;
478 		h->block_rsv = NULL;
479 		goto got_it;
480 	}
481 
482 	/*
483 	 * Do the reservation before we join the transaction so we can do all
484 	 * the appropriate flushing if need be.
485 	 */
486 	if (num_items && root != fs_info->chunk_root) {
487 		qgroup_reserved = num_items * fs_info->nodesize;
488 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
489 				enforce_qgroups);
490 		if (ret)
491 			return ERR_PTR(ret);
492 
493 		num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
494 		/*
495 		 * Do the reservation for the relocation root creation
496 		 */
497 		if (need_reserve_reloc_root(root)) {
498 			num_bytes += fs_info->nodesize;
499 			reloc_reserved = true;
500 		}
501 
502 		ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
503 					  num_bytes, flush);
504 		if (ret)
505 			goto reserve_fail;
506 	}
507 again:
508 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
509 	if (!h) {
510 		ret = -ENOMEM;
511 		goto alloc_fail;
512 	}
513 
514 	/*
515 	 * If we are JOIN_NOLOCK we're already committing a transaction and
516 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
517 	 * because we're already holding a ref.  We need this because we could
518 	 * have raced in and did an fsync() on a file which can kick a commit
519 	 * and then we deadlock with somebody doing a freeze.
520 	 *
521 	 * If we are ATTACH, it means we just want to catch the current
522 	 * transaction and commit it, so we needn't do sb_start_intwrite().
523 	 */
524 	if (type & __TRANS_FREEZABLE)
525 		sb_start_intwrite(fs_info->sb);
526 
527 	if (may_wait_transaction(fs_info, type))
528 		wait_current_trans(fs_info);
529 
530 	do {
531 		ret = join_transaction(fs_info, type);
532 		if (ret == -EBUSY) {
533 			wait_current_trans(fs_info);
534 			if (unlikely(type == TRANS_ATTACH))
535 				ret = -ENOENT;
536 		}
537 	} while (ret == -EBUSY);
538 
539 	if (ret < 0)
540 		goto join_fail;
541 
542 	cur_trans = fs_info->running_transaction;
543 
544 	h->transid = cur_trans->transid;
545 	h->transaction = cur_trans;
546 	h->root = root;
547 	refcount_set(&h->use_count, 1);
548 	h->fs_info = root->fs_info;
549 
550 	h->type = type;
551 	h->can_flush_pending_bgs = true;
552 	INIT_LIST_HEAD(&h->new_bgs);
553 
554 	smp_mb();
555 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
556 	    may_wait_transaction(fs_info, type)) {
557 		current->journal_info = h;
558 		btrfs_commit_transaction(h);
559 		goto again;
560 	}
561 
562 	if (num_bytes) {
563 		trace_btrfs_space_reservation(fs_info, "transaction",
564 					      h->transid, num_bytes, 1);
565 		h->block_rsv = &fs_info->trans_block_rsv;
566 		h->bytes_reserved = num_bytes;
567 		h->reloc_reserved = reloc_reserved;
568 	}
569 
570 got_it:
571 	btrfs_record_root_in_trans(h, root);
572 
573 	if (!current->journal_info)
574 		current->journal_info = h;
575 	return h;
576 
577 join_fail:
578 	if (type & __TRANS_FREEZABLE)
579 		sb_end_intwrite(fs_info->sb);
580 	kmem_cache_free(btrfs_trans_handle_cachep, h);
581 alloc_fail:
582 	if (num_bytes)
583 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
584 					num_bytes);
585 reserve_fail:
586 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
587 	return ERR_PTR(ret);
588 }
589 
590 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
591 						   unsigned int num_items)
592 {
593 	return start_transaction(root, num_items, TRANS_START,
594 				 BTRFS_RESERVE_FLUSH_ALL, true);
595 }
596 
597 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
598 					struct btrfs_root *root,
599 					unsigned int num_items,
600 					int min_factor)
601 {
602 	struct btrfs_fs_info *fs_info = root->fs_info;
603 	struct btrfs_trans_handle *trans;
604 	u64 num_bytes;
605 	int ret;
606 
607 	/*
608 	 * We have two callers: unlink and block group removal.  The
609 	 * former should succeed even if we will temporarily exceed
610 	 * quota and the latter operates on the extent root so
611 	 * qgroup enforcement is ignored anyway.
612 	 */
613 	trans = start_transaction(root, num_items, TRANS_START,
614 				  BTRFS_RESERVE_FLUSH_ALL, false);
615 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
616 		return trans;
617 
618 	trans = btrfs_start_transaction(root, 0);
619 	if (IS_ERR(trans))
620 		return trans;
621 
622 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
623 	ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
624 				       num_bytes, min_factor);
625 	if (ret) {
626 		btrfs_end_transaction(trans);
627 		return ERR_PTR(ret);
628 	}
629 
630 	trans->block_rsv = &fs_info->trans_block_rsv;
631 	trans->bytes_reserved = num_bytes;
632 	trace_btrfs_space_reservation(fs_info, "transaction",
633 				      trans->transid, num_bytes, 1);
634 
635 	return trans;
636 }
637 
638 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
639 {
640 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
641 				 true);
642 }
643 
644 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
645 {
646 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
647 				 BTRFS_RESERVE_NO_FLUSH, true);
648 }
649 
650 /*
651  * btrfs_attach_transaction() - catch the running transaction
652  *
653  * It is used when we want to commit the current the transaction, but
654  * don't want to start a new one.
655  *
656  * Note: If this function return -ENOENT, it just means there is no
657  * running transaction. But it is possible that the inactive transaction
658  * is still in the memory, not fully on disk. If you hope there is no
659  * inactive transaction in the fs when -ENOENT is returned, you should
660  * invoke
661  *     btrfs_attach_transaction_barrier()
662  */
663 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
664 {
665 	return start_transaction(root, 0, TRANS_ATTACH,
666 				 BTRFS_RESERVE_NO_FLUSH, true);
667 }
668 
669 /*
670  * btrfs_attach_transaction_barrier() - catch the running transaction
671  *
672  * It is similar to the above function, the differentia is this one
673  * will wait for all the inactive transactions until they fully
674  * complete.
