1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "misc.h" 14 #include "ctree.h" 15 #include "disk-io.h" 16 #include "transaction.h" 17 #include "locking.h" 18 #include "tree-log.h" 19 #include "volumes.h" 20 #include "dev-replace.h" 21 #include "qgroup.h" 22 #include "block-group.h" 23 #include "space-info.h" 24 #include "zoned.h" 25 26 #define BTRFS_ROOT_TRANS_TAG 0 27 28 /* 29 * Transaction states and transitions 30 * 31 * No running transaction (fs tree blocks are not modified) 32 * | 33 * | To next stage: 34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 35 * V 36 * Transaction N [[TRANS_STATE_RUNNING]] 37 * | 38 * | New trans handles can be attached to transaction N by calling all 39 * | start_transaction() variants. 40 * | 41 * | To next stage: 42 * | Call btrfs_commit_transaction() on any trans handle attached to 43 * | transaction N 44 * V 45 * Transaction N [[TRANS_STATE_COMMIT_START]] 46 * | 47 * | Will wait for previous running transaction to completely finish if there 48 * | is one 49 * | 50 * | Then one of the following happes: 51 * | - Wait for all other trans handle holders to release. 52 * | The btrfs_commit_transaction() caller will do the commit work. 53 * | - Wait for current transaction to be committed by others. 54 * | Other btrfs_commit_transaction() caller will do the commit work. 55 * | 56 * | At this stage, only btrfs_join_transaction*() variants can attach 57 * | to this running transaction. 58 * | All other variants will wait for current one to finish and attach to 59 * | transaction N+1. 60 * | 61 * | To next stage: 62 * | Caller is chosen to commit transaction N, and all other trans handle 63 * | haven been released. 64 * V 65 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 66 * | 67 * | The heavy lifting transaction work is started. 68 * | From running delayed refs (modifying extent tree) to creating pending 69 * | snapshots, running qgroups. 70 * | In short, modify supporting trees to reflect modifications of subvolume 71 * | trees. 72 * | 73 * | At this stage, all start_transaction() calls will wait for this 74 * | transaction to finish and attach to transaction N+1. 75 * | 76 * | To next stage: 77 * | Until all supporting trees are updated. 78 * V 79 * Transaction N [[TRANS_STATE_UNBLOCKED]] 80 * | Transaction N+1 81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 82 * | need to write them back to disk and update | 83 * | super blocks. | 84 * | | 85 * | At this stage, new transaction is allowed to | 86 * | start. | 87 * | All new start_transaction() calls will be | 88 * | attached to transid N+1. | 89 * | | 90 * | To next stage: | 91 * | Until all tree blocks are super blocks are | 92 * | written to block devices | 93 * V | 94 * Transaction N [[TRANS_STATE_COMPLETED]] V 95 * All tree blocks and super blocks are written. Transaction N+1 96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 97 * data structures will be cleaned up. | Life goes on 98 */ 99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 100 [TRANS_STATE_RUNNING] = 0U, 101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 103 __TRANS_ATTACH | 104 __TRANS_JOIN | 105 __TRANS_JOIN_NOSTART), 106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 107 __TRANS_ATTACH | 108 __TRANS_JOIN | 109 __TRANS_JOIN_NOLOCK | 110 __TRANS_JOIN_NOSTART), 111 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START | 112 __TRANS_ATTACH | 113 __TRANS_JOIN | 114 __TRANS_JOIN_NOLOCK | 115 __TRANS_JOIN_NOSTART), 116 [TRANS_STATE_COMPLETED] = (__TRANS_START | 117 __TRANS_ATTACH | 118 __TRANS_JOIN | 119 __TRANS_JOIN_NOLOCK | 120 __TRANS_JOIN_NOSTART), 121 }; 122 123 void btrfs_put_transaction(struct btrfs_transaction *transaction) 124 { 125 WARN_ON(refcount_read(&transaction->use_count) == 0); 126 if (refcount_dec_and_test(&transaction->use_count)) { 127 BUG_ON(!list_empty(&transaction->list)); 128 WARN_ON(!RB_EMPTY_ROOT( 129 &transaction->delayed_refs.href_root.rb_root)); 130 WARN_ON(!RB_EMPTY_ROOT( 131 &transaction->delayed_refs.dirty_extent_root)); 132 if (transaction->delayed_refs.pending_csums) 133 btrfs_err(transaction->fs_info, 134 "pending csums is %llu", 135 transaction->delayed_refs.pending_csums); 136 /* 137 * If any block groups are found in ->deleted_bgs then it's 138 * because the transaction was aborted and a commit did not 139 * happen (things failed before writing the new superblock 140 * and calling btrfs_finish_extent_commit()), so we can not 141 * discard the physical locations of the block groups. 142 */ 143 while (!list_empty(&transaction->deleted_bgs)) { 144 struct btrfs_block_group *cache; 145 146 cache = list_first_entry(&transaction->deleted_bgs, 147 struct btrfs_block_group, 148 bg_list); 149 list_del_init(&cache->bg_list); 150 btrfs_unfreeze_block_group(cache); 151 btrfs_put_block_group(cache); 152 } 153 WARN_ON(!list_empty(&transaction->dev_update_list)); 154 kfree(transaction); 155 } 156 } 157 158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 159 { 160 struct btrfs_transaction *cur_trans = trans->transaction; 161 struct btrfs_fs_info *fs_info = trans->fs_info; 162 struct btrfs_root *root, *tmp; 163 struct btrfs_caching_control *caching_ctl, *next; 164 165 /* 166 * At this point no one can be using this transaction to modify any tree 167 * and no one can start another transaction to modify any tree either. 168 */ 169 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING); 170 171 down_write(&fs_info->commit_root_sem); 172 173 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 174 fs_info->last_reloc_trans = trans->transid; 175 176 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 177 dirty_list) { 178 list_del_init(&root->dirty_list); 179 free_extent_buffer(root->commit_root); 180 root->commit_root = btrfs_root_node(root); 181 extent_io_tree_release(&root->dirty_log_pages); 182 btrfs_qgroup_clean_swapped_blocks(root); 183 } 184 185 /* We can free old roots now. */ 186 spin_lock(&cur_trans->dropped_roots_lock); 187 while (!list_empty(&cur_trans->dropped_roots)) { 188 root = list_first_entry(&cur_trans->dropped_roots, 189 struct btrfs_root, root_list); 190 list_del_init(&root->root_list); 191 spin_unlock(&cur_trans->dropped_roots_lock); 192 btrfs_free_log(trans, root); 193 btrfs_drop_and_free_fs_root(fs_info, root); 194 spin_lock(&cur_trans->dropped_roots_lock); 195 } 196 spin_unlock(&cur_trans->dropped_roots_lock); 197 198 /* 199 * We have to update the last_byte_to_unpin under the commit_root_sem, 200 * at the same time we swap out the commit roots. 201 * 202 * This is because we must have a real view of the last spot the caching 203 * kthreads were while caching. Consider the following views of the 204 * extent tree for a block group 205 * 206 * commit root 207 * +----+----+----+----+----+----+----+ 208 * |\\\\| |\\\\|\\\\| |\\\\|\\\\| 209 * +----+----+----+----+----+----+----+ 210 * 0 1 2 3 4 5 6 7 211 * 212 * new commit root 213 * +----+----+----+----+----+----+----+ 214 * | | | |\\\\| | |\\\\| 215 * +----+----+----+----+----+----+----+ 216 * 0 1 2 3 4 5 6 7 217 * 218 * If the cache_ctl->progress was at 3, then we are only allowed to 219 * unpin [0,1) and [2,3], because the caching thread has already 220 * processed those extents. We are not allowed to unpin [5,6), because 221 * the caching thread will re-start it's search from 3, and thus find 222 * the hole from [4,6) to add to the free space cache. 223 */ 224 spin_lock(&fs_info->block_group_cache_lock); 225 list_for_each_entry_safe(caching_ctl, next, 226 &fs_info->caching_block_groups, list) { 227 struct btrfs_block_group *cache = caching_ctl->block_group; 228 229 if (btrfs_block_group_done(cache)) { 230 cache->last_byte_to_unpin = (u64)-1; 231 list_del_init(&caching_ctl->list); 232 btrfs_put_caching_control(caching_ctl); 233 } else { 234 cache->last_byte_to_unpin = caching_ctl->progress; 235 } 236 } 237 spin_unlock(&fs_info->block_group_cache_lock); 238 up_write(&fs_info->commit_root_sem); 239 } 240 241 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 242 unsigned int type) 243 { 244 if (type & TRANS_EXTWRITERS) 245 atomic_inc(&trans->num_extwriters); 246 } 247 248 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 249 unsigned int type) 250 { 251 if (type & TRANS_EXTWRITERS) 252 atomic_dec(&trans->num_extwriters); 253 } 254 255 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 256 unsigned int type) 257 { 258 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 259 } 260 261 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 262 { 263 return atomic_read(&trans->num_extwriters); 264 } 265 266 /* 267 * To be called after doing the chunk btree updates right after allocating a new 268 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a 269 * chunk after all chunk btree updates and after finishing the second phase of 270 * chunk allocation (btrfs_create_pending_block_groups()) in case some block 271 * group had its chunk item insertion delayed to the second phase. 