xref: /openbmc/linux/fs/btrfs/transaction.c (revision d3597236)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		if (transaction->delayed_refs.pending_csums)
68 			printk(KERN_ERR "pending csums is %llu\n",
69 			       transaction->delayed_refs.pending_csums);
70 		while (!list_empty(&transaction->pending_chunks)) {
71 			struct extent_map *em;
72 
73 			em = list_first_entry(&transaction->pending_chunks,
74 					      struct extent_map, list);
75 			list_del_init(&em->list);
76 			free_extent_map(em);
77 		}
78 		kmem_cache_free(btrfs_transaction_cachep, transaction);
79 	}
80 }
81 
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 	spin_lock(&tree->lock);
85 	while (!RB_EMPTY_ROOT(&tree->state)) {
86 		struct rb_node *node;
87 		struct extent_state *state;
88 
89 		node = rb_first(&tree->state);
90 		state = rb_entry(node, struct extent_state, rb_node);
91 		rb_erase(&state->rb_node, &tree->state);
92 		RB_CLEAR_NODE(&state->rb_node);
93 		/*
94 		 * btree io trees aren't supposed to have tasks waiting for
95 		 * changes in the flags of extent states ever.
96 		 */
97 		ASSERT(!waitqueue_active(&state->wq));
98 		free_extent_state(state);
99 
100 		cond_resched_lock(&tree->lock);
101 	}
102 	spin_unlock(&tree->lock);
103 }
104 
105 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
106 					 struct btrfs_fs_info *fs_info)
107 {
108 	struct btrfs_root *root, *tmp;
109 
110 	down_write(&fs_info->commit_root_sem);
111 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
112 				 dirty_list) {
113 		list_del_init(&root->dirty_list);
114 		free_extent_buffer(root->commit_root);
115 		root->commit_root = btrfs_root_node(root);
116 		if (is_fstree(root->objectid))
117 			btrfs_unpin_free_ino(root);
118 		clear_btree_io_tree(&root->dirty_log_pages);
119 	}
120 	up_write(&fs_info->commit_root_sem);
121 }
122 
123 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
124 					 unsigned int type)
125 {
126 	if (type & TRANS_EXTWRITERS)
127 		atomic_inc(&trans->num_extwriters);
128 }
129 
130 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
131 					 unsigned int type)
132 {
133 	if (type & TRANS_EXTWRITERS)
134 		atomic_dec(&trans->num_extwriters);
135 }
136 
137 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
138 					  unsigned int type)
139 {
140 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
141 }
142 
143 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
144 {
145 	return atomic_read(&trans->num_extwriters);
146 }
147 
148 /*
149  * either allocate a new transaction or hop into the existing one
150  */
151 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
152 {
153 	struct btrfs_transaction *cur_trans;
154 	struct btrfs_fs_info *fs_info = root->fs_info;
155 
156 	spin_lock(&fs_info->trans_lock);
157 loop:
158 	/* The file system has been taken offline. No new transactions. */
159 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
160 		spin_unlock(&fs_info->trans_lock);
161 		return -EROFS;
162 	}
163 
164 	cur_trans = fs_info->running_transaction;
165 	if (cur_trans) {
166 		if (cur_trans->aborted) {
167 			spin_unlock(&fs_info->trans_lock);
168 			return cur_trans->aborted;
169 		}
170 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
171 			spin_unlock(&fs_info->trans_lock);
172 			return -EBUSY;
173 		}
174 		atomic_inc(&cur_trans->use_count);
175 		atomic_inc(&cur_trans->num_writers);
176 		extwriter_counter_inc(cur_trans, type);
177 		spin_unlock(&fs_info->trans_lock);
178 		return 0;
179 	}
180 	spin_unlock(&fs_info->trans_lock);
181 
182 	/*
183 	 * If we are ATTACH, we just want to catch the current transaction,
184 	 * and commit it. If there is no transaction, just return ENOENT.
185 	 */
186 	if (type == TRANS_ATTACH)
187 		return -ENOENT;
188 
189 	/*
190 	 * JOIN_NOLOCK only happens during the transaction commit, so
191 	 * it is impossible that ->running_transaction is NULL
192 	 */
193 	BUG_ON(type == TRANS_JOIN_NOLOCK);
194 
195 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
196 	if (!cur_trans)
197 		return -ENOMEM;
198 
199 	spin_lock(&fs_info->trans_lock);
200 	if (fs_info->running_transaction) {
201 		/*
202 		 * someone started a transaction after we unlocked.  Make sure
203 		 * to redo the checks above
204 		 */
205 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
206 		goto loop;
207 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
208 		spin_unlock(&fs_info->trans_lock);
209 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
210 		return -EROFS;
211 	}
212 
213 	atomic_set(&cur_trans->num_writers, 1);
214 	extwriter_counter_init(cur_trans, type);
215 	init_waitqueue_head(&cur_trans->writer_wait);
216 	init_waitqueue_head(&cur_trans->commit_wait);
217 	cur_trans->state = TRANS_STATE_RUNNING;
218 	/*
219 	 * One for this trans handle, one so it will live on until we
220 	 * commit the transaction.
221 	 */
222 	atomic_set(&cur_trans->use_count, 2);
223 	cur_trans->have_free_bgs = 0;
224 	cur_trans->start_time = get_seconds();
225 	cur_trans->dirty_bg_run = 0;
226 
227 	cur_trans->delayed_refs.href_root = RB_ROOT;
228 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
229 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
230 	cur_trans->delayed_refs.num_heads_ready = 0;
231 	cur_trans->delayed_refs.pending_csums = 0;
232 	cur_trans->delayed_refs.num_heads = 0;
233 	cur_trans->delayed_refs.flushing = 0;
234 	cur_trans->delayed_refs.run_delayed_start = 0;
235 	cur_trans->delayed_refs.qgroup_to_skip = 0;
236 
237 	/*
238 	 * although the tree mod log is per file system and not per transaction,
239 	 * the log must never go across transaction boundaries.
240 	 */
241 	smp_mb();
242 	if (!list_empty(&fs_info->tree_mod_seq_list))
243 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
244 			"creating a fresh transaction\n");
245 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
246 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
247 			"creating a fresh transaction\n");
248 	atomic64_set(&fs_info->tree_mod_seq, 0);
249 
250 	spin_lock_init(&cur_trans->delayed_refs.lock);
251 
252 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
253 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
254 	INIT_LIST_HEAD(&cur_trans->switch_commits);
255 	INIT_LIST_HEAD(&cur_trans->pending_ordered);
256 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
257 	INIT_LIST_HEAD(&cur_trans->io_bgs);
258 	mutex_init(&cur_trans->cache_write_mutex);
259 	cur_trans->num_dirty_bgs = 0;
260 	spin_lock_init(&cur_trans->dirty_bgs_lock);
261 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
262 	extent_io_tree_init(&cur_trans->dirty_pages,
263 			     fs_info->btree_inode->i_mapping);
264 	fs_info->generation++;
265 	cur_trans->transid = fs_info->generation;
266 	fs_info->running_transaction = cur_trans;
267 	cur_trans->aborted = 0;
268 	spin_unlock(&fs_info->trans_lock);
269 
270 	return 0;
271 }
272 
273 /*
274  * this does all the record keeping required to make sure that a reference
275  * counted root is properly recorded in a given transaction.  This is required
276  * to make sure the old root from before we joined the transaction is deleted
277  * when the transaction commits
278  */
279 static int record_root_in_trans(struct btrfs_trans_handle *trans,
280 			       struct btrfs_root *root)
281 {
282 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
283 	    root->last_trans < trans->transid) {
284 		WARN_ON(root == root->fs_info->extent_root);
285 		WARN_ON(root->commit_root != root->node);
286 
287 		/*
288 		 * see below for IN_TRANS_SETUP usage rules
289 		 * we have the reloc mutex held now, so there
290 		 * is only one writer in this function
291 		 */
292 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
293 
294 		/* make sure readers find IN_TRANS_SETUP before
295 		 * they find our root->last_trans update
296 		 */
297 		smp_wmb();
298 
299 		spin_lock(&root->fs_info->fs_roots_radix_lock);
300 		if (root->last_trans == trans->transid) {
301 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
302 			return 0;
303 		}
304 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
305 			   (unsigned long)root->root_key.objectid,
306 			   BTRFS_ROOT_TRANS_TAG);
307 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
308 		root->last_trans = trans->transid;
309 
310 		/* this is pretty tricky.  We don't want to
311 		 * take the relocation lock in btrfs_record_root_in_trans
312 		 * unless we're really doing the first setup for this root in
313 		 * this transaction.
314 		 *
315 		 * Normally we'd use root->last_trans as a flag to decide
316 		 * if we want to take the expensive mutex.
317 		 *
318 		 * But, we have to set root->last_trans before we
319 		 * init the relocation root, otherwise, we trip over warnings
320 		 * in ctree.c.  The solution used here is to flag ourselves
321 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
322 		 * fixing up the reloc trees and everyone must wait.
