xref: /openbmc/linux/fs/btrfs/transaction.c (revision d5e7cafd)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		while (!list_empty(&transaction->pending_chunks)) {
68 			struct extent_map *em;
69 
70 			em = list_first_entry(&transaction->pending_chunks,
71 					      struct extent_map, list);
72 			list_del_init(&em->list);
73 			free_extent_map(em);
74 		}
75 		kmem_cache_free(btrfs_transaction_cachep, transaction);
76 	}
77 }
78 
79 static void clear_btree_io_tree(struct extent_io_tree *tree)
80 {
81 	spin_lock(&tree->lock);
82 	while (!RB_EMPTY_ROOT(&tree->state)) {
83 		struct rb_node *node;
84 		struct extent_state *state;
85 
86 		node = rb_first(&tree->state);
87 		state = rb_entry(node, struct extent_state, rb_node);
88 		rb_erase(&state->rb_node, &tree->state);
89 		RB_CLEAR_NODE(&state->rb_node);
90 		/*
91 		 * btree io trees aren't supposed to have tasks waiting for
92 		 * changes in the flags of extent states ever.
93 		 */
94 		ASSERT(!waitqueue_active(&state->wq));
95 		free_extent_state(state);
96 		if (need_resched()) {
97 			spin_unlock(&tree->lock);
98 			cond_resched();
99 			spin_lock(&tree->lock);
100 		}
101 	}
102 	spin_unlock(&tree->lock);
103 }
104 
105 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
106 					 struct btrfs_fs_info *fs_info)
107 {
108 	struct btrfs_root *root, *tmp;
109 
110 	down_write(&fs_info->commit_root_sem);
111 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
112 				 dirty_list) {
113 		list_del_init(&root->dirty_list);
114 		free_extent_buffer(root->commit_root);
115 		root->commit_root = btrfs_root_node(root);
116 		if (is_fstree(root->objectid))
117 			btrfs_unpin_free_ino(root);
118 		clear_btree_io_tree(&root->dirty_log_pages);
119 	}
120 	up_write(&fs_info->commit_root_sem);
121 }
122 
123 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
124 					 unsigned int type)
125 {
126 	if (type & TRANS_EXTWRITERS)
127 		atomic_inc(&trans->num_extwriters);
128 }
129 
130 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
131 					 unsigned int type)
132 {
133 	if (type & TRANS_EXTWRITERS)
134 		atomic_dec(&trans->num_extwriters);
135 }
136 
137 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
138 					  unsigned int type)
139 {
140 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
141 }
142 
143 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
144 {
145 	return atomic_read(&trans->num_extwriters);
146 }
147 
148 /*
149  * either allocate a new transaction or hop into the existing one
150  */
151 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
152 {
153 	struct btrfs_transaction *cur_trans;
154 	struct btrfs_fs_info *fs_info = root->fs_info;
155 
156 	spin_lock(&fs_info->trans_lock);
157 loop:
158 	/* The file system has been taken offline. No new transactions. */
159 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
160 		spin_unlock(&fs_info->trans_lock);
161 		return -EROFS;
162 	}
163 
164 	cur_trans = fs_info->running_transaction;
165 	if (cur_trans) {
166 		if (cur_trans->aborted) {
167 			spin_unlock(&fs_info->trans_lock);
168 			return cur_trans->aborted;
169 		}
170 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
171 			spin_unlock(&fs_info->trans_lock);
172 			return -EBUSY;
173 		}
174 		atomic_inc(&cur_trans->use_count);
175 		atomic_inc(&cur_trans->num_writers);
176 		extwriter_counter_inc(cur_trans, type);
177 		spin_unlock(&fs_info->trans_lock);
178 		return 0;
179 	}
180 	spin_unlock(&fs_info->trans_lock);
181 
182 	/*
183 	 * If we are ATTACH, we just want to catch the current transaction,
184 	 * and commit it. If there is no transaction, just return ENOENT.
185 	 */
186 	if (type == TRANS_ATTACH)
187 		return -ENOENT;
188 
189 	/*
190 	 * JOIN_NOLOCK only happens during the transaction commit, so
191 	 * it is impossible that ->running_transaction is NULL
192 	 */
193 	BUG_ON(type == TRANS_JOIN_NOLOCK);
194 
195 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
196 	if (!cur_trans)
197 		return -ENOMEM;
198 
199 	spin_lock(&fs_info->trans_lock);
200 	if (fs_info->running_transaction) {
201 		/*
202 		 * someone started a transaction after we unlocked.  Make sure
203 		 * to redo the checks above
204 		 */
205 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
206 		goto loop;
207 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
208 		spin_unlock(&fs_info->trans_lock);
209 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
210 		return -EROFS;
211 	}
212 
213 	atomic_set(&cur_trans->num_writers, 1);
214 	extwriter_counter_init(cur_trans, type);
215 	init_waitqueue_head(&cur_trans->writer_wait);
216 	init_waitqueue_head(&cur_trans->commit_wait);
217 	cur_trans->state = TRANS_STATE_RUNNING;
218 	/*
219 	 * One for this trans handle, one so it will live on until we
220 	 * commit the transaction.
221 	 */
222 	atomic_set(&cur_trans->use_count, 2);
223 	cur_trans->have_free_bgs = 0;
224 	cur_trans->start_time = get_seconds();
225 
226 	cur_trans->delayed_refs.href_root = RB_ROOT;
227 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
228 	cur_trans->delayed_refs.num_heads_ready = 0;
229 	cur_trans->delayed_refs.num_heads = 0;
230 	cur_trans->delayed_refs.flushing = 0;
231 	cur_trans->delayed_refs.run_delayed_start = 0;
232 
233 	/*
234 	 * although the tree mod log is per file system and not per transaction,
235 	 * the log must never go across transaction boundaries.
236 	 */
237 	smp_mb();
238 	if (!list_empty(&fs_info->tree_mod_seq_list))
239 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
240 			"creating a fresh transaction\n");
241 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
242 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
243 			"creating a fresh transaction\n");
244 	atomic64_set(&fs_info->tree_mod_seq, 0);
245 
246 	spin_lock_init(&cur_trans->delayed_refs.lock);
247 
248 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
249 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
250 	INIT_LIST_HEAD(&cur_trans->switch_commits);
251 	INIT_LIST_HEAD(&cur_trans->pending_ordered);
252 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
253 	spin_lock_init(&cur_trans->dirty_bgs_lock);
254 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
255 	extent_io_tree_init(&cur_trans->dirty_pages,
256 			     fs_info->btree_inode->i_mapping);
257 	fs_info->generation++;
258 	cur_trans->transid = fs_info->generation;
259 	fs_info->running_transaction = cur_trans;
260 	cur_trans->aborted = 0;
261 	spin_unlock(&fs_info->trans_lock);
262 
263 	return 0;
264 }
265 
266 /*
267  * this does all the record keeping required to make sure that a reference
268  * counted root is properly recorded in a given transaction.  This is required
269  * to make sure the old root from before we joined the transaction is deleted
270  * when the transaction commits
271  */
272 static int record_root_in_trans(struct btrfs_trans_handle *trans,
273 			       struct btrfs_root *root)
274 {
275 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
276 	    root->last_trans < trans->transid) {
277 		WARN_ON(root == root->fs_info->extent_root);
278 		WARN_ON(root->commit_root != root->node);
279 
280 		/*
281 		 * see below for IN_TRANS_SETUP usage rules
282 		 * we have the reloc mutex held now, so there
283 		 * is only one writer in this function
284 		 */
285 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
286 
287 		/* make sure readers find IN_TRANS_SETUP before
288 		 * they find our root->last_trans update
289 		 */
290 		smp_wmb();
291 
292 		spin_lock(&root->fs_info->fs_roots_radix_lock);
293 		if (root->last_trans == trans->transid) {
294 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
295 			return 0;
296 		}
297 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
298 			   (unsigned long)root->root_key.objectid,
299 			   BTRFS_ROOT_TRANS_TAG);
300 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
301 		root->last_trans = trans->transid;
302 
303 		/* this is pretty tricky.  We don't want to
304 		 * take the relocation lock in btrfs_record_root_in_trans
305 		 * unless we're really doing the first setup for this root in
306 		 * this transaction.
307 		 *
308 		 * Normally we'd use root->last_trans as a flag to decide
309 		 * if we want to take the expensive mutex.
310 		 *
311 		 * But, we have to set root->last_trans before we
312 		 * init the relocation root, otherwise, we trip over warnings
313 		 * in ctree.c.  The solution used here is to flag ourselves
314 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
315 		 * fixing up the reloc trees and everyone must wait.
