1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "misc.h" 14 #include "ctree.h" 15 #include "disk-io.h" 16 #include "transaction.h" 17 #include "locking.h" 18 #include "tree-log.h" 19 #include "inode-map.h" 20 #include "volumes.h" 21 #include "dev-replace.h" 22 #include "qgroup.h" 23 #include "block-group.h" 24 #include "space-info.h" 25 26 #define BTRFS_ROOT_TRANS_TAG 0 27 28 /* 29 * Transaction states and transitions 30 * 31 * No running transaction (fs tree blocks are not modified) 32 * | 33 * | To next stage: 34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 35 * V 36 * Transaction N [[TRANS_STATE_RUNNING]] 37 * | 38 * | New trans handles can be attached to transaction N by calling all 39 * | start_transaction() variants. 40 * | 41 * | To next stage: 42 * | Call btrfs_commit_transaction() on any trans handle attached to 43 * | transaction N 44 * V 45 * Transaction N [[TRANS_STATE_COMMIT_START]] 46 * | 47 * | Will wait for previous running transaction to completely finish if there 48 * | is one 49 * | 50 * | Then one of the following happes: 51 * | - Wait for all other trans handle holders to release. 52 * | The btrfs_commit_transaction() caller will do the commit work. 53 * | - Wait for current transaction to be committed by others. 54 * | Other btrfs_commit_transaction() caller will do the commit work. 55 * | 56 * | At this stage, only btrfs_join_transaction*() variants can attach 57 * | to this running transaction. 58 * | All other variants will wait for current one to finish and attach to 59 * | transaction N+1. 60 * | 61 * | To next stage: 62 * | Caller is chosen to commit transaction N, and all other trans handle 63 * | haven been released. 64 * V 65 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 66 * | 67 * | The heavy lifting transaction work is started. 68 * | From running delayed refs (modifying extent tree) to creating pending 69 * | snapshots, running qgroups. 70 * | In short, modify supporting trees to reflect modifications of subvolume 71 * | trees. 72 * | 73 * | At this stage, all start_transaction() calls will wait for this 74 * | transaction to finish and attach to transaction N+1. 75 * | 76 * | To next stage: 77 * | Until all supporting trees are updated. 78 * V 79 * Transaction N [[TRANS_STATE_UNBLOCKED]] 80 * | Transaction N+1 81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 82 * | need to write them back to disk and update | 83 * | super blocks. | 84 * | | 85 * | At this stage, new transaction is allowed to | 86 * | start. | 87 * | All new start_transaction() calls will be | 88 * | attached to transid N+1. | 89 * | | 90 * | To next stage: | 91 * | Until all tree blocks are super blocks are | 92 * | written to block devices | 93 * V | 94 * Transaction N [[TRANS_STATE_COMPLETED]] V 95 * All tree blocks and super blocks are written. Transaction N+1 96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 97 * data structures will be cleaned up. | Life goes on 98 */ 99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 100 [TRANS_STATE_RUNNING] = 0U, 101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 103 __TRANS_ATTACH | 104 __TRANS_JOIN | 105 __TRANS_JOIN_NOSTART), 106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 107 __TRANS_ATTACH | 108 __TRANS_JOIN | 109 __TRANS_JOIN_NOLOCK | 110 __TRANS_JOIN_NOSTART), 111 [TRANS_STATE_COMPLETED] = (__TRANS_START | 112 __TRANS_ATTACH | 113 __TRANS_JOIN | 114 __TRANS_JOIN_NOLOCK | 115 __TRANS_JOIN_NOSTART), 116 }; 117 118 void btrfs_put_transaction(struct btrfs_transaction *transaction) 119 { 120 WARN_ON(refcount_read(&transaction->use_count) == 0); 121 if (refcount_dec_and_test(&transaction->use_count)) { 122 BUG_ON(!list_empty(&transaction->list)); 123 WARN_ON(!RB_EMPTY_ROOT( 124 &transaction->delayed_refs.href_root.rb_root)); 125 WARN_ON(!RB_EMPTY_ROOT( 126 &transaction->delayed_refs.dirty_extent_root)); 127 if (transaction->delayed_refs.pending_csums) 128 btrfs_err(transaction->fs_info, 129 "pending csums is %llu", 130 transaction->delayed_refs.pending_csums); 131 /* 132 * If any block groups are found in ->deleted_bgs then it's 133 * because the transaction was aborted and a commit did not 134 * happen (things failed before writing the new superblock 135 * and calling btrfs_finish_extent_commit()), so we can not 136 * discard the physical locations of the block groups. 137 */ 138 while (!list_empty(&transaction->deleted_bgs)) { 139 struct btrfs_block_group *cache; 140 141 cache = list_first_entry(&transaction->deleted_bgs, 142 struct btrfs_block_group, 143 bg_list); 144 list_del_init(&cache->bg_list); 145 btrfs_unfreeze_block_group(cache); 146 btrfs_put_block_group(cache); 147 } 148 WARN_ON(!list_empty(&transaction->dev_update_list)); 149 kfree(transaction); 150 } 151 } 152 153 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 154 { 155 struct btrfs_transaction *cur_trans = trans->transaction; 156 struct btrfs_fs_info *fs_info = trans->fs_info; 157 struct btrfs_root *root, *tmp; 158 159 down_write(&fs_info->commit_root_sem); 160 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 161 dirty_list) { 162 list_del_init(&root->dirty_list); 163 free_extent_buffer(root->commit_root); 164 root->commit_root = btrfs_root_node(root); 165 if (is_fstree(root->root_key.objectid)) 166 btrfs_unpin_free_ino(root); 167 extent_io_tree_release(&root->dirty_log_pages); 168 btrfs_qgroup_clean_swapped_blocks(root); 169 } 170 171 /* We can free old roots now. */ 172 spin_lock(&cur_trans->dropped_roots_lock); 173 while (!list_empty(&cur_trans->dropped_roots)) { 174 root = list_first_entry(&cur_trans->dropped_roots, 175 struct btrfs_root, root_list); 176 list_del_init(&root->root_list); 177 spin_unlock(&cur_trans->dropped_roots_lock); 178 btrfs_free_log(trans, root); 179 btrfs_drop_and_free_fs_root(fs_info, root); 180 spin_lock(&cur_trans->dropped_roots_lock); 181 } 182 spin_unlock(&cur_trans->dropped_roots_lock); 183 up_write(&fs_info->commit_root_sem); 184 } 185 186 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 187 unsigned int type) 188 { 189 if (type & TRANS_EXTWRITERS) 190 atomic_inc(&trans->num_extwriters); 191 } 192 193 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 194 unsigned int type) 195 { 196 if (type & TRANS_EXTWRITERS) 197 atomic_dec(&trans->num_extwriters); 198 } 199 200 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 201 unsigned int type) 202 { 203 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 204 } 205 206 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 207 { 208 return atomic_read(&trans->num_extwriters); 209 } 210 211 /* 212 * To be called after all the new block groups attached to the transaction 213 * handle have been created (btrfs_create_pending_block_groups()). 214 */ 215 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 216 { 217 struct btrfs_fs_info *fs_info = trans->fs_info; 218 219 if (!trans->chunk_bytes_reserved) 220 return; 221 222 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 223 224 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 225 trans->chunk_bytes_reserved, NULL); 226 trans->chunk_bytes_reserved = 0; 227 } 228 229 /* 230 * either allocate a new transaction or hop into the existing one 231 */ 232 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 233 unsigned int type) 234 { 235 struct btrfs_transaction *cur_trans; 236 237 spin_lock(&fs_info->trans_lock); 238 loop: 239 /* The file system has been taken offline. No new transactions. */ 240 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 241 spin_unlock(&fs_info->trans_lock); 242 return -EROFS; 243 } 244 245 cur_trans = fs_info->running_transaction; 246 if (cur_trans) { 247 if (TRANS_ABORTED(cur_trans)) { 248 spin_unlock(&fs_info->trans_lock); 249 return cur_trans->aborted; 250 } 251 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 252 spin_unlock(&fs_info->trans_lock); 253 return -EBUSY; 254 } 255 refcount_inc(&cur_trans->use_count); 256 atomic_inc(&cur_trans->num_writers); 257 extwriter_counter_inc(cur_trans, type); 258 spin_unlock(&fs_info->trans_lock); 259 return 0; 260 } 261 spin_unlock(&fs_info->trans_lock); 262 263 /* 264 * If we are ATTACH, we just want to catch the current transaction, 265 * and commit it. If there is no transaction, just return ENOENT. 266 */ 267 if (type == TRANS_ATTACH) 268 return -ENOENT; 269 270 /* 271 * JOIN_NOLOCK only happens during the transaction commit, so 272 * it is impossible that ->running_transaction is NULL 273 */ 274 BUG_ON(type == TRANS_JOIN_NOLOCK); 275 276 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 277 if (!cur_trans) 278 return -ENOMEM; 279 280 spin_lock(&fs_info->trans_lock); 281 if (fs_info->running_transaction) { 282 /* 283 * someone started a transaction after we unlocked. Make sure 284 * to redo the checks above 285 */ 286 kfree(cur_trans); 287 goto loop; 288 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 289 spin_unlock(&fs_info->trans_lock); 290 kfree(cur_trans); 291 return -EROFS; 292 } 293 294 cur_trans->fs_info = fs_info; 295 atomic_set(&cur_trans->pending_ordered, 0); 296 init_waitqueue_head(&cur_trans->pending_wait); 297 atomic_set(&cur_trans->num_writers, 1); 298 extwriter_counter_init(cur_trans, type); 299 init_waitqueue_head(&cur_trans->writer_wait); 300 init_waitqueue_head(&cur_trans->commit_wait); 301 cur_trans->state = TRANS_STATE_RUNNING; 302 /* 303 * One for this trans handle, one so it will live on until we 304 * commit the transaction. 