xref: /openbmc/linux/fs/btrfs/transaction.c (revision d894fc60)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		while (!list_empty(&transaction->pending_chunks)) {
68 			struct extent_map *em;
69 
70 			em = list_first_entry(&transaction->pending_chunks,
71 					      struct extent_map, list);
72 			list_del_init(&em->list);
73 			free_extent_map(em);
74 		}
75 		kmem_cache_free(btrfs_transaction_cachep, transaction);
76 	}
77 }
78 
79 static void clear_btree_io_tree(struct extent_io_tree *tree)
80 {
81 	spin_lock(&tree->lock);
82 	while (!RB_EMPTY_ROOT(&tree->state)) {
83 		struct rb_node *node;
84 		struct extent_state *state;
85 
86 		node = rb_first(&tree->state);
87 		state = rb_entry(node, struct extent_state, rb_node);
88 		rb_erase(&state->rb_node, &tree->state);
89 		RB_CLEAR_NODE(&state->rb_node);
90 		/*
91 		 * btree io trees aren't supposed to have tasks waiting for
92 		 * changes in the flags of extent states ever.
93 		 */
94 		ASSERT(!waitqueue_active(&state->wq));
95 		free_extent_state(state);
96 		if (need_resched()) {
97 			spin_unlock(&tree->lock);
98 			cond_resched();
99 			spin_lock(&tree->lock);
100 		}
101 	}
102 	spin_unlock(&tree->lock);
103 }
104 
105 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
106 					 struct btrfs_fs_info *fs_info)
107 {
108 	struct btrfs_root *root, *tmp;
109 
110 	down_write(&fs_info->commit_root_sem);
111 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
112 				 dirty_list) {
113 		list_del_init(&root->dirty_list);
114 		free_extent_buffer(root->commit_root);
115 		root->commit_root = btrfs_root_node(root);
116 		if (is_fstree(root->objectid))
117 			btrfs_unpin_free_ino(root);
118 		clear_btree_io_tree(&root->dirty_log_pages);
119 	}
120 	up_write(&fs_info->commit_root_sem);
121 }
122 
123 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
124 					 unsigned int type)
125 {
126 	if (type & TRANS_EXTWRITERS)
127 		atomic_inc(&trans->num_extwriters);
128 }
129 
130 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
131 					 unsigned int type)
132 {
133 	if (type & TRANS_EXTWRITERS)
134 		atomic_dec(&trans->num_extwriters);
135 }
136 
137 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
138 					  unsigned int type)
139 {
140 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
141 }
142 
143 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
144 {
145 	return atomic_read(&trans->num_extwriters);
146 }
147 
148 /*
149  * either allocate a new transaction or hop into the existing one
150  */
151 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
152 {
153 	struct btrfs_transaction *cur_trans;
154 	struct btrfs_fs_info *fs_info = root->fs_info;
155 
156 	spin_lock(&fs_info->trans_lock);
157 loop:
158 	/* The file system has been taken offline. No new transactions. */
159 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
160 		spin_unlock(&fs_info->trans_lock);
161 		return -EROFS;
162 	}
163 
164 	cur_trans = fs_info->running_transaction;
165 	if (cur_trans) {
166 		if (cur_trans->aborted) {
167 			spin_unlock(&fs_info->trans_lock);
168 			return cur_trans->aborted;
169 		}
170 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
171 			spin_unlock(&fs_info->trans_lock);
172 			return -EBUSY;
173 		}
174 		atomic_inc(&cur_trans->use_count);
175 		atomic_inc(&cur_trans->num_writers);
176 		extwriter_counter_inc(cur_trans, type);
177 		spin_unlock(&fs_info->trans_lock);
178 		return 0;
179 	}
180 	spin_unlock(&fs_info->trans_lock);
181 
182 	/*
183 	 * If we are ATTACH, we just want to catch the current transaction,
184 	 * and commit it. If there is no transaction, just return ENOENT.
185 	 */
186 	if (type == TRANS_ATTACH)
187 		return -ENOENT;
188 
189 	/*
190 	 * JOIN_NOLOCK only happens during the transaction commit, so
191 	 * it is impossible that ->running_transaction is NULL
192 	 */
193 	BUG_ON(type == TRANS_JOIN_NOLOCK);
194 
195 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
196 	if (!cur_trans)
197 		return -ENOMEM;
198 
199 	spin_lock(&fs_info->trans_lock);
200 	if (fs_info->running_transaction) {
201 		/*
202 		 * someone started a transaction after we unlocked.  Make sure
203 		 * to redo the checks above
204 		 */
205 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
206 		goto loop;
207 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
208 		spin_unlock(&fs_info->trans_lock);
209 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
210 		return -EROFS;
211 	}
212 
213 	atomic_set(&cur_trans->num_writers, 1);
214 	extwriter_counter_init(cur_trans, type);
215 	init_waitqueue_head(&cur_trans->writer_wait);
216 	init_waitqueue_head(&cur_trans->commit_wait);
217 	cur_trans->state = TRANS_STATE_RUNNING;
218 	/*
219 	 * One for this trans handle, one so it will live on until we
220 	 * commit the transaction.
221 	 */
222 	atomic_set(&cur_trans->use_count, 2);
223 	cur_trans->have_free_bgs = 0;
224 	cur_trans->start_time = get_seconds();
225 
226 	cur_trans->delayed_refs.href_root = RB_ROOT;
227 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
228 	cur_trans->delayed_refs.num_heads_ready = 0;
229 	cur_trans->delayed_refs.num_heads = 0;
230 	cur_trans->delayed_refs.flushing = 0;
231 	cur_trans->delayed_refs.run_delayed_start = 0;
232 
233 	/*
234 	 * although the tree mod log is per file system and not per transaction,
235 	 * the log must never go across transaction boundaries.
236 	 */
237 	smp_mb();
238 	if (!list_empty(&fs_info->tree_mod_seq_list))
239 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
240 			"creating a fresh transaction\n");
241 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
242 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
243 			"creating a fresh transaction\n");
244 	atomic64_set(&fs_info->tree_mod_seq, 0);
245 
246 	spin_lock_init(&cur_trans->delayed_refs.lock);
247 
248 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
249 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
250 	INIT_LIST_HEAD(&cur_trans->switch_commits);
251 	INIT_LIST_HEAD(&cur_trans->pending_ordered);
252 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
253 	spin_lock_init(&cur_trans->dirty_bgs_lock);
254 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
255 	extent_io_tree_init(&cur_trans->dirty_pages,
256 			     fs_info->btree_inode->i_mapping);
257 	fs_info->generation++;
258 	cur_trans->transid = fs_info->generation;
259 	fs_info->running_transaction = cur_trans;
260 	cur_trans->aborted = 0;
261 	spin_unlock(&fs_info->trans_lock);
262 
263 	return 0;
264 }
265 
266 /*
267  * this does all the record keeping required to make sure that a reference
268  * counted root is properly recorded in a given transaction.  This is required
269  * to make sure the old root from before we joined the transaction is deleted
270  * when the transaction commits
271  */
272 static int record_root_in_trans(struct btrfs_trans_handle *trans,
273 			       struct btrfs_root *root)
274 {
275 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
276 	    root->last_trans < trans->transid) {
277 		WARN_ON(root == root->fs_info->extent_root);
278 		WARN_ON(root->commit_root != root->node);
279 
280 		/*
281 		 * see below for IN_TRANS_SETUP usage rules
282 		 * we have the reloc mutex held now, so there
283 		 * is only one writer in this function
284 		 */
285 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
286 
287 		/* make sure readers find IN_TRANS_SETUP before
288 		 * they find our root->last_trans update
289 		 */
290 		smp_wmb();
291 
292 		spin_lock(&root->fs_info->fs_roots_radix_lock);
293 		if (root->last_trans == trans->transid) {
294 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
295 			return 0;
296 		}
297 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
298 			   (unsigned long)root->root_key.objectid,
299 			   BTRFS_ROOT_TRANS_TAG);
300 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
301 		root->last_trans = trans->transid;
302 
303 		/* this is pretty tricky.  We don't want to
304 		 * take the relocation lock in btrfs_record_root_in_trans
305 		 * unless we're really doing the first setup for this root in
306 		 * this transaction.
307 		 *
308 		 * Normally we'd use root->last_trans as a flag to decide
309 		 * if we want to take the expensive mutex.
310 		 *
311 		 * But, we have to set root->last_trans before we
312 		 * init the relocation root, otherwise, we trip over warnings
313 		 * in ctree.c.  The solution used here is to flag ourselves
314 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
315 		 * fixing up the reloc trees and everyone must wait.