323 		 *
324 		 * When this is zero, they can trust root->last_trans and fly
325 		 * through btrfs_record_root_in_trans without having to take the
326 		 * lock.  smp_wmb() makes sure that all the writes above are
327 		 * done before we pop in the zero below
328 		 */
329 		btrfs_init_reloc_root(trans, root);
330 		smp_mb__before_atomic();
331 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
332 	}
333 	return 0;
334 }
335 
336 
337 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
338 			       struct btrfs_root *root)
339 {
340 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
341 		return 0;
342 
343 	/*
344 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
345 	 * and barriers
346 	 */
347 	smp_rmb();
348 	if (root->last_trans == trans->transid &&
349 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
350 		return 0;
351 
352 	mutex_lock(&root->fs_info->reloc_mutex);
353 	record_root_in_trans(trans, root);
354 	mutex_unlock(&root->fs_info->reloc_mutex);
355 
356 	return 0;
357 }
358 
359 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
360 {
361 	return (trans->state >= TRANS_STATE_BLOCKED &&
362 		trans->state < TRANS_STATE_UNBLOCKED &&
363 		!trans->aborted);
364 }
365 
366 /* wait for commit against the current transaction to become unblocked
367  * when this is done, it is safe to start a new transaction, but the current
368  * transaction might not be fully on disk.
369  */
370 static void wait_current_trans(struct btrfs_root *root)
371 {
372 	struct btrfs_transaction *cur_trans;
373 
374 	spin_lock(&root->fs_info->trans_lock);
375 	cur_trans = root->fs_info->running_transaction;
376 	if (cur_trans && is_transaction_blocked(cur_trans)) {
377 		atomic_inc(&cur_trans->use_count);
378 		spin_unlock(&root->fs_info->trans_lock);
379 
380 		wait_event(root->fs_info->transaction_wait,
381 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
382 			   cur_trans->aborted);
383 		btrfs_put_transaction(cur_trans);
384 	} else {
385 		spin_unlock(&root->fs_info->trans_lock);
386 	}
387 }
388 
389 static int may_wait_transaction(struct btrfs_root *root, int type)
390 {
391 	if (root->fs_info->log_root_recovering)
392 		return 0;
393 
394 	if (type == TRANS_USERSPACE)
395 		return 1;
396 
397 	if (type == TRANS_START &&
398 	    !atomic_read(&root->fs_info->open_ioctl_trans))
399 		return 1;
400 
401 	return 0;
402 }
403 
404 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
405 {
406 	if (!root->fs_info->reloc_ctl ||
407 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
408 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
409 	    root->reloc_root)
410 		return false;
411 
412 	return true;
413 }
414 
415 static struct btrfs_trans_handle *
416 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
417 		  enum btrfs_reserve_flush_enum flush)
418 {
419 	struct btrfs_trans_handle *h;
420 	struct btrfs_transaction *cur_trans;
421 	u64 num_bytes = 0;
422 	u64 qgroup_reserved = 0;
423 	bool reloc_reserved = false;
424 	int ret;
425 
426 	/* Send isn't supposed to start transactions. */
427 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
428 
429 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
430 		return ERR_PTR(-EROFS);
431 
432 	if (current->journal_info) {
433 		WARN_ON(type & TRANS_EXTWRITERS);
434 		h = current->journal_info;
435 		h->use_count++;
436 		WARN_ON(h->use_count > 2);
437 		h->orig_rsv = h->block_rsv;
438 		h->block_rsv = NULL;
439 		goto got_it;
440 	}
441 
442 	/*
443 	 * Do the reservation before we join the transaction so we can do all
444 	 * the appropriate flushing if need be.
445 	 */
446 	if (num_items > 0 && root != root->fs_info->chunk_root) {
447 		if (root->fs_info->quota_enabled &&
448 		    is_fstree(root->root_key.objectid)) {
449 			qgroup_reserved = num_items * root->nodesize;
450 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
451 			if (ret)
452 				return ERR_PTR(ret);
453 		}
454 
455 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
456 		/*
457 		 * Do the reservation for the relocation root creation
458 		 */
459 		if (need_reserve_reloc_root(root)) {
460 			num_bytes += root->nodesize;
461 			reloc_reserved = true;
462 		}
463 
464 		ret = btrfs_block_rsv_add(root,
465 					  &root->fs_info->trans_block_rsv,
466 					  num_bytes, flush);
467 		if (ret)
468 			goto reserve_fail;
469 	}
470 again:
471 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
472 	if (!h) {
473 		ret = -ENOMEM;
474 		goto alloc_fail;
475 	}
476 
477 	/*
478 	 * If we are JOIN_NOLOCK we're already committing a transaction and
479 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
480 	 * because we're already holding a ref.  We need this because we could
481 	 * have raced in and did an fsync() on a file which can kick a commit
482 	 * and then we deadlock with somebody doing a freeze.
483 	 *
484 	 * If we are ATTACH, it means we just want to catch the current
485 	 * transaction and commit it, so we needn't do sb_start_intwrite().
486 	 */
487 	if (type & __TRANS_FREEZABLE)
488 		sb_start_intwrite(root->fs_info->sb);
489 
490 	if (may_wait_transaction(root, type))
491 		wait_current_trans(root);
492 
493 	do {
494 		ret = join_transaction(root, type);
495 		if (ret == -EBUSY) {
496 			wait_current_trans(root);
497 			if (unlikely(type == TRANS_ATTACH))
498 				ret = -ENOENT;
499 		}
500 	} while (ret == -EBUSY);
501 
502 	if (ret < 0) {
503 		/* We must get the transaction if we are JOIN_NOLOCK. */
504 		BUG_ON(type == TRANS_JOIN_NOLOCK);
505 		goto join_fail;
506 	}
507 
508 	cur_trans = root->fs_info->running_transaction;
509 
510 	h->transid = cur_trans->transid;
511 	h->transaction = cur_trans;
512 	h->blocks_used = 0;
513 	h->bytes_reserved = 0;
514 	h->chunk_bytes_reserved = 0;
515 	h->root = root;
516 	h->delayed_ref_updates = 0;
517 	h->use_count = 1;
518 	h->adding_csums = 0;
519 	h->block_rsv = NULL;
520 	h->orig_rsv = NULL;
521 	h->aborted = 0;
522 	h->qgroup_reserved = 0;
523 	h->delayed_ref_elem.seq = 0;
524 	h->type = type;
525 	h->allocating_chunk = false;
526 	h->reloc_reserved = false;
527 	h->sync = false;
528 	INIT_LIST_HEAD(&h->qgroup_ref_list);
529 	INIT_LIST_HEAD(&h->new_bgs);
530 	INIT_LIST_HEAD(&h->ordered);
531 
532 	smp_mb();
533 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
534 	    may_wait_transaction(root, type)) {
535 		current->journal_info = h;
536 		btrfs_commit_transaction(h, root);
537 		goto again;
538 	}
539 
540 	if (num_bytes) {
541 		trace_btrfs_space_reservation(root->fs_info, "transaction",
542 					      h->transid, num_bytes, 1);
543 		h->block_rsv = &root->fs_info->trans_block_rsv;
544 		h->bytes_reserved = num_bytes;
545 		h->reloc_reserved = reloc_reserved;
546 	}
547 	h->qgroup_reserved = qgroup_reserved;
548 
549 got_it:
550 	btrfs_record_root_in_trans(h, root);
551 
552 	if (!current->journal_info && type != TRANS_USERSPACE)
553 		current->journal_info = h;
554 	return h;
555 
556 join_fail:
557 	if (type & __TRANS_FREEZABLE)
558 		sb_end_intwrite(root->fs_info->sb);
559 	kmem_cache_free(btrfs_trans_handle_cachep, h);
560 alloc_fail:
561 	if (num_bytes)
562 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
563 					num_bytes);
564 reserve_fail:
565 	if (qgroup_reserved)
566 		btrfs_qgroup_free(root, qgroup_reserved);
567 	return ERR_PTR(ret);
568 }
569 
570 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
571 						   int num_items)
572 {
573 	return start_transaction(root, num_items, TRANS_START,
574 				 BTRFS_RESERVE_FLUSH_ALL);
575 }
576 
577 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
578 					struct btrfs_root *root, int num_items)
579 {
580 	return start_transaction(root, num_items, TRANS_START,
581 				 BTRFS_RESERVE_FLUSH_LIMIT);
582 }
583 
584 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
585 {
586 	return start_transaction(root, 0, TRANS_JOIN, 0);
587 }
588 
589 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
590 {
591 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
592 }
593 
594 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
595 {
596 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
597 }
598 
599 /*
600  * btrfs_attach_transaction() - catch the running transaction
601  *
602  * It is used when we want to commit the current the transaction, but
603  * don't want to start a new one.
604  *
605  * Note: If this function return -ENOENT, it just means there is no
606  * running transaction. But it is possible that the inactive transaction
607  * is still in the memory, not fully on disk. If you hope there is no
608  * inactive transaction in the fs when -ENOENT is returned, you should
609  * invoke
610  *     btrfs_attach_transaction_barrier()
611  */
612 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
613 {
614 	return start_transaction(root, 0, TRANS_ATTACH, 0);
615 }
616 
617 /*
618  * btrfs_attach_transaction_barrier() - catch the running transaction
619  *
620  * It is similar to the above function, the differentia is this one
621  * will wait for all the inactive transactions until they fully
622  * complete.
