xref: /openbmc/linux/fs/btrfs/transaction.c (revision dbf4d133)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "dev-replace.h"
22 #include "qgroup.h"
23 #include "block-group.h"
24 
25 #define BTRFS_ROOT_TRANS_TAG 0
26 
27 /*
28  * Transaction states and transitions
29  *
30  * No running transaction (fs tree blocks are not modified)
31  * |
32  * | To next stage:
33  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
34  * V
35  * Transaction N [[TRANS_STATE_RUNNING]]
36  * |
37  * | New trans handles can be attached to transaction N by calling all
38  * | start_transaction() variants.
39  * |
40  * | To next stage:
41  * |  Call btrfs_commit_transaction() on any trans handle attached to
42  * |  transaction N
43  * V
44  * Transaction N [[TRANS_STATE_COMMIT_START]]
45  * |
46  * | Will wait for previous running transaction to completely finish if there
47  * | is one
48  * |
49  * | Then one of the following happes:
50  * | - Wait for all other trans handle holders to release.
51  * |   The btrfs_commit_transaction() caller will do the commit work.
52  * | - Wait for current transaction to be committed by others.
53  * |   Other btrfs_commit_transaction() caller will do the commit work.
54  * |
55  * | At this stage, only btrfs_join_transaction*() variants can attach
56  * | to this running transaction.
57  * | All other variants will wait for current one to finish and attach to
58  * | transaction N+1.
59  * |
60  * | To next stage:
61  * |  Caller is chosen to commit transaction N, and all other trans handle
62  * |  haven been released.
63  * V
64  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
65  * |
66  * | The heavy lifting transaction work is started.
67  * | From running delayed refs (modifying extent tree) to creating pending
68  * | snapshots, running qgroups.
69  * | In short, modify supporting trees to reflect modifications of subvolume
70  * | trees.
71  * |
72  * | At this stage, all start_transaction() calls will wait for this
73  * | transaction to finish and attach to transaction N+1.
74  * |
75  * | To next stage:
76  * |  Until all supporting trees are updated.
77  * V
78  * Transaction N [[TRANS_STATE_UNBLOCKED]]
79  * |						    Transaction N+1
80  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
81  * | need to write them back to disk and update	    |
82  * | super blocks.				    |
83  * |						    |
84  * | At this stage, new transaction is allowed to   |
85  * | start.					    |
86  * | All new start_transaction() calls will be	    |
87  * | attached to transid N+1.			    |
88  * |						    |
89  * | To next stage:				    |
90  * |  Until all tree blocks are super blocks are    |
91  * |  written to block devices			    |
92  * V						    |
93  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
94  *   All tree blocks and super blocks are written.  Transaction N+1
95  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
96  *   data structures will be cleaned up.	    | Life goes on
97  */
98 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
99 	[TRANS_STATE_RUNNING]		= 0U,
100 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
101 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
102 					   __TRANS_ATTACH |
103 					   __TRANS_JOIN |
104 					   __TRANS_JOIN_NOSTART),
105 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
106 					   __TRANS_ATTACH |
107 					   __TRANS_JOIN |
108 					   __TRANS_JOIN_NOLOCK |
109 					   __TRANS_JOIN_NOSTART),
110 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
111 					   __TRANS_ATTACH |
112 					   __TRANS_JOIN |
113 					   __TRANS_JOIN_NOLOCK |
114 					   __TRANS_JOIN_NOSTART),
115 };
116 
117 void btrfs_put_transaction(struct btrfs_transaction *transaction)
118 {
119 	WARN_ON(refcount_read(&transaction->use_count) == 0);
120 	if (refcount_dec_and_test(&transaction->use_count)) {
121 		BUG_ON(!list_empty(&transaction->list));
122 		WARN_ON(!RB_EMPTY_ROOT(
123 				&transaction->delayed_refs.href_root.rb_root));
124 		WARN_ON(!RB_EMPTY_ROOT(
125 				&transaction->delayed_refs.dirty_extent_root));
126 		if (transaction->delayed_refs.pending_csums)
127 			btrfs_err(transaction->fs_info,
128 				  "pending csums is %llu",
129 				  transaction->delayed_refs.pending_csums);
130 		/*
131 		 * If any block groups are found in ->deleted_bgs then it's
132 		 * because the transaction was aborted and a commit did not
133 		 * happen (things failed before writing the new superblock
134 		 * and calling btrfs_finish_extent_commit()), so we can not
135 		 * discard the physical locations of the block groups.
136 		 */
137 		while (!list_empty(&transaction->deleted_bgs)) {
138 			struct btrfs_block_group *cache;
139 
140 			cache = list_first_entry(&transaction->deleted_bgs,
141 						 struct btrfs_block_group,
142 						 bg_list);
143 			list_del_init(&cache->bg_list);
144 			btrfs_put_block_group_trimming(cache);
145 			btrfs_put_block_group(cache);
146 		}
147 		WARN_ON(!list_empty(&transaction->dev_update_list));
148 		kfree(transaction);
149 	}
150 }
151 
152 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
153 {
154 	struct btrfs_transaction *cur_trans = trans->transaction;
155 	struct btrfs_fs_info *fs_info = trans->fs_info;
156 	struct btrfs_root *root, *tmp;
157 
158 	down_write(&fs_info->commit_root_sem);
159 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
160 				 dirty_list) {
161 		list_del_init(&root->dirty_list);
162 		free_extent_buffer(root->commit_root);
163 		root->commit_root = btrfs_root_node(root);
164 		if (is_fstree(root->root_key.objectid))
165 			btrfs_unpin_free_ino(root);
166 		extent_io_tree_release(&root->dirty_log_pages);
167 		btrfs_qgroup_clean_swapped_blocks(root);
168 	}
169 
170 	/* We can free old roots now. */
171 	spin_lock(&cur_trans->dropped_roots_lock);
172 	while (!list_empty(&cur_trans->dropped_roots)) {
173 		root = list_first_entry(&cur_trans->dropped_roots,
174 					struct btrfs_root, root_list);
175 		list_del_init(&root->root_list);
176 		spin_unlock(&cur_trans->dropped_roots_lock);
177 		btrfs_free_log(trans, root);
178 		btrfs_drop_and_free_fs_root(fs_info, root);
179 		spin_lock(&cur_trans->dropped_roots_lock);
180 	}
181 	spin_unlock(&cur_trans->dropped_roots_lock);
182 	up_write(&fs_info->commit_root_sem);
183 }
184 
185 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
186 					 unsigned int type)
187 {
188 	if (type & TRANS_EXTWRITERS)
189 		atomic_inc(&trans->num_extwriters);
190 }
191 
192 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
193 					 unsigned int type)
194 {
195 	if (type & TRANS_EXTWRITERS)
196 		atomic_dec(&trans->num_extwriters);
197 }
198 
199 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
200 					  unsigned int type)
201 {
202 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
203 }
204 
205 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
206 {
207 	return atomic_read(&trans->num_extwriters);
208 }
209 
210 /*
211  * To be called after all the new block groups attached to the transaction
212  * handle have been created (btrfs_create_pending_block_groups()).
213  */
214 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
215 {
216 	struct btrfs_fs_info *fs_info = trans->fs_info;
217 
218 	if (!trans->chunk_bytes_reserved)
219 		return;
220 
221 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
222 
223 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
224 				trans->chunk_bytes_reserved, NULL);
225 	trans->chunk_bytes_reserved = 0;
226 }
227 
228 /*
229  * either allocate a new transaction or hop into the existing one
230  */
231 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
232 				     unsigned int type)
233 {
234 	struct btrfs_transaction *cur_trans;
235 
236 	spin_lock(&fs_info->trans_lock);
237 loop:
238 	/* The file system has been taken offline. No new transactions. */
239 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
240 		spin_unlock(&fs_info->trans_lock);
241 		return -EROFS;
242 	}
243 
244 	cur_trans = fs_info->running_transaction;
245 	if (cur_trans) {
246 		if (TRANS_ABORTED(cur_trans)) {
247 			spin_unlock(&fs_info->trans_lock);
248 			return cur_trans->aborted;
249 		}
250 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
251 			spin_unlock(&fs_info->trans_lock);
252 			return -EBUSY;
253 		}
254 		refcount_inc(&cur_trans->use_count);
255 		atomic_inc(&cur_trans->num_writers);
256 		extwriter_counter_inc(cur_trans, type);
257 		spin_unlock(&fs_info->trans_lock);
258 		return 0;
259 	}
260 	spin_unlock(&fs_info->trans_lock);
261 
262 	/*
263 	 * If we are ATTACH, we just want to catch the current transaction,
264 	 * and commit it. If there is no transaction, just return ENOENT.
265 	 */
266 	if (type == TRANS_ATTACH)
267 		return -ENOENT;
268 
269 	/*
270 	 * JOIN_NOLOCK only happens during the transaction commit, so
271 	 * it is impossible that ->running_transaction is NULL
272 	 */
273 	BUG_ON(type == TRANS_JOIN_NOLOCK);
274 
275 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
276 	if (!cur_trans)
277 		return -ENOMEM;
278 
279 	spin_lock(&fs_info->trans_lock);
280 	if (fs_info->running_transaction) {
281 		/*
282 		 * someone started a transaction after we unlocked.  Make sure
283 		 * to redo the checks above
284 		 */
285 		kfree(cur_trans);
286 		goto loop;
287 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
288 		spin_unlock(&fs_info->trans_lock);
289 		kfree(cur_trans);
290 		return -EROFS;
291 	}
292 
293 	cur_trans->fs_info = fs_info;
294 	atomic_set(&cur_trans->num_writers, 1);
295 	extwriter_counter_init(cur_trans, type);
296 	init_waitqueue_head(&cur_trans->writer_wait);
297 	init_waitqueue_head(&cur_trans->commit_wait);
298 	cur_trans->state = TRANS_STATE_RUNNING;
299 	/*
300 	 * One for this trans handle, one so it will live on until we
301 	 * commit the transaction.
302 	 */
303 	refcount_set(&cur_trans->use_count, 2);
304 	cur_trans->flags = 0;
305 	cur_trans->start_time = ktime_get_seconds();
306 
307 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
308 
309 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
310 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
311 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
312 
313 	/*
314 	 * although the tree mod log is per file system and not per transaction,
315 	 * the log must never go across transaction boundaries.