316 		 *
317 		 * When this is zero, they can trust root->last_trans and fly
318 		 * through btrfs_record_root_in_trans without having to take the
319 		 * lock.  smp_wmb() makes sure that all the writes above are
320 		 * done before we pop in the zero below
321 		 */
322 		btrfs_init_reloc_root(trans, root);
323 		smp_mb__before_atomic();
324 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
325 	}
326 	return 0;
327 }
328 
329 
330 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
331 			       struct btrfs_root *root)
332 {
333 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
334 		return 0;
335 
336 	/*
337 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
338 	 * and barriers
339 	 */
340 	smp_rmb();
341 	if (root->last_trans == trans->transid &&
342 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
343 		return 0;
344 
345 	mutex_lock(&root->fs_info->reloc_mutex);
346 	record_root_in_trans(trans, root);
347 	mutex_unlock(&root->fs_info->reloc_mutex);
348 
349 	return 0;
350 }
351 
352 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
353 {
354 	return (trans->state >= TRANS_STATE_BLOCKED &&
355 		trans->state < TRANS_STATE_UNBLOCKED &&
356 		!trans->aborted);
357 }
358 
359 /* wait for commit against the current transaction to become unblocked
360  * when this is done, it is safe to start a new transaction, but the current
361  * transaction might not be fully on disk.
362  */
363 static void wait_current_trans(struct btrfs_root *root)
364 {
365 	struct btrfs_transaction *cur_trans;
366 
367 	spin_lock(&root->fs_info->trans_lock);
368 	cur_trans = root->fs_info->running_transaction;
369 	if (cur_trans && is_transaction_blocked(cur_trans)) {
370 		atomic_inc(&cur_trans->use_count);
371 		spin_unlock(&root->fs_info->trans_lock);
372 
373 		wait_event(root->fs_info->transaction_wait,
374 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
375 			   cur_trans->aborted);
376 		btrfs_put_transaction(cur_trans);
377 	} else {
378 		spin_unlock(&root->fs_info->trans_lock);
379 	}
380 }
381 
382 static int may_wait_transaction(struct btrfs_root *root, int type)
383 {
384 	if (root->fs_info->log_root_recovering)
385 		return 0;
386 
387 	if (type == TRANS_USERSPACE)
388 		return 1;
389 
390 	if (type == TRANS_START &&
391 	    !atomic_read(&root->fs_info->open_ioctl_trans))
392 		return 1;
393 
394 	return 0;
395 }
396 
397 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
398 {
399 	if (!root->fs_info->reloc_ctl ||
400 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
401 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
402 	    root->reloc_root)
403 		return false;
404 
405 	return true;
406 }
407 
408 static struct btrfs_trans_handle *
409 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
410 		  enum btrfs_reserve_flush_enum flush)
411 {
412 	struct btrfs_trans_handle *h;
413 	struct btrfs_transaction *cur_trans;
414 	u64 num_bytes = 0;
415 	u64 qgroup_reserved = 0;
416 	bool reloc_reserved = false;
417 	int ret;
418 
419 	/* Send isn't supposed to start transactions. */
420 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
421 
422 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
423 		return ERR_PTR(-EROFS);
424 
425 	if (current->journal_info) {
426 		WARN_ON(type & TRANS_EXTWRITERS);
427 		h = current->journal_info;
428 		h->use_count++;
429 		WARN_ON(h->use_count > 2);
430 		h->orig_rsv = h->block_rsv;
431 		h->block_rsv = NULL;
432 		goto got_it;
433 	}
434 
435 	/*
436 	 * Do the reservation before we join the transaction so we can do all
437 	 * the appropriate flushing if need be.
438 	 */
439 	if (num_items > 0 && root != root->fs_info->chunk_root) {
440 		if (root->fs_info->quota_enabled &&
441 		    is_fstree(root->root_key.objectid)) {
442 			qgroup_reserved = num_items * root->nodesize;
443 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
444 			if (ret)
445 				return ERR_PTR(ret);
446 		}
447 
448 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
449 		/*
450 		 * Do the reservation for the relocation root creation
451 		 */
452 		if (need_reserve_reloc_root(root)) {
453 			num_bytes += root->nodesize;
454 			reloc_reserved = true;
455 		}
456 
457 		ret = btrfs_block_rsv_add(root,
458 					  &root->fs_info->trans_block_rsv,
459 					  num_bytes, flush);
460 		if (ret)
461 			goto reserve_fail;
462 	}
463 again:
464 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
465 	if (!h) {
466 		ret = -ENOMEM;
467 		goto alloc_fail;
468 	}
469 
470 	/*
471 	 * If we are JOIN_NOLOCK we're already committing a transaction and
472 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
473 	 * because we're already holding a ref.  We need this because we could
474 	 * have raced in and did an fsync() on a file which can kick a commit
475 	 * and then we deadlock with somebody doing a freeze.
476 	 *
477 	 * If we are ATTACH, it means we just want to catch the current
478 	 * transaction and commit it, so we needn't do sb_start_intwrite().
479 	 */
480 	if (type & __TRANS_FREEZABLE)
481 		sb_start_intwrite(root->fs_info->sb);
482 
483 	if (may_wait_transaction(root, type))
484 		wait_current_trans(root);
485 
486 	do {
487 		ret = join_transaction(root, type);
488 		if (ret == -EBUSY) {
489 			wait_current_trans(root);
490 			if (unlikely(type == TRANS_ATTACH))
491 				ret = -ENOENT;
492 		}
493 	} while (ret == -EBUSY);
494 
495 	if (ret < 0) {
496 		/* We must get the transaction if we are JOIN_NOLOCK. */
497 		BUG_ON(type == TRANS_JOIN_NOLOCK);
498 		goto join_fail;
499 	}
500 
501 	cur_trans = root->fs_info->running_transaction;
502 
503 	h->transid = cur_trans->transid;
504 	h->transaction = cur_trans;
505 	h->blocks_used = 0;
506 	h->bytes_reserved = 0;
507 	h->root = root;
508 	h->delayed_ref_updates = 0;
509 	h->use_count = 1;
510 	h->adding_csums = 0;
511 	h->block_rsv = NULL;
512 	h->orig_rsv = NULL;
513 	h->aborted = 0;
514 	h->qgroup_reserved = 0;
515 	h->delayed_ref_elem.seq = 0;
516 	h->type = type;
517 	h->allocating_chunk = false;
518 	h->reloc_reserved = false;
519 	h->sync = false;
520 	INIT_LIST_HEAD(&h->qgroup_ref_list);
521 	INIT_LIST_HEAD(&h->new_bgs);
522 	INIT_LIST_HEAD(&h->ordered);
523 
524 	smp_mb();
525 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
526 	    may_wait_transaction(root, type)) {
527 		current->journal_info = h;
528 		btrfs_commit_transaction(h, root);
529 		goto again;
530 	}
531 
532 	if (num_bytes) {
533 		trace_btrfs_space_reservation(root->fs_info, "transaction",
534 					      h->transid, num_bytes, 1);
535 		h->block_rsv = &root->fs_info->trans_block_rsv;
536 		h->bytes_reserved = num_bytes;
537 		h->reloc_reserved = reloc_reserved;
538 	}
539 	h->qgroup_reserved = qgroup_reserved;
540 
541 got_it:
542 	btrfs_record_root_in_trans(h, root);
543 
544 	if (!current->journal_info && type != TRANS_USERSPACE)
545 		current->journal_info = h;
546 	return h;
547 
548 join_fail:
549 	if (type & __TRANS_FREEZABLE)
550 		sb_end_intwrite(root->fs_info->sb);
551 	kmem_cache_free(btrfs_trans_handle_cachep, h);
552 alloc_fail:
553 	if (num_bytes)
554 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
555 					num_bytes);
556 reserve_fail:
557 	if (qgroup_reserved)
558 		btrfs_qgroup_free(root, qgroup_reserved);
559 	return ERR_PTR(ret);
560 }
561 
562 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
563 						   int num_items)
564 {
565 	return start_transaction(root, num_items, TRANS_START,
566 				 BTRFS_RESERVE_FLUSH_ALL);
567 }
568 
569 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
570 					struct btrfs_root *root, int num_items)
571 {
572 	return start_transaction(root, num_items, TRANS_START,
573 				 BTRFS_RESERVE_FLUSH_LIMIT);
574 }
575 
576 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
577 {
578 	return start_transaction(root, 0, TRANS_JOIN, 0);
579 }
580 
581 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
582 {
583 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
584 }
585 
586 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
587 {
588 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
589 }
590 
591 /*
592  * btrfs_attach_transaction() - catch the running transaction
593  *
594  * It is used when we want to commit the current the transaction, but
595  * don't want to start a new one.