316 		 *
317 		 * When this is zero, they can trust root->last_trans and fly
318 		 * through btrfs_record_root_in_trans without having to take the
319 		 * lock.  smp_wmb() makes sure that all the writes above are
320 		 * done before we pop in the zero below
321 		 */
322 		btrfs_init_reloc_root(trans, root);
323 		smp_mb__before_atomic();
324 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
325 	}
326 	return 0;
327 }
328 
329 
330 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
331 			       struct btrfs_root *root)
332 {
333 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
334 		return 0;
335 
336 	/*
337 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
338 	 * and barriers
339 	 */
340 	smp_rmb();
341 	if (root->last_trans == trans->transid &&
342 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
343 		return 0;
344 
345 	mutex_lock(&root->fs_info->reloc_mutex);
346 	record_root_in_trans(trans, root);
347 	mutex_unlock(&root->fs_info->reloc_mutex);
348 
349 	return 0;
350 }
351 
352 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
353 {
354 	return (trans->state >= TRANS_STATE_BLOCKED &&
355 		trans->state < TRANS_STATE_UNBLOCKED &&
356 		!trans->aborted);
357 }
358 
359 /* wait for commit against the current transaction to become unblocked
360  * when this is done, it is safe to start a new transaction, but the current
361  * transaction might not be fully on disk.
362  */
363 static void wait_current_trans(struct btrfs_root *root)
364 {
365 	struct btrfs_transaction *cur_trans;
366 
367 	spin_lock(&root->fs_info->trans_lock);
368 	cur_trans = root->fs_info->running_transaction;
369 	if (cur_trans && is_transaction_blocked(cur_trans)) {
370 		atomic_inc(&cur_trans->use_count);
371 		spin_unlock(&root->fs_info->trans_lock);
372 
373 		wait_event(root->fs_info->transaction_wait,
374 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
375 			   cur_trans->aborted);
376 		btrfs_put_transaction(cur_trans);
377 	} else {
378 		spin_unlock(&root->fs_info->trans_lock);
379 	}
380 }
381 
382 static int may_wait_transaction(struct btrfs_root *root, int type)
383 {
384 	if (root->fs_info->log_root_recovering)
385 		return 0;
386 
387 	if (type == TRANS_USERSPACE)
388 		return 1;
389 
390 	if (type == TRANS_START &&
391 	    !atomic_read(&root->fs_info->open_ioctl_trans))
392 		return 1;
393 
394 	return 0;
395 }
396 
397 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
398 {
399 	if (!root->fs_info->reloc_ctl ||
400 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
401 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
402 	    root->reloc_root)
403 		return false;
404 
405 	return true;
406 }
407 
408 static struct btrfs_trans_handle *
409 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
410 		  enum btrfs_reserve_flush_enum flush)
411 {
412 	struct btrfs_trans_handle *h;
413 	struct btrfs_transaction *cur_trans;
414 	u64 num_bytes = 0;
415 	u64 qgroup_reserved = 0;
416 	bool reloc_reserved = false;
417 	int ret;
418 
419 	/* Send isn't supposed to start transactions. */
420 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
421 
422 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
423 		return ERR_PTR(-EROFS);
424 
425 	if (current->journal_info) {
426 		WARN_ON(type & TRANS_EXTWRITERS);
427 		h = current->journal_info;
428 		h->use_count++;
429 		WARN_ON(h->use_count > 2);
430 		h->orig_rsv = h->block_rsv;
431 		h->block_rsv = NULL;
432 		goto got_it;
433 	}
434 
435 	/*
436 	 * Do the reservation before we join the transaction so we can do all
437 	 * the appropriate flushing if need be.
438 	 */
439 	if (num_items > 0 && root != root->fs_info->chunk_root) {
440 		if (root->fs_info->quota_enabled &&
441 		    is_fstree(root->root_key.objectid)) {
442 			qgroup_reserved = num_items * root->nodesize;
443 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
444 			if (ret)
445 				return ERR_PTR(ret);
446 		}
447 
448 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
449 		/*
450 		 * Do the reservation for the relocation root creation
451 		 */
452 		if (need_reserve_reloc_root(root)) {
453 			num_bytes += root->nodesize;
454 			reloc_reserved = true;
455 		}
456 
457 		ret = btrfs_block_rsv_add(root,
458 					  &root->fs_info->trans_block_rsv,
459 					  num_bytes, flush);
460 		if (ret)
461 			goto reserve_fail;
462 	}
463 again:
464 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
465 	if (!h) {
466 		ret = -ENOMEM;
467 		goto alloc_fail;
468 	}
469 
470 	/*
471 	 * If we are JOIN_NOLOCK we're already committing a transaction and
472 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
473 	 * because we're already holding a ref.  We need this because we could
474 	 * have raced in and did an fsync() on a file which can kick a commit
475 	 * and then we deadlock with somebody doing a freeze.
476 	 *
477 	 * If we are ATTACH, it means we just want to catch the current
478 	 * transaction and commit it, so we needn't do sb_start_intwrite().
479 	 */
480 	if (type & __TRANS_FREEZABLE)
481 		sb_start_intwrite(root->fs_info->sb);
482 
483 	if (may_wait_transaction(root, type))
484 		wait_current_trans(root);
485 
486 	do {
487 		ret = join_transaction(root, type);
488 		if (ret == -EBUSY) {
489 			wait_current_trans(root);
490 			if (unlikely(type == TRANS_ATTACH))
491 				ret = -ENOENT;
492 		}
493 	} while (ret == -EBUSY);
494 
495 	if (ret < 0) {
496 		/* We must get the transaction if we are JOIN_NOLOCK. */
497 		BUG_ON(type == TRANS_JOIN_NOLOCK);
498 		goto join_fail;
499 	}
500 
501 	cur_trans = root->fs_info->running_transaction;
502 
503 	h->transid = cur_trans->transid;
504 	h->transaction = cur_trans;
505 	h->blocks_used = 0;
506 	h->bytes_reserved = 0;
507 	h->root = root;
508 	h->delayed_ref_updates = 0;
509 	h->use_count = 1;
510 	h->adding_csums = 0;
511 	h->block_rsv = NULL;
512 	h->orig_rsv = NULL;
513 	h->aborted = 0;
514 	h->qgroup_reserved = 0;
515 	h->delayed_ref_elem.seq = 0;
516 	h->type = type;
517 	h->allocating_chunk = false;
518 	h->reloc_reserved = false;
519 	h->sync = false;
520 	INIT_LIST_HEAD(&h->qgroup_ref_list);
521 	INIT_LIST_HEAD(&h->new_bgs);
522 	INIT_LIST_HEAD(&h->ordered);
523 
524 	smp_mb();
525 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
526 	    may_wait_transaction(root, type)) {
527 		current->journal_info = h;
528 		btrfs_commit_transaction(h, root);
529 		goto again;
530 	}
531 
532 	if (num_bytes) {
533 		trace_btrfs_space_reservation(root->fs_info, "transaction",
534 					      h->transid, num_bytes, 1);
535 		h->block_rsv = &root->fs_info->trans_block_rsv;
536 		h->bytes_reserved = num_bytes;
537 		h->reloc_reserved = reloc_reserved;
538 	}
539 	h->qgroup_reserved = qgroup_reserved;
540 
541 got_it:
542 	btrfs_record_root_in_trans(h, root);
543 
544 	if (!current->journal_info && type != TRANS_USERSPACE)
545 		current->journal_info = h;
546 	return h;
547 
548 join_fail:
549 	if (type & __TRANS_FREEZABLE)
550 		sb_end_intwrite(root->fs_info->sb);
551 	kmem_cache_free(btrfs_trans_handle_cachep, h);
552 alloc_fail:
553 	if (num_bytes)
554 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
555 					num_bytes);
556 reserve_fail:
557 	if (qgroup_reserved)
558 		btrfs_qgroup_free(root, qgroup_reserved);
559 	return ERR_PTR(ret);
560 }
561 
562 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
563 						   int num_items)
564 {
565 	return start_transaction(root, num_items, TRANS_START,
566 				 BTRFS_RESERVE_FLUSH_ALL);
567 }
568 
569 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
570 					struct btrfs_root *root, int num_items)
571 {
572 	return start_transaction(root, num_items, TRANS_START,
573 				 BTRFS_RESERVE_FLUSH_LIMIT);
574 }
575 
576 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
577 {
578 	return start_transaction(root, 0, TRANS_JOIN, 0);
579 }
580 
581 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
582 {
583 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
584 }
585 
586 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
587 {
588 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
589 }
590 
591 /*
592  * btrfs_attach_transaction() - catch the running transaction
593  *
594  * It is used when we want to commit the current the transaction, but
595  * don't want to start a new one.