316 	 */
317 	smp_mb();
318 	if (!list_empty(&fs_info->tree_mod_seq_list))
319 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
320 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
321 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
322 	atomic64_set(&fs_info->tree_mod_seq, 0);
323 
324 	spin_lock_init(&cur_trans->delayed_refs.lock);
325 
326 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
327 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
328 	INIT_LIST_HEAD(&cur_trans->switch_commits);
329 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
330 	INIT_LIST_HEAD(&cur_trans->io_bgs);
331 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
332 	mutex_init(&cur_trans->cache_write_mutex);
333 	spin_lock_init(&cur_trans->dirty_bgs_lock);
334 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
335 	spin_lock_init(&cur_trans->dropped_roots_lock);
336 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
337 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
338 			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
339 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
340 			IO_TREE_FS_PINNED_EXTENTS, NULL);
341 	fs_info->generation++;
342 	cur_trans->transid = fs_info->generation;
343 	fs_info->running_transaction = cur_trans;
344 	cur_trans->aborted = 0;
345 	spin_unlock(&fs_info->trans_lock);
346 
347 	return 0;
348 }
349 
350 /*
351  * this does all the record keeping required to make sure that a reference
352  * counted root is properly recorded in a given transaction.  This is required
353  * to make sure the old root from before we joined the transaction is deleted
354  * when the transaction commits
355  */
356 static int record_root_in_trans(struct btrfs_trans_handle *trans,
357 			       struct btrfs_root *root,
358 			       int force)
359 {
360 	struct btrfs_fs_info *fs_info = root->fs_info;
361 
362 	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
363 	    root->last_trans < trans->transid) || force) {
364 		WARN_ON(root == fs_info->extent_root);
365 		WARN_ON(!force && root->commit_root != root->node);
366 
367 		/*
368 		 * see below for IN_TRANS_SETUP usage rules
369 		 * we have the reloc mutex held now, so there
370 		 * is only one writer in this function
371 		 */
372 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
373 
374 		/* make sure readers find IN_TRANS_SETUP before
375 		 * they find our root->last_trans update
376 		 */
377 		smp_wmb();
378 
379 		spin_lock(&fs_info->fs_roots_radix_lock);
380 		if (root->last_trans == trans->transid && !force) {
381 			spin_unlock(&fs_info->fs_roots_radix_lock);
382 			return 0;
383 		}
384 		radix_tree_tag_set(&fs_info->fs_roots_radix,
385 				   (unsigned long)root->root_key.objectid,
386 				   BTRFS_ROOT_TRANS_TAG);
387 		spin_unlock(&fs_info->fs_roots_radix_lock);
388 		root->last_trans = trans->transid;
389 
390 		/* this is pretty tricky.  We don't want to
391 		 * take the relocation lock in btrfs_record_root_in_trans
392 		 * unless we're really doing the first setup for this root in
393 		 * this transaction.
394 		 *
395 		 * Normally we'd use root->last_trans as a flag to decide
396 		 * if we want to take the expensive mutex.
397 		 *
398 		 * But, we have to set root->last_trans before we
399 		 * init the relocation root, otherwise, we trip over warnings
400 		 * in ctree.c.  The solution used here is to flag ourselves
401 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
402 		 * fixing up the reloc trees and everyone must wait.
403 		 *
404 		 * When this is zero, they can trust root->last_trans and fly
405 		 * through btrfs_record_root_in_trans without having to take the
406 		 * lock.  smp_wmb() makes sure that all the writes above are
407 		 * done before we pop in the zero below
408 		 */
409 		btrfs_init_reloc_root(trans, root);
410 		smp_mb__before_atomic();
411 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
412 	}
413 	return 0;
414 }
415 
416 
417 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
418 			    struct btrfs_root *root)
419 {
420 	struct btrfs_fs_info *fs_info = root->fs_info;
421 	struct btrfs_transaction *cur_trans = trans->transaction;
422 
423 	/* Add ourselves to the transaction dropped list */
424 	spin_lock(&cur_trans->dropped_roots_lock);
425 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
426 	spin_unlock(&cur_trans->dropped_roots_lock);
427 
428 	/* Make sure we don't try to update the root at commit time */
429 	spin_lock(&fs_info->fs_roots_radix_lock);
430 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
431 			     (unsigned long)root->root_key.objectid,
432 			     BTRFS_ROOT_TRANS_TAG);
433 	spin_unlock(&fs_info->fs_roots_radix_lock);
434 }
435 
436 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
437 			       struct btrfs_root *root)
438 {
439 	struct btrfs_fs_info *fs_info = root->fs_info;
440 
441 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
442 		return 0;
443 
444 	/*
445 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
446 	 * and barriers
447 	 */
448 	smp_rmb();
449 	if (root->last_trans == trans->transid &&
450 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
451 		return 0;
452 
453 	mutex_lock(&fs_info->reloc_mutex);
454 	record_root_in_trans(trans, root, 0);
455 	mutex_unlock(&fs_info->reloc_mutex);
456 
457 	return 0;
458 }
459 
460 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
461 {
462 	return (trans->state >= TRANS_STATE_COMMIT_START &&
463 		trans->state < TRANS_STATE_UNBLOCKED &&
464 		!TRANS_ABORTED(trans));
465 }
466 
467 /* wait for commit against the current transaction to become unblocked
468  * when this is done, it is safe to start a new transaction, but the current
469  * transaction might not be fully on disk.
470  */
471 static void wait_current_trans(struct btrfs_fs_info *fs_info)
472 {
473 	struct btrfs_transaction *cur_trans;
474 
475 	spin_lock(&fs_info->trans_lock);
476 	cur_trans = fs_info->running_transaction;
477 	if (cur_trans && is_transaction_blocked(cur_trans)) {
478 		refcount_inc(&cur_trans->use_count);
479 		spin_unlock(&fs_info->trans_lock);
480 
481 		wait_event(fs_info->transaction_wait,
482 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
483 			   TRANS_ABORTED(cur_trans));
484 		btrfs_put_transaction(cur_trans);
485 	} else {
486 		spin_unlock(&fs_info->trans_lock);
487 	}
488 }
489 
490 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
491 {
492 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
493 		return 0;
494 
495 	if (type == TRANS_START)
496 		return 1;
497 
498 	return 0;
499 }
500 
501 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
502 {
503 	struct btrfs_fs_info *fs_info = root->fs_info;
504 
505 	if (!fs_info->reloc_ctl ||
506 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
507 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
508 	    root->reloc_root)
509 		return false;
510 
511 	return true;
512 }
513 
514 static struct btrfs_trans_handle *
515 start_transaction(struct btrfs_root *root, unsigned int num_items,
516 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
517 		  bool enforce_qgroups)
518 {
519 	struct btrfs_fs_info *fs_info = root->fs_info;
520 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
521 	struct btrfs_trans_handle *h;
522 	struct btrfs_transaction *cur_trans;
523 	u64 num_bytes = 0;
524 	u64 qgroup_reserved = 0;
525 	bool reloc_reserved = false;
526 	int ret;
527 
528 	/* Send isn't supposed to start transactions. */
529 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
530 
531 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
532 		return ERR_PTR(-EROFS);
533 
534 	if (current->journal_info) {
535 		WARN_ON(type & TRANS_EXTWRITERS);
536 		h = current->journal_info;
537 		refcount_inc(&h->use_count);
538 		WARN_ON(refcount_read(&h->use_count) > 2);
539 		h->orig_rsv = h->block_rsv;
540 		h->block_rsv = NULL;
541 		goto got_it;
542 	}
543 
544 	/*
545 	 * Do the reservation before we join the transaction so we can do all
546 	 * the appropriate flushing if need be.
547 	 */
548 	if (num_items && root != fs_info->chunk_root) {
549 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
550 		u64 delayed_refs_bytes = 0;
551 
552 		qgroup_reserved = num_items * fs_info->nodesize;
553 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
554 				enforce_qgroups);
555 		if (ret)
556 			return ERR_PTR(ret);
557 
558 		/*
559 		 * We want to reserve all the bytes we may need all at once, so
560 		 * we only do 1 enospc flushing cycle per transaction start.  We
561 		 * accomplish this by simply assuming we'll do 2 x num_items
562 		 * worth of delayed refs updates in this trans handle, and
563 		 * refill that amount for whatever is missing in the reserve.
564 		 */
565 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
566 		if (delayed_refs_rsv->full == 0) {
567 			delayed_refs_bytes = num_bytes;
568 			num_bytes <<= 1;
569 		}
570 
571 		/*
572 		 * Do the reservation for the relocation root creation
573 		 */
574 		if (need_reserve_reloc_root(root)) {
575 			num_bytes += fs_info->nodesize;
576 			reloc_reserved = true;
577 		}
578 
579 		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
580 		if (ret)
581 			goto reserve_fail;
582 		if (delayed_refs_bytes) {
583 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
584 							  delayed_refs_bytes);
585 			num_bytes -= delayed_refs_bytes;
586 		}
587 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
588 		   !delayed_refs_rsv->full) {
589 		/*
590 		 * Some people call with btrfs_start_transaction(root, 0)
591 		 * because they can be throttled, but have some other mechanism
592 		 * for reserving space.  We still want these guys to refill the
593 		 * delayed block_rsv so just add 1 items worth of reservation
594 		 * here.
595 		 */
596 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
597 		if (ret)
598 			goto reserve_fail;
599 	}
600 again:
601 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
602 	if (!h) {
603 		ret = -ENOMEM;
604 		goto alloc_fail;
605 	}
606 
607 	/*
608 	 * If we are JOIN_NOLOCK we're already committing a transaction and
609 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
610 	 * because we're already holding a ref.  We need this because we could
611 	 * have raced in and did an fsync() on a file which can kick a commit
612 	 * and then we deadlock with somebody doing a freeze.
613 	 *
614 	 * If we are ATTACH, it means we just want to catch the current
615 	 * transaction and commit it, so we needn't do sb_start_intwrite().