272 */ 273 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 274 { 275 struct btrfs_fs_info *fs_info = trans->fs_info; 276 277 if (!trans->chunk_bytes_reserved) 278 return; 279 280 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 281 trans->chunk_bytes_reserved, NULL); 282 trans->chunk_bytes_reserved = 0; 283 } 284 285 /* 286 * either allocate a new transaction or hop into the existing one 287 */ 288 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 289 unsigned int type) 290 { 291 struct btrfs_transaction *cur_trans; 292 293 spin_lock(&fs_info->trans_lock); 294 loop: 295 /* The file system has been taken offline. No new transactions. */ 296 if (BTRFS_FS_ERROR(fs_info)) { 297 spin_unlock(&fs_info->trans_lock); 298 return -EROFS; 299 } 300 301 cur_trans = fs_info->running_transaction; 302 if (cur_trans) { 303 if (TRANS_ABORTED(cur_trans)) { 304 spin_unlock(&fs_info->trans_lock); 305 return cur_trans->aborted; 306 } 307 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 308 spin_unlock(&fs_info->trans_lock); 309 return -EBUSY; 310 } 311 refcount_inc(&cur_trans->use_count); 312 atomic_inc(&cur_trans->num_writers); 313 extwriter_counter_inc(cur_trans, type); 314 spin_unlock(&fs_info->trans_lock); 315 return 0; 316 } 317 spin_unlock(&fs_info->trans_lock); 318 319 /* 320 * If we are ATTACH, we just want to catch the current transaction, 321 * and commit it. If there is no transaction, just return ENOENT. 322 */ 323 if (type == TRANS_ATTACH) 324 return -ENOENT; 325 326 /* 327 * JOIN_NOLOCK only happens during the transaction commit, so 328 * it is impossible that ->running_transaction is NULL 329 */ 330 BUG_ON(type == TRANS_JOIN_NOLOCK); 331 332 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 333 if (!cur_trans) 334 return -ENOMEM; 335 336 spin_lock(&fs_info->trans_lock); 337 if (fs_info->running_transaction) { 338 /* 339 * someone started a transaction after we unlocked. Make sure 340 * to redo the checks above 341 */ 342 kfree(cur_trans); 343 goto loop; 344 } else if (BTRFS_FS_ERROR(fs_info)) { 345 spin_unlock(&fs_info->trans_lock); 346 kfree(cur_trans); 347 return -EROFS; 348 } 349 350 cur_trans->fs_info = fs_info; 351 atomic_set(&cur_trans->pending_ordered, 0); 352 init_waitqueue_head(&cur_trans->pending_wait); 353 atomic_set(&cur_trans->num_writers, 1); 354 extwriter_counter_init(cur_trans, type); 355 init_waitqueue_head(&cur_trans->writer_wait); 356 init_waitqueue_head(&cur_trans->commit_wait); 357 cur_trans->state = TRANS_STATE_RUNNING; 358 /* 359 * One for this trans handle, one so it will live on until we 360 * commit the transaction. 361 */ 362 refcount_set(&cur_trans->use_count, 2); 363 cur_trans->flags = 0; 364 cur_trans->start_time = ktime_get_seconds(); 365 366 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 367 368 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 369 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 370 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 371 372 /* 373 * although the tree mod log is per file system and not per transaction, 374 * the log must never go across transaction boundaries. 375 */ 376 smp_mb(); 377 if (!list_empty(&fs_info->tree_mod_seq_list)) 378 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 379 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 380 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 381 atomic64_set(&fs_info->tree_mod_seq, 0); 382 383 spin_lock_init(&cur_trans->delayed_refs.lock); 384 385 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 386 INIT_LIST_HEAD(&cur_trans->dev_update_list); 387 INIT_LIST_HEAD(&cur_trans->switch_commits); 388 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 389 INIT_LIST_HEAD(&cur_trans->io_bgs); 390 INIT_LIST_HEAD(&cur_trans->dropped_roots); 391 mutex_init(&cur_trans->cache_write_mutex); 392 spin_lock_init(&cur_trans->dirty_bgs_lock); 393 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 394 spin_lock_init(&cur_trans->dropped_roots_lock); 395 INIT_LIST_HEAD(&cur_trans->releasing_ebs); 396 spin_lock_init(&cur_trans->releasing_ebs_lock); 397 list_add_tail(&cur_trans->list, &fs_info->trans_list); 398 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 399 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode); 400 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 401 IO_TREE_FS_PINNED_EXTENTS, NULL); 402 fs_info->generation++; 403 cur_trans->transid = fs_info->generation; 404 fs_info->running_transaction = cur_trans; 405 cur_trans->aborted = 0; 406 spin_unlock(&fs_info->trans_lock); 407 408 return 0; 409 } 410 411 /* 412 * This does all the record keeping required to make sure that a shareable root 413 * is properly recorded in a given transaction. This is required to make sure 414 * the old root from before we joined the transaction is deleted when the 415 * transaction commits. 416 */ 417 static int record_root_in_trans(struct btrfs_trans_handle *trans, 418 struct btrfs_root *root, 419 int force) 420 { 421 struct btrfs_fs_info *fs_info = root->fs_info; 422 int ret = 0; 423 424 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 425 root->last_trans < trans->transid) || force) { 426 WARN_ON(!force && root->commit_root != root->node); 427 428 /* 429 * see below for IN_TRANS_SETUP usage rules 430 * we have the reloc mutex held now, so there 431 * is only one writer in this function 432 */ 433 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 434 435 /* make sure readers find IN_TRANS_SETUP before 436 * they find our root->last_trans update 437 */ 438 smp_wmb(); 439 440 spin_lock(&fs_info->fs_roots_radix_lock); 441 if (root->last_trans == trans->transid && !force) { 442 spin_unlock(&fs_info->fs_roots_radix_lock); 443 return 0; 444 } 445 radix_tree_tag_set(&fs_info->fs_roots_radix, 446 (unsigned long)root->root_key.objectid, 447 BTRFS_ROOT_TRANS_TAG); 448 spin_unlock(&fs_info->fs_roots_radix_lock); 449 root->last_trans = trans->transid; 450 451 /* this is pretty tricky. We don't want to 452 * take the relocation lock in btrfs_record_root_in_trans 453 * unless we're really doing the first setup for this root in 454 * this transaction. 455 * 456 * Normally we'd use root->last_trans as a flag to decide 457 * if we want to take the expensive mutex. 458 * 459 * But, we have to set root->last_trans before we 460 * init the relocation root, otherwise, we trip over warnings 461 * in ctree.c. The solution used here is to flag ourselves 462 * with root IN_TRANS_SETUP. When this is 1, we're still 463 * fixing up the reloc trees and everyone must wait. 464 * 465 * When this is zero, they can trust root->last_trans and fly 466 * through btrfs_record_root_in_trans without having to take the 467 * lock. smp_wmb() makes sure that all the writes above are 468 * done before we pop in the zero below 469 */ 470 ret = btrfs_init_reloc_root(trans, root); 471 smp_mb__before_atomic(); 472 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 473 } 474 return ret; 475 } 476 477 478 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 479 struct btrfs_root *root) 480 { 481 struct btrfs_fs_info *fs_info = root->fs_info; 482 struct btrfs_transaction *cur_trans = trans->transaction; 483 484 /* Add ourselves to the transaction dropped list */ 485 spin_lock(&cur_trans->dropped_roots_lock); 486 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 487 spin_unlock(&cur_trans->dropped_roots_lock); 488 489 /* Make sure we don't try to update the root at commit time */ 490 spin_lock(&fs_info->fs_roots_radix_lock); 491 radix_tree_tag_clear(&fs_info->fs_roots_radix, 492 (unsigned long)root->root_key.objectid, 493 BTRFS_ROOT_TRANS_TAG); 494 spin_unlock(&fs_info->fs_roots_radix_lock); 495 } 496 497 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 498 struct btrfs_root *root) 499 { 500 struct btrfs_fs_info *fs_info = root->fs_info; 501 int ret; 502 503 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 504 return 0; 505 506 /* 507 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 508 * and barriers 509 */ 510 smp_rmb(); 511 if (root->last_trans == trans->transid && 512 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 513 return 0; 514 515 mutex_lock(&fs_info->reloc_mutex); 516 ret = record_root_in_trans(trans, root, 0); 517 mutex_unlock(&fs_info->reloc_mutex); 518 519 return ret; 520 } 521 522 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 523 { 524 return (trans->state >= TRANS_STATE_COMMIT_START && 525 trans->state < TRANS_STATE_UNBLOCKED && 526 !TRANS_ABORTED(trans)); 527 } 528 529 /* wait for commit against the current transaction to become unblocked 530 * when this is done, it is safe to start a new transaction, but the current 531 * transaction might not be fully on disk. 532 */ 533 static void wait_current_trans(struct btrfs_fs_info *fs_info) 534 { 535 struct btrfs_transaction *cur_trans; 536 537 spin_lock(&fs_info->trans_lock); 538 cur_trans = fs_info->running_transaction; 539 if (cur_trans && is_transaction_blocked(cur_trans)) { 540 refcount_inc(&cur_trans->use_count); 541 spin_unlock(&fs_info->trans_lock); 542 543 wait_event(fs_info->transaction_wait, 544 cur_trans->state >= TRANS_STATE_UNBLOCKED || 545 TRANS_ABORTED(cur_trans)); 546 btrfs_put_transaction(cur_trans); 547 } else { 548 spin_unlock(&fs_info->trans_lock); 549 } 550 } 551 552 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 553 { 554 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 555 return 0; 556 557 if (type == TRANS_START) 558 return 1; 559 560 return 0; 561 } 562 563 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 564 { 565 struct btrfs_fs_info *fs_info = root->fs_info; 566 567 if (!fs_info->reloc_ctl || 568 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 569 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 570 root->reloc_root) 571 return false; 572 573 return true; 574 } 575 576 static struct btrfs_trans_handle * 577 start_transaction(struct btrfs_root *root, unsigned int num_items, 578 unsigned int type, enum btrfs_reserve_flush_enum flush, 579 bool enforce_qgroups) 580 { 581 struct btrfs_fs_info *fs_info = root->fs_info; 582 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 583 struct btrfs_trans_handle *h; 584 struct btrfs_transaction *cur_trans; 585 u64 num_bytes = 0; 586 u64 qgroup_reserved = 0; 587 bool reloc_reserved = false; 588 bool do_chunk_alloc = false; 589 int ret; 590 591 if (BTRFS_FS_ERROR(fs_info)) 592 return ERR_PTR(-EROFS); 593 594 if (current->journal_info) { 595 WARN_ON(type & TRANS_EXTWRITERS); 596 h = current->journal_info; 597 refcount_inc(&h->use_count); 598 WARN_ON(refcount_read(&h->use_count) > 2); 599 h->orig_rsv = h->block_rsv; 600 h->block_rsv = NULL; 601 goto got_it; 602 } 603 604 /* 605 * Do the reservation before we join the transaction so we can do all 606 * the appropriate flushing if need be. 607 */ 608 if (num_items && root != fs_info->chunk_root) { 609 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 610 u64 delayed_refs_bytes = 0; 611 612 qgroup_reserved = num_items * fs_info->nodesize; 613 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 614 enforce_qgroups); 615 if (ret) 616 return ERR_PTR(ret); 617 618 /* 619 * We want to reserve all the bytes we may need all at once, so 620 * we only do 1 enospc flushing cycle per transaction start. We 621 * accomplish this by simply assuming we'll do 2 x num_items 622 * worth of delayed refs updates in this trans handle, and 623 * refill that amount for whatever is missing in the reserve. 