1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "locking.h" 17 #include "tree-log.h" 18 #include "inode-map.h" 19 #include "volumes.h" 20 #include "dev-replace.h" 21 #include "qgroup.h" 22 23 #define BTRFS_ROOT_TRANS_TAG 0 24 25 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 26 [TRANS_STATE_RUNNING] = 0U, 27 [TRANS_STATE_BLOCKED] = __TRANS_START, 28 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 29 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 30 __TRANS_ATTACH | 31 __TRANS_JOIN), 32 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 33 __TRANS_ATTACH | 34 __TRANS_JOIN | 35 __TRANS_JOIN_NOLOCK), 36 [TRANS_STATE_COMPLETED] = (__TRANS_START | 37 __TRANS_ATTACH | 38 __TRANS_JOIN | 39 __TRANS_JOIN_NOLOCK), 40 }; 41 42 void btrfs_put_transaction(struct btrfs_transaction *transaction) 43 { 44 WARN_ON(refcount_read(&transaction->use_count) == 0); 45 if (refcount_dec_and_test(&transaction->use_count)) { 46 BUG_ON(!list_empty(&transaction->list)); 47 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root)); 48 if (transaction->delayed_refs.pending_csums) 49 btrfs_err(transaction->fs_info, 50 "pending csums is %llu", 51 transaction->delayed_refs.pending_csums); 52 while (!list_empty(&transaction->pending_chunks)) { 53 struct extent_map *em; 54 55 em = list_first_entry(&transaction->pending_chunks, 56 struct extent_map, list); 57 list_del_init(&em->list); 58 free_extent_map(em); 59 } 60 /* 61 * If any block groups are found in ->deleted_bgs then it's 62 * because the transaction was aborted and a commit did not 63 * happen (things failed before writing the new superblock 64 * and calling btrfs_finish_extent_commit()), so we can not 65 * discard the physical locations of the block groups. 66 */ 67 while (!list_empty(&transaction->deleted_bgs)) { 68 struct btrfs_block_group_cache *cache; 69 70 cache = list_first_entry(&transaction->deleted_bgs, 71 struct btrfs_block_group_cache, 72 bg_list); 73 list_del_init(&cache->bg_list); 74 btrfs_put_block_group_trimming(cache); 75 btrfs_put_block_group(cache); 76 } 77 kfree(transaction); 78 } 79 } 80 81 static void clear_btree_io_tree(struct extent_io_tree *tree) 82 { 83 spin_lock(&tree->lock); 84 /* 85 * Do a single barrier for the waitqueue_active check here, the state 86 * of the waitqueue should not change once clear_btree_io_tree is 87 * called. 88 */ 89 smp_mb(); 90 while (!RB_EMPTY_ROOT(&tree->state)) { 91 struct rb_node *node; 92 struct extent_state *state; 93 94 node = rb_first(&tree->state); 95 state = rb_entry(node, struct extent_state, rb_node); 96 rb_erase(&state->rb_node, &tree->state); 97 RB_CLEAR_NODE(&state->rb_node); 98 /* 99 * btree io trees aren't supposed to have tasks waiting for 100 * changes in the flags of extent states ever. 101 */ 102 ASSERT(!waitqueue_active(&state->wq)); 103 free_extent_state(state); 104 105 cond_resched_lock(&tree->lock); 106 } 107 spin_unlock(&tree->lock); 108 } 109 110 static noinline void switch_commit_roots(struct btrfs_transaction *trans) 111 { 112 struct btrfs_fs_info *fs_info = trans->fs_info; 113 struct btrfs_root *root, *tmp; 114 115 down_write(&fs_info->commit_root_sem); 116 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 117 dirty_list) { 118 list_del_init(&root->dirty_list); 119 free_extent_buffer(root->commit_root); 120 root->commit_root = btrfs_root_node(root); 121 if (is_fstree(root->objectid)) 122 btrfs_unpin_free_ino(root); 123 clear_btree_io_tree(&root->dirty_log_pages); 124 } 125 126 /* We can free old roots now. */ 127 spin_lock(&trans->dropped_roots_lock); 128 while (!list_empty(&trans->dropped_roots)) { 129 root = list_first_entry(&trans->dropped_roots, 130 struct btrfs_root, root_list); 131 list_del_init(&root->root_list); 132 spin_unlock(&trans->dropped_roots_lock); 133 btrfs_drop_and_free_fs_root(fs_info, root); 134 spin_lock(&trans->dropped_roots_lock); 135 } 136 spin_unlock(&trans->dropped_roots_lock); 137 up_write(&fs_info->commit_root_sem); 138 } 139 140 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 141 unsigned int type) 142 { 143 if (type & TRANS_EXTWRITERS) 144 atomic_inc(&trans->num_extwriters); 145 } 146 147 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 148 unsigned int type) 149 { 150 if (type & TRANS_EXTWRITERS) 151 atomic_dec(&trans->num_extwriters); 152 } 153 154 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 155 unsigned int type) 156 { 157 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 158 } 159 160 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 161 { 162 return atomic_read(&trans->num_extwriters); 163 } 164 165 /* 166 * either allocate a new transaction or hop into the existing one 167 */ 168 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 169 unsigned int type) 170 { 171 struct btrfs_transaction *cur_trans; 172 173 spin_lock(&fs_info->trans_lock); 174 loop: 175 /* The file system has been taken offline. No new transactions. */ 176 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 177 spin_unlock(&fs_info->trans_lock); 178 return -EROFS; 179 } 180 181 cur_trans = fs_info->running_transaction; 182 if (cur_trans) { 183 if (cur_trans->aborted) { 184 spin_unlock(&fs_info->trans_lock); 185 return cur_trans->aborted; 186 } 187 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 188 spin_unlock(&fs_info->trans_lock); 189 return -EBUSY; 190 } 191 refcount_inc(&cur_trans->use_count); 192 atomic_inc(&cur_trans->num_writers); 193 extwriter_counter_inc(cur_trans, type); 194 spin_unlock(&fs_info->trans_lock); 195 return 0; 196 } 197 spin_unlock(&fs_info->trans_lock); 198 199 /* 200 * If we are ATTACH, we just want to catch the current transaction, 201 * and commit it. If there is no transaction, just return ENOENT. 