596  *
597  * Note: If this function return -ENOENT, it just means there is no
598  * running transaction. But it is possible that the inactive transaction
599  * is still in the memory, not fully on disk. If you hope there is no
600  * inactive transaction in the fs when -ENOENT is returned, you should
601  * invoke
602  *     btrfs_attach_transaction_barrier()
603  */
604 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
605 {
606 	return start_transaction(root, 0, TRANS_ATTACH, 0);
607 }
608 
609 /*
610  * btrfs_attach_transaction_barrier() - catch the running transaction
611  *
612  * It is similar to the above function, the differentia is this one
613  * will wait for all the inactive transactions until they fully
614  * complete.
615  */
616 struct btrfs_trans_handle *
617 btrfs_attach_transaction_barrier(struct btrfs_root *root)
618 {
619 	struct btrfs_trans_handle *trans;
620 
621 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
622 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
623 		btrfs_wait_for_commit(root, 0);
624 
625 	return trans;
626 }
627 
628 /* wait for a transaction commit to be fully complete */
629 static noinline void wait_for_commit(struct btrfs_root *root,
630 				    struct btrfs_transaction *commit)
631 {
632 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
633 }
634 
635 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
636 {
637 	struct btrfs_transaction *cur_trans = NULL, *t;
638 	int ret = 0;
639 
640 	if (transid) {
641 		if (transid <= root->fs_info->last_trans_committed)
642 			goto out;
643 
644 		/* find specified transaction */
645 		spin_lock(&root->fs_info->trans_lock);
646 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
647 			if (t->transid == transid) {
648 				cur_trans = t;
649 				atomic_inc(&cur_trans->use_count);
650 				ret = 0;
651 				break;
652 			}
653 			if (t->transid > transid) {
654 				ret = 0;
655 				break;
656 			}
657 		}
658 		spin_unlock(&root->fs_info->trans_lock);
659 
660 		/*
661 		 * The specified transaction doesn't exist, or we
662 		 * raced with btrfs_commit_transaction
663 		 */
664 		if (!cur_trans) {
665 			if (transid > root->fs_info->last_trans_committed)
666 				ret = -EINVAL;
667 			goto out;
668 		}
669 	} else {
670 		/* find newest transaction that is committing | committed */
671 		spin_lock(&root->fs_info->trans_lock);
672 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
673 					    list) {
674 			if (t->state >= TRANS_STATE_COMMIT_START) {
675 				if (t->state == TRANS_STATE_COMPLETED)
676 					break;
677 				cur_trans = t;
678 				atomic_inc(&cur_trans->use_count);
679 				break;
680 			}
681 		}
682 		spin_unlock(&root->fs_info->trans_lock);
683 		if (!cur_trans)
684 			goto out;  /* nothing committing|committed */
685 	}
686 
687 	wait_for_commit(root, cur_trans);
688 	btrfs_put_transaction(cur_trans);
689 out:
690 	return ret;
691 }
692 
693 void btrfs_throttle(struct btrfs_root *root)
694 {
695 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
696 		wait_current_trans(root);
697 }
698 
699 static int should_end_transaction(struct btrfs_trans_handle *trans,
700 				  struct btrfs_root *root)
701 {
702 	if (root->fs_info->global_block_rsv.space_info->full &&
703 	    btrfs_check_space_for_delayed_refs(trans, root))
704 		return 1;
705 
706 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
707 }
708 
709 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
710 				 struct btrfs_root *root)
711 {
712 	struct btrfs_transaction *cur_trans = trans->transaction;
713 	int updates;
714 	int err;
715 
716 	smp_mb();
717 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
718 	    cur_trans->delayed_refs.flushing)
719 		return 1;
720 
721 	updates = trans->delayed_ref_updates;
722 	trans->delayed_ref_updates = 0;
723 	if (updates) {
724 		err = btrfs_run_delayed_refs(trans, root, updates);
725 		if (err) /* Error code will also eval true */
726 			return err;
727 	}
728 
729 	return should_end_transaction(trans, root);
730 }
731 
732 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
733 			  struct btrfs_root *root, int throttle)
734 {
735 	struct btrfs_transaction *cur_trans = trans->transaction;
736 	struct btrfs_fs_info *info = root->fs_info;
737 	unsigned long cur = trans->delayed_ref_updates;
738 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
739 	int err = 0;
740 	int must_run_delayed_refs = 0;
741 
742 	if (trans->use_count > 1) {
743 		trans->use_count--;
744 		trans->block_rsv = trans->orig_rsv;
745 		return 0;
746 	}
747 
748 	btrfs_trans_release_metadata(trans, root);
749 	trans->block_rsv = NULL;
750 
751 	if (!list_empty(&trans->new_bgs))
752 		btrfs_create_pending_block_groups(trans, root);
753 
754 	if (!list_empty(&trans->ordered)) {
755 		spin_lock(&info->trans_lock);
756 		list_splice(&trans->ordered, &cur_trans->pending_ordered);
757 		spin_unlock(&info->trans_lock);
758 	}
759 
760 	trans->delayed_ref_updates = 0;
761 	if (!trans->sync) {
762 		must_run_delayed_refs =
763 			btrfs_should_throttle_delayed_refs(trans, root);
764 		cur = max_t(unsigned long, cur, 32);
765 
766 		/*
767 		 * don't make the caller wait if they are from a NOLOCK
768 		 * or ATTACH transaction, it will deadlock with commit
769 		 */
770 		if (must_run_delayed_refs == 1 &&
771 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
772 			must_run_delayed_refs = 2;
773 	}
774 
775 	if (trans->qgroup_reserved) {
776 		/*
777 		 * the same root has to be passed here between start_transaction
778 		 * and end_transaction. Subvolume quota depends on this.
779 		 */
780 		btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
781 		trans->qgroup_reserved = 0;
782 	}
783 
784 	btrfs_trans_release_metadata(trans, root);
785 	trans->block_rsv = NULL;
786 
787 	if (!list_empty(&trans->new_bgs))
788 		btrfs_create_pending_block_groups(trans, root);
789 
790 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
791 	    should_end_transaction(trans, root) &&
792 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
793 		spin_lock(&info->trans_lock);
794 		if (cur_trans->state == TRANS_STATE_RUNNING)
795 			cur_trans->state = TRANS_STATE_BLOCKED;
796 		spin_unlock(&info->trans_lock);
797 	}
798 
799 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
800 		if (throttle)
801 			return btrfs_commit_transaction(trans, root);
802 		else
803 			wake_up_process(info->transaction_kthread);
804 	}
805 
806 	if (trans->type & __TRANS_FREEZABLE)
807 		sb_end_intwrite(root->fs_info->sb);
808 
809 	WARN_ON(cur_trans != info->running_transaction);
810 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
811 	atomic_dec(&cur_trans->num_writers);
812 	extwriter_counter_dec(cur_trans, trans->type);
813 
814 	smp_mb();
815 	if (waitqueue_active(&cur_trans->writer_wait))
816 		wake_up(&cur_trans->writer_wait);
817 	btrfs_put_transaction(cur_trans);
818 
819 	if (current->journal_info == trans)
820 		current->journal_info = NULL;
821 
822 	if (throttle)
823 		btrfs_run_delayed_iputs(root);
824 
825 	if (trans->aborted ||
826 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
827 		wake_up_process(info->transaction_kthread);
828 		err = -EIO;
829 	}
830 	assert_qgroups_uptodate(trans);
831 
832 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
833 	if (must_run_delayed_refs) {
834 		btrfs_async_run_delayed_refs(root, cur,
835 					     must_run_delayed_refs == 1);
836 	}
837 	return err;
838 }
839 
840 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
841 			  struct btrfs_root *root)
842 {
843 	return __btrfs_end_transaction(trans, root, 0);
844 }
845 
846 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
847 				   struct btrfs_root *root)
848 {
849 	return __btrfs_end_transaction(trans, root, 1);
850 }
851 
852 /*
853  * when btree blocks are allocated, they have some corresponding bits set for
854  * them in one of two extent_io trees.  This is used to make sure all of
855  * those extents are sent to disk but does not wait on them
856  */
857 int btrfs_write_marked_extents(struct btrfs_root *root,
858 			       struct extent_io_tree *dirty_pages, int mark)
859 {
860 	int err = 0;
861 	int werr = 0;
862 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
863 	struct extent_state *cached_state = NULL;
864 	u64 start = 0;
865 	u64 end;
866 
867 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
868 				      mark, &cached_state)) {
869 		bool wait_writeback = false;
870 
871 		err = convert_extent_bit(dirty_pages, start, end,
872 					 EXTENT_NEED_WAIT,
873 					 mark, &cached_state, GFP_NOFS);
874 		/*
875 		 * convert_extent_bit can return -ENOMEM, which is most of the
876 		 * time a temporary error. So when it happens, ignore the error
877 		 * and wait for writeback of this range to finish - because we
878 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
879 		 * to btrfs_wait_marked_extents() would not know that writeback
880 		 * for this range started and therefore wouldn't wait for it to
881 		 * finish - we don't want to commit a superblock that points to
882 		 * btree nodes/leafs for which writeback hasn't finished yet
883 		 * (and without errors).
