xref: /openbmc/linux/fs/btrfs/transaction.c (revision cb3908c133f1285069673f11ad651d14ae0406cf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "locking.h"
17 #include "tree-log.h"
18 #include "inode-map.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22 
23 #define BTRFS_ROOT_TRANS_TAG 0
24 
25 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
26 	[TRANS_STATE_RUNNING]		= 0U,
27 	[TRANS_STATE_BLOCKED]		=  __TRANS_START,
28 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
29 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
30 					   __TRANS_ATTACH |
31 					   __TRANS_JOIN),
32 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
33 					   __TRANS_ATTACH |
34 					   __TRANS_JOIN |
35 					   __TRANS_JOIN_NOLOCK),
36 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
37 					   __TRANS_ATTACH |
38 					   __TRANS_JOIN |
39 					   __TRANS_JOIN_NOLOCK),
40 };
41 
42 void btrfs_put_transaction(struct btrfs_transaction *transaction)
43 {
44 	WARN_ON(refcount_read(&transaction->use_count) == 0);
45 	if (refcount_dec_and_test(&transaction->use_count)) {
46 		BUG_ON(!list_empty(&transaction->list));
47 		WARN_ON(!RB_EMPTY_ROOT(
48 				&transaction->delayed_refs.href_root.rb_root));
49 		if (transaction->delayed_refs.pending_csums)
50 			btrfs_err(transaction->fs_info,
51 				  "pending csums is %llu",
52 				  transaction->delayed_refs.pending_csums);
53 		/*
54 		 * If any block groups are found in ->deleted_bgs then it's
55 		 * because the transaction was aborted and a commit did not
56 		 * happen (things failed before writing the new superblock
57 		 * and calling btrfs_finish_extent_commit()), so we can not
58 		 * discard the physical locations of the block groups.
59 		 */
60 		while (!list_empty(&transaction->deleted_bgs)) {
61 			struct btrfs_block_group_cache *cache;
62 
63 			cache = list_first_entry(&transaction->deleted_bgs,
64 						 struct btrfs_block_group_cache,
65 						 bg_list);
66 			list_del_init(&cache->bg_list);
67 			btrfs_put_block_group_trimming(cache);
68 			btrfs_put_block_group(cache);
69 		}
70 		WARN_ON(!list_empty(&transaction->dev_update_list));
71 		kfree(transaction);
72 	}
73 }
74 
75 static noinline void switch_commit_roots(struct btrfs_transaction *trans)
76 {
77 	struct btrfs_fs_info *fs_info = trans->fs_info;
78 	struct btrfs_root *root, *tmp;
79 
80 	down_write(&fs_info->commit_root_sem);
81 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
82 				 dirty_list) {
83 		list_del_init(&root->dirty_list);
84 		free_extent_buffer(root->commit_root);
85 		root->commit_root = btrfs_root_node(root);
86 		if (is_fstree(root->root_key.objectid))
87 			btrfs_unpin_free_ino(root);
88 		extent_io_tree_release(&root->dirty_log_pages);
89 		btrfs_qgroup_clean_swapped_blocks(root);
90 	}
91 
92 	/* We can free old roots now. */
93 	spin_lock(&trans->dropped_roots_lock);
94 	while (!list_empty(&trans->dropped_roots)) {
95 		root = list_first_entry(&trans->dropped_roots,
96 					struct btrfs_root, root_list);
97 		list_del_init(&root->root_list);
98 		spin_unlock(&trans->dropped_roots_lock);
99 		btrfs_drop_and_free_fs_root(fs_info, root);
100 		spin_lock(&trans->dropped_roots_lock);
101 	}
102 	spin_unlock(&trans->dropped_roots_lock);
103 	up_write(&fs_info->commit_root_sem);
104 }
105 
106 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
107 					 unsigned int type)
108 {
109 	if (type & TRANS_EXTWRITERS)
110 		atomic_inc(&trans->num_extwriters);
111 }
112 
113 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
114 					 unsigned int type)
115 {
116 	if (type & TRANS_EXTWRITERS)
117 		atomic_dec(&trans->num_extwriters);
118 }
119 
120 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
121 					  unsigned int type)
122 {
123 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
124 }
125 
126 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
127 {
128 	return atomic_read(&trans->num_extwriters);
129 }
130 
131 /*
132  * either allocate a new transaction or hop into the existing one
133  */
134 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
135 				     unsigned int type)
136 {
137 	struct btrfs_transaction *cur_trans;
138 
139 	spin_lock(&fs_info->trans_lock);
140 loop:
141 	/* The file system has been taken offline. No new transactions. */
142 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
143 		spin_unlock(&fs_info->trans_lock);
144 		return -EROFS;
145 	}
146 
147 	cur_trans = fs_info->running_transaction;
148 	if (cur_trans) {
149 		if (cur_trans->aborted) {
150 			spin_unlock(&fs_info->trans_lock);
151 			return cur_trans->aborted;
152 		}
153 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
154 			spin_unlock(&fs_info->trans_lock);
155 			return -EBUSY;
156 		}
157 		refcount_inc(&cur_trans->use_count);
158 		atomic_inc(&cur_trans->num_writers);
159 		extwriter_counter_inc(cur_trans, type);
160 		spin_unlock(&fs_info->trans_lock);
161 		return 0;
162 	}
163 	spin_unlock(&fs_info->trans_lock);
164 
165 	/*
166 	 * If we are ATTACH, we just want to catch the current transaction,
167 	 * and commit it. If there is no transaction, just return ENOENT.
168 	 */
169 	if (type == TRANS_ATTACH)
170 		return -ENOENT;
171 
172 	/*
173 	 * JOIN_NOLOCK only happens during the transaction commit, so
174 	 * it is impossible that ->running_transaction is NULL
175 	 */
176 	BUG_ON(type == TRANS_JOIN_NOLOCK);
177 
178 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
179 	if (!cur_trans)
180 		return -ENOMEM;
181 
182 	spin_lock(&fs_info->trans_lock);
183 	if (fs_info->running_transaction) {
184 		/*
185 		 * someone started a transaction after we unlocked.  Make sure
186 		 * to redo the checks above
187 		 */
188 		kfree(cur_trans);
189 		goto loop;
190 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
191 		spin_unlock(&fs_info->trans_lock);
192 		kfree(cur_trans);
193 		return -EROFS;
194 	}
195 
196 	cur_trans->fs_info = fs_info;
197 	atomic_set(&cur_trans->num_writers, 1);
198 	extwriter_counter_init(cur_trans, type);
199 	init_waitqueue_head(&cur_trans->writer_wait);
200 	init_waitqueue_head(&cur_trans->commit_wait);
201 	cur_trans->state = TRANS_STATE_RUNNING;
202 	/*
203 	 * One for this trans handle, one so it will live on until we
204 	 * commit the transaction.
205 	 */
206 	refcount_set(&cur_trans->use_count, 2);
207 	cur_trans->flags = 0;
208 	cur_trans->start_time = ktime_get_seconds();
209 
210 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
211 
212 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
213 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
214 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
215 
216 	/*
217 	 * although the tree mod log is per file system and not per transaction,
218 	 * the log must never go across transaction boundaries.
219 	 */
220 	smp_mb();
221 	if (!list_empty(&fs_info->tree_mod_seq_list))
222 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
223 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
224 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
225 	atomic64_set(&fs_info->tree_mod_seq, 0);
226 
227 	spin_lock_init(&cur_trans->delayed_refs.lock);
228 
229 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
230 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
231 	INIT_LIST_HEAD(&cur_trans->switch_commits);
232 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
233 	INIT_LIST_HEAD(&cur_trans->io_bgs);
234 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
235 	mutex_init(&cur_trans->cache_write_mutex);
236 	spin_lock_init(&cur_trans->dirty_bgs_lock);
237 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
238 	spin_lock_init(&cur_trans->dropped_roots_lock);
239 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
240 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
241 			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
242 	fs_info->generation++;
243 	cur_trans->transid = fs_info->generation;
244 	fs_info->running_transaction = cur_trans;
245 	cur_trans->aborted = 0;
246 	spin_unlock(&fs_info->trans_lock);
247 
248 	return 0;
249 }
250 
251 /*
252  * this does all the record keeping required to make sure that a reference
253  * counted root is properly recorded in a given transaction.  This is required
254  * to make sure the old root from before we joined the transaction is deleted
255  * when the transaction commits
256  */
257 static int record_root_in_trans(struct btrfs_trans_handle *trans,
258 			       struct btrfs_root *root,
259 			       int force)
260 {
261 	struct btrfs_fs_info *fs_info = root->fs_info;
262 
263 	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
264 	    root->last_trans < trans->transid) || force) {
265 		WARN_ON(root == fs_info->extent_root);
266 		WARN_ON(!force && root->commit_root != root->node);
267 
268 		/*
269 		 * see below for IN_TRANS_SETUP usage rules
270 		 * we have the reloc mutex held now, so there
271 		 * is only one writer in this function
272 		 */
273 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
274 
275 		/* make sure readers find IN_TRANS_SETUP before
276 		 * they find our root->last_trans update
277 		 */
278 		smp_wmb();
279 
280 		spin_lock(&fs_info->fs_roots_radix_lock);
281 		if (root->last_trans == trans->transid && !force) {
282 			spin_unlock(&fs_info->fs_roots_radix_lock);
283 			return 0;
284 		}
285 		radix_tree_tag_set(&fs_info->fs_roots_radix,
286 				   (unsigned long)root->root_key.objectid,
287 				   BTRFS_ROOT_TRANS_TAG);
288 		spin_unlock(&fs_info->fs_roots_radix_lock);
289 		root->last_trans = trans->transid;
290 
291 		/* this is pretty tricky.  We don't want to
292 		 * take the relocation lock in btrfs_record_root_in_trans
293 		 * unless we're really doing the first setup for this root in
294 		 * this transaction.