616 	 */
617 	if (type & __TRANS_FREEZABLE)
618 		sb_start_intwrite(fs_info->sb);
619 
620 	if (may_wait_transaction(fs_info, type))
621 		wait_current_trans(fs_info);
622 
623 	do {
624 		ret = join_transaction(fs_info, type);
625 		if (ret == -EBUSY) {
626 			wait_current_trans(fs_info);
627 			if (unlikely(type == TRANS_ATTACH ||
628 				     type == TRANS_JOIN_NOSTART))
629 				ret = -ENOENT;
630 		}
631 	} while (ret == -EBUSY);
632 
633 	if (ret < 0)
634 		goto join_fail;
635 
636 	cur_trans = fs_info->running_transaction;
637 
638 	h->transid = cur_trans->transid;
639 	h->transaction = cur_trans;
640 	h->root = root;
641 	refcount_set(&h->use_count, 1);
642 	h->fs_info = root->fs_info;
643 
644 	h->type = type;
645 	h->can_flush_pending_bgs = true;
646 	INIT_LIST_HEAD(&h->new_bgs);
647 
648 	smp_mb();
649 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
650 	    may_wait_transaction(fs_info, type)) {
651 		current->journal_info = h;
652 		btrfs_commit_transaction(h);
653 		goto again;
654 	}
655 
656 	if (num_bytes) {
657 		trace_btrfs_space_reservation(fs_info, "transaction",
658 					      h->transid, num_bytes, 1);
659 		h->block_rsv = &fs_info->trans_block_rsv;
660 		h->bytes_reserved = num_bytes;
661 		h->reloc_reserved = reloc_reserved;
662 	}
663 
664 got_it:
665 	if (!current->journal_info)
666 		current->journal_info = h;
667 
668 	/*
669 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
670 	 * call btrfs_join_transaction() while we're also starting a
671 	 * transaction.
672 	 *
673 	 * Thus it need to be called after current->journal_info initialized,
674 	 * or we can deadlock.
675 	 */
676 	btrfs_record_root_in_trans(h, root);
677 
678 	return h;
679 
680 join_fail:
681 	if (type & __TRANS_FREEZABLE)
682 		sb_end_intwrite(fs_info->sb);
683 	kmem_cache_free(btrfs_trans_handle_cachep, h);
684 alloc_fail:
685 	if (num_bytes)
686 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
687 					num_bytes, NULL);
688 reserve_fail:
689 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
690 	return ERR_PTR(ret);
691 }
692 
693 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
694 						   unsigned int num_items)
695 {
696 	return start_transaction(root, num_items, TRANS_START,
697 				 BTRFS_RESERVE_FLUSH_ALL, true);
698 }
699 
700 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
701 					struct btrfs_root *root,
702 					unsigned int num_items,
703 					int min_factor)
704 {
705 	struct btrfs_fs_info *fs_info = root->fs_info;
706 	struct btrfs_trans_handle *trans;
707 	u64 num_bytes;
708 	int ret;
709 
710 	/*
711 	 * We have two callers: unlink and block group removal.  The
712 	 * former should succeed even if we will temporarily exceed
713 	 * quota and the latter operates on the extent root so
714 	 * qgroup enforcement is ignored anyway.
715 	 */
716 	trans = start_transaction(root, num_items, TRANS_START,
717 				  BTRFS_RESERVE_FLUSH_ALL, false);
718 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
719 		return trans;
720 
721 	trans = btrfs_start_transaction(root, 0);
722 	if (IS_ERR(trans))
723 		return trans;
724 
725 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
726 	ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
727 				       num_bytes, min_factor);
728 	if (ret) {
729 		btrfs_end_transaction(trans);
730 		return ERR_PTR(ret);
731 	}
732 
733 	trans->block_rsv = &fs_info->trans_block_rsv;
734 	trans->bytes_reserved = num_bytes;
735 	trace_btrfs_space_reservation(fs_info, "transaction",
736 				      trans->transid, num_bytes, 1);
737 
738 	return trans;
739 }
740 
741 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
742 {
743 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
744 				 true);
745 }
746 
747 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
748 {
749 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
750 				 BTRFS_RESERVE_NO_FLUSH, true);
751 }
752 
753 /*
754  * Similar to regular join but it never starts a transaction when none is
755  * running or after waiting for the current one to finish.
756  */
757 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
758 {
759 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
760 				 BTRFS_RESERVE_NO_FLUSH, true);
761 }
762 
763 /*
764  * btrfs_attach_transaction() - catch the running transaction
765  *
766  * It is used when we want to commit the current the transaction, but
767  * don't want to start a new one.
768  *
769  * Note: If this function return -ENOENT, it just means there is no
770  * running transaction. But it is possible that the inactive transaction
771  * is still in the memory, not fully on disk. If you hope there is no
772  * inactive transaction in the fs when -ENOENT is returned, you should
773  * invoke
774  *     btrfs_attach_transaction_barrier()
775  */
776 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
777 {
778 	return start_transaction(root, 0, TRANS_ATTACH,
779 				 BTRFS_RESERVE_NO_FLUSH, true);
780 }
781 
782 /*
783  * btrfs_attach_transaction_barrier() - catch the running transaction
784  *
785  * It is similar to the above function, the difference is this one
786  * will wait for all the inactive transactions until they fully
787  * complete.
788  */
789 struct btrfs_trans_handle *
790 btrfs_attach_transaction_barrier(struct btrfs_root *root)
791 {
792 	struct btrfs_trans_handle *trans;
793 
794 	trans = start_transaction(root, 0, TRANS_ATTACH,
795 				  BTRFS_RESERVE_NO_FLUSH, true);
796 	if (trans == ERR_PTR(-ENOENT))
797 		btrfs_wait_for_commit(root->fs_info, 0);
798 
799 	return trans;
800 }
801 
802 /* wait for a transaction commit to be fully complete */
803 static noinline void wait_for_commit(struct btrfs_transaction *commit)
804 {
805 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
806 }
807 
808 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
809 {
810 	struct btrfs_transaction *cur_trans = NULL, *t;
811 	int ret = 0;
812 
813 	if (transid) {
814 		if (transid <= fs_info->last_trans_committed)
815 			goto out;
816 
817 		/* find specified transaction */
818 		spin_lock(&fs_info->trans_lock);
819 		list_for_each_entry(t, &fs_info->trans_list, list) {
820 			if (t->transid == transid) {
821 				cur_trans = t;
822 				refcount_inc(&cur_trans->use_count);
823 				ret = 0;
824 				break;
825 			}
826 			if (t->transid > transid) {
827 				ret = 0;
828 				break;
829 			}
830 		}
831 		spin_unlock(&fs_info->trans_lock);
832 
833 		/*
834 		 * The specified transaction doesn't exist, or we
835 		 * raced with btrfs_commit_transaction
836 		 */
837 		if (!cur_trans) {
838 			if (transid > fs_info->last_trans_committed)
839 				ret = -EINVAL;
840 			goto out;
841 		}
842 	} else {
843 		/* find newest transaction that is committing | committed */
844 		spin_lock(&fs_info->trans_lock);
845 		list_for_each_entry_reverse(t, &fs_info->trans_list,
846 					    list) {
847 			if (t->state >= TRANS_STATE_COMMIT_START) {
848 				if (t->state == TRANS_STATE_COMPLETED)
849 					break;
850 				cur_trans = t;
851 				refcount_inc(&cur_trans->use_count);
852 				break;
853 			}
854 		}
855 		spin_unlock(&fs_info->trans_lock);
856 		if (!cur_trans)
857 			goto out;  /* nothing committing|committed */
858 	}
859 
860 	wait_for_commit(cur_trans);
861 	btrfs_put_transaction(cur_trans);
862 out:
863 	return ret;
864 }
865 
866 void btrfs_throttle(struct btrfs_fs_info *fs_info)
867 {
868 	wait_current_trans(fs_info);
869 }
870 
871 static int should_end_transaction(struct btrfs_trans_handle *trans)
872 {
873 	struct btrfs_fs_info *fs_info = trans->fs_info;
874 
875 	if (btrfs_check_space_for_delayed_refs(fs_info))
876 		return 1;
877 
878 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
879 }
880 
881 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
882 {
883 	struct btrfs_transaction *cur_trans = trans->transaction;
884 
885 	smp_mb();
886 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
887 	    cur_trans->delayed_refs.flushing)
888 		return 1;
889 
890 	return should_end_transaction(trans);
891 }
892 
893 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
894 
895 {
896 	struct btrfs_fs_info *fs_info = trans->fs_info;
897 
898 	if (!trans->block_rsv) {
899 		ASSERT(!trans->bytes_reserved);
900 		return;
901 	}
902 
903 	if (!trans->bytes_reserved)
904 		return;
905 
906 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
907 	trace_btrfs_space_reservation(fs_info, "transaction",
908 				      trans->transid, trans->bytes_reserved, 0);
909 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
910 				trans->bytes_reserved, NULL);
911 	trans->bytes_reserved = 0;
912 }
913 
914 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
915 				   int throttle)
916 {
917 	struct btrfs_fs_info *info = trans->fs_info;
918 	struct btrfs_transaction *cur_trans = trans->transaction;
919 	int err = 0;
920 
921 	if (refcount_read(&trans->use_count) > 1) {
922 		refcount_dec(&trans->use_count);
923 		trans->block_rsv = trans->orig_rsv;
924 		return 0;
925 	}
926 
927 	btrfs_trans_release_metadata(trans);
928 	trans->block_rsv = NULL;
929 
930 	btrfs_create_pending_block_groups(trans);
931 
932 	btrfs_trans_release_chunk_metadata(trans);
933 
934 	if (trans->type & __TRANS_FREEZABLE)
935 		sb_end_intwrite(info->sb);
936 
937 	WARN_ON(cur_trans != info->running_transaction);
938 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
939 	atomic_dec(&cur_trans->num_writers);
940 	extwriter_counter_dec(cur_trans, trans->type);
941 
942 	cond_wake_up(&cur_trans->writer_wait);
943 	btrfs_put_transaction(cur_trans);
944 
945 	if (current->journal_info == trans)
946 		current->journal_info = NULL;
947 
948 	if (throttle)
949 		btrfs_run_delayed_iputs(info);
950 
951 	if (TRANS_ABORTED(trans) ||
952 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
953 		wake_up_process(info->transaction_kthread);
954 		err = -EIO;
955 	}
956 
957 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
958 	return err;
959 }
960 
961 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
962 {
963 	return __btrfs_end_transaction(trans, 0);
964 }
965 
966 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
967 {
968 	return __btrfs_end_transaction(trans, 1);
969 }
970 
971 /*
972  * when btree blocks are allocated, they have some corresponding bits set for
973  * them in one of two extent_io trees.  This is used to make sure all of
974  * those extents are sent to disk but does not wait on them
975  */
976 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
977 			       struct extent_io_tree *dirty_pages, int mark)
978 {
979 	int err = 0;
980 	int werr = 0;
981 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
982 	struct extent_state *cached_state = NULL;
983 	u64 start = 0;
984 	u64 end;
985 
986 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
987 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
988 				      mark, &cached_state)) {
989 		bool wait_writeback = false;
990 
991 		err = convert_extent_bit(dirty_pages, start, end,
992 					 EXTENT_NEED_WAIT,
993 					 mark, &cached_state);
994 		/*
995 		 * convert_extent_bit can return -ENOMEM, which is most of the
996 		 * time a temporary error. So when it happens, ignore the error
997 		 * and wait for writeback of this range to finish - because we
998 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
999 		 * to __btrfs_wait_marked_extents() would not know that
1000 		 * writeback for this range started and therefore wouldn't
1001 		 * wait for it to finish - we don't want to commit a
1002 		 * superblock that points to btree nodes/leafs for which
1003 		 * writeback hasn't finished yet (and without errors).