884 		 * We cleanup any entries left in the io tree when committing
885 		 * the transaction (through clear_btree_io_tree()).
886 		 */
887 		if (err == -ENOMEM) {
888 			err = 0;
889 			wait_writeback = true;
890 		}
891 		if (!err)
892 			err = filemap_fdatawrite_range(mapping, start, end);
893 		if (err)
894 			werr = err;
895 		else if (wait_writeback)
896 			werr = filemap_fdatawait_range(mapping, start, end);
897 		free_extent_state(cached_state);
898 		cached_state = NULL;
899 		cond_resched();
900 		start = end + 1;
901 	}
902 	return werr;
903 }
904 
905 /*
906  * when btree blocks are allocated, they have some corresponding bits set for
907  * them in one of two extent_io trees.  This is used to make sure all of
908  * those extents are on disk for transaction or log commit.  We wait
909  * on all the pages and clear them from the dirty pages state tree
910  */
911 int btrfs_wait_marked_extents(struct btrfs_root *root,
912 			      struct extent_io_tree *dirty_pages, int mark)
913 {
914 	int err = 0;
915 	int werr = 0;
916 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
917 	struct extent_state *cached_state = NULL;
918 	u64 start = 0;
919 	u64 end;
920 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
921 	bool errors = false;
922 
923 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
924 				      EXTENT_NEED_WAIT, &cached_state)) {
925 		/*
926 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
927 		 * When committing the transaction, we'll remove any entries
928 		 * left in the io tree. For a log commit, we don't remove them
929 		 * after committing the log because the tree can be accessed
930 		 * concurrently - we do it only at transaction commit time when
931 		 * it's safe to do it (through clear_btree_io_tree()).
932 		 */
933 		err = clear_extent_bit(dirty_pages, start, end,
934 				       EXTENT_NEED_WAIT,
935 				       0, 0, &cached_state, GFP_NOFS);
936 		if (err == -ENOMEM)
937 			err = 0;
938 		if (!err)
939 			err = filemap_fdatawait_range(mapping, start, end);
940 		if (err)
941 			werr = err;
942 		free_extent_state(cached_state);
943 		cached_state = NULL;
944 		cond_resched();
945 		start = end + 1;
946 	}
947 	if (err)
948 		werr = err;
949 
950 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
951 		if ((mark & EXTENT_DIRTY) &&
952 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
953 				       &btree_ino->runtime_flags))
954 			errors = true;
955 
956 		if ((mark & EXTENT_NEW) &&
957 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
958 				       &btree_ino->runtime_flags))
959 			errors = true;
960 	} else {
961 		if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
962 				       &btree_ino->runtime_flags))
963 			errors = true;
964 	}
965 
966 	if (errors && !werr)
967 		werr = -EIO;
968 
969 	return werr;
970 }
971 
972 /*
973  * when btree blocks are allocated, they have some corresponding bits set for
974  * them in one of two extent_io trees.  This is used to make sure all of
975  * those extents are on disk for transaction or log commit
976  */
977 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
978 				struct extent_io_tree *dirty_pages, int mark)
979 {
980 	int ret;
981 	int ret2;
982 	struct blk_plug plug;
983 
984 	blk_start_plug(&plug);
985 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
986 	blk_finish_plug(&plug);
987 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
988 
989 	if (ret)
990 		return ret;
991 	if (ret2)
992 		return ret2;
993 	return 0;
994 }
995 
996 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
997 				     struct btrfs_root *root)
998 {
999 	int ret;
1000 
1001 	ret = btrfs_write_and_wait_marked_extents(root,
1002 					   &trans->transaction->dirty_pages,
1003 					   EXTENT_DIRTY);
1004 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1005 
1006 	return ret;
1007 }
1008 
1009 /*
1010  * this is used to update the root pointer in the tree of tree roots.
1011  *
1012  * But, in the case of the extent allocation tree, updating the root
1013  * pointer may allocate blocks which may change the root of the extent
1014  * allocation tree.
1015  *
1016  * So, this loops and repeats and makes sure the cowonly root didn't
1017  * change while the root pointer was being updated in the metadata.
1018  */
1019 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1020 			       struct btrfs_root *root)
1021 {
1022 	int ret;
1023 	u64 old_root_bytenr;
1024 	u64 old_root_used;
1025 	struct btrfs_root *tree_root = root->fs_info->tree_root;
1026 	bool extent_root = (root->objectid == BTRFS_EXTENT_TREE_OBJECTID);
1027 
1028 	old_root_used = btrfs_root_used(&root->root_item);
1029 	btrfs_write_dirty_block_groups(trans, root);
1030 
1031 	while (1) {
1032 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1033 		if (old_root_bytenr == root->node->start &&
1034 		    old_root_used == btrfs_root_used(&root->root_item) &&
1035 		    (!extent_root ||
1036 		     list_empty(&trans->transaction->dirty_bgs)))
1037 			break;
1038 
1039 		btrfs_set_root_node(&root->root_item, root->node);
1040 		ret = btrfs_update_root(trans, tree_root,
1041 					&root->root_key,
1042 					&root->root_item);
1043 		if (ret)
1044 			return ret;
1045 
1046 		old_root_used = btrfs_root_used(&root->root_item);
1047 		if (extent_root) {
1048 			ret = btrfs_write_dirty_block_groups(trans, root);
1049 			if (ret)
1050 				return ret;
1051 		}
1052 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1053 		if (ret)
1054 			return ret;
1055 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1056 		if (ret)
1057 			return ret;
1058 	}
1059 
1060 	return 0;
1061 }
1062 
1063 /*
1064  * update all the cowonly tree roots on disk
1065  *
1066  * The error handling in this function may not be obvious. Any of the
1067  * failures will cause the file system to go offline. We still need
1068  * to clean up the delayed refs.
1069  */
1070 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1071 					 struct btrfs_root *root)
1072 {
1073 	struct btrfs_fs_info *fs_info = root->fs_info;
1074 	struct list_head *next;
1075 	struct extent_buffer *eb;
1076 	int ret;
1077 
1078 	eb = btrfs_lock_root_node(fs_info->tree_root);
1079 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1080 			      0, &eb);
1081 	btrfs_tree_unlock(eb);
1082 	free_extent_buffer(eb);
1083 
1084 	if (ret)
1085 		return ret;
1086 
1087 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1088 	if (ret)
1089 		return ret;
1090 
1091 	ret = btrfs_run_dev_stats(trans, root->fs_info);
1092 	if (ret)
1093 		return ret;
1094 	ret = btrfs_run_dev_replace(trans, root->fs_info);
1095 	if (ret)
1096 		return ret;
1097 	ret = btrfs_run_qgroups(trans, root->fs_info);
1098 	if (ret)
1099 		return ret;
1100 
1101 	/* run_qgroups might have added some more refs */
1102 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1103 	if (ret)
1104 		return ret;
1105 
1106 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1107 		next = fs_info->dirty_cowonly_roots.next;
1108 		list_del_init(next);
1109 		root = list_entry(next, struct btrfs_root, dirty_list);
1110 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1111 
1112 		if (root != fs_info->extent_root)
1113 			list_add_tail(&root->dirty_list,
1114 				      &trans->transaction->switch_commits);
1115 		ret = update_cowonly_root(trans, root);
1116 		if (ret)
1117 			return ret;
1118 	}
1119 
1120 	list_add_tail(&fs_info->extent_root->dirty_list,
1121 		      &trans->transaction->switch_commits);
1122 	btrfs_after_dev_replace_commit(fs_info);
1123 
1124 	return 0;
1125 }
1126 
1127 /*
1128  * dead roots are old snapshots that need to be deleted.  This allocates
1129  * a dirty root struct and adds it into the list of dead roots that need to
1130  * be deleted
1131  */
1132 void btrfs_add_dead_root(struct btrfs_root *root)
1133 {
1134 	spin_lock(&root->fs_info->trans_lock);
1135 	if (list_empty(&root->root_list))
1136 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1137 	spin_unlock(&root->fs_info->trans_lock);
1138 }
1139 
1140 /*
1141  * update all the cowonly tree roots on disk
1142  */
1143 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1144 				    struct btrfs_root *root)
1145 {
1146 	struct btrfs_root *gang[8];
1147 	struct btrfs_fs_info *fs_info = root->fs_info;
1148 	int i;
1149 	int ret;
1150 	int err = 0;
1151 
1152 	spin_lock(&fs_info->fs_roots_radix_lock);
1153 	while (1) {
1154 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1155 						 (void **)gang, 0,
1156 						 ARRAY_SIZE(gang),
1157 						 BTRFS_ROOT_TRANS_TAG);
1158 		if (ret == 0)
1159 			break;
1160 		for (i = 0; i < ret; i++) {
1161 			root = gang[i];
1162 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1163 					(unsigned long)root->root_key.objectid,
1164 					BTRFS_ROOT_TRANS_TAG);
1165 			spin_unlock(&fs_info->fs_roots_radix_lock);
1166 
1167 			btrfs_free_log(trans, root);
1168 			btrfs_update_reloc_root(trans, root);
1169 			btrfs_orphan_commit_root(trans, root);
1170 
1171 			btrfs_save_ino_cache(root, trans);
1172 
1173 			/* see comments in should_cow_block() */
1174 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1175 			smp_mb__after_atomic();
1176 
1177 			if (root->commit_root != root->node) {
1178 				list_add_tail(&root->dirty_list,
1179 					&trans->transaction->switch_commits);
1180 				btrfs_set_root_node(&root->root_item,
1181 						    root->node);
1182 			}
1183 
1184 			err = btrfs_update_root(trans, fs_info->tree_root,
1185 						&root->root_key,
1186 						&root->root_item);
1187 			spin_lock(&fs_info->fs_roots_radix_lock);
1188 			if (err)
1189 				break;
1190 		}
1191 	}
1192 	spin_unlock(&fs_info->fs_roots_radix_lock);
1193 	return err;
1194 }
1195 
1196 /*
1197  * defrag a given btree.