596  *
597  * Note: If this function return -ENOENT, it just means there is no
598  * running transaction. But it is possible that the inactive transaction
599  * is still in the memory, not fully on disk. If you hope there is no
600  * inactive transaction in the fs when -ENOENT is returned, you should
601  * invoke
602  *     btrfs_attach_transaction_barrier()
603  */
604 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
605 {
606 	return start_transaction(root, 0, TRANS_ATTACH, 0);
607 }
608 
609 /*
610  * btrfs_attach_transaction_barrier() - catch the running transaction
611  *
612  * It is similar to the above function, the differentia is this one
613  * will wait for all the inactive transactions until they fully
614  * complete.
615  */
616 struct btrfs_trans_handle *
617 btrfs_attach_transaction_barrier(struct btrfs_root *root)
618 {
619 	struct btrfs_trans_handle *trans;
620 
621 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
622 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
623 		btrfs_wait_for_commit(root, 0);
624 
625 	return trans;
626 }
627 
628 /* wait for a transaction commit to be fully complete */
629 static noinline void wait_for_commit(struct btrfs_root *root,
630 				    struct btrfs_transaction *commit)
631 {
632 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
633 }
634 
635 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
636 {
637 	struct btrfs_transaction *cur_trans = NULL, *t;
638 	int ret = 0;
639 
640 	if (transid) {
641 		if (transid <= root->fs_info->last_trans_committed)
642 			goto out;
643 
644 		/* find specified transaction */
645 		spin_lock(&root->fs_info->trans_lock);
646 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
647 			if (t->transid == transid) {
648 				cur_trans = t;
649 				atomic_inc(&cur_trans->use_count);
650 				ret = 0;
651 				break;
652 			}
653 			if (t->transid > transid) {
654 				ret = 0;
655 				break;
656 			}
657 		}
658 		spin_unlock(&root->fs_info->trans_lock);
659 
660 		/*
661 		 * The specified transaction doesn't exist, or we
662 		 * raced with btrfs_commit_transaction
663 		 */
664 		if (!cur_trans) {
665 			if (transid > root->fs_info->last_trans_committed)
666 				ret = -EINVAL;
667 			goto out;
668 		}
669 	} else {
670 		/* find newest transaction that is committing | committed */
671 		spin_lock(&root->fs_info->trans_lock);
672 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
673 					    list) {
674 			if (t->state >= TRANS_STATE_COMMIT_START) {
675 				if (t->state == TRANS_STATE_COMPLETED)
676 					break;
677 				cur_trans = t;
678 				atomic_inc(&cur_trans->use_count);
679 				break;
680 			}
681 		}
682 		spin_unlock(&root->fs_info->trans_lock);
683 		if (!cur_trans)
684 			goto out;  /* nothing committing|committed */
685 	}
686 
687 	wait_for_commit(root, cur_trans);
688 	btrfs_put_transaction(cur_trans);
689 out:
690 	return ret;
691 }
692 
693 void btrfs_throttle(struct btrfs_root *root)
694 {
695 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
696 		wait_current_trans(root);
697 }
698 
699 static int should_end_transaction(struct btrfs_trans_handle *trans,
700 				  struct btrfs_root *root)
701 {
702 	if (root->fs_info->global_block_rsv.space_info->full &&
703 	    btrfs_check_space_for_delayed_refs(trans, root))
704 		return 1;
705 
706 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
707 }
708 
709 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
710 				 struct btrfs_root *root)
711 {
712 	struct btrfs_transaction *cur_trans = trans->transaction;
713 	int updates;
714 	int err;
715 
716 	smp_mb();
717 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
718 	    cur_trans->delayed_refs.flushing)
719 		return 1;
720 
721 	updates = trans->delayed_ref_updates;
722 	trans->delayed_ref_updates = 0;
723 	if (updates) {
724 		err = btrfs_run_delayed_refs(trans, root, updates);
725 		if (err) /* Error code will also eval true */
726 			return err;
727 	}
728 
729 	return should_end_transaction(trans, root);
730 }
731 
732 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
733 			  struct btrfs_root *root, int throttle)
734 {
735 	struct btrfs_transaction *cur_trans = trans->transaction;
736 	struct btrfs_fs_info *info = root->fs_info;
737 	unsigned long cur = trans->delayed_ref_updates;
738 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
739 	int err = 0;
740 	int must_run_delayed_refs = 0;
741 
742 	if (trans->use_count > 1) {
743 		trans->use_count--;
744 		trans->block_rsv = trans->orig_rsv;
745 		return 0;
746 	}
747 
748 	btrfs_trans_release_metadata(trans, root);
749 	trans->block_rsv = NULL;
750 
751 	if (!list_empty(&trans->new_bgs))
752 		btrfs_create_pending_block_groups(trans, root);
753 
754 	if (!list_empty(&trans->ordered)) {
755 		spin_lock(&info->trans_lock);
756 		list_splice(&trans->ordered, &cur_trans->pending_ordered);
757 		spin_unlock(&info->trans_lock);
758 	}
759 
760 	trans->delayed_ref_updates = 0;
761 	if (!trans->sync) {
762 		must_run_delayed_refs =
763 			btrfs_should_throttle_delayed_refs(trans, root);
764 		cur = max_t(unsigned long, cur, 32);
765 
766 		/*
767 		 * don't make the caller wait if they are from a NOLOCK
768 		 * or ATTACH transaction, it will deadlock with commit
769 		 */
770 		if (must_run_delayed_refs == 1 &&
771 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
772 			must_run_delayed_refs = 2;
773 	}
774 
775 	if (trans->qgroup_reserved) {
776 		/*
777 		 * the same root has to be passed here between start_transaction
778 		 * and end_transaction. Subvolume quota depends on this.
779 		 */
780 		btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
781 		trans->qgroup_reserved = 0;
782 	}
783 
784 	btrfs_trans_release_metadata(trans, root);
785 	trans->block_rsv = NULL;
786 
787 	if (!list_empty(&trans->new_bgs))
788 		btrfs_create_pending_block_groups(trans, root);
789 
790 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
791 	    should_end_transaction(trans, root) &&
792 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
793 		spin_lock(&info->trans_lock);
794 		if (cur_trans->state == TRANS_STATE_RUNNING)
795 			cur_trans->state = TRANS_STATE_BLOCKED;
796 		spin_unlock(&info->trans_lock);
797 	}
798 
799 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
800 		if (throttle)
801 			return btrfs_commit_transaction(trans, root);
802 		else
803 			wake_up_process(info->transaction_kthread);
804 	}
805 
806 	if (trans->type & __TRANS_FREEZABLE)
807 		sb_end_intwrite(root->fs_info->sb);
808 
809 	WARN_ON(cur_trans != info->running_transaction);
810 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
811 	atomic_dec(&cur_trans->num_writers);
812 	extwriter_counter_dec(cur_trans, trans->type);
813 
814 	smp_mb();
815 	if (waitqueue_active(&cur_trans->writer_wait))
816 		wake_up(&cur_trans->writer_wait);
817 	btrfs_put_transaction(cur_trans);
818 
819 	if (current->journal_info == trans)
820 		current->journal_info = NULL;
821 
822 	if (throttle)
823 		btrfs_run_delayed_iputs(root);
824 
825 	if (trans->aborted ||
826 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
827 		wake_up_process(info->transaction_kthread);
828 		err = -EIO;
829 	}
830 	assert_qgroups_uptodate(trans);
831 
832 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
833 	if (must_run_delayed_refs) {
834 		btrfs_async_run_delayed_refs(root, cur,
835 					     must_run_delayed_refs == 1);
836 	}
837 	return err;
838 }
839 
840 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
841 			  struct btrfs_root *root)
842 {
843 	return __btrfs_end_transaction(trans, root, 0);
844 }
845 
846 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
847 				   struct btrfs_root *root)
848 {
849 	return __btrfs_end_transaction(trans, root, 1);
850 }
851 
852 /*
853  * when btree blocks are allocated, they have some corresponding bits set for
854  * them in one of two extent_io trees.  This is used to make sure all of
855  * those extents are sent to disk but does not wait on them
856  */
857 int btrfs_write_marked_extents(struct btrfs_root *root,
858 			       struct extent_io_tree *dirty_pages, int mark)
859 {
860 	int err = 0;
861 	int werr = 0;
862 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
863 	struct extent_state *cached_state = NULL;
864 	u64 start = 0;
865 	u64 end;
866 
867 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
868 				      mark, &cached_state)) {
869 		bool wait_writeback = false;
870 
871 		err = convert_extent_bit(dirty_pages, start, end,
872 					 EXTENT_NEED_WAIT,
873 					 mark, &cached_state, GFP_NOFS);
874 		/*
875 		 * convert_extent_bit can return -ENOMEM, which is most of the
876 		 * time a temporary error. So when it happens, ignore the error
877 		 * and wait for writeback of this range to finish - because we
878 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
879 		 * to btrfs_wait_marked_extents() would not know that writeback
880 		 * for this range started and therefore wouldn't wait for it to
881 		 * finish - we don't want to commit a superblock that points to
882 		 * btree nodes/leafs for which writeback hasn't finished yet
883 		 * (and without errors).