202 */ 203 if (type == TRANS_ATTACH) 204 return -ENOENT; 205 206 /* 207 * JOIN_NOLOCK only happens during the transaction commit, so 208 * it is impossible that ->running_transaction is NULL 209 */ 210 BUG_ON(type == TRANS_JOIN_NOLOCK); 211 212 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 213 if (!cur_trans) 214 return -ENOMEM; 215 216 spin_lock(&fs_info->trans_lock); 217 if (fs_info->running_transaction) { 218 /* 219 * someone started a transaction after we unlocked. Make sure 220 * to redo the checks above 221 */ 222 kfree(cur_trans); 223 goto loop; 224 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 225 spin_unlock(&fs_info->trans_lock); 226 kfree(cur_trans); 227 return -EROFS; 228 } 229 230 cur_trans->fs_info = fs_info; 231 atomic_set(&cur_trans->num_writers, 1); 232 extwriter_counter_init(cur_trans, type); 233 init_waitqueue_head(&cur_trans->writer_wait); 234 init_waitqueue_head(&cur_trans->commit_wait); 235 init_waitqueue_head(&cur_trans->pending_wait); 236 cur_trans->state = TRANS_STATE_RUNNING; 237 /* 238 * One for this trans handle, one so it will live on until we 239 * commit the transaction. 240 */ 241 refcount_set(&cur_trans->use_count, 2); 242 atomic_set(&cur_trans->pending_ordered, 0); 243 cur_trans->flags = 0; 244 cur_trans->start_time = get_seconds(); 245 246 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 247 248 cur_trans->delayed_refs.href_root = RB_ROOT; 249 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 250 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 251 252 /* 253 * although the tree mod log is per file system and not per transaction, 254 * the log must never go across transaction boundaries. 255 */ 256 smp_mb(); 257 if (!list_empty(&fs_info->tree_mod_seq_list)) 258 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 259 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 260 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 261 atomic64_set(&fs_info->tree_mod_seq, 0); 262 263 spin_lock_init(&cur_trans->delayed_refs.lock); 264 265 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 266 INIT_LIST_HEAD(&cur_trans->pending_chunks); 267 INIT_LIST_HEAD(&cur_trans->switch_commits); 268 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 269 INIT_LIST_HEAD(&cur_trans->io_bgs); 270 INIT_LIST_HEAD(&cur_trans->dropped_roots); 271 mutex_init(&cur_trans->cache_write_mutex); 272 cur_trans->num_dirty_bgs = 0; 273 spin_lock_init(&cur_trans->dirty_bgs_lock); 274 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 275 spin_lock_init(&cur_trans->dropped_roots_lock); 276 list_add_tail(&cur_trans->list, &fs_info->trans_list); 277 extent_io_tree_init(&cur_trans->dirty_pages, 278 fs_info->btree_inode); 279 fs_info->generation++; 280 cur_trans->transid = fs_info->generation; 281 fs_info->running_transaction = cur_trans; 282 cur_trans->aborted = 0; 283 spin_unlock(&fs_info->trans_lock); 284 285 return 0; 286 } 287 288 /* 289 * this does all the record keeping required to make sure that a reference 290 * counted root is properly recorded in a given transaction. This is required 291 * to make sure the old root from before we joined the transaction is deleted 292 * when the transaction commits 293 */ 294 static int record_root_in_trans(struct btrfs_trans_handle *trans, 295 struct btrfs_root *root, 296 int force) 297 { 298 struct btrfs_fs_info *fs_info = root->fs_info; 299 300 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 301 root->last_trans < trans->transid) || force) { 302 WARN_ON(root == fs_info->extent_root); 303 WARN_ON(!force && root->commit_root != root->node); 304 305 /* 306 * see below for IN_TRANS_SETUP usage rules 307 * we have the reloc mutex held now, so there 308 * is only one writer in this function 309 */ 310 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 311 312 /* make sure readers find IN_TRANS_SETUP before 313 * they find our root->last_trans update 314 */ 315 smp_wmb(); 316 317 spin_lock(&fs_info->fs_roots_radix_lock); 318 if (root->last_trans == trans->transid && !force) { 319 spin_unlock(&fs_info->fs_roots_radix_lock); 320 return 0; 321 } 322 radix_tree_tag_set(&fs_info->fs_roots_radix, 323 (unsigned long)root->root_key.objectid, 324 BTRFS_ROOT_TRANS_TAG); 325 spin_unlock(&fs_info->fs_roots_radix_lock); 326 root->last_trans = trans->transid; 327 328 /* this is pretty tricky. We don't want to 329 * take the relocation lock in btrfs_record_root_in_trans 330 * unless we're really doing the first setup for this root in 331 * this transaction. 332 * 333 * Normally we'd use root->last_trans as a flag to decide 334 * if we want to take the expensive mutex. 335 * 336 * But, we have to set root->last_trans before we 337 * init the relocation root, otherwise, we trip over warnings 338 * in ctree.c. The solution used here is to flag ourselves 339 * with root IN_TRANS_SETUP. When this is 1, we're still 340 * fixing up the reloc trees and everyone must wait. 341 * 342 * When this is zero, they can trust root->last_trans and fly 343 * through btrfs_record_root_in_trans without having to take the 344 * lock. smp_wmb() makes sure that all the writes above are 345 * done before we pop in the zero below 346 */ 347 btrfs_init_reloc_root(trans, root); 348 smp_mb__before_atomic(); 349 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 350 } 351 return 0; 352 } 353 354 355 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 356 struct btrfs_root *root) 357 { 358 struct btrfs_fs_info *fs_info = root->fs_info; 359 struct btrfs_transaction *cur_trans = trans->transaction; 360 361 /* Add ourselves to the transaction dropped list */ 362 spin_lock(&cur_trans->dropped_roots_lock); 363 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 364 spin_unlock(&cur_trans->dropped_roots_lock); 365 366 /* Make sure we don't try to update the root at commit time */ 367 spin_lock(&fs_info->fs_roots_radix_lock); 368 radix_tree_tag_clear(&fs_info->fs_roots_radix, 369 (unsigned