295 		 *
296 		 * Normally we'd use root->last_trans as a flag to decide
297 		 * if we want to take the expensive mutex.
298 		 *
299 		 * But, we have to set root->last_trans before we
300 		 * init the relocation root, otherwise, we trip over warnings
301 		 * in ctree.c.  The solution used here is to flag ourselves
302 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
303 		 * fixing up the reloc trees and everyone must wait.
304 		 *
305 		 * When this is zero, they can trust root->last_trans and fly
306 		 * through btrfs_record_root_in_trans without having to take the
307 		 * lock.  smp_wmb() makes sure that all the writes above are
308 		 * done before we pop in the zero below
309 		 */
310 		btrfs_init_reloc_root(trans, root);
311 		smp_mb__before_atomic();
312 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
313 	}
314 	return 0;
315 }
316 
317 
318 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
319 			    struct btrfs_root *root)
320 {
321 	struct btrfs_fs_info *fs_info = root->fs_info;
322 	struct btrfs_transaction *cur_trans = trans->transaction;
323 
324 	/* Add ourselves to the transaction dropped list */
325 	spin_lock(&cur_trans->dropped_roots_lock);
326 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
327 	spin_unlock(&cur_trans->dropped_roots_lock);
328 
329 	/* Make sure we don't try to update the root at commit time */
330 	spin_lock(&fs_info->fs_roots_radix_lock);
331 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
332 			     (unsigned long)root->root_key.objectid,
333 			     BTRFS_ROOT_TRANS_TAG);
334 	spin_unlock(&fs_info->fs_roots_radix_lock);
335 }
336 
337 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
338 			       struct btrfs_root *root)
339 {
340 	struct btrfs_fs_info *fs_info = root->fs_info;
341 
342 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
343 		return 0;
344 
345 	/*
346 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
347 	 * and barriers
348 	 */
349 	smp_rmb();
350 	if (root->last_trans == trans->transid &&
351 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
352 		return 0;
353 
354 	mutex_lock(&fs_info->reloc_mutex);
355 	record_root_in_trans(trans, root, 0);
356 	mutex_unlock(&fs_info->reloc_mutex);
357 
358 	return 0;
359 }
360 
361 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
362 {
363 	return (trans->state >= TRANS_STATE_BLOCKED &&
364 		trans->state < TRANS_STATE_UNBLOCKED &&
365 		!trans->aborted);
366 }
367 
368 /* wait for commit against the current transaction to become unblocked
369  * when this is done, it is safe to start a new transaction, but the current
370  * transaction might not be fully on disk.
371  */
372 static void wait_current_trans(struct btrfs_fs_info *fs_info)
373 {
374 	struct btrfs_transaction *cur_trans;
375 
376 	spin_lock(&fs_info->trans_lock);
377 	cur_trans = fs_info->running_transaction;
378 	if (cur_trans && is_transaction_blocked(cur_trans)) {
379 		refcount_inc(&cur_trans->use_count);
380 		spin_unlock(&fs_info->trans_lock);
381 
382 		wait_event(fs_info->transaction_wait,
383 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
384 			   cur_trans->aborted);
385 		btrfs_put_transaction(cur_trans);
386 	} else {
387 		spin_unlock(&fs_info->trans_lock);
388 	}
389 }
390 
391 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
392 {
393 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
394 		return 0;
395 
396 	if (type == TRANS_START)
397 		return 1;
398 
399 	return 0;
400 }
401 
402 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
403 {
404 	struct btrfs_fs_info *fs_info = root->fs_info;
405 
406 	if (!fs_info->reloc_ctl ||
407 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
408 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
409 	    root->reloc_root)
410 		return false;
411 
412 	return true;
413 }
414 
415 static struct btrfs_trans_handle *
416 start_transaction(struct btrfs_root *root, unsigned int num_items,
417 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
418 		  bool enforce_qgroups)
419 {
420 	struct btrfs_fs_info *fs_info = root->fs_info;
421 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
422 	struct btrfs_trans_handle *h;
423 	struct btrfs_transaction *cur_trans;
424 	u64 num_bytes = 0;
425 	u64 qgroup_reserved = 0;
426 	bool reloc_reserved = false;
427 	int ret;
428 
429 	/* Send isn't supposed to start transactions. */
430 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
431 
432 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
433 		return ERR_PTR(-EROFS);
434 
435 	if (current->journal_info) {
436 		WARN_ON(type & TRANS_EXTWRITERS);
437 		h = current->journal_info;
438 		refcount_inc(&h->use_count);
439 		WARN_ON(refcount_read(&h->use_count) > 2);
440 		h->orig_rsv = h->block_rsv;
441 		h->block_rsv = NULL;
442 		goto got_it;
443 	}
444 
445 	/*
446 	 * Do the reservation before we join the transaction so we can do all
447 	 * the appropriate flushing if need be.
448 	 */
449 	if (num_items && root != fs_info->chunk_root) {
450 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
451 		u64 delayed_refs_bytes = 0;
452 
453 		qgroup_reserved = num_items * fs_info->nodesize;
454 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
455 				enforce_qgroups);
456 		if (ret)
457 			return ERR_PTR(ret);
458 
459 		/*
460 		 * We want to reserve all the bytes we may need all at once, so
461 		 * we only do 1 enospc flushing cycle per transaction start.  We
462 		 * accomplish this by simply assuming we'll do 2 x num_items
463 		 * worth of delayed refs updates in this trans handle, and
464 		 * refill that amount for whatever is missing in the reserve.
465 		 */
466 		num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
467 		if (delayed_refs_rsv->full == 0) {
468 			delayed_refs_bytes = num_bytes;
469 			num_bytes <<= 1;
470 		}
471 
472 		/*
473 		 * Do the reservation for the relocation root creation
474 		 */
475 		if (need_reserve_reloc_root(root)) {
476 			num_bytes += fs_info->nodesize;
477 			reloc_reserved = true;
478 		}
479 
480 		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
481 		if (ret)
482 			goto reserve_fail;
483 		if (delayed_refs_bytes) {
484 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
485 							  delayed_refs_bytes);
486 			num_bytes -= delayed_refs_bytes;
487 		}
488 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
489 		   !delayed_refs_rsv->full) {
490 		/*
491 		 * Some people call with btrfs_start_transaction(root, 0)
492 		 * because they can be throttled, but have some other mechanism
493 		 * for reserving space.  We still want these guys to refill the
494 		 * delayed block_rsv so just add 1 items worth of reservation
495 		 * here.
496 		 */
497 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
498 		if (ret)
499 			goto reserve_fail;
500 	}
501 again:
502 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
503 	if (!h) {
504 		ret = -ENOMEM;
505 		goto alloc_fail;
506 	}
507 
508 	/*
509 	 * If we are JOIN_NOLOCK we're already committing a transaction and
510 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
511 	 * because we're already holding a ref.  We need this because we could
512 	 * have raced in and did an fsync() on a file which can kick a commit
513 	 * and then we deadlock with somebody doing a freeze.
514 	 *
515 	 * If we are ATTACH, it means we just want to catch the current
516 	 * transaction and commit it, so we needn't do sb_start_intwrite().
517 	 */
518 	if (type & __TRANS_FREEZABLE)
519 		sb_start_intwrite(fs_info->sb);
520 
521 	if (may_wait_transaction(fs_info, type))
522 		wait_current_trans(fs_info);
523 
524 	do {
525 		ret = join_transaction(fs_info, type);
526 		if (ret == -EBUSY) {
527 			wait_current_trans(fs_info);
528 			if (unlikely(type == TRANS_ATTACH))
529 				ret = -ENOENT;
530 		}
531 	} while (ret == -EBUSY);
532 
533 	if (ret < 0)
534 		goto join_fail;
535 
536 	cur_trans = fs_info->running_transaction;
537 
538 	h->transid = cur_trans->transid;
539 	h->transaction = cur_trans;
540 	h->root = root;
541 	refcount_set(&h->use_count, 1);
542 	h->fs_info = root->fs_info;
543 
544 	h->type = type;
545 	h->can_flush_pending_bgs = true;
546 	INIT_LIST_HEAD(&h->new_bgs);
547 
548 	smp_mb();
549 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
550 	    may_wait_transaction(fs_info, type)) {
551 		current->journal_info = h;
552 		btrfs_commit_transaction(h);
553 		goto again;
554 	}
555 
556 	if (num_bytes) {
557 		trace_btrfs_space_reservation(fs_info, "transaction",
558 					      h->transid, num_bytes, 1);
559 		h->block_rsv = &fs_info->trans_block_rsv;
560 		h->bytes_reserved = num_bytes;
561 		h->reloc_reserved = reloc_reserved;
562 	}
563 
564 got_it:
565 	btrfs_record_root_in_trans(h, root);
566 
567 	if (!current->journal_info)
568 		current->journal_info = h;
569 	return h;
570 
571 join_fail:
572 	if (type & __TRANS_FREEZABLE)
573 		sb_end_intwrite(fs_info->sb);
574 	kmem_cache_free(btrfs_trans_handle_cachep, h);
575 alloc_fail:
576 	if (num_bytes)
577 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
578 					num_bytes);
579 reserve_fail:
580 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
581 	return ERR_PTR(ret);
582 }
583 
584 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
585 						   unsigned int num_items)
586 {
587 	return start_transaction(root, num_items, TRANS_START,
588 				 BTRFS_RESERVE_FLUSH_ALL, true);
589 }
590 
591 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
592 					struct btrfs_root *root,
593 					unsigned int num_items,
594 					int min_factor)
595 {
596 	struct btrfs_fs_info *fs_info = root->fs_info;
597 	struct btrfs_trans_handle *trans;
598 	u64 num_bytes;
599 	int ret;
600 
601 	/*
602 	 * We have two callers: unlink and block group removal.  The
603 	 * former should succeed even if we will temporarily exceed
604 	 * quota and the latter operates on the extent root so
605 	 * qgroup enforcement is ignored anyway.