305 */ 306 refcount_set(&cur_trans->use_count, 2); 307 cur_trans->flags = 0; 308 cur_trans->start_time = ktime_get_seconds(); 309 310 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 311 312 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 313 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 314 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 315 316 /* 317 * although the tree mod log is per file system and not per transaction, 318 * the log must never go across transaction boundaries. 319 */ 320 smp_mb(); 321 if (!list_empty(&fs_info->tree_mod_seq_list)) 322 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 323 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 324 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 325 atomic64_set(&fs_info->tree_mod_seq, 0); 326 327 spin_lock_init(&cur_trans->delayed_refs.lock); 328 329 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 330 INIT_LIST_HEAD(&cur_trans->dev_update_list); 331 INIT_LIST_HEAD(&cur_trans->switch_commits); 332 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 333 INIT_LIST_HEAD(&cur_trans->io_bgs); 334 INIT_LIST_HEAD(&cur_trans->dropped_roots); 335 mutex_init(&cur_trans->cache_write_mutex); 336 spin_lock_init(&cur_trans->dirty_bgs_lock); 337 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 338 spin_lock_init(&cur_trans->dropped_roots_lock); 339 list_add_tail(&cur_trans->list, &fs_info->trans_list); 340 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 341 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode); 342 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 343 IO_TREE_FS_PINNED_EXTENTS, NULL); 344 fs_info->generation++; 345 cur_trans->transid = fs_info->generation; 346 fs_info->running_transaction = cur_trans; 347 cur_trans->aborted = 0; 348 spin_unlock(&fs_info->trans_lock); 349 350 return 0; 351 } 352 353 /* 354 * This does all the record keeping required to make sure that a shareable root 355 * is properly recorded in a given transaction. This is required to make sure 356 * the old root from before we joined the transaction is deleted when the 357 * transaction commits. 358 */ 359 static int record_root_in_trans(struct btrfs_trans_handle *trans, 360 struct btrfs_root *root, 361 int force) 362 { 363 struct btrfs_fs_info *fs_info = root->fs_info; 364 365 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 366 root->last_trans < trans->transid) || force) { 367 WARN_ON(root == fs_info->extent_root); 368 WARN_ON(!force && root->commit_root != root->node); 369 370 /* 371 * see below for IN_TRANS_SETUP usage rules 372 * we have the reloc mutex held now, so there 373 * is only one writer in this function 374 */ 375 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 376 377 /* make sure readers find IN_TRANS_SETUP before 378 * they find our root->last_trans update 379 */ 380 smp_wmb(); 381 382 spin_lock(&fs_info->fs_roots_radix_lock); 383 if (root->last_trans == trans->transid && !force) { 384 spin_unlock(&fs_info->fs_roots_radix_lock); 385 return 0; 386 } 387 radix_tree_tag_set(&fs_info->fs_roots_radix, 388 (unsigned long)root->root_key.objectid, 389 BTRFS_ROOT_TRANS_TAG); 390 spin_unlock(&fs_info->fs_roots_radix_lock); 391 root->last_trans = trans->transid; 392 393 /* this is pretty tricky. We don't want to 394 * take the relocation lock in btrfs_record_root_in_trans 395 * unless we're really doing the first setup for this root in 396 * this transaction. 397 * 398 * Normally we'd use root->last_trans as a flag to decide 399 * if we want to take the expensive mutex. 400 * 401 * But, we have to set root->last_trans before we 402 * init the relocation root, otherwise, we trip over warnings 403 * in ctree.c. The solution used here is to flag ourselves 404 * with root IN_TRANS_SETUP. When this is 1, we're still 405 * fixing up the reloc trees and everyone must wait. 406 * 407 * When this is zero, they can trust root->last_trans and fly 408 * through btrfs_record_root_in_trans without having to take the 409 * lock. smp_wmb() makes sure that all the writes above are 410 * done before we pop in the zero below 411 */ 412 btrfs_init_reloc_root(trans, root); 413 smp_mb__before_atomic(); 414 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 415 } 416 return 0; 417 } 418 419 420 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 421 struct btrfs_root *root) 422 { 423 struct btrfs_fs_info *fs_info = root->fs_info; 424 struct btrfs_transaction *cur_trans = trans->transaction; 425 426 /* Add ourselves to the transaction dropped list */ 427 spin_lock(&cur_trans->dropped_roots_lock); 428 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 429 spin_unlock(&cur_trans->dropped_roots_lock); 430 431 /* Make sure we don't try to update the root at commit time */ 432 spin_lock(&fs_info->fs_roots_radix_lock); 433 radix_tree_tag_clear(&fs_info->fs_roots_radix, 434 (unsigned long)root->root_key.objectid, 435 BTRFS_ROOT_TRANS_TAG); 436 spin_unlock(&fs_info->fs_roots_radix_lock); 437 } 438 439 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 440 struct btrfs_root *root) 441 { 442 struct btrfs_fs_info *fs_info = root->fs_info; 443 444 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 445 return 0; 446 447 /* 448 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 449 * and barriers 450 */ 451 smp_rmb(); 452 if (root->last_trans == trans->transid && 453 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 454 return 0; 455 456 mutex_lock(&fs_info->reloc_mutex); 457 record_root_in_trans(trans, root, 0); 458 mutex_unlock(&fs_info->reloc_mutex); 459 460 return 0; 461 } 462 463 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 464 { 465 return (trans->state >= TRANS_STATE_COMMIT_START && 466 trans->state < TRANS_STATE_UNBLOCKED && 467 !TRANS_ABORTED(trans)); 468 } 469 470 /* wait for commit against the current transaction to become unblocked 471 * when this is done, it is safe to start a new transaction, but the current 472 * transaction might not be fully on disk. 473 */ 474 static void wait_current_trans(struct btrfs_fs_info *fs_info) 475 { 476 struct btrfs_transaction *cur_trans; 477 478 spin_lock(&fs_info->trans_lock); 479 cur_trans = fs_info->running_transaction; 480 if (cur_trans && is_transaction_blocked(cur_trans)) { 481 refcount_inc(&cur_trans->use_count); 482 spin_unlock(&fs_info->trans_lock); 483 484 wait_event(fs_info->transaction_wait, 485 cur_trans->state >= TRANS_STATE_UNBLOCKED || 486 TRANS_ABORTED(cur_trans)); 487 btrfs_put_transaction(cur_trans); 488 } else { 489 spin_unlock(&fs_info->trans_lock); 490 } 491 } 492 493 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 494 { 495 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 496 return 0; 497 498 if (type == TRANS_START) 499 return 1; 500 501 return 0; 502 } 503 504 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 505 { 506 struct btrfs_fs_info *fs_info = root->fs_info; 507 508 if (!fs_info->reloc_ctl || 509 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 510 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 511 root->reloc_root) 512 return false; 513 514 return true; 515 } 516 517 static struct btrfs_trans_handle * 518 start_transaction(struct btrfs_root *root, unsigned int num_items, 519 unsigned int type, enum btrfs_reserve_flush_enum flush, 520 bool enforce_qgroups) 521 { 522 struct btrfs_fs_info *fs_info = root->fs_info; 523 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 524 struct btrfs_trans_handle *h; 525 struct btrfs_transaction *cur_trans; 526 u64 num_bytes = 0; 527 u64 qgroup_reserved = 0; 528 bool reloc_reserved = false; 529 bool do_chunk_alloc = false; 530 int ret; 531 532 /* Send isn't supposed to start transactions. */ 533 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 534 535 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 536 return ERR_PTR(-EROFS); 537 538 if (current->journal_info) { 539 WARN_ON(type & TRANS_EXTWRITERS); 540 h = current->journal_info; 541 refcount_inc(&h->use_count); 542 WARN_ON(refcount_read(&h->use_count) > 2); 543 h->orig_rsv = h->block_rsv; 544 h->block_rsv = NULL; 545 goto got_it; 546 } 547 548 /* 549 * Do the reservation before we join the transaction so we can do all 550 * the appropriate flushing if need be. 551 */ 552 if (num_items && root != fs_info->chunk_root) { 553 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 554 u64 delayed_refs_bytes = 0; 555 556 qgroup_reserved = num_items * fs_info->nodesize; 557 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 558 enforce_qgroups); 559 if (ret) 560 return ERR_PTR(ret); 561 562 /* 563 * We want to reserve all the bytes we may need all at once, so 564 * we only do 1 enospc flushing cycle per transaction start. We 565 * accomplish this by simply assuming we'll do 2 x num_items 566 * worth of delayed refs updates in this trans handle, and 567 * refill that amount for whatever is missing in the reserve. 