624 */ 625 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 626 if (flush == BTRFS_RESERVE_FLUSH_ALL && 627 delayed_refs_rsv->full == 0) { 628 delayed_refs_bytes = num_bytes; 629 num_bytes <<= 1; 630 } 631 632 /* 633 * Do the reservation for the relocation root creation 634 */ 635 if (need_reserve_reloc_root(root)) { 636 num_bytes += fs_info->nodesize; 637 reloc_reserved = true; 638 } 639 640 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush); 641 if (ret) 642 goto reserve_fail; 643 if (delayed_refs_bytes) { 644 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 645 delayed_refs_bytes); 646 num_bytes -= delayed_refs_bytes; 647 } 648 649 if (rsv->space_info->force_alloc) 650 do_chunk_alloc = true; 651 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 652 !delayed_refs_rsv->full) { 653 /* 654 * Some people call with btrfs_start_transaction(root, 0) 655 * because they can be throttled, but have some other mechanism 656 * for reserving space. We still want these guys to refill the 657 * delayed block_rsv so just add 1 items worth of reservation 658 * here. 659 */ 660 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 661 if (ret) 662 goto reserve_fail; 663 } 664 again: 665 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 666 if (!h) { 667 ret = -ENOMEM; 668 goto alloc_fail; 669 } 670 671 /* 672 * If we are JOIN_NOLOCK we're already committing a transaction and 673 * waiting on this guy, so we don't need to do the sb_start_intwrite 674 * because we're already holding a ref. We need this because we could 675 * have raced in and did an fsync() on a file which can kick a commit 676 * and then we deadlock with somebody doing a freeze. 677 * 678 * If we are ATTACH, it means we just want to catch the current 679 * transaction and commit it, so we needn't do sb_start_intwrite(). 680 */ 681 if (type & __TRANS_FREEZABLE) 682 sb_start_intwrite(fs_info->sb); 683 684 if (may_wait_transaction(fs_info, type)) 685 wait_current_trans(fs_info); 686 687 do { 688 ret = join_transaction(fs_info, type); 689 if (ret == -EBUSY) { 690 wait_current_trans(fs_info); 691 if (unlikely(type == TRANS_ATTACH || 692 type == TRANS_JOIN_NOSTART)) 693 ret = -ENOENT; 694 } 695 } while (ret == -EBUSY); 696 697 if (ret < 0) 698 goto join_fail; 699 700 cur_trans = fs_info->running_transaction; 701 702 h->transid = cur_trans->transid; 703 h->transaction = cur_trans; 704 refcount_set(&h->use_count, 1); 705 h->fs_info = root->fs_info; 706 707 h->type = type; 708 INIT_LIST_HEAD(&h->new_bgs); 709 710 smp_mb(); 711 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 712 may_wait_transaction(fs_info, type)) { 713 current->journal_info = h; 714 btrfs_commit_transaction(h); 715 goto again; 716 } 717 718 if (num_bytes) { 719 trace_btrfs_space_reservation(fs_info, "transaction", 720 h->transid, num_bytes, 1); 721 h->block_rsv = &fs_info->trans_block_rsv; 722 h->bytes_reserved = num_bytes; 723 h->reloc_reserved = reloc_reserved; 724 } 725 726 got_it: 727 if (!current->journal_info) 728 current->journal_info = h; 729 730 /* 731 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 732 * ALLOC_FORCE the first run through, and then we won't allocate for 733 * anybody else who races in later. We don't care about the return 734 * value here. 735 */ 736 if (do_chunk_alloc && num_bytes) { 737 u64 flags = h->block_rsv->space_info->flags; 738 739 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 740 CHUNK_ALLOC_NO_FORCE); 741 } 742 743 /* 744 * btrfs_record_root_in_trans() needs to alloc new extents, and may 745 * call btrfs_join_transaction() while we're also starting a 746 * transaction. 747 * 748 * Thus it need to be called after current->journal_info initialized, 749 * or we can deadlock. 750 */ 751 ret = btrfs_record_root_in_trans(h, root); 752 if (ret) { 753 /* 754 * The transaction handle is fully initialized and linked with 755 * other structures so it needs to be ended in case of errors, 756 * not just freed. 757 */ 758 btrfs_end_transaction(h); 759 return ERR_PTR(ret); 760 } 761 762 return h; 763 764 join_fail: 765 if (type & __TRANS_FREEZABLE) 766 sb_end_intwrite(fs_info->sb); 767 kmem_cache_free(btrfs_trans_handle_cachep, h); 768 alloc_fail: 769 if (num_bytes) 770 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 771 num_bytes, NULL); 772 reserve_fail: 773 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 774 return ERR_PTR(ret); 775 } 776 777 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 778 unsigned int num_items) 779 { 780 return start_transaction(root, num_items, TRANS_START, 781 BTRFS_RESERVE_FLUSH_ALL, true); 782 } 783 784 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 785 struct btrfs_root *root, 786 unsigned int num_items) 787 { 788 return start_transaction(root, num_items, TRANS_START, 789 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 790 } 791 792 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 793 { 794 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 795 true); 796 } 797 798 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 799 { 800 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 801 BTRFS_RESERVE_NO_FLUSH, true); 802 } 803 804 /* 805 * Similar to regular join but it never starts a transaction when none is 806 * running or after waiting for the current one to finish. 807 */ 808 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 809 { 810 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 811 BTRFS_RESERVE_NO_FLUSH, true); 812 } 813 814 /* 815 * btrfs_attach_transaction() - catch the running transaction 816 * 817 * It is used when we want to commit the current the transaction, but 818 * don't want to start a new one. 819 * 820 * Note: If this function return -ENOENT, it just means there is no 821 * running transaction. But it is possible that the inactive transaction 822 * is still in the memory, not fully on disk. If you hope there is no 823 * inactive transaction in the fs when -ENOENT is returned, you should 824 * invoke 825 * btrfs_attach_transaction_barrier() 826 */ 827 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 828 { 829 return start_transaction(root, 0, TRANS_ATTACH, 830 BTRFS_RESERVE_NO_FLUSH, true); 831 } 832 833 /* 834 * btrfs_attach_transaction_barrier() - catch the running transaction 835 * 836 * It is similar to the above function, the difference is this one 837 * will wait for all the inactive transactions until they fully 838 * complete. 839 */ 840 struct btrfs_trans_handle * 841 btrfs_attach_transaction_barrier(struct btrfs_root *root) 842 { 843 struct btrfs_trans_handle *trans; 844 845 trans = start_transaction(root, 0, TRANS_ATTACH, 846 BTRFS_RESERVE_NO_FLUSH, true); 847 if (trans == ERR_PTR(-ENOENT)) 848 btrfs_wait_for_commit(root->fs_info, 0); 849 850 return trans; 851 } 852 853 /* Wait for a transaction commit to reach at least the given state. */ 854 static noinline void wait_for_commit(struct btrfs_transaction *commit, 855 const enum btrfs_trans_state min_state) 856 { 857 wait_event(commit->commit_wait, commit->state >= min_state); 858 } 859 860 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 861 { 862 struct btrfs_transaction *cur_trans = NULL, *t; 863 int ret = 0; 864 865 if (transid) { 866 if (transid <= fs_info->last_trans_committed) 867 goto out; 868 869 /* find specified transaction */ 870 spin_lock(&fs_info->trans_lock); 871 list_for_each_entry(t, &fs_info->trans_list, list) { 872 if (t->transid == transid) { 873 cur_trans = t; 874 refcount_inc(&cur_trans->use_count); 875 ret = 0; 876 break; 877 } 878 if (t->transid > transid) { 879 ret = 0; 880 break; 881 } 882 } 883 spin_unlock(&fs_info->trans_lock); 884 885 /* 886 * The specified transaction doesn't exist, or we 887 * raced with btrfs_commit_transaction 888 */ 889 if (!cur_trans) { 890 if (transid > fs_info->last_trans_committed) 891 ret = -EINVAL; 892 goto out; 893 } 894 } else { 895 /* find newest transaction that is committing | committed */ 896 spin_lock(&fs_info->trans_lock); 897 list_for_each_entry_reverse(t, &fs_info->trans_list, 898 list) { 899 if (t->state >= TRANS_STATE_COMMIT_START) { 900 if (t->state == TRANS_STATE_COMPLETED) 901 break; 902 cur_trans = t; 903 refcount_inc(&cur_trans->use_count); 904 break; 905 } 906 } 907 spin_unlock(&fs_info->trans_lock); 908 if (!cur_trans) 909 goto out; /* nothing committing|committed */ 910 } 911 912 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED); 913 btrfs_put_transaction(cur_trans); 914 out: 915 return ret; 916 } 917 918 void btrfs_throttle(struct btrfs_fs_info *fs_info) 919 { 920 wait_current_trans(fs_info); 