675  */
676 struct btrfs_trans_handle *
677 btrfs_attach_transaction_barrier(struct btrfs_root *root)
678 {
679 	struct btrfs_trans_handle *trans;
680 
681 	trans = start_transaction(root, 0, TRANS_ATTACH,
682 				  BTRFS_RESERVE_NO_FLUSH, true);
683 	if (trans == ERR_PTR(-ENOENT))
684 		btrfs_wait_for_commit(root->fs_info, 0);
685 
686 	return trans;
687 }
688 
689 /* wait for a transaction commit to be fully complete */
690 static noinline void wait_for_commit(struct btrfs_transaction *commit)
691 {
692 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
693 }
694 
695 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
696 {
697 	struct btrfs_transaction *cur_trans = NULL, *t;
698 	int ret = 0;
699 
700 	if (transid) {
701 		if (transid <= fs_info->last_trans_committed)
702 			goto out;
703 
704 		/* find specified transaction */
705 		spin_lock(&fs_info->trans_lock);
706 		list_for_each_entry(t, &fs_info->trans_list, list) {
707 			if (t->transid == transid) {
708 				cur_trans = t;
709 				refcount_inc(&cur_trans->use_count);
710 				ret = 0;
711 				break;
712 			}
713 			if (t->transid > transid) {
714 				ret = 0;
715 				break;
716 			}
717 		}
718 		spin_unlock(&fs_info->trans_lock);
719 
720 		/*
721 		 * The specified transaction doesn't exist, or we
722 		 * raced with btrfs_commit_transaction
723 		 */
724 		if (!cur_trans) {
725 			if (transid > fs_info->last_trans_committed)
726 				ret = -EINVAL;
727 			goto out;
728 		}
729 	} else {
730 		/* find newest transaction that is committing | committed */
731 		spin_lock(&fs_info->trans_lock);
732 		list_for_each_entry_reverse(t, &fs_info->trans_list,
733 					    list) {
734 			if (t->state >= TRANS_STATE_COMMIT_START) {
735 				if (t->state == TRANS_STATE_COMPLETED)
736 					break;
737 				cur_trans = t;
738 				refcount_inc(&cur_trans->use_count);
739 				break;
740 			}
741 		}
742 		spin_unlock(&fs_info->trans_lock);
743 		if (!cur_trans)
744 			goto out;  /* nothing committing|committed */
745 	}
746 
747 	wait_for_commit(cur_trans);
748 	btrfs_put_transaction(cur_trans);
749 out:
750 	return ret;
751 }
752 
753 void btrfs_throttle(struct btrfs_fs_info *fs_info)
754 {
755 	wait_current_trans(fs_info);
756 }
757 
758 static int should_end_transaction(struct btrfs_trans_handle *trans)
759 {
760 	struct btrfs_fs_info *fs_info = trans->fs_info;
761 
762 	if (btrfs_check_space_for_delayed_refs(trans, fs_info))
763 		return 1;
764 
765 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
766 }
767 
768 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
769 {
770 	struct btrfs_transaction *cur_trans = trans->transaction;
771 	int updates;
772 	int err;
773 
774 	smp_mb();
775 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
776 	    cur_trans->delayed_refs.flushing)
777 		return 1;
778 
779 	updates = trans->delayed_ref_updates;
780 	trans->delayed_ref_updates = 0;
781 	if (updates) {
782 		err = btrfs_run_delayed_refs(trans, updates * 2);
783 		if (err) /* Error code will also eval true */
784 			return err;
785 	}
786 
787 	return should_end_transaction(trans);
788 }
789 
790 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
791 
792 {
793 	struct btrfs_fs_info *fs_info = trans->fs_info;
794 
795 	if (!trans->block_rsv) {
796 		ASSERT(!trans->bytes_reserved);
797 		return;
798 	}
799 
800 	if (!trans->bytes_reserved)
801 		return;
802 
803 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
804 	trace_btrfs_space_reservation(fs_info, "transaction",
805 				      trans->transid, trans->bytes_reserved, 0);
806 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
807 				trans->bytes_reserved);
808 	trans->bytes_reserved = 0;
809 }
810 
811 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
812 				   int throttle)
813 {
814 	struct btrfs_fs_info *info = trans->fs_info;
815 	struct btrfs_transaction *cur_trans = trans->transaction;
816 	u64 transid = trans->transid;
817 	unsigned long cur = trans->delayed_ref_updates;
818 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
819 	int err = 0;
820 	int must_run_delayed_refs = 0;
821 
822 	if (refcount_read(&trans->use_count) > 1) {
823 		refcount_dec(&trans->use_count);
824 		trans->block_rsv = trans->orig_rsv;
825 		return 0;
826 	}
827 
828 	btrfs_trans_release_metadata(trans);
829 	trans->block_rsv = NULL;
830 
831 	if (!list_empty(&trans->new_bgs))
832 		btrfs_create_pending_block_groups(trans);
833 
834 	trans->delayed_ref_updates = 0;
835 	if (!trans->sync) {
836 		must_run_delayed_refs =
837 			btrfs_should_throttle_delayed_refs(trans, info);
838 		cur = max_t(unsigned long, cur, 32);
839 
840 		/*
841 		 * don't make the caller wait if they are from a NOLOCK
842 		 * or ATTACH transaction, it will deadlock with commit
843 		 */
844 		if (must_run_delayed_refs == 1 &&
845 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
846 			must_run_delayed_refs = 2;
847 	}
848 
849 	btrfs_trans_release_metadata(trans);
850 	trans->block_rsv = NULL;
851 
852 	if (!list_empty(&trans->new_bgs))
853 		btrfs_create_pending_block_groups(trans);
854 
855 	btrfs_trans_release_chunk_metadata(trans);
856 
857 	if (lock && should_end_transaction(trans) &&
858 	    READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
859 		spin_lock(&info->trans_lock);
860 		if (cur_trans->state == TRANS_STATE_RUNNING)
861 			cur_trans->state = TRANS_STATE_BLOCKED;
862 		spin_unlock(&info->trans_lock);
863 	}
864 
865 	if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
866 		if (throttle)
867 			return btrfs_commit_transaction(trans);
868 		else
869 			wake_up_process(info->transaction_kthread);
870 	}
871 
872 	if (trans->type & __TRANS_FREEZABLE)
873 		sb_end_intwrite(info->sb);
874 
875 	WARN_ON(cur_trans != info->running_transaction);
876 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
877 	atomic_dec(&cur_trans->num_writers);
878 	extwriter_counter_dec(cur_trans, trans->type);
879 
880 	cond_wake_up(&cur_trans->writer_wait);
881 	btrfs_put_transaction(cur_trans);
882 
883 	if (current->journal_info == trans)
884 		current->journal_info = NULL;
885 
886 	if (throttle)
887 		btrfs_run_delayed_iputs(info);
888 
889 	if (trans->aborted ||
890 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
891 		wake_up_process(info->transaction_kthread);
892 		err = -EIO;
893 	}
894 
895 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
896 	if (must_run_delayed_refs) {
897 		btrfs_async_run_delayed_refs(info, cur, transid,
898 					     must_run_delayed_refs == 1);
899 	}
900 	return err;
901 }
902 
903 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
904 {
905 	return __btrfs_end_transaction(trans, 0);
906 }
907 
908 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
909 {
910 	return __btrfs_end_transaction(trans, 1);
911 }
912 
913 /*
914  * when btree blocks are allocated, they have some corresponding bits set for
915  * them in one of two extent_io trees.  This is used to make sure all of
916  * those extents are sent to disk but does not wait on them
917  */
918 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
919 			       struct extent_io_tree *dirty_pages, int mark)
920 {
921 	int err = 0;
922 	int werr = 0;
923 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
924 	struct extent_state *cached_state = NULL;
925 	u64 start = 0;
926 	u64 end;
927 
928 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
929 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
930 				      mark, &cached_state)) {
931 		bool wait_writeback = false;
932 
933 		err = convert_extent_bit(dirty_pages, start, end,
934 					 EXTENT_NEED_WAIT,
935 					 mark, &cached_state);
936 		/*
937 		 * convert_extent_bit can return -ENOMEM, which is most of the
938 		 * time a temporary error. So when it happens, ignore the error
939 		 * and wait for writeback of this range to finish - because we
940 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
941 		 * to __btrfs_wait_marked_extents() would not know that
942 		 * writeback for this range started and therefore wouldn't
943 		 * wait for it to finish - we don't want to commit a
944 		 * superblock that points to btree nodes/leafs for which
945 		 * writeback hasn't finished yet (and without errors).
946 		 * We cleanup any entries left in the io tree when committing
947 		 * the transaction (through clear_btree_io_tree()).
