1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "misc.h" 14 #include "ctree.h" 15 #include "disk-io.h" 16 #include "transaction.h" 17 #include "locking.h" 18 #include "tree-log.h" 19 #include "inode-map.h" 20 #include "volumes.h" 21 #include "dev-replace.h" 22 #include "qgroup.h" 23 #include "block-group.h" 24 25 #define BTRFS_ROOT_TRANS_TAG 0 26 27 /* 28 * Transaction states and transitions 29 * 30 * No running transaction (fs tree blocks are not modified) 31 * | 32 * | To next stage: 33 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 34 * V 35 * Transaction N [[TRANS_STATE_RUNNING]] 36 * | 37 * | New trans handles can be attached to transaction N by calling all 38 * | start_transaction() variants. 39 * | 40 * | To next stage: 41 * | Call btrfs_commit_transaction() on any trans handle attached to 42 * | transaction N 43 * V 44 * Transaction N [[TRANS_STATE_COMMIT_START]] 45 * | 46 * | Will wait for previous running transaction to completely finish if there 47 * | is one 48 * | 49 * | Then one of the following happes: 50 * | - Wait for all other trans handle holders to release. 51 * | The btrfs_commit_transaction() caller will do the commit work. 52 * | - Wait for current transaction to be committed by others. 53 * | Other btrfs_commit_transaction() caller will do the commit work. 54 * | 55 * | At this stage, only btrfs_join_transaction*() variants can attach 56 * | to this running transaction. 57 * | All other variants will wait for current one to finish and attach to 58 * | transaction N+1. 59 * | 60 * | To next stage: 61 * | Caller is chosen to commit transaction N, and all other trans handle 62 * | haven been released. 63 * V 64 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 65 * | 66 * | The heavy lifting transaction work is started. 67 * | From running delayed refs (modifying extent tree) to creating pending 68 * | snapshots, running qgroups. 69 * | In short, modify supporting trees to reflect modifications of subvolume 70 * | trees. 71 * | 72 * | At this stage, all start_transaction() calls will wait for this 73 * | transaction to finish and attach to transaction N+1. 74 * | 75 * | To next stage: 76 * | Until all supporting trees are updated. 77 * V 78 * Transaction N [[TRANS_STATE_UNBLOCKED]] 79 * | Transaction N+1 80 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 81 * | need to write them back to disk and update | 82 * | super blocks. | 83 * | | 84 * | At this stage, new transaction is allowed to | 85 * | start. | 86 * | All new start_transaction() calls will be | 87 * | attached to transid N+1. | 88 * | | 89 * | To next stage: | 90 * | Until all tree blocks are super blocks are | 91 * | written to block devices | 92 * V | 93 * Transaction N [[TRANS_STATE_COMPLETED]] V 94 * All tree blocks and super blocks are written. Transaction N+1 95 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 96 * data structures will be cleaned up. | Life goes on 97 */ 98 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 99 [TRANS_STATE_RUNNING] = 0U, 100 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 101 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 102 __TRANS_ATTACH | 103 __TRANS_JOIN | 104 __TRANS_JOIN_NOSTART), 105 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 106 __TRANS_ATTACH | 107 __TRANS_JOIN | 108 __TRANS_JOIN_NOLOCK | 109 __TRANS_JOIN_NOSTART), 110 [TRANS_STATE_COMPLETED] = (__TRANS_START | 111 __TRANS_ATTACH | 112 __TRANS_JOIN | 113 __TRANS_JOIN_NOLOCK | 114 __TRANS_JOIN_NOSTART), 115 }; 116 117 void btrfs_put_transaction(struct btrfs_transaction *transaction) 118 { 119 WARN_ON(refcount_read(&transaction->use_count) == 0); 120 if (refcount_dec_and_test(&transaction->use_count)) { 121 BUG_ON(!list_empty(&transaction->list)); 122 WARN_ON(!RB_EMPTY_ROOT( 123 &transaction->delayed_refs.href_root.rb_root)); 124 if (transaction->delayed_refs.pending_csums) 125 btrfs_err(transaction->fs_info, 126 "pending csums is %llu", 127 transaction->delayed_refs.pending_csums); 128 /* 129 * If any block groups are found in ->deleted_bgs then it's 130 * because the transaction was aborted and a commit did not 131 * happen (things failed before writing the new superblock 132 * and calling btrfs_finish_extent_commit()), so we can not 133 * discard the physical locations of the block groups. 134 */ 135 while (!list_empty(&transaction->deleted_bgs)) { 136 struct btrfs_block_group *cache; 137 138 cache = list_first_entry(&transaction->deleted_bgs, 139 struct btrfs_block_group, 140 bg_list); 141 list_del_init(&cache->bg_list); 142 btrfs_put_block_group_trimming(cache); 143 btrfs_put_block_group(cache); 144 } 145 WARN_ON(!list_empty(&transaction->dev_update_list)); 146 kfree(transaction); 147 } 148 } 149 150 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 151 { 152 struct btrfs_transaction *cur_trans = trans->transaction; 153 struct btrfs_fs_info *fs_info = trans->fs_info; 154 struct btrfs_root *root, *tmp; 155 156 down_write(&fs_info->commit_root_sem); 157 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 158 dirty_list) { 159 list_del_init(&root->dirty_list); 160 free_extent_buffer(root->commit_root); 161 root->commit_root = btrfs_root_node(root); 162 if (is_fstree(root->root_key.objectid)) 163 btrfs_unpin_free_ino(root); 164 extent_io_tree_release(&root->dirty_log_pages); 165 btrfs_qgroup_clean_swapped_blocks(root); 166 } 167 168 /* We can free old roots now. */ 169 spin_lock(&cur_trans->dropped_roots_lock); 170 while (!list_empty(&cur_trans->dropped_roots)) { 171 root = list_first_entry(&cur_trans->dropped_roots, 172 struct btrfs_root, root_list); 173 list_del_init(&root->root_list); 174 spin_unlock(&cur_trans->dropped_roots_lock); 175 btrfs_free_log(trans, root); 176 btrfs_drop_and_free_fs_root(fs_info, root); 177 spin_lock(&cur_trans->dropped_roots_lock); 178 } 179 spin_unlock(&cur_trans->dropped_roots_lock); 180 up_write(&fs_info->commit_root_sem); 181 } 182 183 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 184 unsigned int type) 185 { 186 if (type & TRANS_EXTWRITERS) 187 atomic_inc(&trans->num_extwriters); 188 } 189 190 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 191 unsigned int type) 192 { 193 if (type & TRANS_EXTWRITERS) 194 atomic_dec(&trans->num_extwriters); 195 } 196 197 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 198 unsigned int type) 199 { 200 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 201 } 202 203 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 204 { 205 return atomic_read(&trans->num_extwriters); 206 } 207 208 /* 209 * To be called after all the new block groups attached to the transaction 210 * handle have been created (btrfs_create_pending_block_groups()). 211 */ 212 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 213 { 214 struct btrfs_fs_info *fs_info = trans->fs_info; 215 216 if (!trans->chunk_bytes_reserved) 217 return; 218 219 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 220 221 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 222 trans->chunk_bytes_reserved); 223 trans->chunk_bytes_reserved = 0; 224 } 225 226 /* 227 * either allocate a new transaction or hop into the existing one 228 */ 229 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 230 unsigned int type) 231 { 232 struct btrfs_transaction *cur_trans; 233 234 spin_lock(&fs_info->trans_lock); 235 loop: 236 /* The file system has been taken offline. No new transactions. */ 237 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 238 spin_unlock(&fs_info->trans_lock); 239 return -EROFS; 240 } 241 242 cur_trans = fs_info->running_transaction; 243 if (cur_trans) { 244 if (cur_trans->aborted) { 245 spin_unlock(&fs_info->trans_lock); 246 return cur_trans->aborted; 247 } 248 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 249 spin_unlock(&fs_info->trans_lock); 250 return -EBUSY; 251 } 252 refcount_inc(&cur_trans->use_count); 253 atomic_inc(&cur_trans->num_writers); 254 extwriter_counter_inc(cur_trans, type); 255 spin_unlock(&fs_info->trans_lock); 256 return 0; 257 } 258 spin_unlock(&fs_info->trans_lock); 259 260 /* 261 * If we are ATTACH, we just want to catch the current transaction, 262 * and commit it. If there is no transaction, just return ENOENT. 263 */ 264 if (type == TRANS_ATTACH) 265 return -ENOENT; 266 267 /* 268 * JOIN_NOLOCK only happens during the transaction commit, so 269 * it is impossible that ->running_transaction is NULL 270 */ 271 BUG_ON(type == TRANS_JOIN_NOLOCK); 272 273 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 274 if (!cur_trans) 275 return -ENOMEM; 276 277 spin_lock(&fs_info->trans_lock); 278 if (fs_info->running_transaction) { 279 /* 280 * someone started a transaction after we unlocked. Make sure 281 * to redo the checks above 282 */ 283 kfree(cur_trans); 284 goto loop; 285 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 286 spin_unlock(&fs_info->trans_lock); 287 kfree(cur_trans); 288 return -EROFS; 289 } 290 291 cur_trans->fs_info = fs_info; 292 atomic_set(&cur_trans->num_writers, 1); 293 extwriter_counter_init(cur_trans, type); 294 init_waitqueue_head(&cur_trans->writer_wait); 295 init_waitqueue_head(&cur_trans->commit_wait); 296 cur_trans->state = TRANS_STATE_RUNNING; 297 /* 298 * One for this trans handle, one so it will live on until we 299 * commit the transaction. 