606 	 */
607 	trans = start_transaction(root, num_items, TRANS_START,
608 				  BTRFS_RESERVE_FLUSH_ALL, false);
609 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
610 		return trans;
611 
612 	trans = btrfs_start_transaction(root, 0);
613 	if (IS_ERR(trans))
614 		return trans;
615 
616 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
617 	ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
618 				       num_bytes, min_factor);
619 	if (ret) {
620 		btrfs_end_transaction(trans);
621 		return ERR_PTR(ret);
622 	}
623 
624 	trans->block_rsv = &fs_info->trans_block_rsv;
625 	trans->bytes_reserved = num_bytes;
626 	trace_btrfs_space_reservation(fs_info, "transaction",
627 				      trans->transid, num_bytes, 1);
628 
629 	return trans;
630 }
631 
632 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
633 {
634 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
635 				 true);
636 }
637 
638 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
639 {
640 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
641 				 BTRFS_RESERVE_NO_FLUSH, true);
642 }
643 
644 /*
645  * btrfs_attach_transaction() - catch the running transaction
646  *
647  * It is used when we want to commit the current the transaction, but
648  * don't want to start a new one.
649  *
650  * Note: If this function return -ENOENT, it just means there is no
651  * running transaction. But it is possible that the inactive transaction
652  * is still in the memory, not fully on disk. If you hope there is no
653  * inactive transaction in the fs when -ENOENT is returned, you should
654  * invoke
655  *     btrfs_attach_transaction_barrier()
656  */
657 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
658 {
659 	return start_transaction(root, 0, TRANS_ATTACH,
660 				 BTRFS_RESERVE_NO_FLUSH, true);
661 }
662 
663 /*
664  * btrfs_attach_transaction_barrier() - catch the running transaction
665  *
666  * It is similar to the above function, the difference is this one
667  * will wait for all the inactive transactions until they fully
668  * complete.
669  */
670 struct btrfs_trans_handle *
671 btrfs_attach_transaction_barrier(struct btrfs_root *root)
672 {
673 	struct btrfs_trans_handle *trans;
674 
675 	trans = start_transaction(root, 0, TRANS_ATTACH,
676 				  BTRFS_RESERVE_NO_FLUSH, true);
677 	if (trans == ERR_PTR(-ENOENT))
678 		btrfs_wait_for_commit(root->fs_info, 0);
679 
680 	return trans;
681 }
682 
683 /* wait for a transaction commit to be fully complete */
684 static noinline void wait_for_commit(struct btrfs_transaction *commit)
685 {
686 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
687 }
688 
689 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
690 {
691 	struct btrfs_transaction *cur_trans = NULL, *t;
692 	int ret = 0;
693 
694 	if (transid) {
695 		if (transid <= fs_info->last_trans_committed)
696 			goto out;
697 
698 		/* find specified transaction */
699 		spin_lock(&fs_info->trans_lock);
700 		list_for_each_entry(t, &fs_info->trans_list, list) {
701 			if (t->transid == transid) {
702 				cur_trans = t;
703 				refcount_inc(&cur_trans->use_count);
704 				ret = 0;
705 				break;
706 			}
707 			if (t->transid > transid) {
708 				ret = 0;
709 				break;
710 			}
711 		}
712 		spin_unlock(&fs_info->trans_lock);
713 
714 		/*
715 		 * The specified transaction doesn't exist, or we
716 		 * raced with btrfs_commit_transaction
717 		 */
718 		if (!cur_trans) {
719 			if (transid > fs_info->last_trans_committed)
720 				ret = -EINVAL;
721 			goto out;
722 		}
723 	} else {
724 		/* find newest transaction that is committing | committed */
725 		spin_lock(&fs_info->trans_lock);
726 		list_for_each_entry_reverse(t, &fs_info->trans_list,
727 					    list) {
728 			if (t->state >= TRANS_STATE_COMMIT_START) {
729 				if (t->state == TRANS_STATE_COMPLETED)
730 					break;
731 				cur_trans = t;
732 				refcount_inc(&cur_trans->use_count);
733 				break;
734 			}
735 		}
736 		spin_unlock(&fs_info->trans_lock);
737 		if (!cur_trans)
738 			goto out;  /* nothing committing|committed */
739 	}
740 
741 	wait_for_commit(cur_trans);
742 	btrfs_put_transaction(cur_trans);
743 out:
744 	return ret;
745 }
746 
747 void btrfs_throttle(struct btrfs_fs_info *fs_info)
748 {
749 	wait_current_trans(fs_info);
750 }
751 
752 static int should_end_transaction(struct btrfs_trans_handle *trans)
753 {
754 	struct btrfs_fs_info *fs_info = trans->fs_info;
755 
756 	if (btrfs_check_space_for_delayed_refs(fs_info))
757 		return 1;
758 
759 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
760 }
761 
762 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
763 {
764 	struct btrfs_transaction *cur_trans = trans->transaction;
765 
766 	smp_mb();
767 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
768 	    cur_trans->delayed_refs.flushing)
769 		return 1;
770 
771 	return should_end_transaction(trans);
772 }
773 
774 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
775 
776 {
777 	struct btrfs_fs_info *fs_info = trans->fs_info;
778 
779 	if (!trans->block_rsv) {
780 		ASSERT(!trans->bytes_reserved);
781 		return;
782 	}
783 
784 	if (!trans->bytes_reserved)
785 		return;
786 
787 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
788 	trace_btrfs_space_reservation(fs_info, "transaction",
789 				      trans->transid, trans->bytes_reserved, 0);
790 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
791 				trans->bytes_reserved);
792 	trans->bytes_reserved = 0;
793 }
794 
795 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
796 				   int throttle)
797 {
798 	struct btrfs_fs_info *info = trans->fs_info;
799 	struct btrfs_transaction *cur_trans = trans->transaction;
800 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
801 	int err = 0;
802 
803 	if (refcount_read(&trans->use_count) > 1) {
804 		refcount_dec(&trans->use_count);
805 		trans->block_rsv = trans->orig_rsv;
806 		return 0;
807 	}
808 
809 	btrfs_trans_release_metadata(trans);
810 	trans->block_rsv = NULL;
811 
812 	btrfs_create_pending_block_groups(trans);
813 
814 	btrfs_trans_release_chunk_metadata(trans);
815 
816 	if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
817 		if (throttle)
818 			return btrfs_commit_transaction(trans);
819 		else
820 			wake_up_process(info->transaction_kthread);
821 	}
822 
823 	if (trans->type & __TRANS_FREEZABLE)
824 		sb_end_intwrite(info->sb);
825 
826 	WARN_ON(cur_trans != info->running_transaction);
827 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
828 	atomic_dec(&cur_trans->num_writers);
829 	extwriter_counter_dec(cur_trans, trans->type);
830 
831 	cond_wake_up(&cur_trans->writer_wait);
832 	btrfs_put_transaction(cur_trans);
833 
834 	if (current->journal_info == trans)
835 		current->journal_info = NULL;
836 
837 	if (throttle)
838 		btrfs_run_delayed_iputs(info);
839 
840 	if (trans->aborted ||
841 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
842 		wake_up_process(info->transaction_kthread);
843 		err = -EIO;
844 	}
845 
846 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
847 	return err;
848 }
849 
850 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
851 {
852 	return __btrfs_end_transaction(trans, 0);
853 }
854 
855 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
856 {
857 	return __btrfs_end_transaction(trans, 1);
858 }
859 
860 /*
861  * when btree blocks are allocated, they have some corresponding bits set for
862  * them in one of two extent_io trees.  This is used to make sure all of
863  * those extents are sent to disk but does not wait on them
864  */
865 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
866 			       struct extent_io_tree *dirty_pages, int mark)
867 {
868 	int err = 0;
869 	int werr = 0;
870 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
871 	struct extent_state *cached_state = NULL;
872 	u64 start = 0;
873 	u64 end;
874 
875 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
876 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
877 				      mark, &cached_state)) {
878 		bool wait_writeback = false;
879 
880 		err = convert_extent_bit(dirty_pages, start, end,
881 					 EXTENT_NEED_WAIT,
882 					 mark, &cached_state);
883 		/*
884 		 * convert_extent_bit can return -ENOMEM, which is most of the
885 		 * time a temporary error. So when it happens, ignore the error
886 		 * and wait for writeback of this range to finish - because we
887 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
888 		 * to __btrfs_wait_marked_extents() would not know that
889 		 * writeback for this range started and therefore wouldn't
890 		 * wait for it to finish - we don't want to commit a
891 		 * superblock that points to btree nodes/leafs for which
892 		 * writeback hasn't finished yet (and without errors).
893 		 * We cleanup any entries left in the io tree when committing
894 		 * the transaction (through extent_io_tree_release()).