884 		 * We cleanup any entries left in the io tree when committing
885 		 * the transaction (through clear_btree_io_tree()).
886 		 */
887 		if (err == -ENOMEM) {
888 			err = 0;
889 			wait_writeback = true;
890 		}
891 		if (!err)
892 			err = filemap_fdatawrite_range(mapping, start, end);
893 		if (err)
894 			werr = err;
895 		else if (wait_writeback)
896 			werr = filemap_fdatawait_range(mapping, start, end);
897 		free_extent_state(cached_state);
898 		cached_state = NULL;
899 		cond_resched();
900 		start = end + 1;
901 	}
902 	return werr;
903 }
904 
905 /*
906  * when btree blocks are allocated, they have some corresponding bits set for
907  * them in one of two extent_io trees.  This is used to make sure all of
908  * those extents are on disk for transaction or log commit.  We wait
909  * on all the pages and clear them from the dirty pages state tree
910  */
911 int btrfs_wait_marked_extents(struct btrfs_root *root,
912 			      struct extent_io_tree *dirty_pages, int mark)
913 {
914 	int err = 0;
915 	int werr = 0;
916 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
917 	struct extent_state *cached_state = NULL;
918 	u64 start = 0;
919 	u64 end;
920 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
921 	bool errors = false;
922 
923 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
924 				      EXTENT_NEED_WAIT, &cached_state)) {
925 		/*
926 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
927 		 * When committing the transaction, we'll remove any entries
928 		 * left in the io tree. For a log commit, we don't remove them
929 		 * after committing the log because the tree can be accessed
930 		 * concurrently - we do it only at transaction commit time when
931 		 * it's safe to do it (through clear_btree_io_tree()).
932 		 */
933 		err = clear_extent_bit(dirty_pages, start, end,
934 				       EXTENT_NEED_WAIT,
935 				       0, 0, &cached_state, GFP_NOFS);
936 		if (err == -ENOMEM)
937 			err = 0;
938 		if (!err)
939 			err = filemap_fdatawait_range(mapping, start, end);
940 		if (err)
941 			werr = err;
942 		free_extent_state(cached_state);
943 		cached_state = NULL;
944 		cond_resched();
945 		start = end + 1;
946 	}
947 	if (err)
948 		werr = err;
949 
950 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
951 		if ((mark & EXTENT_DIRTY) &&
952 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
953 				       &btree_ino->runtime_flags))
954 			errors = true;
955 
956 		if ((mark & EXTENT_NEW) &&
957 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
958 				       &btree_ino->runtime_flags))
959 			errors = true;
960 	} else {
961 		if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
962 				       &btree_ino->runtime_flags))
963 			errors = true;
964 	}
965 
966 	if (errors && !werr)
967 		werr = -EIO;
968 
969 	return werr;
970 }
971 
972 /*
973  * when btree blocks are allocated, they have some corresponding bits set for
974  * them in one of two extent_io trees.  This is used to make sure all of
975  * those extents are on disk for transaction or log commit
976  */
977 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
978 				struct extent_io_tree *dirty_pages, int mark)
979 {
980 	int ret;
981 	int ret2;
982 	struct blk_plug plug;
983 
984 	blk_start_plug(&plug);
985 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
986 	blk_finish_plug(&plug);
987 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
988 
989 	if (ret)
990 		return ret;
991 	if (ret2)
992 		return ret2;
993 	return 0;
994 }
995 
996 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
997 				     struct btrfs_root *root)
998 {
999 	int ret;
1000 
1001 	ret = btrfs_write_and_wait_marked_extents(root,
1002 					   &trans->transaction->dirty_pages,
1003 					   EXTENT_DIRTY);
1004 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1005 
1006 	return ret;
1007 }
1008 
1009 /*
1010  * this is used to update the root pointer in the tree of tree roots.
1011  *
1012  * But, in the case of the extent allocation tree, updating the root
1013  * pointer may allocate blocks which may change the root of the extent
1014  * allocation tree.
1015  *
1016  * So, this loops and repeats and makes sure the cowonly root didn't
1017  * change while the root pointer was being updated in the metadata.
1018  */
1019 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1020 			       struct btrfs_root *root)
1021 {
1022 	int ret;
1023 	u64 old_root_bytenr;
1024 	u64 old_root_used;
1025 	struct btrfs_root *tree_root = root->fs_info->tree_root;
1026 	bool extent_root = (root->objectid == BTRFS_EXTENT_TREE_OBJECTID);
1027 
1028 	old_root_used = btrfs_root_used(&root->root_item);
1029 	btrfs_write_dirty_block_groups(trans, root);
1030 
1031 	while (1) {
1032 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1033 		if (old_root_bytenr == root->node->start &&
1034 		    old_root_used == btrfs_root_used(&root->root_item) &&
1035 		    (!extent_root ||
1036 		     list_empty(&trans->transaction->dirty_bgs)))
1037 			break;
1038 
1039 		btrfs_set_root_node(&root->root_item, root->node);
1040 		ret = btrfs_update_root(trans, tree_root,
1041 					&root->root_key,
1042 					&root->root_item);
1043 		if (ret)
1044 			return ret;
1045 
1046 		old_root_used = btrfs_root_used(&root->root_item);
1047 		if (extent_root) {
1048 			ret = btrfs_write_dirty_block_groups(trans, root);
1049 			if (ret)
1050 				return ret;
1051 		}
1052 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1053 		if (ret)
1054 			return ret;
1055 	}
1056 
1057 	return 0;
1058 }
1059 
1060 /*
1061  * update all the cowonly tree roots on disk
1062  *
1063  * The error handling in this function may not be obvious. Any of the
1064  * failures will cause the file system to go offline. We still need
1065  * to clean up the delayed refs.
1066  */
1067 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1068 					 struct btrfs_root *root)
1069 {
1070 	struct btrfs_fs_info *fs_info = root->fs_info;
1071 	struct list_head *next;
1072 	struct extent_buffer *eb;
1073 	int ret;
1074 
1075 	eb = btrfs_lock_root_node(fs_info->tree_root);
1076 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1077 			      0, &eb);
1078 	btrfs_tree_unlock(eb);
1079 	free_extent_buffer(eb);
1080 
1081 	if (ret)
1082 		return ret;
1083 
1084 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1085 	if (ret)
1086 		return ret;
1087 
1088 	ret = btrfs_run_dev_stats(trans, root->fs_info);
1089 	if (ret)
1090 		return ret;
1091 	ret = btrfs_run_dev_replace(trans, root->fs_info);
1092 	if (ret)
1093 		return ret;
1094 	ret = btrfs_run_qgroups(trans, root->fs_info);
1095 	if (ret)
1096 		return ret;
1097 
1098 	/* run_qgroups might have added some more refs */
1099 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1100 	if (ret)
1101 		return ret;
1102 
1103 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1104 		next = fs_info->dirty_cowonly_roots.next;
1105 		list_del_init(next);
1106 		root = list_entry(next, struct btrfs_root, dirty_list);
1107 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1108 
1109 		if (root != fs_info->extent_root)
1110 			list_add_tail(&root->dirty_list,
1111 				      &trans->transaction->switch_commits);
1112 		ret = update_cowonly_root(trans, root);
1113 		if (ret)
1114 			return ret;
1115 	}
1116 
1117 	list_add_tail(&fs_info->extent_root->dirty_list,
1118 		      &trans->transaction->switch_commits);
1119 	btrfs_after_dev_replace_commit(fs_info);
1120 
1121 	return 0;
1122 }
1123 
1124 /*
1125  * dead roots are old snapshots that need to be deleted.  This allocates
1126  * a dirty root struct and adds it into the list of dead roots that need to
1127  * be deleted
1128  */
1129 void btrfs_add_dead_root(struct btrfs_root *root)
1130 {
1131 	spin_lock(&root->fs_info->trans_lock);
1132 	if (list_empty(&root->root_list))
1133 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1134 	spin_unlock(&root->fs_info->trans_lock);
1135 }
1136 
1137 /*
1138  * update all the cowonly tree roots on disk
1139  */
1140 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1141 				    struct btrfs_root *root)
1142 {
1143 	struct btrfs_root *gang[8];
1144 	struct btrfs_fs_info *fs_info = root->fs_info;
1145 	int i;
1146 	int ret;
1147 	int err = 0;
1148 
1149 	spin_lock(&fs_info->fs_roots_radix_lock);
1150 	while (1) {
1151 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1152 						 (void **)gang, 0,
1153 						 ARRAY_SIZE(gang),
1154 						 BTRFS_ROOT_TRANS_TAG);
1155 		if (ret == 0)
1156 			break;
1157 		for (i = 0; i < ret; i++) {
1158 			root = gang[i];
1159 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1160 					(unsigned long)root->root_key.objectid,
1161 					BTRFS_ROOT_TRANS_TAG);
1162 			spin_unlock(&fs_info->fs_roots_radix_lock);
1163 
1164 			btrfs_free_log(trans, root);
1165 			btrfs_update_reloc_root(trans, root);
1166 			btrfs_orphan_commit_root(trans, root);
1167 
1168 			btrfs_save_ino_cache(root, trans);
1169 
1170 			/* see comments in should_cow_block() */
1171 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1172 			smp_mb__after_atomic();
1173 
1174 			if (root->commit_root != root->node) {
1175 				list_add_tail(&root->dirty_list,
1176 					&trans->transaction->switch_commits);
1177 				btrfs_set_root_node(&root->root_item,
1178 						    root->node);
1179 			}
1180 
1181 			err = btrfs_update_root(trans, fs_info->tree_root,
1182 						&root->root_key,
1183 						&root->root_item);
1184 			spin_lock(&fs_info->fs_roots_radix_lock);
1185 			if (err)
1186 				break;
1187 		}
1188 	}
1189 	spin_unlock(&fs_info->fs_roots_radix_lock);
1190 	return err;
1191 }
1192 
1193 /*
1194  * defrag a given btree.