623  */
624 struct btrfs_trans_handle *
625 btrfs_attach_transaction_barrier(struct btrfs_root *root)
626 {
627 	struct btrfs_trans_handle *trans;
628 
629 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
630 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
631 		btrfs_wait_for_commit(root, 0);
632 
633 	return trans;
634 }
635 
636 /* wait for a transaction commit to be fully complete */
637 static noinline void wait_for_commit(struct btrfs_root *root,
638 				    struct btrfs_transaction *commit)
639 {
640 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
641 }
642 
643 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
644 {
645 	struct btrfs_transaction *cur_trans = NULL, *t;
646 	int ret = 0;
647 
648 	if (transid) {
649 		if (transid <= root->fs_info->last_trans_committed)
650 			goto out;
651 
652 		/* find specified transaction */
653 		spin_lock(&root->fs_info->trans_lock);
654 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
655 			if (t->transid == transid) {
656 				cur_trans = t;
657 				atomic_inc(&cur_trans->use_count);
658 				ret = 0;
659 				break;
660 			}
661 			if (t->transid > transid) {
662 				ret = 0;
663 				break;
664 			}
665 		}
666 		spin_unlock(&root->fs_info->trans_lock);
667 
668 		/*
669 		 * The specified transaction doesn't exist, or we
670 		 * raced with btrfs_commit_transaction
671 		 */
672 		if (!cur_trans) {
673 			if (transid > root->fs_info->last_trans_committed)
674 				ret = -EINVAL;
675 			goto out;
676 		}
677 	} else {
678 		/* find newest transaction that is committing | committed */
679 		spin_lock(&root->fs_info->trans_lock);
680 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
681 					    list) {
682 			if (t->state >= TRANS_STATE_COMMIT_START) {
683 				if (t->state == TRANS_STATE_COMPLETED)
684 					break;
685 				cur_trans = t;
686 				atomic_inc(&cur_trans->use_count);
687 				break;
688 			}
689 		}
690 		spin_unlock(&root->fs_info->trans_lock);
691 		if (!cur_trans)
692 			goto out;  /* nothing committing|committed */
693 	}
694 
695 	wait_for_commit(root, cur_trans);
696 	btrfs_put_transaction(cur_trans);
697 out:
698 	return ret;
699 }
700 
701 void btrfs_throttle(struct btrfs_root *root)
702 {
703 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
704 		wait_current_trans(root);
705 }
706 
707 static int should_end_transaction(struct btrfs_trans_handle *trans,
708 				  struct btrfs_root *root)
709 {
710 	if (root->fs_info->global_block_rsv.space_info->full &&
711 	    btrfs_check_space_for_delayed_refs(trans, root))
712 		return 1;
713 
714 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
715 }
716 
717 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
718 				 struct btrfs_root *root)
719 {
720 	struct btrfs_transaction *cur_trans = trans->transaction;
721 	int updates;
722 	int err;
723 
724 	smp_mb();
725 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
726 	    cur_trans->delayed_refs.flushing)
727 		return 1;
728 
729 	updates = trans->delayed_ref_updates;
730 	trans->delayed_ref_updates = 0;
731 	if (updates) {
732 		err = btrfs_run_delayed_refs(trans, root, updates * 2);
733 		if (err) /* Error code will also eval true */
734 			return err;
735 	}
736 
737 	return should_end_transaction(trans, root);
738 }
739 
740 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
741 			  struct btrfs_root *root, int throttle)
742 {
743 	struct btrfs_transaction *cur_trans = trans->transaction;
744 	struct btrfs_fs_info *info = root->fs_info;
745 	unsigned long cur = trans->delayed_ref_updates;
746 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
747 	int err = 0;
748 	int must_run_delayed_refs = 0;
749 
750 	if (trans->use_count > 1) {
751 		trans->use_count--;
752 		trans->block_rsv = trans->orig_rsv;
753 		return 0;
754 	}
755 
756 	btrfs_trans_release_metadata(trans, root);
757 	trans->block_rsv = NULL;
758 
759 	if (!list_empty(&trans->new_bgs))
760 		btrfs_create_pending_block_groups(trans, root);
761 
762 	if (!list_empty(&trans->ordered)) {
763 		spin_lock(&info->trans_lock);
764 		list_splice(&trans->ordered, &cur_trans->pending_ordered);
765 		spin_unlock(&info->trans_lock);
766 	}
767 
768 	trans->delayed_ref_updates = 0;
769 	if (!trans->sync) {
770 		must_run_delayed_refs =
771 			btrfs_should_throttle_delayed_refs(trans, root);
772 		cur = max_t(unsigned long, cur, 32);
773 
774 		/*
775 		 * don't make the caller wait if they are from a NOLOCK
776 		 * or ATTACH transaction, it will deadlock with commit
777 		 */
778 		if (must_run_delayed_refs == 1 &&
779 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
780 			must_run_delayed_refs = 2;
781 	}
782 
783 	if (trans->qgroup_reserved) {
784 		/*
785 		 * the same root has to be passed here between start_transaction
786 		 * and end_transaction. Subvolume quota depends on this.
787 		 */
788 		btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
789 		trans->qgroup_reserved = 0;
790 	}
791 
792 	btrfs_trans_release_metadata(trans, root);
793 	trans->block_rsv = NULL;
794 
795 	if (!list_empty(&trans->new_bgs))
796 		btrfs_create_pending_block_groups(trans, root);
797 
798 	btrfs_trans_release_chunk_metadata(trans);
799 
800 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
801 	    should_end_transaction(trans, root) &&
802 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
803 		spin_lock(&info->trans_lock);
804 		if (cur_trans->state == TRANS_STATE_RUNNING)
805 			cur_trans->state = TRANS_STATE_BLOCKED;
806 		spin_unlock(&info->trans_lock);
807 	}
808 
809 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
810 		if (throttle)
811 			return btrfs_commit_transaction(trans, root);
812 		else
813 			wake_up_process(info->transaction_kthread);
814 	}
815 
816 	if (trans->type & __TRANS_FREEZABLE)
817 		sb_end_intwrite(root->fs_info->sb);
818 
819 	WARN_ON(cur_trans != info->running_transaction);
820 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
821 	atomic_dec(&cur_trans->num_writers);
822 	extwriter_counter_dec(cur_trans, trans->type);
823 
824 	smp_mb();
825 	if (waitqueue_active(&cur_trans->writer_wait))
826 		wake_up(&cur_trans->writer_wait);
827 	btrfs_put_transaction(cur_trans);
828 
829 	if (current->journal_info == trans)
830 		current->journal_info = NULL;
831 
832 	if (throttle)
833 		btrfs_run_delayed_iputs(root);
834 
835 	if (trans->aborted ||
836 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
837 		wake_up_process(info->transaction_kthread);
838 		err = -EIO;
839 	}
840 	assert_qgroups_uptodate(trans);
841 
842 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
843 	if (must_run_delayed_refs) {
844 		btrfs_async_run_delayed_refs(root, cur,
845 					     must_run_delayed_refs == 1);
846 	}
847 	return err;
848 }
849 
850 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
851 			  struct btrfs_root *root)
852 {
853 	return __btrfs_end_transaction(trans, root, 0);
854 }
855 
856 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
857 				   struct btrfs_root *root)
858 {
859 	return __btrfs_end_transaction(trans, root, 1);
860 }
861 
862 /*
863  * when btree blocks are allocated, they have some corresponding bits set for
864  * them in one of two extent_io trees.  This is used to make sure all of
865  * those extents are sent to disk but does not wait on them
866  */
867 int btrfs_write_marked_extents(struct btrfs_root *root,
868 			       struct extent_io_tree *dirty_pages, int mark)
869 {
870 	int err = 0;
871 	int werr = 0;
872 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
873 	struct extent_state *cached_state = NULL;
874 	u64 start = 0;
875 	u64 end;
876 
877 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
878 				      mark, &cached_state)) {
879 		bool wait_writeback = false;
880 
881 		err = convert_extent_bit(dirty_pages, start, end,
882 					 EXTENT_NEED_WAIT,
883 					 mark, &cached_state, GFP_NOFS);
884 		/*
885 		 * convert_extent_bit can return -ENOMEM, which is most of the
886 		 * time a temporary error. So when it happens, ignore the error
887 		 * and wait for writeback of this range to finish - because we
888 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
889 		 * to btrfs_wait_marked_extents() would not know that writeback
890 		 * for this range started and therefore wouldn't wait for it to
891 		 * finish - we don't want to commit a superblock that points to
892 		 * btree nodes/leafs for which writeback hasn't finished yet
893 		 * (and without errors).
894 		 * We cleanup any entries left in the io tree when committing
895 		 * the transaction (through clear_btree_io_tree()).