300 */ 301 refcount_set(&cur_trans->use_count, 2); 302 cur_trans->flags = 0; 303 cur_trans->start_time = ktime_get_seconds(); 304 305 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 306 307 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 308 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 309 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 310 311 /* 312 * although the tree mod log is per file system and not per transaction, 313 * the log must never go across transaction boundaries. 314 */ 315 smp_mb(); 316 if (!list_empty(&fs_info->tree_mod_seq_list)) 317 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 318 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 319 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 320 atomic64_set(&fs_info->tree_mod_seq, 0); 321 322 spin_lock_init(&cur_trans->delayed_refs.lock); 323 324 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 325 INIT_LIST_HEAD(&cur_trans->dev_update_list); 326 INIT_LIST_HEAD(&cur_trans->switch_commits); 327 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 328 INIT_LIST_HEAD(&cur_trans->io_bgs); 329 INIT_LIST_HEAD(&cur_trans->dropped_roots); 330 mutex_init(&cur_trans->cache_write_mutex); 331 spin_lock_init(&cur_trans->dirty_bgs_lock); 332 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 333 spin_lock_init(&cur_trans->dropped_roots_lock); 334 list_add_tail(&cur_trans->list, &fs_info->trans_list); 335 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 336 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode); 337 fs_info->generation++; 338 cur_trans->transid = fs_info->generation; 339 fs_info->running_transaction = cur_trans; 340 cur_trans->aborted = 0; 341 spin_unlock(&fs_info->trans_lock); 342 343 return 0; 344 } 345 346 /* 347 * this does all the record keeping required to make sure that a reference 348 * counted root is properly recorded in a given transaction. This is required 349 * to make sure the old root from before we joined the transaction is deleted 350 * when the transaction commits 351 */ 352 static int record_root_in_trans(struct btrfs_trans_handle *trans, 353 struct btrfs_root *root, 354 int force) 355 { 356 struct btrfs_fs_info *fs_info = root->fs_info; 357 358 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 359 root->last_trans < trans->transid) || force) { 360 WARN_ON(root == fs_info->extent_root); 361 WARN_ON(!force && root->commit_root != root->node); 362 363 /* 364 * see below for IN_TRANS_SETUP usage rules 365 * we have the reloc mutex held now, so there 366 * is only one writer in this function 367 */ 368 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 369 370 /* make sure readers find IN_TRANS_SETUP before 371 * they find our root->last_trans update 372 */ 373 smp_wmb(); 374 375 spin_lock(&fs_info->fs_roots_radix_lock); 376 if (root->last_trans == trans->transid && !force) { 377 spin_unlock(&fs_info->fs_roots_radix_lock); 378 return 0; 379 } 380 radix_tree_tag_set(&fs_info->fs_roots_radix, 381 (unsigned long)root->root_key.objectid, 382 BTRFS_ROOT_TRANS_TAG); 383 spin_unlock(&fs_info->fs_roots_radix_lock); 384 root->last_trans = trans->transid; 385 386 /* this is pretty tricky. We don't want to 387 * take the relocation lock in btrfs_record_root_in_trans 388 * unless we're really doing the first setup for this root in 389 * this transaction. 390 * 391 * Normally we'd use root->last_trans as a flag to decide 392 * if we want to take the expensive mutex. 393 * 394 * But, we have to set root->last_trans before we 395 * init the relocation root, otherwise, we trip over warnings 396 * in ctree.c. The solution used here is to flag ourselves 397 * with root IN_TRANS_SETUP. When this is 1, we're still 398 * fixing up the reloc trees and everyone must wait. 399 * 400 * When this is zero, they can trust root->last_trans and fly 401 * through btrfs_record_root_in_trans without having to take the 402 * lock. smp_wmb() makes sure that all the writes above are 403 * done before we pop in the zero below 404 */ 405 btrfs_init_reloc_root(trans, root); 406 smp_mb__before_atomic(); 407 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 408 } 409 return 0; 410 } 411 412 413 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 414 struct btrfs_root *root) 415 { 416 struct btrfs_fs_info *fs_info = root->fs_info; 417 struct btrfs_transaction *cur_trans = trans->transaction; 418 419 /* Add ourselves to the transaction dropped list */ 420 spin_lock(&cur_trans->dropped_roots_lock); 421 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 422 spin_unlock(&cur_trans->dropped_roots_lock); 423 424 /* Make sure we don't try to update the root at commit time */ 425 spin_lock(&fs_info->fs_roots_radix_lock); 426 radix_tree_tag_clear(&fs_info->fs_roots_radix, 427 (unsigned long)root->root_key.objectid, 428 BTRFS_ROOT_TRANS_TAG); 429 spin_unlock(&fs_info->fs_roots_radix_lock); 430 } 431 432 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 433 struct btrfs_root *root) 434 { 435 struct btrfs_fs_info *fs_info = root->fs_info; 436 437 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 438 return 0; 439 440 /* 441 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 442 * and barriers 443 */ 444 smp_rmb(); 445 if (root->last_trans == trans->transid && 446 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 447 return 0; 448 449 mutex_lock(&fs_info->reloc_mutex); 450 record_root_in_trans(trans, root, 0); 451 mutex_unlock(&fs_info->reloc_mutex); 452 453 return 0; 454 } 455 456 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 457 { 458 return (trans->state >= TRANS_STATE_COMMIT_START && 459 trans->state < TRANS_STATE_UNBLOCKED && 460 !trans->aborted); 461 } 462 463 /* wait for commit against the current transaction to become unblocked 464 * when this is done, it is safe to start a new transaction, but the current 465 * transaction might not be fully on disk. 466 */ 467 static void wait_current_trans(struct btrfs_fs_info *fs_info) 468 { 469 struct btrfs_transaction *cur_trans; 470 471 spin_lock(&fs_info->trans_lock); 472 cur_trans = fs_info->running_transaction; 473 if (cur_trans && is_transaction_blocked(cur_trans)) { 474 refcount_inc(&cur_trans->use_count); 475 spin_unlock(&fs_info->trans_lock); 476 477 wait_event(fs_info->transaction_wait, 478 cur_trans->state >= TRANS_STATE_UNBLOCKED || 479 cur_trans->aborted); 480 btrfs_put_transaction(cur_trans); 481 } else { 482 spin_unlock(&fs_info->trans_lock); 483 } 484 } 485 486 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 487 { 488 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 489 return 0; 490 491 if (type == TRANS_START) 492 return 1; 493 494 return 0; 495 } 496 497 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 498 { 499 struct btrfs_fs_info *fs_info = root->fs_info; 500 501 if (!fs_info->reloc_ctl || 502 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 503 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 504 root->reloc_root) 505 return false; 506 507 return true; 508 } 509 510 static struct btrfs_trans_handle * 511 start_transaction(struct btrfs_root *root, unsigned int num_items, 512 unsigned int type, enum btrfs_reserve_flush_enum flush, 513 bool enforce_qgroups) 514 { 515 struct btrfs_fs_info *fs_info = root->fs_info; 516 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 517 struct btrfs_trans_handle *h; 518 struct btrfs_transaction *cur_trans; 519 u64 num_bytes = 0; 520 u64 qgroup_reserved = 0; 521 bool reloc_reserved = false; 522 int ret; 523 524 /* Send isn't supposed to start transactions. */ 525 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 526 527 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 528 return ERR_PTR(-EROFS); 529 530 if (current->journal_info) { 531 WARN_ON(type & TRANS_EXTWRITERS); 532 h = current->journal_info; 533 refcount_inc(&h->use_count); 534 WARN_ON(refcount_read(&h->use_count) > 2); 535 h->orig_rsv = h->block_rsv; 536 h->block_rsv = NULL; 537 goto got_it; 538 } 539 540 /* 541 * Do the reservation before we join the transaction so we can do all 542 * the appropriate flushing if need be. 543 */ 544 if (num_items && root != fs_info->chunk_root) { 545 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 546 u64 delayed_refs_bytes = 0; 547 548 qgroup_reserved = num_items * fs_info->nodesize; 549 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 550 enforce_qgroups); 551 if (ret) 552 return ERR_PTR(ret); 553 554 /* 555 * We want to reserve all the bytes we may need all at once, so 556 * we only do 1 enospc flushing cycle per transaction start. We 557 * accomplish this by simply assuming we'll do 2 x num_items 558 * worth of delayed refs updates in this trans handle, and 559 * refill that amount for whatever is missing in the reserve. 560 */ 561 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 562 if (delayed_refs_rsv->full == 0) { 563 delayed_refs_bytes = num_bytes; 564 num_bytes <<= 1; 565 } 566 567 /* 568 * Do the reservation for the relocation root creation 569 */ 570 if (need_reserve_reloc_root(root)) { 571 num_bytes += fs_info->nodesize; 572 reloc_reserved = true; 573 } 574 575 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush); 576 if (ret) 577 goto reserve_fail; 578 if (delayed_refs_bytes) { 579 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 580 delayed_refs_bytes); 581 num_bytes -= delayed_refs_bytes; 582 } 583 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 584 !delayed_refs_rsv->full) { 585 /* 586 * Some people call with btrfs_start_transaction(root, 0) 587 * because they can be throttled, but have some other mechanism 588 * for reserving space. We still want these guys to refill the 589 * delayed block_rsv so just add 1 items worth of reservation 590 * here. 591 */ 592 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 593 if (ret) 594 goto reserve_fail; 595 } 596 again: 597 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 598 if (!h) { 599 ret = -ENOMEM; 600 goto alloc_fail; 601 } 602 603 /* 604 * If we are JOIN_NOLOCK we're already committing a transaction and 605 * waiting on this guy, so we don't need to do the sb_start_intwrite 606 * because we're already holding a ref. We need this because we could 607 * have raced in and did an fsync() on a file which can kick a commit 608 * and then we deadlock with somebody doing a freeze. 