948 		 */
949 		if (err == -ENOMEM) {
950 			err = 0;
951 			wait_writeback = true;
952 		}
953 		if (!err)
954 			err = filemap_fdatawrite_range(mapping, start, end);
955 		if (err)
956 			werr = err;
957 		else if (wait_writeback)
958 			werr = filemap_fdatawait_range(mapping, start, end);
959 		free_extent_state(cached_state);
960 		cached_state = NULL;
961 		cond_resched();
962 		start = end + 1;
963 	}
964 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
965 	return werr;
966 }
967 
968 /*
969  * when btree blocks are allocated, they have some corresponding bits set for
970  * them in one of two extent_io trees.  This is used to make sure all of
971  * those extents are on disk for transaction or log commit.  We wait
972  * on all the pages and clear them from the dirty pages state tree
973  */
974 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
975 				       struct extent_io_tree *dirty_pages)
976 {
977 	int err = 0;
978 	int werr = 0;
979 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
980 	struct extent_state *cached_state = NULL;
981 	u64 start = 0;
982 	u64 end;
983 
984 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
985 				      EXTENT_NEED_WAIT, &cached_state)) {
986 		/*
987 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
988 		 * When committing the transaction, we'll remove any entries
989 		 * left in the io tree. For a log commit, we don't remove them
990 		 * after committing the log because the tree can be accessed
991 		 * concurrently - we do it only at transaction commit time when
992 		 * it's safe to do it (through clear_btree_io_tree()).
993 		 */
994 		err = clear_extent_bit(dirty_pages, start, end,
995 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
996 		if (err == -ENOMEM)
997 			err = 0;
998 		if (!err)
999 			err = filemap_fdatawait_range(mapping, start, end);
1000 		if (err)
1001 			werr = err;
1002 		free_extent_state(cached_state);
1003 		cached_state = NULL;
1004 		cond_resched();
1005 		start = end + 1;
1006 	}
1007 	if (err)
1008 		werr = err;
1009 	return werr;
1010 }
1011 
1012 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1013 		       struct extent_io_tree *dirty_pages)
1014 {
1015 	bool errors = false;
1016 	int err;
1017 
1018 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1019 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1020 		errors = true;
1021 
1022 	if (errors && !err)
1023 		err = -EIO;
1024 	return err;
1025 }
1026 
1027 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1028 {
1029 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1030 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1031 	bool errors = false;
1032 	int err;
1033 
1034 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1035 
1036 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1037 	if ((mark & EXTENT_DIRTY) &&
1038 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1039 		errors = true;
1040 
1041 	if ((mark & EXTENT_NEW) &&
1042 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1043 		errors = true;
1044 
1045 	if (errors && !err)
1046 		err = -EIO;
1047 	return err;
1048 }
1049 
1050 /*
1051  * When btree blocks are allocated the corresponding extents are marked dirty.
1052  * This function ensures such extents are persisted on disk for transaction or
1053  * log commit.
1054  *
1055  * @trans: transaction whose dirty pages we'd like to write
1056  */
1057 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1058 {
1059 	int ret;
1060 	int ret2;
1061 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1062 	struct btrfs_fs_info *fs_info = trans->fs_info;
1063 	struct blk_plug plug;
1064 
1065 	blk_start_plug(&plug);
1066 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1067 	blk_finish_plug(&plug);
1068 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1069 
1070 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1071 
1072 	if (ret)
1073 		return ret;
1074 	else if (ret2)
1075 		return ret2;
1076 	else
1077 		return 0;
1078 }
1079 
1080 /*
1081  * this is used to update the root pointer in the tree of tree roots.
1082  *
1083  * But, in the case of the extent allocation tree, updating the root
1084  * pointer may allocate blocks which may change the root of the extent
1085  * allocation tree.
1086  *
1087  * So, this loops and repeats and makes sure the cowonly root didn't
1088  * change while the root pointer was being updated in the metadata.
1089  */
1090 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1091 			       struct btrfs_root *root)
1092 {
1093 	int ret;
1094 	u64 old_root_bytenr;
1095 	u64 old_root_used;
1096 	struct btrfs_fs_info *fs_info = root->fs_info;
1097 	struct btrfs_root *tree_root = fs_info->tree_root;
1098 
1099 	old_root_used = btrfs_root_used(&root->root_item);
1100 
1101 	while (1) {
1102 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1103 		if (old_root_bytenr == root->node->start &&
1104 		    old_root_used == btrfs_root_used(&root->root_item))
1105 			break;
1106 
1107 		btrfs_set_root_node(&root->root_item, root->node);
1108 		ret = btrfs_update_root(trans, tree_root,
1109 					&root->root_key,
1110 					&root->root_item);
1111 		if (ret)
1112 			return ret;
1113 
1114 		old_root_used = btrfs_root_used(&root->root_item);
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 /*
1121  * update all the cowonly tree roots on disk
1122  *
1123  * The error handling in this function may not be obvious. Any of the
1124  * failures will cause the file system to go offline. We still need
1125  * to clean up the delayed refs.
1126  */
1127 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1128 {
1129 	struct btrfs_fs_info *fs_info = trans->fs_info;
1130 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1131 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1132 	struct list_head *next;
1133 	struct extent_buffer *eb;
1134 	int ret;
1135 
1136 	eb = btrfs_lock_root_node(fs_info->tree_root);
1137 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1138 			      0, &eb);
1139 	btrfs_tree_unlock(eb);
1140 	free_extent_buffer(eb);
1141 
1142 	if (ret)
1143 		return ret;
1144 
1145 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1146 	if (ret)
1147 		return ret;
1148 
1149 	ret = btrfs_run_dev_stats(trans, fs_info);
1150 	if (ret)
1151 		return ret;
1152 	ret = btrfs_run_dev_replace(trans, fs_info);
1153 	if (ret)
1154 		return ret;
1155 	ret = btrfs_run_qgroups(trans);
1156 	if (ret)
1157 		return ret;
1158 
1159 	ret = btrfs_setup_space_cache(trans, fs_info);
1160 	if (ret)
1161 		return ret;
1162 
1163 	/* run_qgroups might have added some more refs */
1164 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1165 	if (ret)
1166 		return ret;
1167 again:
1168 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1169 		struct btrfs_root *root;
1170 		next = fs_info->dirty_cowonly_roots.next;
1171 		list_del_init(next);
1172 		root = list_entry(next, struct btrfs_root, dirty_list);
1173 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1174 
1175 		if (root != fs_info->extent_root)
1176 			list_add_tail(&root->dirty_list,
1177 				      &trans->transaction->switch_commits);
1178 		ret = update_cowonly_root(trans, root);
1179 		if (ret)
1180 			return ret;
1181 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1182 		if (ret)
1183 			return ret;
1184 	}
1185 
1186 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1187 		ret = btrfs_write_dirty_block_groups(trans, fs_info);
1188 		if (ret)
1189 			return ret;
1190 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1191 		if (ret)
1192 			return ret;
1193 	}
1194 
1195 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1196 		goto again;
1197 
1198 	list_add_tail(&fs_info->extent_root->dirty_list,
1199 		      &trans->transaction->switch_commits);
1200 	btrfs_after_dev_replace_commit(fs_info);
1201 
1202 	return 0;
1203 }
1204 
1205 /*
1206  * dead roots are old snapshots that need to be deleted.  This allocates
1207  * a dirty root struct and adds it into the list of dead roots that need to
1208  * be deleted
1209  */
1210 void btrfs_add_dead_root(struct btrfs_root *root)
1211 {
1212 	struct btrfs_fs_info *fs_info = root->fs_info;
1213 
1214 	spin_lock(&fs_info->trans_lock);
1215 	if (list_empty(&root->root_list))
1216 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1217 	spin_unlock(&fs_info->trans_lock);
1218 }
1219 
1220 /*
1221  * update all the cowonly tree roots on disk
1222  */
1223 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1224 {
1225 	struct btrfs_fs_info *fs_info = trans->fs_info;
1226 	struct btrfs_root *gang[8];
1227 	int i;
1228 	int ret;
1229 	int err = 0;
1230 
1231 	spin_lock(&fs_info->fs_roots_radix_lock);
1232 	while (1) {
1233 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1234 						 (void **)gang, 0,
1235 						 ARRAY_SIZE(gang),
1236 						 BTRFS_ROOT_TRANS_TAG);
1237 		if (ret == 0)
1238 			break;
1239 		for (i = 0; i < ret; i++) {
1240 			struct btrfs_root *root = gang[i];
1241 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1242 					(unsigned long)root->root_key.objectid,
1243 					BTRFS_ROOT_TRANS_TAG);
1244 			spin_unlock(&fs_info->fs_roots_radix_lock);
1245 
1246 			btrfs_free_log(trans, root);
1247 			btrfs_update_reloc_root(trans, root);
1248 
1249 			btrfs_save_ino_cache(root, trans);
1250 
1251 			/* see comments in should_cow_block() */
1252 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1253 			smp_mb__after_atomic();
1254 
1255 			if (root->commit_root != root->node) {
1256 				list_add_tail(&root->dirty_list,
1257 					&trans->transaction->switch_commits);
1258 				btrfs_set_root_node(&root->root_item,
1259 						    root->node);
1260 			}
1261 
1262 			err = btrfs_update_root(trans, fs_info->tree_root,
1263 						&root->root_key,
1264 						&root->root_item);
1265 			spin_lock(&fs_info->fs_roots_radix_lock);
1266 			if (err)
1267 				break;
1268 			btrfs_qgroup_free_meta_all_pertrans(root);
1269 		}
1270 	}
1271 	spin_unlock(&fs_info->fs_roots_radix_lock);
1272 	return err;
1273 }
1274 
1275 /*
1276  * defrag a given btree.