921 } 922 923 static bool should_end_transaction(struct btrfs_trans_handle *trans) 924 { 925 struct btrfs_fs_info *fs_info = trans->fs_info; 926 927 if (btrfs_check_space_for_delayed_refs(fs_info)) 928 return true; 929 930 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 931 } 932 933 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 934 { 935 struct btrfs_transaction *cur_trans = trans->transaction; 936 937 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 938 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags)) 939 return true; 940 941 return should_end_transaction(trans); 942 } 943 944 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 945 946 { 947 struct btrfs_fs_info *fs_info = trans->fs_info; 948 949 if (!trans->block_rsv) { 950 ASSERT(!trans->bytes_reserved); 951 return; 952 } 953 954 if (!trans->bytes_reserved) 955 return; 956 957 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 958 trace_btrfs_space_reservation(fs_info, "transaction", 959 trans->transid, trans->bytes_reserved, 0); 960 btrfs_block_rsv_release(fs_info, trans->block_rsv, 961 trans->bytes_reserved, NULL); 962 trans->bytes_reserved = 0; 963 } 964 965 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 966 int throttle) 967 { 968 struct btrfs_fs_info *info = trans->fs_info; 969 struct btrfs_transaction *cur_trans = trans->transaction; 970 int err = 0; 971 972 if (refcount_read(&trans->use_count) > 1) { 973 refcount_dec(&trans->use_count); 974 trans->block_rsv = trans->orig_rsv; 975 return 0; 976 } 977 978 btrfs_trans_release_metadata(trans); 979 trans->block_rsv = NULL; 980 981 btrfs_create_pending_block_groups(trans); 982 983 btrfs_trans_release_chunk_metadata(trans); 984 985 if (trans->type & __TRANS_FREEZABLE) 986 sb_end_intwrite(info->sb); 987 988 WARN_ON(cur_trans != info->running_transaction); 989 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 990 atomic_dec(&cur_trans->num_writers); 991 extwriter_counter_dec(cur_trans, trans->type); 992 993 cond_wake_up(&cur_trans->writer_wait); 994 btrfs_put_transaction(cur_trans); 995 996 if (current->journal_info == trans) 997 current->journal_info = NULL; 998 999 if (throttle) 1000 btrfs_run_delayed_iputs(info); 1001 1002 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) { 1003 wake_up_process(info->transaction_kthread); 1004 if (TRANS_ABORTED(trans)) 1005 err = trans->aborted; 1006 else 1007 err = -EROFS; 1008 } 1009 1010 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1011 return err; 1012 } 1013 1014 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 1015 { 1016 return __btrfs_end_transaction(trans, 0); 1017 } 1018 1019 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1020 { 1021 return __btrfs_end_transaction(trans, 1); 1022 } 1023 1024 /* 1025 * when btree blocks are allocated, they have some corresponding bits set for 1026 * them in one of two extent_io trees. This is used to make sure all of 1027 * those extents are sent to disk but does not wait on them 1028 */ 1029 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1030 struct extent_io_tree *dirty_pages, int mark) 1031 { 1032 int err = 0; 1033 int werr = 0; 1034 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1035 struct extent_state *cached_state = NULL; 1036 u64 start = 0; 1037 u64 end; 1038 1039 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1040 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1041 mark, &cached_state)) { 1042 bool wait_writeback = false; 1043 1044 err = convert_extent_bit(dirty_pages, start, end, 1045 EXTENT_NEED_WAIT, 1046 mark, &cached_state); 1047 /* 1048 * convert_extent_bit can return -ENOMEM, which is most of the 1049 * time a temporary error. So when it happens, ignore the error 1050 * and wait for writeback of this range to finish - because we 1051 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1052 * to __btrfs_wait_marked_extents() would not know that 1053 * writeback for this range started and therefore wouldn't 1054 * wait for it to finish - we don't want to commit a 1055 * superblock that points to btree nodes/leafs for which 1056 * writeback hasn't finished yet (and without errors). 1057 * We cleanup any entries left in the io tree when committing 1058 * the transaction (through extent_io_tree_release()). 1059 */ 1060 if (err == -ENOMEM) { 1061 err = 0; 1062 wait_writeback = true; 1063 } 1064 if (!err) 1065 err = filemap_fdatawrite_range(mapping, start, end); 1066 if (err) 1067 werr = err; 1068 else if (wait_writeback) 1069 werr = filemap_fdatawait_range(mapping, start, end); 1070 free_extent_state(cached_state); 1071 cached_state = NULL; 1072 cond_resched(); 1073 start = end + 1; 1074 } 1075 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1076 return werr; 1077 } 1078 1079 /* 1080 * when btree blocks are allocated, they have some corresponding bits set for 1081 * them in one of two extent_io trees. This is used to make sure all of 1082 * those extents are on disk for transaction or log commit. We wait 1083 * on all the pages and clear them from the dirty pages state tree 1084 */ 1085 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1086 struct extent_io_tree *dirty_pages) 1087 { 1088 int err = 0; 1089 int werr = 0; 1090 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1091 struct extent_state *cached_state = NULL; 1092 u64 start = 0; 1093 u64 end; 1094 1095 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1096 EXTENT_NEED_WAIT, &cached_state)) { 1097 /* 1098 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1099 * When committing the transaction, we'll remove any entries 1100 * left in the io tree. For a log commit, we don't remove them 1101 * after committing the log because the tree can be accessed 1102 * concurrently - we do it only at transaction commit time when 1103 * it's safe to do it (through extent_io_tree_release()). 1104 */ 1105 err = clear_extent_bit(dirty_pages, start, end, 1106 EXTENT_NEED_WAIT, 0, 0, &cached_state); 1107 if (err == -ENOMEM) 1108 err = 0; 1109 if (!err) 1110 err = filemap_fdatawait_range(mapping, start, end); 1111 if (err) 1112 werr = err; 1113 free_extent_state(cached_state); 1114 cached_state = NULL; 1115 cond_resched(); 1116 start = end + 1; 1117 } 1118 if (err) 1119 werr = err; 1120 return werr; 1121 } 1122 1123 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1124 struct extent_io_tree *dirty_pages) 1125 { 1126 bool errors = false; 1127 int err; 1128 1129 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1130 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1131 errors = true; 1132 1133 if (errors && !err) 1134 err = -EIO; 1135 return err; 1136 } 1137 1138 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1139 { 1140 struct btrfs_fs_info *fs_info = log_root->fs_info; 1141 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1142 bool errors = false; 1143 int err; 1144 1145 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1146 1147 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1148 if ((mark & EXTENT_DIRTY) && 1149 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1150 errors = true; 1151 1152 if ((mark & EXTENT_NEW) && 1153 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1154 errors = true; 1155 1156 if (errors && !err) 1157 err = -EIO; 1158 return err; 1159 } 1160 1161 /* 1162 * When btree blocks are allocated the corresponding extents are marked dirty. 1163 * This function ensures such extents are persisted on disk for transaction or 1164 * log commit. 1165 * 1166 * @trans: transaction whose dirty pages we'd like to write 1167 */ 1168 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1169 { 1170 int ret; 1171 int ret2; 1172 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1173 struct btrfs_fs_info *fs_info = trans->fs_info; 1174 struct blk_plug plug; 1175 1176 blk_start_plug(&plug); 1177 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1178 blk_finish_plug(&plug); 1179 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1180 1181 extent_io_tree_release(&trans->transaction->dirty_pages); 1182 1183 if (ret) 1184 return ret; 1185 else if (ret2) 1186 return ret2; 1187 else 1188 return 0; 1189 } 1190 1191 /* 1192 * this is used to update the root pointer in the tree of tree roots. 1193 * 1194 * But, in the case of the extent allocation tree, updating the root 1195 * pointer may allocate blocks which may change the root of the extent 1196 * allocation tree. 1197 * 1198 * So, this loops and repeats and makes sure the cowonly root didn't 1199 * change while the root pointer was being updated in the metadata. 1200 */ 1201 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1202 struct btrfs_root *root) 1203 { 1204 int ret; 1205 u64 old_root_bytenr; 1206 u64 old_root_used; 1207 struct btrfs_fs_info *fs_info = root->fs_info; 1208 struct btrfs_root *tree_root = fs_info->tree_root; 1209 1210 old_root_used = btrfs_root_used(&root->root_item); 1211 1212 while (1) { 1213 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1214 if (old_root_bytenr == root->node->start && 1215 old_root_used == btrfs_root_used(&root->root_item)) 1216 break; 1217 1218 btrfs_set_root_node(&root->root_item, root->node); 1219 ret = btrfs_update_root(trans, tree_root, 1220 &root->root_key, 1221 &root->root_item); 1222 if (ret) 1223 return ret; 1224 1225 old_root_used = btrfs_root_used(&root->root_item); 1226 } 1227 1228 return 0; 1229 } 1230 1231 /* 1232 * update all the cowonly tree roots on disk 1233 * 1234 * The error handling in this function may not be obvious. Any of the 1235 * failures will cause the file system to go offline. We still need 1236 * to clean up the delayed refs. 1237 */ 1238 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1239 { 1240 struct btrfs_fs_info *fs_info = trans->fs_info; 1241 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1242 struct list_head *io_bgs = &trans->transaction->io_bgs; 1243 struct list_head *next; 1244 struct extent_buffer *eb; 1245 int ret; 1246 1247 /* 1248 * At this point no one can be using this transaction to modify any tree 1249 * and no one can start another transaction to modify any tree either. 