895 		 */
896 		if (err == -ENOMEM) {
897 			err = 0;
898 			wait_writeback = true;
899 		}
900 		if (!err)
901 			err = filemap_fdatawrite_range(mapping, start, end);
902 		if (err)
903 			werr = err;
904 		else if (wait_writeback)
905 			werr = filemap_fdatawait_range(mapping, start, end);
906 		free_extent_state(cached_state);
907 		cached_state = NULL;
908 		cond_resched();
909 		start = end + 1;
910 	}
911 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
912 	return werr;
913 }
914 
915 /*
916  * when btree blocks are allocated, they have some corresponding bits set for
917  * them in one of two extent_io trees.  This is used to make sure all of
918  * those extents are on disk for transaction or log commit.  We wait
919  * on all the pages and clear them from the dirty pages state tree
920  */
921 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
922 				       struct extent_io_tree *dirty_pages)
923 {
924 	int err = 0;
925 	int werr = 0;
926 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
927 	struct extent_state *cached_state = NULL;
928 	u64 start = 0;
929 	u64 end;
930 
931 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
932 				      EXTENT_NEED_WAIT, &cached_state)) {
933 		/*
934 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
935 		 * When committing the transaction, we'll remove any entries
936 		 * left in the io tree. For a log commit, we don't remove them
937 		 * after committing the log because the tree can be accessed
938 		 * concurrently - we do it only at transaction commit time when
939 		 * it's safe to do it (through extent_io_tree_release()).
940 		 */
941 		err = clear_extent_bit(dirty_pages, start, end,
942 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
943 		if (err == -ENOMEM)
944 			err = 0;
945 		if (!err)
946 			err = filemap_fdatawait_range(mapping, start, end);
947 		if (err)
948 			werr = err;
949 		free_extent_state(cached_state);
950 		cached_state = NULL;
951 		cond_resched();
952 		start = end + 1;
953 	}
954 	if (err)
955 		werr = err;
956 	return werr;
957 }
958 
959 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
960 		       struct extent_io_tree *dirty_pages)
961 {
962 	bool errors = false;
963 	int err;
964 
965 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
966 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
967 		errors = true;
968 
969 	if (errors && !err)
970 		err = -EIO;
971 	return err;
972 }
973 
974 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
975 {
976 	struct btrfs_fs_info *fs_info = log_root->fs_info;
977 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
978 	bool errors = false;
979 	int err;
980 
981 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
982 
983 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
984 	if ((mark & EXTENT_DIRTY) &&
985 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
986 		errors = true;
987 
988 	if ((mark & EXTENT_NEW) &&
989 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
990 		errors = true;
991 
992 	if (errors && !err)
993 		err = -EIO;
994 	return err;
995 }
996 
997 /*
998  * When btree blocks are allocated the corresponding extents are marked dirty.
999  * This function ensures such extents are persisted on disk for transaction or
1000  * log commit.
1001  *
1002  * @trans: transaction whose dirty pages we'd like to write
1003  */
1004 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1005 {
1006 	int ret;
1007 	int ret2;
1008 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1009 	struct btrfs_fs_info *fs_info = trans->fs_info;
1010 	struct blk_plug plug;
1011 
1012 	blk_start_plug(&plug);
1013 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1014 	blk_finish_plug(&plug);
1015 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1016 
1017 	extent_io_tree_release(&trans->transaction->dirty_pages);
1018 
1019 	if (ret)
1020 		return ret;
1021 	else if (ret2)
1022 		return ret2;
1023 	else
1024 		return 0;
1025 }
1026 
1027 /*
1028  * this is used to update the root pointer in the tree of tree roots.
1029  *
1030  * But, in the case of the extent allocation tree, updating the root
1031  * pointer may allocate blocks which may change the root of the extent
1032  * allocation tree.
1033  *
1034  * So, this loops and repeats and makes sure the cowonly root didn't
1035  * change while the root pointer was being updated in the metadata.
1036  */
1037 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1038 			       struct btrfs_root *root)
1039 {
1040 	int ret;
1041 	u64 old_root_bytenr;
1042 	u64 old_root_used;
1043 	struct btrfs_fs_info *fs_info = root->fs_info;
1044 	struct btrfs_root *tree_root = fs_info->tree_root;
1045 
1046 	old_root_used = btrfs_root_used(&root->root_item);
1047 
1048 	while (1) {
1049 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1050 		if (old_root_bytenr == root->node->start &&
1051 		    old_root_used == btrfs_root_used(&root->root_item))
1052 			break;
1053 
1054 		btrfs_set_root_node(&root->root_item, root->node);
1055 		ret = btrfs_update_root(trans, tree_root,
1056 					&root->root_key,
1057 					&root->root_item);
1058 		if (ret)
1059 			return ret;
1060 
1061 		old_root_used = btrfs_root_used(&root->root_item);
1062 	}
1063 
1064 	return 0;
1065 }
1066 
1067 /*
1068  * update all the cowonly tree roots on disk
1069  *
1070  * The error handling in this function may not be obvious. Any of the
1071  * failures will cause the file system to go offline. We still need
1072  * to clean up the delayed refs.
1073  */
1074 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1075 {
1076 	struct btrfs_fs_info *fs_info = trans->fs_info;
1077 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1078 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1079 	struct list_head *next;
1080 	struct extent_buffer *eb;
1081 	int ret;
1082 
1083 	eb = btrfs_lock_root_node(fs_info->tree_root);
1084 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1085 			      0, &eb);
1086 	btrfs_tree_unlock(eb);
1087 	free_extent_buffer(eb);
1088 
1089 	if (ret)
1090 		return ret;
1091 
1092 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1093 	if (ret)
1094 		return ret;
1095 
1096 	ret = btrfs_run_dev_stats(trans);
1097 	if (ret)
1098 		return ret;
1099 	ret = btrfs_run_dev_replace(trans);
1100 	if (ret)
1101 		return ret;
1102 	ret = btrfs_run_qgroups(trans);
1103 	if (ret)
1104 		return ret;
1105 
1106 	ret = btrfs_setup_space_cache(trans);
1107 	if (ret)
1108 		return ret;
1109 
1110 	/* run_qgroups might have added some more refs */
1111 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1112 	if (ret)
1113 		return ret;
1114 again:
1115 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1116 		struct btrfs_root *root;
1117 		next = fs_info->dirty_cowonly_roots.next;
1118 		list_del_init(next);
1119 		root = list_entry(next, struct btrfs_root, dirty_list);
1120 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1121 
1122 		if (root != fs_info->extent_root)
1123 			list_add_tail(&root->dirty_list,
1124 				      &trans->transaction->switch_commits);
1125 		ret = update_cowonly_root(trans, root);
1126 		if (ret)
1127 			return ret;
1128 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1129 		if (ret)
1130 			return ret;
1131 	}
1132 
1133 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1134 		ret = btrfs_write_dirty_block_groups(trans);
1135 		if (ret)
1136 			return ret;
1137 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1138 		if (ret)
1139 			return ret;
1140 	}
1141 
1142 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1143 		goto again;
1144 
1145 	list_add_tail(&fs_info->extent_root->dirty_list,
1146 		      &trans->transaction->switch_commits);
1147 
1148 	/* Update dev-replace pointer once everything is committed */
1149 	fs_info->dev_replace.committed_cursor_left =
1150 		fs_info->dev_replace.cursor_left_last_write_of_item;
1151 
1152 	return 0;
1153 }
1154 
1155 /*
1156  * dead roots are old snapshots that need to be deleted.  This allocates
1157  * a dirty root struct and adds it into the list of dead roots that need to
1158  * be deleted
1159  */
1160 void btrfs_add_dead_root(struct btrfs_root *root)
1161 {
1162 	struct btrfs_fs_info *fs_info = root->fs_info;
1163 
1164 	spin_lock(&fs_info->trans_lock);
1165 	if (list_empty(&root->root_list))
1166 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1167 	spin_unlock(&fs_info->trans_lock);
1168 }
1169 
1170 /*
1171  * update all the cowonly tree roots on disk
1172  */
1173 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1174 {
1175 	struct btrfs_fs_info *fs_info = trans->fs_info;
1176 	struct btrfs_root *gang[8];
1177 	int i;
1178 	int ret;
1179 	int err = 0;
1180 
1181 	spin_lock(&fs_info->fs_roots_radix_lock);
1182 	while (1) {
1183 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1184 						 (void **)gang, 0,
1185 						 ARRAY_SIZE(gang),
1186 						 BTRFS_ROOT_TRANS_TAG);
1187 		if (ret == 0)
1188 			break;
1189 		for (i = 0; i < ret; i++) {
1190 			struct btrfs_root *root = gang[i];
1191 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1192 					(unsigned long)root->root_key.objectid,
1193 					BTRFS_ROOT_TRANS_TAG);
1194 			spin_unlock(&fs_info->fs_roots_radix_lock);
1195 
1196 			btrfs_free_log(trans, root);
1197 			btrfs_update_reloc_root(trans, root);
1198 
1199 			btrfs_save_ino_cache(root, trans);
1200 
1201 			/* see comments in should_cow_block() */
1202 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1203 			smp_mb__after_atomic();
1204 
1205 			if (root->commit_root != root->node) {
1206 				list_add_tail(&root->dirty_list,
1207 					&trans->transaction->switch_commits);
1208 				btrfs_set_root_node(&root->root_item,
1209 						    root->node);
1210 			}
1211 
1212 			err = btrfs_update_root(trans, fs_info->tree_root,
1213 						&root->root_key,
1214 						&root->root_item);
1215 			spin_lock(&fs_info->fs_roots_radix_lock);
1216 			if (err)
1217 				break;
1218 			btrfs_qgroup_free_meta_all_pertrans(root);
1219 		}
1220 	}
1221 	spin_unlock(&fs_info->fs_roots_radix_lock);
1222 	return err;
1223 }
1224 
1225 /*
1226  * defrag a given btree.