1277  * Every leaf in the btree is read and defragged.
1278  */
1279 int btrfs_defrag_root(struct btrfs_root *root)
1280 {
1281 	struct btrfs_fs_info *info = root->fs_info;
1282 	struct btrfs_trans_handle *trans;
1283 	int ret;
1284 
1285 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1286 		return 0;
1287 
1288 	while (1) {
1289 		trans = btrfs_start_transaction(root, 0);
1290 		if (IS_ERR(trans))
1291 			return PTR_ERR(trans);
1292 
1293 		ret = btrfs_defrag_leaves(trans, root);
1294 
1295 		btrfs_end_transaction(trans);
1296 		btrfs_btree_balance_dirty(info);
1297 		cond_resched();
1298 
1299 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1300 			break;
1301 
1302 		if (btrfs_defrag_cancelled(info)) {
1303 			btrfs_debug(info, "defrag_root cancelled");
1304 			ret = -EAGAIN;
1305 			break;
1306 		}
1307 	}
1308 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1309 	return ret;
1310 }
1311 
1312 /*
1313  * Do all special snapshot related qgroup dirty hack.
1314  *
1315  * Will do all needed qgroup inherit and dirty hack like switch commit
1316  * roots inside one transaction and write all btree into disk, to make
1317  * qgroup works.
1318  */
1319 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1320 				   struct btrfs_root *src,
1321 				   struct btrfs_root *parent,
1322 				   struct btrfs_qgroup_inherit *inherit,
1323 				   u64 dst_objectid)
1324 {
1325 	struct btrfs_fs_info *fs_info = src->fs_info;
1326 	int ret;
1327 
1328 	/*
1329 	 * Save some performance in the case that qgroups are not
1330 	 * enabled. If this check races with the ioctl, rescan will
1331 	 * kick in anyway.
1332 	 */
1333 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1334 		return 0;
1335 
1336 	/*
1337 	 * Ensure dirty @src will be commited.  Or, after comming
1338 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1339 	 * recorded root will never be updated again, causing an outdated root
1340 	 * item.
1341 	 */
1342 	record_root_in_trans(trans, src, 1);
1343 
1344 	/*
1345 	 * We are going to commit transaction, see btrfs_commit_transaction()
1346 	 * comment for reason locking tree_log_mutex
1347 	 */
1348 	mutex_lock(&fs_info->tree_log_mutex);
1349 
1350 	ret = commit_fs_roots(trans);
1351 	if (ret)
1352 		goto out;
1353 	ret = btrfs_qgroup_account_extents(trans);
1354 	if (ret < 0)
1355 		goto out;
1356 
1357 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1358 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1359 				   inherit);
1360 	if (ret < 0)
1361 		goto out;
1362 
1363 	/*
1364 	 * Now we do a simplified commit transaction, which will:
1365 	 * 1) commit all subvolume and extent tree
1366 	 *    To ensure all subvolume and extent tree have a valid
1367 	 *    commit_root to accounting later insert_dir_item()
1368 	 * 2) write all btree blocks onto disk
1369 	 *    This is to make sure later btree modification will be cowed
1370 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1371 	 * In this simplified commit, we don't really care about other trees
1372 	 * like chunk and root tree, as they won't affect qgroup.
1373 	 * And we don't write super to avoid half committed status.
1374 	 */
1375 	ret = commit_cowonly_roots(trans);
1376 	if (ret)
1377 		goto out;
1378 	switch_commit_roots(trans->transaction);
1379 	ret = btrfs_write_and_wait_transaction(trans);
1380 	if (ret)
1381 		btrfs_handle_fs_error(fs_info, ret,
1382 			"Error while writing out transaction for qgroup");
1383 
1384 out:
1385 	mutex_unlock(&fs_info->tree_log_mutex);
1386 
1387 	/*
1388 	 * Force parent root to be updated, as we recorded it before so its
1389 	 * last_trans == cur_transid.
1390 	 * Or it won't be committed again onto disk after later
1391 	 * insert_dir_item()
1392 	 */
1393 	if (!ret)
1394 		record_root_in_trans(trans, parent, 1);
1395 	return ret;
1396 }
1397 
1398 /*
1399  * new snapshots need to be created at a very specific time in the
1400  * transaction commit.  This does the actual creation.
1401  *
1402  * Note:
1403  * If the error which may affect the commitment of the current transaction
1404  * happens, we should return the error number. If the error which just affect
1405  * the creation of the pending snapshots, just return 0.
1406  */
1407 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1408 				   struct btrfs_pending_snapshot *pending)
1409 {
1410 
1411 	struct btrfs_fs_info *fs_info = trans->fs_info;
1412 	struct btrfs_key key;
1413 	struct btrfs_root_item *new_root_item;
1414 	struct btrfs_root *tree_root = fs_info->tree_root;
1415 	struct btrfs_root *root = pending->root;
1416 	struct btrfs_root *parent_root;
1417 	struct btrfs_block_rsv *rsv;
1418 	struct inode *parent_inode;
1419 	struct btrfs_path *path;
1420 	struct btrfs_dir_item *dir_item;
1421 	struct dentry *dentry;
1422 	struct extent_buffer *tmp;
1423 	struct extent_buffer *old;
1424 	struct timespec64 cur_time;
1425 	int ret = 0;
1426 	u64 to_reserve = 0;
1427 	u64 index = 0;
1428 	u64 objectid;
1429 	u64 root_flags;
1430 	uuid_le new_uuid;
1431 
1432 	ASSERT(pending->path);
1433 	path = pending->path;
1434 
1435 	ASSERT(pending->root_item);
1436 	new_root_item = pending->root_item;
1437 
1438 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1439 	if (pending->error)
1440 		goto no_free_objectid;
1441 
1442 	/*
1443 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1444 	 * accounted by later btrfs_qgroup_inherit().