1250 */ 1251 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1252 1253 eb = btrfs_lock_root_node(fs_info->tree_root); 1254 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1255 0, &eb, BTRFS_NESTING_COW); 1256 btrfs_tree_unlock(eb); 1257 free_extent_buffer(eb); 1258 1259 if (ret) 1260 return ret; 1261 1262 ret = btrfs_run_dev_stats(trans); 1263 if (ret) 1264 return ret; 1265 ret = btrfs_run_dev_replace(trans); 1266 if (ret) 1267 return ret; 1268 ret = btrfs_run_qgroups(trans); 1269 if (ret) 1270 return ret; 1271 1272 ret = btrfs_setup_space_cache(trans); 1273 if (ret) 1274 return ret; 1275 1276 again: 1277 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1278 struct btrfs_root *root; 1279 next = fs_info->dirty_cowonly_roots.next; 1280 list_del_init(next); 1281 root = list_entry(next, struct btrfs_root, dirty_list); 1282 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1283 1284 list_add_tail(&root->dirty_list, 1285 &trans->transaction->switch_commits); 1286 ret = update_cowonly_root(trans, root); 1287 if (ret) 1288 return ret; 1289 } 1290 1291 /* Now flush any delayed refs generated by updating all of the roots */ 1292 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1293 if (ret) 1294 return ret; 1295 1296 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1297 ret = btrfs_write_dirty_block_groups(trans); 1298 if (ret) 1299 return ret; 1300 1301 /* 1302 * We're writing the dirty block groups, which could generate 1303 * delayed refs, which could generate more dirty block groups, 1304 * so we want to keep this flushing in this loop to make sure 1305 * everything gets run. 1306 */ 1307 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1308 if (ret) 1309 return ret; 1310 } 1311 1312 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1313 goto again; 1314 1315 /* Update dev-replace pointer once everything is committed */ 1316 fs_info->dev_replace.committed_cursor_left = 1317 fs_info->dev_replace.cursor_left_last_write_of_item; 1318 1319 return 0; 1320 } 1321 1322 /* 1323 * dead roots are old snapshots that need to be deleted. This allocates 1324 * a dirty root struct and adds it into the list of dead roots that need to 1325 * be deleted 1326 */ 1327 void btrfs_add_dead_root(struct btrfs_root *root) 1328 { 1329 struct btrfs_fs_info *fs_info = root->fs_info; 1330 1331 spin_lock(&fs_info->trans_lock); 1332 if (list_empty(&root->root_list)) { 1333 btrfs_grab_root(root); 1334 list_add_tail(&root->root_list, &fs_info->dead_roots); 1335 } 1336 spin_unlock(&fs_info->trans_lock); 1337 } 1338 1339 /* 1340 * Update each subvolume root and its relocation root, if it exists, in the tree 1341 * of tree roots. Also free log roots if they exist. 1342 */ 1343 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1344 { 1345 struct btrfs_fs_info *fs_info = trans->fs_info; 1346 struct btrfs_root *gang[8]; 1347 int i; 1348 int ret; 1349 1350 /* 1351 * At this point no one can be using this transaction to modify any tree 1352 * and no one can start another transaction to modify any tree either. 1353 */ 1354 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1355 1356 spin_lock(&fs_info->fs_roots_radix_lock); 1357 while (1) { 1358 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1359 (void **)gang, 0, 1360 ARRAY_SIZE(gang), 1361 BTRFS_ROOT_TRANS_TAG); 1362 if (ret == 0) 1363 break; 1364 for (i = 0; i < ret; i++) { 1365 struct btrfs_root *root = gang[i]; 1366 int ret2; 1367 1368 /* 1369 * At this point we can neither have tasks logging inodes 1370 * from a root nor trying to commit a log tree. 1371 */ 1372 ASSERT(atomic_read(&root->log_writers) == 0); 1373 ASSERT(atomic_read(&root->log_commit[0]) == 0); 1374 ASSERT(atomic_read(&root->log_commit[1]) == 0); 1375 1376 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1377 (unsigned long)root->root_key.objectid, 1378 BTRFS_ROOT_TRANS_TAG); 1379 spin_unlock(&fs_info->fs_roots_radix_lock); 1380 1381 btrfs_free_log(trans, root); 1382 ret2 = btrfs_update_reloc_root(trans, root); 1383 if (ret2) 1384 return ret2; 1385 1386 /* see comments in should_cow_block() */ 1387 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1388 smp_mb__after_atomic(); 1389 1390 if (root->commit_root != root->node) { 1391 list_add_tail(&root->dirty_list, 1392 &trans->transaction->switch_commits); 1393 btrfs_set_root_node(&root->root_item, 1394 root->node); 1395 } 1396 1397 ret2 = btrfs_update_root(trans, fs_info->tree_root, 1398 &root->root_key, 1399 &root->root_item); 1400 if (ret2) 1401 return ret2; 1402 spin_lock(&fs_info->fs_roots_radix_lock); 1403 btrfs_qgroup_free_meta_all_pertrans(root); 1404 } 1405 } 1406 spin_unlock(&fs_info->fs_roots_radix_lock); 1407 return 0; 1408 } 1409 1410 /* 1411 * defrag a given btree. 1412 * Every leaf in the btree is read and defragged. 1413 */ 1414 int btrfs_defrag_root(struct btrfs_root *root) 1415 { 1416 struct btrfs_fs_info *info = root->fs_info; 1417 struct btrfs_trans_handle *trans; 1418 int ret; 1419 1420 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1421 return 0; 1422 1423 while (1) { 1424 trans = btrfs_start_transaction(root, 0); 1425 if (IS_ERR(trans)) { 1426 ret = PTR_ERR(trans); 1427 break; 1428 } 1429 1430 ret = btrfs_defrag_leaves(trans, root); 1431 1432 btrfs_end_transaction(trans); 1433 btrfs_btree_balance_dirty(info); 1434 cond_resched(); 1435 1436 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1437 break; 1438 1439 if (btrfs_defrag_cancelled(info)) { 1440 btrfs_debug(info, "defrag_root cancelled"); 1441 ret = -EAGAIN; 1442 break; 1443 } 1444 } 1445 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1446 return ret; 1447 } 1448 1449 /* 1450 * Do all special snapshot related qgroup dirty hack. 1451 * 1452 * Will do all needed qgroup inherit and dirty hack like switch commit 1453 * roots inside one transaction and write all btree into disk, to make 1454 * qgroup works. 1455 */ 1456 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1457 struct btrfs_root *src, 1458 struct btrfs_root *parent, 1459 struct btrfs_qgroup_inherit *inherit, 1460 u64 dst_objectid) 1461 { 1462 struct btrfs_fs_info *fs_info = src->fs_info; 1463 int ret; 1464 1465 /* 1466 * Save some performance in the case that qgroups are not 1467 * enabled. If this check races with the ioctl, rescan will 1468 * kick in anyway. 1469 */ 1470 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1471 return 0; 1472 1473 /* 1474 * Ensure dirty @src will be committed. Or, after coming 1475 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1476 * recorded root will never be updated again, causing an outdated root 1477 * item. 1478 */ 1479 ret = record_root_in_trans(trans, src, 1); 1480 if (ret) 1481 return ret; 1482 1483 /* 1484 * btrfs_qgroup_inherit relies on a consistent view of the usage for the 1485 * src root, so we must run the delayed refs here. 1486 * 1487 * However this isn't particularly fool proof, because there's no 1488 * synchronization keeping us from changing the tree after this point 1489 * before we do the qgroup_inherit, or even from making changes while 1490 * we're doing the qgroup_inherit. But that's a problem for the future, 1491 * for now flush the delayed refs to narrow the race window where the 1492 * qgroup counters could end up wrong. 1493 */ 1494 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1495 if (ret) { 1496 btrfs_abort_transaction(trans, ret); 1497 return ret; 1498 } 1499 1500 ret = commit_fs_roots(trans); 1501 if (ret) 1502 goto out; 1503 ret = btrfs_qgroup_account_extents(trans); 1504 if (ret < 0) 1505 goto out; 1506 1507 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1508 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1509 inherit); 1510 if (ret < 0) 1511 goto out; 1512 1513 /* 1514 * Now we do a simplified commit transaction, which will: 1515 * 1) commit all subvolume and extent tree 1516 * To ensure all subvolume and extent tree have a valid 1517 * commit_root to accounting later insert_dir_item() 1518 * 2) write all btree blocks onto disk 1519 * This is to make sure later btree modification will be cowed 1520 * Or commit_root can be populated and cause wrong qgroup numbers 1521 * In this simplified commit, we don't really care about other trees 1522 * like chunk and root tree, as they won't affect qgroup. 1523 * And we don't write super to avoid half committed status. 1524 */ 1525 ret = commit_cowonly_roots(trans); 1526 if (ret) 1527 goto out; 1528 switch_commit_roots(trans); 1529 ret = btrfs_write_and_wait_transaction(trans); 1530 if (ret) 1531 btrfs_handle_fs_error(fs_info, ret, 1532 "Error while writing out transaction for qgroup"); 1533 1534 out: 1535 /* 1536 * Force parent root to be updated, as we recorded it before so its 1537 * last_trans == cur_transid. 1538 * Or it won't be committed again onto disk after later 1539 * insert_dir_item() 1540 */ 1541 if (!ret) 1542 ret = record_root_in_trans(trans, parent, 1); 1543 return ret; 1544 } 1545 1546 /* 1547 * new snapshots need to be created at a very specific time in the 1548 * transaction commit. This does the actual creation. 1549 * 1550 * Note: 1551 * If the error which may affect the commitment of the current transaction 1552 * happens, we should return the error number. If the error which just affect 1553 * the creation of the pending snapshots, just return 0. 