1195  * Every leaf in the btree is read and defragged.
1196  */
1197 int btrfs_defrag_root(struct btrfs_root *root)
1198 {
1199 	struct btrfs_fs_info *info = root->fs_info;
1200 	struct btrfs_trans_handle *trans;
1201 	int ret;
1202 
1203 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1204 		return 0;
1205 
1206 	while (1) {
1207 		trans = btrfs_start_transaction(root, 0);
1208 		if (IS_ERR(trans))
1209 			return PTR_ERR(trans);
1210 
1211 		ret = btrfs_defrag_leaves(trans, root);
1212 
1213 		btrfs_end_transaction(trans, root);
1214 		btrfs_btree_balance_dirty(info->tree_root);
1215 		cond_resched();
1216 
1217 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1218 			break;
1219 
1220 		if (btrfs_defrag_cancelled(root->fs_info)) {
1221 			pr_debug("BTRFS: defrag_root cancelled\n");
1222 			ret = -EAGAIN;
1223 			break;
1224 		}
1225 	}
1226 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1227 	return ret;
1228 }
1229 
1230 /*
1231  * new snapshots need to be created at a very specific time in the
1232  * transaction commit.  This does the actual creation.
1233  *
1234  * Note:
1235  * If the error which may affect the commitment of the current transaction
1236  * happens, we should return the error number. If the error which just affect
1237  * the creation of the pending snapshots, just return 0.
1238  */
1239 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1240 				   struct btrfs_fs_info *fs_info,
1241 				   struct btrfs_pending_snapshot *pending)
1242 {
1243 	struct btrfs_key key;
1244 	struct btrfs_root_item *new_root_item;
1245 	struct btrfs_root *tree_root = fs_info->tree_root;
1246 	struct btrfs_root *root = pending->root;
1247 	struct btrfs_root *parent_root;
1248 	struct btrfs_block_rsv *rsv;
1249 	struct inode *parent_inode;
1250 	struct btrfs_path *path;
1251 	struct btrfs_dir_item *dir_item;
1252 	struct dentry *dentry;
1253 	struct extent_buffer *tmp;
1254 	struct extent_buffer *old;
1255 	struct timespec cur_time = CURRENT_TIME;
1256 	int ret = 0;
1257 	u64 to_reserve = 0;
1258 	u64 index = 0;
1259 	u64 objectid;
1260 	u64 root_flags;
1261 	uuid_le new_uuid;
1262 
1263 	path = btrfs_alloc_path();
1264 	if (!path) {
1265 		pending->error = -ENOMEM;
1266 		return 0;
1267 	}
1268 
1269 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1270 	if (!new_root_item) {
1271 		pending->error = -ENOMEM;
1272 		goto root_item_alloc_fail;
1273 	}
1274 
1275 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1276 	if (pending->error)
1277 		goto no_free_objectid;
1278 
1279 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1280 
1281 	if (to_reserve > 0) {
1282 		pending->error = btrfs_block_rsv_add(root,
1283 						     &pending->block_rsv,
1284 						     to_reserve,
1285 						     BTRFS_RESERVE_NO_FLUSH);
1286 		if (pending->error)
1287 			goto no_free_objectid;
1288 	}
1289 
1290 	key.objectid = objectid;
1291 	key.offset = (u64)-1;
1292 	key.type = BTRFS_ROOT_ITEM_KEY;
1293 
1294 	rsv = trans->block_rsv;
1295 	trans->block_rsv = &pending->block_rsv;
1296 	trans->bytes_reserved = trans->block_rsv->reserved;
1297 
1298 	dentry = pending->dentry;
1299 	parent_inode = pending->dir;
1300 	parent_root = BTRFS_I(parent_inode)->root;
1301 	record_root_in_trans(trans, parent_root);
1302 
1303 	/*
1304 	 * insert the directory item
1305 	 */
1306 	ret = btrfs_set_inode_index(parent_inode, &index);
1307 	BUG_ON(ret); /* -ENOMEM */
1308 
1309 	/* check if there is a file/dir which has the same name. */
1310 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1311 					 btrfs_ino(parent_inode),
1312 					 dentry->d_name.name,
1313 					 dentry->d_name.len, 0);
1314 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1315 		pending->error = -EEXIST;
1316 		goto dir_item_existed;
1317 	} else if (IS_ERR(dir_item)) {
1318 		ret = PTR_ERR(dir_item);
1319 		btrfs_abort_transaction(trans, root, ret);
1320 		goto fail;
1321 	}
1322 	btrfs_release_path(path);
1323 
1324 	/*
1325 	 * pull in the delayed directory update
1326 	 * and the delayed inode item
1327 	 * otherwise we corrupt the FS during
1328 	 * snapshot
1329 	 */
1330 	ret = btrfs_run_delayed_items(trans, root);
1331 	if (ret) {	/* Transaction aborted */
1332 		btrfs_abort_transaction(trans, root, ret);
1333 		goto fail;
1334 	}
1335 
1336 	record_root_in_trans(trans, root);
1337 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1338 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1339 	btrfs_check_and_init_root_item(new_root_item);
1340 
1341 	root_flags = btrfs_root_flags(new_root_item);
1342 	if (pending->readonly)
1343 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1344 	else
1345 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1346 	btrfs_set_root_flags(new_root_item, root_flags);
1347 
1348 	btrfs_set_root_generation_v2(new_root_item,
1349 			trans->transid);
1350 	uuid_le_gen(&new_uuid);
1351 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1352 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1353 			BTRFS_UUID_SIZE);
1354 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1355 		memset(new_root_item->received_uuid, 0,
1356 		       sizeof(new_root_item->received_uuid));
1357 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1358 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1359 		btrfs_set_root_stransid(new_root_item, 0);
1360 		btrfs_set_root_rtransid(new_root_item, 0);
1361 	}
1362 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1363 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1364 	btrfs_set_root_otransid(new_root_item, trans->transid);
1365 
1366 	old = btrfs_lock_root_node(root);
1367 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1368 	if (ret) {
1369 		btrfs_tree_unlock(old);
1370 		free_extent_buffer(old);
1371 		btrfs_abort_transaction(trans, root, ret);
1372 		goto fail;
1373 	}
1374 
1375 	btrfs_set_lock_blocking(old);
1376 
1377 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1378 	/* clean up in any case */
1379 	btrfs_tree_unlock(old);
1380 	free_extent_buffer(old);
1381 	if (ret) {
1382 		btrfs_abort_transaction(trans, root, ret);
1383 		goto fail;
1384 	}
1385 
1386 	/*
1387 	 * We need to flush delayed refs in order to make sure all of our quota
1388 	 * operations have been done before we call btrfs_qgroup_inherit.