896 		 */
897 		if (err == -ENOMEM) {
898 			err = 0;
899 			wait_writeback = true;
900 		}
901 		if (!err)
902 			err = filemap_fdatawrite_range(mapping, start, end);
903 		if (err)
904 			werr = err;
905 		else if (wait_writeback)
906 			werr = filemap_fdatawait_range(mapping, start, end);
907 		free_extent_state(cached_state);
908 		cached_state = NULL;
909 		cond_resched();
910 		start = end + 1;
911 	}
912 	return werr;
913 }
914 
915 /*
916  * when btree blocks are allocated, they have some corresponding bits set for
917  * them in one of two extent_io trees.  This is used to make sure all of
918  * those extents are on disk for transaction or log commit.  We wait
919  * on all the pages and clear them from the dirty pages state tree
920  */
921 int btrfs_wait_marked_extents(struct btrfs_root *root,
922 			      struct extent_io_tree *dirty_pages, int mark)
923 {
924 	int err = 0;
925 	int werr = 0;
926 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
927 	struct extent_state *cached_state = NULL;
928 	u64 start = 0;
929 	u64 end;
930 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
931 	bool errors = false;
932 
933 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
934 				      EXTENT_NEED_WAIT, &cached_state)) {
935 		/*
936 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
937 		 * When committing the transaction, we'll remove any entries
938 		 * left in the io tree. For a log commit, we don't remove them
939 		 * after committing the log because the tree can be accessed
940 		 * concurrently - we do it only at transaction commit time when
941 		 * it's safe to do it (through clear_btree_io_tree()).
942 		 */
943 		err = clear_extent_bit(dirty_pages, start, end,
944 				       EXTENT_NEED_WAIT,
945 				       0, 0, &cached_state, GFP_NOFS);
946 		if (err == -ENOMEM)
947 			err = 0;
948 		if (!err)
949 			err = filemap_fdatawait_range(mapping, start, end);
950 		if (err)
951 			werr = err;
952 		free_extent_state(cached_state);
953 		cached_state = NULL;
954 		cond_resched();
955 		start = end + 1;
956 	}
957 	if (err)
958 		werr = err;
959 
960 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
961 		if ((mark & EXTENT_DIRTY) &&
962 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
963 				       &btree_ino->runtime_flags))
964 			errors = true;
965 
966 		if ((mark & EXTENT_NEW) &&
967 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
968 				       &btree_ino->runtime_flags))
969 			errors = true;
970 	} else {
971 		if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
972 				       &btree_ino->runtime_flags))
973 			errors = true;
974 	}
975 
976 	if (errors && !werr)
977 		werr = -EIO;
978 
979 	return werr;
980 }
981 
982 /*
983  * when btree blocks are allocated, they have some corresponding bits set for
984  * them in one of two extent_io trees.  This is used to make sure all of
985  * those extents are on disk for transaction or log commit
986  */
987 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
988 				struct extent_io_tree *dirty_pages, int mark)
989 {
990 	int ret;
991 	int ret2;
992 	struct blk_plug plug;
993 
994 	blk_start_plug(&plug);
995 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
996 	blk_finish_plug(&plug);
997 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
998 
999 	if (ret)
1000 		return ret;
1001 	if (ret2)
1002 		return ret2;
1003 	return 0;
1004 }
1005 
1006 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1007 				     struct btrfs_root *root)
1008 {
1009 	int ret;
1010 
1011 	ret = btrfs_write_and_wait_marked_extents(root,
1012 					   &trans->transaction->dirty_pages,
1013 					   EXTENT_DIRTY);
1014 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1015 
1016 	return ret;
1017 }
1018 
1019 /*
1020  * this is used to update the root pointer in the tree of tree roots.
1021  *
1022  * But, in the case of the extent allocation tree, updating the root
1023  * pointer may allocate blocks which may change the root of the extent
1024  * allocation tree.
1025  *
1026  * So, this loops and repeats and makes sure the cowonly root didn't
1027  * change while the root pointer was being updated in the metadata.
1028  */
1029 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1030 			       struct btrfs_root *root)
1031 {
1032 	int ret;
1033 	u64 old_root_bytenr;
1034 	u64 old_root_used;
1035 	struct btrfs_root *tree_root = root->fs_info->tree_root;
1036 
1037 	old_root_used = btrfs_root_used(&root->root_item);
1038 
1039 	while (1) {
1040 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1041 		if (old_root_bytenr == root->node->start &&
1042 		    old_root_used == btrfs_root_used(&root->root_item))
1043 			break;
1044 
1045 		btrfs_set_root_node(&root->root_item, root->node);
1046 		ret = btrfs_update_root(trans, tree_root,
1047 					&root->root_key,
1048 					&root->root_item);
1049 		if (ret)
1050 			return ret;
1051 
1052 		old_root_used = btrfs_root_used(&root->root_item);
1053 	}
1054 
1055 	return 0;
1056 }
1057 
1058 /*
1059  * update all the cowonly tree roots on disk
1060  *
1061  * The error handling in this function may not be obvious. Any of the
1062  * failures will cause the file system to go offline. We still need
1063  * to clean up the delayed refs.
1064  */
1065 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1066 					 struct btrfs_root *root)
1067 {
1068 	struct btrfs_fs_info *fs_info = root->fs_info;
1069 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1070 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1071 	struct list_head *next;
1072 	struct extent_buffer *eb;
1073 	int ret;
1074 
1075 	eb = btrfs_lock_root_node(fs_info->tree_root);
1076 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1077 			      0, &eb);
1078 	btrfs_tree_unlock(eb);
1079 	free_extent_buffer(eb);
1080 
1081 	if (ret)
1082 		return ret;
1083 
1084 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1085 	if (ret)
1086 		return ret;
1087 
1088 	ret = btrfs_run_dev_stats(trans, root->fs_info);
1089 	if (ret)
1090 		return ret;
1091 	ret = btrfs_run_dev_replace(trans, root->fs_info);
1092 	if (ret)
1093 		return ret;
1094 	ret = btrfs_run_qgroups(trans, root->fs_info);
1095 	if (ret)
1096 		return ret;
1097 
1098 	ret = btrfs_setup_space_cache(trans, root);
1099 	if (ret)
1100 		return ret;
1101 
1102 	/* run_qgroups might have added some more refs */
1103 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1104 	if (ret)
1105 		return ret;
1106 again:
1107 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1108 		next = fs_info->dirty_cowonly_roots.next;
1109 		list_del_init(next);
1110 		root = list_entry(next, struct btrfs_root, dirty_list);
1111 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1112 
1113 		if (root != fs_info->extent_root)
1114 			list_add_tail(&root->dirty_list,
1115 				      &trans->transaction->switch_commits);
1116 		ret = update_cowonly_root(trans, root);
1117 		if (ret)
1118 			return ret;
1119 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1120 		if (ret)
1121 			return ret;
1122 	}
1123 
1124 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1125 		ret = btrfs_write_dirty_block_groups(trans, root);
1126 		if (ret)
1127 			return ret;
1128 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1129 		if (ret)
1130 			return ret;
1131 	}
1132 
1133 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1134 		goto again;
1135 
1136 	list_add_tail(&fs_info->extent_root->dirty_list,
1137 		      &trans->transaction->switch_commits);
1138 	btrfs_after_dev_replace_commit(fs_info);
1139 
1140 	return 0;
1141 }
1142 
1143 /*
1144  * dead roots are old snapshots that need to be deleted.  This allocates
1145  * a dirty root struct and adds it into the list of dead roots that need to
1146  * be deleted
1147  */
1148 void btrfs_add_dead_root(struct btrfs_root *root)
1149 {
1150 	spin_lock(&root->fs_info->trans_lock);
1151 	if (list_empty(&root->root_list))
1152 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1153 	spin_unlock(&root->fs_info->trans_lock);
1154 }
1155 
1156 /*
1157  * update all the cowonly tree roots on disk
1158  */
1159 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1160 				    struct btrfs_root *root)
1161 {
1162 	struct btrfs_root *gang[8];
1163 	struct btrfs_fs_info *fs_info = root->fs_info;
1164 	int i;
1165 	int ret;
1166 	int err = 0;
1167 
1168 	spin_lock(&fs_info->fs_roots_radix_lock);
1169 	while (1) {
1170 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1171 						 (void **)gang, 0,
1172 						 ARRAY_SIZE(gang),
1173 						 BTRFS_ROOT_TRANS_TAG);
1174 		if (ret == 0)
1175 			break;
1176 		for (i = 0; i < ret; i++) {
1177 			root = gang[i];
1178 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1179 					(unsigned long)root->root_key.objectid,
1180 					BTRFS_ROOT_TRANS_TAG);
1181 			spin_unlock(&fs_info->fs_roots_radix_lock);
1182 
1183 			btrfs_free_log(trans, root);
1184 			btrfs_update_reloc_root(trans, root);
1185 			btrfs_orphan_commit_root(trans, root);
1186 
1187 			btrfs_save_ino_cache(root, trans);
1188 
1189 			/* see comments in should_cow_block() */
1190 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1191 			smp_mb__after_atomic();
1192 
1193 			if (root->commit_root != root->node) {
1194 				list_add_tail(&root->dirty_list,
1195 					&trans->transaction->switch_commits);
1196 				btrfs_set_root_node(&root->root_item,
1197 						    root->node);
1198 			}
1199 
1200 			err = btrfs_update_root(trans, fs_info->tree_root,
1201 						&root->root_key,
1202 						&root->root_item);
1203 			spin_lock(&fs_info->fs_roots_radix_lock);
1204 			if (err)
1205 				break;
1206 		}
1207 	}
1208 	spin_unlock(&fs_info->fs_roots_radix_lock);
1209 	return err;
1210 }
1211 
1212 /*
1213  * defrag a given btree.