1445 	 */
1446 	btrfs_set_skip_qgroup(trans, objectid);
1447 
1448 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1449 
1450 	if (to_reserve > 0) {
1451 		pending->error = btrfs_block_rsv_add(root,
1452 						     &pending->block_rsv,
1453 						     to_reserve,
1454 						     BTRFS_RESERVE_NO_FLUSH);
1455 		if (pending->error)
1456 			goto clear_skip_qgroup;
1457 	}
1458 
1459 	key.objectid = objectid;
1460 	key.offset = (u64)-1;
1461 	key.type = BTRFS_ROOT_ITEM_KEY;
1462 
1463 	rsv = trans->block_rsv;
1464 	trans->block_rsv = &pending->block_rsv;
1465 	trans->bytes_reserved = trans->block_rsv->reserved;
1466 	trace_btrfs_space_reservation(fs_info, "transaction",
1467 				      trans->transid,
1468 				      trans->bytes_reserved, 1);
1469 	dentry = pending->dentry;
1470 	parent_inode = pending->dir;
1471 	parent_root = BTRFS_I(parent_inode)->root;
1472 	record_root_in_trans(trans, parent_root, 0);
1473 
1474 	cur_time = current_time(parent_inode);
1475 
1476 	/*
1477 	 * insert the directory item
1478 	 */
1479 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1480 	BUG_ON(ret); /* -ENOMEM */
1481 
1482 	/* check if there is a file/dir which has the same name. */
1483 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1484 					 btrfs_ino(BTRFS_I(parent_inode)),
1485 					 dentry->d_name.name,
1486 					 dentry->d_name.len, 0);
1487 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1488 		pending->error = -EEXIST;
1489 		goto dir_item_existed;
1490 	} else if (IS_ERR(dir_item)) {
1491 		ret = PTR_ERR(dir_item);
1492 		btrfs_abort_transaction(trans, ret);
1493 		goto fail;
1494 	}
1495 	btrfs_release_path(path);
1496 
1497 	/*
1498 	 * pull in the delayed directory update
1499 	 * and the delayed inode item
1500 	 * otherwise we corrupt the FS during
1501 	 * snapshot
1502 	 */
1503 	ret = btrfs_run_delayed_items(trans);
1504 	if (ret) {	/* Transaction aborted */
1505 		btrfs_abort_transaction(trans, ret);
1506 		goto fail;
1507 	}
1508 
1509 	record_root_in_trans(trans, root, 0);
1510 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1511 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1512 	btrfs_check_and_init_root_item(new_root_item);
1513 
1514 	root_flags = btrfs_root_flags(new_root_item);
1515 	if (pending->readonly)
1516 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1517 	else
1518 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1519 	btrfs_set_root_flags(new_root_item, root_flags);
1520 
1521 	btrfs_set_root_generation_v2(new_root_item,
1522 			trans->transid);
1523 	uuid_le_gen(&new_uuid);
1524 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1525 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1526 			BTRFS_UUID_SIZE);
1527 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1528 		memset(new_root_item->received_uuid, 0,
1529 		       sizeof(new_root_item->received_uuid));
1530 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1531 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1532 		btrfs_set_root_stransid(new_root_item, 0);
1533 		btrfs_set_root_rtransid(new_root_item, 0);
1534 	}
1535 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1536 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1537 	btrfs_set_root_otransid(new_root_item, trans->transid);
1538 
1539 	old = btrfs_lock_root_node(root);
1540 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1541 	if (ret) {
1542 		btrfs_tree_unlock(old);
1543 		free_extent_buffer(old);
1544 		btrfs_abort_transaction(trans, ret);
1545 		goto fail;
1546 	}
1547 
1548 	btrfs_set_lock_blocking(old);
1549 
1550 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1551 	/* clean up in any case */
1552 	btrfs_tree_unlock(old);
1553 	free_extent_buffer(old);
1554 	if (ret) {
1555 		btrfs_abort_transaction(trans, ret);
1556 		goto fail;
1557 	}
1558 	/* see comments in should_cow_block() */
1559 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1560 	smp_wmb();
1561 
1562 	btrfs_set_root_node(new_root_item, tmp);
1563 	/* record when the snapshot was created in key.offset */
1564 	key.offset = trans->transid;
1565 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1566 	btrfs_tree_unlock(tmp);
1567 	free_extent_buffer(tmp);
1568 	if (ret) {
1569 		btrfs_abort_transaction(trans, ret);
1570 		goto fail;
1571 	}
1572 
1573 	/*
1574 	 * insert root back/forward references
1575 	 */
1576 	ret = btrfs_add_root_ref(trans, objectid,
1577 				 parent_root->root_key.objectid,
1578 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1579 				 dentry->d_name.name, dentry->d_name.len);
1580 	if (ret) {
1581 		btrfs_abort_transaction(trans, ret);
1582 		goto fail;
1583 	}
1584 
1585 	key.offset = (u64)-1;
1586 	pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1587 	if (IS_ERR(pending->snap)) {
1588 		ret = PTR_ERR(pending->snap);
1589 		btrfs_abort_transaction(trans, ret);
1590 		goto fail;
1591 	}
1592 
1593 	ret = btrfs_reloc_post_snapshot(trans, pending);
1594 	if (ret) {
1595 		btrfs_abort_transaction(trans, ret);
1596 		goto fail;
1597 	}
1598 
1599 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1600 	if (ret) {
1601 		btrfs_abort_transaction(trans, ret);
1602 		goto fail;
1603 	}
1604 
1605 	/*
1606 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1607 	 * snapshot hack to do fast snapshot.
1608 	 * To co-operate with that hack, we do hack again.
1609 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1610 	 */
1611 	ret = qgroup_account_snapshot(trans, root, parent_root,
1612 				      pending->inherit, objectid);
1613 	if (ret < 0)
1614 		goto fail;
1615 
1616 	ret = btrfs_insert_dir_item(trans, parent_root,
1617 				    dentry->d_name.name, dentry->d_name.len,
1618 				    BTRFS_I(parent_inode), &key,
1619 				    BTRFS_FT_DIR, index);
1620 	/* We have check then name at the beginning, so it is impossible. */
1621 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1622 	if (ret) {
1623 		btrfs_abort_transaction(trans, ret);
1624 		goto fail;
1625 	}
1626 
1627 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1628 					 dentry->d_name.len * 2);
1629 	parent_inode->i_mtime = parent_inode->i_ctime =
1630 		current_time(parent_inode);
1631 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1632 	if (ret) {
1633 		btrfs_abort_transaction(trans, ret);
1634 		goto fail;
1635 	}
1636 	ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1637 				  objectid);
1638 	if (ret) {
1639 		btrfs_abort_transaction(trans, ret);
1640 		goto fail;
1641 	}
1642 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1643 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1644 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1645 					  objectid);
1646 		if (ret && ret != -EEXIST) {
1647 			btrfs_abort_transaction(trans, ret);
1648 			goto fail;
1649 		}
1650 	}
1651 
1652 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1653 	if (ret) {
1654 		btrfs_abort_transaction(trans, ret);
1655 		goto fail;
1656 	}
1657 
1658 fail:
1659 	pending->error = ret;
1660 dir_item_existed:
1661 	trans->block_rsv = rsv;
1662 	trans->bytes_reserved = 0;
1663 clear_skip_qgroup:
1664 	btrfs_clear_skip_qgroup(trans);
1665 no_free_objectid:
1666 	kfree(new_root_item);
1667 	pending->root_item = NULL;
1668 	btrfs_free_path(path);
1669 	pending->path = NULL;
1670 
1671 	return ret;
1672 }
1673 
1674 /*
1675  * create all the snapshots we've scheduled for creation
1676  */
1677 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1678 {
1679 	struct btrfs_pending_snapshot *pending, *next;
1680 	struct list_head *head = &trans->transaction->pending_snapshots;
1681 	int ret = 0;
1682 
1683 	list_for_each_entry_safe(pending, next, head, list) {
1684 		list_del(&pending->list);
1685 		ret = create_pending_snapshot(trans, pending);
1686 		if (ret)
1687 			break;
1688 	}
1689 	return ret;
1690 }
1691 
1692 static void update_super_roots(struct btrfs_fs_info *fs_info)
1693 {
1694 	struct btrfs_root_item *root_item;
1695 	struct btrfs_super_block *super;
1696 
1697 	super = fs_info->super_copy;
1698 
1699 	root_item = &fs_info->chunk_root->root_item;
1700 	super->chunk_root = root_item->bytenr;
1701 	super->chunk_root_generation = root_item->generation;
1702 	super->chunk_root_level = root_item->level;
1703 
1704 	root_item = &fs_info->tree_root->root_item;
1705 	super->root = root_item->bytenr;
1706 	super->generation = root_item->generation;
1707 	super->root_level = root_item->level;
1708 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1709 		super->cache_generation = root_item->generation;
1710 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1711 		super->uuid_tree_generation = root_item->generation;
1712 }
1713 
1714 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1715 {
1716 	struct btrfs_transaction *trans;
1717 	int ret = 0;
1718 
1719 	spin_lock(&info->trans_lock);
1720 	trans = info->running_transaction;
1721 	if (trans)
1722 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1723 	spin_unlock(&info->trans_lock);
1724 	return ret;
1725 }
1726 
1727 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1728 {
1729 	struct btrfs_transaction *trans;
1730 	int ret = 0;
1731 
1732 	spin_lock(&info->trans_lock);
1733 	trans = info->running_transaction;
1734 	if (trans)
1735 		ret = is_transaction_blocked(trans);
1736 	spin_unlock(&info->trans_lock);
1737 	return ret;
1738 }
1739 
1740 /*
1741  * wait for the current transaction commit to start and block subsequent
1742  * transaction joins
1743  */
1744 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1745 					    struct btrfs_transaction *trans)
1746 {
1747 	wait_event(fs_info->transaction_blocked_wait,
1748 		   trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1749 }
1750 
1751 /*
1752  * wait for the current transaction to start and then become unblocked.