1198  * Every leaf in the btree is read and defragged.
1199  */
1200 int btrfs_defrag_root(struct btrfs_root *root)
1201 {
1202 	struct btrfs_fs_info *info = root->fs_info;
1203 	struct btrfs_trans_handle *trans;
1204 	int ret;
1205 
1206 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1207 		return 0;
1208 
1209 	while (1) {
1210 		trans = btrfs_start_transaction(root, 0);
1211 		if (IS_ERR(trans))
1212 			return PTR_ERR(trans);
1213 
1214 		ret = btrfs_defrag_leaves(trans, root);
1215 
1216 		btrfs_end_transaction(trans, root);
1217 		btrfs_btree_balance_dirty(info->tree_root);
1218 		cond_resched();
1219 
1220 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1221 			break;
1222 
1223 		if (btrfs_defrag_cancelled(root->fs_info)) {
1224 			pr_debug("BTRFS: defrag_root cancelled\n");
1225 			ret = -EAGAIN;
1226 			break;
1227 		}
1228 	}
1229 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1230 	return ret;
1231 }
1232 
1233 /*
1234  * new snapshots need to be created at a very specific time in the
1235  * transaction commit.  This does the actual creation.
1236  *
1237  * Note:
1238  * If the error which may affect the commitment of the current transaction
1239  * happens, we should return the error number. If the error which just affect
1240  * the creation of the pending snapshots, just return 0.
1241  */
1242 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1243 				   struct btrfs_fs_info *fs_info,
1244 				   struct btrfs_pending_snapshot *pending)
1245 {
1246 	struct btrfs_key key;
1247 	struct btrfs_root_item *new_root_item;
1248 	struct btrfs_root *tree_root = fs_info->tree_root;
1249 	struct btrfs_root *root = pending->root;
1250 	struct btrfs_root *parent_root;
1251 	struct btrfs_block_rsv *rsv;
1252 	struct inode *parent_inode;
1253 	struct btrfs_path *path;
1254 	struct btrfs_dir_item *dir_item;
1255 	struct dentry *dentry;
1256 	struct extent_buffer *tmp;
1257 	struct extent_buffer *old;
1258 	struct timespec cur_time = CURRENT_TIME;
1259 	int ret = 0;
1260 	u64 to_reserve = 0;
1261 	u64 index = 0;
1262 	u64 objectid;
1263 	u64 root_flags;
1264 	uuid_le new_uuid;
1265 
1266 	path = btrfs_alloc_path();
1267 	if (!path) {
1268 		pending->error = -ENOMEM;
1269 		return 0;
1270 	}
1271 
1272 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1273 	if (!new_root_item) {
1274 		pending->error = -ENOMEM;
1275 		goto root_item_alloc_fail;
1276 	}
1277 
1278 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1279 	if (pending->error)
1280 		goto no_free_objectid;
1281 
1282 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1283 
1284 	if (to_reserve > 0) {
1285 		pending->error = btrfs_block_rsv_add(root,
1286 						     &pending->block_rsv,
1287 						     to_reserve,
1288 						     BTRFS_RESERVE_NO_FLUSH);
1289 		if (pending->error)
1290 			goto no_free_objectid;
1291 	}
1292 
1293 	key.objectid = objectid;
1294 	key.offset = (u64)-1;
1295 	key.type = BTRFS_ROOT_ITEM_KEY;
1296 
1297 	rsv = trans->block_rsv;
1298 	trans->block_rsv = &pending->block_rsv;
1299 	trans->bytes_reserved = trans->block_rsv->reserved;
1300 
1301 	dentry = pending->dentry;
1302 	parent_inode = pending->dir;
1303 	parent_root = BTRFS_I(parent_inode)->root;
1304 	record_root_in_trans(trans, parent_root);
1305 
1306 	/*
1307 	 * insert the directory item
1308 	 */
1309 	ret = btrfs_set_inode_index(parent_inode, &index);
1310 	BUG_ON(ret); /* -ENOMEM */
1311 
1312 	/* check if there is a file/dir which has the same name. */
1313 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1314 					 btrfs_ino(parent_inode),
1315 					 dentry->d_name.name,
1316 					 dentry->d_name.len, 0);
1317 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1318 		pending->error = -EEXIST;
1319 		goto dir_item_existed;
1320 	} else if (IS_ERR(dir_item)) {
1321 		ret = PTR_ERR(dir_item);
1322 		btrfs_abort_transaction(trans, root, ret);
1323 		goto fail;
1324 	}
1325 	btrfs_release_path(path);
1326 
1327 	/*
1328 	 * pull in the delayed directory update
1329 	 * and the delayed inode item
1330 	 * otherwise we corrupt the FS during
1331 	 * snapshot
1332 	 */
1333 	ret = btrfs_run_delayed_items(trans, root);
1334 	if (ret) {	/* Transaction aborted */
1335 		btrfs_abort_transaction(trans, root, ret);
1336 		goto fail;
1337 	}
1338 
1339 	record_root_in_trans(trans, root);
1340 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1341 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1342 	btrfs_check_and_init_root_item(new_root_item);
1343 
1344 	root_flags = btrfs_root_flags(new_root_item);
1345 	if (pending->readonly)
1346 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1347 	else
1348 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1349 	btrfs_set_root_flags(new_root_item, root_flags);
1350 
1351 	btrfs_set_root_generation_v2(new_root_item,
1352 			trans->transid);
1353 	uuid_le_gen(&new_uuid);
1354 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1355 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1356 			BTRFS_UUID_SIZE);
1357 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1358 		memset(new_root_item->received_uuid, 0,
1359 		       sizeof(new_root_item->received_uuid));
1360 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1361 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1362 		btrfs_set_root_stransid(new_root_item, 0);
1363 		btrfs_set_root_rtransid(new_root_item, 0);
1364 	}
1365 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1366 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1367 	btrfs_set_root_otransid(new_root_item, trans->transid);
1368 
1369 	old = btrfs_lock_root_node(root);
1370 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1371 	if (ret) {
1372 		btrfs_tree_unlock(old);
1373 		free_extent_buffer(old);
1374 		btrfs_abort_transaction(trans, root, ret);
1375 		goto fail;
1376 	}
1377 
1378 	btrfs_set_lock_blocking(old);
1379 
1380 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1381 	/* clean up in any case */
1382 	btrfs_tree_unlock(old);
1383 	free_extent_buffer(old);
1384 	if (ret) {
1385 		btrfs_abort_transaction(trans, root, ret);
1386 		goto fail;
1387 	}
1388 
1389 	/*
1390 	 * We need to flush delayed refs in order to make sure all of our quota
1391 	 * operations have been done before we call btrfs_qgroup_inherit.