1214  * Every leaf in the btree is read and defragged.
1215  */
1216 int btrfs_defrag_root(struct btrfs_root *root)
1217 {
1218 	struct btrfs_fs_info *info = root->fs_info;
1219 	struct btrfs_trans_handle *trans;
1220 	int ret;
1221 
1222 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1223 		return 0;
1224 
1225 	while (1) {
1226 		trans = btrfs_start_transaction(root, 0);
1227 		if (IS_ERR(trans))
1228 			return PTR_ERR(trans);
1229 
1230 		ret = btrfs_defrag_leaves(trans, root);
1231 
1232 		btrfs_end_transaction(trans, root);
1233 		btrfs_btree_balance_dirty(info->tree_root);
1234 		cond_resched();
1235 
1236 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1237 			break;
1238 
1239 		if (btrfs_defrag_cancelled(root->fs_info)) {
1240 			pr_debug("BTRFS: defrag_root cancelled\n");
1241 			ret = -EAGAIN;
1242 			break;
1243 		}
1244 	}
1245 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1246 	return ret;
1247 }
1248 
1249 /*
1250  * new snapshots need to be created at a very specific time in the
1251  * transaction commit.  This does the actual creation.
1252  *
1253  * Note:
1254  * If the error which may affect the commitment of the current transaction
1255  * happens, we should return the error number. If the error which just affect
1256  * the creation of the pending snapshots, just return 0.
1257  */
1258 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1259 				   struct btrfs_fs_info *fs_info,
1260 				   struct btrfs_pending_snapshot *pending)
1261 {
1262 	struct btrfs_key key;
1263 	struct btrfs_root_item *new_root_item;
1264 	struct btrfs_root *tree_root = fs_info->tree_root;
1265 	struct btrfs_root *root = pending->root;
1266 	struct btrfs_root *parent_root;
1267 	struct btrfs_block_rsv *rsv;
1268 	struct inode *parent_inode;
1269 	struct btrfs_path *path;
1270 	struct btrfs_dir_item *dir_item;
1271 	struct dentry *dentry;
1272 	struct extent_buffer *tmp;
1273 	struct extent_buffer *old;
1274 	struct timespec cur_time = CURRENT_TIME;
1275 	int ret = 0;
1276 	u64 to_reserve = 0;
1277 	u64 index = 0;
1278 	u64 objectid;
1279 	u64 root_flags;
1280 	uuid_le new_uuid;
1281 
1282 	path = btrfs_alloc_path();
1283 	if (!path) {
1284 		pending->error = -ENOMEM;
1285 		return 0;
1286 	}
1287 
1288 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1289 	if (!new_root_item) {
1290 		pending->error = -ENOMEM;
1291 		goto root_item_alloc_fail;
1292 	}
1293 
1294 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1295 	if (pending->error)
1296 		goto no_free_objectid;
1297 
1298 	/*
1299 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1300 	 * accounted by later btrfs_qgroup_inherit().
1301 	 */
1302 	btrfs_set_skip_qgroup(trans, objectid);
1303 
1304 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1305 
1306 	if (to_reserve > 0) {
1307 		pending->error = btrfs_block_rsv_add(root,
1308 						     &pending->block_rsv,
1309 						     to_reserve,
1310 						     BTRFS_RESERVE_NO_FLUSH);
1311 		if (pending->error)
1312 			goto clear_skip_qgroup;
1313 	}
1314 
1315 	key.objectid = objectid;
1316 	key.offset = (u64)-1;
1317 	key.type = BTRFS_ROOT_ITEM_KEY;
1318 
1319 	rsv = trans->block_rsv;
1320 	trans->block_rsv = &pending->block_rsv;
1321 	trans->bytes_reserved = trans->block_rsv->reserved;
1322 
1323 	dentry = pending->dentry;
1324 	parent_inode = pending->dir;
1325 	parent_root = BTRFS_I(parent_inode)->root;
1326 	record_root_in_trans(trans, parent_root);
1327 
1328 	/*
1329 	 * insert the directory item
1330 	 */
1331 	ret = btrfs_set_inode_index(parent_inode, &index);
1332 	BUG_ON(ret); /* -ENOMEM */
1333 
1334 	/* check if there is a file/dir which has the same name. */
1335 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1336 					 btrfs_ino(parent_inode),
1337 					 dentry->d_name.name,
1338 					 dentry->d_name.len, 0);
1339 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1340 		pending->error = -EEXIST;
1341 		goto dir_item_existed;
1342 	} else if (IS_ERR(dir_item)) {
1343 		ret = PTR_ERR(dir_item);
1344 		btrfs_abort_transaction(trans, root, ret);
1345 		goto fail;
1346 	}
1347 	btrfs_release_path(path);
1348 
1349 	/*
1350 	 * pull in the delayed directory update
1351 	 * and the delayed inode item
1352 	 * otherwise we corrupt the FS during
1353 	 * snapshot
1354 	 */
1355 	ret = btrfs_run_delayed_items(trans, root);
1356 	if (ret) {	/* Transaction aborted */
1357 		btrfs_abort_transaction(trans, root, ret);
1358 		goto fail;
1359 	}
1360 
1361 	record_root_in_trans(trans, root);
1362 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1363 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1364 	btrfs_check_and_init_root_item(new_root_item);
1365 
1366 	root_flags = btrfs_root_flags(new_root_item);
1367 	if (pending->readonly)
1368 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1369 	else
1370 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1371 	btrfs_set_root_flags(new_root_item, root_flags);
1372 
1373 	btrfs_set_root_generation_v2(new_root_item,
1374 			trans->transid);
1375 	uuid_le_gen(&new_uuid);
1376 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1377 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1378 			BTRFS_UUID_SIZE);
1379 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1380 		memset(new_root_item->received_uuid, 0,
1381 		       sizeof(new_root_item->received_uuid));
1382 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1383 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1384 		btrfs_set_root_stransid(new_root_item, 0);
1385 		btrfs_set_root_rtransid(new_root_item, 0);
1386 	}
1387 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1388 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1389 	btrfs_set_root_otransid(new_root_item, trans->transid);
1390 
1391 	old = btrfs_lock_root_node(root);
1392 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1393 	if (ret) {
1394 		btrfs_tree_unlock(old);
1395 		free_extent_buffer(old);
1396 		btrfs_abort_transaction(trans, root, ret);
1397 		goto fail;
1398 	}
1399 
1400 	btrfs_set_lock_blocking(old);
1401 
1402 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1403 	/* clean up in any case */
1404 	btrfs_tree_unlock(old);
1405 	free_extent_buffer(old);
1406 	if (ret) {
1407 		btrfs_abort_transaction(trans, root, ret);
1408 		goto fail;
1409 	}
1410 	/* see comments in should_cow_block() */
1411 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1412 	smp_wmb();
1413 
1414 	btrfs_set_root_node(new_root_item, tmp);
1415 	/* record when the snapshot was created in key.offset */
1416 	key.offset = trans->transid;
1417 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1418 	btrfs_tree_unlock(tmp);
1419 	free_extent_buffer(tmp);
1420 	if (ret) {
1421 		btrfs_abort_transaction(trans, root, ret);
1422 		goto fail;
1423 	}
1424 
1425 	/*
1426 	 * insert root back/forward references
1427 	 */
1428 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1429 				 parent_root->root_key.objectid,
1430 				 btrfs_ino(parent_inode), index,
1431 				 dentry->d_name.name, dentry->d_name.len);
1432 	if (ret) {
1433 		btrfs_abort_transaction(trans, root, ret);
1434 		goto fail;
1435 	}
1436 
1437 	key.offset = (u64)-1;
1438 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1439 	if (IS_ERR(pending->snap)) {
1440 		ret = PTR_ERR(pending->snap);
1441 		btrfs_abort_transaction(trans, root, ret);
1442 		goto fail;
1443 	}
1444 
1445 	ret = btrfs_reloc_post_snapshot(trans, pending);
1446 	if (ret) {
1447 		btrfs_abort_transaction(trans, root, ret);
1448 		goto fail;
1449 	}
1450 
1451 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1452 	if (ret) {
1453 		btrfs_abort_transaction(trans, root, ret);
1454 		goto fail;
1455 	}
1456 
1457 	ret = btrfs_insert_dir_item(trans, parent_root,
1458 				    dentry->d_name.name, dentry->d_name.len,
1459 				    parent_inode, &key,
1460 				    BTRFS_FT_DIR, index);