1004 		 * We cleanup any entries left in the io tree when committing
1005 		 * the transaction (through extent_io_tree_release()).
1006 		 */
1007 		if (err == -ENOMEM) {
1008 			err = 0;
1009 			wait_writeback = true;
1010 		}
1011 		if (!err)
1012 			err = filemap_fdatawrite_range(mapping, start, end);
1013 		if (err)
1014 			werr = err;
1015 		else if (wait_writeback)
1016 			werr = filemap_fdatawait_range(mapping, start, end);
1017 		free_extent_state(cached_state);
1018 		cached_state = NULL;
1019 		cond_resched();
1020 		start = end + 1;
1021 	}
1022 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1023 	return werr;
1024 }
1025 
1026 /*
1027  * when btree blocks are allocated, they have some corresponding bits set for
1028  * them in one of two extent_io trees.  This is used to make sure all of
1029  * those extents are on disk for transaction or log commit.  We wait
1030  * on all the pages and clear them from the dirty pages state tree
1031  */
1032 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1033 				       struct extent_io_tree *dirty_pages)
1034 {
1035 	int err = 0;
1036 	int werr = 0;
1037 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1038 	struct extent_state *cached_state = NULL;
1039 	u64 start = 0;
1040 	u64 end;
1041 
1042 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1043 				      EXTENT_NEED_WAIT, &cached_state)) {
1044 		/*
1045 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1046 		 * When committing the transaction, we'll remove any entries
1047 		 * left in the io tree. For a log commit, we don't remove them
1048 		 * after committing the log because the tree can be accessed
1049 		 * concurrently - we do it only at transaction commit time when
1050 		 * it's safe to do it (through extent_io_tree_release()).
1051 		 */
1052 		err = clear_extent_bit(dirty_pages, start, end,
1053 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1054 		if (err == -ENOMEM)
1055 			err = 0;
1056 		if (!err)
1057 			err = filemap_fdatawait_range(mapping, start, end);
1058 		if (err)
1059 			werr = err;
1060 		free_extent_state(cached_state);
1061 		cached_state = NULL;
1062 		cond_resched();
1063 		start = end + 1;
1064 	}
1065 	if (err)
1066 		werr = err;
1067 	return werr;
1068 }
1069 
1070 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1071 		       struct extent_io_tree *dirty_pages)
1072 {
1073 	bool errors = false;
1074 	int err;
1075 
1076 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1077 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1078 		errors = true;
1079 
1080 	if (errors && !err)
1081 		err = -EIO;
1082 	return err;
1083 }
1084 
1085 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1086 {
1087 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1088 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1089 	bool errors = false;
1090 	int err;
1091 
1092 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1093 
1094 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1095 	if ((mark & EXTENT_DIRTY) &&
1096 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1097 		errors = true;
1098 
1099 	if ((mark & EXTENT_NEW) &&
1100 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1101 		errors = true;
1102 
1103 	if (errors && !err)
1104 		err = -EIO;
1105 	return err;
1106 }
1107 
1108 /*
1109  * When btree blocks are allocated the corresponding extents are marked dirty.
1110  * This function ensures such extents are persisted on disk for transaction or
1111  * log commit.
1112  *
1113  * @trans: transaction whose dirty pages we'd like to write
1114  */
1115 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1116 {
1117 	int ret;
1118 	int ret2;
1119 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1120 	struct btrfs_fs_info *fs_info = trans->fs_info;
1121 	struct blk_plug plug;
1122 
1123 	blk_start_plug(&plug);
1124 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1125 	blk_finish_plug(&plug);
1126 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1127 
1128 	extent_io_tree_release(&trans->transaction->dirty_pages);
1129 
1130 	if (ret)
1131 		return ret;
1132 	else if (ret2)
1133 		return ret2;
1134 	else
1135 		return 0;
1136 }
1137 
1138 /*
1139  * this is used to update the root pointer in the tree of tree roots.
1140  *
1141  * But, in the case of the extent allocation tree, updating the root
1142  * pointer may allocate blocks which may change the root of the extent
1143  * allocation tree.
1144  *
1145  * So, this loops and repeats and makes sure the cowonly root didn't
1146  * change while the root pointer was being updated in the metadata.
1147  */
1148 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1149 			       struct btrfs_root *root)
1150 {
1151 	int ret;
1152 	u64 old_root_bytenr;
1153 	u64 old_root_used;
1154 	struct btrfs_fs_info *fs_info = root->fs_info;
1155 	struct btrfs_root *tree_root = fs_info->tree_root;
1156 
1157 	old_root_used = btrfs_root_used(&root->root_item);
1158 
1159 	while (1) {
1160 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1161 		if (old_root_bytenr == root->node->start &&
1162 		    old_root_used == btrfs_root_used(&root->root_item))
1163 			break;
1164 
1165 		btrfs_set_root_node(&root->root_item, root->node);
1166 		ret = btrfs_update_root(trans, tree_root,
1167 					&root->root_key,
1168 					&root->root_item);
1169 		if (ret)
1170 			return ret;
1171 
1172 		old_root_used = btrfs_root_used(&root->root_item);
1173 	}
1174 
1175 	return 0;
1176 }
1177 
1178 /*
1179  * update all the cowonly tree roots on disk
1180  *
1181  * The error handling in this function may not be obvious. Any of the
1182  * failures will cause the file system to go offline. We still need
1183  * to clean up the delayed refs.
1184  */
1185 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1186 {
1187 	struct btrfs_fs_info *fs_info = trans->fs_info;
1188 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1189 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1190 	struct list_head *next;
1191 	struct extent_buffer *eb;
1192 	int ret;
1193 
1194 	eb = btrfs_lock_root_node(fs_info->tree_root);
1195 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1196 			      0, &eb);
1197 	btrfs_tree_unlock(eb);
1198 	free_extent_buffer(eb);
1199 
1200 	if (ret)
1201 		return ret;
1202 
1203 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1204 	if (ret)
1205 		return ret;
1206 
1207 	ret = btrfs_run_dev_stats(trans);
1208 	if (ret)
1209 		return ret;
1210 	ret = btrfs_run_dev_replace(trans);
1211 	if (ret)
1212 		return ret;
1213 	ret = btrfs_run_qgroups(trans);
1214 	if (ret)
1215 		return ret;
1216 
1217 	ret = btrfs_setup_space_cache(trans);
1218 	if (ret)
1219 		return ret;
1220 
1221 	/* run_qgroups might have added some more refs */
1222 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1223 	if (ret)
1224 		return ret;
1225 again:
1226 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1227 		struct btrfs_root *root;
1228 		next = fs_info->dirty_cowonly_roots.next;
1229 		list_del_init(next);
1230 		root = list_entry(next, struct btrfs_root, dirty_list);
1231 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1232 
1233 		if (root != fs_info->extent_root)
1234 			list_add_tail(&root->dirty_list,
1235 				      &trans->transaction->switch_commits);
1236 		ret = update_cowonly_root(trans, root);
1237 		if (ret)
1238 			return ret;
1239 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1240 		if (ret)
1241 			return ret;
1242 	}
1243 
1244 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1245 		ret = btrfs_write_dirty_block_groups(trans);
1246 		if (ret)
1247 			return ret;
1248 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1249 		if (ret)
1250 			return ret;
1251 	}
1252 
1253 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1254 		goto again;
1255 
1256 	list_add_tail(&fs_info->extent_root->dirty_list,
1257 		      &trans->transaction->switch_commits);
1258 
1259 	/* Update dev-replace pointer once everything is committed */
1260 	fs_info->dev_replace.committed_cursor_left =
1261 		fs_info->dev_replace.cursor_left_last_write_of_item;
1262 
1263 	return 0;
1264 }
1265 
1266 /*
1267  * dead roots are old snapshots that need to be deleted.  This allocates
1268  * a dirty root struct and adds it into the list of dead roots that need to
1269  * be deleted
1270  */
1271 void btrfs_add_dead_root(struct btrfs_root *root)
1272 {
1273 	struct btrfs_fs_info *fs_info = root->fs_info;
1274 
1275 	spin_lock(&fs_info->trans_lock);
1276 	if (list_empty(&root->root_list)) {
1277 		btrfs_grab_root(root);
1278 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1279 	}
1280 	spin_unlock(&fs_info->trans_lock);
1281 }
1282 
1283 /*
1284  * update all the cowonly tree roots on disk
1285  */
1286 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1287 {
1288 	struct btrfs_fs_info *fs_info = trans->fs_info;
1289 	struct btrfs_root *gang[8];
1290 	int i;
1291 	int ret;
1292 	int err = 0;
1293 
1294 	spin_lock(&fs_info->fs_roots_radix_lock);
1295 	while (1) {
1296 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1297 						 (void **)gang, 0,
1298 						 ARRAY_SIZE(gang),
1299 						 BTRFS_ROOT_TRANS_TAG);
1300 		if (ret == 0)
1301 			break;
1302 		for (i = 0; i < ret; i++) {
1303 			struct btrfs_root *root = gang[i];
1304 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1305 					(unsigned long)root->root_key.objectid,
1306 					BTRFS_ROOT_TRANS_TAG);
1307 			spin_unlock(&fs_info->fs_roots_radix_lock);
1308 
1309 			btrfs_free_log(trans, root);
1310 			btrfs_update_reloc_root(trans, root);
1311 
1312 			btrfs_save_ino_cache(root, trans);
1313 
1314 			/* see comments in should_cow_block() */
1315 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1316 			smp_mb__after_atomic();
1317 
1318 			if (root->commit_root != root->node) {
1319 				list_add_tail(&root->dirty_list,
1320 					&trans->transaction->switch_commits);
1321 				btrfs_set_root_node(&root->root_item,
1322 						    root->node);
1323 			}
1324 
1325 			err = btrfs_update_root(trans, fs_info->tree_root,
1326 						&root->root_key,
1327 						&root->root_item);
1328 			spin_lock(&fs_info->fs_roots_radix_lock);
1329 			if (err)
1330 				break;
1331 			btrfs_qgroup_free_meta_all_pertrans(root);
1332 		}
1333 	}
1334 	spin_unlock(&fs_info->fs_roots_radix_lock);
1335 	return err;
1336 }
1337 
1338 /*
1339  * defrag a given btree.