568 */ 569 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 570 if (flush == BTRFS_RESERVE_FLUSH_ALL && 571 delayed_refs_rsv->full == 0) { 572 delayed_refs_bytes = num_bytes; 573 num_bytes <<= 1; 574 } 575 576 /* 577 * Do the reservation for the relocation root creation 578 */ 579 if (need_reserve_reloc_root(root)) { 580 num_bytes += fs_info->nodesize; 581 reloc_reserved = true; 582 } 583 584 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush); 585 if (ret) 586 goto reserve_fail; 587 if (delayed_refs_bytes) { 588 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 589 delayed_refs_bytes); 590 num_bytes -= delayed_refs_bytes; 591 } 592 593 if (rsv->space_info->force_alloc) 594 do_chunk_alloc = true; 595 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 596 !delayed_refs_rsv->full) { 597 /* 598 * Some people call with btrfs_start_transaction(root, 0) 599 * because they can be throttled, but have some other mechanism 600 * for reserving space. We still want these guys to refill the 601 * delayed block_rsv so just add 1 items worth of reservation 602 * here. 603 */ 604 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 605 if (ret) 606 goto reserve_fail; 607 } 608 again: 609 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 610 if (!h) { 611 ret = -ENOMEM; 612 goto alloc_fail; 613 } 614 615 /* 616 * If we are JOIN_NOLOCK we're already committing a transaction and 617 * waiting on this guy, so we don't need to do the sb_start_intwrite 618 * because we're already holding a ref. We need this because we could 619 * have raced in and did an fsync() on a file which can kick a commit 620 * and then we deadlock with somebody doing a freeze. 621 * 622 * If we are ATTACH, it means we just want to catch the current 623 * transaction and commit it, so we needn't do sb_start_intwrite(). 624 */ 625 if (type & __TRANS_FREEZABLE) 626 sb_start_intwrite(fs_info->sb); 627 628 if (may_wait_transaction(fs_info, type)) 629 wait_current_trans(fs_info); 630 631 do { 632 ret = join_transaction(fs_info, type); 633 if (ret == -EBUSY) { 634 wait_current_trans(fs_info); 635 if (unlikely(type == TRANS_ATTACH || 636 type == TRANS_JOIN_NOSTART)) 637 ret = -ENOENT; 638 } 639 } while (ret == -EBUSY); 640 641 if (ret < 0) 642 goto join_fail; 643 644 cur_trans = fs_info->running_transaction; 645 646 h->transid = cur_trans->transid; 647 h->transaction = cur_trans; 648 h->root = root; 649 refcount_set(&h->use_count, 1); 650 h->fs_info = root->fs_info; 651 652 h->type = type; 653 h->can_flush_pending_bgs = true; 654 INIT_LIST_HEAD(&h->new_bgs); 655 656 smp_mb(); 657 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 658 may_wait_transaction(fs_info, type)) { 659 current->journal_info = h; 660 btrfs_commit_transaction(h); 661 goto again; 662 } 663 664 if (num_bytes) { 665 trace_btrfs_space_reservation(fs_info, "transaction", 666 h->transid, num_bytes, 1); 667 h->block_rsv = &fs_info->trans_block_rsv; 668 h->bytes_reserved = num_bytes; 669 h->reloc_reserved = reloc_reserved; 670 } 671 672 got_it: 673 if (!current->journal_info) 674 current->journal_info = h; 675 676 /* 677 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 678 * ALLOC_FORCE the first run through, and then we won't allocate for 679 * anybody else who races in later. We don't care about the return 680 * value here. 681 */ 682 if (do_chunk_alloc && num_bytes) { 683 u64 flags = h->block_rsv->space_info->flags; 684 685 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 686 CHUNK_ALLOC_NO_FORCE); 687 } 688 689 /* 690 * btrfs_record_root_in_trans() needs to alloc new extents, and may 691 * call btrfs_join_transaction() while we're also starting a 692 * transaction. 693 * 694 * Thus it need to be called after current->journal_info initialized, 695 * or we can deadlock. 696 */ 697 btrfs_record_root_in_trans(h, root); 698 699 return h; 700 701 join_fail: 702 if (type & __TRANS_FREEZABLE) 703 sb_end_intwrite(fs_info->sb); 704 kmem_cache_free(btrfs_trans_handle_cachep, h); 705 alloc_fail: 706 if (num_bytes) 707 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 708 num_bytes, NULL); 709 reserve_fail: 710 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 711 return ERR_PTR(ret); 712 } 713 714 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 715 unsigned int num_items) 716 { 717 return start_transaction(root, num_items, TRANS_START, 718 BTRFS_RESERVE_FLUSH_ALL, true); 719 } 720 721 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 722 struct btrfs_root *root, 723 unsigned int num_items) 724 { 725 return start_transaction(root, num_items, TRANS_START, 726 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 727 } 728 729 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 730 { 731 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 732 true); 733 } 734 735 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 736 { 737 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 738 BTRFS_RESERVE_NO_FLUSH, true); 739 } 740 741 /* 742 * Similar to regular join but it never starts a transaction when none is 743 * running or after waiting for the current one to finish. 744 */ 745 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 746 { 747 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 748 BTRFS_RESERVE_NO_FLUSH, true); 749 } 750 751 /* 752 * btrfs_attach_transaction() - catch the running transaction 753 * 754 * It is used when we want to commit the current the transaction, but 755 * don't want to start a new one. 756 * 757 * Note: If this function return -ENOENT, it just means there is no 758 * running transaction. But it is possible that the inactive transaction 759 * is still in the memory, not fully on disk. If you hope there is no 760 * inactive transaction in the fs when -ENOENT is returned, you should 761 * invoke 762 * btrfs_attach_transaction_barrier() 763 */ 764 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 765 { 766 return start_transaction(root, 0, TRANS_ATTACH, 767 BTRFS_RESERVE_NO_FLUSH, true); 768 } 769 770 /* 771 * btrfs_attach_transaction_barrier() - catch the running transaction 772 * 773 * It is similar to the above function, the difference is this one 774 * will wait for all the inactive transactions until they fully 775 * complete. 776 */ 777 struct btrfs_trans_handle * 778 btrfs_attach_transaction_barrier(struct btrfs_root *root) 779 { 780 struct btrfs_trans_handle *trans; 781 782 trans = start_transaction(root, 0, TRANS_ATTACH, 783 BTRFS_RESERVE_NO_FLUSH, true); 784 if (trans == ERR_PTR(-ENOENT)) 785 btrfs_wait_for_commit(root->fs_info, 0); 786 787 return trans; 788 } 789 790 /* wait for a transaction commit to be fully complete */ 791 static noinline void wait_for_commit(struct btrfs_transaction *commit) 792 { 793 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 794 } 795 796 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 797 { 798 struct btrfs_transaction *cur_trans = NULL, *t; 799 int ret = 0; 800 801 if (transid) { 802 if (transid <= fs_info->last_trans_committed) 803 goto out; 804 805 /* find specified transaction */ 806 spin_lock(&fs_info->trans_lock); 807 list_for_each_entry(t, &fs_info->trans_list, list) { 808 if (t->transid == transid) { 809 cur_trans = t; 810 refcount_inc(&cur_trans->use_count); 811 ret = 0; 812 break; 813 } 814 if (t->transid > transid) { 815 ret = 0; 816 break; 817 } 818 } 819 spin_unlock(&fs_info->trans_lock); 820 821 /* 822 * The specified transaction doesn't exist, or we 823 * raced with btrfs_commit_transaction 824 */ 825 if (!cur_trans) { 826 if (transid > fs_info->last_trans_committed) 827 ret = -EINVAL; 828 goto out; 829 } 830 } else { 831 /* find newest transaction that is committing | committed */ 832 spin_lock(&fs_info->trans_lock); 833 list_for_each_entry_reverse(t, &fs_info->trans_list, 834 list) { 835 if (t->state >= TRANS_STATE_COMMIT_START) { 836 if (t->state == TRANS_STATE_COMPLETED) 837 break; 838 cur_trans = t; 839 refcount_inc(&cur_trans->use_count); 840 break; 841 } 842 } 843 spin_unlock(&fs_info->trans_lock); 844 if (!cur_trans) 845 goto out; /* nothing committing|committed */ 846 } 847 848 wait_for_commit(cur_trans); 849 btrfs_put_transaction(cur_trans); 850 out: 851 return ret; 852 } 853 854 void btrfs_throttle(struct btrfs_fs_info *fs_info) 855 { 856 wait_current_trans(fs_info); 857 } 858 859 static int should_end_transaction(struct btrfs_trans_handle *trans) 860 { 861 struct btrfs_fs_info *fs_info = trans->fs_info; 862 863 if (btrfs_check_space_for_delayed_refs(fs_info)) 864 return 1; 865 866 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 867 } 868 869 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 870 { 871 struct btrfs_transaction *cur_trans = trans->transaction; 872 873 smp_mb(); 874 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 875 cur_trans->delayed_refs.flushing) 876 return 1; 877 878 return should_end_transaction(trans); 879 } 880 881 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 882 883 { 884 struct btrfs_fs_info *fs_info = trans->fs_info; 885 886 if (!trans->block_rsv) { 887 ASSERT(!trans->bytes_reserved); 888 return; 889 } 890 891 if (!trans->bytes_reserved) 892 return; 893 894 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 895 trace_btrfs_space_reservation(fs_info, "transaction", 896 trans->transid, trans->bytes_reserved, 0); 897 btrfs_block_rsv_release(fs_info, trans->block_rsv, 898 trans->bytes_reserved, NULL); 899 trans->bytes_reserved = 0; 900 } 901 902 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 903 int throttle) 904 { 905 struct btrfs_fs_info *info = trans->fs_info; 906 struct btrfs_transaction *cur_trans = trans->transaction; 907 int err = 0; 908 909 if (refcount_read(&trans->use_count) > 1) { 910 refcount_dec(&trans->use_count); 911 trans->block_rsv = trans->orig_rsv; 912 return 0; 913 } 914 915 btrfs_trans_release_metadata(trans); 916 trans->block_rsv = NULL; 917 918 btrfs_create_pending_block_groups(trans); 919 920 btrfs_trans_release_chunk_metadata(trans); 921 922 if (trans->type & __TRANS_FREEZABLE) 923 sb_end_intwrite(info->sb); 924 925 WARN_ON(cur_trans != info->running_transaction); 926 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 927 atomic_dec(&cur_trans->num_writers); 928 extwriter_counter_dec(cur_trans, trans->type); 929 930 cond_wake_up(&cur_trans->writer_wait); 