609 * 610 * If we are ATTACH, it means we just want to catch the current 611 * transaction and commit it, so we needn't do sb_start_intwrite(). 612 */ 613 if (type & __TRANS_FREEZABLE) 614 sb_start_intwrite(fs_info->sb); 615 616 if (may_wait_transaction(fs_info, type)) 617 wait_current_trans(fs_info); 618 619 do { 620 ret = join_transaction(fs_info, type); 621 if (ret == -EBUSY) { 622 wait_current_trans(fs_info); 623 if (unlikely(type == TRANS_ATTACH || 624 type == TRANS_JOIN_NOSTART)) 625 ret = -ENOENT; 626 } 627 } while (ret == -EBUSY); 628 629 if (ret < 0) 630 goto join_fail; 631 632 cur_trans = fs_info->running_transaction; 633 634 h->transid = cur_trans->transid; 635 h->transaction = cur_trans; 636 h->root = root; 637 refcount_set(&h->use_count, 1); 638 h->fs_info = root->fs_info; 639 640 h->type = type; 641 h->can_flush_pending_bgs = true; 642 INIT_LIST_HEAD(&h->new_bgs); 643 644 smp_mb(); 645 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 646 may_wait_transaction(fs_info, type)) { 647 current->journal_info = h; 648 btrfs_commit_transaction(h); 649 goto again; 650 } 651 652 if (num_bytes) { 653 trace_btrfs_space_reservation(fs_info, "transaction", 654 h->transid, num_bytes, 1); 655 h->block_rsv = &fs_info->trans_block_rsv; 656 h->bytes_reserved = num_bytes; 657 h->reloc_reserved = reloc_reserved; 658 } 659 660 got_it: 661 btrfs_record_root_in_trans(h, root); 662 663 if (!current->journal_info) 664 current->journal_info = h; 665 return h; 666 667 join_fail: 668 if (type & __TRANS_FREEZABLE) 669 sb_end_intwrite(fs_info->sb); 670 kmem_cache_free(btrfs_trans_handle_cachep, h); 671 alloc_fail: 672 if (num_bytes) 673 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 674 num_bytes); 675 reserve_fail: 676 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 677 return ERR_PTR(ret); 678 } 679 680 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 681 unsigned int num_items) 682 { 683 return start_transaction(root, num_items, TRANS_START, 684 BTRFS_RESERVE_FLUSH_ALL, true); 685 } 686 687 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 688 struct btrfs_root *root, 689 unsigned int num_items, 690 int min_factor) 691 { 692 struct btrfs_fs_info *fs_info = root->fs_info; 693 struct btrfs_trans_handle *trans; 694 u64 num_bytes; 695 int ret; 696 697 /* 698 * We have two callers: unlink and block group removal. The 699 * former should succeed even if we will temporarily exceed 700 * quota and the latter operates on the extent root so 701 * qgroup enforcement is ignored anyway. 702 */ 703 trans = start_transaction(root, num_items, TRANS_START, 704 BTRFS_RESERVE_FLUSH_ALL, false); 705 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 706 return trans; 707 708 trans = btrfs_start_transaction(root, 0); 709 if (IS_ERR(trans)) 710 return trans; 711 712 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 713 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv, 714 num_bytes, min_factor); 715 if (ret) { 716 btrfs_end_transaction(trans); 717 return ERR_PTR(ret); 718 } 719 720 trans->block_rsv = &fs_info->trans_block_rsv; 721 trans->bytes_reserved = num_bytes; 722 trace_btrfs_space_reservation(fs_info, "transaction", 723 trans->transid, num_bytes, 1); 724 725 return trans; 726 } 727 728 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 729 { 730 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 731 true); 732 } 733 734 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 735 { 736 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 737 BTRFS_RESERVE_NO_FLUSH, true); 738 } 739 740 /* 741 * Similar to regular join but it never starts a transaction when none is 742 * running or after waiting for the current one to finish. 743 */ 744 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 745 { 746 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 747 BTRFS_RESERVE_NO_FLUSH, true); 748 } 749 750 /* 751 * btrfs_attach_transaction() - catch the running transaction 752 * 753 * It is used when we want to commit the current the transaction, but 754 * don't want to start a new one. 755 * 756 * Note: If this function return -ENOENT, it just means there is no 757 * running transaction. But it is possible that the inactive transaction 758 * is still in the memory, not fully on disk. If you hope there is no 759 * inactive transaction in the fs when -ENOENT is returned, you should 760 * invoke 761 * btrfs_attach_transaction_barrier() 762 */ 763 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 764 { 765 return start_transaction(root, 0, TRANS_ATTACH, 766 BTRFS_RESERVE_NO_FLUSH, true); 767 } 768 769 /* 770 * btrfs_attach_transaction_barrier() - catch the running transaction 771 * 772 * It is similar to the above function, the difference is this one 773 * will wait for all the inactive transactions until they fully 774 * complete. 775 */ 776 struct btrfs_trans_handle * 777 btrfs_attach_transaction_barrier(struct btrfs_root *root) 778 { 779 struct btrfs_trans_handle *trans; 780 781 trans = start_transaction(root, 0, TRANS_ATTACH, 782 BTRFS_RESERVE_NO_FLUSH, true); 783 if (trans == ERR_PTR(-ENOENT)) 784 btrfs_wait_for_commit(root->fs_info, 0); 785 786 return trans; 787 } 788 789 /* wait for a transaction commit to be fully complete */ 790 static noinline void wait_for_commit(struct btrfs_transaction *commit) 791 { 792 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 793 } 794 795 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 796 { 797 struct btrfs_transaction *cur_trans = NULL, *t; 798 int ret = 0; 799 800 if (transid) { 801 if (transid <= fs_info->last_trans_committed) 802 goto out; 803 804 /* find specified transaction */ 805 spin_lock(&fs_info->trans_lock); 806 list_for_each_entry(t, &fs_info->trans_list, list) { 807 if (t->transid == transid) { 808 cur_trans = t; 809 refcount_inc(&cur_trans->use_count); 810 ret = 0; 811 break; 812 } 813 if (t->transid > transid) { 814 ret = 0; 815 break; 816 } 817 } 818 spin_unlock(&fs_info->trans_lock); 819 820 /* 821 * The specified transaction doesn't exist, or we 822 * raced with btrfs_commit_transaction 823 */ 824 if (!cur_trans) { 825 if (transid > fs_info->last_trans_committed) 826 ret = -EINVAL; 827 goto out; 828 } 829 } else { 830 /* find newest transaction that is committing | committed */ 831 spin_lock(&fs_info->trans_lock); 832 list_for_each_entry_reverse(t, &fs_info->trans_list, 833 list) { 834 if (t->state >= TRANS_STATE_COMMIT_START) { 835 if (t->state == TRANS_STATE_COMPLETED) 836 break; 837 cur_trans = t; 838 refcount_inc(&cur_trans->use_count); 839 break; 840 } 841 } 842 spin_unlock(&fs_info->trans_lock); 843 if (!cur_trans) 844 goto out; /* nothing committing|committed */ 845 } 846 847 wait_for_commit(cur_trans); 848 btrfs_put_transaction(cur_trans); 849 out: 850 return ret; 851 } 852 853 void btrfs_throttle(struct btrfs_fs_info *fs_info) 854 { 855 wait_current_trans(fs_info); 856 } 857 858 static int should_end_transaction(struct btrfs_trans_handle *trans) 859 { 860 struct btrfs_fs_info *fs_info = trans->fs_info; 861 862 if (btrfs_check_space_for_delayed_refs(fs_info)) 863 return 1; 864 865 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 866 } 867 868 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 869 { 870 struct btrfs_transaction *cur_trans = trans->transaction; 871 872 smp_mb(); 873 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 874 cur_trans->delayed_refs.flushing) 875 return 1; 876 877 return should_end_transaction(trans); 878 } 879 880 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 881 882 { 883 struct btrfs_fs_info *fs_info = trans->fs_info; 884 885 if (!trans->block_rsv) { 886 ASSERT(!trans->bytes_reserved); 887 return; 888 } 889 890 if (!trans->bytes_reserved) 891 return; 892 893 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 894 trace_btrfs_space_reservation(fs_info, "transaction", 895 trans->transid, trans->bytes_reserved, 0); 896 btrfs_block_rsv_release(fs_info, trans->block_rsv, 897 trans->bytes_reserved); 898 trans->bytes_reserved = 0; 899 } 900 901 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 902 int throttle) 903 { 904 struct btrfs_fs_info *info = trans->fs_info; 905 struct btrfs_transaction *cur_trans = trans->transaction; 906 int err = 0; 907 908 if (refcount_read(&trans->use_count) > 1) { 909 refcount_dec(&trans->use_count); 910 trans->block_rsv = trans->orig_rsv; 911 return 0; 912 } 913 914 btrfs_trans_release_metadata(trans); 915 trans->block_rsv = NULL; 916 917 btrfs_create_pending_block_groups(trans); 918 919 btrfs_trans_release_chunk_metadata(trans); 920 921 if (trans->type & __TRANS_FREEZABLE) 922 sb_end_intwrite(info->sb); 923 924 WARN_ON(cur_trans != info->running_transaction); 925 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 926 atomic_dec(&cur_trans->num_writers); 927 extwriter_counter_dec(cur_trans, trans->type); 928 929 cond_wake_up(&cur_trans->writer_wait); 930 btrfs_put_transaction(cur_trans); 931 