1461 	/* We have check then name at the beginning, so it is impossible. */
1462 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1463 	if (ret) {
1464 		btrfs_abort_transaction(trans, root, ret);
1465 		goto fail;
1466 	}
1467 
1468 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1469 					 dentry->d_name.len * 2);
1470 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1471 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1472 	if (ret) {
1473 		btrfs_abort_transaction(trans, root, ret);
1474 		goto fail;
1475 	}
1476 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1477 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1478 	if (ret) {
1479 		btrfs_abort_transaction(trans, root, ret);
1480 		goto fail;
1481 	}
1482 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1483 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1484 					  new_root_item->received_uuid,
1485 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1486 					  objectid);
1487 		if (ret && ret != -EEXIST) {
1488 			btrfs_abort_transaction(trans, root, ret);
1489 			goto fail;
1490 		}
1491 	}
1492 
1493 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1494 	if (ret) {
1495 		btrfs_abort_transaction(trans, root, ret);
1496 		goto fail;
1497 	}
1498 
1499 	/*
1500 	 * account qgroup counters before qgroup_inherit()
1501 	 */
1502 	ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1503 	if (ret)
1504 		goto fail;
1505 	ret = btrfs_qgroup_account_extents(trans, fs_info);
1506 	if (ret)
1507 		goto fail;
1508 	ret = btrfs_qgroup_inherit(trans, fs_info,
1509 				   root->root_key.objectid,
1510 				   objectid, pending->inherit);
1511 	if (ret) {
1512 		btrfs_abort_transaction(trans, root, ret);
1513 		goto fail;
1514 	}
1515 
1516 fail:
1517 	pending->error = ret;
1518 dir_item_existed:
1519 	trans->block_rsv = rsv;
1520 	trans->bytes_reserved = 0;
1521 clear_skip_qgroup:
1522 	btrfs_clear_skip_qgroup(trans);
1523 no_free_objectid:
1524 	kfree(new_root_item);
1525 root_item_alloc_fail:
1526 	btrfs_free_path(path);
1527 	return ret;
1528 }
1529 
1530 /*
1531  * create all the snapshots we've scheduled for creation
1532  */
1533 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1534 					     struct btrfs_fs_info *fs_info)
1535 {
1536 	struct btrfs_pending_snapshot *pending, *next;
1537 	struct list_head *head = &trans->transaction->pending_snapshots;
1538 	int ret = 0;
1539 
1540 	list_for_each_entry_safe(pending, next, head, list) {
1541 		list_del(&pending->list);
1542 		ret = create_pending_snapshot(trans, fs_info, pending);
1543 		if (ret)
1544 			break;
1545 	}
1546 	return ret;
1547 }
1548 
1549 static void update_super_roots(struct btrfs_root *root)
1550 {
1551 	struct btrfs_root_item *root_item;
1552 	struct btrfs_super_block *super;
1553 
1554 	super = root->fs_info->super_copy;
1555 
1556 	root_item = &root->fs_info->chunk_root->root_item;
1557 	super->chunk_root = root_item->bytenr;
1558 	super->chunk_root_generation = root_item->generation;
1559 	super->chunk_root_level = root_item->level;
1560 
1561 	root_item = &root->fs_info->tree_root->root_item;
1562 	super->root = root_item->bytenr;
1563 	super->generation = root_item->generation;
1564 	super->root_level = root_item->level;
1565 	if (btrfs_test_opt(root, SPACE_CACHE))
1566 		super->cache_generation = root_item->generation;
1567 	if (root->fs_info->update_uuid_tree_gen)
1568 		super->uuid_tree_generation = root_item->generation;
1569 }
1570 
1571 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1572 {
1573 	struct btrfs_transaction *trans;
1574 	int ret = 0;
1575 
1576 	spin_lock(&info->trans_lock);
1577 	trans = info->running_transaction;
1578 	if (trans)
1579 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1580 	spin_unlock(&info->trans_lock);
1581 	return ret;
1582 }
1583 
1584 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1585 {
1586 	struct btrfs_transaction *trans;
1587 	int ret = 0;
1588 
1589 	spin_lock(&info->trans_lock);
1590 	trans = info->running_transaction;
1591 	if (trans)
1592 		ret = is_transaction_blocked(trans);
1593 	spin_unlock(&info->trans_lock);
1594 	return ret;
1595 }
1596 
1597 /*
1598  * wait for the current transaction commit to start and block subsequent
1599  * transaction joins
1600  */
1601 static void wait_current_trans_commit_start(struct btrfs_root *root,
1602 					    struct btrfs_transaction *trans)
1603 {
1604 	wait_event(root->fs_info->transaction_blocked_wait,
1605 		   trans->state >= TRANS_STATE_COMMIT_START ||
1606 		   trans->aborted);
1607 }
1608 
1609 /*
1610  * wait for the current transaction to start and then become unblocked.
1611  * caller holds ref.
1612  */
1613 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1614 					 struct btrfs_transaction *trans)
1615 {
1616 	wait_event(root->fs_info->transaction_wait,
1617 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1618 		   trans->aborted);
1619 }
1620 
1621 /*
1622  * commit transactions asynchronously. once btrfs_commit_transaction_async
1623  * returns, any subsequent transaction will not be allowed to join.
1624  */
1625 struct btrfs_async_commit {
1626 	struct btrfs_trans_handle *newtrans;
1627 	struct btrfs_root *root;
1628 	struct work_struct work;
1629 };
1630 
1631 static void do_async_commit(struct work_struct *work)
1632 {
1633 	struct btrfs_async_commit *ac =
1634 		container_of(work, struct btrfs_async_commit, work);
1635 
1636 	/*
1637 	 * We've got freeze protection passed with the transaction.
1638 	 * Tell lockdep about it.
1639 	 */
1640 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1641 		rwsem_acquire_read(
1642 		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1643 		     0, 1, _THIS_IP_);
1644 
1645 	current->journal_info = ac->newtrans;
1646 
1647 	btrfs_commit_transaction(ac->newtrans, ac->root);
1648 	kfree(ac);
1649 }
1650 
1651 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1652 				   struct btrfs_root *root,
1653 				   int wait_for_unblock)
1654 {
1655 	struct btrfs_async_commit *ac;
1656 	struct btrfs_transaction *cur_trans;
1657 
1658 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1659 	if (!ac)
1660 		return -ENOMEM;
1661 
1662 	INIT_WORK(&ac->work, do_async_commit);
1663 	ac->root = root;
1664 	ac->newtrans = btrfs_join_transaction(root);
1665 	if (IS_ERR(ac->newtrans)) {
1666 		int err = PTR_ERR(ac->newtrans);
1667 		kfree(ac);
1668 		return err;
1669 	}
1670 
1671 	/* take transaction reference */
1672 	cur_trans = trans->transaction;
1673 	atomic_inc(&cur_trans->use_count);
1674 
1675 	btrfs_end_transaction(trans, root);
1676 
1677 	/*
1678 	 * Tell lockdep we've released the freeze rwsem, since the
1679 	 * async commit thread will be the one to unlock it.
1680 	 */
1681 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1682 		rwsem_release(
1683 			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1684 			1, _THIS_IP_);
1685 
1686 	schedule_work(&ac->work);
1687 
1688 	/* wait for transaction to start and unblock */
1689 	if (wait_for_unblock)
1690 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1691 	else
1692 		wait_current_trans_commit_start(root, cur_trans);
1693 
1694 	if (current->journal_info == trans)
1695 		current->journal_info = NULL;
1696 
1697 	btrfs_put_transaction(cur_trans);
1698 	return 0;
1699 }
1700 
1701 
1702 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1703 				struct btrfs_root *root, int err)
1704 {
1705 	struct btrfs_transaction *cur_trans = trans->transaction;
1706 	DEFINE_WAIT(wait);
1707 
1708 	WARN_ON(trans->use_count > 1);
1709 
1710 	btrfs_abort_transaction(trans, root, err);
1711 
1712 	spin_lock(&root->fs_info->trans_lock);
1713 
1714 	/*
1715 	 * If the transaction is removed from the list, it means this
1716 	 * transaction has been committed successfully, so it is impossible
1717 	 * to call the cleanup function.