1340  * Every leaf in the btree is read and defragged.
1341  */
1342 int btrfs_defrag_root(struct btrfs_root *root)
1343 {
1344 	struct btrfs_fs_info *info = root->fs_info;
1345 	struct btrfs_trans_handle *trans;
1346 	int ret;
1347 
1348 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1349 		return 0;
1350 
1351 	while (1) {
1352 		trans = btrfs_start_transaction(root, 0);
1353 		if (IS_ERR(trans))
1354 			return PTR_ERR(trans);
1355 
1356 		ret = btrfs_defrag_leaves(trans, root);
1357 
1358 		btrfs_end_transaction(trans);
1359 		btrfs_btree_balance_dirty(info);
1360 		cond_resched();
1361 
1362 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1363 			break;
1364 
1365 		if (btrfs_defrag_cancelled(info)) {
1366 			btrfs_debug(info, "defrag_root cancelled");
1367 			ret = -EAGAIN;
1368 			break;
1369 		}
1370 	}
1371 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1372 	return ret;
1373 }
1374 
1375 /*
1376  * Do all special snapshot related qgroup dirty hack.
1377  *
1378  * Will do all needed qgroup inherit and dirty hack like switch commit
1379  * roots inside one transaction and write all btree into disk, to make
1380  * qgroup works.
1381  */
1382 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1383 				   struct btrfs_root *src,
1384 				   struct btrfs_root *parent,
1385 				   struct btrfs_qgroup_inherit *inherit,
1386 				   u64 dst_objectid)
1387 {
1388 	struct btrfs_fs_info *fs_info = src->fs_info;
1389 	int ret;
1390 
1391 	/*
1392 	 * Save some performance in the case that qgroups are not
1393 	 * enabled. If this check races with the ioctl, rescan will
1394 	 * kick in anyway.
1395 	 */
1396 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1397 		return 0;
1398 
1399 	/*
1400 	 * Ensure dirty @src will be committed.  Or, after coming
1401 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1402 	 * recorded root will never be updated again, causing an outdated root
1403 	 * item.
1404 	 */
1405 	record_root_in_trans(trans, src, 1);
1406 
1407 	/*
1408 	 * We are going to commit transaction, see btrfs_commit_transaction()
1409 	 * comment for reason locking tree_log_mutex
1410 	 */
1411 	mutex_lock(&fs_info->tree_log_mutex);
1412 
1413 	ret = commit_fs_roots(trans);
1414 	if (ret)
1415 		goto out;
1416 	ret = btrfs_qgroup_account_extents(trans);
1417 	if (ret < 0)
1418 		goto out;
1419 
1420 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1421 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1422 				   inherit);
1423 	if (ret < 0)
1424 		goto out;
1425 
1426 	/*
1427 	 * Now we do a simplified commit transaction, which will:
1428 	 * 1) commit all subvolume and extent tree
1429 	 *    To ensure all subvolume and extent tree have a valid
1430 	 *    commit_root to accounting later insert_dir_item()
1431 	 * 2) write all btree blocks onto disk
1432 	 *    This is to make sure later btree modification will be cowed
1433 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1434 	 * In this simplified commit, we don't really care about other trees
1435 	 * like chunk and root tree, as they won't affect qgroup.
1436 	 * And we don't write super to avoid half committed status.
1437 	 */
1438 	ret = commit_cowonly_roots(trans);
1439 	if (ret)
1440 		goto out;
1441 	switch_commit_roots(trans);
1442 	ret = btrfs_write_and_wait_transaction(trans);
1443 	if (ret)
1444 		btrfs_handle_fs_error(fs_info, ret,
1445 			"Error while writing out transaction for qgroup");
1446 
1447 out:
1448 	mutex_unlock(&fs_info->tree_log_mutex);
1449 
1450 	/*
1451 	 * Force parent root to be updated, as we recorded it before so its
1452 	 * last_trans == cur_transid.
1453 	 * Or it won't be committed again onto disk after later
1454 	 * insert_dir_item()
1455 	 */
1456 	if (!ret)
1457 		record_root_in_trans(trans, parent, 1);
1458 	return ret;
1459 }
1460 
1461 /*
1462  * new snapshots need to be created at a very specific time in the
1463  * transaction commit.  This does the actual creation.
1464  *
1465  * Note:
1466  * If the error which may affect the commitment of the current transaction
1467  * happens, we should return the error number. If the error which just affect
1468  * the creation of the pending snapshots, just return 0.
1469  */
1470 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1471 				   struct btrfs_pending_snapshot *pending)
1472 {
1473 
1474 	struct btrfs_fs_info *fs_info = trans->fs_info;
1475 	struct btrfs_key key;
1476 	struct btrfs_root_item *new_root_item;
1477 	struct btrfs_root *tree_root = fs_info->tree_root;
1478 	struct btrfs_root *root = pending->root;
1479 	struct btrfs_root *parent_root;
1480 	struct btrfs_block_rsv *rsv;
1481 	struct inode *parent_inode;
1482 	struct btrfs_path *path;
1483 	struct btrfs_dir_item *dir_item;
1484 	struct dentry *dentry;
1485 	struct extent_buffer *tmp;
1486 	struct extent_buffer *old;
1487 	struct timespec64 cur_time;
1488 	int ret = 0;
1489 	u64 to_reserve = 0;
1490 	u64 index = 0;
1491 	u64 objectid;
1492 	u64 root_flags;
1493 
1494 	ASSERT(pending->path);
1495 	path = pending->path;
1496 
1497 	ASSERT(pending->root_item);
1498 	new_root_item = pending->root_item;
1499 
1500 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1501 	if (pending->error)
1502 		goto no_free_objectid;
1503 
1504 	/*
1505 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1506 	 * accounted by later btrfs_qgroup_inherit().
1507 	 */
1508 	btrfs_set_skip_qgroup(trans, objectid);
1509 
1510 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1511 
1512 	if (to_reserve > 0) {
1513 		pending->error = btrfs_block_rsv_add(root,
1514 						     &pending->block_rsv,
1515 						     to_reserve,
1516 						     BTRFS_RESERVE_NO_FLUSH);
1517 		if (pending->error)
1518 			goto clear_skip_qgroup;
1519 	}
1520 
1521 	key.objectid = objectid;
1522 	key.offset = (u64)-1;
1523 	key.type = BTRFS_ROOT_ITEM_KEY;
1524 
1525 	rsv = trans->block_rsv;
1526 	trans->block_rsv = &pending->block_rsv;
1527 	trans->bytes_reserved = trans->block_rsv->reserved;
1528 	trace_btrfs_space_reservation(fs_info, "transaction",
1529 				      trans->transid,
1530 				      trans->bytes_reserved, 1);
1531 	dentry = pending->dentry;
1532 	parent_inode = pending->dir;
1533 	parent_root = BTRFS_I(parent_inode)->root;
1534 	record_root_in_trans(trans, parent_root, 0);
1535 
1536 	cur_time = current_time(parent_inode);
1537 
1538 	/*
1539 	 * insert the directory item
1540 	 */
1541 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1542 	BUG_ON(ret); /* -ENOMEM */
1543 
1544 	/* check if there is a file/dir which has the same name. */
1545 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1546 					 btrfs_ino(BTRFS_I(parent_inode)),
1547 					 dentry->d_name.name,
1548 					 dentry->d_name.len, 0);
1549 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1550 		pending->error = -EEXIST;
1551 		goto dir_item_existed;
1552 	} else if (IS_ERR(dir_item)) {
1553 		ret = PTR_ERR(dir_item);
1554 		btrfs_abort_transaction(trans, ret);
1555 		goto fail;
1556 	}
1557 	btrfs_release_path(path);
1558 
1559 	/*
1560 	 * pull in the delayed directory update
1561 	 * and the delayed inode item
1562 	 * otherwise we corrupt the FS during
1563 	 * snapshot
1564 	 */
1565 	ret = btrfs_run_delayed_items(trans);
1566 	if (ret) {	/* Transaction aborted */
1567 		btrfs_abort_transaction(trans, ret);
1568 		goto fail;
1569 	}
1570 
1571 	record_root_in_trans(trans, root, 0);
1572 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1573 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1574 	btrfs_check_and_init_root_item(new_root_item);
1575 
1576 	root_flags = btrfs_root_flags(new_root_item);
1577 	if (pending->readonly)
1578 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1579 	else
1580 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1581 	btrfs_set_root_flags(new_root_item, root_flags);
1582 
1583 	btrfs_set_root_generation_v2(new_root_item,
1584 			trans->transid);
1585 	generate_random_guid(new_root_item->uuid);
1586 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1587 			BTRFS_UUID_SIZE);
1588 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1589 		memset(new_root_item->received_uuid, 0,
1590 		       sizeof(new_root_item->received_uuid));
1591 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1592 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1593 		btrfs_set_root_stransid(new_root_item, 0);
1594 		btrfs_set_root_rtransid(new_root_item, 0);
1595 	}
1596 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1597 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1598 	btrfs_set_root_otransid(new_root_item, trans->transid);
1599 
1600 	old = btrfs_lock_root_node(root);
1601 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1602 	if (ret) {
1603 		btrfs_tree_unlock(old);
1604 		free_extent_buffer(old);
1605 		btrfs_abort_transaction(trans, ret);
1606 		goto fail;
1607 	}
1608 
1609 	btrfs_set_lock_blocking_write(old);
1610 
1611 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1612 	/* clean up in any case */
1613 	btrfs_tree_unlock(old);
1614 	free_extent_buffer(old);
1615 	if (ret) {
1616 		btrfs_abort_transaction(trans, ret);
1617 		goto fail;
1618 	}
1619 	/* see comments in should_cow_block() */
1620 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1621 	smp_wmb();
1622 
1623 	btrfs_set_root_node(new_root_item, tmp);
1624 	/* record when the snapshot was created in key.offset */
1625 	key.offset = trans->transid;
1626 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1627 	btrfs_tree_unlock(tmp);
1628 	free_extent_buffer(tmp);
1629 	if (ret) {
1630 		btrfs_abort_transaction(trans, ret);
1631 		goto fail;
1632 	}
1633 
1634 	/*
1635 	 * insert root back/forward references
1636 	 */
1637 	ret = btrfs_add_root_ref(trans, objectid,
1638 				 parent_root->root_key.objectid,
1639 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1640 				 dentry->d_name.name, dentry->d_name.len);
1641 	if (ret) {
1642 		btrfs_abort_transaction(trans, ret);
1643 		goto fail;
1644 	}
1645 
1646 	key.offset = (u64)-1;
1647 	pending->snap = btrfs_get_fs_root(fs_info, &key, true);
1648 	if (IS_ERR(pending->snap)) {
1649 		ret = PTR_ERR(pending->snap);
1650 		btrfs_abort_transaction(trans, ret);
1651 		goto fail;
1652 	}
1653 
1654 	ret = btrfs_reloc_post_snapshot(trans, pending);
1655 	if (ret) {
1656 		btrfs_abort_transaction(trans, ret);
1657 		goto fail;
1658 	}
1659 
1660 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1661 	if (ret) {
1662 		btrfs_abort_transaction(trans, ret);
1663 		goto fail;
1664 	}
1665 
1666 	/*
1667 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1668 	 * snapshot hack to do fast snapshot.