1227  * Every leaf in the btree is read and defragged.
1228  */
1229 int btrfs_defrag_root(struct btrfs_root *root)
1230 {
1231 	struct btrfs_fs_info *info = root->fs_info;
1232 	struct btrfs_trans_handle *trans;
1233 	int ret;
1234 
1235 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1236 		return 0;
1237 
1238 	while (1) {
1239 		trans = btrfs_start_transaction(root, 0);
1240 		if (IS_ERR(trans))
1241 			return PTR_ERR(trans);
1242 
1243 		ret = btrfs_defrag_leaves(trans, root);
1244 
1245 		btrfs_end_transaction(trans);
1246 		btrfs_btree_balance_dirty(info);
1247 		cond_resched();
1248 
1249 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1250 			break;
1251 
1252 		if (btrfs_defrag_cancelled(info)) {
1253 			btrfs_debug(info, "defrag_root cancelled");
1254 			ret = -EAGAIN;
1255 			break;
1256 		}
1257 	}
1258 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1259 	return ret;
1260 }
1261 
1262 /*
1263  * Do all special snapshot related qgroup dirty hack.
1264  *
1265  * Will do all needed qgroup inherit and dirty hack like switch commit
1266  * roots inside one transaction and write all btree into disk, to make
1267  * qgroup works.
1268  */
1269 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1270 				   struct btrfs_root *src,
1271 				   struct btrfs_root *parent,
1272 				   struct btrfs_qgroup_inherit *inherit,
1273 				   u64 dst_objectid)
1274 {
1275 	struct btrfs_fs_info *fs_info = src->fs_info;
1276 	int ret;
1277 
1278 	/*
1279 	 * Save some performance in the case that qgroups are not
1280 	 * enabled. If this check races with the ioctl, rescan will
1281 	 * kick in anyway.
1282 	 */
1283 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1284 		return 0;
1285 
1286 	/*
1287 	 * Ensure dirty @src will be committed.  Or, after coming
1288 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1289 	 * recorded root will never be updated again, causing an outdated root
1290 	 * item.
1291 	 */
1292 	record_root_in_trans(trans, src, 1);
1293 
1294 	/*
1295 	 * We are going to commit transaction, see btrfs_commit_transaction()
1296 	 * comment for reason locking tree_log_mutex
1297 	 */
1298 	mutex_lock(&fs_info->tree_log_mutex);
1299 
1300 	ret = commit_fs_roots(trans);
1301 	if (ret)
1302 		goto out;
1303 	ret = btrfs_qgroup_account_extents(trans);
1304 	if (ret < 0)
1305 		goto out;
1306 
1307 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1308 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1309 				   inherit);
1310 	if (ret < 0)
1311 		goto out;
1312 
1313 	/*
1314 	 * Now we do a simplified commit transaction, which will:
1315 	 * 1) commit all subvolume and extent tree
1316 	 *    To ensure all subvolume and extent tree have a valid
1317 	 *    commit_root to accounting later insert_dir_item()
1318 	 * 2) write all btree blocks onto disk
1319 	 *    This is to make sure later btree modification will be cowed
1320 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1321 	 * In this simplified commit, we don't really care about other trees
1322 	 * like chunk and root tree, as they won't affect qgroup.
1323 	 * And we don't write super to avoid half committed status.
1324 	 */
1325 	ret = commit_cowonly_roots(trans);
1326 	if (ret)
1327 		goto out;
1328 	switch_commit_roots(trans->transaction);
1329 	ret = btrfs_write_and_wait_transaction(trans);
1330 	if (ret)
1331 		btrfs_handle_fs_error(fs_info, ret,
1332 			"Error while writing out transaction for qgroup");
1333 
1334 out:
1335 	mutex_unlock(&fs_info->tree_log_mutex);
1336 
1337 	/*
1338 	 * Force parent root to be updated, as we recorded it before so its
1339 	 * last_trans == cur_transid.
1340 	 * Or it won't be committed again onto disk after later
1341 	 * insert_dir_item()
1342 	 */
1343 	if (!ret)
1344 		record_root_in_trans(trans, parent, 1);
1345 	return ret;
1346 }
1347 
1348 /*
1349  * new snapshots need to be created at a very specific time in the
1350  * transaction commit.  This does the actual creation.
1351  *
1352  * Note:
1353  * If the error which may affect the commitment of the current transaction
1354  * happens, we should return the error number. If the error which just affect
1355  * the creation of the pending snapshots, just return 0.
1356  */
1357 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1358 				   struct btrfs_pending_snapshot *pending)
1359 {
1360 
1361 	struct btrfs_fs_info *fs_info = trans->fs_info;
1362 	struct btrfs_key key;
1363 	struct btrfs_root_item *new_root_item;
1364 	struct btrfs_root *tree_root = fs_info->tree_root;
1365 	struct btrfs_root *root = pending->root;
1366 	struct btrfs_root *parent_root;
1367 	struct btrfs_block_rsv *rsv;
1368 	struct inode *parent_inode;
1369 	struct btrfs_path *path;
1370 	struct btrfs_dir_item *dir_item;
1371 	struct dentry *dentry;
1372 	struct extent_buffer *tmp;
1373 	struct extent_buffer *old;
1374 	struct timespec64 cur_time;
1375 	int ret = 0;
1376 	u64 to_reserve = 0;
1377 	u64 index = 0;
1378 	u64 objectid;
1379 	u64 root_flags;
1380 	uuid_le new_uuid;
1381 
1382 	ASSERT(pending->path);
1383 	path = pending->path;
1384 
1385 	ASSERT(pending->root_item);
1386 	new_root_item = pending->root_item;
1387 
1388 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1389 	if (pending->error)
1390 		goto no_free_objectid;
1391 
1392 	/*
1393 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1394 	 * accounted by later btrfs_qgroup_inherit().
1395 	 */
1396 	btrfs_set_skip_qgroup(trans, objectid);
1397 
1398 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1399 
1400 	if (to_reserve > 0) {
1401 		pending->error = btrfs_block_rsv_add(root,
1402 						     &pending->block_rsv,
1403 						     to_reserve,
1404 						     BTRFS_RESERVE_NO_FLUSH);
1405 		if (pending->error)
1406 			goto clear_skip_qgroup;
1407 	}
1408 
1409 	key.objectid = objectid;
1410 	key.offset = (u64)-1;
1411 	key.type = BTRFS_ROOT_ITEM_KEY;
1412 
1413 	rsv = trans->block_rsv;
1414 	trans->block_rsv = &pending->block_rsv;
1415 	trans->bytes_reserved = trans->block_rsv->reserved;
1416 	trace_btrfs_space_reservation(fs_info, "transaction",
1417 				      trans->transid,
1418 				      trans->bytes_reserved, 1);
1419 	dentry = pending->dentry;
1420 	parent_inode = pending->dir;
1421 	parent_root = BTRFS_I(parent_inode)->root;
1422 	record_root_in_trans(trans, parent_root, 0);
1423 
1424 	cur_time = current_time(parent_inode);
1425 
1426 	/*
1427 	 * insert the directory item
1428 	 */
1429 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1430 	BUG_ON(ret); /* -ENOMEM */
1431 
1432 	/* check if there is a file/dir which has the same name. */
1433 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1434 					 btrfs_ino(BTRFS_I(parent_inode)),
1435 					 dentry->d_name.name,
1436 					 dentry->d_name.len, 0);
1437 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1438 		pending->error = -EEXIST;
1439 		goto dir_item_existed;
1440 	} else if (IS_ERR(dir_item)) {
1441 		ret = PTR_ERR(dir_item);
1442 		btrfs_abort_transaction(trans, ret);
1443 		goto fail;
1444 	}
1445 	btrfs_release_path(path);
1446 
1447 	/*
1448 	 * pull in the delayed directory update
1449 	 * and the delayed inode item
1450 	 * otherwise we corrupt the FS during
1451 	 * snapshot
1452 	 */
1453 	ret = btrfs_run_delayed_items(trans);
1454 	if (ret) {	/* Transaction aborted */
1455 		btrfs_abort_transaction(trans, ret);
1456 		goto fail;
1457 	}
1458 
1459 	record_root_in_trans(trans, root, 0);
1460 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1461 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1462 	btrfs_check_and_init_root_item(new_root_item);
1463 
1464 	root_flags = btrfs_root_flags(new_root_item);
1465 	if (pending->readonly)
1466 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1467 	else
1468 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1469 	btrfs_set_root_flags(new_root_item, root_flags);
1470 
1471 	btrfs_set_root_generation_v2(new_root_item,
1472 			trans->transid);
1473 	uuid_le_gen(&new_uuid);
1474 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1475 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1476 			BTRFS_UUID_SIZE);
1477 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1478 		memset(new_root_item->received_uuid, 0,
1479 		       sizeof(new_root_item->received_uuid));
1480 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1481 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1482 		btrfs_set_root_stransid(new_root_item, 0);
1483 		btrfs_set_root_rtransid(new_root_item, 0);
1484 	}
1485 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1486 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1487 	btrfs_set_root_otransid(new_root_item, trans->transid);
1488 
1489 	old = btrfs_lock_root_node(root);
1490 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1491 	if (ret) {
1492 		btrfs_tree_unlock(old);
1493 		free_extent_buffer(old);
1494 		btrfs_abort_transaction(trans, ret);
1495 		goto fail;
1496 	}
1497 
1498 	btrfs_set_lock_blocking_write(old);
1499 
1500 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1501 	/* clean up in any case */
1502 	btrfs_tree_unlock(old);
1503 	free_extent_buffer(old);
1504 	if (ret) {
1505 		btrfs_abort_transaction(trans, ret);
1506 		goto fail;
1507 	}
1508 	/* see comments in should_cow_block() */
1509 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1510 	smp_wmb();
1511 
1512 	btrfs_set_root_node(new_root_item, tmp);
1513 	/* record when the snapshot was created in key.offset */
1514 	key.offset = trans->transid;
1515 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1516 	btrfs_tree_unlock(tmp);
1517 	free_extent_buffer(tmp);
1518 	if (ret) {
1519 		btrfs_abort_transaction(trans, ret);
1520 		goto fail;
1521 	}
1522 
1523 	/*
1524 	 * insert root back/forward references
1525 	 */
1526 	ret = btrfs_add_root_ref(trans, objectid,
1527 				 parent_root->root_key.objectid,
1528 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1529 				 dentry->d_name.name, dentry->d_name.len);
1530 	if (ret) {
1531 		btrfs_abort_transaction(trans, ret);
1532 		goto fail;
1533 	}
1534 
1535 	key.offset = (u64)-1;
1536 	pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1537 	if (IS_ERR(pending->snap)) {
1538 		ret = PTR_ERR(pending->snap);
1539 		btrfs_abort_transaction(trans, ret);
1540 		goto fail;
1541 	}
1542 
1543 	ret = btrfs_reloc_post_snapshot(trans, pending);
1544 	if (ret) {
1545 		btrfs_abort_transaction(trans, ret);
1546 		goto fail;
1547 	}
1548 
1549 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1550 	if (ret) {
1551 		btrfs_abort_transaction(trans, ret);
1552 		goto fail;
1553 	}
1554 
1555 	/*
1556 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1557 	 * snapshot hack to do fast snapshot.