1389 	 */
1390 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1391 	if (ret) {
1392 		btrfs_abort_transaction(trans, root, ret);
1393 		goto fail;
1394 	}
1395 
1396 	ret = btrfs_qgroup_inherit(trans, fs_info,
1397 				   root->root_key.objectid,
1398 				   objectid, pending->inherit);
1399 	if (ret) {
1400 		btrfs_abort_transaction(trans, root, ret);
1401 		goto fail;
1402 	}
1403 
1404 	/* see comments in should_cow_block() */
1405 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1406 	smp_wmb();
1407 
1408 	btrfs_set_root_node(new_root_item, tmp);
1409 	/* record when the snapshot was created in key.offset */
1410 	key.offset = trans->transid;
1411 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1412 	btrfs_tree_unlock(tmp);
1413 	free_extent_buffer(tmp);
1414 	if (ret) {
1415 		btrfs_abort_transaction(trans, root, ret);
1416 		goto fail;
1417 	}
1418 
1419 	/*
1420 	 * insert root back/forward references
1421 	 */
1422 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1423 				 parent_root->root_key.objectid,
1424 				 btrfs_ino(parent_inode), index,
1425 				 dentry->d_name.name, dentry->d_name.len);
1426 	if (ret) {
1427 		btrfs_abort_transaction(trans, root, ret);
1428 		goto fail;
1429 	}
1430 
1431 	key.offset = (u64)-1;
1432 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1433 	if (IS_ERR(pending->snap)) {
1434 		ret = PTR_ERR(pending->snap);
1435 		btrfs_abort_transaction(trans, root, ret);
1436 		goto fail;
1437 	}
1438 
1439 	ret = btrfs_reloc_post_snapshot(trans, pending);
1440 	if (ret) {
1441 		btrfs_abort_transaction(trans, root, ret);
1442 		goto fail;
1443 	}
1444 
1445 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1446 	if (ret) {
1447 		btrfs_abort_transaction(trans, root, ret);
1448 		goto fail;
1449 	}
1450 
1451 	ret = btrfs_insert_dir_item(trans, parent_root,
1452 				    dentry->d_name.name, dentry->d_name.len,
1453 				    parent_inode, &key,
1454 				    BTRFS_FT_DIR, index);
1455 	/* We have check then name at the beginning, so it is impossible. */
1456 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1457 	if (ret) {
1458 		btrfs_abort_transaction(trans, root, ret);
1459 		goto fail;
1460 	}
1461 
1462 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1463 					 dentry->d_name.len * 2);
1464 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1465 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1466 	if (ret) {
1467 		btrfs_abort_transaction(trans, root, ret);
1468 		goto fail;
1469 	}
1470 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1471 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1472 	if (ret) {
1473 		btrfs_abort_transaction(trans, root, ret);
1474 		goto fail;
1475 	}
1476 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1477 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1478 					  new_root_item->received_uuid,
1479 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1480 					  objectid);
1481 		if (ret && ret != -EEXIST) {
1482 			btrfs_abort_transaction(trans, root, ret);
1483 			goto fail;
1484 		}
1485 	}
1486 fail:
1487 	pending->error = ret;
1488 dir_item_existed:
1489 	trans->block_rsv = rsv;
1490 	trans->bytes_reserved = 0;
1491 no_free_objectid:
1492 	kfree(new_root_item);
1493 root_item_alloc_fail:
1494 	btrfs_free_path(path);
1495 	return ret;
1496 }
1497 
1498 /*
1499  * create all the snapshots we've scheduled for creation
1500  */
1501 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1502 					     struct btrfs_fs_info *fs_info)
1503 {
1504 	struct btrfs_pending_snapshot *pending, *next;
1505 	struct list_head *head = &trans->transaction->pending_snapshots;
1506 	int ret = 0;
1507 
1508 	list_for_each_entry_safe(pending, next, head, list) {
1509 		list_del(&pending->list);
1510 		ret = create_pending_snapshot(trans, fs_info, pending);
1511 		if (ret)
1512 			break;
1513 	}
1514 	return ret;
1515 }
1516 
1517 static void update_super_roots(struct btrfs_root *root)
1518 {
1519 	struct btrfs_root_item *root_item;
1520 	struct btrfs_super_block *super;
1521 
1522 	super = root->fs_info->super_copy;
1523 
1524 	root_item = &root->fs_info->chunk_root->root_item;
1525 	super->chunk_root = root_item->bytenr;
1526 	super->chunk_root_generation = root_item->generation;
1527 	super->chunk_root_level = root_item->level;
1528 
1529 	root_item = &root->fs_info->tree_root->root_item;
1530 	super->root = root_item->bytenr;
1531 	super->generation = root_item->generation;
1532 	super->root_level = root_item->level;
1533 	if (btrfs_test_opt(root, SPACE_CACHE))
1534 		super->cache_generation = root_item->generation;
1535 	if (root->fs_info->update_uuid_tree_gen)
1536 		super->uuid_tree_generation = root_item->generation;
1537 }
1538 
1539 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1540 {
1541 	struct btrfs_transaction *trans;
1542 	int ret = 0;
1543 
1544 	spin_lock(&info->trans_lock);
1545 	trans = info->running_transaction;
1546 	if (trans)
1547 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1548 	spin_unlock(&info->trans_lock);
1549 	return ret;
1550 }
1551 
1552 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1553 {
1554 	struct btrfs_transaction *trans;
1555 	int ret = 0;
1556 
1557 	spin_lock(&info->trans_lock);
1558 	trans = info->running_transaction;
1559 	if (trans)
1560 		ret = is_transaction_blocked(trans);
1561 	spin_unlock(&info->trans_lock);
1562 	return ret;
1563 }
1564 
1565 /*
1566  * wait for the current transaction commit to start and block subsequent
1567  * transaction joins
1568  */
1569 static void wait_current_trans_commit_start(struct btrfs_root *root,
1570 					    struct btrfs_transaction *trans)
1571 {
1572 	wait_event(root->fs_info->transaction_blocked_wait,
1573 		   trans->state >= TRANS_STATE_COMMIT_START ||
1574 		   trans->aborted);
1575 }
1576 
1577 /*
1578  * wait for the current transaction to start and then become unblocked.
1579  * caller holds ref.
1580  */
1581 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1582 					 struct btrfs_transaction *trans)
1583 {
1584 	wait_event(root->fs_info->transaction_wait,
1585 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1586 		   trans->aborted);
1587 }
1588 
1589 /*
1590  * commit transactions asynchronously. once btrfs_commit_transaction_async
1591  * returns, any subsequent transaction will not be allowed to join.
1592  */
1593 struct btrfs_async_commit {
1594 	struct btrfs_trans_handle *newtrans;
1595 	struct btrfs_root *root;
1596 	struct work_struct work;
1597 };
1598 
1599 static void do_async_commit(struct work_struct *work)
1600 {
1601 	struct btrfs_async_commit *ac =
1602 		container_of(work, struct btrfs_async_commit, work);
1603 
1604 	/*
1605 	 * We've got freeze protection passed with the transaction.
1606 	 * Tell lockdep about it.
1607 	 */
1608 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1609 		rwsem_acquire_read(
1610 		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1611 		     0, 1, _THIS_IP_);
1612 
1613 	current->journal_info = ac->newtrans;
1614 
1615 	btrfs_commit_transaction(ac->newtrans, ac->root);
1616 	kfree(ac);
1617 }
1618 
1619 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1620 				   struct btrfs_root *root,
1621 				   int wait_for_unblock)
1622 {
1623 	struct btrfs_async_commit *ac;
1624 	struct btrfs_transaction *cur_trans;
1625 
1626 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1627 	if (!ac)
1628 		return -ENOMEM;
1629 
1630 	INIT_WORK(&ac->work, do_async_commit);
1631 	ac->root = root;
1632 	ac->newtrans = btrfs_join_transaction(root);
1633 	if (IS_ERR(ac->newtrans)) {
1634 		int err = PTR_ERR(ac->newtrans);
1635 		kfree(ac);
1636 		return err;
1637 	}
1638 
1639 	/* take transaction reference */
1640 	cur_trans = trans->transaction;
1641 	atomic_inc(&cur_trans->use_count);
1642 
1643 	btrfs_end_transaction(trans, root);
1644 
1645 	/*
1646 	 * Tell lockdep we've released the freeze rwsem, since the
1647 	 * async commit thread will be the one to unlock it.
1648 	 */
1649 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1650 		rwsem_release(
1651 			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1652 			1, _THIS_IP_);
1653 
1654 	schedule_work(&ac->work);
1655 
1656 	/* wait for transaction to start and unblock */
1657 	if (wait_for_unblock)
1658 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1659 	else
1660 		wait_current_trans_commit_start(root, cur_trans);
1661 
1662 	if (current->journal_info == trans)
1663 		current->journal_info = NULL;
1664 
1665 	btrfs_put_transaction(cur_trans);
1666 	return 0;
1667 }
1668 
1669 
1670 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1671 				struct btrfs_root *root, int err)
1672 {
1673 	struct btrfs_transaction *cur_trans = trans->transaction;
1674 	DEFINE_WAIT(wait);
1675 
1676 	WARN_ON(trans->use_count > 1);
1677 
1678 	btrfs_abort_transaction(trans, root, err);
1679 
1680 	spin_lock(&root->fs_info->trans_lock);
1681 
1682 	/*
1683 	 * If the transaction is removed from the list, it means this
1684 	 * transaction has been committed successfully, so it is impossible
1685 	 * to call the cleanup function.