931 btrfs_put_transaction(cur_trans); 932 933 if (current->journal_info == trans) 934 current->journal_info = NULL; 935 936 if (throttle) 937 btrfs_run_delayed_iputs(info); 938 939 if (TRANS_ABORTED(trans) || 940 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 941 wake_up_process(info->transaction_kthread); 942 if (TRANS_ABORTED(trans)) 943 err = trans->aborted; 944 else 945 err = -EROFS; 946 } 947 948 kmem_cache_free(btrfs_trans_handle_cachep, trans); 949 return err; 950 } 951 952 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 953 { 954 return __btrfs_end_transaction(trans, 0); 955 } 956 957 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 958 { 959 return __btrfs_end_transaction(trans, 1); 960 } 961 962 /* 963 * when btree blocks are allocated, they have some corresponding bits set for 964 * them in one of two extent_io trees. This is used to make sure all of 965 * those extents are sent to disk but does not wait on them 966 */ 967 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 968 struct extent_io_tree *dirty_pages, int mark) 969 { 970 int err = 0; 971 int werr = 0; 972 struct address_space *mapping = fs_info->btree_inode->i_mapping; 973 struct extent_state *cached_state = NULL; 974 u64 start = 0; 975 u64 end; 976 977 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 978 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 979 mark, &cached_state)) { 980 bool wait_writeback = false; 981 982 err = convert_extent_bit(dirty_pages, start, end, 983 EXTENT_NEED_WAIT, 984 mark, &cached_state); 985 /* 986 * convert_extent_bit can return -ENOMEM, which is most of the 987 * time a temporary error. So when it happens, ignore the error 988 * and wait for writeback of this range to finish - because we 989 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 990 * to __btrfs_wait_marked_extents() would not know that 991 * writeback for this range started and therefore wouldn't 992 * wait for it to finish - we don't want to commit a 993 * superblock that points to btree nodes/leafs for which 994 * writeback hasn't finished yet (and without errors). 995 * We cleanup any entries left in the io tree when committing 996 * the transaction (through extent_io_tree_release()). 997 */ 998 if (err == -ENOMEM) { 999 err = 0; 1000 wait_writeback = true; 1001 } 1002 if (!err) 1003 err = filemap_fdatawrite_range(mapping, start, end); 1004 if (err) 1005 werr = err; 1006 else if (wait_writeback) 1007 werr = filemap_fdatawait_range(mapping, start, end); 1008 free_extent_state(cached_state); 1009 cached_state = NULL; 1010 cond_resched(); 1011 start = end + 1; 1012 } 1013 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1014 return werr; 1015 } 1016 1017 /* 1018 * when btree blocks are allocated, they have some corresponding bits set for 1019 * them in one of two extent_io trees. This is used to make sure all of 1020 * those extents are on disk for transaction or log commit. We wait 1021 * on all the pages and clear them from the dirty pages state tree 1022 */ 1023 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1024 struct extent_io_tree *dirty_pages) 1025 { 1026 int err = 0; 1027 int werr = 0; 1028 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1029 struct extent_state *cached_state = NULL; 1030 u64 start = 0; 1031 u64 end; 1032 1033 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1034 EXTENT_NEED_WAIT, &cached_state)) { 1035 /* 1036 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1037 * When committing the transaction, we'll remove any entries 1038 * left in the io tree. For a log commit, we don't remove them 1039 * after committing the log because the tree can be accessed 1040 * concurrently - we do it only at transaction commit time when 1041 * it's safe to do it (through extent_io_tree_release()). 1042 */ 1043 err = clear_extent_bit(dirty_pages, start, end, 1044 EXTENT_NEED_WAIT, 0, 0, &cached_state); 1045 if (err == -ENOMEM) 1046 err = 0; 1047 if (!err) 1048 err = filemap_fdatawait_range(mapping, start, end); 1049 if (err) 1050 werr = err; 1051 free_extent_state(cached_state); 1052 cached_state = NULL; 1053 cond_resched(); 1054 start = end + 1; 1055 } 1056 if (err) 1057 werr = err; 1058 return werr; 1059 } 1060 1061 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1062 struct extent_io_tree *dirty_pages) 1063 { 1064 bool errors = false; 1065 int err; 1066 1067 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1068 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1069 errors = true; 1070 1071 if (errors && !err) 1072 err = -EIO; 1073 return err; 1074 } 1075 1076 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1077 { 1078 struct btrfs_fs_info *fs_info = log_root->fs_info; 1079 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1080 bool errors = false; 1081 int err; 1082 1083 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1084 1085 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1086 if ((mark & EXTENT_DIRTY) && 1087 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1088 errors = true; 1089 1090 if ((mark & EXTENT_NEW) && 1091 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1092 errors = true; 1093 1094 if (errors && !err) 1095 err = -EIO; 1096 return err; 1097 } 1098 1099 /* 1100 * When btree blocks are allocated the corresponding extents are marked dirty. 1101 * This function ensures such extents are persisted on disk for transaction or 1102 * log commit. 1103 * 1104 * @trans: transaction whose dirty pages we'd like to write 1105 */ 1106 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1107 { 1108 int ret; 1109 int ret2; 1110 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1111 struct btrfs_fs_info *fs_info = trans->fs_info; 1112 struct blk_plug plug; 1113 1114 blk_start_plug(&plug); 1115 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1116 blk_finish_plug(&plug); 1117 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1118 1119 extent_io_tree_release(&trans->transaction->dirty_pages); 1120 1121 if (ret) 1122 return ret; 1123 else if (ret2) 1124 return ret2; 1125 else 1126 return 0; 1127 } 1128 1129 /* 1130 * this is used to update the root pointer in the tree of tree roots. 1131 * 1132 * But, in the case of the extent allocation tree, updating the root 1133 * pointer may allocate blocks which may change the root of the extent 1134 * allocation tree. 1135 * 1136 * So, this loops and repeats and makes sure the cowonly root didn't 1137 * change while the root pointer was being updated in the metadata. 1138 */ 1139 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1140 struct btrfs_root *root) 1141 { 1142 int ret; 1143 u64 old_root_bytenr; 1144 u64 old_root_used; 1145 struct btrfs_fs_info *fs_info = root->fs_info; 1146 struct btrfs_root *tree_root = fs_info->tree_root; 1147 1148 old_root_used = btrfs_root_used(&root->root_item); 1149 1150 while (1) { 1151 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1152 if (old_root_bytenr == root->node->start && 1153 old_root_used == btrfs_root_used(&root->root_item)) 1154 break; 1155 1156 btrfs_set_root_node(&root->root_item, root->node); 1157 ret = btrfs_update_root(trans, tree_root, 1158 &root->root_key, 1159 &root->root_item); 1160 if (ret) 1161 return ret; 1162 1163 old_root_used = btrfs_root_used(&root->root_item); 1164 } 1165 1166 return 0; 1167 } 1168 1169 /* 1170 * update all the cowonly tree roots on disk 1171 * 1172 * The error handling in this function may not be obvious. Any of the 1173 * failures will cause the file system to go offline. We still need 1174 * to clean up the delayed refs. 1175 */ 1176 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1177 { 1178 struct btrfs_fs_info *fs_info = trans->fs_info; 1179 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1180 struct list_head *io_bgs = &trans->transaction->io_bgs; 1181 struct list_head *next; 1182 struct extent_buffer *eb; 1183 int ret; 1184 1185 eb = btrfs_lock_root_node(fs_info->tree_root); 1186 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1187 0, &eb, BTRFS_NESTING_COW); 1188 btrfs_tree_unlock(eb); 1189 free_extent_buffer(eb); 1190 1191 if (ret) 1192 return ret; 1193 1194 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1195 if (ret) 1196 return ret; 1197 1198 ret = btrfs_run_dev_stats(trans); 1199 if (ret) 1200 return ret; 1201 ret = btrfs_run_dev_replace(trans); 1202 if (ret) 1203 return ret; 1204 ret = btrfs_run_qgroups(trans); 1205 if (ret) 1206 return ret; 1207 1208 ret = btrfs_setup_space_cache(trans); 1209 if (ret) 1210 return ret; 1211 1212 /* run_qgroups might have added some more refs */ 1213 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1214 if (ret) 1215 return ret; 1216 again: 1217 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1218 struct btrfs_root *root; 1219 next = fs_info->dirty_cowonly_roots.next; 1220 list_del_init(next); 1221 root = list_entry(next, struct btrfs_root, dirty_list); 1222 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1223 1224 if (root != fs_info->extent_root) 1225 list_add_tail(&root->dirty_list, 1226 &trans->transaction->switch_commits); 1227 ret = update_cowonly_root(trans, root); 1228 if (ret) 1229 return ret; 1230 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1231 if (ret) 1232 return ret; 1233 } 1234 1235 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1236 ret = btrfs_write_dirty_block_groups(trans); 1237 if (ret) 1238 return ret; 1239 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1240 if (ret) 1241 return ret; 1242 } 1243 1244 