932 if (current->journal_info == trans) 933 current->journal_info = NULL; 934 935 if (throttle) 936 btrfs_run_delayed_iputs(info); 937 938 if (trans->aborted || 939 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 940 wake_up_process(info->transaction_kthread); 941 err = -EIO; 942 } 943 944 kmem_cache_free(btrfs_trans_handle_cachep, trans); 945 return err; 946 } 947 948 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 949 { 950 return __btrfs_end_transaction(trans, 0); 951 } 952 953 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 954 { 955 return __btrfs_end_transaction(trans, 1); 956 } 957 958 /* 959 * when btree blocks are allocated, they have some corresponding bits set for 960 * them in one of two extent_io trees. This is used to make sure all of 961 * those extents are sent to disk but does not wait on them 962 */ 963 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 964 struct extent_io_tree *dirty_pages, int mark) 965 { 966 int err = 0; 967 int werr = 0; 968 struct address_space *mapping = fs_info->btree_inode->i_mapping; 969 struct extent_state *cached_state = NULL; 970 u64 start = 0; 971 u64 end; 972 973 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 974 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 975 mark, &cached_state)) { 976 bool wait_writeback = false; 977 978 err = convert_extent_bit(dirty_pages, start, end, 979 EXTENT_NEED_WAIT, 980 mark, &cached_state); 981 /* 982 * convert_extent_bit can return -ENOMEM, which is most of the 983 * time a temporary error. So when it happens, ignore the error 984 * and wait for writeback of this range to finish - because we 985 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 986 * to __btrfs_wait_marked_extents() would not know that 987 * writeback for this range started and therefore wouldn't 988 * wait for it to finish - we don't want to commit a 989 * superblock that points to btree nodes/leafs for which 990 * writeback hasn't finished yet (and without errors). 991 * We cleanup any entries left in the io tree when committing 992 * the transaction (through extent_io_tree_release()). 993 */ 994 if (err == -ENOMEM) { 995 err = 0; 996 wait_writeback = true; 997 } 998 if (!err) 999 err = filemap_fdatawrite_range(mapping, start, end); 1000 if (err) 1001 werr = err; 1002 else if (wait_writeback) 1003 werr = filemap_fdatawait_range(mapping, start, end); 1004 free_extent_state(cached_state); 1005 cached_state = NULL; 1006 cond_resched(); 1007 start = end + 1; 1008 } 1009 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1010 return werr; 1011 } 1012 1013 /* 1014 * when btree blocks are allocated, they have some corresponding bits set for 1015 * them in one of two extent_io trees. This is used to make sure all of 1016 * those extents are on disk for transaction or log commit. We wait 1017 * on all the pages and clear them from the dirty pages state tree 1018 */ 1019 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1020 struct extent_io_tree *dirty_pages) 1021 { 1022 int err = 0; 1023 int werr = 0; 1024 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1025 struct extent_state *cached_state = NULL; 1026 u64 start = 0; 1027 u64 end; 1028 1029 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1030 EXTENT_NEED_WAIT, &cached_state)) { 1031 /* 1032 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1033 * When committing the transaction, we'll remove any entries 1034 * left in the io tree. For a log commit, we don't remove them 1035 * after committing the log because the tree can be accessed 1036 * concurrently - we do it only at transaction commit time when 1037 * it's safe to do it (through extent_io_tree_release()). 1038 */ 1039 err = clear_extent_bit(dirty_pages, start, end, 1040 EXTENT_NEED_WAIT, 0, 0, &cached_state); 1041 if (err == -ENOMEM) 1042 err = 0; 1043 if (!err) 1044 err = filemap_fdatawait_range(mapping, start, end); 1045 if (err) 1046 werr = err; 1047 free_extent_state(cached_state); 1048 cached_state = NULL; 1049 cond_resched(); 1050 start = end + 1; 1051 } 1052 if (err) 1053 werr = err; 1054 return werr; 1055 } 1056 1057 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1058 struct extent_io_tree *dirty_pages) 1059 { 1060 bool errors = false; 1061 int err; 1062 1063 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1064 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1065 errors = true; 1066 1067 if (errors && !err) 1068 err = -EIO; 1069 return err; 1070 } 1071 1072 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1073 { 1074 struct btrfs_fs_info *fs_info = log_root->fs_info; 1075 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1076 bool errors = false; 1077 int err; 1078 1079 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1080 1081 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1082 if ((mark & EXTENT_DIRTY) && 1083 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1084 errors = true; 1085 1086 if ((mark & EXTENT_NEW) && 1087 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1088 errors = true; 1089 1090 if (errors && !err) 1091 err = -EIO; 1092 return err; 1093 } 1094 1095 /* 1096 * When btree blocks are allocated the corresponding extents are marked dirty. 1097 * This function ensures such extents are persisted on disk for transaction or 1098 * log commit. 1099 * 1100 * @trans: transaction whose dirty pages we'd like to write 1101 */ 1102 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1103 { 1104 int ret; 1105 int ret2; 1106 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1107 struct btrfs_fs_info *fs_info = trans->fs_info; 1108 struct blk_plug plug; 1109 1110 blk_start_plug(&plug); 1111 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1112 blk_finish_plug(&plug); 1113 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1114 1115 extent_io_tree_release(&trans->transaction->dirty_pages); 1116 1117 if (ret) 1118 return ret; 1119 else if (ret2) 1120 return ret2; 1121 else 1122 return 0; 1123 } 1124 1125 /* 1126 * this is used to update the root pointer in the tree of tree roots. 1127 * 1128 * But, in the case of the extent allocation tree, updating the root 1129 * pointer may allocate blocks which may change the root of the extent 1130 * allocation tree. 1131 * 1132 * So, this loops and repeats and makes sure the cowonly root didn't 1133 * change while the root pointer was being updated in the metadata. 1134 */ 1135 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1136 struct btrfs_root *root) 1137 { 1138 int ret; 1139 u64 old_root_bytenr; 1140 u64 old_root_used; 1141 struct btrfs_fs_info *fs_info = root->fs_info; 1142 struct btrfs_root *tree_root = fs_info->tree_root; 1143 1144 old_root_used = btrfs_root_used(&root->root_item); 1145 1146 while (1) { 1147 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1148 if (old_root_bytenr == root->node->start && 1149 old_root_used == btrfs_root_used(&root->root_item)) 1150 break; 1151 1152 btrfs_set_root_node(&root->root_item, root->node); 1153 ret = btrfs_update_root(trans, tree_root, 1154 &root->root_key, 1155 &root->root_item); 1156 if (ret) 1157 return ret; 1158 1159 old_root_used = btrfs_root_used(&root->root_item); 1160 } 1161 1162 return 0; 1163 } 1164 1165 /* 1166 * update all the cowonly tree roots on disk 1167 * 1168 * The error handling in this function may not be obvious. Any of the 1169 * failures will cause the file system to go offline. We still need 1170 * to clean up the delayed refs. 1171 */ 1172 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1173 { 1174 struct btrfs_fs_info *fs_info = trans->fs_info; 1175 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1176 struct list_head *io_bgs = &trans->transaction->io_bgs; 1177 struct list_head *next; 1178 struct extent_buffer *eb; 1179 int ret; 1180 1181 eb = btrfs_lock_root_node(fs_info->tree_root); 1182 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1183 0, &eb); 1184 btrfs_tree_unlock(eb); 1185 free_extent_buffer(eb); 1186 1187 if (ret) 1188 return ret; 1189 1190 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1191 if (ret) 1192 return ret; 1193 1194 ret = btrfs_run_dev_stats(trans); 1195 if (ret) 1196 return ret; 1197 ret = btrfs_run_dev_replace(trans); 1198 if (ret) 1199 return ret; 1200 ret = btrfs_run_qgroups(trans); 1201 if (ret) 1202 return ret; 1203 1204 ret = btrfs_setup_space_cache(trans); 1205 if (ret) 1206 return ret; 1207 1208 /* run_qgroups might have added some more refs */ 1209 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1210 if (ret) 1211 return ret; 1212 again: 1213 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1214 struct btrfs_root *root; 1215 next = fs_info->dirty_cowonly_roots.next; 1216 list_del_init(next); 1217 root = list_entry(next, struct btrfs_root, dirty_list); 1218 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1219 1220 if (root != fs_info->extent_root) 1221 list_add_tail(&root->dirty_list, 1222 &trans->transaction->switch_commits); 1223 ret = update_cowonly_root(trans, root); 1224 if (ret) 1225 return ret; 1226 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1227 if (ret) 1228 return ret; 1229 } 1230 1231 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1232 ret = btrfs_write_dirty_block_groups(trans); 1233 if (ret) 1234 return ret; 1235 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1236 if (ret) 1237 return ret; 1238 } 1239 1240 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1241 goto again; 1242 1243 list_add_tail(&fs_info->extent_root->dirty_list, 1244 &trans->transaction->switch_commits); 1245 1246 /* Update dev-replace pointer once everything is committed */ 1247 fs_info->dev_replace.committed_cursor_left = 1248 fs_info->dev_replace.cursor_left_last_write_of_item; 1249 1250 return 0; 1251 } 1252 1253 /* 1254 * dead roots are old snapshots that need to be deleted. This allocates 1255 * a dirty root struct and adds it into the list of dead roots that need to 1256 * be deleted 1257 */ 1258 void btrfs_add_dead_root(struct btrfs_root *root) 1259 { 1260 struct btrfs_fs_info *fs_info = root->fs_info; 1261 1262 spin_lock(&fs_info->trans_lock); 1263 if (list_empty(&root->root_list)) 1264 list_add_tail(&root->root_list, &fs_info->dead_roots); 1265 spin_unlock(&fs_info->trans_lock); 1266 } 1267 1268 /* 1269 * update all the cowonly tree roots on disk 1270 */ 1271 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1272 { 1273 struct btrfs_fs_info *fs_info = trans->fs_info; 1274 struct btrfs_root *gang[8]; 1275 int i; 1276 int ret; 1277 int err = 0; 1278 1279 spin_lock(&fs_info->fs_roots_radix_lock); 1280 while (1) { 1281 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1282 (void **)gang, 0, 1283 ARRAY_SIZE(gang), 1284 BTRFS_ROOT_TRANS_TAG); 1285 if (ret == 0) 1286 break; 1287 for (i = 0; i < ret; i++) { 1288 struct btrfs_root *root = gang[i]; 1289 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1290 (unsigned long)root->root_key.objectid, 1291 BTRFS_ROOT_TRANS_TAG); 1292 spin_unlock(&fs_info->fs_roots_radix_lock); 1293 1294 btrfs_free_log(trans, root); 1295 btrfs_update_reloc_root(trans, root); 1296 1297 btrfs_save_ino_cache(root, trans); 1298 1299 /* see comments in should_cow_block() */ 1300 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1301 smp_mb__after_atomic(); 1302 1303 if (root->commit_root != root->node) { 1304 list_add_tail(&root->dirty_list, 1305 &trans->transaction->switch_commits); 1306 btrfs_set_root_node(&root->root_item, 1307 root->node); 1308 } 1309 1310 err = btrfs_update_root(trans, fs_info->tree_root, 1311 &root->root_key, 1312 &root->root_item); 1313 spin_lock(&fs_info->fs_roots_radix_lock); 1314 if (err) 1315 break; 1316 btrfs_qgroup_free_meta_all_pertrans(root); 1317 } 1318 } 1319 spin_unlock(&fs_info->fs_roots_radix_lock); 1320 return err; 1321 } 1322 1323 /* 1324 * defrag a given btree. 1325 * Every leaf in the btree is read and defragged. 1326 */ 1327 int btrfs_defrag_root(struct btrfs_root *root) 1328 { 1329 struct btrfs_fs_info *info = root->fs_info; 1330 struct btrfs_trans_handle *trans; 1331 int ret; 1332 1333 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1334 return 0; 1335 1336 while (1) { 1337 trans = btrfs_start_transaction(root, 0); 1338 if (IS_ERR(trans)) 1339 return PTR_ERR(trans); 1340 1341 ret = btrfs_defrag_leaves(trans, root); 1342 1343 btrfs_end_transaction(trans); 1344 btrfs_btree_balance_dirty(info); 1345 cond_resched(); 1346 1347 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1348 break; 1349 1350 if (btrfs_defrag_cancelled(info)) { 1351 btrfs_debug(info, "defrag_root cancelled"); 1352 ret = -EAGAIN; 1353 break; 1354 } 1355 } 1356 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1357 return ret; 1358 } 1359 1360 /* 1361 * Do all special snapshot related qgroup dirty hack. 1362 * 1363 * Will do all needed qgroup inherit and dirty hack like switch commit 1364 * roots inside one transaction and write all btree into disk, to make 1365 * qgroup works. 1366 */ 1367 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1368 struct btrfs_root *src, 1369 struct btrfs_root *parent, 1370 struct btrfs_qgroup_inherit *inherit, 1371 u64 dst_objectid) 1372 { 1373 struct btrfs_fs_info *fs_info = src->fs_info; 1374 int ret; 1375 1376 /* 1377 * Save some performance in the case that qgroups are not 1378 * enabled. If this check races with the ioctl, rescan will 1379 * kick in anyway. 1380 */ 1381 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1382 return 0; 1383 1384 /* 1385 * Ensure dirty @src will be committed. Or, after coming 1386 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1387 * recorded root will never be updated again, causing an outdated root 1388 * item. 1389 */ 1390 record_root_in_trans(trans, src, 1); 1391 1392 /* 1393 * We are going to commit transaction, see btrfs_commit_transaction() 1394 * comment for reason locking tree_log_mutex 1395 */ 1396 mutex_lock(&fs_info->tree_log_mutex); 1397 1398 ret = commit_fs_roots(trans); 1399 if (ret) 1400 goto out; 1401 ret = btrfs_qgroup_account_extents(trans); 1402 if (ret < 0) 1403 goto out; 1404 1405 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1406 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1407 inherit); 1408 if (ret < 0) 1409 goto out; 1410 1411 /* 1412 * Now we do a simplified commit transaction, which will: 1413 * 1) commit all subvolume and extent tree 1414 * To ensure all subvolume and extent tree have a valid 1415 * commit_root to accounting later insert_dir_item() 1416 * 2) write all btree blocks onto disk 1417 * This is to make sure later btree modification will be cowed 1418 * Or commit_root can be populated and cause wrong qgroup numbers 1419 * In this simplified commit, we don't really care about other trees 1420 * like chunk and root tree, as they won't affect qgroup. 1421 * And we don't write super to avoid half committed status. 1422 */ 1423 ret = commit_cowonly_roots(trans); 1424 if (ret) 1425 goto out; 1426 switch_commit_roots(trans); 1427 ret = btrfs_write_and_wait_transaction(trans); 1428 if (ret) 1429 btrfs_handle_fs_error(fs_info, ret, 1430 "Error while writing out transaction for qgroup"); 1431 1432 out: 1433 mutex_unlock(&fs_info->tree_log_mutex); 1434 1435 /* 1436 * Force parent root to be updated, as we recorded it before so its 1437 * last_trans == cur_transid. 1438 * Or it won't be committed again onto disk after later 1439 * insert_dir_item() 1440 */ 1441 if (!ret) 1442 record_root_in_trans(trans, parent, 1); 1443 return ret; 1444 } 1445 1446 /* 1447 * new snapshots need to be created at a very specific time in the 1448 * transaction commit. This does the actual creation. 1449 * 1450 * Note: 1451 * If the error which may affect the commitment of the current transaction 1452 * happens, we should return the error number. If the error which just affect 1453 * the creation of the pending snapshots, just return 0. 1454 */ 1455 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1456 struct btrfs_pending_snapshot *pending) 1457 { 1458 1459 struct btrfs_fs_info *fs_info = trans->fs_info; 1460 struct btrfs_key key; 1461 struct btrfs_root_item *new_root_item; 1462 struct btrfs_root *tree_root = fs_info->tree_root; 1463 struct btrfs_root *root = pending->root; 1464 struct btrfs_root *parent_root; 1465 struct btrfs_block_rsv *rsv; 1466 struct inode *parent_inode; 1467 struct btrfs_path *path; 1468 struct btrfs_dir_item *dir_item; 1469 struct dentry *dentry; 1470 struct extent_buffer *tmp; 1471 struct extent_buffer *old; 1472 struct timespec64 cur_time; 1473 int ret = 0; 1474 u64 to_reserve = 0; 1475 u64 index = 0; 1476 u64 objectid; 1477 u64 root_flags; 1478 uuid_le new_uuid; 1479 1480 ASSERT(pending->path); 1481 path = pending->path; 1482 1483 ASSERT(pending->root_item); 1484 new_root_item = pending->root_item; 1485 1486 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1487 if (pending->error) 1488 goto no_free_objectid; 1489 1490 /* 1491 * Make qgroup to skip current new snapshot's qgroupid, as it is 1492 * accounted by later btrfs_qgroup_inherit(). 1493 */ 1494 btrfs_set_skip_qgroup(trans, objectid); 1495 1496 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1497 1498 if (to_reserve > 0) { 1499 pending->error = btrfs_block_rsv_add(root, 1500 &pending->block_rsv, 1501 to_reserve, 1502 BTRFS_RESERVE_NO_FLUSH); 1503 if (pending->error) 1504 goto clear_skip_qgroup; 1505 } 1506 1507 key.objectid = objectid; 1508 key.offset = (u64)-1; 1509 key.type = BTRFS_ROOT_ITEM_KEY; 1510 1511 rsv = trans->block_rsv; 1512 trans->block_rsv = &pending->block_rsv; 1513 trans->bytes_reserved = trans->block_rsv->reserved; 1514 trace_btrfs_space_reservation(fs_info, "transaction", 1515 trans->transid, 1516 trans->bytes_reserved, 1); 1517 dentry = pending->dentry; 1518 parent_inode = pending->dir; 1519 parent_root = BTRFS_I(parent_inode)->root; 1520 record_root_in_trans(trans, parent_root, 0); 1521 1522 cur_time = current_time(parent_inode); 1523 1524 /* 1525 * insert the directory item 1526 */ 1527 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1528 BUG_ON(ret); /* -ENOMEM */ 1529 1530 /* check if there is a file/dir which has the same name. */ 1531 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1532 btrfs_ino(BTRFS_I(parent_inode)), 1533 dentry->d_name.name, 1534 dentry->d_name.len, 0); 1535 if (dir_item != NULL && !IS_ERR(dir_item)) { 1536 pending->error = -EEXIST; 1537 goto dir_item_existed; 1538 } else if (IS_ERR(dir_item)) { 1539 ret = PTR_ERR(dir_item); 1540 btrfs_abort_transaction(trans, ret); 1541 goto fail; 1542 } 1543 btrfs_release_path(path); 1544 1545 /* 1546 * pull in the delayed directory update 1547 * and the delayed inode item 1548 * otherwise we corrupt the FS during 1549 * snapshot 1550 */ 1551 ret = btrfs_run_delayed_items(trans); 1552 if (ret) { /* Transaction aborted */ 1553 btrfs_abort_transaction(trans, ret); 1554 goto fail; 1555 } 1556 1557 record_root_in_trans(trans, root, 0); 1558 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1559 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1560 