long)root->root_key.objectid, 370 BTRFS_ROOT_TRANS_TAG); 371 spin_unlock(&fs_info->fs_roots_radix_lock); 372 } 373 374 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 375 struct btrfs_root *root) 376 { 377 struct btrfs_fs_info *fs_info = root->fs_info; 378 379 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 380 return 0; 381 382 /* 383 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 384 * and barriers 385 */ 386 smp_rmb(); 387 if (root->last_trans == trans->transid && 388 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 389 return 0; 390 391 mutex_lock(&fs_info->reloc_mutex); 392 record_root_in_trans(trans, root, 0); 393 mutex_unlock(&fs_info->reloc_mutex); 394 395 return 0; 396 } 397 398 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 399 { 400 return (trans->state >= TRANS_STATE_BLOCKED && 401 trans->state < TRANS_STATE_UNBLOCKED && 402 !trans->aborted); 403 } 404 405 /* wait for commit against the current transaction to become unblocked 406 * when this is done, it is safe to start a new transaction, but the current 407 * transaction might not be fully on disk. 408 */ 409 static void wait_current_trans(struct btrfs_fs_info *fs_info) 410 { 411 struct btrfs_transaction *cur_trans; 412 413 spin_lock(&fs_info->trans_lock); 414 cur_trans = fs_info->running_transaction; 415 if (cur_trans && is_transaction_blocked(cur_trans)) { 416 refcount_inc(&cur_trans->use_count); 417 spin_unlock(&fs_info->trans_lock); 418 419 wait_event(fs_info->transaction_wait, 420 cur_trans->state >= TRANS_STATE_UNBLOCKED || 421 cur_trans->aborted); 422 btrfs_put_transaction(cur_trans); 423 } else { 424 spin_unlock(&fs_info->trans_lock); 425 } 426 } 427 428 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 429 { 430 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 431 return 0; 432 433 if (type == TRANS_START) 434 return 1; 435 436 return 0; 437 } 438 439 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 440 { 441 struct btrfs_fs_info *fs_info = root->fs_info; 442 443 if (!fs_info->reloc_ctl || 444 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 445 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 446 root->reloc_root) 447 return false; 448 449 return true; 450 } 451 452 static struct btrfs_trans_handle * 453 start_transaction(struct btrfs_root *root, unsigned int num_items, 454 unsigned int type, enum btrfs_reserve_flush_enum flush, 455 bool enforce_qgroups) 456 { 457 struct btrfs_fs_info *fs_info = root->fs_info; 458 459 struct btrfs_trans_handle *h; 460 struct btrfs_transaction *cur_trans; 461 u64 num_bytes = 0; 462 u64 qgroup_reserved = 0; 463 bool reloc_reserved = false; 464 int ret; 465 466 /* Send isn't supposed to start transactions. */ 467 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 468 469 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 470 return ERR_PTR(-EROFS); 471 472 if (current->journal_info) { 473 WARN_ON(type & TRANS_EXTWRITERS); 474 h = current->journal_info; 475 refcount_inc(&h->use_count); 476 WARN_ON(refcount_read(&h->use_count) > 2); 477 h->orig_rsv = h->block_rsv; 478 h->block_rsv = NULL; 479 goto got_it; 480 } 481 482 /* 483 * Do the reservation before we join the transaction so we can do all 484 * the appropriate flushing if need be. 485 */ 486 if (num_items && root != fs_info->chunk_root) { 487 qgroup_reserved = num_items * fs_info->nodesize; 488 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 489 enforce_qgroups); 490 if (ret) 491 return ERR_PTR(ret); 492 493 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); 494 /* 495 * Do the reservation for the relocation root creation 496 */ 497 if (need_reserve_reloc_root(root)) { 498 num_bytes += fs_info->nodesize; 499 reloc_reserved = true; 500 } 501 502 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, 503 num_bytes, flush); 504 if (ret) 505 goto reserve_fail; 506 } 507 again: 508 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 509 if (!h) { 510 ret = -ENOMEM; 511 goto alloc_fail; 512 } 513 514 /* 515 * If we are JOIN_NOLOCK we're already committing a transaction and 516 * waiting on this guy, so we don't need to do the sb_start_intwrite 517 * because we're already holding a ref. We need this because we could 518 * have raced in and did an fsync() on a file which can kick a commit 519 * and then we deadlock with somebody doing a freeze. 520 * 521 * If we are ATTACH, it means we just want to catch the current 522 * transaction and commit it, so we needn't do sb_start_intwrite(). 523 */ 524 if (type & __TRANS_FREEZABLE) 525 sb_start_intwrite(fs_info->sb); 526 527 if (may_wait_transaction(fs_info, type)) 528 wait_current_trans(fs_info); 529 530 do { 531 ret = join_transaction(fs_info, type); 532 if (ret == -EBUSY) { 533 wait_current_trans(fs_info); 534 if (unlikely(type == TRANS_ATTACH)) 535 ret = -ENOENT; 536 } 537 } while (ret == -EBUSY); 538 539 if (ret < 0) 540 goto join_fail; 541 542 cur_trans = fs_info->running_transaction; 543 544 h->transid = cur_trans->transid; 545 h->transaction = cur_trans; 546 h->root = root; 547 refcount_set(&h->use_count, 1); 548 h->fs_info = root->fs_info; 549 550 h->type = type; 551 h->can_flush_pending_bgs = true; 552 INIT_LIST_HEAD(&h->new_bgs); 553 554 smp_mb(); 555 if (cur_trans->state >= TRANS_STATE_BLOCKED && 556 may_wait_transaction(fs_info, type)) { 557 current->journal_info = h; 558 btrfs_commit_transaction(h); 559 goto again; 560 } 561 562 if (num_bytes) { 563 trace_btrfs_space_reservation(fs_info, "transaction", 564 h->transid, num_bytes, 1); 565 h->block_rsv = &fs_info->trans_block_rsv; 566 h->bytes_reserved = num_bytes; 567 h->reloc_reserved = reloc_reserved; 568 } 569 570 got_it: 571 btrfs_record_root_in_trans(h, root); 572 573 if (!current->journal_info) 574 current->journal_info = h; 575 return h; 576 577 join_fail: 578 if (type & __TRANS_FREEZABLE) 579 