1558 	 * To co-operate with that hack, we do hack again.
1559 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1560 	 */
1561 	ret = qgroup_account_snapshot(trans, root, parent_root,
1562 				      pending->inherit, objectid);
1563 	if (ret < 0)
1564 		goto fail;
1565 
1566 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1567 				    dentry->d_name.len, BTRFS_I(parent_inode),
1568 				    &key, BTRFS_FT_DIR, index);
1569 	/* We have check then name at the beginning, so it is impossible. */
1570 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1571 	if (ret) {
1572 		btrfs_abort_transaction(trans, ret);
1573 		goto fail;
1574 	}
1575 
1576 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1577 					 dentry->d_name.len * 2);
1578 	parent_inode->i_mtime = parent_inode->i_ctime =
1579 		current_time(parent_inode);
1580 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1581 	if (ret) {
1582 		btrfs_abort_transaction(trans, ret);
1583 		goto fail;
1584 	}
1585 	ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1586 				  objectid);
1587 	if (ret) {
1588 		btrfs_abort_transaction(trans, ret);
1589 		goto fail;
1590 	}
1591 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1592 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1593 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1594 					  objectid);
1595 		if (ret && ret != -EEXIST) {
1596 			btrfs_abort_transaction(trans, ret);
1597 			goto fail;
1598 		}
1599 	}
1600 
1601 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1602 	if (ret) {
1603 		btrfs_abort_transaction(trans, ret);
1604 		goto fail;
1605 	}
1606 
1607 fail:
1608 	pending->error = ret;
1609 dir_item_existed:
1610 	trans->block_rsv = rsv;
1611 	trans->bytes_reserved = 0;
1612 clear_skip_qgroup:
1613 	btrfs_clear_skip_qgroup(trans);
1614 no_free_objectid:
1615 	kfree(new_root_item);
1616 	pending->root_item = NULL;
1617 	btrfs_free_path(path);
1618 	pending->path = NULL;
1619 
1620 	return ret;
1621 }
1622 
1623 /*
1624  * create all the snapshots we've scheduled for creation
1625  */
1626 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1627 {
1628 	struct btrfs_pending_snapshot *pending, *next;
1629 	struct list_head *head = &trans->transaction->pending_snapshots;
1630 	int ret = 0;
1631 
1632 	list_for_each_entry_safe(pending, next, head, list) {
1633 		list_del(&pending->list);
1634 		ret = create_pending_snapshot(trans, pending);
1635 		if (ret)
1636 			break;
1637 	}
1638 	return ret;
1639 }
1640 
1641 static void update_super_roots(struct btrfs_fs_info *fs_info)
1642 {
1643 	struct btrfs_root_item *root_item;
1644 	struct btrfs_super_block *super;
1645 
1646 	super = fs_info->super_copy;
1647 
1648 	root_item = &fs_info->chunk_root->root_item;
1649 	super->chunk_root = root_item->bytenr;
1650 	super->chunk_root_generation = root_item->generation;
1651 	super->chunk_root_level = root_item->level;
1652 
1653 	root_item = &fs_info->tree_root->root_item;
1654 	super->root = root_item->bytenr;
1655 	super->generation = root_item->generation;
1656 	super->root_level = root_item->level;
1657 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1658 		super->cache_generation = root_item->generation;
1659 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1660 		super->uuid_tree_generation = root_item->generation;
1661 }
1662 
1663 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1664 {
1665 	struct btrfs_transaction *trans;
1666 	int ret = 0;
1667 
1668 	spin_lock(&info->trans_lock);
1669 	trans = info->running_transaction;
1670 	if (trans)
1671 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1672 	spin_unlock(&info->trans_lock);
1673 	return ret;
1674 }
1675 
1676 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1677 {
1678 	struct btrfs_transaction *trans;
1679 	int ret = 0;
1680 
1681 	spin_lock(&info->trans_lock);
1682 	trans = info->running_transaction;
1683 	if (trans)
1684 		ret = is_transaction_blocked(trans);
1685 	spin_unlock(&info->trans_lock);
1686 	return ret;
1687 }
1688 
1689 /*
1690  * wait for the current transaction commit to start and block subsequent
1691  * transaction joins
1692  */
1693 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1694 					    struct btrfs_transaction *trans)
1695 {
1696 	wait_event(fs_info->transaction_blocked_wait,
1697 		   trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1698 }
1699 
1700 /*
1701  * wait for the current transaction to start and then become unblocked.
1702  * caller holds ref.
1703  */
1704 static void wait_current_trans_commit_start_and_unblock(
1705 					struct btrfs_fs_info *fs_info,
1706 					struct btrfs_transaction *trans)
1707 {
1708 	wait_event(fs_info->transaction_wait,
1709 		   trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1710 }
1711 
1712 /*
1713  * commit transactions asynchronously. once btrfs_commit_transaction_async
1714  * returns, any subsequent transaction will not be allowed to join.
1715  */
1716 struct btrfs_async_commit {
1717 	struct btrfs_trans_handle *newtrans;
1718 	struct work_struct work;
1719 };
1720 
1721 static void do_async_commit(struct work_struct *work)
1722 {
1723 	struct btrfs_async_commit *ac =
1724 		container_of(work, struct btrfs_async_commit, work);
1725 
1726 	/*
1727 	 * We've got freeze protection passed with the transaction.
1728 	 * Tell lockdep about it.
1729 	 */
1730 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1731 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1732 
1733 	current->journal_info = ac->newtrans;
1734 
1735 	btrfs_commit_transaction(ac->newtrans);
1736 	kfree(ac);
1737 }
1738 
1739 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1740 				   int wait_for_unblock)
1741 {
1742 	struct btrfs_fs_info *fs_info = trans->fs_info;
1743 	struct btrfs_async_commit *ac;
1744 	struct btrfs_transaction *cur_trans;
1745 
1746 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1747 	if (!ac)
1748 		return -ENOMEM;
1749 
1750 	INIT_WORK(&ac->work, do_async_commit);
1751 	ac->newtrans = btrfs_join_transaction(trans->root);
1752 	if (IS_ERR(ac->newtrans)) {
1753 		int err = PTR_ERR(ac->newtrans);
1754 		kfree(ac);
1755 		return err;
1756 	}
1757 
1758 	/* take transaction reference */
1759 	cur_trans = trans->transaction;
1760 	refcount_inc(&cur_trans->use_count);
1761 
1762 	btrfs_end_transaction(trans);
1763 
1764 	/*
1765 	 * Tell lockdep we've released the freeze rwsem, since the
1766 	 * async commit thread will be the one to unlock it.
1767 	 */
1768 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1769 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1770 
1771 	schedule_work(&ac->work);
1772 
1773 	/* wait for transaction to start and unblock */
1774 	if (wait_for_unblock)
1775 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1776 	else
1777 		wait_current_trans_commit_start(fs_info, cur_trans);
1778 
1779 	if (current->journal_info == trans)
1780 		current->journal_info = NULL;
1781 
1782 	btrfs_put_transaction(cur_trans);
1783 	return 0;
1784 }
1785 
1786 
1787 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1788 {
1789 	struct btrfs_fs_info *fs_info = trans->fs_info;
1790 	struct btrfs_transaction *cur_trans = trans->transaction;
1791 
1792 	WARN_ON(refcount_read(&trans->use_count) > 1);
1793 
1794 	btrfs_abort_transaction(trans, err);
1795 
1796 	spin_lock(&fs_info->trans_lock);
1797 
1798 	/*
1799 	 * If the transaction is removed from the list, it means this
1800 	 * transaction has been committed successfully, so it is impossible
1801 	 * to call the cleanup function.