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1245 goto again; 1246 1247 list_add_tail(&fs_info->extent_root->dirty_list, 1248 &trans->transaction->switch_commits); 1249 1250 /* Update dev-replace pointer once everything is committed */ 1251 fs_info->dev_replace.committed_cursor_left = 1252 fs_info->dev_replace.cursor_left_last_write_of_item; 1253 1254 return 0; 1255 } 1256 1257 /* 1258 * dead roots are old snapshots that need to be deleted. This allocates 1259 * a dirty root struct and adds it into the list of dead roots that need to 1260 * be deleted 1261 */ 1262 void btrfs_add_dead_root(struct btrfs_root *root) 1263 { 1264 struct btrfs_fs_info *fs_info = root->fs_info; 1265 1266 spin_lock(&fs_info->trans_lock); 1267 if (list_empty(&root->root_list)) { 1268 btrfs_grab_root(root); 1269 list_add_tail(&root->root_list, &fs_info->dead_roots); 1270 } 1271 spin_unlock(&fs_info->trans_lock); 1272 } 1273 1274 /* 1275 * update all the cowonly tree roots on disk 1276 */ 1277 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1278 { 1279 struct btrfs_fs_info *fs_info = trans->fs_info; 1280 struct btrfs_root *gang[8]; 1281 int i; 1282 int ret; 1283 int err = 0; 1284 1285 spin_lock(&fs_info->fs_roots_radix_lock); 1286 while (1) { 1287 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1288 (void **)gang, 0, 1289 ARRAY_SIZE(gang), 1290 BTRFS_ROOT_TRANS_TAG); 1291 if (ret == 0) 1292 break; 1293 for (i = 0; i < ret; i++) { 1294 struct btrfs_root *root = gang[i]; 1295 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1296 (unsigned long)root->root_key.objectid, 1297 BTRFS_ROOT_TRANS_TAG); 1298 spin_unlock(&fs_info->fs_roots_radix_lock); 1299 1300 btrfs_free_log(trans, root); 1301 btrfs_update_reloc_root(trans, root); 1302 1303 btrfs_save_ino_cache(root, trans); 1304 1305 /* see comments in should_cow_block() */ 1306 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1307 smp_mb__after_atomic(); 1308 1309 if (root->commit_root != root->node) { 1310 list_add_tail(&root->dirty_list, 1311 &trans->transaction->switch_commits); 1312 btrfs_set_root_node(&root->root_item, 1313 root->node); 1314 } 1315 1316 err = btrfs_update_root(trans, fs_info->tree_root, 1317 &root->root_key, 1318 &root->root_item); 1319 spin_lock(&fs_info->fs_roots_radix_lock); 1320 if (err) 1321 break; 1322 btrfs_qgroup_free_meta_all_pertrans(root); 1323 } 1324 } 1325 spin_unlock(&fs_info->fs_roots_radix_lock); 1326 return err; 1327 } 1328 1329 /* 1330 * defrag a given btree. 1331 * Every leaf in the btree is read and defragged. 1332 */ 1333 int btrfs_defrag_root(struct btrfs_root *root) 1334 { 1335 struct btrfs_fs_info *info = root->fs_info; 1336 struct btrfs_trans_handle *trans; 1337 int ret; 1338 1339 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1340 return 0; 1341 1342 while (1) { 1343 trans = btrfs_start_transaction(root, 0); 1344 if (IS_ERR(trans)) 1345 return PTR_ERR(trans); 1346 1347 ret = btrfs_defrag_leaves(trans, root); 1348 1349 btrfs_end_transaction(trans); 1350 btrfs_btree_balance_dirty(info); 1351 cond_resched(); 1352 1353 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1354 break; 1355 1356 if (btrfs_defrag_cancelled(info)) { 1357 btrfs_debug(info, "defrag_root cancelled"); 1358 ret = -EAGAIN; 1359 break; 1360 } 1361 } 1362 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1363 return ret; 1364 } 1365 1366 /* 1367 * Do all special snapshot related qgroup dirty hack. 1368 * 1369 * Will do all needed qgroup inherit and dirty hack like switch commit 1370 * roots inside one transaction and write all btree into disk, to make 1371 * qgroup works. 1372 */ 1373 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1374 struct btrfs_root *src, 1375 struct btrfs_root *parent, 1376 struct btrfs_qgroup_inherit *inherit, 1377 u64 dst_objectid) 1378 { 1379 struct btrfs_fs_info *fs_info = src->fs_info; 1380 int ret; 1381 1382 /* 1383 * Save some performance in the case that qgroups are not 1384 * enabled. If this check races with the ioctl, rescan will 1385 * kick in anyway. 1386 */ 1387 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1388 return 0; 1389 1390 /* 1391 * Ensure dirty @src will be committed. Or, after coming 1392 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1393 * recorded root will never be updated again, causing an outdated root 1394 * item. 1395 */ 1396 record_root_in_trans(trans, src, 1); 1397 1398 /* 1399 * We are going to commit transaction, see btrfs_commit_transaction() 1400 * comment for reason locking tree_log_mutex 1401 */ 1402 mutex_lock(&fs_info->tree_log_mutex); 1403 1404 ret = commit_fs_roots(trans); 1405 if (ret) 1406 goto out; 1407 ret = btrfs_qgroup_account_extents(trans); 1408 if (ret < 0) 1409 goto out; 1410 1411 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1412 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1413 inherit); 1414 if (ret < 0) 1415 goto out; 1416 1417 /* 1418 * Now we do a simplified commit transaction, which will: 1419 * 1) commit all subvolume and extent tree 1420 * To ensure all subvolume and extent tree have a valid 1421 * commit_root to accounting later insert_dir_item() 1422 * 2) write all btree blocks onto disk 1423 * This is to make sure later btree modification will be cowed 1424 * Or commit_root can be populated and cause wrong qgroup numbers 1425 * In this simplified commit, we don't really care about other trees 1426 * like chunk and root tree, as they won't affect qgroup. 1427 * And we don't write super to avoid half committed status. 1428 */ 1429 ret = commit_cowonly_roots(trans); 1430 if (ret) 1431 goto out; 1432 switch_commit_roots(trans); 1433 ret = btrfs_write_and_wait_transaction(trans); 1434 if (ret) 1435 btrfs_handle_fs_error(fs_info, ret, 1436 "Error while writing out transaction for qgroup"); 1437 1438 out: 1439 mutex_unlock(&fs_info->tree_log_mutex); 1440 1441 /* 1442 * Force parent root to be updated, as we recorded it before so its 1443 * last_trans == cur_transid. 1444 * Or it won't be committed again onto disk after later 1445 * insert_dir_item() 1446 */ 1447 if (!ret) 1448 record_root_in_trans(trans, parent, 1); 1449 return ret; 1450 } 1451 1452 /* 1453 * new snapshots need to be created at a very specific time in the 1454 * transaction commit. This does the actual creation. 1455 * 1456 * Note: 1457 * If the error which may affect the commitment of the current transaction 1458 * happens, we should return the error number. If the error which just affect 1459 * the creation of the pending snapshots, just return 0. 1460 */ 1461 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1462 struct btrfs_pending_snapshot *pending) 1463 { 1464 1465 struct btrfs_fs_info *fs_info = trans->fs_info; 1466 struct btrfs_key key; 1467 struct btrfs_root_item *new_root_item; 1468 struct btrfs_root *tree_root = fs_info->tree_root; 1469 struct btrfs_root *root = pending->root; 1470 struct btrfs_root *parent_root; 1471 struct btrfs_block_rsv *rsv; 1472 struct inode *parent_inode; 1473 struct btrfs_path *path; 1474 struct btrfs_dir_item *dir_item; 1475 struct dentry *dentry; 1476 struct extent_buffer *tmp; 1477 struct extent_buffer *old; 1478 struct timespec64 cur_time; 1479 int ret = 0; 1480 u64 to_reserve = 0; 1481 u64 index = 0; 1482 u64 objectid; 1483 u64 root_flags; 1484 1485 ASSERT(pending->path); 1486 path = pending->path; 1487 1488 ASSERT(pending->root_item); 1489 new_root_item = pending->root_item; 1490 1491 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1492 if (pending->error) 1493 goto no_free_objectid; 1494 1495 /* 1496 * Make qgroup to skip current new snapshot's qgroupid, as it is 1497 * accounted by later btrfs_qgroup_inherit(). 1498 */ 1499 btrfs_set_skip_qgroup(trans, objectid); 1500 1501 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1502 1503 if (to_reserve > 0) { 1504 pending->error = btrfs_block_rsv_add(root, 1505 &pending->block_rsv, 1506 to_reserve, 1507 BTRFS_RESERVE_NO_FLUSH); 1508 if (pending->error) 1509 goto clear_skip_qgroup; 1510 } 1511 1512 key.objectid = objectid; 1513 key.offset = (u64)-1; 1514 key.type = BTRFS_ROOT_ITEM_KEY; 1515 1516 rsv = trans->block_rsv; 1517 trans->block_rsv = &pending->block_rsv; 1518 trans->bytes_reserved = trans->block_rsv->reserved; 1519 trace_btrfs_space_reservation(fs_info, "transaction", 1520 trans->transid, 1521 trans->bytes_reserved, 1); 1522 dentry = pending->dentry; 1523 parent_inode = pending->dir; 1524 parent_root = BTRFS_I(parent_inode)->root; 1525 record_root_in_trans(trans, parent_root, 0); 1526 1527 cur_time = current_time(parent_inode); 1528 1529 /* 1530 * insert the directory item 1531 */ 1532 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1533 BUG_ON(ret); /* -ENOMEM */ 1534 1535 /* check if there is a file/dir which has the same name. */ 1536 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1537 btrfs_ino(BTRFS_I(parent_inode)), 1538 dentry->d_name.name, 1539 dentry->d_name.len, 0); 1540 if (dir_item != NULL && !IS_ERR(dir_item)) { 1541 pending->error = -EEXIST; 1542 goto dir_item_existed; 1543 } else if (IS_ERR(dir_item)) { 1544 ret = PTR_ERR(dir_item); 1545 btrfs_abort_transaction(trans, ret); 1546 goto fail; 1547 } 1548 btrfs_release_path(path); 1549 1550 /* 1551 * pull in the delayed directory update 1552 * and the delayed inode item 1553 * otherwise we corrupt the FS during 1554 * snapshot 1555 */ 1556 ret = btrfs_run_delayed_items(trans); 1557 if (ret) { /* Transaction aborted */ 1558 btrfs_abort_transaction(trans, ret); 1559 goto fail; 1560 } 1561 1562 record_root_in_trans(trans, root, 0); 1563 