sb_end_intwrite(fs_info->sb); 580 kmem_cache_free(btrfs_trans_handle_cachep, h); 581 alloc_fail: 582 if (num_bytes) 583 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 584 num_bytes); 585 reserve_fail: 586 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 587 return ERR_PTR(ret); 588 } 589 590 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 591 unsigned int num_items) 592 { 593 return start_transaction(root, num_items, TRANS_START, 594 BTRFS_RESERVE_FLUSH_ALL, true); 595 } 596 597 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 598 struct btrfs_root *root, 599 unsigned int num_items, 600 int min_factor) 601 { 602 struct btrfs_fs_info *fs_info = root->fs_info; 603 struct btrfs_trans_handle *trans; 604 u64 num_bytes; 605 int ret; 606 607 /* 608 * We have two callers: unlink and block group removal. The 609 * former should succeed even if we will temporarily exceed 610 * quota and the latter operates on the extent root so 611 * qgroup enforcement is ignored anyway. 612 */ 613 trans = start_transaction(root, num_items, TRANS_START, 614 BTRFS_RESERVE_FLUSH_ALL, false); 615 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 616 return trans; 617 618 trans = btrfs_start_transaction(root, 0); 619 if (IS_ERR(trans)) 620 return trans; 621 622 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); 623 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv, 624 num_bytes, min_factor); 625 if (ret) { 626 btrfs_end_transaction(trans); 627 return ERR_PTR(ret); 628 } 629 630 trans->block_rsv = &fs_info->trans_block_rsv; 631 trans->bytes_reserved = num_bytes; 632 trace_btrfs_space_reservation(fs_info, "transaction", 633 trans->transid, num_bytes, 1); 634 635 return trans; 636 } 637 638 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 639 { 640 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 641 true); 642 } 643 644 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 645 { 646 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 647 BTRFS_RESERVE_NO_FLUSH, true); 648 } 649 650 /* 651 * btrfs_attach_transaction() - catch the running transaction 652 * 653 * It is used when we want to commit the current the transaction, but 654 * don't want to start a new one. 655 * 656 * Note: If this function return -ENOENT, it just means there is no 657 * running transaction. But it is possible that the inactive transaction 658 * is still in the memory, not fully on disk. If you hope there is no 659 * inactive transaction in the fs when -ENOENT is returned, you should 660 * invoke 661 * btrfs_attach_transaction_barrier() 662 */ 663 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 664 { 665 return start_transaction(root, 0, TRANS_ATTACH, 666 BTRFS_RESERVE_NO_FLUSH, true); 667 } 668 669 /* 670 * btrfs_attach_transaction_barrier() - catch the running transaction 671 * 672 * It is similar to the above function, the differentia is this one 673 * will wait for all the inactive transactions until they fully 674 * complete. 675 */ 676 struct btrfs_trans_handle * 677 btrfs_attach_transaction_barrier(struct btrfs_root *root) 678 { 679 struct btrfs_trans_handle *trans; 680 681 trans = start_transaction(root, 0, TRANS_ATTACH, 682 BTRFS_RESERVE_NO_FLUSH, true); 683 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 684 btrfs_wait_for_commit(root->fs_info, 0); 685 686 return trans; 687 } 688 689 /* wait for a transaction commit to be fully complete */ 690 static noinline void wait_for_commit(struct btrfs_transaction *commit) 691 { 692 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 693 } 694 695 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 696 { 697 struct btrfs_transaction *cur_trans = NULL, *t; 698 int ret = 0; 699 700 if (transid) { 701 if (transid <= fs_info->last_trans_committed) 702 goto out; 703 704 /* find specified transaction */ 705 spin_lock(&fs_info->trans_lock); 706 list_for_each_entry(t, &fs_info->trans_list, list) { 707 if (t->transid == transid) { 708 cur_trans = t; 709 refcount_inc(&cur_trans->use_count); 710 ret = 0; 711 break; 712 } 713 if (t->transid > transid) { 714 ret = 0; 715 break; 716 } 717 } 718 spin_unlock(&fs_info->trans_lock); 719 720 /* 721 * The specified transaction doesn't exist, or we 722 * raced with btrfs_commit_transaction 723 */ 724 if (!cur_trans) { 725 if (transid > fs_info->last_trans_committed) 726 ret = -EINVAL; 727 goto out; 728 } 729 } else { 730 /* find newest transaction that is committing | committed */ 731 spin_lock(&fs_info->trans_lock); 732 list_for_each_entry_reverse(t, &fs_info->trans_list, 733 list) { 734 if (t->state >= TRANS_STATE_COMMIT_START) { 735 if (t->state == TRANS_STATE_COMPLETED) 736 break; 737 cur_trans = t; 738 refcount_inc(&cur_trans->use_count); 739 break; 740 } 741 } 742 spin_unlock(&fs_info->trans_lock); 743 if (!cur_trans) 744 goto out; /* nothing committing|committed */ 745 } 746 747 wait_for_commit(cur_trans); 748 btrfs_put_transaction(cur_trans); 749 out: 750 return ret; 751 } 752 753 void btrfs_throttle(struct btrfs_fs_info *fs_info) 754 { 755 wait_current_trans(fs_info); 756 } 757 758 static int should_end_transaction(struct btrfs_trans_handle *trans) 759 { 760 struct btrfs_fs_info *fs_info = trans->fs_info; 761 762 if (btrfs_check_space_for_delayed_refs(trans, fs_info)) 763 return 1; 764 765 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 766 } 767 768 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 769 { 770 struct btrfs_transaction *cur_trans = trans->transaction; 771 int updates; 772 int err; 773 774 smp_mb(); 775 if (cur_trans->state >= TRANS_STATE_BLOCKED || 776 cur_trans->delayed_refs.flushing) 777 return 1; 778 779 updates = trans->delayed_ref_updates; 780 trans->delayed_ref_updates = 0; 781 if (updates) { 782 err = btrfs_run_delayed_refs(trans, updates * 2); 783 if (err) /* Error code will also eval true */ 784 