1392 	 */
1393 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1394 	if (ret) {
1395 		btrfs_abort_transaction(trans, root, ret);
1396 		goto fail;
1397 	}
1398 
1399 	ret = btrfs_qgroup_inherit(trans, fs_info,
1400 				   root->root_key.objectid,
1401 				   objectid, pending->inherit);
1402 	if (ret) {
1403 		btrfs_abort_transaction(trans, root, ret);
1404 		goto fail;
1405 	}
1406 
1407 	/* see comments in should_cow_block() */
1408 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1409 	smp_wmb();
1410 
1411 	btrfs_set_root_node(new_root_item, tmp);
1412 	/* record when the snapshot was created in key.offset */
1413 	key.offset = trans->transid;
1414 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1415 	btrfs_tree_unlock(tmp);
1416 	free_extent_buffer(tmp);
1417 	if (ret) {
1418 		btrfs_abort_transaction(trans, root, ret);
1419 		goto fail;
1420 	}
1421 
1422 	/*
1423 	 * insert root back/forward references
1424 	 */
1425 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1426 				 parent_root->root_key.objectid,
1427 				 btrfs_ino(parent_inode), index,
1428 				 dentry->d_name.name, dentry->d_name.len);
1429 	if (ret) {
1430 		btrfs_abort_transaction(trans, root, ret);
1431 		goto fail;
1432 	}
1433 
1434 	key.offset = (u64)-1;
1435 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1436 	if (IS_ERR(pending->snap)) {
1437 		ret = PTR_ERR(pending->snap);
1438 		btrfs_abort_transaction(trans, root, ret);
1439 		goto fail;
1440 	}
1441 
1442 	ret = btrfs_reloc_post_snapshot(trans, pending);
1443 	if (ret) {
1444 		btrfs_abort_transaction(trans, root, ret);
1445 		goto fail;
1446 	}
1447 
1448 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1449 	if (ret) {
1450 		btrfs_abort_transaction(trans, root, ret);
1451 		goto fail;
1452 	}
1453 
1454 	ret = btrfs_insert_dir_item(trans, parent_root,
1455 				    dentry->d_name.name, dentry->d_name.len,
1456 				    parent_inode, &key,
1457 				    BTRFS_FT_DIR, index);
1458 	/* We have check then name at the beginning, so it is impossible. */
1459 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1460 	if (ret) {
1461 		btrfs_abort_transaction(trans, root, ret);
1462 		goto fail;
1463 	}
1464 
1465 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1466 					 dentry->d_name.len * 2);
1467 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1468 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1469 	if (ret) {
1470 		btrfs_abort_transaction(trans, root, ret);
1471 		goto fail;
1472 	}
1473 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1474 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1475 	if (ret) {
1476 		btrfs_abort_transaction(trans, root, ret);
1477 		goto fail;
1478 	}
1479 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1480 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1481 					  new_root_item->received_uuid,
1482 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1483 					  objectid);
1484 		if (ret && ret != -EEXIST) {
1485 			btrfs_abort_transaction(trans, root, ret);
1486 			goto fail;
1487 		}
1488 	}
1489 fail:
1490 	pending->error = ret;
1491 dir_item_existed:
1492 	trans->block_rsv = rsv;
1493 	trans->bytes_reserved = 0;
1494 no_free_objectid:
1495 	kfree(new_root_item);
1496 root_item_alloc_fail:
1497 	btrfs_free_path(path);
1498 	return ret;
1499 }
1500 
1501 /*
1502  * create all the snapshots we've scheduled for creation
1503  */
1504 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1505 					     struct btrfs_fs_info *fs_info)
1506 {
1507 	struct btrfs_pending_snapshot *pending, *next;
1508 	struct list_head *head = &trans->transaction->pending_snapshots;
1509 	int ret = 0;
1510 
1511 	list_for_each_entry_safe(pending, next, head, list) {
1512 		list_del(&pending->list);
1513 		ret = create_pending_snapshot(trans, fs_info, pending);
1514 		if (ret)
1515 			break;
1516 	}
1517 	return ret;
1518 }
1519 
1520 static void update_super_roots(struct btrfs_root *root)
1521 {
1522 	struct btrfs_root_item *root_item;
1523 	struct btrfs_super_block *super;
1524 
1525 	super = root->fs_info->super_copy;
1526 
1527 	root_item = &root->fs_info->chunk_root->root_item;
1528 	super->chunk_root = root_item->bytenr;
1529 	super->chunk_root_generation = root_item->generation;
1530 	super->chunk_root_level = root_item->level;
1531 
1532 	root_item = &root->fs_info->tree_root->root_item;
1533 	super->root = root_item->bytenr;
1534 	super->generation = root_item->generation;
1535 	super->root_level = root_item->level;
1536 	if (btrfs_test_opt(root, SPACE_CACHE))
1537 		super->cache_generation = root_item->generation;
1538 	if (root->fs_info->update_uuid_tree_gen)
1539 		super->uuid_tree_generation = root_item->generation;
1540 }
1541 
1542 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1543 {
1544 	struct btrfs_transaction *trans;
1545 	int ret = 0;
1546 
1547 	spin_lock(&info->trans_lock);
1548 	trans = info->running_transaction;
1549 	if (trans)
1550 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1551 	spin_unlock(&info->trans_lock);
1552 	return ret;
1553 }
1554 
1555 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1556 {
1557 	struct btrfs_transaction *trans;
1558 	int ret = 0;
1559 
1560 	spin_lock(&info->trans_lock);
1561 	trans = info->running_transaction;
1562 	if (trans)
1563 		ret = is_transaction_blocked(trans);
1564 	spin_unlock(&info->trans_lock);
1565 	return ret;
1566 }
1567 
1568 /*
1569  * wait for the current transaction commit to start and block subsequent
1570  * transaction joins
1571  */
1572 static void wait_current_trans_commit_start(struct btrfs_root *root,
1573 					    struct btrfs_transaction *trans)
1574 {
1575 	wait_event(root->fs_info->transaction_blocked_wait,
1576 		   trans->state >= TRANS_STATE_COMMIT_START ||
1577 		   trans->aborted);
1578 }
1579 
1580 /*
1581  * wait for the current transaction to start and then become unblocked.
1582  * caller holds ref.
1583  */
1584 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1585 					 struct btrfs_transaction *trans)
1586 {
1587 	wait_event(root->fs_info->transaction_wait,
1588 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1589 		   trans->aborted);
1590 }
1591 
1592 /*
1593  * commit transactions asynchronously. once btrfs_commit_transaction_async
1594  * returns, any subsequent transaction will not be allowed to join.
1595  */
1596 struct btrfs_async_commit {
1597 	struct btrfs_trans_handle *newtrans;
1598 	struct btrfs_root *root;
1599 	struct work_struct work;
1600 };
1601 
1602 static void do_async_commit(struct work_struct *work)
1603 {
1604 	struct btrfs_async_commit *ac =
1605 		container_of(work, struct btrfs_async_commit, work);
1606 
1607 	/*
1608 	 * We've got freeze protection passed with the transaction.
1609 	 * Tell lockdep about it.
1610 	 */
1611 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1612 		rwsem_acquire_read(
1613 		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1614 		     0, 1, _THIS_IP_);
1615 
1616 	current->journal_info = ac->newtrans;
1617 
1618 	btrfs_commit_transaction(ac->newtrans, ac->root);
1619 	kfree(ac);
1620 }
1621 
1622 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1623 				   struct btrfs_root *root,
1624 				   int wait_for_unblock)
1625 {
1626 	struct btrfs_async_commit *ac;
1627 	struct btrfs_transaction *cur_trans;
1628 
1629 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1630 	if (!ac)
1631 		return -ENOMEM;
1632 
1633 	INIT_WORK(&ac->work, do_async_commit);
1634 	ac->root = root;
1635 	ac->newtrans = btrfs_join_transaction(root);
1636 	if (IS_ERR(ac->newtrans)) {
1637 		int err = PTR_ERR(ac->newtrans);
1638 		kfree(ac);
1639 		return err;
1640 	}
1641 
1642 	/* take transaction reference */
1643 	cur_trans = trans->transaction;
1644 	atomic_inc(&cur_trans->use_count);
1645 
1646 	btrfs_end_transaction(trans, root);
1647 
1648 	/*
1649 	 * Tell lockdep we've released the freeze rwsem, since the
1650 	 * async commit thread will be the one to unlock it.
1651 	 */
1652 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1653 		rwsem_release(
1654 			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1655 			1, _THIS_IP_);
1656 
1657 	schedule_work(&ac->work);
1658 
1659 	/* wait for transaction to start and unblock */
1660 	if (wait_for_unblock)
1661 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1662 	else
1663 		wait_current_trans_commit_start(root, cur_trans);
1664 
1665 	if (current->journal_info == trans)
1666 		current->journal_info = NULL;
1667 
1668 	btrfs_put_transaction(cur_trans);
1669 	return 0;
1670 }
1671 
1672 
1673 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1674 				struct btrfs_root *root, int err)
1675 {
1676 	struct btrfs_transaction *cur_trans = trans->transaction;
1677 	DEFINE_WAIT(wait);
1678 
1679 	WARN_ON(trans->use_count > 1);
1680 
1681 	btrfs_abort_transaction(trans, root, err);
1682 
1683 	spin_lock(&root->fs_info->trans_lock);
1684 
1685 	/*
1686 	 * If the transaction is removed from the list, it means this
1687 	 * transaction has been committed successfully, so it is impossible
1688 	 * to call the cleanup function.