btrfs_check_and_init_root_item(new_root_item); 1561 1562 root_flags = btrfs_root_flags(new_root_item); 1563 if (pending->readonly) 1564 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1565 else 1566 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1567 btrfs_set_root_flags(new_root_item, root_flags); 1568 1569 btrfs_set_root_generation_v2(new_root_item, 1570 trans->transid); 1571 uuid_le_gen(&new_uuid); 1572 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1573 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1574 BTRFS_UUID_SIZE); 1575 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1576 memset(new_root_item->received_uuid, 0, 1577 sizeof(new_root_item->received_uuid)); 1578 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1579 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1580 btrfs_set_root_stransid(new_root_item, 0); 1581 btrfs_set_root_rtransid(new_root_item, 0); 1582 } 1583 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1584 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1585 btrfs_set_root_otransid(new_root_item, trans->transid); 1586 1587 old = btrfs_lock_root_node(root); 1588 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1589 if (ret) { 1590 btrfs_tree_unlock(old); 1591 free_extent_buffer(old); 1592 btrfs_abort_transaction(trans, ret); 1593 goto fail; 1594 } 1595 1596 btrfs_set_lock_blocking_write(old); 1597 1598 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1599 /* clean up in any case */ 1600 btrfs_tree_unlock(old); 1601 free_extent_buffer(old); 1602 if (ret) { 1603 btrfs_abort_transaction(trans, ret); 1604 goto fail; 1605 } 1606 /* see comments in should_cow_block() */ 1607 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1608 smp_wmb(); 1609 1610 btrfs_set_root_node(new_root_item, tmp); 1611 /* record when the snapshot was created in key.offset */ 1612 key.offset = trans->transid; 1613 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1614 btrfs_tree_unlock(tmp); 1615 free_extent_buffer(tmp); 1616 if (ret) { 1617 btrfs_abort_transaction(trans, ret); 1618 goto fail; 1619 } 1620 1621 /* 1622 * insert root back/forward references 1623 */ 1624 ret = btrfs_add_root_ref(trans, objectid, 1625 parent_root->root_key.objectid, 1626 btrfs_ino(BTRFS_I(parent_inode)), index, 1627 dentry->d_name.name, dentry->d_name.len); 1628 if (ret) { 1629 btrfs_abort_transaction(trans, ret); 1630 goto fail; 1631 } 1632 1633 key.offset = (u64)-1; 1634 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key); 1635 if (IS_ERR(pending->snap)) { 1636 ret = PTR_ERR(pending->snap); 1637 btrfs_abort_transaction(trans, ret); 1638 goto fail; 1639 } 1640 1641 ret = btrfs_reloc_post_snapshot(trans, pending); 1642 if (ret) { 1643 btrfs_abort_transaction(trans, ret); 1644 goto fail; 1645 } 1646 1647 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1648 if (ret) { 1649 btrfs_abort_transaction(trans, ret); 1650 goto fail; 1651 } 1652 1653 /* 1654 * Do special qgroup accounting for snapshot, as we do some qgroup 1655 * snapshot hack to do fast snapshot. 1656 * To co-operate with that hack, we do hack again. 1657 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1658 */ 1659 ret = qgroup_account_snapshot(trans, root, parent_root, 1660 pending->inherit, objectid); 1661 if (ret < 0) 1662 goto fail; 1663 1664 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1665 dentry->d_name.len, BTRFS_I(parent_inode), 1666 &key, BTRFS_FT_DIR, index); 1667 /* We have check then name at the beginning, so it is impossible. */ 1668 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1669 if (ret) { 1670 btrfs_abort_transaction(trans, ret); 1671 goto fail; 1672 } 1673 1674 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1675 dentry->d_name.len * 2); 1676 parent_inode->i_mtime = parent_inode->i_ctime = 1677 current_time(parent_inode); 1678 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1679 if (ret) { 1680 btrfs_abort_transaction(trans, ret); 1681 goto fail; 1682 } 1683 ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL, 1684 objectid); 1685 if (ret) { 1686 btrfs_abort_transaction(trans, ret); 1687 goto fail; 1688 } 1689 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1690 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1691 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1692 objectid); 1693 if (ret && ret != -EEXIST) { 1694 btrfs_abort_transaction(trans, ret); 1695 goto fail; 1696 } 1697 } 1698 1699 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1700 if (ret) { 1701 btrfs_abort_transaction(trans, ret); 1702 goto fail; 1703 } 1704 1705 fail: 1706 pending->error = ret; 1707 dir_item_existed: 1708 trans->block_rsv = rsv; 1709 trans->bytes_reserved = 0; 1710 clear_skip_qgroup: 1711 btrfs_clear_skip_qgroup(trans); 1712 no_free_objectid: 1713 kfree(new_root_item); 1714 pending->root_item = NULL; 1715 btrfs_free_path(path); 1716 pending->path = NULL; 1717 1718 return ret; 1719 } 1720 1721 /* 1722 * create all the snapshots we've scheduled for creation 1723 */ 1724 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1725 { 1726 struct btrfs_pending_snapshot *pending, *next; 1727 struct list_head *head = &trans->transaction->pending_snapshots; 1728 int ret = 0; 1729 1730 list_for_each_entry_safe(pending, next, head, list) { 1731 list_del(&pending->list); 1732 ret = create_pending_snapshot(trans, pending); 1733 if (ret) 1734 break; 1735 } 1736 return ret; 1737 } 1738 1739 static void update_super_roots(struct btrfs_fs_info *fs_info) 1740 { 1741 struct btrfs_root_item *root_item; 1742 struct btrfs_super_block *super; 1743 1744 super = fs_info->super_copy; 1745 1746 root_item = &fs_info->chunk_root->root_item; 1747 super->chunk_root = root_item->bytenr; 1748 super->chunk_root_generation = root_item->generation; 1749 super->chunk_root_level = root_item->level; 1750 1751 root_item = &fs_info->tree_root->root_item; 1752 super->root = root_item->bytenr; 1753 super->generation = root_item->generation; 1754 super->root_level = root_item->level; 1755 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1756 super->cache_generation = root_item->generation; 1757 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1758 super->uuid_tree_generation = root_item->generation; 1759 } 1760 1761 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1762 { 1763 struct btrfs_transaction *trans; 1764 int ret = 0; 1765 1766 spin_lock(&info->trans_lock); 1767 trans = info->running_transaction; 1768 if (trans) 1769 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1770 spin_unlock(&info->trans_lock); 1771 return ret; 1772 } 1773 1774 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1775 { 1776 struct btrfs_transaction *trans; 1777 int ret = 0; 1778 1779 spin_lock(&info->trans_lock); 1780 trans = info->running_transaction; 1781 if (trans) 1782 ret = is_transaction_blocked(trans); 1783 spin_unlock(&info->trans_lock); 1784 return ret; 1785 } 1786 1787 /* 1788 * wait for the current transaction commit to start and block subsequent 1789 * transaction joins 1790 */ 1791 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, 1792 struct btrfs_transaction *trans) 1793 { 1794 wait_event(fs_info->transaction_blocked_wait, 1795 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted); 1796 } 1797 1798 /* 1799 * wait for the current transaction to start and then become unblocked. 1800 * caller holds ref. 1801 */ 1802 static void wait_current_trans_commit_start_and_unblock( 1803 struct btrfs_fs_info *fs_info, 1804 struct btrfs_transaction *trans) 1805 { 1806 wait_event(fs_info->transaction_wait, 1807 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted); 1808 } 1809 1810 /* 1811 * commit transactions asynchronously. once btrfs_commit_transaction_async 1812 * returns, any subsequent transaction will not be allowed to join. 1813 */ 1814 struct btrfs_async_commit { 1815 struct btrfs_trans_handle *newtrans; 1816 struct work_struct work; 1817 }; 1818 1819 static void do_async_commit(struct work_struct *work) 1820 { 1821 struct btrfs_async_commit *ac = 1822 container_of(work, struct btrfs_async_commit, work); 1823 1824 /* 1825 * We've got freeze protection passed with the transaction. 1826 * Tell lockdep about it. 1827 */ 1828 if (ac->newtrans->type & __TRANS_FREEZABLE) 1829 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1830 1831 current->journal_info = ac->newtrans; 1832 1833 btrfs_commit_transaction(ac->newtrans); 1834 kfree(ac); 1835 } 1836 1837 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1838 int wait_for_unblock) 1839 { 1840 struct btrfs_fs_info *fs_info = trans->fs_info; 1841 struct btrfs_async_commit *ac; 1842 struct btrfs_transaction *cur_trans; 1843 1844 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1845 if (!ac) 1846 return -ENOMEM; 1847 1848 INIT_WORK(&ac->work, do_async_commit); 1849 ac->newtrans = btrfs_join_transaction(trans->root); 1850 if (IS_ERR(ac->newtrans)) { 1851 int err = PTR_ERR(ac->newtrans); 1852 kfree(ac); 1853 return err; 1854 } 1855 1856 /* take transaction reference */ 1857 cur_trans = trans->transaction; 1858 refcount_inc(&cur_trans->use_count); 1859 1860 btrfs_end_transaction(trans); 1861 1862 /* 1863 * Tell lockdep we've released the freeze rwsem, since the 1864 * async commit thread will be the one to unlock it. 1865 */ 1866 if (ac->newtrans->type & __TRANS_FREEZABLE) 1867 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1868 1869 schedule_work(&ac->work); 1870 1871 /* wait for transaction to start and unblock */ 1872 if (wait_for_unblock) 1873 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); 1874 else 1875 wait_current_trans_commit_start(fs_info, cur_trans); 1876 1877 if (current->journal_info == trans) 1878 current->journal_info = NULL; 1879 1880 btrfs_put_transaction(cur_trans); 1881 return 0; 1882 } 1883 1884 1885 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1886 { 1887 struct btrfs_fs_info *fs_info = trans->fs_info; 1888 struct btrfs_transaction *cur_trans = trans->transaction; 1889 1890 WARN_ON(refcount_read(&trans->use_count) > 1); 1891 1892 btrfs_abort_transaction(trans, err); 1893 1894 spin_lock(&fs_info->trans_lock); 1895 1896 /* 1897 * If the transaction is removed from the list, it means this 1898 * transaction has been committed successfully, so it is impossible 1899 * to call the cleanup function. 