1669 	 * To co-operate with that hack, we do hack again.
1670 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1671 	 */
1672 	ret = qgroup_account_snapshot(trans, root, parent_root,
1673 				      pending->inherit, objectid);
1674 	if (ret < 0)
1675 		goto fail;
1676 
1677 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1678 				    dentry->d_name.len, BTRFS_I(parent_inode),
1679 				    &key, BTRFS_FT_DIR, index);
1680 	/* We have check then name at the beginning, so it is impossible. */
1681 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1682 	if (ret) {
1683 		btrfs_abort_transaction(trans, ret);
1684 		goto fail;
1685 	}
1686 
1687 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1688 					 dentry->d_name.len * 2);
1689 	parent_inode->i_mtime = parent_inode->i_ctime =
1690 		current_time(parent_inode);
1691 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1692 	if (ret) {
1693 		btrfs_abort_transaction(trans, ret);
1694 		goto fail;
1695 	}
1696 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1697 				  BTRFS_UUID_KEY_SUBVOL,
1698 				  objectid);
1699 	if (ret) {
1700 		btrfs_abort_transaction(trans, ret);
1701 		goto fail;
1702 	}
1703 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1704 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1705 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1706 					  objectid);
1707 		if (ret && ret != -EEXIST) {
1708 			btrfs_abort_transaction(trans, ret);
1709 			goto fail;
1710 		}
1711 	}
1712 
1713 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1714 	if (ret) {
1715 		btrfs_abort_transaction(trans, ret);
1716 		goto fail;
1717 	}
1718 
1719 fail:
1720 	pending->error = ret;
1721 dir_item_existed:
1722 	trans->block_rsv = rsv;
1723 	trans->bytes_reserved = 0;
1724 clear_skip_qgroup:
1725 	btrfs_clear_skip_qgroup(trans);
1726 no_free_objectid:
1727 	kfree(new_root_item);
1728 	pending->root_item = NULL;
1729 	btrfs_free_path(path);
1730 	pending->path = NULL;
1731 
1732 	return ret;
1733 }
1734 
1735 /*
1736  * create all the snapshots we've scheduled for creation
1737  */
1738 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1739 {
1740 	struct btrfs_pending_snapshot *pending, *next;
1741 	struct list_head *head = &trans->transaction->pending_snapshots;
1742 	int ret = 0;
1743 
1744 	list_for_each_entry_safe(pending, next, head, list) {
1745 		list_del(&pending->list);
1746 		ret = create_pending_snapshot(trans, pending);
1747 		if (ret)
1748 			break;
1749 	}
1750 	return ret;
1751 }
1752 
1753 static void update_super_roots(struct btrfs_fs_info *fs_info)
1754 {
1755 	struct btrfs_root_item *root_item;
1756 	struct btrfs_super_block *super;
1757 
1758 	super = fs_info->super_copy;
1759 
1760 	root_item = &fs_info->chunk_root->root_item;
1761 	super->chunk_root = root_item->bytenr;
1762 	super->chunk_root_generation = root_item->generation;
1763 	super->chunk_root_level = root_item->level;
1764 
1765 	root_item = &fs_info->tree_root->root_item;
1766 	super->root = root_item->bytenr;
1767 	super->generation = root_item->generation;
1768 	super->root_level = root_item->level;
1769 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1770 		super->cache_generation = root_item->generation;
1771 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1772 		super->uuid_tree_generation = root_item->generation;
1773 }
1774 
1775 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1776 {
1777 	struct btrfs_transaction *trans;
1778 	int ret = 0;
1779 
1780 	spin_lock(&info->trans_lock);
1781 	trans = info->running_transaction;
1782 	if (trans)
1783 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1784 	spin_unlock(&info->trans_lock);
1785 	return ret;
1786 }
1787 
1788 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1789 {
1790 	struct btrfs_transaction *trans;
1791 	int ret = 0;
1792 
1793 	spin_lock(&info->trans_lock);
1794 	trans = info->running_transaction;
1795 	if (trans)
1796 		ret = is_transaction_blocked(trans);
1797 	spin_unlock(&info->trans_lock);
1798 	return ret;
1799 }
1800 
1801 /*
1802  * wait for the current transaction commit to start and block subsequent
1803  * transaction joins
1804  */
1805 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1806 					    struct btrfs_transaction *trans)
1807 {
1808 	wait_event(fs_info->transaction_blocked_wait,
1809 		   trans->state >= TRANS_STATE_COMMIT_START ||
1810 		   TRANS_ABORTED(trans));
1811 }
1812 
1813 /*
1814  * wait for the current transaction to start and then become unblocked.
1815  * caller holds ref.
1816  */
1817 static void wait_current_trans_commit_start_and_unblock(
1818 					struct btrfs_fs_info *fs_info,
1819 					struct btrfs_transaction *trans)
1820 {
1821 	wait_event(fs_info->transaction_wait,
1822 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1823 		   TRANS_ABORTED(trans));
1824 }
1825 
1826 /*
1827  * commit transactions asynchronously. once btrfs_commit_transaction_async
1828  * returns, any subsequent transaction will not be allowed to join.
1829  */
1830 struct btrfs_async_commit {
1831 	struct btrfs_trans_handle *newtrans;
1832 	struct work_struct work;
1833 };
1834 
1835 static void do_async_commit(struct work_struct *work)
1836 {
1837 	struct btrfs_async_commit *ac =
1838 		container_of(work, struct btrfs_async_commit, work);
1839 
1840 	/*
1841 	 * We've got freeze protection passed with the transaction.
1842 	 * Tell lockdep about it.
1843 	 */
1844 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1845 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1846 
1847 	current->journal_info = ac->newtrans;
1848 
1849 	btrfs_commit_transaction(ac->newtrans);
1850 	kfree(ac);
1851 }
1852 
1853 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1854 				   int wait_for_unblock)
1855 {
1856 	struct btrfs_fs_info *fs_info = trans->fs_info;
1857 	struct btrfs_async_commit *ac;
1858 	struct btrfs_transaction *cur_trans;
1859 
1860 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1861 	if (!ac)
1862 		return -ENOMEM;
1863 
1864 	INIT_WORK(&ac->work, do_async_commit);
1865 	ac->newtrans = btrfs_join_transaction(trans->root);
1866 	if (IS_ERR(ac->newtrans)) {
1867 		int err = PTR_ERR(ac->newtrans);
1868 		kfree(ac);
1869 		return err;
1870 	}
1871 
1872 	/* take transaction reference */
1873 	cur_trans = trans->transaction;
1874 	refcount_inc(&cur_trans->use_count);
1875 
1876 	btrfs_end_transaction(trans);
1877 
1878 	/*
1879 	 * Tell lockdep we've released the freeze rwsem, since the
1880 	 * async commit thread will be the one to unlock it.
1881 	 */
1882 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1883 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1884 
1885 	schedule_work(&ac->work);
1886 
1887 	/* wait for transaction to start and unblock */
1888 	if (wait_for_unblock)
1889 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1890 	else
1891 		wait_current_trans_commit_start(fs_info, cur_trans);
1892 
1893 	if (current->journal_info == trans)
1894 		current->journal_info = NULL;
1895 
1896 	btrfs_put_transaction(cur_trans);
1897 	return 0;
1898 }
1899 
1900 
1901 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1902 {
1903 	struct btrfs_fs_info *fs_info = trans->fs_info;
1904 	struct btrfs_transaction *cur_trans = trans->transaction;
1905 
1906 	WARN_ON(refcount_read(&trans->use_count) > 1);
1907 
1908 	btrfs_abort_transaction(trans, err);
1909 
1910 	spin_lock(&fs_info->trans_lock);
1911 
1912 	/*
1913 	 * If the transaction is removed from the list, it means this
1914 	 * transaction has been committed successfully, so it is impossible
1915 	 * to call the cleanup function.