1554 */ 1555 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1556 struct btrfs_pending_snapshot *pending) 1557 { 1558 1559 struct btrfs_fs_info *fs_info = trans->fs_info; 1560 struct btrfs_key key; 1561 struct btrfs_root_item *new_root_item; 1562 struct btrfs_root *tree_root = fs_info->tree_root; 1563 struct btrfs_root *root = pending->root; 1564 struct btrfs_root *parent_root; 1565 struct btrfs_block_rsv *rsv; 1566 struct inode *parent_inode; 1567 struct btrfs_path *path; 1568 struct btrfs_dir_item *dir_item; 1569 struct dentry *dentry; 1570 struct extent_buffer *tmp; 1571 struct extent_buffer *old; 1572 struct timespec64 cur_time; 1573 int ret = 0; 1574 u64 to_reserve = 0; 1575 u64 index = 0; 1576 u64 objectid; 1577 u64 root_flags; 1578 1579 ASSERT(pending->path); 1580 path = pending->path; 1581 1582 ASSERT(pending->root_item); 1583 new_root_item = pending->root_item; 1584 1585 pending->error = btrfs_get_free_objectid(tree_root, &objectid); 1586 if (pending->error) 1587 goto no_free_objectid; 1588 1589 /* 1590 * Make qgroup to skip current new snapshot's qgroupid, as it is 1591 * accounted by later btrfs_qgroup_inherit(). 1592 */ 1593 btrfs_set_skip_qgroup(trans, objectid); 1594 1595 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1596 1597 if (to_reserve > 0) { 1598 pending->error = btrfs_block_rsv_add(fs_info, 1599 &pending->block_rsv, 1600 to_reserve, 1601 BTRFS_RESERVE_NO_FLUSH); 1602 if (pending->error) 1603 goto clear_skip_qgroup; 1604 } 1605 1606 key.objectid = objectid; 1607 key.offset = (u64)-1; 1608 key.type = BTRFS_ROOT_ITEM_KEY; 1609 1610 rsv = trans->block_rsv; 1611 trans->block_rsv = &pending->block_rsv; 1612 trans->bytes_reserved = trans->block_rsv->reserved; 1613 trace_btrfs_space_reservation(fs_info, "transaction", 1614 trans->transid, 1615 trans->bytes_reserved, 1); 1616 dentry = pending->dentry; 1617 parent_inode = pending->dir; 1618 parent_root = BTRFS_I(parent_inode)->root; 1619 ret = record_root_in_trans(trans, parent_root, 0); 1620 if (ret) 1621 goto fail; 1622 cur_time = current_time(parent_inode); 1623 1624 /* 1625 * insert the directory item 1626 */ 1627 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1628 BUG_ON(ret); /* -ENOMEM */ 1629 1630 /* check if there is a file/dir which has the same name. */ 1631 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1632 btrfs_ino(BTRFS_I(parent_inode)), 1633 dentry->d_name.name, 1634 dentry->d_name.len, 0); 1635 if (dir_item != NULL && !IS_ERR(dir_item)) { 1636 pending->error = -EEXIST; 1637 goto dir_item_existed; 1638 } else if (IS_ERR(dir_item)) { 1639 ret = PTR_ERR(dir_item); 1640 btrfs_abort_transaction(trans, ret); 1641 goto fail; 1642 } 1643 btrfs_release_path(path); 1644 1645 /* 1646 * pull in the delayed directory update 1647 * and the delayed inode item 1648 * otherwise we corrupt the FS during 1649 * snapshot 1650 */ 1651 ret = btrfs_run_delayed_items(trans); 1652 if (ret) { /* Transaction aborted */ 1653 btrfs_abort_transaction(trans, ret); 1654 goto fail; 1655 } 1656 1657 ret = record_root_in_trans(trans, root, 0); 1658 if (ret) { 1659 btrfs_abort_transaction(trans, ret); 1660 goto fail; 1661 } 1662 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1663 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1664 btrfs_check_and_init_root_item(new_root_item); 1665 1666 root_flags = btrfs_root_flags(new_root_item); 1667 if (pending->readonly) 1668 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1669 else 1670 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1671 btrfs_set_root_flags(new_root_item, root_flags); 1672 1673 btrfs_set_root_generation_v2(new_root_item, 1674 trans->transid); 1675 generate_random_guid(new_root_item->uuid); 1676 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1677 BTRFS_UUID_SIZE); 1678 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1679 memset(new_root_item->received_uuid, 0, 1680 sizeof(new_root_item->received_uuid)); 1681 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1682 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1683 btrfs_set_root_stransid(new_root_item, 0); 1684 btrfs_set_root_rtransid(new_root_item, 0); 1685 } 1686 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1687 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1688 btrfs_set_root_otransid(new_root_item, trans->transid); 1689 1690 old = btrfs_lock_root_node(root); 1691 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1692 BTRFS_NESTING_COW); 1693 if (ret) { 1694 btrfs_tree_unlock(old); 1695 free_extent_buffer(old); 1696 btrfs_abort_transaction(trans, ret); 1697 goto fail; 1698 } 1699 1700 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1701 /* clean up in any case */ 1702 btrfs_tree_unlock(old); 1703 free_extent_buffer(old); 1704 if (ret) { 1705 btrfs_abort_transaction(trans, ret); 1706 goto fail; 1707 } 1708 /* see comments in should_cow_block() */ 1709 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1710 smp_wmb(); 1711 1712 btrfs_set_root_node(new_root_item, tmp); 1713 /* record when the snapshot was created in key.offset */ 1714 key.offset = trans->transid; 1715 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1716 btrfs_tree_unlock(tmp); 1717 free_extent_buffer(tmp); 1718 if (ret) { 1719 btrfs_abort_transaction(trans, ret); 1720 goto fail; 1721 } 1722 1723 /* 1724 * insert root back/forward references 1725 */ 1726 ret = btrfs_add_root_ref(trans, objectid, 1727 parent_root->root_key.objectid, 1728 btrfs_ino(BTRFS_I(parent_inode)), index, 1729 dentry->d_name.name, dentry->d_name.len); 1730 if (ret) { 1731 btrfs_abort_transaction(trans, ret); 1732 goto fail; 1733 } 1734 1735 key.offset = (u64)-1; 1736 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev); 1737 if (IS_ERR(pending->snap)) { 1738 ret = PTR_ERR(pending->snap); 1739 pending->snap = NULL; 1740 btrfs_abort_transaction(trans, ret); 1741 goto fail; 1742 } 1743 1744 ret = btrfs_reloc_post_snapshot(trans, pending); 1745 if (ret) { 1746 btrfs_abort_transaction(trans, ret); 1747 goto fail; 1748 } 1749 1750 /* 1751 * Do special qgroup accounting for snapshot, as we do some qgroup 1752 * snapshot hack to do fast snapshot. 1753 * To co-operate with that hack, we do hack again. 1754 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1755 */ 1756 ret = qgroup_account_snapshot(trans, root, parent_root, 1757 pending->inherit, objectid); 1758 if (ret < 0) 1759 goto fail; 1760 1761 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1762 dentry->d_name.len, BTRFS_I(parent_inode), 1763 &key, BTRFS_FT_DIR, index); 1764 /* We have check then name at the beginning, so it is impossible. */ 1765 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1766 if (ret) { 1767 btrfs_abort_transaction(trans, ret); 1768 goto fail; 1769 } 1770 1771 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1772 dentry->d_name.len * 2); 1773 parent_inode->i_mtime = parent_inode->i_ctime = 1774 current_time(parent_inode); 1775 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode)); 1776 if (ret) { 1777 btrfs_abort_transaction(trans, ret); 1778 goto fail; 1779 } 1780 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1781 BTRFS_UUID_KEY_SUBVOL, 1782 objectid); 1783 if (ret) { 1784 btrfs_abort_transaction(trans, ret); 1785 goto fail; 1786 } 1787 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1788 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1789 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1790 objectid); 1791 if (ret && ret != -EEXIST) { 1792 btrfs_abort_transaction(trans, ret); 1793 goto fail; 1794 } 1795 } 1796 1797 fail: 1798 pending->error = ret; 1799 dir_item_existed: 1800 trans->block_rsv = rsv; 1801 trans->bytes_reserved = 0; 1802 clear_skip_qgroup: 1803 btrfs_clear_skip_qgroup(trans); 1804 no_free_objectid: 1805 kfree(new_root_item); 1806 pending->root_item = NULL; 1807 btrfs_free_path(path); 1808 pending->path = NULL; 1809 1810 return ret; 1811 } 1812 1813 /* 1814 * create all the snapshots we've scheduled for creation 1815 */ 1816 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1817 { 1818 struct btrfs_pending_snapshot *pending, *next; 1819 struct list_head *head = &trans->transaction->pending_snapshots; 1820 int ret = 0; 1821 1822 list_for_each_entry_safe(pending, next, head, list) { 1823 list_del(&pending->list); 1824 ret = create_pending_snapshot(trans, pending); 1825 if (ret) 1826 break; 1827 } 1828 return ret; 1829 } 1830 1831 static void update_super_roots(struct btrfs_fs_info *fs_info) 1832 { 1833 struct btrfs_root_item *root_item; 1834 struct btrfs_super_block *super; 1835 1836 super = fs_info->super_copy; 1837 1838 root_item = &fs_info->chunk_root->root_item; 1839 super->chunk_root = root_item->bytenr; 1840 super->chunk_root_generation = root_item->generation; 1841 super->chunk_root_level = root_item->level; 1842 1843 root_item = &fs_info->tree_root->root_item; 1844 super->root = root_item->bytenr; 1845 super->generation = root_item->generation; 1846 super->root_level = root_item->level; 1847 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1848 super->cache_generation = root_item->generation; 1849 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags)) 1850 super->cache_generation = 0; 1851 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1852 super->uuid_tree_generation = root_item->generation; 1853 } 1854 1855 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1856 { 1857 struct btrfs_transaction *trans; 1858 int ret = 0; 1859 1860 spin_lock(&info->trans_lock); 1861 trans = info->running_transaction; 1862 if (trans) 1863 