return err; 785 } 786 787 return should_end_transaction(trans); 788 } 789 790 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 791 792 { 793 struct btrfs_fs_info *fs_info = trans->fs_info; 794 795 if (!trans->block_rsv) { 796 ASSERT(!trans->bytes_reserved); 797 return; 798 } 799 800 if (!trans->bytes_reserved) 801 return; 802 803 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 804 trace_btrfs_space_reservation(fs_info, "transaction", 805 trans->transid, trans->bytes_reserved, 0); 806 btrfs_block_rsv_release(fs_info, trans->block_rsv, 807 trans->bytes_reserved); 808 trans->bytes_reserved = 0; 809 } 810 811 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 812 int throttle) 813 { 814 struct btrfs_fs_info *info = trans->fs_info; 815 struct btrfs_transaction *cur_trans = trans->transaction; 816 u64 transid = trans->transid; 817 unsigned long cur = trans->delayed_ref_updates; 818 int lock = (trans->type != TRANS_JOIN_NOLOCK); 819 int err = 0; 820 int must_run_delayed_refs = 0; 821 822 if (refcount_read(&trans->use_count) > 1) { 823 refcount_dec(&trans->use_count); 824 trans->block_rsv = trans->orig_rsv; 825 return 0; 826 } 827 828 btrfs_trans_release_metadata(trans); 829 trans->block_rsv = NULL; 830 831 if (!list_empty(&trans->new_bgs)) 832 btrfs_create_pending_block_groups(trans); 833 834 trans->delayed_ref_updates = 0; 835 if (!trans->sync) { 836 must_run_delayed_refs = 837 btrfs_should_throttle_delayed_refs(trans, info); 838 cur = max_t(unsigned long, cur, 32); 839 840 /* 841 * don't make the caller wait if they are from a NOLOCK 842 * or ATTACH transaction, it will deadlock with commit 843 */ 844 if (must_run_delayed_refs == 1 && 845 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH))) 846 must_run_delayed_refs = 2; 847 } 848 849 btrfs_trans_release_metadata(trans); 850 trans->block_rsv = NULL; 851 852 if (!list_empty(&trans->new_bgs)) 853 btrfs_create_pending_block_groups(trans); 854 855 btrfs_trans_release_chunk_metadata(trans); 856 857 if (lock && should_end_transaction(trans) && 858 READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 859 spin_lock(&info->trans_lock); 860 if (cur_trans->state == TRANS_STATE_RUNNING) 861 cur_trans->state = TRANS_STATE_BLOCKED; 862 spin_unlock(&info->trans_lock); 863 } 864 865 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 866 if (throttle) 867 return btrfs_commit_transaction(trans); 868 else 869 wake_up_process(info->transaction_kthread); 870 } 871 872 if (trans->type & __TRANS_FREEZABLE) 873 sb_end_intwrite(info->sb); 874 875 WARN_ON(cur_trans != info->running_transaction); 876 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 877 atomic_dec(&cur_trans->num_writers); 878 extwriter_counter_dec(cur_trans, trans->type); 879 880 /* 881 * Make sure counter is updated before we wake up waiters. 882 */ 883 smp_mb(); 884 if (waitqueue_active(&cur_trans->writer_wait)) 885 wake_up(&cur_trans->writer_wait); 886 btrfs_put_transaction(cur_trans); 887 888 if (current->journal_info == trans) 889 current->journal_info = NULL; 890 891 if (throttle) 892 btrfs_run_delayed_iputs(info); 893 894 if (trans->aborted || 895 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 896 wake_up_process(info->transaction_kthread); 897 err = -EIO; 898 } 899 900 kmem_cache_free(btrfs_trans_handle_cachep, trans); 901 if (must_run_delayed_refs) { 902 btrfs_async_run_delayed_refs(info, cur, transid, 903 must_run_delayed_refs == 1); 904 } 905 return err; 906 } 907 908 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 909 { 910 return __btrfs_end_transaction(trans, 0); 911 } 912 913 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 914 { 915 return __btrfs_end_transaction(trans, 1); 916 } 917 918 /* 919 * when btree blocks are allocated, they have some corresponding bits set for 920 * them in one of two extent_io trees. This is used to make sure all of 921 * those extents are sent to disk but does not wait on them 922 */ 923 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 924 struct extent_io_tree *dirty_pages, int mark) 925 { 926 int err = 0; 927 int werr = 0; 928 struct address_space *mapping = fs_info->btree_inode->i_mapping; 929 struct extent_state *cached_state = NULL; 930 u64 start = 0; 931 u64 end; 932 933 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 934 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 935 mark, &cached_state)) { 936 bool wait_writeback = false; 937 938 err = convert_extent_bit(dirty_pages, start, end, 939 EXTENT_NEED_WAIT, 940 mark, &cached_state); 941 /* 942 * convert_extent_bit can return -ENOMEM, which is most of the 943 * time a temporary error. So when it happens, ignore the error 944 * and wait for writeback of this range to finish - because we 945 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 946 * to __btrfs_wait_marked_extents() would not know that 947 * writeback for this range started and therefore wouldn't 948 * wait for it to finish - we don't want to commit a 949 * superblock that points to btree nodes/leafs for which 950 * writeback hasn't finished yet (and without errors). 951 * We cleanup any entries left in the io tree when committing 952 * the transaction (through clear_btree_io_tree()). 953 */ 954 if (err == -ENOMEM) { 955 err = 0; 956 wait_writeback = true; 957 } 958 if (!err) 959 err = filemap_fdatawrite_range(mapping, start, end); 960 if (err) 961 werr = err; 962 else if (wait_writeback) 963 werr = filemap_fdatawait_range(mapping, start, end); 964 free_extent_state(cached_state); 965 cached_state = NULL; 966 cond_resched(); 967 start = end + 1; 968 } 969 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 970 return werr; 971 } 972 973 /* 974 * when btree blocks are allocated, they have some corresponding bits set for 975 * them in one of two extent_io trees. This is used to make sure all of 976 * those extents are on disk for transaction or log commit. We wait 977 * on all the pages and clear them from the dirty pages state tree 978 */ 979 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 980 struct extent_io_tree *dirty_pages) 981 { 982 int err = 0; 983 int werr = 0; 984 struct address_space *mapping = fs_info->btree_inode->i_mapping; 985 struct extent_state *cached_state = NULL; 986 u64 start = 0; 987 u64 end; 988 989 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 990 EXTENT_NEED_WAIT, &cached_state)) { 991 /* 992 * Ignore -ENOMEM errors returned by clear_extent_bit(). 