1900 */ 1901 BUG_ON(list_empty(&cur_trans->list)); 1902 1903 list_del_init(&cur_trans->list); 1904 if (cur_trans == fs_info->running_transaction) { 1905 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1906 spin_unlock(&fs_info->trans_lock); 1907 wait_event(cur_trans->writer_wait, 1908 atomic_read(&cur_trans->num_writers) == 1); 1909 1910 spin_lock(&fs_info->trans_lock); 1911 } 1912 spin_unlock(&fs_info->trans_lock); 1913 1914 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1915 1916 spin_lock(&fs_info->trans_lock); 1917 if (cur_trans == fs_info->running_transaction) 1918 fs_info->running_transaction = NULL; 1919 spin_unlock(&fs_info->trans_lock); 1920 1921 if (trans->type & __TRANS_FREEZABLE) 1922 sb_end_intwrite(fs_info->sb); 1923 btrfs_put_transaction(cur_trans); 1924 btrfs_put_transaction(cur_trans); 1925 1926 trace_btrfs_transaction_commit(trans->root); 1927 1928 if (current->journal_info == trans) 1929 current->journal_info = NULL; 1930 btrfs_scrub_cancel(fs_info); 1931 1932 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1933 } 1934 1935 /* 1936 * Release reserved delayed ref space of all pending block groups of the 1937 * transaction and remove them from the list 1938 */ 1939 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 1940 { 1941 struct btrfs_fs_info *fs_info = trans->fs_info; 1942 struct btrfs_block_group *block_group, *tmp; 1943 1944 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 1945 btrfs_delayed_refs_rsv_release(fs_info, 1); 1946 list_del_init(&block_group->bg_list); 1947 } 1948 } 1949 1950 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans) 1951 { 1952 struct btrfs_fs_info *fs_info = trans->fs_info; 1953 1954 /* 1955 * We use writeback_inodes_sb here because if we used 1956 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 1957 * Currently are holding the fs freeze lock, if we do an async flush 1958 * we'll do btrfs_join_transaction() and deadlock because we need to 1959 * wait for the fs freeze lock. Using the direct flushing we benefit 1960 * from already being in a transaction and our join_transaction doesn't 1961 * have to re-take the fs freeze lock. 1962 */ 1963 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) { 1964 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 1965 } else { 1966 struct btrfs_pending_snapshot *pending; 1967 struct list_head *head = &trans->transaction->pending_snapshots; 1968 1969 /* 1970 * Flush dellaloc for any root that is going to be snapshotted. 1971 * This is done to avoid a corrupted version of files, in the 1972 * snapshots, that had both buffered and direct IO writes (even 1973 * if they were done sequentially) due to an unordered update of 1974 * the inode's size on disk. 1975 */ 1976 list_for_each_entry(pending, head, list) { 1977 int ret; 1978 1979 ret = btrfs_start_delalloc_snapshot(pending->root); 1980 if (ret) 1981 return ret; 1982 } 1983 } 1984 return 0; 1985 } 1986 1987 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans) 1988 { 1989 struct btrfs_fs_info *fs_info = trans->fs_info; 1990 1991 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) { 1992 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1993 } else { 1994 struct btrfs_pending_snapshot *pending; 1995 struct list_head *head = &trans->transaction->pending_snapshots; 1996 1997 /* 1998 * Wait for any dellaloc that we started previously for the roots 1999 * that are going to be snapshotted. This is to avoid a corrupted 2000 * version of files in the snapshots that had both buffered and 2001 * direct IO writes (even if they were done sequentially). 2002 */ 2003 list_for_each_entry(pending, head, list) 2004 btrfs_wait_ordered_extents(pending->root, 2005 U64_MAX, 0, U64_MAX); 2006 } 2007 } 2008 2009 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2010 { 2011 struct btrfs_fs_info *fs_info = trans->fs_info; 2012 struct btrfs_transaction *cur_trans = trans->transaction; 2013 struct btrfs_transaction *prev_trans = NULL; 2014 int ret; 2015 2016 ASSERT(refcount_read(&trans->use_count) == 1); 2017 2018 /* 2019 * Some places just start a transaction to commit it. We need to make 2020 * sure that if this commit fails that the abort code actually marks the 2021 * transaction as failed, so set trans->dirty to make the abort code do 2022 * the right thing. 2023 */ 2024 trans->dirty = true; 2025 2026 /* Stop the commit early if ->aborted is set */ 2027 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2028 ret = cur_trans->aborted; 2029 btrfs_end_transaction(trans); 2030 return ret; 2031 } 2032 2033 btrfs_trans_release_metadata(trans); 2034 trans->block_rsv = NULL; 2035 2036 /* make a pass through all the delayed refs we have so far 2037 * any runnings procs may add more while we are here 2038 */ 2039 ret = btrfs_run_delayed_refs(trans, 0); 2040 if (ret) { 2041 btrfs_end_transaction(trans); 2042 return ret; 2043 } 2044 2045 cur_trans = trans->transaction; 2046 2047 /* 2048 * set the flushing flag so procs in this transaction have to 2049 * start sending their work down. 2050 */ 2051 cur_trans->delayed_refs.flushing = 1; 2052 smp_wmb(); 2053 2054 btrfs_create_pending_block_groups(trans); 2055 2056 ret = btrfs_run_delayed_refs(trans, 0); 2057 if (ret) { 2058 btrfs_end_transaction(trans); 2059 return ret; 2060 } 2061 2062 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2063 int run_it = 0; 2064 2065 /* this mutex is also taken before trying to set 2066 * block groups readonly. We need to make sure 2067 * that nobody has set a block group readonly 2068 * after a extents from that block group have been 2069 * allocated for cache files. btrfs_set_block_group_ro 2070 * will wait for the transaction to commit if it 2071 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2072 * 2073 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2074 * only one process starts all the block group IO. It wouldn't 2075 * hurt to have more than one go through, but there's no 2076 * real advantage to it either. 2077 */ 2078 mutex_lock(&fs_info->ro_block_group_mutex); 2079 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2080 &cur_trans->flags)) 2081 run_it = 1; 2082 mutex_unlock(&fs_info->ro_block_group_mutex); 2083 2084 if (run_it) { 2085 ret = btrfs_start_dirty_block_groups(trans); 2086 if (ret) { 2087 btrfs_end_transaction(trans); 2088 return ret; 2089 } 2090 } 2091 } 2092 2093 spin_lock(&fs_info->trans_lock); 2094 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2095 spin_unlock(&fs_info->trans_lock); 2096 refcount_inc(&cur_trans->use_count); 2097 ret = btrfs_end_transaction(trans); 2098 2099 wait_for_commit(cur_trans); 2100 2101 if (unlikely(cur_trans->aborted)) 2102 ret = cur_trans->aborted; 2103 2104 btrfs_put_transaction(cur_trans); 2105 2106 return ret; 2107 } 2108 2109 cur_trans->state = TRANS_STATE_COMMIT_START; 2110 wake_up(&fs_info->transaction_blocked_wait); 2111 2112 if (cur_trans->list.prev != &fs_info->trans_list) { 2113 prev_trans = list_entry(cur_trans->list.prev, 2114 struct btrfs_transaction, list); 2115 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2116 refcount_inc(&prev_trans->use_count); 2117 spin_unlock(&fs_info->trans_lock); 2118 2119 wait_for_commit(prev_trans); 2120 ret = prev_trans->aborted; 2121 2122 btrfs_put_transaction(prev_trans); 2123 if (ret) 2124 goto cleanup_transaction; 2125 } else { 2126 spin_unlock(&fs_info->trans_lock); 2127 } 2128 } else { 2129 spin_unlock(&fs_info->trans_lock); 2130 /* 2131 * The previous transaction was aborted and was already removed 2132 * from the list of transactions at fs_info->trans_list. So we 2133 * abort to prevent writing a new superblock that reflects a 2134 * corrupt state (pointing to trees with unwritten nodes/leafs). 2135 */ 2136 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) { 2137 ret = -EROFS; 2138 goto cleanup_transaction; 2139 } 2140 } 2141 2142 extwriter_counter_dec(cur_trans, trans->type); 2143 2144 ret = btrfs_start_delalloc_flush(trans); 2145 if (ret) 2146 goto cleanup_transaction; 2147 2148 ret = btrfs_run_delayed_items(trans); 2149 if (ret) 2150 goto cleanup_transaction; 2151 2152 wait_event(cur_trans->writer_wait, 2153 extwriter_counter_read(cur_trans) == 0); 2154 2155 /* some pending stuffs might be added after the previous flush. */ 2156 ret = btrfs_run_delayed_items(trans); 2157 if (ret) 2158 goto cleanup_transaction; 2159 2160 btrfs_wait_delalloc_flush(trans); 2161 2162 btrfs_scrub_pause(fs_info); 2163 /* 2164 * Ok now we need to make sure to block out any other joins while we 2165 * commit the transaction. We could have started a join before setting 2166 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2167 */ 2168 spin_lock(&fs_info->trans_lock); 2169 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2170 spin_unlock(&fs_info->trans_lock); 2171 wait_event(cur_trans->writer_wait, 2172 atomic_read(&cur_trans->num_writers) == 1); 2173 2174 /* ->aborted might be set after the previous check, so check it */ 2175 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2176 ret = cur_trans->aborted; 2177 goto scrub_continue; 2178 } 2179 /* 2180 * the reloc mutex makes sure that we stop 2181 * the balancing code from coming in and moving 2182 * extents around in the middle of the commit 2183 */ 2184 mutex_lock(&fs_info->reloc_mutex); 2185 2186 /* 2187 * We needn't worry about the delayed items because we will 2188 * deal with them in create_pending_snapshot(), which is the 2189 * core function of the snapshot creation. 