1802 	 */
1803 	BUG_ON(list_empty(&cur_trans->list));
1804 
1805 	list_del_init(&cur_trans->list);
1806 	if (cur_trans == fs_info->running_transaction) {
1807 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1808 		spin_unlock(&fs_info->trans_lock);
1809 		wait_event(cur_trans->writer_wait,
1810 			   atomic_read(&cur_trans->num_writers) == 1);
1811 
1812 		spin_lock(&fs_info->trans_lock);
1813 	}
1814 	spin_unlock(&fs_info->trans_lock);
1815 
1816 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1817 
1818 	spin_lock(&fs_info->trans_lock);
1819 	if (cur_trans == fs_info->running_transaction)
1820 		fs_info->running_transaction = NULL;
1821 	spin_unlock(&fs_info->trans_lock);
1822 
1823 	if (trans->type & __TRANS_FREEZABLE)
1824 		sb_end_intwrite(fs_info->sb);
1825 	btrfs_put_transaction(cur_trans);
1826 	btrfs_put_transaction(cur_trans);
1827 
1828 	trace_btrfs_transaction_commit(trans->root);
1829 
1830 	if (current->journal_info == trans)
1831 		current->journal_info = NULL;
1832 	btrfs_scrub_cancel(fs_info);
1833 
1834 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1835 }
1836 
1837 /*
1838  * Release reserved delayed ref space of all pending block groups of the
1839  * transaction and remove them from the list
1840  */
1841 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1842 {
1843        struct btrfs_fs_info *fs_info = trans->fs_info;
1844        struct btrfs_block_group_cache *block_group, *tmp;
1845 
1846        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1847                btrfs_delayed_refs_rsv_release(fs_info, 1);
1848                list_del_init(&block_group->bg_list);
1849        }
1850 }
1851 
1852 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1853 {
1854 	struct btrfs_fs_info *fs_info = trans->fs_info;
1855 
1856 	/*
1857 	 * We use writeback_inodes_sb here because if we used
1858 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1859 	 * Currently are holding the fs freeze lock, if we do an async flush
1860 	 * we'll do btrfs_join_transaction() and deadlock because we need to
1861 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
1862 	 * from already being in a transaction and our join_transaction doesn't
1863 	 * have to re-take the fs freeze lock.
1864 	 */
1865 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1866 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1867 	} else {
1868 		struct btrfs_pending_snapshot *pending;
1869 		struct list_head *head = &trans->transaction->pending_snapshots;
1870 
1871 		/*
1872 		 * Flush dellaloc for any root that is going to be snapshotted.
1873 		 * This is done to avoid a corrupted version of files, in the
1874 		 * snapshots, that had both buffered and direct IO writes (even
1875 		 * if they were done sequentially) due to an unordered update of
1876 		 * the inode's size on disk.
1877 		 */
1878 		list_for_each_entry(pending, head, list) {
1879 			int ret;
1880 
1881 			ret = btrfs_start_delalloc_snapshot(pending->root);
1882 			if (ret)
1883 				return ret;
1884 		}
1885 	}
1886 	return 0;
1887 }
1888 
1889 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1890 {
1891 	struct btrfs_fs_info *fs_info = trans->fs_info;
1892 
1893 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1894 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1895 	} else {
1896 		struct btrfs_pending_snapshot *pending;
1897 		struct list_head *head = &trans->transaction->pending_snapshots;
1898 
1899 		/*
1900 		 * Wait for any dellaloc that we started previously for the roots
1901 		 * that are going to be snapshotted. This is to avoid a corrupted
1902 		 * version of files in the snapshots that had both buffered and
1903 		 * direct IO writes (even if they were done sequentially).
1904 		 */
1905 		list_for_each_entry(pending, head, list)
1906 			btrfs_wait_ordered_extents(pending->root,
1907 						   U64_MAX, 0, U64_MAX);
1908 	}
1909 }
1910 
1911 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1912 {
1913 	struct btrfs_fs_info *fs_info = trans->fs_info;
1914 	struct btrfs_transaction *cur_trans = trans->transaction;
1915 	struct btrfs_transaction *prev_trans = NULL;
1916 	int ret;
1917 
1918 	/* Stop the commit early if ->aborted is set */
1919 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
1920 		ret = cur_trans->aborted;
1921 		btrfs_end_transaction(trans);
1922 		return ret;
1923 	}
1924 
1925 	btrfs_trans_release_metadata(trans);
1926 	trans->block_rsv = NULL;
1927 
1928 	/* make a pass through all the delayed refs we have so far
1929 	 * any runnings procs may add more while we are here
1930 	 */
1931 	ret = btrfs_run_delayed_refs(trans, 0);
1932 	if (ret) {
1933 		btrfs_end_transaction(trans);
1934 		return ret;
1935 	}
1936 
1937 	cur_trans = trans->transaction;
1938 
1939 	/*
1940 	 * set the flushing flag so procs in this transaction have to
1941 	 * start sending their work down.
1942 	 */
1943 	cur_trans->delayed_refs.flushing = 1;
1944 	smp_wmb();
1945 
1946 	btrfs_create_pending_block_groups(trans);
1947 
1948 	ret = btrfs_run_delayed_refs(trans, 0);
1949 	if (ret) {
1950 		btrfs_end_transaction(trans);
1951 		return ret;
1952 	}
1953 
1954 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1955 		int run_it = 0;
1956 
1957 		/* this mutex is also taken before trying to set
1958 		 * block groups readonly.  We need to make sure
1959 		 * that nobody has set a block group readonly
1960 		 * after a extents from that block group have been
1961 		 * allocated for cache files.  btrfs_set_block_group_ro
1962 		 * will wait for the transaction to commit if it
1963 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1964 		 *
1965 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1966 		 * only one process starts all the block group IO.  It wouldn't
1967 		 * hurt to have more than one go through, but there's no
1968 		 * real advantage to it either.
1969 		 */
1970 		mutex_lock(&fs_info->ro_block_group_mutex);
1971 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1972 				      &cur_trans->flags))
1973 			run_it = 1;
1974 		mutex_unlock(&fs_info->ro_block_group_mutex);
1975 
1976 		if (run_it) {
1977 			ret = btrfs_start_dirty_block_groups(trans);
1978 			if (ret) {
1979 				btrfs_end_transaction(trans);
1980 				return ret;
1981 			}
1982 		}
1983 	}
1984 
1985 	spin_lock(&fs_info->trans_lock);
1986 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1987 		spin_unlock(&fs_info->trans_lock);
1988 		refcount_inc(&cur_trans->use_count);
1989 		ret = btrfs_end_transaction(trans);
1990 
1991 		wait_for_commit(cur_trans);
1992 
1993 		if (unlikely(cur_trans->aborted))
1994 			ret = cur_trans->aborted;
1995 
1996 		btrfs_put_transaction(cur_trans);
1997 
1998 		return ret;
1999 	}
2000 
2001 	cur_trans->state = TRANS_STATE_COMMIT_START;
2002 	wake_up(&fs_info->transaction_blocked_wait);
2003 
2004 	if (cur_trans->list.prev != &fs_info->trans_list) {
2005 		prev_trans = list_entry(cur_trans->list.prev,
2006 					struct btrfs_transaction, list);
2007 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2008 			refcount_inc(&prev_trans->use_count);
2009 			spin_unlock(&fs_info->trans_lock);
2010 
2011 			wait_for_commit(prev_trans);
2012 			ret = prev_trans->aborted;
2013 
2014 			btrfs_put_transaction(prev_trans);
2015 			if (ret)
2016 				goto cleanup_transaction;
2017 		} else {
2018 			spin_unlock(&fs_info->trans_lock);
2019 		}
2020 	} else {
2021 		spin_unlock(&fs_info->trans_lock);
2022 	}
2023 
2024 	extwriter_counter_dec(cur_trans, trans->type);
2025 
2026 	ret = btrfs_start_delalloc_flush(trans);
2027 	if (ret)
2028 		goto cleanup_transaction;
2029 
2030 	ret = btrfs_run_delayed_items(trans);
2031 	if (ret)
2032 		goto cleanup_transaction;
2033 
2034 	wait_event(cur_trans->writer_wait,
2035 		   extwriter_counter_read(cur_trans) == 0);
2036 
2037 	/* some pending stuffs might be added after the previous flush. */
2038 	ret = btrfs_run_delayed_items(trans);
2039 	if (ret)
2040 		goto cleanup_transaction;
2041 
2042 	btrfs_wait_delalloc_flush(trans);
2043 
2044 	btrfs_scrub_pause(fs_info);
2045 	/*
2046 	 * Ok now we need to make sure to block out any other joins while we
2047 	 * commit the transaction.  We could have started a join before setting
2048 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2049 	 */
2050 	spin_lock(&fs_info->trans_lock);
2051 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2052 	spin_unlock(&fs_info->trans_lock);
2053 	wait_event(cur_trans->writer_wait,
2054 		   atomic_read(&cur_trans->num_writers) == 1);
2055 
2056 	/* ->aborted might be set after the previous check, so check it */
2057 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2058 		ret = cur_trans->aborted;
2059 		goto scrub_continue;
2060 	}
2061 	/*
2062 	 * the reloc mutex makes sure that we stop
2063 	 * the balancing code from coming in and moving
2064 	 * extents around in the middle of the commit
2065 	 */
2066 	mutex_lock(&fs_info->reloc_mutex);
2067 
2068 	/*
2069 	 * We needn't worry about the delayed items because we will
2070 	 * deal with them in create_pending_snapshot(), which is the
2071 	 * core function of the snapshot creation.
2072 	 */
2073 	ret = create_pending_snapshots(trans);
2074 	if (ret) {
2075 		mutex_unlock(&fs_info->reloc_mutex);
2076 		goto scrub_continue;
2077 	}
2078 
2079 	/*
2080 	 * We insert the dir indexes of the snapshots and update the inode
2081 	 * of the snapshots' parents after the snapshot creation, so there
2082 	 * are some delayed items which are not dealt with. Now deal with
2083 	 * them.