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1864 spin_unlock(&info->trans_lock); 1865 return ret; 1866 } 1867 1868 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1869 { 1870 struct btrfs_transaction *trans; 1871 int ret = 0; 1872 1873 spin_lock(&info->trans_lock); 1874 trans = info->running_transaction; 1875 if (trans) 1876 ret = is_transaction_blocked(trans); 1877 spin_unlock(&info->trans_lock); 1878 return ret; 1879 } 1880 1881 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans) 1882 { 1883 struct btrfs_fs_info *fs_info = trans->fs_info; 1884 struct btrfs_transaction *cur_trans; 1885 1886 /* Kick the transaction kthread. */ 1887 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 1888 wake_up_process(fs_info->transaction_kthread); 1889 1890 /* take transaction reference */ 1891 cur_trans = trans->transaction; 1892 refcount_inc(&cur_trans->use_count); 1893 1894 btrfs_end_transaction(trans); 1895 1896 /* 1897 * Wait for the current transaction commit to start and block 1898 * subsequent transaction joins 1899 */ 1900 wait_event(fs_info->transaction_blocked_wait, 1901 cur_trans->state >= TRANS_STATE_COMMIT_START || 1902 TRANS_ABORTED(cur_trans)); 1903 btrfs_put_transaction(cur_trans); 1904 } 1905 1906 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1907 { 1908 struct btrfs_fs_info *fs_info = trans->fs_info; 1909 struct btrfs_transaction *cur_trans = trans->transaction; 1910 1911 WARN_ON(refcount_read(&trans->use_count) > 1); 1912 1913 btrfs_abort_transaction(trans, err); 1914 1915 spin_lock(&fs_info->trans_lock); 1916 1917 /* 1918 * If the transaction is removed from the list, it means this 1919 * transaction has been committed successfully, so it is impossible 1920 * to call the cleanup function. 1921 */ 1922 BUG_ON(list_empty(&cur_trans->list)); 1923 1924 if (cur_trans == fs_info->running_transaction) { 1925 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1926 spin_unlock(&fs_info->trans_lock); 1927 wait_event(cur_trans->writer_wait, 1928 atomic_read(&cur_trans->num_writers) == 1); 1929 1930 spin_lock(&fs_info->trans_lock); 1931 } 1932 1933 /* 1934 * Now that we know no one else is still using the transaction we can 1935 * remove the transaction from the list of transactions. This avoids 1936 * the transaction kthread from cleaning up the transaction while some 1937 * other task is still using it, which could result in a use-after-free 1938 * on things like log trees, as it forces the transaction kthread to 1939 * wait for this transaction to be cleaned up by us. 1940 */ 1941 list_del_init(&cur_trans->list); 1942 1943 spin_unlock(&fs_info->trans_lock); 1944 1945 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1946 1947 spin_lock(&fs_info->trans_lock); 1948 if (cur_trans == fs_info->running_transaction) 1949 fs_info->running_transaction = NULL; 1950 spin_unlock(&fs_info->trans_lock); 1951 1952 if (trans->type & __TRANS_FREEZABLE) 1953 sb_end_intwrite(fs_info->sb); 1954 btrfs_put_transaction(cur_trans); 1955 btrfs_put_transaction(cur_trans); 1956 1957 trace_btrfs_transaction_commit(fs_info); 1958 1959 if (current->journal_info == trans) 1960 current->journal_info = NULL; 1961 btrfs_scrub_cancel(fs_info); 1962 1963 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1964 } 1965 1966 /* 1967 * Release reserved delayed ref space of all pending block groups of the 1968 * transaction and remove them from the list 1969 */ 1970 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 1971 { 1972 struct btrfs_fs_info *fs_info = trans->fs_info; 1973 struct btrfs_block_group *block_group, *tmp; 1974 1975 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 1976 btrfs_delayed_refs_rsv_release(fs_info, 1); 1977 list_del_init(&block_group->bg_list); 1978 } 1979 } 1980 1981 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1982 { 1983 /* 1984 * We use writeback_inodes_sb here because if we used 1985 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 1986 * Currently are holding the fs freeze lock, if we do an async flush 1987 * we'll do btrfs_join_transaction() and deadlock because we need to 1988 * wait for the fs freeze lock. Using the direct flushing we benefit 1989 * from already being in a transaction and our join_transaction doesn't 1990 * have to re-take the fs freeze lock. 1991 */ 1992 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 1993 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 1994 return 0; 1995 } 1996 1997 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1998 { 1999 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2000 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 2001 } 2002 2003 /* 2004 * Add a pending snapshot associated with the given transaction handle to the 2005 * respective handle. This must be called after the transaction commit started 2006 * and while holding fs_info->trans_lock. 2007 * This serves to guarantee a caller of btrfs_commit_transaction() that it can 2008 * safely free the pending snapshot pointer in case btrfs_commit_transaction() 2009 * returns an error. 2010 */ 2011 static void add_pending_snapshot(struct btrfs_trans_handle *trans) 2012 { 2013 struct btrfs_transaction *cur_trans = trans->transaction; 2014 2015 if (!trans->pending_snapshot) 2016 return; 2017 2018 lockdep_assert_held(&trans->fs_info->trans_lock); 2019 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START); 2020 2021 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots); 2022 } 2023 2024 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2025 { 2026 struct btrfs_fs_info *fs_info = trans->fs_info; 2027 struct btrfs_transaction *cur_trans = trans->transaction; 2028 struct btrfs_transaction *prev_trans = NULL; 2029 int ret; 2030 2031 ASSERT(refcount_read(&trans->use_count) == 1); 2032 2033 /* Stop the commit early if ->aborted is set */ 2034 if (TRANS_ABORTED(cur_trans)) { 2035 ret = cur_trans->aborted; 2036 btrfs_end_transaction(trans); 2037 return ret; 2038 } 2039 2040 btrfs_trans_release_metadata(trans); 2041 trans->block_rsv = NULL; 2042 2043 /* 2044 * We only want one transaction commit doing the flushing so we do not 2045 * waste a bunch of time on lock contention on the extent root node. 2046 */ 2047 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING, 2048 &cur_trans->delayed_refs.flags)) { 2049 /* 2050 * Make a pass through all the delayed refs we have so far. 2051 * Any running threads may add more while we are here. 2052 */ 2053 ret = btrfs_run_delayed_refs(trans, 0); 2054 if (ret) { 2055 btrfs_end_transaction(trans); 2056 return ret; 2057 } 2058 } 2059 2060 btrfs_create_pending_block_groups(trans); 2061 2062 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2063 int run_it = 0; 2064 2065 /* this mutex is also taken before trying to set 2066 * block groups readonly. We need to make sure 2067 * that nobody has set a block group readonly 2068 * after a extents from that block group have been 2069 * allocated for cache files. btrfs_set_block_group_ro 2070 * will wait for the transaction to commit if it 2071 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2072 * 2073 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2074 * only one process starts all the block group IO. It wouldn't 2075 * hurt to have more than one go through, but there's no 2076 * real advantage to it either. 2077 */ 2078 mutex_lock(&fs_info->ro_block_group_mutex); 2079 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2080 &cur_trans->flags)) 2081 run_it = 1; 2082 mutex_unlock(&fs_info->ro_block_group_mutex); 2083 2084 if (run_it) { 2085 ret = btrfs_start_dirty_block_groups(trans); 2086 if (ret) { 2087 btrfs_end_transaction(trans); 2088 return ret; 2089 } 2090 } 2091 } 2092 2093 spin_lock(&fs_info->trans_lock); 2094 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2095 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2096 2097 add_pending_snapshot(trans); 2098 2099 spin_unlock(&fs_info->trans_lock); 2100 refcount_inc(&cur_trans->use_count); 2101 2102 if (trans->in_fsync) 2103 want_state = TRANS_STATE_SUPER_COMMITTED; 2104 ret = btrfs_end_transaction(trans); 2105 wait_for_commit(cur_trans, want_state); 2106 2107 if (TRANS_ABORTED(cur_trans)) 2108 ret = cur_trans->aborted; 2109 2110 btrfs_put_transaction(cur_trans); 2111 2112 return ret; 2113 } 2114 2115 cur_trans->state = TRANS_STATE_COMMIT_START; 2116 wake_up(&fs_info->transaction_blocked_wait); 2117 2118 if (cur_trans->list.prev != &fs_info->trans_list) { 2119 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2120 2121 if (trans->in_fsync) 2122 want_state = TRANS_STATE_SUPER_COMMITTED; 2123 2124 prev_trans = list_entry(cur_trans->list.prev, 2125 struct btrfs_transaction, list); 2126 if (prev_trans->state < want_state) { 2127 refcount_inc(&prev_trans->use_count); 2128 spin_unlock(&fs_info->trans_lock); 2129 2130 wait_for_commit(prev_trans, want_state); 2131 2132 ret = READ_ONCE(prev_trans->aborted); 2133 2134 btrfs_put_transaction(prev_trans); 2135 if (ret) 2136 goto cleanup_transaction; 2137 } else { 2138 spin_unlock(&fs_info->trans_lock); 2139 } 2140 } else { 2141 spin_unlock(&fs_info->trans_lock); 2142 /* 2143 * The previous transaction was aborted and was already removed 2144 * from the list of transactions at fs_info->trans_list. So we 2145 * abort to prevent writing a new superblock that reflects a 2146 * corrupt state (pointing to trees with unwritten nodes/leafs). 