993 * When committing the transaction, we'll remove any entries 994 * left in the io tree. For a log commit, we don't remove them 995 * after committing the log because the tree can be accessed 996 * concurrently - we do it only at transaction commit time when 997 * it's safe to do it (through clear_btree_io_tree()). 998 */ 999 err = clear_extent_bit(dirty_pages, start, end, 1000 EXTENT_NEED_WAIT, 0, 0, &cached_state); 1001 if (err == -ENOMEM) 1002 err = 0; 1003 if (!err) 1004 err = filemap_fdatawait_range(mapping, start, end); 1005 if (err) 1006 werr = err; 1007 free_extent_state(cached_state); 1008 cached_state = NULL; 1009 cond_resched(); 1010 start = end + 1; 1011 } 1012 if (err) 1013 werr = err; 1014 return werr; 1015 } 1016 1017 int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1018 struct extent_io_tree *dirty_pages) 1019 { 1020 bool errors = false; 1021 int err; 1022 1023 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1024 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1025 errors = true; 1026 1027 if (errors && !err) 1028 err = -EIO; 1029 return err; 1030 } 1031 1032 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1033 { 1034 struct btrfs_fs_info *fs_info = log_root->fs_info; 1035 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1036 bool errors = false; 1037 int err; 1038 1039 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1040 1041 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1042 if ((mark & EXTENT_DIRTY) && 1043 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1044 errors = true; 1045 1046 if ((mark & EXTENT_NEW) && 1047 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1048 errors = true; 1049 1050 if (errors && !err) 1051 err = -EIO; 1052 return err; 1053 } 1054 1055 /* 1056 * When btree blocks are allocated the corresponding extents are marked dirty. 1057 * This function ensures such extents are persisted on disk for transaction or 1058 * log commit. 1059 * 1060 * @trans: transaction whose dirty pages we'd like to write 1061 */ 1062 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1063 { 1064 int ret; 1065 int ret2; 1066 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1067 struct btrfs_fs_info *fs_info = trans->fs_info; 1068 struct blk_plug plug; 1069 1070 blk_start_plug(&plug); 1071 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1072 blk_finish_plug(&plug); 1073 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1074 1075 clear_btree_io_tree(&trans->transaction->dirty_pages); 1076 1077 if (ret) 1078 return ret; 1079 else if (ret2) 1080 return ret2; 1081 else 1082 return 0; 1083 } 1084 1085 /* 1086 * this is used to update the root pointer in the tree of tree roots. 1087 * 1088 * But, in the case of the extent allocation tree, updating the root 1089 * pointer may allocate blocks which may change the root of the extent 1090 * allocation tree. 1091 * 1092 * So, this loops and repeats and makes sure the cowonly root didn't 1093 * change while the root pointer was being updated in the metadata. 1094 */ 1095 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1096 struct btrfs_root *root) 1097 { 1098 int ret; 1099 u64 old_root_bytenr; 1100 u64 old_root_used; 1101 struct btrfs_fs_info *fs_info = root->fs_info; 1102 struct btrfs_root *tree_root = fs_info->tree_root; 1103 1104 old_root_used = btrfs_root_used(&root->root_item); 1105 1106 while (1) { 1107 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1108 if (old_root_bytenr == root->node->start && 1109 old_root_used == btrfs_root_used(&root->root_item)) 1110 break; 1111 1112 btrfs_set_root_node(&root->root_item, root->node); 1113 ret = btrfs_update_root(trans, tree_root, 1114 &root->root_key, 1115 &root->root_item); 1116 if (ret) 1117 return ret; 1118 1119 old_root_used = btrfs_root_used(&root->root_item); 1120 } 1121 1122 return 0; 1123 } 1124 1125 /* 1126 * update all the cowonly tree roots on disk 1127 * 1128 * The error handling in this function may not be obvious. Any of the 1129 * failures will cause the file system to go offline. We still need 1130 * to clean up the delayed refs. 1131 */ 1132 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1133 { 1134 struct btrfs_fs_info *fs_info = trans->fs_info; 1135 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1136 struct list_head *io_bgs = &trans->transaction->io_bgs; 1137 struct list_head *next; 1138 struct extent_buffer *eb; 1139 int ret; 1140 1141 eb = btrfs_lock_root_node(fs_info->tree_root); 1142 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1143 0, &eb); 1144 btrfs_tree_unlock(eb); 1145 free_extent_buffer(eb); 1146 1147 if (ret) 1148 return ret; 1149 1150 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1151 if (ret) 1152 return ret; 1153 1154 ret = btrfs_run_dev_stats(trans, fs_info); 1155 if (ret) 1156 return ret; 1157 ret = btrfs_run_dev_replace(trans, fs_info); 1158 if (ret) 1159 return ret; 1160 ret = btrfs_run_qgroups(trans, fs_info); 1161 if (ret) 1162 return ret; 1163 1164 ret = btrfs_setup_space_cache(trans, fs_info); 1165 if (ret) 1166 return ret; 1167 1168 /* run_qgroups might have added some more refs */ 1169 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1170 if (ret) 1171 return ret; 1172 again: 1173 