1689 	 */
1690 	BUG_ON(list_empty(&cur_trans->list));
1691 
1692 	list_del_init(&cur_trans->list);
1693 	if (cur_trans == root->fs_info->running_transaction) {
1694 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1695 		spin_unlock(&root->fs_info->trans_lock);
1696 		wait_event(cur_trans->writer_wait,
1697 			   atomic_read(&cur_trans->num_writers) == 1);
1698 
1699 		spin_lock(&root->fs_info->trans_lock);
1700 	}
1701 	spin_unlock(&root->fs_info->trans_lock);
1702 
1703 	btrfs_cleanup_one_transaction(trans->transaction, root);
1704 
1705 	spin_lock(&root->fs_info->trans_lock);
1706 	if (cur_trans == root->fs_info->running_transaction)
1707 		root->fs_info->running_transaction = NULL;
1708 	spin_unlock(&root->fs_info->trans_lock);
1709 
1710 	if (trans->type & __TRANS_FREEZABLE)
1711 		sb_end_intwrite(root->fs_info->sb);
1712 	btrfs_put_transaction(cur_trans);
1713 	btrfs_put_transaction(cur_trans);
1714 
1715 	trace_btrfs_transaction_commit(root);
1716 
1717 	if (current->journal_info == trans)
1718 		current->journal_info = NULL;
1719 	btrfs_scrub_cancel(root->fs_info);
1720 
1721 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1722 }
1723 
1724 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1725 {
1726 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1727 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1728 	return 0;
1729 }
1730 
1731 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1732 {
1733 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1734 		btrfs_wait_ordered_roots(fs_info, -1);
1735 }
1736 
1737 static inline void
1738 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1739 			   struct btrfs_fs_info *fs_info)
1740 {
1741 	struct btrfs_ordered_extent *ordered;
1742 
1743 	spin_lock(&fs_info->trans_lock);
1744 	while (!list_empty(&cur_trans->pending_ordered)) {
1745 		ordered = list_first_entry(&cur_trans->pending_ordered,
1746 					   struct btrfs_ordered_extent,
1747 					   trans_list);
1748 		list_del_init(&ordered->trans_list);
1749 		spin_unlock(&fs_info->trans_lock);
1750 
1751 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1752 						   &ordered->flags));
1753 		btrfs_put_ordered_extent(ordered);
1754 		spin_lock(&fs_info->trans_lock);
1755 	}
1756 	spin_unlock(&fs_info->trans_lock);
1757 }
1758 
1759 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1760 			     struct btrfs_root *root)
1761 {
1762 	struct btrfs_transaction *cur_trans = trans->transaction;
1763 	struct btrfs_transaction *prev_trans = NULL;
1764 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1765 	int ret;
1766 
1767 	/* Stop the commit early if ->aborted is set */
1768 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1769 		ret = cur_trans->aborted;
1770 		btrfs_end_transaction(trans, root);
1771 		return ret;
1772 	}
1773 
1774 	/* make a pass through all the delayed refs we have so far
1775 	 * any runnings procs may add more while we are here
1776 	 */
1777 	ret = btrfs_run_delayed_refs(trans, root, 0);
1778 	if (ret) {
1779 		btrfs_end_transaction(trans, root);
1780 		return ret;
1781 	}
1782 
1783 	btrfs_trans_release_metadata(trans, root);
1784 	trans->block_rsv = NULL;
1785 	if (trans->qgroup_reserved) {
1786 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1787 		trans->qgroup_reserved = 0;
1788 	}
1789 
1790 	cur_trans = trans->transaction;
1791 
1792 	/*
1793 	 * set the flushing flag so procs in this transaction have to
1794 	 * start sending their work down.
1795 	 */
1796 	cur_trans->delayed_refs.flushing = 1;
1797 	smp_wmb();
1798 
1799 	if (!list_empty(&trans->new_bgs))
1800 		btrfs_create_pending_block_groups(trans, root);
1801 
1802 	ret = btrfs_run_delayed_refs(trans, root, 0);
1803 	if (ret) {
1804 		btrfs_end_transaction(trans, root);
1805 		return ret;
1806 	}
1807 
1808 	spin_lock(&root->fs_info->trans_lock);
1809 	list_splice(&trans->ordered, &cur_trans->pending_ordered);
1810 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1811 		spin_unlock(&root->fs_info->trans_lock);
1812 		atomic_inc(&cur_trans->use_count);
1813 		ret = btrfs_end_transaction(trans, root);
1814 
1815 		wait_for_commit(root, cur_trans);
1816 
1817 		btrfs_put_transaction(cur_trans);
1818 
1819 		return ret;
1820 	}
1821 
1822 	cur_trans->state = TRANS_STATE_COMMIT_START;
1823 	wake_up(&root->fs_info->transaction_blocked_wait);
1824 
1825 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1826 		prev_trans = list_entry(cur_trans->list.prev,
1827 					struct btrfs_transaction, list);
1828 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1829 			atomic_inc(&prev_trans->use_count);
1830 			spin_unlock(&root->fs_info->trans_lock);
1831 
1832 			wait_for_commit(root, prev_trans);
1833 
1834 			btrfs_put_transaction(prev_trans);
1835 		} else {
1836 			spin_unlock(&root->fs_info->trans_lock);
1837 		}
1838 	} else {
1839 		spin_unlock(&root->fs_info->trans_lock);
1840 	}
1841 
1842 	extwriter_counter_dec(cur_trans, trans->type);
1843 
1844 	ret = btrfs_start_delalloc_flush(root->fs_info);
1845 	if (ret)
1846 		goto cleanup_transaction;
1847 
1848 	ret = btrfs_run_delayed_items(trans, root);
1849 	if (ret)
1850 		goto cleanup_transaction;
1851 
1852 	wait_event(cur_trans->writer_wait,
1853 		   extwriter_counter_read(cur_trans) == 0);
1854 
1855 	/* some pending stuffs might be added after the previous flush. */
1856 	ret = btrfs_run_delayed_items(trans, root);
1857 	if (ret)
1858 		goto cleanup_transaction;
1859 
1860 	btrfs_wait_delalloc_flush(root->fs_info);
1861 
1862 	btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1863 
1864 	btrfs_scrub_pause(root);
1865 	/*
1866 	 * Ok now we need to make sure to block out any other joins while we
1867 	 * commit the transaction.  We could have started a join before setting
1868 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1869 	 */
1870 	spin_lock(&root->fs_info->trans_lock);
1871 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1872 	spin_unlock(&root->fs_info->trans_lock);
1873 	wait_event(cur_trans->writer_wait,
1874 		   atomic_read(&cur_trans->num_writers) == 1);
1875 
1876 	/* ->aborted might be set after the previous check, so check it */
1877 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1878 		ret = cur_trans->aborted;
1879 		goto scrub_continue;
1880 	}
1881 	/*
1882 	 * the reloc mutex makes sure that we stop
1883 	 * the balancing code from coming in and moving
1884 	 * extents around in the middle of the commit
1885 	 */
1886 	mutex_lock(&root->fs_info->reloc_mutex);
1887 
1888 	/*
1889 	 * We needn't worry about the delayed items because we will
1890 	 * deal with them in create_pending_snapshot(), which is the
1891 	 * core function of the snapshot creation.
1892 	 */
1893 	ret = create_pending_snapshots(trans, root->fs_info);
1894 	if (ret) {
1895 		mutex_unlock(&root->fs_info->reloc_mutex);
1896 		goto scrub_continue;
1897 	}
1898 
1899 	/*
1900 	 * We insert the dir indexes of the snapshots and update the inode
1901 	 * of the snapshots' parents after the snapshot creation, so there
1902 	 * are some delayed items which are not dealt with. Now deal with
1903 	 * them.
1904 	 *
1905 	 * We needn't worry that this operation will corrupt the snapshots,
1906 	 * because all the tree which are snapshoted will be forced to COW
1907 	 * the nodes and leaves.