1718 	 */
1719 	BUG_ON(list_empty(&cur_trans->list));
1720 
1721 	list_del_init(&cur_trans->list);
1722 	if (cur_trans == root->fs_info->running_transaction) {
1723 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1724 		spin_unlock(&root->fs_info->trans_lock);
1725 		wait_event(cur_trans->writer_wait,
1726 			   atomic_read(&cur_trans->num_writers) == 1);
1727 
1728 		spin_lock(&root->fs_info->trans_lock);
1729 	}
1730 	spin_unlock(&root->fs_info->trans_lock);
1731 
1732 	btrfs_cleanup_one_transaction(trans->transaction, root);
1733 
1734 	spin_lock(&root->fs_info->trans_lock);
1735 	if (cur_trans == root->fs_info->running_transaction)
1736 		root->fs_info->running_transaction = NULL;
1737 	spin_unlock(&root->fs_info->trans_lock);
1738 
1739 	if (trans->type & __TRANS_FREEZABLE)
1740 		sb_end_intwrite(root->fs_info->sb);
1741 	btrfs_put_transaction(cur_trans);
1742 	btrfs_put_transaction(cur_trans);
1743 
1744 	trace_btrfs_transaction_commit(root);
1745 
1746 	if (current->journal_info == trans)
1747 		current->journal_info = NULL;
1748 	btrfs_scrub_cancel(root->fs_info);
1749 
1750 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1751 }
1752 
1753 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1754 {
1755 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1756 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1757 	return 0;
1758 }
1759 
1760 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1761 {
1762 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1763 		btrfs_wait_ordered_roots(fs_info, -1);
1764 }
1765 
1766 static inline void
1767 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1768 			   struct btrfs_fs_info *fs_info)
1769 {
1770 	struct btrfs_ordered_extent *ordered;
1771 
1772 	spin_lock(&fs_info->trans_lock);
1773 	while (!list_empty(&cur_trans->pending_ordered)) {
1774 		ordered = list_first_entry(&cur_trans->pending_ordered,
1775 					   struct btrfs_ordered_extent,
1776 					   trans_list);
1777 		list_del_init(&ordered->trans_list);
1778 		spin_unlock(&fs_info->trans_lock);
1779 
1780 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1781 						   &ordered->flags));
1782 		btrfs_put_ordered_extent(ordered);
1783 		spin_lock(&fs_info->trans_lock);
1784 	}
1785 	spin_unlock(&fs_info->trans_lock);
1786 }
1787 
1788 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1789 			     struct btrfs_root *root)
1790 {
1791 	struct btrfs_transaction *cur_trans = trans->transaction;
1792 	struct btrfs_transaction *prev_trans = NULL;
1793 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1794 	int ret;
1795 
1796 	/* Stop the commit early if ->aborted is set */
1797 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1798 		ret = cur_trans->aborted;
1799 		btrfs_end_transaction(trans, root);
1800 		return ret;
1801 	}
1802 
1803 	/* make a pass through all the delayed refs we have so far
1804 	 * any runnings procs may add more while we are here
1805 	 */
1806 	ret = btrfs_run_delayed_refs(trans, root, 0);
1807 	if (ret) {
1808 		btrfs_end_transaction(trans, root);
1809 		return ret;
1810 	}
1811 
1812 	btrfs_trans_release_metadata(trans, root);
1813 	trans->block_rsv = NULL;
1814 	if (trans->qgroup_reserved) {
1815 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1816 		trans->qgroup_reserved = 0;
1817 	}
1818 
1819 	cur_trans = trans->transaction;
1820 
1821 	/*
1822 	 * set the flushing flag so procs in this transaction have to
1823 	 * start sending their work down.
1824 	 */
1825 	cur_trans->delayed_refs.flushing = 1;
1826 	smp_wmb();
1827 
1828 	if (!list_empty(&trans->new_bgs))
1829 		btrfs_create_pending_block_groups(trans, root);
1830 
1831 	ret = btrfs_run_delayed_refs(trans, root, 0);
1832 	if (ret) {
1833 		btrfs_end_transaction(trans, root);
1834 		return ret;
1835 	}
1836 
1837 	if (!cur_trans->dirty_bg_run) {
1838 		int run_it = 0;
1839 
1840 		/* this mutex is also taken before trying to set
1841 		 * block groups readonly.  We need to make sure
1842 		 * that nobody has set a block group readonly
1843 		 * after a extents from that block group have been
1844 		 * allocated for cache files.  btrfs_set_block_group_ro
1845 		 * will wait for the transaction to commit if it
1846 		 * finds dirty_bg_run = 1
1847 		 *
1848 		 * The dirty_bg_run flag is also used to make sure only
1849 		 * one process starts all the block group IO.  It wouldn't
1850 		 * hurt to have more than one go through, but there's no
1851 		 * real advantage to it either.
1852 		 */
1853 		mutex_lock(&root->fs_info->ro_block_group_mutex);
1854 		if (!cur_trans->dirty_bg_run) {
1855 			run_it = 1;
1856 			cur_trans->dirty_bg_run = 1;
1857 		}
1858 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
1859 
1860 		if (run_it)
1861 			ret = btrfs_start_dirty_block_groups(trans, root);
1862 	}
1863 	if (ret) {
1864 		btrfs_end_transaction(trans, root);
1865 		return ret;
1866 	}
1867 
1868 	spin_lock(&root->fs_info->trans_lock);
1869 	list_splice(&trans->ordered, &cur_trans->pending_ordered);
1870 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1871 		spin_unlock(&root->fs_info->trans_lock);
1872 		atomic_inc(&cur_trans->use_count);
1873 		ret = btrfs_end_transaction(trans, root);
1874 
1875 		wait_for_commit(root, cur_trans);
1876 
1877 		if (unlikely(cur_trans->aborted))
1878 			ret = cur_trans->aborted;
1879 
1880 		btrfs_put_transaction(cur_trans);
1881 
1882 		return ret;
1883 	}
1884 
1885 	cur_trans->state = TRANS_STATE_COMMIT_START;
1886 	wake_up(&root->fs_info->transaction_blocked_wait);
1887 
1888 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1889 		prev_trans = list_entry(cur_trans->list.prev,
1890 					struct btrfs_transaction, list);
1891 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1892 			atomic_inc(&prev_trans->use_count);
1893 			spin_unlock(&root->fs_info->trans_lock);
1894 
1895 			wait_for_commit(root, prev_trans);
1896 
1897 			btrfs_put_transaction(prev_trans);
1898 		} else {
1899 			spin_unlock(&root->fs_info->trans_lock);
1900 		}
1901 	} else {
1902 		spin_unlock(&root->fs_info->trans_lock);
1903 	}
1904 
1905 	extwriter_counter_dec(cur_trans, trans->type);
1906 
1907 	ret = btrfs_start_delalloc_flush(root->fs_info);
1908 	if (ret)
1909 		goto cleanup_transaction;
1910 
1911 	ret = btrfs_run_delayed_items(trans, root);
1912 	if (ret)
1913 		goto cleanup_transaction;
1914 
1915 	wait_event(cur_trans->writer_wait,
1916 		   extwriter_counter_read(cur_trans) == 0);
1917 
1918 	/* some pending stuffs might be added after the previous flush. */
1919 	ret = btrfs_run_delayed_items(trans, root);
1920 	if (ret)
1921 		goto cleanup_transaction;
1922 
1923 	btrfs_wait_delalloc_flush(root->fs_info);
1924 
1925 	btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1926 
1927 	btrfs_scrub_pause(root);
1928 	/*
1929 	 * Ok now we need to make sure to block out any other joins while we
1930 	 * commit the transaction.  We could have started a join before setting
1931 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1932 	 */
1933 	spin_lock(&root->fs_info->trans_lock);
1934 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1935 	spin_unlock(&root->fs_info->trans_lock);
1936 	wait_event(cur_trans->writer_wait,
1937 		   atomic_read(&cur_trans->num_writers) == 1);
1938 
1939 	/* ->aborted might be set after the previous check, so check it */
1940 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1941 		ret = cur_trans->aborted;
1942 		goto scrub_continue;
1943 	}
1944 	/*
1945 	 * the reloc mutex makes sure that we stop
1946 	 * the balancing code from coming in and moving
1947 	 * extents around in the middle of the commit
1948 	 */
1949 	mutex_lock(&root->fs_info->reloc_mutex);
1950 
1951 	/*
1952 	 * We needn't worry about the delayed items because we will
1953 	 * deal with them in create_pending_snapshot(), which is the
1954 	 * core function of the snapshot creation.
1955 	 */
1956 	ret = create_pending_snapshots(trans, root->fs_info);
1957 	if (ret) {
1958 		mutex_unlock(&root->fs_info->reloc_mutex);
1959 		goto scrub_continue;
1960 	}
1961 
1962 	/*
1963 	 * We insert the dir indexes of the snapshots and update the inode
1964 	 * of the snapshots' parents after the snapshot creation, so there
1965 	 * are some delayed items which are not dealt with. Now deal with
1966 	 * them.
1967 	 *
1968 	 * We needn't worry that this operation will corrupt the snapshots,
1969 	 * because all the tree which are snapshoted will be forced to COW
1970 	 * the nodes and leaves.
1971 	 */
1972 	ret = btrfs_run_delayed_items(trans, root);
1973 	if (ret) {
1974 		mutex_unlock(&root->fs_info->reloc_mutex);
1975 		goto scrub_continue;
1976 	}
1977 
1978 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1979 	if (ret) {
1980 		mutex_unlock(&root->fs_info->reloc_mutex);
1981 		goto scrub_continue;
1982 	}
1983 
1984 	/* Reocrd old roots for later qgroup accounting */
1985 	ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
1986 	if (ret) {
1987 		mutex_unlock(&root->fs_info->reloc_mutex);
1988 		goto scrub_continue;
1989 	}
1990 
1991 	/*
1992 	 * make sure none of the code above managed to slip in a
1993 	 * delayed item
1994 	 */
1995 	btrfs_assert_delayed_root_empty(root);
1996 
1997 	WARN_ON(cur_trans != trans->transaction);
1998 
1999 	/* btrfs_commit_tree_roots is responsible for getting the
2000 	 * various roots consistent with each other.  Every pointer
2001 	 * in the tree of tree roots has to point to the most up to date
2002 	 * root for every subvolume and other tree.  So, we have to keep
2003 	 * the tree logging code from jumping in and changing any
2004 	 * of the trees.