2147 */ 2148 if (BTRFS_FS_ERROR(fs_info)) { 2149 ret = -EROFS; 2150 goto cleanup_transaction; 2151 } 2152 } 2153 2154 extwriter_counter_dec(cur_trans, trans->type); 2155 2156 ret = btrfs_start_delalloc_flush(fs_info); 2157 if (ret) 2158 goto cleanup_transaction; 2159 2160 ret = btrfs_run_delayed_items(trans); 2161 if (ret) 2162 goto cleanup_transaction; 2163 2164 wait_event(cur_trans->writer_wait, 2165 extwriter_counter_read(cur_trans) == 0); 2166 2167 /* some pending stuffs might be added after the previous flush. */ 2168 ret = btrfs_run_delayed_items(trans); 2169 if (ret) 2170 goto cleanup_transaction; 2171 2172 btrfs_wait_delalloc_flush(fs_info); 2173 2174 /* 2175 * Wait for all ordered extents started by a fast fsync that joined this 2176 * transaction. Otherwise if this transaction commits before the ordered 2177 * extents complete we lose logged data after a power failure. 2178 */ 2179 wait_event(cur_trans->pending_wait, 2180 atomic_read(&cur_trans->pending_ordered) == 0); 2181 2182 btrfs_scrub_pause(fs_info); 2183 /* 2184 * Ok now we need to make sure to block out any other joins while we 2185 * commit the transaction. We could have started a join before setting 2186 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2187 */ 2188 spin_lock(&fs_info->trans_lock); 2189 add_pending_snapshot(trans); 2190 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2191 spin_unlock(&fs_info->trans_lock); 2192 wait_event(cur_trans->writer_wait, 2193 atomic_read(&cur_trans->num_writers) == 1); 2194 2195 /* 2196 * We've started the commit, clear the flag in case we were triggered to 2197 * do an async commit but somebody else started before the transaction 2198 * kthread could do the work. 2199 */ 2200 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 2201 2202 if (TRANS_ABORTED(cur_trans)) { 2203 ret = cur_trans->aborted; 2204 goto scrub_continue; 2205 } 2206 /* 2207 * the reloc mutex makes sure that we stop 2208 * the balancing code from coming in and moving 2209 * extents around in the middle of the commit 2210 */ 2211 mutex_lock(&fs_info->reloc_mutex); 2212 2213 /* 2214 * We needn't worry about the delayed items because we will 2215 * deal with them in create_pending_snapshot(), which is the 2216 * core function of the snapshot creation. 2217 */ 2218 ret = create_pending_snapshots(trans); 2219 if (ret) 2220 goto unlock_reloc; 2221 2222 /* 2223 * We insert the dir indexes of the snapshots and update the inode 2224 * of the snapshots' parents after the snapshot creation, so there 2225 * are some delayed items which are not dealt with. Now deal with 2226 * them. 2227 * 2228 * We needn't worry that this operation will corrupt the snapshots, 2229 * because all the tree which are snapshoted will be forced to COW 2230 * the nodes and leaves. 2231 */ 2232 ret = btrfs_run_delayed_items(trans); 2233 if (ret) 2234 goto unlock_reloc; 2235 2236 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2237 if (ret) 2238 goto unlock_reloc; 2239 2240 /* 2241 * make sure none of the code above managed to slip in a 2242 * delayed item 2243 */ 2244 btrfs_assert_delayed_root_empty(fs_info); 2245 2246 WARN_ON(cur_trans != trans->transaction); 2247 2248 ret = commit_fs_roots(trans); 2249 if (ret) 2250 goto unlock_reloc; 2251 2252 /* 2253 * Since the transaction is done, we can apply the pending changes 2254 * before the next transaction. 2255 */ 2256 btrfs_apply_pending_changes(fs_info); 2257 2258 /* commit_fs_roots gets rid of all the tree log roots, it is now 2259 * safe to free the root of tree log roots 2260 */ 2261 btrfs_free_log_root_tree(trans, fs_info); 2262 2263 /* 2264 * Since fs roots are all committed, we can get a quite accurate 2265 * new_roots. So let's do quota accounting. 2266 */ 2267 ret = btrfs_qgroup_account_extents(trans); 2268 if (ret < 0) 2269 goto unlock_reloc; 2270 2271 ret = commit_cowonly_roots(trans); 2272 if (ret) 2273 goto unlock_reloc; 2274 2275 /* 2276 * The tasks which save the space cache and inode cache may also 2277 * update ->aborted, check it. 2278 */ 2279 if (TRANS_ABORTED(cur_trans)) { 2280 ret = cur_trans->aborted; 2281 goto unlock_reloc; 2282 } 2283 2284 cur_trans = fs_info->running_transaction; 2285 2286 btrfs_set_root_node(&fs_info->tree_root->root_item, 2287 fs_info->tree_root->node); 2288 list_add_tail(&fs_info->tree_root->dirty_list, 2289 &cur_trans->switch_commits); 2290 2291 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2292 fs_info->chunk_root->node); 2293 list_add_tail(&fs_info->chunk_root->dirty_list, 2294 &cur_trans->switch_commits); 2295 2296 switch_commit_roots(trans); 2297 2298 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2299 ASSERT(list_empty(&cur_trans->io_bgs)); 2300 update_super_roots(fs_info); 2301 2302 btrfs_set_super_log_root(fs_info->super_copy, 0); 2303 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2304 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2305 sizeof(*fs_info->super_copy)); 2306 2307 btrfs_commit_device_sizes(cur_trans); 2308 2309 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2310 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2311 2312 btrfs_trans_release_chunk_metadata(trans); 2313 2314 /* 2315 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and 2316 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to 2317 * make sure that before we commit our superblock, no other task can 2318 * start a new transaction and commit a log tree before we commit our 2319 * superblock. Anyone trying to commit a log tree locks this mutex before 2320 * writing its superblock. 2321 */ 2322 mutex_lock(&fs_info->tree_log_mutex); 2323 2324 spin_lock(&fs_info->trans_lock); 2325 cur_trans->state = TRANS_STATE_UNBLOCKED; 2326 fs_info->running_transaction = NULL; 2327 spin_unlock(&fs_info->trans_lock); 2328 mutex_unlock(&fs_info->reloc_mutex); 2329 2330 wake_up(&fs_info->transaction_wait); 2331 2332 ret = btrfs_write_and_wait_transaction(trans); 2333 if (ret) { 2334 btrfs_handle_fs_error(fs_info, ret, 2335 "Error while writing out transaction"); 2336 mutex_unlock(&fs_info->tree_log_mutex); 2337 goto scrub_continue; 2338 } 2339 2340 /* 2341 * At this point, we should have written all the tree blocks allocated 2342 * in this transaction. So it's now safe to free the redirtyied extent 2343 * buffers. 2344 */ 2345 btrfs_free_redirty_list(cur_trans); 2346 2347 ret = write_all_supers(fs_info, 0); 2348 /* 2349 * the super is written, we can safely allow the tree-loggers 2350 * to go about their business 2351 */ 2352 mutex_unlock(&fs_info->tree_log_mutex); 2353 if (ret) 2354 goto scrub_continue; 2355 2356 /* 2357 * We needn't acquire the lock here because there is no other task 2358 * which can change it. 2359 */ 2360 cur_trans->state = TRANS_STATE_SUPER_COMMITTED; 2361 wake_up(&cur_trans->commit_wait); 2362 2363 btrfs_finish_extent_commit(trans); 2364 2365 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2366 btrfs_clear_space_info_full(fs_info); 2367 2368 fs_info->last_trans_committed = cur_trans->transid; 2369 /* 2370 * We needn't acquire the lock here because there is no other task 2371 * which can change it. 2372 */ 2373 cur_trans->state = TRANS_STATE_COMPLETED; 2374 wake_up(&cur_trans->commit_wait); 2375 2376 spin_lock(&fs_info->trans_lock); 2377 list_del_init(&cur_trans->list); 2378 spin_unlock(&fs_info->trans_lock); 2379 2380 btrfs_put_transaction(cur_trans); 2381 btrfs_put_transaction(cur_trans); 2382 2383 if (trans->type & __TRANS_FREEZABLE) 2384 sb_end_intwrite(fs_info->sb); 2385 2386 trace_btrfs_transaction_commit(fs_info); 2387 2388 btrfs_scrub_continue(fs_info); 2389 2390 if (current->journal_info == trans) 2391 current->journal_info = NULL; 2392 2393 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2394 2395 return ret; 2396 2397 unlock_reloc: 2398 mutex_unlock(&fs_info->reloc_mutex); 2399 scrub_continue: 2400 btrfs_scrub_continue(fs_info); 2401 cleanup_transaction: 2402 btrfs_trans_release_metadata(trans); 2403 btrfs_cleanup_pending_block_groups(trans); 2404 btrfs_trans_release_chunk_metadata(trans); 2405 trans->block_rsv = NULL; 2406 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2407 if (current->journal_info == trans) 2408 current->journal_info = NULL; 2409 cleanup_transaction(trans, ret); 2410 2411 return ret; 2412 } 2413 2414 /* 2415 * return < 0 if error 2416 * 0 if there are no more dead_roots at the time of call 2417 * 1 there are more to be processed, call me again 2418 * 2419 * The return value indicates there are certainly more snapshots to delete, but 2420 * if there comes a new one during processing, it may return 0. We don't mind, 2421 * because btrfs_commit_super will poke cleaner thread and it will process it a 2422 * few seconds later. 2423 */ 2424 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2425 { 2426 int ret; 2427 struct btrfs_fs_info *fs_info = root->fs_info; 2428 2429 spin_lock(&fs_info->trans_lock); 2430 if (list_empty(&fs_info->dead_roots)) { 2431 spin_unlock(&fs_info->trans_lock); 2432 return 0; 2433 } 2434 root = list_first_entry(&fs_info->dead_roots, 2435 struct btrfs_root, root_list); 2436 list_del_init(&root->root_list); 2437 spin_unlock(&fs_info->trans_lock); 2438 2439 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2440 2441 btrfs_kill_all_delayed_nodes(root); 2442 2443 if (btrfs_header_backref_rev(root->node) < 2444 BTRFS_MIXED_BACKREF_REV) 2445 ret = btrfs_drop_snapshot(root, 0, 0); 2446 else 2447 ret = btrfs_drop_snapshot(root, 1, 0); 2448 2449 btrfs_put_root(root); 2450 return (ret < 0) ? 0 : 1; 2451 } 2452 2453 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2454 { 2455 unsigned long prev; 2456 unsigned long bit; 2457 2458 prev = xchg(&fs_info->pending_changes, 0); 2459 if (!prev) 2460 return; 2461 2462 bit = 1 << BTRFS_PENDING_COMMIT; 2463 if (prev & bit) 2464 btrfs_debug(fs_info, "pending commit done"); 2465 prev &= ~bit; 2466 2467 if (prev) 2468 btrfs_warn(fs_info, 2469 "unknown pending changes left 0x%lx, ignoring", prev); 2470 } 2471