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1564 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1565 btrfs_check_and_init_root_item(new_root_item); 1566 1567 root_flags = btrfs_root_flags(new_root_item); 1568 if (pending->readonly) 1569 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1570 else 1571 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1572 btrfs_set_root_flags(new_root_item, root_flags); 1573 1574 btrfs_set_root_generation_v2(new_root_item, 1575 trans->transid); 1576 generate_random_guid(new_root_item->uuid); 1577 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1578 BTRFS_UUID_SIZE); 1579 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1580 memset(new_root_item->received_uuid, 0, 1581 sizeof(new_root_item->received_uuid)); 1582 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1583 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1584 btrfs_set_root_stransid(new_root_item, 0); 1585 btrfs_set_root_rtransid(new_root_item, 0); 1586 } 1587 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1588 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1589 btrfs_set_root_otransid(new_root_item, trans->transid); 1590 1591 old = btrfs_lock_root_node(root); 1592 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1593 BTRFS_NESTING_COW); 1594 if (ret) { 1595 btrfs_tree_unlock(old); 1596 free_extent_buffer(old); 1597 btrfs_abort_transaction(trans, ret); 1598 goto fail; 1599 } 1600 1601 btrfs_set_lock_blocking_write(old); 1602 1603 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1604 /* clean up in any case */ 1605 btrfs_tree_unlock(old); 1606 free_extent_buffer(old); 1607 if (ret) { 1608 btrfs_abort_transaction(trans, ret); 1609 goto fail; 1610 } 1611 /* see comments in should_cow_block() */ 1612 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1613 smp_wmb(); 1614 1615 btrfs_set_root_node(new_root_item, tmp); 1616 /* record when the snapshot was created in key.offset */ 1617 key.offset = trans->transid; 1618 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1619 btrfs_tree_unlock(tmp); 1620 free_extent_buffer(tmp); 1621 if (ret) { 1622 btrfs_abort_transaction(trans, ret); 1623 goto fail; 1624 } 1625 1626 /* 1627 * insert root back/forward references 1628 */ 1629 ret = btrfs_add_root_ref(trans, objectid, 1630 parent_root->root_key.objectid, 1631 btrfs_ino(BTRFS_I(parent_inode)), index, 1632 dentry->d_name.name, dentry->d_name.len); 1633 if (ret) { 1634 btrfs_abort_transaction(trans, ret); 1635 goto fail; 1636 } 1637 1638 key.offset = (u64)-1; 1639 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev); 1640 if (IS_ERR(pending->snap)) { 1641 ret = PTR_ERR(pending->snap); 1642 pending->snap = NULL; 1643 btrfs_abort_transaction(trans, ret); 1644 goto fail; 1645 } 1646 1647 ret = btrfs_reloc_post_snapshot(trans, pending); 1648 if (ret) { 1649 btrfs_abort_transaction(trans, ret); 1650 goto fail; 1651 } 1652 1653 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1654 if (ret) { 1655 btrfs_abort_transaction(trans, ret); 1656 goto fail; 1657 } 1658 1659 /* 1660 * Do special qgroup accounting for snapshot, as we do some qgroup 1661 * snapshot hack to do fast snapshot. 1662 * To co-operate with that hack, we do hack again. 1663 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1664 */ 1665 ret = qgroup_account_snapshot(trans, root, parent_root, 1666 pending->inherit, objectid); 1667 if (ret < 0) 1668 goto fail; 1669 1670 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1671 dentry->d_name.len, BTRFS_I(parent_inode), 1672 &key, BTRFS_FT_DIR, index); 1673 /* We have check then name at the beginning, so it is impossible. */ 1674 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1675 if (ret) { 1676 btrfs_abort_transaction(trans, ret); 1677 goto fail; 1678 } 1679 1680 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1681 dentry->d_name.len * 2); 1682 parent_inode->i_mtime = parent_inode->i_ctime = 1683 current_time(parent_inode); 1684 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1685 if (ret) { 1686 btrfs_abort_transaction(trans, ret); 1687 goto fail; 1688 } 1689 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1690 BTRFS_UUID_KEY_SUBVOL, 1691 objectid); 1692 if (ret) { 1693 btrfs_abort_transaction(trans, ret); 1694 goto fail; 1695 } 1696 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1697 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1698 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1699 objectid); 1700 if (ret && ret != -EEXIST) { 1701 btrfs_abort_transaction(trans, ret); 1702 goto fail; 1703 } 1704 } 1705 1706 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1707 if (ret) { 1708 btrfs_abort_transaction(trans, ret); 1709 goto fail; 1710 } 1711 1712 fail: 1713 pending->error = ret; 1714 dir_item_existed: 1715 trans->block_rsv = rsv; 1716 trans->bytes_reserved = 0; 1717 clear_skip_qgroup: 1718 btrfs_clear_skip_qgroup(trans); 1719 no_free_objectid: 1720 kfree(new_root_item); 1721 pending->root_item = NULL; 1722 btrfs_free_path(path); 1723 pending->path = NULL; 1724 1725 return ret; 1726 } 1727 1728 /* 1729 * create all the snapshots we've scheduled for creation 1730 */ 1731 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1732 { 1733 struct btrfs_pending_snapshot *pending, *next; 1734 struct list_head *head = &trans->transaction->pending_snapshots; 1735 int ret = 0; 1736 1737 list_for_each_entry_safe(pending, next, head, list) { 1738 list_del(&pending->list); 1739 ret = create_pending_snapshot(trans, pending); 1740 if (ret) 1741 break; 1742 } 1743 return ret; 1744 } 1745 1746 static void update_super_roots(struct btrfs_fs_info *fs_info) 1747 { 1748 struct btrfs_root_item *root_item; 1749 struct btrfs_super_block *super; 1750 1751 super = fs_info->super_copy; 1752 1753 root_item = &fs_info->chunk_root->root_item; 1754 super->chunk_root = root_item->bytenr; 1755 super->chunk_root_generation = root_item->generation; 1756 super->chunk_root_level = root_item->level; 1757 1758 root_item = &fs_info->tree_root->root_item; 1759 super->root = root_item->bytenr; 1760 super->generation = root_item->generation; 1761 super->root_level = root_item->level; 1762 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1763 super->cache_generation = root_item->generation; 1764 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1765 super->uuid_tree_generation = root_item->generation; 1766 } 1767 1768 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1769 { 1770 struct btrfs_transaction *trans; 1771 int ret = 0; 1772 1773 spin_lock(&info->trans_lock); 1774 trans = info->running_transaction; 1775 if (trans) 1776 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1777 spin_unlock(&info->trans_lock); 1778 return ret; 1779 } 1780 1781 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1782 { 1783 struct btrfs_transaction *trans; 1784 int ret = 0; 1785 1786 spin_lock(&info->trans_lock); 1787 trans = info->running_transaction; 1788 if (trans) 1789 ret = is_transaction_blocked(trans); 1790 spin_unlock(&info->trans_lock); 1791 return ret; 1792 } 1793 1794 /* 1795 * wait for the current transaction commit to start and block subsequent 1796 * transaction joins 1797 */ 1798 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, 1799 struct btrfs_transaction *trans) 1800 { 1801 wait_event(fs_info->transaction_blocked_wait, 1802 trans->state >= TRANS_STATE_COMMIT_START || 1803 TRANS_ABORTED(trans)); 1804 } 1805 1806 /* 1807 * wait for the current transaction to start and then become unblocked. 1808 * caller holds ref. 1809 */ 1810 static void wait_current_trans_commit_start_and_unblock( 1811 struct btrfs_fs_info *fs_info, 1812 struct btrfs_transaction *trans) 1813 { 1814 wait_event(fs_info->transaction_wait, 1815 trans->state >= TRANS_STATE_UNBLOCKED || 1816 TRANS_ABORTED(trans)); 1817 } 1818 1819 /* 1820 * commit transactions asynchronously. once btrfs_commit_transaction_async 1821 * returns, any subsequent transaction will not be allowed to join. 1822 */ 1823 struct btrfs_async_commit { 1824 struct btrfs_trans_handle *newtrans; 1825 struct work_struct work; 1826 }; 1827 1828 static void do_async_commit(struct work_struct *work) 1829 { 1830 struct btrfs_async_commit *ac = 1831 container_of(work, struct btrfs_async_commit, work); 1832 1833 /* 1834 * We've got freeze protection passed with the transaction. 1835 * Tell lockdep about it. 1836 */ 1837 if (ac->newtrans->type & __TRANS_FREEZABLE) 1838 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1839 1840 current->journal_info = ac->newtrans; 1841 1842 btrfs_commit_transaction(ac->newtrans); 1843 kfree(ac); 1844 } 1845 1846 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1847 int wait_for_unblock) 1848 { 1849 struct btrfs_fs_info *fs_info = trans->fs_info; 1850 struct btrfs_async_commit *ac; 1851 struct btrfs_transaction *cur_trans; 1852 1853 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1854 if (!ac) 1855 return -ENOMEM; 1856 1857 INIT_WORK(&ac->work, do_async_commit); 1858 ac->newtrans = btrfs_join_transaction(trans->root); 1859 if (IS_ERR(ac->newtrans)) { 1860 int err = PTR_ERR(ac->newtrans); 1861 kfree(ac); 1862 return err; 1863 } 1864 1865 /* take transaction reference */ 1866 cur_trans = trans->transaction; 1867 refcount_inc(&cur_trans->use_count); 1868 1869 btrfs_end_transaction(trans); 1870 1871 /* 1872 * Tell lockdep we've released the freeze rwsem, since the 1873 * async commit thread will be the one to unlock it. 1874 */ 1875 if (ac->newtrans->type & __TRANS_FREEZABLE) 1876 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1877 1878 schedule_work(&ac->work); 1879 1880 /* wait for transaction to start and unblock */ 1881 if (wait_for_unblock) 1882 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); 1883 else 1884 wait_current_trans_commit_start(fs_info, cur_trans); 1885 1886 if (current->journal_info == trans) 1887 current->journal_info = NULL; 1888 1889 btrfs_put_transaction(cur_trans); 1890 return 0; 1891 } 1892 1893 1894 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1895 { 1896 struct btrfs_fs_info *fs_info = trans->fs_info; 1897 struct btrfs_transaction *cur_trans = trans->transaction; 1898 1899 WARN_ON(refcount_read(&trans->use_count) > 1); 1900 1901 btrfs_abort_transaction(trans, err); 1902 1903 spin_lock(&fs_info->trans_lock); 1904 1905 /* 1906 * If the transaction is removed from the list, it means this 1907 * transaction has been committed successfully, so it is impossible 1908 * to call the cleanup function. 