2005 	 *
2006 	 * At this point in the commit, there can't be any tree-log
2007 	 * writers, but a little lower down we drop the trans mutex
2008 	 * and let new people in.  By holding the tree_log_mutex
2009 	 * from now until after the super is written, we avoid races
2010 	 * with the tree-log code.
2011 	 */
2012 	mutex_lock(&root->fs_info->tree_log_mutex);
2013 
2014 	ret = commit_fs_roots(trans, root);
2015 	if (ret) {
2016 		mutex_unlock(&root->fs_info->tree_log_mutex);
2017 		mutex_unlock(&root->fs_info->reloc_mutex);
2018 		goto scrub_continue;
2019 	}
2020 
2021 	/*
2022 	 * Since the transaction is done, we can apply the pending changes
2023 	 * before the next transaction.
2024 	 */
2025 	btrfs_apply_pending_changes(root->fs_info);
2026 
2027 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2028 	 * safe to free the root of tree log roots
2029 	 */
2030 	btrfs_free_log_root_tree(trans, root->fs_info);
2031 
2032 	/*
2033 	 * Since fs roots are all committed, we can get a quite accurate
2034 	 * new_roots. So let's do quota accounting.
2035 	 */
2036 	ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2037 	if (ret < 0) {
2038 		mutex_unlock(&root->fs_info->tree_log_mutex);
2039 		mutex_unlock(&root->fs_info->reloc_mutex);
2040 		goto scrub_continue;
2041 	}
2042 
2043 	ret = commit_cowonly_roots(trans, root);
2044 	if (ret) {
2045 		mutex_unlock(&root->fs_info->tree_log_mutex);
2046 		mutex_unlock(&root->fs_info->reloc_mutex);
2047 		goto scrub_continue;
2048 	}
2049 
2050 	/*
2051 	 * The tasks which save the space cache and inode cache may also
2052 	 * update ->aborted, check it.
2053 	 */
2054 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2055 		ret = cur_trans->aborted;
2056 		mutex_unlock(&root->fs_info->tree_log_mutex);
2057 		mutex_unlock(&root->fs_info->reloc_mutex);
2058 		goto scrub_continue;
2059 	}
2060 
2061 	btrfs_prepare_extent_commit(trans, root);
2062 
2063 	cur_trans = root->fs_info->running_transaction;
2064 
2065 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2066 			    root->fs_info->tree_root->node);
2067 	list_add_tail(&root->fs_info->tree_root->dirty_list,
2068 		      &cur_trans->switch_commits);
2069 
2070 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2071 			    root->fs_info->chunk_root->node);
2072 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
2073 		      &cur_trans->switch_commits);
2074 
2075 	switch_commit_roots(cur_trans, root->fs_info);
2076 
2077 	assert_qgroups_uptodate(trans);
2078 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2079 	ASSERT(list_empty(&cur_trans->io_bgs));
2080 	update_super_roots(root);
2081 
2082 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2083 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2084 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2085 	       sizeof(*root->fs_info->super_copy));
2086 
2087 	btrfs_update_commit_device_size(root->fs_info);
2088 	btrfs_update_commit_device_bytes_used(root, cur_trans);
2089 
2090 	clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2091 	clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2092 
2093 	btrfs_trans_release_chunk_metadata(trans);
2094 
2095 	spin_lock(&root->fs_info->trans_lock);
2096 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2097 	root->fs_info->running_transaction = NULL;
2098 	spin_unlock(&root->fs_info->trans_lock);
2099 	mutex_unlock(&root->fs_info->reloc_mutex);
2100 
2101 	wake_up(&root->fs_info->transaction_wait);
2102 
2103 	ret = btrfs_write_and_wait_transaction(trans, root);
2104 	if (ret) {
2105 		btrfs_error(root->fs_info, ret,
2106 			    "Error while writing out transaction");
2107 		mutex_unlock(&root->fs_info->tree_log_mutex);
2108 		goto scrub_continue;
2109 	}
2110 
2111 	ret = write_ctree_super(trans, root, 0);
2112 	if (ret) {
2113 		mutex_unlock(&root->fs_info->tree_log_mutex);
2114 		goto scrub_continue;
2115 	}
2116 
2117 	/*
2118 	 * the super is written, we can safely allow the tree-loggers
2119 	 * to go about their business
2120 	 */
2121 	mutex_unlock(&root->fs_info->tree_log_mutex);
2122 
2123 	btrfs_finish_extent_commit(trans, root);
2124 
2125 	if (cur_trans->have_free_bgs)
2126 		btrfs_clear_space_info_full(root->fs_info);
2127 
2128 	root->fs_info->last_trans_committed = cur_trans->transid;
2129 	/*
2130 	 * We needn't acquire the lock here because there is no other task
2131 	 * which can change it.
2132 	 */
2133 	cur_trans->state = TRANS_STATE_COMPLETED;
2134 	wake_up(&cur_trans->commit_wait);
2135 
2136 	spin_lock(&root->fs_info->trans_lock);
2137 	list_del_init(&cur_trans->list);
2138 	spin_unlock(&root->fs_info->trans_lock);
2139 
2140 	btrfs_put_transaction(cur_trans);
2141 	btrfs_put_transaction(cur_trans);
2142 
2143 	if (trans->type & __TRANS_FREEZABLE)
2144 		sb_end_intwrite(root->fs_info->sb);
2145 
2146 	trace_btrfs_transaction_commit(root);
2147 
2148 	btrfs_scrub_continue(root);
2149 
2150 	if (current->journal_info == trans)
2151 		current->journal_info = NULL;
2152 
2153 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2154 
2155 	if (current != root->fs_info->transaction_kthread)
2156 		btrfs_run_delayed_iputs(root);
2157 
2158 	return ret;
2159 
2160 scrub_continue:
2161 	btrfs_scrub_continue(root);
2162 cleanup_transaction:
2163 	btrfs_trans_release_metadata(trans, root);
2164 	btrfs_trans_release_chunk_metadata(trans);
2165 	trans->block_rsv = NULL;
2166 	if (trans->qgroup_reserved) {
2167 		btrfs_qgroup_free(root, trans->qgroup_reserved);
2168 		trans->qgroup_reserved = 0;
2169 	}
2170 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2171 	if (current->journal_info == trans)
2172 		current->journal_info = NULL;
2173 	cleanup_transaction(trans, root, ret);
2174 
2175 	return ret;
2176 }
2177 
2178 /*
2179  * return < 0 if error
2180  * 0 if there are no more dead_roots at the time of call
2181  * 1 there are more to be processed, call me again
2182  *
2183  * The return value indicates there are certainly more snapshots to delete, but
2184  * if there comes a new one during processing, it may return 0. We don't mind,
2185  * because btrfs_commit_super will poke cleaner thread and it will process it a
2186  * few seconds later.
2187  */
2188 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2189 {
2190 	int ret;
2191 	struct btrfs_fs_info *fs_info = root->fs_info;
2192 
2193 	spin_lock(&fs_info->trans_lock);
2194 	if (list_empty(&fs_info->dead_roots)) {
2195 		spin_unlock(&fs_info->trans_lock);
2196 		return 0;
2197 	}
2198 	root = list_first_entry(&fs_info->dead_roots,
2199 			struct btrfs_root, root_list);
2200 	list_del_init(&root->root_list);
2201 	spin_unlock(&fs_info->trans_lock);
2202 
2203 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2204 
2205 	btrfs_kill_all_delayed_nodes(root);
2206 
2207 	if (btrfs_header_backref_rev(root->node) <
2208 			BTRFS_MIXED_BACKREF_REV)
2209 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2210 	else
2211 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2212 
2213 	return (ret < 0) ? 0 : 1;
2214 }
2215 
2216 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2217 {
2218 	unsigned long prev;
2219 	unsigned long bit;
2220 
2221 	prev = xchg(&fs_info->pending_changes, 0);
2222 	if (!prev)
2223 		return;
2224 
2225 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2226 	if (prev & bit)
2227 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2228 	prev &= ~bit;
2229 
2230 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2231 	if (prev & bit)
2232 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2233 	prev &= ~bit;
2234 
2235 	bit = 1 << BTRFS_PENDING_COMMIT;
2236 	if (prev & bit)
2237 		btrfs_debug(fs_info, "pending commit done");
2238 	prev &= ~bit;
2239 
2240 	if (prev)
2241 		btrfs_warn(fs_info,
2242 			"unknown pending changes left 0x%lx, ignoring", prev);
2243 }
2244