2190 */ 2191 ret = create_pending_snapshots(trans); 2192 if (ret) { 2193 mutex_unlock(&fs_info->reloc_mutex); 2194 goto scrub_continue; 2195 } 2196 2197 /* 2198 * We insert the dir indexes of the snapshots and update the inode 2199 * of the snapshots' parents after the snapshot creation, so there 2200 * are some delayed items which are not dealt with. Now deal with 2201 * them. 2202 * 2203 * We needn't worry that this operation will corrupt the snapshots, 2204 * because all the tree which are snapshoted will be forced to COW 2205 * the nodes and leaves. 2206 */ 2207 ret = btrfs_run_delayed_items(trans); 2208 if (ret) { 2209 mutex_unlock(&fs_info->reloc_mutex); 2210 goto scrub_continue; 2211 } 2212 2213 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2214 if (ret) { 2215 mutex_unlock(&fs_info->reloc_mutex); 2216 goto scrub_continue; 2217 } 2218 2219 /* 2220 * make sure none of the code above managed to slip in a 2221 * delayed item 2222 */ 2223 btrfs_assert_delayed_root_empty(fs_info); 2224 2225 WARN_ON(cur_trans != trans->transaction); 2226 2227 /* btrfs_commit_tree_roots is responsible for getting the 2228 * various roots consistent with each other. Every pointer 2229 * in the tree of tree roots has to point to the most up to date 2230 * root for every subvolume and other tree. So, we have to keep 2231 * the tree logging code from jumping in and changing any 2232 * of the trees. 2233 * 2234 * At this point in the commit, there can't be any tree-log 2235 * writers, but a little lower down we drop the trans mutex 2236 * and let new people in. By holding the tree_log_mutex 2237 * from now until after the super is written, we avoid races 2238 * with the tree-log code. 2239 */ 2240 mutex_lock(&fs_info->tree_log_mutex); 2241 2242 ret = commit_fs_roots(trans); 2243 if (ret) { 2244 mutex_unlock(&fs_info->tree_log_mutex); 2245 mutex_unlock(&fs_info->reloc_mutex); 2246 goto scrub_continue; 2247 } 2248 2249 /* 2250 * Since the transaction is done, we can apply the pending changes 2251 * before the next transaction. 2252 */ 2253 btrfs_apply_pending_changes(fs_info); 2254 2255 /* commit_fs_roots gets rid of all the tree log roots, it is now 2256 * safe to free the root of tree log roots 2257 */ 2258 btrfs_free_log_root_tree(trans, fs_info); 2259 2260 /* 2261 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates 2262 * new delayed refs. Must handle them or qgroup can be wrong. 2263 */ 2264 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2265 if (ret) { 2266 mutex_unlock(&fs_info->tree_log_mutex); 2267 mutex_unlock(&fs_info->reloc_mutex); 2268 goto scrub_continue; 2269 } 2270 2271 /* 2272 * Since fs roots are all committed, we can get a quite accurate 2273 * new_roots. So let's do quota accounting. 2274 */ 2275 ret = btrfs_qgroup_account_extents(trans); 2276 if (ret < 0) { 2277 mutex_unlock(&fs_info->tree_log_mutex); 2278 mutex_unlock(&fs_info->reloc_mutex); 2279 goto scrub_continue; 2280 } 2281 2282 ret = commit_cowonly_roots(trans); 2283 if (ret) { 2284 mutex_unlock(&fs_info->tree_log_mutex); 2285 mutex_unlock(&fs_info->reloc_mutex); 2286 goto scrub_continue; 2287 } 2288 2289 /* 2290 * The tasks which save the space cache and inode cache may also 2291 * update ->aborted, check it. 2292 */ 2293 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2294 ret = cur_trans->aborted; 2295 mutex_unlock(&fs_info->tree_log_mutex); 2296 mutex_unlock(&fs_info->reloc_mutex); 2297 goto scrub_continue; 2298 } 2299 2300 btrfs_prepare_extent_commit(fs_info); 2301 2302 cur_trans = fs_info->running_transaction; 2303 2304 btrfs_set_root_node(&fs_info->tree_root->root_item, 2305 fs_info->tree_root->node); 2306 list_add_tail(&fs_info->tree_root->dirty_list, 2307 &cur_trans->switch_commits); 2308 2309 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2310 fs_info->chunk_root->node); 2311 list_add_tail(&fs_info->chunk_root->dirty_list, 2312 &cur_trans->switch_commits); 2313 2314 switch_commit_roots(trans); 2315 2316 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2317 ASSERT(list_empty(&cur_trans->io_bgs)); 2318 update_super_roots(fs_info); 2319 2320 btrfs_set_super_log_root(fs_info->super_copy, 0); 2321 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2322 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2323 sizeof(*fs_info->super_copy)); 2324 2325 btrfs_commit_device_sizes(cur_trans); 2326 2327 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2328 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2329 2330 btrfs_trans_release_chunk_metadata(trans); 2331 2332 spin_lock(&fs_info->trans_lock); 2333 cur_trans->state = TRANS_STATE_UNBLOCKED; 2334 fs_info->running_transaction = NULL; 2335 spin_unlock(&fs_info->trans_lock); 2336 mutex_unlock(&fs_info->reloc_mutex); 2337 2338 wake_up(&fs_info->transaction_wait); 2339 2340 ret = btrfs_write_and_wait_transaction(trans); 2341 if (ret) { 2342 btrfs_handle_fs_error(fs_info, ret, 2343 "Error while writing out transaction"); 2344 mutex_unlock(&fs_info->tree_log_mutex); 2345 goto scrub_continue; 2346 } 2347 2348 ret = write_all_supers(fs_info, 0); 2349 /* 2350 * the super is written, we can safely allow the tree-loggers 2351 * to go about their business 2352 */ 2353 mutex_unlock(&fs_info->tree_log_mutex); 2354 if (ret) 2355 goto scrub_continue; 2356 2357 btrfs_finish_extent_commit(trans); 2358 2359 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2360 btrfs_clear_space_info_full(fs_info); 2361 2362 fs_info->last_trans_committed = cur_trans->transid; 2363 /* 2364 * We needn't acquire the lock here because there is no other task 2365 * which can change it. 2366 */ 2367 cur_trans->state = TRANS_STATE_COMPLETED; 2368 wake_up(&cur_trans->commit_wait); 2369 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags); 2370 2371 spin_lock(&fs_info->trans_lock); 2372 list_del_init(&cur_trans->list); 2373 spin_unlock(&fs_info->trans_lock); 2374 2375 btrfs_put_transaction(cur_trans); 2376 btrfs_put_transaction(cur_trans); 2377 2378 if (trans->type & __TRANS_FREEZABLE) 2379 sb_end_intwrite(fs_info->sb); 2380 2381 trace_btrfs_transaction_commit(trans->root); 2382 2383 btrfs_scrub_continue(fs_info); 2384 2385 if (current->journal_info == trans) 2386 current->journal_info = NULL; 2387 2388 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2389 2390 return ret; 2391 2392 scrub_continue: 2393 btrfs_scrub_continue(fs_info); 2394 cleanup_transaction: 2395 btrfs_trans_release_metadata(trans); 2396 btrfs_cleanup_pending_block_groups(trans); 2397 btrfs_trans_release_chunk_metadata(trans); 2398 trans->block_rsv = NULL; 2399 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2400 if (current->journal_info == trans) 2401 current->journal_info = NULL; 2402 cleanup_transaction(trans, ret); 2403 2404 return ret; 2405 } 2406 2407 /* 2408 * return < 0 if error 2409 * 0 if there are no more dead_roots at the time of call 2410 * 1 there are more to be processed, call me again 2411 * 2412 * The return value indicates there are certainly more snapshots to delete, but 2413 * if there comes a new one during processing, it may return 0. We don't mind, 2414 * because btrfs_commit_super will poke cleaner thread and it will process it a 2415 * few seconds later. 2416 */ 2417 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2418 { 2419 int ret; 2420 struct btrfs_fs_info *fs_info = root->fs_info; 2421 2422 spin_lock(&fs_info->trans_lock); 2423 if (list_empty(&fs_info->dead_roots)) { 2424 spin_unlock(&fs_info->trans_lock); 2425 return 0; 2426 } 2427 root = list_first_entry(&fs_info->dead_roots, 2428 struct btrfs_root, root_list); 2429 list_del_init(&root->root_list); 2430 spin_unlock(&fs_info->trans_lock); 2431 2432 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2433 2434 btrfs_kill_all_delayed_nodes(root); 2435 2436 if (btrfs_header_backref_rev(root->node) < 2437 BTRFS_MIXED_BACKREF_REV) 2438 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2439 else 2440 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2441 2442 return (ret < 0) ? 0 : 1; 2443 } 2444 2445 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2446 { 2447 unsigned long prev; 2448 unsigned long bit; 2449 2450 prev = xchg(&fs_info->pending_changes, 0); 2451 if (!prev) 2452 return; 2453 2454 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2455 if (prev & bit) 2456 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2457 prev &= ~bit; 2458 2459 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2460 if (prev & bit) 2461 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2462 prev &= ~bit; 2463 2464 bit = 1 << BTRFS_PENDING_COMMIT; 2465 if (prev & bit) 2466 btrfs_debug(fs_info, "pending commit done"); 2467 prev &= ~bit; 2468 2469 if (prev) 2470 btrfs_warn(fs_info, 2471 "unknown pending changes left 0x%lx, ignoring", prev); 2472 } 2473