1909 */ 1910 BUG_ON(list_empty(&cur_trans->list)); 1911 1912 list_del_init(&cur_trans->list); 1913 if (cur_trans == fs_info->running_transaction) { 1914 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1915 spin_unlock(&fs_info->trans_lock); 1916 wait_event(cur_trans->writer_wait, 1917 atomic_read(&cur_trans->num_writers) == 1); 1918 1919 spin_lock(&fs_info->trans_lock); 1920 } 1921 spin_unlock(&fs_info->trans_lock); 1922 1923 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1924 1925 spin_lock(&fs_info->trans_lock); 1926 if (cur_trans == fs_info->running_transaction) 1927 fs_info->running_transaction = NULL; 1928 spin_unlock(&fs_info->trans_lock); 1929 1930 if (trans->type & __TRANS_FREEZABLE) 1931 sb_end_intwrite(fs_info->sb); 1932 btrfs_put_transaction(cur_trans); 1933 btrfs_put_transaction(cur_trans); 1934 1935 trace_btrfs_transaction_commit(trans->root); 1936 1937 if (current->journal_info == trans) 1938 current->journal_info = NULL; 1939 btrfs_scrub_cancel(fs_info); 1940 1941 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1942 } 1943 1944 /* 1945 * Release reserved delayed ref space of all pending block groups of the 1946 * transaction and remove them from the list 1947 */ 1948 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 1949 { 1950 struct btrfs_fs_info *fs_info = trans->fs_info; 1951 struct btrfs_block_group *block_group, *tmp; 1952 1953 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 1954 btrfs_delayed_refs_rsv_release(fs_info, 1); 1955 list_del_init(&block_group->bg_list); 1956 } 1957 } 1958 1959 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans) 1960 { 1961 struct btrfs_fs_info *fs_info = trans->fs_info; 1962 1963 /* 1964 * We use writeback_inodes_sb here because if we used 1965 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 1966 * Currently are holding the fs freeze lock, if we do an async flush 1967 * we'll do btrfs_join_transaction() and deadlock because we need to 1968 * wait for the fs freeze lock. Using the direct flushing we benefit 1969 * from already being in a transaction and our join_transaction doesn't 1970 * have to re-take the fs freeze lock. 1971 */ 1972 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) { 1973 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 1974 } else { 1975 struct btrfs_pending_snapshot *pending; 1976 struct list_head *head = &trans->transaction->pending_snapshots; 1977 1978 /* 1979 * Flush dellaloc for any root that is going to be snapshotted. 1980 * This is done to avoid a corrupted version of files, in the 1981 * snapshots, that had both buffered and direct IO writes (even 1982 * if they were done sequentially) due to an unordered update of 1983 * the inode's size on disk. 1984 */ 1985 list_for_each_entry(pending, head, list) { 1986 int ret; 1987 1988 ret = btrfs_start_delalloc_snapshot(pending->root); 1989 if (ret) 1990 return ret; 1991 } 1992 } 1993 return 0; 1994 } 1995 1996 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans) 1997 { 1998 struct btrfs_fs_info *fs_info = trans->fs_info; 1999 2000 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) { 2001 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 2002 } else { 2003 struct btrfs_pending_snapshot *pending; 2004 struct list_head *head = &trans->transaction->pending_snapshots; 2005 2006 /* 2007 * Wait for any dellaloc that we started previously for the roots 2008 * that are going to be snapshotted. This is to avoid a corrupted 2009 * version of files in the snapshots that had both buffered and 2010 * direct IO writes (even if they were done sequentially). 2011 */ 2012 list_for_each_entry(pending, head, list) 2013 btrfs_wait_ordered_extents(pending->root, 2014 U64_MAX, 0, U64_MAX); 2015 } 2016 } 2017 2018 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2019 { 2020 struct btrfs_fs_info *fs_info = trans->fs_info; 2021 struct btrfs_transaction *cur_trans = trans->transaction; 2022 struct btrfs_transaction *prev_trans = NULL; 2023 int ret; 2024 2025 ASSERT(refcount_read(&trans->use_count) == 1); 2026 2027 /* 2028 * Some places just start a transaction to commit it. We need to make 2029 * sure that if this commit fails that the abort code actually marks the 2030 * transaction as failed, so set trans->dirty to make the abort code do 2031 * the right thing. 2032 */ 2033 trans->dirty = true; 2034 2035 /* Stop the commit early if ->aborted is set */ 2036 if (TRANS_ABORTED(cur_trans)) { 2037 ret = cur_trans->aborted; 2038 btrfs_end_transaction(trans); 2039 return ret; 2040 } 2041 2042 btrfs_trans_release_metadata(trans); 2043 trans->block_rsv = NULL; 2044 2045 /* make a pass through all the delayed refs we have so far 2046 * any runnings procs may add more while we are here 2047 */ 2048 ret = btrfs_run_delayed_refs(trans, 0); 2049 if (ret) { 2050 btrfs_end_transaction(trans); 2051 return ret; 2052 } 2053 2054 cur_trans = trans->transaction; 2055 2056 /* 2057 * set the flushing flag so procs in this transaction have to 2058 * start sending their work down. 2059 */ 2060 cur_trans->delayed_refs.flushing = 1; 2061 smp_wmb(); 2062 2063 btrfs_create_pending_block_groups(trans); 2064 2065 ret = btrfs_run_delayed_refs(trans, 0); 2066 if (ret) { 2067 btrfs_end_transaction(trans); 2068 return ret; 2069 } 2070 2071 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2072 int run_it = 0; 2073 2074 /* this mutex is also taken before trying to set 2075 * block groups readonly. We need to make sure 2076 * that nobody has set a block group readonly 2077 * after a extents from that block group have been 2078 * allocated for cache files. btrfs_set_block_group_ro 2079 * will wait for the transaction to commit if it 2080 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2081 * 2082 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2083 * only one process starts all the block group IO. It wouldn't 2084 * hurt to have more than one go through, but there's no 2085 * real advantage to it either. 2086 */ 2087 mutex_lock(&fs_info->ro_block_group_mutex); 2088 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2089 &cur_trans->flags)) 2090 run_it = 1; 2091 mutex_unlock(&fs_info->ro_block_group_mutex); 2092 2093 if (run_it) { 2094 ret = btrfs_start_dirty_block_groups(trans); 2095 if (ret) { 2096 btrfs_end_transaction(trans); 2097 return ret; 2098 } 2099 } 2100 } 2101 2102 spin_lock(&fs_info->trans_lock); 2103 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2104 spin_unlock(&fs_info->trans_lock); 2105 refcount_inc(&cur_trans->use_count); 2106 ret = btrfs_end_transaction(trans); 2107 2108 wait_for_commit(cur_trans); 2109 2110 if (TRANS_ABORTED(cur_trans)) 2111 ret = cur_trans->aborted; 2112 2113 btrfs_put_transaction(cur_trans); 2114 2115 return ret; 2116 } 2117 2118 cur_trans->state = TRANS_STATE_COMMIT_START; 2119 wake_up(&fs_info->transaction_blocked_wait); 2120 2121 if (cur_trans->list.prev != &fs_info->trans_list) { 2122 prev_trans = list_entry(cur_trans->list.prev, 2123 struct btrfs_transaction, list); 2124 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2125 refcount_inc(&prev_trans->use_count); 2126 spin_unlock(&fs_info->trans_lock); 2127 2128 wait_for_commit(prev_trans); 2129 ret = READ_ONCE(prev_trans->aborted); 2130 2131 btrfs_put_transaction(prev_trans); 2132 if (ret) 2133 goto cleanup_transaction; 2134 } else { 2135 spin_unlock(&fs_info->trans_lock); 2136 } 2137 } else { 2138 spin_unlock(&fs_info->trans_lock); 2139 /* 2140 * The previous transaction was aborted and was already removed 2141 * from the list of transactions at fs_info->trans_list. So we 2142 * abort to prevent writing a new superblock that reflects a 2143 * corrupt state (pointing to trees with unwritten nodes/leafs). 2144 */ 2145 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) { 2146 ret = -EROFS; 2147 goto cleanup_transaction; 2148 } 2149 } 2150 2151 extwriter_counter_dec(cur_trans, trans->type); 2152 2153 ret = btrfs_start_delalloc_flush(trans); 2154 if (ret) 2155 goto cleanup_transaction; 2156 2157 ret = btrfs_run_delayed_items(trans); 2158 if (ret) 2159 goto cleanup_transaction; 2160 2161 wait_event(cur_trans->writer_wait, 2162 extwriter_counter_read(cur_trans) == 0); 2163 2164 /* some pending stuffs might be added after the previous flush. */ 2165 ret = btrfs_run_delayed_items(trans); 2166 if (ret) 2167 goto cleanup_transaction; 2168 2169 btrfs_wait_delalloc_flush(trans); 2170 2171 /* 2172 * Wait for all ordered extents started by a fast fsync that joined this 2173 * transaction. Otherwise if this transaction commits before the ordered 2174 * extents complete we lose logged data after a power failure. 