1753  * caller holds ref.
1754  */
1755 static void wait_current_trans_commit_start_and_unblock(
1756 					struct btrfs_fs_info *fs_info,
1757 					struct btrfs_transaction *trans)
1758 {
1759 	wait_event(fs_info->transaction_wait,
1760 		   trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1761 }
1762 
1763 /*
1764  * commit transactions asynchronously. once btrfs_commit_transaction_async
1765  * returns, any subsequent transaction will not be allowed to join.
1766  */
1767 struct btrfs_async_commit {
1768 	struct btrfs_trans_handle *newtrans;
1769 	struct work_struct work;
1770 };
1771 
1772 static void do_async_commit(struct work_struct *work)
1773 {
1774 	struct btrfs_async_commit *ac =
1775 		container_of(work, struct btrfs_async_commit, work);
1776 
1777 	/*
1778 	 * We've got freeze protection passed with the transaction.
1779 	 * Tell lockdep about it.
1780 	 */
1781 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1782 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1783 
1784 	current->journal_info = ac->newtrans;
1785 
1786 	btrfs_commit_transaction(ac->newtrans);
1787 	kfree(ac);
1788 }
1789 
1790 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1791 				   int wait_for_unblock)
1792 {
1793 	struct btrfs_fs_info *fs_info = trans->fs_info;
1794 	struct btrfs_async_commit *ac;
1795 	struct btrfs_transaction *cur_trans;
1796 
1797 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1798 	if (!ac)
1799 		return -ENOMEM;
1800 
1801 	INIT_WORK(&ac->work, do_async_commit);
1802 	ac->newtrans = btrfs_join_transaction(trans->root);
1803 	if (IS_ERR(ac->newtrans)) {
1804 		int err = PTR_ERR(ac->newtrans);
1805 		kfree(ac);
1806 		return err;
1807 	}
1808 
1809 	/* take transaction reference */
1810 	cur_trans = trans->transaction;
1811 	refcount_inc(&cur_trans->use_count);
1812 
1813 	btrfs_end_transaction(trans);
1814 
1815 	/*
1816 	 * Tell lockdep we've released the freeze rwsem, since the
1817 	 * async commit thread will be the one to unlock it.
1818 	 */
1819 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1820 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1821 
1822 	schedule_work(&ac->work);
1823 
1824 	/* wait for transaction to start and unblock */
1825 	if (wait_for_unblock)
1826 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1827 	else
1828 		wait_current_trans_commit_start(fs_info, cur_trans);
1829 
1830 	if (current->journal_info == trans)
1831 		current->journal_info = NULL;
1832 
1833 	btrfs_put_transaction(cur_trans);
1834 	return 0;
1835 }
1836 
1837 
1838 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1839 {
1840 	struct btrfs_fs_info *fs_info = trans->fs_info;
1841 	struct btrfs_transaction *cur_trans = trans->transaction;
1842 	DEFINE_WAIT(wait);
1843 
1844 	WARN_ON(refcount_read(&trans->use_count) > 1);
1845 
1846 	btrfs_abort_transaction(trans, err);
1847 
1848 	spin_lock(&fs_info->trans_lock);
1849 
1850 	/*
1851 	 * If the transaction is removed from the list, it means this
1852 	 * transaction has been committed successfully, so it is impossible
1853 	 * to call the cleanup function.
1854 	 */
1855 	BUG_ON(list_empty(&cur_trans->list));
1856 
1857 	list_del_init(&cur_trans->list);
1858 	if (cur_trans == fs_info->running_transaction) {
1859 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1860 		spin_unlock(&fs_info->trans_lock);
1861 		wait_event(cur_trans->writer_wait,
1862 			   atomic_read(&cur_trans->num_writers) == 1);
1863 
1864 		spin_lock(&fs_info->trans_lock);
1865 	}
1866 	spin_unlock(&fs_info->trans_lock);
1867 
1868 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1869 
1870 	spin_lock(&fs_info->trans_lock);
1871 	if (cur_trans == fs_info->running_transaction)
1872 		fs_info->running_transaction = NULL;
1873 	spin_unlock(&fs_info->trans_lock);
1874 
1875 	if (trans->type & __TRANS_FREEZABLE)
1876 		sb_end_intwrite(fs_info->sb);
1877 	btrfs_put_transaction(cur_trans);
1878 	btrfs_put_transaction(cur_trans);
1879 
1880 	trace_btrfs_transaction_commit(trans->root);
1881 
1882 	if (current->journal_info == trans)
1883 		current->journal_info = NULL;
1884 	btrfs_scrub_cancel(fs_info);
1885 
1886 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1887 }
1888 
1889 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1890 {
1891 	/*
1892 	 * We use writeback_inodes_sb here because if we used
1893 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1894 	 * Currently are holding the fs freeze lock, if we do an async flush
1895 	 * we'll do btrfs_join_transaction() and deadlock because we need to
1896 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
1897 	 * from already being in a transaction and our join_transaction doesn't
1898 	 * have to re-take the fs freeze lock.
1899 	 */
1900 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1901 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1902 	return 0;
1903 }
1904 
1905 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1906 {
1907 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1908 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1909 }
1910 
1911 static inline void
1912 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1913 {
1914 	wait_event(cur_trans->pending_wait,
1915 		   atomic_read(&cur_trans->pending_ordered) == 0);
1916 }
1917 
1918 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1919 {
1920 	struct btrfs_fs_info *fs_info = trans->fs_info;
1921 	struct btrfs_transaction *cur_trans = trans->transaction;
1922 	struct btrfs_transaction *prev_trans = NULL;
1923 	int ret;
1924 
1925 	/* Stop the commit early if ->aborted is set */
1926 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
1927 		ret = cur_trans->aborted;
1928 		btrfs_end_transaction(trans);
1929 		return ret;
1930 	}
1931 
1932 	/* make a pass through all the delayed refs we have so far
1933 	 * any runnings procs may add more while we are here
1934 	 */
1935 	ret = btrfs_run_delayed_refs(trans, 0);
1936 	if (ret) {
1937 		btrfs_end_transaction(trans);
1938 		return ret;
1939 	}
1940 
1941 	btrfs_trans_release_metadata(trans);
1942 	trans->block_rsv = NULL;
1943 
1944 	cur_trans = trans->transaction;
1945 
1946 	/*
1947 	 * set the flushing flag so procs in this transaction have to
1948 	 * start sending their work down.