1686 	 */
1687 	BUG_ON(list_empty(&cur_trans->list));
1688 
1689 	list_del_init(&cur_trans->list);
1690 	if (cur_trans == root->fs_info->running_transaction) {
1691 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1692 		spin_unlock(&root->fs_info->trans_lock);
1693 		wait_event(cur_trans->writer_wait,
1694 			   atomic_read(&cur_trans->num_writers) == 1);
1695 
1696 		spin_lock(&root->fs_info->trans_lock);
1697 	}
1698 	spin_unlock(&root->fs_info->trans_lock);
1699 
1700 	btrfs_cleanup_one_transaction(trans->transaction, root);
1701 
1702 	spin_lock(&root->fs_info->trans_lock);
1703 	if (cur_trans == root->fs_info->running_transaction)
1704 		root->fs_info->running_transaction = NULL;
1705 	spin_unlock(&root->fs_info->trans_lock);
1706 
1707 	if (trans->type & __TRANS_FREEZABLE)
1708 		sb_end_intwrite(root->fs_info->sb);
1709 	btrfs_put_transaction(cur_trans);
1710 	btrfs_put_transaction(cur_trans);
1711 
1712 	trace_btrfs_transaction_commit(root);
1713 
1714 	if (current->journal_info == trans)
1715 		current->journal_info = NULL;
1716 	btrfs_scrub_cancel(root->fs_info);
1717 
1718 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1719 }
1720 
1721 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1722 {
1723 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1724 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1725 	return 0;
1726 }
1727 
1728 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1729 {
1730 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1731 		btrfs_wait_ordered_roots(fs_info, -1);
1732 }
1733 
1734 static inline void
1735 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1736 			   struct btrfs_fs_info *fs_info)
1737 {
1738 	struct btrfs_ordered_extent *ordered;
1739 
1740 	spin_lock(&fs_info->trans_lock);
1741 	while (!list_empty(&cur_trans->pending_ordered)) {
1742 		ordered = list_first_entry(&cur_trans->pending_ordered,
1743 					   struct btrfs_ordered_extent,
1744 					   trans_list);
1745 		list_del_init(&ordered->trans_list);
1746 		spin_unlock(&fs_info->trans_lock);
1747 
1748 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1749 						   &ordered->flags));
1750 		btrfs_put_ordered_extent(ordered);
1751 		spin_lock(&fs_info->trans_lock);
1752 	}
1753 	spin_unlock(&fs_info->trans_lock);
1754 }
1755 
1756 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1757 			     struct btrfs_root *root)
1758 {
1759 	struct btrfs_transaction *cur_trans = trans->transaction;
1760 	struct btrfs_transaction *prev_trans = NULL;
1761 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1762 	int ret;
1763 
1764 	/* Stop the commit early if ->aborted is set */
1765 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1766 		ret = cur_trans->aborted;
1767 		btrfs_end_transaction(trans, root);
1768 		return ret;
1769 	}
1770 
1771 	/* make a pass through all the delayed refs we have so far
1772 	 * any runnings procs may add more while we are here
1773 	 */
1774 	ret = btrfs_run_delayed_refs(trans, root, 0);
1775 	if (ret) {
1776 		btrfs_end_transaction(trans, root);
1777 		return ret;
1778 	}
1779 
1780 	btrfs_trans_release_metadata(trans, root);
1781 	trans->block_rsv = NULL;
1782 	if (trans->qgroup_reserved) {
1783 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1784 		trans->qgroup_reserved = 0;
1785 	}
1786 
1787 	cur_trans = trans->transaction;
1788 
1789 	/*
1790 	 * set the flushing flag so procs in this transaction have to
1791 	 * start sending their work down.
1792 	 */
1793 	cur_trans->delayed_refs.flushing = 1;
1794 	smp_wmb();
1795 
1796 	if (!list_empty(&trans->new_bgs))
1797 		btrfs_create_pending_block_groups(trans, root);
1798 
1799 	ret = btrfs_run_delayed_refs(trans, root, 0);
1800 	if (ret) {
1801 		btrfs_end_transaction(trans, root);
1802 		return ret;
1803 	}
1804 
1805 	spin_lock(&root->fs_info->trans_lock);
1806 	list_splice(&trans->ordered, &cur_trans->pending_ordered);
1807 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1808 		spin_unlock(&root->fs_info->trans_lock);
1809 		atomic_inc(&cur_trans->use_count);
1810 		ret = btrfs_end_transaction(trans, root);
1811 
1812 		wait_for_commit(root, cur_trans);
1813 
1814 		btrfs_put_transaction(cur_trans);
1815 
1816 		return ret;
1817 	}
1818 
1819 	cur_trans->state = TRANS_STATE_COMMIT_START;
1820 	wake_up(&root->fs_info->transaction_blocked_wait);
1821 
1822 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1823 		prev_trans = list_entry(cur_trans->list.prev,
1824 					struct btrfs_transaction, list);
1825 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1826 			atomic_inc(&prev_trans->use_count);
1827 			spin_unlock(&root->fs_info->trans_lock);
1828 
1829 			wait_for_commit(root, prev_trans);
1830 
1831 			btrfs_put_transaction(prev_trans);
1832 		} else {
1833 			spin_unlock(&root->fs_info->trans_lock);
1834 		}
1835 	} else {
1836 		spin_unlock(&root->fs_info->trans_lock);
1837 	}
1838 
1839 	extwriter_counter_dec(cur_trans, trans->type);
1840 
1841 	ret = btrfs_start_delalloc_flush(root->fs_info);
1842 	if (ret)
1843 		goto cleanup_transaction;
1844 
1845 	ret = btrfs_run_delayed_items(trans, root);
1846 	if (ret)
1847 		goto cleanup_transaction;
1848 
1849 	wait_event(cur_trans->writer_wait,
1850 		   extwriter_counter_read(cur_trans) == 0);
1851 
1852 	/* some pending stuffs might be added after the previous flush. */
1853 	ret = btrfs_run_delayed_items(trans, root);
1854 	if (ret)
1855 		goto cleanup_transaction;
1856 
1857 	btrfs_wait_delalloc_flush(root->fs_info);
1858 
1859 	btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1860 
1861 	btrfs_scrub_pause(root);
1862 	/*
1863 	 * Ok now we need to make sure to block out any other joins while we
1864 	 * commit the transaction.  We could have started a join before setting
1865 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1866 	 */
1867 	spin_lock(&root->fs_info->trans_lock);
1868 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1869 	spin_unlock(&root->fs_info->trans_lock);
1870 	wait_event(cur_trans->writer_wait,
1871 		   atomic_read(&cur_trans->num_writers) == 1);
1872 
1873 	/* ->aborted might be set after the previous check, so check it */
1874 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1875 		ret = cur_trans->aborted;
1876 		goto scrub_continue;
1877 	}
1878 	/*
1879 	 * the reloc mutex makes sure that we stop
1880 	 * the balancing code from coming in and moving
1881 	 * extents around in the middle of the commit
1882 	 */
1883 	mutex_lock(&root->fs_info->reloc_mutex);
1884 
1885 	/*
1886 	 * We needn't worry about the delayed items because we will
1887 	 * deal with them in create_pending_snapshot(), which is the
1888 	 * core function of the snapshot creation.
1889 	 */
1890 	ret = create_pending_snapshots(trans, root->fs_info);
1891 	if (ret) {
1892 		mutex_unlock(&root->fs_info->reloc_mutex);
1893 		goto scrub_continue;
1894 	}
1895 
1896 	/*
1897 	 * We insert the dir indexes of the snapshots and update the inode
1898 	 * of the snapshots' parents after the snapshot creation, so there
1899 	 * are some delayed items which are not dealt with. Now deal with
1900 	 * them.
1901 	 *
1902 	 * We needn't worry that this operation will corrupt the snapshots,
1903 	 * because all the tree which are snapshoted will be forced to COW
1904 	 * the nodes and leaves.