2175 */ 2176 wait_event(cur_trans->pending_wait, 2177 atomic_read(&cur_trans->pending_ordered) == 0); 2178 2179 btrfs_scrub_pause(fs_info); 2180 /* 2181 * Ok now we need to make sure to block out any other joins while we 2182 * commit the transaction. We could have started a join before setting 2183 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2184 */ 2185 spin_lock(&fs_info->trans_lock); 2186 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2187 spin_unlock(&fs_info->trans_lock); 2188 wait_event(cur_trans->writer_wait, 2189 atomic_read(&cur_trans->num_writers) == 1); 2190 2191 if (TRANS_ABORTED(cur_trans)) { 2192 ret = cur_trans->aborted; 2193 goto scrub_continue; 2194 } 2195 /* 2196 * the reloc mutex makes sure that we stop 2197 * the balancing code from coming in and moving 2198 * extents around in the middle of the commit 2199 */ 2200 mutex_lock(&fs_info->reloc_mutex); 2201 2202 /* 2203 * We needn't worry about the delayed items because we will 2204 * deal with them in create_pending_snapshot(), which is the 2205 * core function of the snapshot creation. 2206 */ 2207 ret = create_pending_snapshots(trans); 2208 if (ret) 2209 goto unlock_reloc; 2210 2211 /* 2212 * We insert the dir indexes of the snapshots and update the inode 2213 * of the snapshots' parents after the snapshot creation, so there 2214 * are some delayed items which are not dealt with. Now deal with 2215 * them. 2216 * 2217 * We needn't worry that this operation will corrupt the snapshots, 2218 * because all the tree which are snapshoted will be forced to COW 2219 * the nodes and leaves. 2220 */ 2221 ret = btrfs_run_delayed_items(trans); 2222 if (ret) 2223 goto unlock_reloc; 2224 2225 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2226 if (ret) 2227 goto unlock_reloc; 2228 2229 /* 2230 * make sure none of the code above managed to slip in a 2231 * delayed item 2232 */ 2233 btrfs_assert_delayed_root_empty(fs_info); 2234 2235 WARN_ON(cur_trans != trans->transaction); 2236 2237 /* btrfs_commit_tree_roots is responsible for getting the 2238 * various roots consistent with each other. Every pointer 2239 * in the tree of tree roots has to point to the most up to date 2240 * root for every subvolume and other tree. So, we have to keep 2241 * the tree logging code from jumping in and changing any 2242 * of the trees. 2243 * 2244 * At this point in the commit, there can't be any tree-log 2245 * writers, but a little lower down we drop the trans mutex 2246 * and let new people in. By holding the tree_log_mutex 2247 * from now until after the super is written, we avoid races 2248 * with the tree-log code. 2249 */ 2250 mutex_lock(&fs_info->tree_log_mutex); 2251 2252 ret = commit_fs_roots(trans); 2253 if (ret) 2254 goto unlock_tree_log; 2255 2256 /* 2257 * Since the transaction is done, we can apply the pending changes 2258 * before the next transaction. 2259 */ 2260 btrfs_apply_pending_changes(fs_info); 2261 2262 /* commit_fs_roots gets rid of all the tree log roots, it is now 2263 * safe to free the root of tree log roots 2264 */ 2265 btrfs_free_log_root_tree(trans, fs_info); 2266 2267 /* 2268 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates 2269 * new delayed refs. Must handle them or qgroup can be wrong. 2270 */ 2271 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2272 if (ret) 2273 goto unlock_tree_log; 2274 2275 /* 2276 * Since fs roots are all committed, we can get a quite accurate 2277 * new_roots. So let's do quota accounting. 2278 */ 2279 ret = btrfs_qgroup_account_extents(trans); 2280 if (ret < 0) 2281 goto unlock_tree_log; 2282 2283 ret = commit_cowonly_roots(trans); 2284 if (ret) 2285 goto unlock_tree_log; 2286 2287 /* 2288 * The tasks which save the space cache and inode cache may also 2289 * update ->aborted, check it. 2290 */ 2291 if (TRANS_ABORTED(cur_trans)) { 2292 ret = cur_trans->aborted; 2293 goto unlock_tree_log; 2294 } 2295 2296 btrfs_prepare_extent_commit(fs_info); 2297 2298 cur_trans = fs_info->running_transaction; 2299 2300 btrfs_set_root_node(&fs_info->tree_root->root_item, 2301 fs_info->tree_root->node); 2302 list_add_tail(&fs_info->tree_root->dirty_list, 2303 &cur_trans->switch_commits); 2304 2305 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2306 fs_info->chunk_root->node); 2307 list_add_tail(&fs_info->chunk_root->dirty_list, 2308 &cur_trans->switch_commits); 2309 2310 switch_commit_roots(trans); 2311 2312 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2313 ASSERT(list_empty(&cur_trans->io_bgs)); 2314 update_super_roots(fs_info); 2315 2316 btrfs_set_super_log_root(fs_info->super_copy, 0); 2317 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2318 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2319 sizeof(*fs_info->super_copy)); 2320 2321 btrfs_commit_device_sizes(cur_trans); 2322 2323 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2324 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2325 2326 btrfs_trans_release_chunk_metadata(trans); 2327 2328 spin_lock(&fs_info->trans_lock); 2329 cur_trans->state = TRANS_STATE_UNBLOCKED; 2330 fs_info->running_transaction = NULL; 2331 spin_unlock(&fs_info->trans_lock); 2332 mutex_unlock(&fs_info->reloc_mutex); 2333 2334 wake_up(&fs_info->transaction_wait); 2335 2336 ret = btrfs_write_and_wait_transaction(trans); 2337 if (ret) { 2338 btrfs_handle_fs_error(fs_info, ret, 2339 "Error while writing out transaction"); 2340 /* 2341 * reloc_mutex has been unlocked, tree_log_mutex is still held 2342 * but we can't jump to unlock_tree_log causing double unlock 2343 */ 2344 mutex_unlock(&fs_info->tree_log_mutex); 2345 goto scrub_continue; 2346 } 2347 2348 ret = write_all_supers(fs_info, 0); 2349 /* 2350 * the super is written, we can safely allow the tree-loggers 2351 * to go about their business 2352 */ 2353 mutex_unlock(&fs_info->tree_log_mutex); 2354 if (ret) 2355 goto scrub_continue; 2356 2357 btrfs_finish_extent_commit(trans); 2358 2359 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2360 btrfs_clear_space_info_full(fs_info); 2361 2362 fs_info->last_trans_committed = cur_trans->transid; 2363 /* 2364 * We needn't acquire the lock here because there is no other task 2365 * which can change it. 2366 */ 2367 cur_trans->state = TRANS_STATE_COMPLETED; 2368 wake_up(&cur_trans->commit_wait); 2369 2370 spin_lock(&fs_info->trans_lock); 2371 list_del_init(&cur_trans->list); 2372 spin_unlock(&fs_info->trans_lock); 2373 2374 btrfs_put_transaction(cur_trans); 2375 btrfs_put_transaction(cur_trans); 2376 2377 if (trans->type & __TRANS_FREEZABLE) 2378 sb_end_intwrite(fs_info->sb); 2379 2380 trace_btrfs_transaction_commit(trans->root); 2381 2382 btrfs_scrub_continue(fs_info); 2383 2384 if (current->journal_info == trans) 2385 current->journal_info = NULL; 2386 2387 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2388 2389 return ret; 2390 2391 unlock_tree_log: 2392 mutex_unlock(&fs_info->tree_log_mutex); 2393 unlock_reloc: 2394 mutex_unlock(&fs_info->reloc_mutex); 2395 scrub_continue: 2396 btrfs_scrub_continue(fs_info); 2397 cleanup_transaction: 2398 btrfs_trans_release_metadata(trans); 2399 btrfs_cleanup_pending_block_groups(trans); 2400 btrfs_trans_release_chunk_metadata(trans); 2401 trans->block_rsv = NULL; 2402 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2403 if (current->journal_info == trans) 2404 current->journal_info = NULL; 2405 cleanup_transaction(trans, ret); 2406 2407 return ret; 2408 } 2409 2410 /* 2411 * return < 0 if error 2412 * 0 if there are no more dead_roots at the time of call 2413 * 1 there are more to be processed, call me again 2414 * 2415 * The return value indicates there are certainly more snapshots to delete, but 2416 * if there comes a new one during processing, it may return 0. We don't mind, 2417 * because btrfs_commit_super will poke cleaner thread and it will process it a 2418 * few seconds later. 2419 */ 2420 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2421 { 2422 int ret; 2423 struct btrfs_fs_info *fs_info = root->fs_info; 2424 2425 spin_lock(&fs_info->trans_lock); 2426 if (list_empty(&fs_info->dead_roots)) { 2427 spin_unlock(&fs_info->trans_lock); 2428 return 0; 2429 } 2430 root = list_first_entry(&fs_info->dead_roots, 2431 struct btrfs_root, root_list); 2432 list_del_init(&root->root_list); 2433 spin_unlock(&fs_info->trans_lock); 2434 2435 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2436 2437 btrfs_kill_all_delayed_nodes(root); 2438 if (root->ino_cache_inode) { 2439 iput(root->ino_cache_inode); 2440 root->ino_cache_inode = NULL; 2441 } 2442 2443 if (btrfs_header_backref_rev(root->node) < 2444 BTRFS_MIXED_BACKREF_REV) 2445 ret = btrfs_drop_snapshot(root, 0, 0); 2446 else 2447 ret = btrfs_drop_snapshot(root, 1, 0); 2448 2449 btrfs_put_root(root); 2450 return (ret < 0) ? 0 : 1; 2451 } 2452 2453 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2454 { 2455 unsigned long prev; 2456 unsigned long bit; 2457 2458 prev = xchg(&fs_info->pending_changes, 0); 2459 if (!prev) 2460 return; 2461 2462 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2463 if (prev & bit) 2464 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2465 prev &= ~bit; 2466 2467 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2468 if (prev & bit) 2469 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2470 prev &= ~bit; 2471 2472 bit = 1 << BTRFS_PENDING_COMMIT; 2473 if (prev & bit) 2474 btrfs_debug(fs_info, "pending commit done"); 2475 prev &= ~bit; 2476 2477 if (prev) 2478 btrfs_warn(fs_info, 2479 "unknown pending changes left 0x%lx, ignoring", prev); 2480 } 2481