1908 	 */
1909 	ret = btrfs_run_delayed_items(trans, root);
1910 	if (ret) {
1911 		mutex_unlock(&root->fs_info->reloc_mutex);
1912 		goto scrub_continue;
1913 	}
1914 
1915 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1916 	if (ret) {
1917 		mutex_unlock(&root->fs_info->reloc_mutex);
1918 		goto scrub_continue;
1919 	}
1920 
1921 	/*
1922 	 * make sure none of the code above managed to slip in a
1923 	 * delayed item
1924 	 */
1925 	btrfs_assert_delayed_root_empty(root);
1926 
1927 	WARN_ON(cur_trans != trans->transaction);
1928 
1929 	/* btrfs_commit_tree_roots is responsible for getting the
1930 	 * various roots consistent with each other.  Every pointer
1931 	 * in the tree of tree roots has to point to the most up to date
1932 	 * root for every subvolume and other tree.  So, we have to keep
1933 	 * the tree logging code from jumping in and changing any
1934 	 * of the trees.
1935 	 *
1936 	 * At this point in the commit, there can't be any tree-log
1937 	 * writers, but a little lower down we drop the trans mutex
1938 	 * and let new people in.  By holding the tree_log_mutex
1939 	 * from now until after the super is written, we avoid races
1940 	 * with the tree-log code.
1941 	 */
1942 	mutex_lock(&root->fs_info->tree_log_mutex);
1943 
1944 	ret = commit_fs_roots(trans, root);
1945 	if (ret) {
1946 		mutex_unlock(&root->fs_info->tree_log_mutex);
1947 		mutex_unlock(&root->fs_info->reloc_mutex);
1948 		goto scrub_continue;
1949 	}
1950 
1951 	/*
1952 	 * Since the transaction is done, we can apply the pending changes
1953 	 * before the next transaction.
1954 	 */
1955 	btrfs_apply_pending_changes(root->fs_info);
1956 
1957 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1958 	 * safe to free the root of tree log roots
1959 	 */
1960 	btrfs_free_log_root_tree(trans, root->fs_info);
1961 
1962 	ret = commit_cowonly_roots(trans, root);
1963 	if (ret) {
1964 		mutex_unlock(&root->fs_info->tree_log_mutex);
1965 		mutex_unlock(&root->fs_info->reloc_mutex);
1966 		goto scrub_continue;
1967 	}
1968 
1969 	/*
1970 	 * The tasks which save the space cache and inode cache may also
1971 	 * update ->aborted, check it.
1972 	 */
1973 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1974 		ret = cur_trans->aborted;
1975 		mutex_unlock(&root->fs_info->tree_log_mutex);
1976 		mutex_unlock(&root->fs_info->reloc_mutex);
1977 		goto scrub_continue;
1978 	}
1979 
1980 	btrfs_prepare_extent_commit(trans, root);
1981 
1982 	cur_trans = root->fs_info->running_transaction;
1983 
1984 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1985 			    root->fs_info->tree_root->node);
1986 	list_add_tail(&root->fs_info->tree_root->dirty_list,
1987 		      &cur_trans->switch_commits);
1988 
1989 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1990 			    root->fs_info->chunk_root->node);
1991 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
1992 		      &cur_trans->switch_commits);
1993 
1994 	switch_commit_roots(cur_trans, root->fs_info);
1995 
1996 	assert_qgroups_uptodate(trans);
1997 	ASSERT(list_empty(&cur_trans->dirty_bgs));
1998 	update_super_roots(root);
1999 
2000 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2001 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2002 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2003 	       sizeof(*root->fs_info->super_copy));
2004 
2005 	btrfs_update_commit_device_size(root->fs_info);
2006 	btrfs_update_commit_device_bytes_used(root, cur_trans);
2007 
2008 	clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2009 	clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2010 
2011 	spin_lock(&root->fs_info->trans_lock);
2012 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2013 	root->fs_info->running_transaction = NULL;
2014 	spin_unlock(&root->fs_info->trans_lock);
2015 	mutex_unlock(&root->fs_info->reloc_mutex);
2016 
2017 	wake_up(&root->fs_info->transaction_wait);
2018 
2019 	ret = btrfs_write_and_wait_transaction(trans, root);
2020 	if (ret) {
2021 		btrfs_error(root->fs_info, ret,
2022 			    "Error while writing out transaction");
2023 		mutex_unlock(&root->fs_info->tree_log_mutex);
2024 		goto scrub_continue;
2025 	}
2026 
2027 	ret = write_ctree_super(trans, root, 0);
2028 	if (ret) {
2029 		mutex_unlock(&root->fs_info->tree_log_mutex);
2030 		goto scrub_continue;
2031 	}
2032 
2033 	/*
2034 	 * the super is written, we can safely allow the tree-loggers
2035 	 * to go about their business
2036 	 */
2037 	mutex_unlock(&root->fs_info->tree_log_mutex);
2038 
2039 	btrfs_finish_extent_commit(trans, root);
2040 
2041 	if (cur_trans->have_free_bgs)
2042 		btrfs_clear_space_info_full(root->fs_info);
2043 
2044 	root->fs_info->last_trans_committed = cur_trans->transid;
2045 	/*
2046 	 * We needn't acquire the lock here because there is no other task
2047 	 * which can change it.
2048 	 */
2049 	cur_trans->state = TRANS_STATE_COMPLETED;
2050 	wake_up(&cur_trans->commit_wait);
2051 
2052 	spin_lock(&root->fs_info->trans_lock);
2053 	list_del_init(&cur_trans->list);
2054 	spin_unlock(&root->fs_info->trans_lock);
2055 
2056 	btrfs_put_transaction(cur_trans);
2057 	btrfs_put_transaction(cur_trans);
2058 
2059 	if (trans->type & __TRANS_FREEZABLE)
2060 		sb_end_intwrite(root->fs_info->sb);
2061 
2062 	trace_btrfs_transaction_commit(root);
2063 
2064 	btrfs_scrub_continue(root);
2065 
2066 	if (current->journal_info == trans)
2067 		current->journal_info = NULL;
2068 
2069 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2070 
2071 	if (current != root->fs_info->transaction_kthread)
2072 		btrfs_run_delayed_iputs(root);
2073 
2074 	return ret;
2075 
2076 scrub_continue:
2077 	btrfs_scrub_continue(root);
2078 cleanup_transaction:
2079 	btrfs_trans_release_metadata(trans, root);
2080 	trans->block_rsv = NULL;
2081 	if (trans->qgroup_reserved) {
2082 		btrfs_qgroup_free(root, trans->qgroup_reserved);
2083 		trans->qgroup_reserved = 0;
2084 	}
2085 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2086 	if (current->journal_info == trans)
2087 		current->journal_info = NULL;
2088 	cleanup_transaction(trans, root, ret);
2089 
2090 	return ret;
2091 }
2092 
2093 /*
2094  * return < 0 if error
2095  * 0 if there are no more dead_roots at the time of call
2096  * 1 there are more to be processed, call me again
2097  *
2098  * The return value indicates there are certainly more snapshots to delete, but
2099  * if there comes a new one during processing, it may return 0. We don't mind,
2100  * because btrfs_commit_super will poke cleaner thread and it will process it a
2101  * few seconds later.
2102  */
2103 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2104 {
2105 	int ret;
2106 	struct btrfs_fs_info *fs_info = root->fs_info;
2107 
2108 	spin_lock(&fs_info->trans_lock);
2109 	if (list_empty(&fs_info->dead_roots)) {
2110 		spin_unlock(&fs_info->trans_lock);
2111 		return 0;
2112 	}
2113 	root = list_first_entry(&fs_info->dead_roots,
2114 			struct btrfs_root, root_list);
2115 	list_del_init(&root->root_list);
2116 	spin_unlock(&fs_info->trans_lock);
2117 
2118 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2119 
2120 	btrfs_kill_all_delayed_nodes(root);
2121 
2122 	if (btrfs_header_backref_rev(root->node) <
2123 			BTRFS_MIXED_BACKREF_REV)
2124 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2125 	else
2126 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2127 
2128 	return (ret < 0) ? 0 : 1;
2129 }
2130 
2131 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2132 {
2133 	unsigned long prev;
2134 	unsigned long bit;
2135 
2136 	prev = xchg(&fs_info->pending_changes, 0);
2137 	if (!prev)
2138 		return;
2139 
2140 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2141 	if (prev & bit)
2142 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2143 	prev &= ~bit;
2144 
2145 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2146 	if (prev & bit)
2147 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2148 	prev &= ~bit;
2149 
2150 	bit = 1 << BTRFS_PENDING_COMMIT;
2151 	if (prev & bit)
2152 		btrfs_debug(fs_info, "pending commit done");
2153 	prev &= ~bit;
2154 
2155 	if (prev)
2156 		btrfs_warn(fs_info,
2157 			"unknown pending changes left 0x%lx, ignoring", prev);
2158 }
2159