1949 	 */
1950 	cur_trans->delayed_refs.flushing = 1;
1951 	smp_wmb();
1952 
1953 	if (!list_empty(&trans->new_bgs))
1954 		btrfs_create_pending_block_groups(trans);
1955 
1956 	ret = btrfs_run_delayed_refs(trans, 0);
1957 	if (ret) {
1958 		btrfs_end_transaction(trans);
1959 		return ret;
1960 	}
1961 
1962 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1963 		int run_it = 0;
1964 
1965 		/* this mutex is also taken before trying to set
1966 		 * block groups readonly.  We need to make sure
1967 		 * that nobody has set a block group readonly
1968 		 * after a extents from that block group have been
1969 		 * allocated for cache files.  btrfs_set_block_group_ro
1970 		 * will wait for the transaction to commit if it
1971 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1972 		 *
1973 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1974 		 * only one process starts all the block group IO.  It wouldn't
1975 		 * hurt to have more than one go through, but there's no
1976 		 * real advantage to it either.
1977 		 */
1978 		mutex_lock(&fs_info->ro_block_group_mutex);
1979 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1980 				      &cur_trans->flags))
1981 			run_it = 1;
1982 		mutex_unlock(&fs_info->ro_block_group_mutex);
1983 
1984 		if (run_it) {
1985 			ret = btrfs_start_dirty_block_groups(trans);
1986 			if (ret) {
1987 				btrfs_end_transaction(trans);
1988 				return ret;
1989 			}
1990 		}
1991 	}
1992 
1993 	spin_lock(&fs_info->trans_lock);
1994 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1995 		spin_unlock(&fs_info->trans_lock);
1996 		refcount_inc(&cur_trans->use_count);
1997 		ret = btrfs_end_transaction(trans);
1998 
1999 		wait_for_commit(cur_trans);
2000 
2001 		if (unlikely(cur_trans->aborted))
2002 			ret = cur_trans->aborted;
2003 
2004 		btrfs_put_transaction(cur_trans);
2005 
2006 		return ret;
2007 	}
2008 
2009 	cur_trans->state = TRANS_STATE_COMMIT_START;
2010 	wake_up(&fs_info->transaction_blocked_wait);
2011 
2012 	if (cur_trans->list.prev != &fs_info->trans_list) {
2013 		prev_trans = list_entry(cur_trans->list.prev,
2014 					struct btrfs_transaction, list);
2015 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2016 			refcount_inc(&prev_trans->use_count);
2017 			spin_unlock(&fs_info->trans_lock);
2018 
2019 			wait_for_commit(prev_trans);
2020 			ret = prev_trans->aborted;
2021 
2022 			btrfs_put_transaction(prev_trans);
2023 			if (ret)
2024 				goto cleanup_transaction;
2025 		} else {
2026 			spin_unlock(&fs_info->trans_lock);
2027 		}
2028 	} else {
2029 		spin_unlock(&fs_info->trans_lock);
2030 	}
2031 
2032 	extwriter_counter_dec(cur_trans, trans->type);
2033 
2034 	ret = btrfs_start_delalloc_flush(fs_info);
2035 	if (ret)
2036 		goto cleanup_transaction;
2037 
2038 	ret = btrfs_run_delayed_items(trans);
2039 	if (ret)
2040 		goto cleanup_transaction;
2041 
2042 	wait_event(cur_trans->writer_wait,
2043 		   extwriter_counter_read(cur_trans) == 0);
2044 
2045 	/* some pending stuffs might be added after the previous flush. */
2046 	ret = btrfs_run_delayed_items(trans);
2047 	if (ret)
2048 		goto cleanup_transaction;
2049 
2050 	btrfs_wait_delalloc_flush(fs_info);
2051 
2052 	btrfs_wait_pending_ordered(cur_trans);
2053 
2054 	btrfs_scrub_pause(fs_info);
2055 	/*
2056 	 * Ok now we need to make sure to block out any other joins while we
2057 	 * commit the transaction.  We could have started a join before setting
2058 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2059 	 */
2060 	spin_lock(&fs_info->trans_lock);
2061 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2062 	spin_unlock(&fs_info->trans_lock);
2063 	wait_event(cur_trans->writer_wait,
2064 		   atomic_read(&cur_trans->num_writers) == 1);
2065 
2066 	/* ->aborted might be set after the previous check, so check it */
2067 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2068 		ret = cur_trans->aborted;
2069 		goto scrub_continue;
2070 	}
2071 	/*
2072 	 * the reloc mutex makes sure that we stop
2073 	 * the balancing code from coming in and moving
2074 	 * extents around in the middle of the commit
2075 	 */
2076 	mutex_lock(&fs_info->reloc_mutex);
2077 
2078 	/*
2079 	 * We needn't worry about the delayed items because we will
2080 	 * deal with them in create_pending_snapshot(), which is the
2081 	 * core function of the snapshot creation.
2082 	 */
2083 	ret = create_pending_snapshots(trans);
2084 	if (ret) {
2085 		mutex_unlock(&fs_info->reloc_mutex);
2086 		goto scrub_continue;
2087 	}
2088 
2089 	/*
2090 	 * We insert the dir indexes of the snapshots and update the inode
2091 	 * of the snapshots' parents after the snapshot creation, so there
2092 	 * are some delayed items which are not dealt with. Now deal with
2093 	 * them.
2094 	 *
2095 	 * We needn't worry that this operation will corrupt the snapshots,
2096 	 * because all the tree which are snapshoted will be forced to COW
2097 	 * the nodes and leaves.
2098 	 */
2099 	ret = btrfs_run_delayed_items(trans);
2100 	if (ret) {
2101 		mutex_unlock(&fs_info->reloc_mutex);
2102 		goto scrub_continue;
2103 	}
2104 
2105 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2106 	if (ret) {
2107 		mutex_unlock(&fs_info->reloc_mutex);
2108 		goto scrub_continue;
2109 	}
2110 
2111 	/*
2112 	 * make sure none of the code above managed to slip in a
2113 	 * delayed item
2114 	 */
2115 	btrfs_assert_delayed_root_empty(fs_info);
2116 
2117 	WARN_ON(cur_trans != trans->transaction);
2118 
2119 	/* btrfs_commit_tree_roots is responsible for getting the
2120 	 * various roots consistent with each other.  Every pointer
2121 	 * in the tree of tree roots has to point to the most up to date
2122 	 * root for every subvolume and other tree.  So, we have to keep
2123 	 * the tree logging code from jumping in and changing any
2124 	 * of the trees.
2125 	 *
2126 	 * At this point in the commit, there can't be any tree-log
2127 	 * writers, but a little lower down we drop the trans mutex
2128 	 * and let new people in.  By holding the tree_log_mutex
2129 	 * from now until after the super is written, we avoid races
2130 	 * with the tree-log code.
2131 	 */
2132 	mutex_lock(&fs_info->tree_log_mutex);
2133 
2134 	ret = commit_fs_roots(trans);
2135 	if (ret) {
2136 		mutex_unlock(&fs_info->tree_log_mutex);
2137 		mutex_unlock(&fs_info->reloc_mutex);
2138 		goto scrub_continue;
2139 	}
2140 
2141 	/*
2142 	 * Since the transaction is done, we can apply the pending changes
2143 	 * before the next transaction.
2144 	 */
2145 	btrfs_apply_pending_changes(fs_info);
2146 
2147 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2148 	 * safe to free the root of tree log roots
2149 	 */
2150 	btrfs_free_log_root_tree(trans, fs_info);
2151 
2152 	/*
2153 	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2154 	 * new delayed refs. Must handle them or qgroup can be wrong.