1916 	 */
1917 	BUG_ON(list_empty(&cur_trans->list));
1918 
1919 	list_del_init(&cur_trans->list);
1920 	if (cur_trans == fs_info->running_transaction) {
1921 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1922 		spin_unlock(&fs_info->trans_lock);
1923 		wait_event(cur_trans->writer_wait,
1924 			   atomic_read(&cur_trans->num_writers) == 1);
1925 
1926 		spin_lock(&fs_info->trans_lock);
1927 	}
1928 	spin_unlock(&fs_info->trans_lock);
1929 
1930 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1931 
1932 	spin_lock(&fs_info->trans_lock);
1933 	if (cur_trans == fs_info->running_transaction)
1934 		fs_info->running_transaction = NULL;
1935 	spin_unlock(&fs_info->trans_lock);
1936 
1937 	if (trans->type & __TRANS_FREEZABLE)
1938 		sb_end_intwrite(fs_info->sb);
1939 	btrfs_put_transaction(cur_trans);
1940 	btrfs_put_transaction(cur_trans);
1941 
1942 	trace_btrfs_transaction_commit(trans->root);
1943 
1944 	if (current->journal_info == trans)
1945 		current->journal_info = NULL;
1946 	btrfs_scrub_cancel(fs_info);
1947 
1948 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1949 }
1950 
1951 /*
1952  * Release reserved delayed ref space of all pending block groups of the
1953  * transaction and remove them from the list
1954  */
1955 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1956 {
1957        struct btrfs_fs_info *fs_info = trans->fs_info;
1958        struct btrfs_block_group *block_group, *tmp;
1959 
1960        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1961                btrfs_delayed_refs_rsv_release(fs_info, 1);
1962                list_del_init(&block_group->bg_list);
1963        }
1964 }
1965 
1966 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1967 {
1968 	struct btrfs_fs_info *fs_info = trans->fs_info;
1969 
1970 	/*
1971 	 * We use writeback_inodes_sb here because if we used
1972 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1973 	 * Currently are holding the fs freeze lock, if we do an async flush
1974 	 * we'll do btrfs_join_transaction() and deadlock because we need to
1975 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
1976 	 * from already being in a transaction and our join_transaction doesn't
1977 	 * have to re-take the fs freeze lock.
1978 	 */
1979 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1980 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1981 	} else {
1982 		struct btrfs_pending_snapshot *pending;
1983 		struct list_head *head = &trans->transaction->pending_snapshots;
1984 
1985 		/*
1986 		 * Flush dellaloc for any root that is going to be snapshotted.
1987 		 * This is done to avoid a corrupted version of files, in the
1988 		 * snapshots, that had both buffered and direct IO writes (even
1989 		 * if they were done sequentially) due to an unordered update of
1990 		 * the inode's size on disk.
1991 		 */
1992 		list_for_each_entry(pending, head, list) {
1993 			int ret;
1994 
1995 			ret = btrfs_start_delalloc_snapshot(pending->root);
1996 			if (ret)
1997 				return ret;
1998 		}
1999 	}
2000 	return 0;
2001 }
2002 
2003 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
2004 {
2005 	struct btrfs_fs_info *fs_info = trans->fs_info;
2006 
2007 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
2008 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2009 	} else {
2010 		struct btrfs_pending_snapshot *pending;
2011 		struct list_head *head = &trans->transaction->pending_snapshots;
2012 
2013 		/*
2014 		 * Wait for any dellaloc that we started previously for the roots
2015 		 * that are going to be snapshotted. This is to avoid a corrupted
2016 		 * version of files in the snapshots that had both buffered and
2017 		 * direct IO writes (even if they were done sequentially).
2018 		 */
2019 		list_for_each_entry(pending, head, list)
2020 			btrfs_wait_ordered_extents(pending->root,
2021 						   U64_MAX, 0, U64_MAX);
2022 	}
2023 }
2024 
2025 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2026 {
2027 	struct btrfs_fs_info *fs_info = trans->fs_info;
2028 	struct btrfs_transaction *cur_trans = trans->transaction;
2029 	struct btrfs_transaction *prev_trans = NULL;
2030 	int ret;
2031 
2032 	ASSERT(refcount_read(&trans->use_count) == 1);
2033 
2034 	/*
2035 	 * Some places just start a transaction to commit it.  We need to make
2036 	 * sure that if this commit fails that the abort code actually marks the
2037 	 * transaction as failed, so set trans->dirty to make the abort code do
2038 	 * the right thing.
2039 	 */
2040 	trans->dirty = true;
2041 
2042 	/* Stop the commit early if ->aborted is set */
2043 	if (TRANS_ABORTED(cur_trans)) {
2044 		ret = cur_trans->aborted;
2045 		btrfs_end_transaction(trans);
2046 		return ret;
2047 	}
2048 
2049 	btrfs_trans_release_metadata(trans);
2050 	trans->block_rsv = NULL;
2051 
2052 	/* make a pass through all the delayed refs we have so far
2053 	 * any runnings procs may add more while we are here
2054 	 */
2055 	ret = btrfs_run_delayed_refs(trans, 0);
2056 	if (ret) {
2057 		btrfs_end_transaction(trans);
2058 		return ret;
2059 	}
2060 
2061 	cur_trans = trans->transaction;
2062 
2063 	/*
2064 	 * set the flushing flag so procs in this transaction have to
2065 	 * start sending their work down.
2066 	 */
2067 	cur_trans->delayed_refs.flushing = 1;
2068 	smp_wmb();
2069 
2070 	btrfs_create_pending_block_groups(trans);
2071 
2072 	ret = btrfs_run_delayed_refs(trans, 0);
2073 	if (ret) {
2074 		btrfs_end_transaction(trans);
2075 		return ret;
2076 	}
2077 
2078 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2079 		int run_it = 0;
2080 
2081 		/* this mutex is also taken before trying to set
2082 		 * block groups readonly.  We need to make sure
2083 		 * that nobody has set a block group readonly
2084 		 * after a extents from that block group have been
2085 		 * allocated for cache files.  btrfs_set_block_group_ro
2086 		 * will wait for the transaction to commit if it
2087 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2088 		 *
2089 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2090 		 * only one process starts all the block group IO.  It wouldn't
2091 		 * hurt to have more than one go through, but there's no
2092 		 * real advantage to it either.
2093 		 */
2094 		mutex_lock(&fs_info->ro_block_group_mutex);
2095 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2096 				      &cur_trans->flags))
2097 			run_it = 1;
2098 		mutex_unlock(&fs_info->ro_block_group_mutex);
2099 
2100 		if (run_it) {
2101 			ret = btrfs_start_dirty_block_groups(trans);
2102 			if (ret) {
2103 				btrfs_end_transaction(trans);
2104 				return ret;
2105 			}
2106 		}
2107 	}
2108 
2109 	spin_lock(&fs_info->trans_lock);
2110 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2111 		spin_unlock(&fs_info->trans_lock);
2112 		refcount_inc(&cur_trans->use_count);
2113 		ret = btrfs_end_transaction(trans);
2114 
2115 		wait_for_commit(cur_trans);
2116 
2117 		if (TRANS_ABORTED(cur_trans))
2118 			ret = cur_trans->aborted;
2119 
2120 		btrfs_put_transaction(cur_trans);
2121 
2122 		return ret;
2123 	}
2124 
2125 	cur_trans->state = TRANS_STATE_COMMIT_START;
2126 	wake_up(&fs_info->transaction_blocked_wait);
2127 
2128 	if (cur_trans->list.prev != &fs_info->trans_list) {
2129 		prev_trans = list_entry(cur_trans->list.prev,
2130 					struct btrfs_transaction, list);
2131 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2132 			refcount_inc(&prev_trans->use_count);
2133 			spin_unlock(&fs_info->trans_lock);
2134 
2135 			wait_for_commit(prev_trans);
2136 			ret = READ_ONCE(prev_trans->aborted);
2137 
2138 			btrfs_put_transaction(prev_trans);
2139 			if (ret)
2140 				goto cleanup_transaction;
2141 		} else {
2142 			spin_unlock(&fs_info->trans_lock);
2143 		}
2144 	} else {
2145 		spin_unlock(&fs_info->trans_lock);
2146 		/*
2147 		 * The previous transaction was aborted and was already removed
2148 		 * from the list of transactions at fs_info->trans_list. So we
2149 		 * abort to prevent writing a new superblock that reflects a
2150 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2151 		 */
2152 		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2153 			ret = -EROFS;
2154 			goto cleanup_transaction;
2155 		}
2156 	}
2157 
2158 	extwriter_counter_dec(cur_trans, trans->type);
2159 
2160 	ret = btrfs_start_delalloc_flush(trans);
2161 	if (ret)
2162 		goto cleanup_transaction;
2163 
2164 	ret = btrfs_run_delayed_items(trans);
2165 	if (ret)
2166 		goto cleanup_transaction;
2167 
2168 	wait_event(cur_trans->writer_wait,
2169 		   extwriter_counter_read(cur_trans) == 0);
2170 
2171 	/* some pending stuffs might be added after the previous flush. */
2172 	ret = btrfs_run_delayed_items(trans);
2173 	if (ret)
2174 		goto cleanup_transaction;
2175 
2176 	btrfs_wait_delalloc_flush(trans);
2177 
2178 	btrfs_scrub_pause(fs_info);
2179 	/*
2180 	 * Ok now we need to make sure to block out any other joins while we
2181 	 * commit the transaction.  We could have started a join before setting
2182 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2183 	 */
2184 	spin_lock(&fs_info->trans_lock);
2185 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2186 	spin_unlock(&fs_info->trans_lock);
2187 	wait_event(cur_trans->writer_wait,
2188 		   atomic_read(&cur_trans->num_writers) == 1);
2189 
2190 	if (TRANS_ABORTED(cur_trans)) {
2191 		ret = cur_trans->aborted;
2192 		goto scrub_continue;
2193 	}
2194 	/*
2195 	 * the reloc mutex makes sure that we stop
2196 	 * the balancing code from coming in and moving
2197 	 * extents around in the middle of the commit
2198 	 */
2199 	mutex_lock(&fs_info->reloc_mutex);
2200 
2201 	/*
2202 	 * We needn't worry about the delayed items because we will
2203 	 * deal with them in create_pending_snapshot(), which is the
2204 	 * core function of the snapshot creation.