2084 	 *
2085 	 * We needn't worry that this operation will corrupt the snapshots,
2086 	 * because all the tree which are snapshoted will be forced to COW
2087 	 * the nodes and leaves.
2088 	 */
2089 	ret = btrfs_run_delayed_items(trans);
2090 	if (ret) {
2091 		mutex_unlock(&fs_info->reloc_mutex);
2092 		goto scrub_continue;
2093 	}
2094 
2095 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2096 	if (ret) {
2097 		mutex_unlock(&fs_info->reloc_mutex);
2098 		goto scrub_continue;
2099 	}
2100 
2101 	/*
2102 	 * make sure none of the code above managed to slip in a
2103 	 * delayed item
2104 	 */
2105 	btrfs_assert_delayed_root_empty(fs_info);
2106 
2107 	WARN_ON(cur_trans != trans->transaction);
2108 
2109 	/* btrfs_commit_tree_roots is responsible for getting the
2110 	 * various roots consistent with each other.  Every pointer
2111 	 * in the tree of tree roots has to point to the most up to date
2112 	 * root for every subvolume and other tree.  So, we have to keep
2113 	 * the tree logging code from jumping in and changing any
2114 	 * of the trees.
2115 	 *
2116 	 * At this point in the commit, there can't be any tree-log
2117 	 * writers, but a little lower down we drop the trans mutex
2118 	 * and let new people in.  By holding the tree_log_mutex
2119 	 * from now until after the super is written, we avoid races
2120 	 * with the tree-log code.
2121 	 */
2122 	mutex_lock(&fs_info->tree_log_mutex);
2123 
2124 	ret = commit_fs_roots(trans);
2125 	if (ret) {
2126 		mutex_unlock(&fs_info->tree_log_mutex);
2127 		mutex_unlock(&fs_info->reloc_mutex);
2128 		goto scrub_continue;
2129 	}
2130 
2131 	/*
2132 	 * Since the transaction is done, we can apply the pending changes
2133 	 * before the next transaction.
2134 	 */
2135 	btrfs_apply_pending_changes(fs_info);
2136 
2137 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2138 	 * safe to free the root of tree log roots
2139 	 */
2140 	btrfs_free_log_root_tree(trans, fs_info);
2141 
2142 	/*
2143 	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2144 	 * new delayed refs. Must handle them or qgroup can be wrong.
2145 	 */
2146 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2147 	if (ret) {
2148 		mutex_unlock(&fs_info->tree_log_mutex);
2149 		mutex_unlock(&fs_info->reloc_mutex);
2150 		goto scrub_continue;
2151 	}
2152 
2153 	/*
2154 	 * Since fs roots are all committed, we can get a quite accurate
2155 	 * new_roots. So let's do quota accounting.
2156 	 */
2157 	ret = btrfs_qgroup_account_extents(trans);
2158 	if (ret < 0) {
2159 		mutex_unlock(&fs_info->tree_log_mutex);
2160 		mutex_unlock(&fs_info->reloc_mutex);
2161 		goto scrub_continue;
2162 	}
2163 
2164 	ret = commit_cowonly_roots(trans);
2165 	if (ret) {
2166 		mutex_unlock(&fs_info->tree_log_mutex);
2167 		mutex_unlock(&fs_info->reloc_mutex);
2168 		goto scrub_continue;
2169 	}
2170 
2171 	/*
2172 	 * The tasks which save the space cache and inode cache may also
2173 	 * update ->aborted, check it.
2174 	 */
2175 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2176 		ret = cur_trans->aborted;
2177 		mutex_unlock(&fs_info->tree_log_mutex);
2178 		mutex_unlock(&fs_info->reloc_mutex);
2179 		goto scrub_continue;
2180 	}
2181 
2182 	btrfs_prepare_extent_commit(fs_info);
2183 
2184 	cur_trans = fs_info->running_transaction;
2185 
2186 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2187 			    fs_info->tree_root->node);
2188 	list_add_tail(&fs_info->tree_root->dirty_list,
2189 		      &cur_trans->switch_commits);
2190 
2191 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2192 			    fs_info->chunk_root->node);
2193 	list_add_tail(&fs_info->chunk_root->dirty_list,
2194 		      &cur_trans->switch_commits);
2195 
2196 	switch_commit_roots(cur_trans);
2197 
2198 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2199 	ASSERT(list_empty(&cur_trans->io_bgs));
2200 	update_super_roots(fs_info);
2201 
2202 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2203 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2204 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2205 	       sizeof(*fs_info->super_copy));
2206 
2207 	btrfs_commit_device_sizes(cur_trans);
2208 
2209 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2210 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2211 
2212 	btrfs_trans_release_chunk_metadata(trans);
2213 
2214 	spin_lock(&fs_info->trans_lock);
2215 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2216 	fs_info->running_transaction = NULL;
2217 	spin_unlock(&fs_info->trans_lock);
2218 	mutex_unlock(&fs_info->reloc_mutex);
2219 
2220 	wake_up(&fs_info->transaction_wait);
2221 
2222 	ret = btrfs_write_and_wait_transaction(trans);
2223 	if (ret) {
2224 		btrfs_handle_fs_error(fs_info, ret,
2225 				      "Error while writing out transaction");
2226 		mutex_unlock(&fs_info->tree_log_mutex);
2227 		goto scrub_continue;
2228 	}
2229 
2230 	ret = write_all_supers(fs_info, 0);
2231 	/*
2232 	 * the super is written, we can safely allow the tree-loggers
2233 	 * to go about their business
2234 	 */
2235 	mutex_unlock(&fs_info->tree_log_mutex);
2236 	if (ret)
2237 		goto scrub_continue;
2238 
2239 	btrfs_finish_extent_commit(trans);
2240 
2241 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2242 		btrfs_clear_space_info_full(fs_info);
2243 
2244 	fs_info->last_trans_committed = cur_trans->transid;
2245 	/*
2246 	 * We needn't acquire the lock here because there is no other task
2247 	 * which can change it.
2248 	 */
2249 	cur_trans->state = TRANS_STATE_COMPLETED;
2250 	wake_up(&cur_trans->commit_wait);
2251 	clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2252 
2253 	spin_lock(&fs_info->trans_lock);
2254 	list_del_init(&cur_trans->list);
2255 	spin_unlock(&fs_info->trans_lock);
2256 
2257 	btrfs_put_transaction(cur_trans);
2258 	btrfs_put_transaction(cur_trans);
2259 
2260 	if (trans->type & __TRANS_FREEZABLE)
2261 		sb_end_intwrite(fs_info->sb);
2262 
2263 	trace_btrfs_transaction_commit(trans->root);
2264 
2265 	btrfs_scrub_continue(fs_info);
2266 
2267 	if (current->journal_info == trans)
2268 		current->journal_info = NULL;
2269 
2270 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2271 
2272 	return ret;
2273 
2274 scrub_continue:
2275 	btrfs_scrub_continue(fs_info);
2276 cleanup_transaction:
2277 	btrfs_trans_release_metadata(trans);
2278 	btrfs_cleanup_pending_block_groups(trans);
2279 	btrfs_trans_release_chunk_metadata(trans);
2280 	trans->block_rsv = NULL;
2281 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2282 	if (current->journal_info == trans)
2283 		current->journal_info = NULL;
2284 	cleanup_transaction(trans, ret);
2285 
2286 	return ret;
2287 }
2288 
2289 /*
2290  * return < 0 if error
2291  * 0 if there are no more dead_roots at the time of call
2292  * 1 there are more to be processed, call me again
2293  *
2294  * The return value indicates there are certainly more snapshots to delete, but
2295  * if there comes a new one during processing, it may return 0. We don't mind,
2296  * because btrfs_commit_super will poke cleaner thread and it will process it a
2297  * few seconds later.
2298  */
2299 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2300 {
2301 	int ret;
2302 	struct btrfs_fs_info *fs_info = root->fs_info;
2303 
2304 	spin_lock(&fs_info->trans_lock);
2305 	if (list_empty(&fs_info->dead_roots)) {
2306 		spin_unlock(&fs_info->trans_lock);
2307 		return 0;
2308 	}
2309 	root = list_first_entry(&fs_info->dead_roots,
2310 			struct btrfs_root, root_list);
2311 	list_del_init(&root->root_list);
2312 	spin_unlock(&fs_info->trans_lock);
2313 
2314 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2315 
2316 	btrfs_kill_all_delayed_nodes(root);
2317 
2318 	if (btrfs_header_backref_rev(root->node) <
2319 			BTRFS_MIXED_BACKREF_REV)
2320 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2321 	else
2322 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2323 
2324 	return (ret < 0) ? 0 : 1;
2325 }
2326 
2327 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2328 {
2329 	unsigned long prev;
2330 	unsigned long bit;
2331 
2332 	prev = xchg(&fs_info->pending_changes, 0);
2333 	if (!prev)
2334 		return;
2335 
2336 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2337 	if (prev & bit)
2338 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2339 	prev &= ~bit;
2340 
2341 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2342 	if (prev & bit)
2343 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2344 	prev &= ~bit;
2345 
2346 	bit = 1 << BTRFS_PENDING_COMMIT;
2347 	if (prev & bit)
2348 		btrfs_debug(fs_info, "pending commit done");
2349 	prev &= ~bit;
2350 
2351 	if (prev)
2352 		btrfs_warn(fs_info,
2353 			"unknown pending changes left 0x%lx, ignoring", prev);
2354 }
2355