2155 	 */
2156 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2157 	if (ret) {
2158 		mutex_unlock(&fs_info->tree_log_mutex);
2159 		mutex_unlock(&fs_info->reloc_mutex);
2160 		goto scrub_continue;
2161 	}
2162 
2163 	/*
2164 	 * Since fs roots are all committed, we can get a quite accurate
2165 	 * new_roots. So let's do quota accounting.
2166 	 */
2167 	ret = btrfs_qgroup_account_extents(trans);
2168 	if (ret < 0) {
2169 		mutex_unlock(&fs_info->tree_log_mutex);
2170 		mutex_unlock(&fs_info->reloc_mutex);
2171 		goto scrub_continue;
2172 	}
2173 
2174 	ret = commit_cowonly_roots(trans);
2175 	if (ret) {
2176 		mutex_unlock(&fs_info->tree_log_mutex);
2177 		mutex_unlock(&fs_info->reloc_mutex);
2178 		goto scrub_continue;
2179 	}
2180 
2181 	/*
2182 	 * The tasks which save the space cache and inode cache may also
2183 	 * update ->aborted, check it.
2184 	 */
2185 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2186 		ret = cur_trans->aborted;
2187 		mutex_unlock(&fs_info->tree_log_mutex);
2188 		mutex_unlock(&fs_info->reloc_mutex);
2189 		goto scrub_continue;
2190 	}
2191 
2192 	btrfs_prepare_extent_commit(fs_info);
2193 
2194 	cur_trans = fs_info->running_transaction;
2195 
2196 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2197 			    fs_info->tree_root->node);
2198 	list_add_tail(&fs_info->tree_root->dirty_list,
2199 		      &cur_trans->switch_commits);
2200 
2201 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2202 			    fs_info->chunk_root->node);
2203 	list_add_tail(&fs_info->chunk_root->dirty_list,
2204 		      &cur_trans->switch_commits);
2205 
2206 	switch_commit_roots(cur_trans);
2207 
2208 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2209 	ASSERT(list_empty(&cur_trans->io_bgs));
2210 	update_super_roots(fs_info);
2211 
2212 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2213 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2214 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2215 	       sizeof(*fs_info->super_copy));
2216 
2217 	btrfs_update_commit_device_size(fs_info);
2218 	btrfs_update_commit_device_bytes_used(cur_trans);
2219 
2220 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2221 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2222 
2223 	btrfs_trans_release_chunk_metadata(trans);
2224 
2225 	spin_lock(&fs_info->trans_lock);
2226 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2227 	fs_info->running_transaction = NULL;
2228 	spin_unlock(&fs_info->trans_lock);
2229 	mutex_unlock(&fs_info->reloc_mutex);
2230 
2231 	wake_up(&fs_info->transaction_wait);
2232 
2233 	ret = btrfs_write_and_wait_transaction(trans);
2234 	if (ret) {
2235 		btrfs_handle_fs_error(fs_info, ret,
2236 				      "Error while writing out transaction");
2237 		mutex_unlock(&fs_info->tree_log_mutex);
2238 		goto scrub_continue;
2239 	}
2240 
2241 	ret = write_all_supers(fs_info, 0);
2242 	/*
2243 	 * the super is written, we can safely allow the tree-loggers
2244 	 * to go about their business
2245 	 */
2246 	mutex_unlock(&fs_info->tree_log_mutex);
2247 	if (ret)
2248 		goto scrub_continue;
2249 
2250 	btrfs_finish_extent_commit(trans);
2251 
2252 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2253 		btrfs_clear_space_info_full(fs_info);
2254 
2255 	fs_info->last_trans_committed = cur_trans->transid;
2256 	/*
2257 	 * We needn't acquire the lock here because there is no other task
2258 	 * which can change it.
2259 	 */
2260 	cur_trans->state = TRANS_STATE_COMPLETED;
2261 	wake_up(&cur_trans->commit_wait);
2262 	clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2263 
2264 	spin_lock(&fs_info->trans_lock);
2265 	list_del_init(&cur_trans->list);
2266 	spin_unlock(&fs_info->trans_lock);
2267 
2268 	btrfs_put_transaction(cur_trans);
2269 	btrfs_put_transaction(cur_trans);
2270 
2271 	if (trans->type & __TRANS_FREEZABLE)
2272 		sb_end_intwrite(fs_info->sb);
2273 
2274 	trace_btrfs_transaction_commit(trans->root);
2275 
2276 	btrfs_scrub_continue(fs_info);
2277 
2278 	if (current->journal_info == trans)
2279 		current->journal_info = NULL;
2280 
2281 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2282 
2283 	/*
2284 	 * If fs has been frozen, we can not handle delayed iputs, otherwise
2285 	 * it'll result in deadlock about SB_FREEZE_FS.
2286 	 */
2287 	if (current != fs_info->transaction_kthread &&
2288 	    current != fs_info->cleaner_kthread &&
2289 	    !test_bit(BTRFS_FS_FROZEN, &fs_info->flags))
2290 		btrfs_run_delayed_iputs(fs_info);
2291 
2292 	return ret;
2293 
2294 scrub_continue:
2295 	btrfs_scrub_continue(fs_info);
2296 cleanup_transaction:
2297 	btrfs_trans_release_metadata(trans);
2298 	btrfs_trans_release_chunk_metadata(trans);
2299 	trans->block_rsv = NULL;
2300 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2301 	if (current->journal_info == trans)
2302 		current->journal_info = NULL;
2303 	cleanup_transaction(trans, ret);
2304 
2305 	return ret;
2306 }
2307 
2308 /*
2309  * return < 0 if error
2310  * 0 if there are no more dead_roots at the time of call
2311  * 1 there are more to be processed, call me again
2312  *
2313  * The return value indicates there are certainly more snapshots to delete, but
2314  * if there comes a new one during processing, it may return 0. We don't mind,
2315  * because btrfs_commit_super will poke cleaner thread and it will process it a
2316  * few seconds later.
2317  */
2318 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2319 {
2320 	int ret;
2321 	struct btrfs_fs_info *fs_info = root->fs_info;
2322 
2323 	spin_lock(&fs_info->trans_lock);
2324 	if (list_empty(&fs_info->dead_roots)) {
2325 		spin_unlock(&fs_info->trans_lock);
2326 		return 0;
2327 	}
2328 	root = list_first_entry(&fs_info->dead_roots,
2329 			struct btrfs_root, root_list);
2330 	list_del_init(&root->root_list);
2331 	spin_unlock(&fs_info->trans_lock);
2332 
2333 	btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2334 
2335 	btrfs_kill_all_delayed_nodes(root);
2336 
2337 	if (btrfs_header_backref_rev(root->node) <
2338 			BTRFS_MIXED_BACKREF_REV)
2339 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2340 	else
2341 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2342 
2343 	return (ret < 0) ? 0 : 1;
2344 }
2345 
2346 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2347 {
2348 	unsigned long prev;
2349 	unsigned long bit;
2350 
2351 	prev = xchg(&fs_info->pending_changes, 0);
2352 	if (!prev)
2353 		return;
2354 
2355 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2356 	if (prev & bit)
2357 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2358 	prev &= ~bit;
2359 
2360 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2361 	if (prev & bit)
2362 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2363 	prev &= ~bit;
2364 
2365 	bit = 1 << BTRFS_PENDING_COMMIT;
2366 	if (prev & bit)
2367 		btrfs_debug(fs_info, "pending commit done");
2368 	prev &= ~bit;
2369 
2370 	if (prev)
2371 		btrfs_warn(fs_info,
2372 			"unknown pending changes left 0x%lx, ignoring", prev);
2373 }
2374