1905 	 */
1906 	ret = btrfs_run_delayed_items(trans, root);
1907 	if (ret) {
1908 		mutex_unlock(&root->fs_info->reloc_mutex);
1909 		goto scrub_continue;
1910 	}
1911 
1912 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1913 	if (ret) {
1914 		mutex_unlock(&root->fs_info->reloc_mutex);
1915 		goto scrub_continue;
1916 	}
1917 
1918 	/*
1919 	 * make sure none of the code above managed to slip in a
1920 	 * delayed item
1921 	 */
1922 	btrfs_assert_delayed_root_empty(root);
1923 
1924 	WARN_ON(cur_trans != trans->transaction);
1925 
1926 	/* btrfs_commit_tree_roots is responsible for getting the
1927 	 * various roots consistent with each other.  Every pointer
1928 	 * in the tree of tree roots has to point to the most up to date
1929 	 * root for every subvolume and other tree.  So, we have to keep
1930 	 * the tree logging code from jumping in and changing any
1931 	 * of the trees.
1932 	 *
1933 	 * At this point in the commit, there can't be any tree-log
1934 	 * writers, but a little lower down we drop the trans mutex
1935 	 * and let new people in.  By holding the tree_log_mutex
1936 	 * from now until after the super is written, we avoid races
1937 	 * with the tree-log code.
1938 	 */
1939 	mutex_lock(&root->fs_info->tree_log_mutex);
1940 
1941 	ret = commit_fs_roots(trans, root);
1942 	if (ret) {
1943 		mutex_unlock(&root->fs_info->tree_log_mutex);
1944 		mutex_unlock(&root->fs_info->reloc_mutex);
1945 		goto scrub_continue;
1946 	}
1947 
1948 	/*
1949 	 * Since the transaction is done, we can apply the pending changes
1950 	 * before the next transaction.
1951 	 */
1952 	btrfs_apply_pending_changes(root->fs_info);
1953 
1954 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1955 	 * safe to free the root of tree log roots
1956 	 */
1957 	btrfs_free_log_root_tree(trans, root->fs_info);
1958 
1959 	ret = commit_cowonly_roots(trans, root);
1960 	if (ret) {
1961 		mutex_unlock(&root->fs_info->tree_log_mutex);
1962 		mutex_unlock(&root->fs_info->reloc_mutex);
1963 		goto scrub_continue;
1964 	}
1965 
1966 	/*
1967 	 * The tasks which save the space cache and inode cache may also
1968 	 * update ->aborted, check it.
1969 	 */
1970 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1971 		ret = cur_trans->aborted;
1972 		mutex_unlock(&root->fs_info->tree_log_mutex);
1973 		mutex_unlock(&root->fs_info->reloc_mutex);
1974 		goto scrub_continue;
1975 	}
1976 
1977 	btrfs_prepare_extent_commit(trans, root);
1978 
1979 	cur_trans = root->fs_info->running_transaction;
1980 
1981 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1982 			    root->fs_info->tree_root->node);
1983 	list_add_tail(&root->fs_info->tree_root->dirty_list,
1984 		      &cur_trans->switch_commits);
1985 
1986 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1987 			    root->fs_info->chunk_root->node);
1988 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
1989 		      &cur_trans->switch_commits);
1990 
1991 	switch_commit_roots(cur_trans, root->fs_info);
1992 
1993 	assert_qgroups_uptodate(trans);
1994 	ASSERT(list_empty(&cur_trans->dirty_bgs));
1995 	update_super_roots(root);
1996 
1997 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1998 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1999 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2000 	       sizeof(*root->fs_info->super_copy));
2001 
2002 	btrfs_update_commit_device_size(root->fs_info);
2003 	btrfs_update_commit_device_bytes_used(root, cur_trans);
2004 
2005 	clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2006 	clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2007 
2008 	spin_lock(&root->fs_info->trans_lock);
2009 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2010 	root->fs_info->running_transaction = NULL;
2011 	spin_unlock(&root->fs_info->trans_lock);
2012 	mutex_unlock(&root->fs_info->reloc_mutex);
2013 
2014 	wake_up(&root->fs_info->transaction_wait);
2015 
2016 	ret = btrfs_write_and_wait_transaction(trans, root);
2017 	if (ret) {
2018 		btrfs_error(root->fs_info, ret,
2019 			    "Error while writing out transaction");
2020 		mutex_unlock(&root->fs_info->tree_log_mutex);
2021 		goto scrub_continue;
2022 	}
2023 
2024 	ret = write_ctree_super(trans, root, 0);
2025 	if (ret) {
2026 		mutex_unlock(&root->fs_info->tree_log_mutex);
2027 		goto scrub_continue;
2028 	}
2029 
2030 	/*
2031 	 * the super is written, we can safely allow the tree-loggers
2032 	 * to go about their business
2033 	 */
2034 	mutex_unlock(&root->fs_info->tree_log_mutex);
2035 
2036 	btrfs_finish_extent_commit(trans, root);
2037 
2038 	if (cur_trans->have_free_bgs)
2039 		btrfs_clear_space_info_full(root->fs_info);
2040 
2041 	root->fs_info->last_trans_committed = cur_trans->transid;
2042 	/*
2043 	 * We needn't acquire the lock here because there is no other task
2044 	 * which can change it.
2045 	 */
2046 	cur_trans->state = TRANS_STATE_COMPLETED;
2047 	wake_up(&cur_trans->commit_wait);
2048 
2049 	spin_lock(&root->fs_info->trans_lock);
2050 	list_del_init(&cur_trans->list);
2051 	spin_unlock(&root->fs_info->trans_lock);
2052 
2053 	btrfs_put_transaction(cur_trans);
2054 	btrfs_put_transaction(cur_trans);
2055 
2056 	if (trans->type & __TRANS_FREEZABLE)
2057 		sb_end_intwrite(root->fs_info->sb);
2058 
2059 	trace_btrfs_transaction_commit(root);
2060 
2061 	btrfs_scrub_continue(root);
2062 
2063 	if (current->journal_info == trans)
2064 		current->journal_info = NULL;
2065 
2066 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2067 
2068 	if (current != root->fs_info->transaction_kthread)
2069 		btrfs_run_delayed_iputs(root);
2070 
2071 	return ret;
2072 
2073 scrub_continue:
2074 	btrfs_scrub_continue(root);
2075 cleanup_transaction:
2076 	btrfs_trans_release_metadata(trans, root);
2077 	trans->block_rsv = NULL;
2078 	if (trans->qgroup_reserved) {
2079 		btrfs_qgroup_free(root, trans->qgroup_reserved);
2080 		trans->qgroup_reserved = 0;
2081 	}
2082 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2083 	if (current->journal_info == trans)
2084 		current->journal_info = NULL;
2085 	cleanup_transaction(trans, root, ret);
2086 
2087 	return ret;
2088 }
2089 
2090 /*
2091  * return < 0 if error
2092  * 0 if there are no more dead_roots at the time of call
2093  * 1 there are more to be processed, call me again
2094  *
2095  * The return value indicates there are certainly more snapshots to delete, but
2096  * if there comes a new one during processing, it may return 0. We don't mind,
2097  * because btrfs_commit_super will poke cleaner thread and it will process it a
2098  * few seconds later.
2099  */
2100 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2101 {
2102 	int ret;
2103 	struct btrfs_fs_info *fs_info = root->fs_info;
2104 
2105 	spin_lock(&fs_info->trans_lock);
2106 	if (list_empty(&fs_info->dead_roots)) {
2107 		spin_unlock(&fs_info->trans_lock);
2108 		return 0;
2109 	}
2110 	root = list_first_entry(&fs_info->dead_roots,
2111 			struct btrfs_root, root_list);
2112 	list_del_init(&root->root_list);
2113 	spin_unlock(&fs_info->trans_lock);
2114 
2115 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2116 
2117 	btrfs_kill_all_delayed_nodes(root);
2118 
2119 	if (btrfs_header_backref_rev(root->node) <
2120 			BTRFS_MIXED_BACKREF_REV)
2121 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2122 	else
2123 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2124 
2125 	return (ret < 0) ? 0 : 1;
2126 }
2127 
2128 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2129 {
2130 	unsigned long prev;
2131 	unsigned long bit;
2132 
2133 	prev = xchg(&fs_info->pending_changes, 0);
2134 	if (!prev)
2135 		return;
2136 
2137 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2138 	if (prev & bit)
2139 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2140 	prev &= ~bit;
2141 
2142 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2143 	if (prev & bit)
2144 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2145 	prev &= ~bit;
2146 
2147 	bit = 1 << BTRFS_PENDING_COMMIT;
2148 	if (prev & bit)
2149 		btrfs_debug(fs_info, "pending commit done");
2150 	prev &= ~bit;
2151 
2152 	if (prev)
2153 		btrfs_warn(fs_info,
2154 			"unknown pending changes left 0x%lx, ignoring", prev);
2155 }
2156