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1174 struct btrfs_root *root; 1175 next = fs_info->dirty_cowonly_roots.next; 1176 list_del_init(next); 1177 root = list_entry(next, struct btrfs_root, dirty_list); 1178 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1179 1180 if (root != fs_info->extent_root) 1181 list_add_tail(&root->dirty_list, 1182 &trans->transaction->switch_commits); 1183 ret = update_cowonly_root(trans, root); 1184 if (ret) 1185 return ret; 1186 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1187 if (ret) 1188 return ret; 1189 } 1190 1191 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1192 ret = btrfs_write_dirty_block_groups(trans, fs_info); 1193 if (ret) 1194 return ret; 1195 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1196 if (ret) 1197 return ret; 1198 } 1199 1200 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1201 goto again; 1202 1203 list_add_tail(&fs_info->extent_root->dirty_list, 1204 &trans->transaction->switch_commits); 1205 btrfs_after_dev_replace_commit(fs_info); 1206 1207 return 0; 1208 } 1209 1210 /* 1211 * dead roots are old snapshots that need to be deleted. This allocates 1212 * a dirty root struct and adds it into the list of dead roots that need to 1213 * be deleted 1214 */ 1215 void btrfs_add_dead_root(struct btrfs_root *root) 1216 { 1217 struct btrfs_fs_info *fs_info = root->fs_info; 1218 1219 spin_lock(&fs_info->trans_lock); 1220 if (list_empty(&root->root_list)) 1221 list_add_tail(&root->root_list, &fs_info->dead_roots); 1222 spin_unlock(&fs_info->trans_lock); 1223 } 1224 1225 /* 1226 * update all the cowonly tree roots on disk 1227 */ 1228 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1229 { 1230 struct btrfs_fs_info *fs_info = trans->fs_info; 1231 struct btrfs_root *gang[8]; 1232 int i; 1233 int ret; 1234 int err = 0; 1235 1236 spin_lock(&fs_info->fs_roots_radix_lock); 1237 while (1) { 1238 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1239 (void **)gang, 0, 1240 ARRAY_SIZE(gang), 1241 BTRFS_ROOT_TRANS_TAG); 1242 if (ret == 0) 1243 break; 1244 for (i = 0; i < ret; i++) { 1245 struct btrfs_root *root = gang[i]; 1246 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1247 (unsigned long)root->root_key.objectid, 1248 BTRFS_ROOT_TRANS_TAG); 1249 spin_unlock(&fs_info->fs_roots_radix_lock); 1250 1251 btrfs_free_log(trans, root); 1252 btrfs_update_reloc_root(trans, root); 1253 btrfs_orphan_commit_root(trans, root); 1254 1255 btrfs_save_ino_cache(root, trans); 1256 1257 /* see comments in should_cow_block() */ 1258 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1259 smp_mb__after_atomic(); 1260 1261 if (root->commit_root != root->node) { 1262 list_add_tail(&root->dirty_list, 1263 &trans->transaction->switch_commits); 1264 btrfs_set_root_node(&root->root_item, 1265 root->node); 1266 } 1267 1268 err = btrfs_update_root(trans, fs_info->tree_root, 1269 &root->root_key, 1270 &root->root_item); 1271 spin_lock(&fs_info->fs_roots_radix_lock); 1272 if (err) 1273 break; 1274 btrfs_qgroup_free_meta_all_pertrans(root); 1275 } 1276 } 1277 spin_unlock(&fs_info->fs_roots_radix_lock); 1278 return err; 1279 } 1280 1281 /* 1282 * defrag a given btree. 1283 * Every leaf in the btree is read and defragged. 1284 */ 1285 int btrfs_defrag_root(struct btrfs_root *root) 1286 { 1287 struct btrfs_fs_info *info = root->fs_info; 1288 struct btrfs_trans_handle *trans; 1289 int ret; 1290 1291 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1292 return 0; 1293 1294 while (1) { 1295 trans = btrfs_start_transaction(root, 0); 1296 if (IS_ERR(trans)) 1297 return PTR_ERR(trans); 1298 1299 ret = btrfs_defrag_leaves(trans, root); 1300 1301 btrfs_end_transaction(trans); 1302 btrfs_btree_balance_dirty(info); 1303 cond_resched(); 1304 1305 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1306 break; 1307 1308 if (btrfs_defrag_cancelled(info)) { 1309 btrfs_debug(info, "defrag_root cancelled"); 1310 ret = -EAGAIN; 1311 break; 1312 } 1313 } 1314 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1315 return ret; 1316 } 1317 1318 /* 1319 * Do all special snapshot related qgroup dirty hack. 1320 * 1321 * Will do all needed qgroup inherit and dirty hack like switch commit 1322 * roots inside one transaction and write all btree into disk, to make 1323 * qgroup works. 1324 */ 1325 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1326 struct btrfs_root *src, 1327 struct btrfs_root *parent, 1328 struct btrfs_qgroup_inherit *inherit, 1329 u64 dst_objectid) 1330 { 1331 struct btrfs_fs_info *fs_info = src->fs_info; 1332 int ret; 1333 1334 /* 1335 * Save some performance in the case that qgroups are not 1336 * enabled. If this check races with the ioctl, rescan will 1337 * kick in anyway. 1338 */ 1339 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1340 return 0; 1341 1342 /* 1343 * Ensure dirty @src will be commited. Or, after comming 1344 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1345 * recorded root will never be updated again, causing an outdated root 1346 * item. 1347 */ 1348 record_root_in_trans(trans, src, 1); 1349 1350 /* 1351 * We are going to commit transaction, see btrfs_commit_transaction() 1352 * comment for reason locking tree_log_mutex 1353 */ 1354 mutex_lock(&fs_info->tree_log_mutex); 1355 1356 ret = commit_fs_roots(trans); 1357 if (ret) 1358 goto out; 1359 ret = btrfs_qgroup_account_extents(trans); 1360 if (ret < 0) 1361 goto out; 1362 1363 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1364 ret = btrfs_qgroup_inherit(trans, fs_info, 1365 src->root_key.objectid, dst_objectid, 1366 inherit); 1367 if (ret < 0) 1368 goto out; 1369 1370 /* 1371 * Now we do a simplified commit transaction, which will: 1372 * 1) commit all subvolume and extent tree 1373 * To ensure all subvolume and extent tree have a valid 1374 * commit_root to accounting later insert_dir_item() 1375 * 2) write all btree blocks onto disk 1376 * This is to make sure later btree modification will be cowed 1377 * Or commit_root can be populated and cause wrong qgroup numbers 1378 * In this simplified commit, we don't really care about other trees 1379 * like chunk and root tree, as they won't affect qgroup. 