2205 	 */
2206 	ret = create_pending_snapshots(trans);
2207 	if (ret)
2208 		goto unlock_reloc;
2209 
2210 	/*
2211 	 * We insert the dir indexes of the snapshots and update the inode
2212 	 * of the snapshots' parents after the snapshot creation, so there
2213 	 * are some delayed items which are not dealt with. Now deal with
2214 	 * them.
2215 	 *
2216 	 * We needn't worry that this operation will corrupt the snapshots,
2217 	 * because all the tree which are snapshoted will be forced to COW
2218 	 * the nodes and leaves.
2219 	 */
2220 	ret = btrfs_run_delayed_items(trans);
2221 	if (ret)
2222 		goto unlock_reloc;
2223 
2224 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2225 	if (ret)
2226 		goto unlock_reloc;
2227 
2228 	/*
2229 	 * make sure none of the code above managed to slip in a
2230 	 * delayed item
2231 	 */
2232 	btrfs_assert_delayed_root_empty(fs_info);
2233 
2234 	WARN_ON(cur_trans != trans->transaction);
2235 
2236 	/* btrfs_commit_tree_roots is responsible for getting the
2237 	 * various roots consistent with each other.  Every pointer
2238 	 * in the tree of tree roots has to point to the most up to date
2239 	 * root for every subvolume and other tree.  So, we have to keep
2240 	 * the tree logging code from jumping in and changing any
2241 	 * of the trees.
2242 	 *
2243 	 * At this point in the commit, there can't be any tree-log
2244 	 * writers, but a little lower down we drop the trans mutex
2245 	 * and let new people in.  By holding the tree_log_mutex
2246 	 * from now until after the super is written, we avoid races
2247 	 * with the tree-log code.
2248 	 */
2249 	mutex_lock(&fs_info->tree_log_mutex);
2250 
2251 	ret = commit_fs_roots(trans);
2252 	if (ret)
2253 		goto unlock_tree_log;
2254 
2255 	/*
2256 	 * Since the transaction is done, we can apply the pending changes
2257 	 * before the next transaction.
2258 	 */
2259 	btrfs_apply_pending_changes(fs_info);
2260 
2261 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2262 	 * safe to free the root of tree log roots
2263 	 */
2264 	btrfs_free_log_root_tree(trans, fs_info);
2265 
2266 	/*
2267 	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2268 	 * new delayed refs. Must handle them or qgroup can be wrong.
2269 	 */
2270 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2271 	if (ret)
2272 		goto unlock_tree_log;
2273 
2274 	/*
2275 	 * Since fs roots are all committed, we can get a quite accurate
2276 	 * new_roots. So let's do quota accounting.
2277 	 */
2278 	ret = btrfs_qgroup_account_extents(trans);
2279 	if (ret < 0)
2280 		goto unlock_tree_log;
2281 
2282 	ret = commit_cowonly_roots(trans);
2283 	if (ret)
2284 		goto unlock_tree_log;
2285 
2286 	/*
2287 	 * The tasks which save the space cache and inode cache may also
2288 	 * update ->aborted, check it.
2289 	 */
2290 	if (TRANS_ABORTED(cur_trans)) {
2291 		ret = cur_trans->aborted;
2292 		goto unlock_tree_log;
2293 	}
2294 
2295 	btrfs_prepare_extent_commit(fs_info);
2296 
2297 	cur_trans = fs_info->running_transaction;
2298 
2299 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2300 			    fs_info->tree_root->node);
2301 	list_add_tail(&fs_info->tree_root->dirty_list,
2302 		      &cur_trans->switch_commits);
2303 
2304 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2305 			    fs_info->chunk_root->node);
2306 	list_add_tail(&fs_info->chunk_root->dirty_list,
2307 		      &cur_trans->switch_commits);
2308 
2309 	switch_commit_roots(trans);
2310 
2311 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2312 	ASSERT(list_empty(&cur_trans->io_bgs));
2313 	update_super_roots(fs_info);
2314 
2315 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2316 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2317 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2318 	       sizeof(*fs_info->super_copy));
2319 
2320 	btrfs_commit_device_sizes(cur_trans);
2321 
2322 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2323 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2324 
2325 	btrfs_trans_release_chunk_metadata(trans);
2326 
2327 	spin_lock(&fs_info->trans_lock);
2328 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2329 	fs_info->running_transaction = NULL;
2330 	spin_unlock(&fs_info->trans_lock);
2331 	mutex_unlock(&fs_info->reloc_mutex);
2332 
2333 	wake_up(&fs_info->transaction_wait);
2334 
2335 	ret = btrfs_write_and_wait_transaction(trans);
2336 	if (ret) {
2337 		btrfs_handle_fs_error(fs_info, ret,
2338 				      "Error while writing out transaction");
2339 		/*
2340 		 * reloc_mutex has been unlocked, tree_log_mutex is still held
2341 		 * but we can't jump to unlock_tree_log causing double unlock
2342 		 */
2343 		mutex_unlock(&fs_info->tree_log_mutex);
2344 		goto scrub_continue;
2345 	}
2346 
2347 	ret = write_all_supers(fs_info, 0);
2348 	/*
2349 	 * the super is written, we can safely allow the tree-loggers
2350 	 * to go about their business
2351 	 */
2352 	mutex_unlock(&fs_info->tree_log_mutex);
2353 	if (ret)
2354 		goto scrub_continue;
2355 
2356 	btrfs_finish_extent_commit(trans);
2357 
2358 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2359 		btrfs_clear_space_info_full(fs_info);
2360 
2361 	fs_info->last_trans_committed = cur_trans->transid;
2362 	/*
2363 	 * We needn't acquire the lock here because there is no other task
2364 	 * which can change it.
2365 	 */
2366 	cur_trans->state = TRANS_STATE_COMPLETED;
2367 	wake_up(&cur_trans->commit_wait);
2368 	clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2369 
2370 	spin_lock(&fs_info->trans_lock);
2371 	list_del_init(&cur_trans->list);
2372 	spin_unlock(&fs_info->trans_lock);
2373 
2374 	btrfs_put_transaction(cur_trans);
2375 	btrfs_put_transaction(cur_trans);
2376 
2377 	if (trans->type & __TRANS_FREEZABLE)
2378 		sb_end_intwrite(fs_info->sb);
2379 
2380 	trace_btrfs_transaction_commit(trans->root);
2381 
2382 	btrfs_scrub_continue(fs_info);
2383 
2384 	if (current->journal_info == trans)
2385 		current->journal_info = NULL;
2386 
2387 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2388 
2389 	return ret;
2390 
2391 unlock_tree_log:
2392 	mutex_unlock(&fs_info->tree_log_mutex);
2393 unlock_reloc:
2394 	mutex_unlock(&fs_info->reloc_mutex);
2395 scrub_continue:
2396 	btrfs_scrub_continue(fs_info);
2397 cleanup_transaction:
2398 	btrfs_trans_release_metadata(trans);
2399 	btrfs_cleanup_pending_block_groups(trans);
2400 	btrfs_trans_release_chunk_metadata(trans);
2401 	trans->block_rsv = NULL;
2402 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2403 	if (current->journal_info == trans)
2404 		current->journal_info = NULL;
2405 	cleanup_transaction(trans, ret);
2406 
2407 	return ret;
2408 }
2409 
2410 /*
2411  * return < 0 if error
2412  * 0 if there are no more dead_roots at the time of call
2413  * 1 there are more to be processed, call me again
2414  *
2415  * The return value indicates there are certainly more snapshots to delete, but
2416  * if there comes a new one during processing, it may return 0. We don't mind,
2417  * because btrfs_commit_super will poke cleaner thread and it will process it a
2418  * few seconds later.
2419  */
2420 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2421 {
2422 	int ret;
2423 	struct btrfs_fs_info *fs_info = root->fs_info;
2424 
2425 	spin_lock(&fs_info->trans_lock);
2426 	if (list_empty(&fs_info->dead_roots)) {
2427 		spin_unlock(&fs_info->trans_lock);
2428 		return 0;
2429 	}
2430 	root = list_first_entry(&fs_info->dead_roots,
2431 			struct btrfs_root, root_list);
2432 	list_del_init(&root->root_list);
2433 	spin_unlock(&fs_info->trans_lock);
2434 
2435 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2436 
2437 	btrfs_kill_all_delayed_nodes(root);
2438 	if (root->ino_cache_inode) {
2439 		iput(root->ino_cache_inode);
2440 		root->ino_cache_inode = NULL;
2441 	}
2442 
2443 	if (btrfs_header_backref_rev(root->node) <
2444 			BTRFS_MIXED_BACKREF_REV)
2445 		ret = btrfs_drop_snapshot(root, 0, 0);
2446 	else
2447 		ret = btrfs_drop_snapshot(root, 1, 0);
2448 
2449 	btrfs_put_root(root);
2450 	return (ret < 0) ? 0 : 1;
2451 }
2452 
2453 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2454 {
2455 	unsigned long prev;
2456 	unsigned long bit;
2457 
2458 	prev = xchg(&fs_info->pending_changes, 0);
2459 	if (!prev)
2460 		return;
2461 
2462 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2463 	if (prev & bit)
2464 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2465 	prev &= ~bit;
2466 
2467 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2468 	if (prev & bit)
2469 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2470 	prev &= ~bit;
2471 
2472 	bit = 1 << BTRFS_PENDING_COMMIT;
2473 	if (prev & bit)
2474 		btrfs_debug(fs_info, "pending commit done");
2475 	prev &= ~bit;
2476 
2477 	if (prev)
2478 		btrfs_warn(fs_info,
2479 			"unknown pending changes left 0x%lx, ignoring", prev);
2480 }
2481