1380 * And we don't write super to avoid half committed status. 1381 */ 1382 ret = commit_cowonly_roots(trans); 1383 if (ret) 1384 goto out; 1385 switch_commit_roots(trans->transaction); 1386 ret = btrfs_write_and_wait_transaction(trans); 1387 if (ret) 1388 btrfs_handle_fs_error(fs_info, ret, 1389 "Error while writing out transaction for qgroup"); 1390 1391 out: 1392 mutex_unlock(&fs_info->tree_log_mutex); 1393 1394 /* 1395 * Force parent root to be updated, as we recorded it before so its 1396 * last_trans == cur_transid. 1397 * Or it won't be committed again onto disk after later 1398 * insert_dir_item() 1399 */ 1400 if (!ret) 1401 record_root_in_trans(trans, parent, 1); 1402 return ret; 1403 } 1404 1405 /* 1406 * new snapshots need to be created at a very specific time in the 1407 * transaction commit. This does the actual creation. 1408 * 1409 * Note: 1410 * If the error which may affect the commitment of the current transaction 1411 * happens, we should return the error number. If the error which just affect 1412 * the creation of the pending snapshots, just return 0. 1413 */ 1414 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1415 struct btrfs_pending_snapshot *pending) 1416 { 1417 1418 struct btrfs_fs_info *fs_info = trans->fs_info; 1419 struct btrfs_key key; 1420 struct btrfs_root_item *new_root_item; 1421 struct btrfs_root *tree_root = fs_info->tree_root; 1422 struct btrfs_root *root = pending->root; 1423 struct btrfs_root *parent_root; 1424 struct btrfs_block_rsv *rsv; 1425 struct inode *parent_inode; 1426 struct btrfs_path *path; 1427 struct btrfs_dir_item *dir_item; 1428 struct dentry *dentry; 1429 struct extent_buffer *tmp; 1430 struct extent_buffer *old; 1431 struct timespec cur_time; 1432 int ret = 0; 1433 u64 to_reserve = 0; 1434 u64 index = 0; 1435 u64 objectid; 1436 u64 root_flags; 1437 uuid_le new_uuid; 1438 1439 ASSERT(pending->path); 1440 path = pending->path; 1441 1442 ASSERT(pending->root_item); 1443 new_root_item = pending->root_item; 1444 1445 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1446 if (pending->error) 1447 goto no_free_objectid; 1448 1449 /* 1450 * Make qgroup to skip current new snapshot's qgroupid, as it is 1451 * accounted by later btrfs_qgroup_inherit(). 1452 */ 1453 btrfs_set_skip_qgroup(trans, objectid); 1454 1455 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1456 1457 if (to_reserve > 0) { 1458 pending->error = btrfs_block_rsv_add(root, 1459 &pending->block_rsv, 1460 to_reserve, 1461 BTRFS_RESERVE_NO_FLUSH); 1462 if (pending->error) 1463 goto clear_skip_qgroup; 1464 } 1465 1466 key.objectid = objectid; 1467 key.offset = (u64)-1; 1468 key.type = BTRFS_ROOT_ITEM_KEY; 1469 1470 rsv = trans->block_rsv; 1471 trans->block_rsv = &pending->block_rsv; 1472 trans->bytes_reserved = trans->block_rsv->reserved; 1473 trace_btrfs_space_reservation(fs_info, "transaction", 1474 trans->transid, 1475 trans->bytes_reserved, 1); 1476 dentry = pending->dentry; 1477 parent_inode = pending->dir; 1478 parent_root = BTRFS_I(parent_inode)->root; 1479 record_root_in_trans(trans, parent_root, 0); 1480 1481 cur_time = current_time(parent_inode); 1482 1483 /* 1484 * insert the directory item 1485 */ 1486 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1487 BUG_ON(ret); /* -ENOMEM */ 1488 1489 /* check if there is a file/dir which has the same name. */ 1490 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1491 btrfs_ino(BTRFS_I(parent_inode)), 1492 dentry->d_name.name, 1493 dentry->d_name.len, 0); 1494 if (dir_item != NULL && !IS_ERR(dir_item)) { 1495 pending->error = -EEXIST; 1496 goto dir_item_existed; 1497 } else if (IS_ERR(dir_item)) { 1498 ret = PTR_ERR(dir_item); 1499 btrfs_abort_transaction(trans, ret); 1500 goto fail; 1501 } 1502 btrfs_release_path(path); 1503 1504 /* 1505 * pull in the delayed directory update 1506 * and the delayed inode item 1507 * otherwise we corrupt the FS during 1508 * snapshot 1509 */ 1510 ret = btrfs_run_delayed_items(trans); 1511 if (ret) { /* Transaction aborted */ 1512 btrfs_abort_transaction(trans, ret); 1513 goto fail; 1514 } 1515 1516 record_root_in_trans(trans, root, 0); 1517 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1518 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1519 btrfs_check_and_init_root_item(new_root_item); 1520 1521 root_flags = btrfs_root_flags(new_root_item); 1522 if (pending->readonly) 1523 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1524 else 1525 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1526 btrfs_set_root_flags(new_root_item, root_flags); 1527 1528 btrfs_set_root_generation_v2(new_root_item, 1529 trans->transid); 1530 uuid_le_gen(&new_uuid); 1531 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1532 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1533 BTRFS_UUID_SIZE); 1534 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1535 memset(new_root_item->received_uuid, 0, 1536 sizeof(new_root_item->received_uuid)); 1537 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1538 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1539 btrfs_set_root_stransid(new_root_item, 0); 1540 btrfs_set_root_rtransid(new_root_item, 0); 1541 } 1542 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1543 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1544 btrfs_set_root_otransid(new_root_item, trans->transid); 1545 1546 old = btrfs_lock_root_node(root); 1547 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1548 if (ret) { 1549 btrfs_tree_unlock(old); 1550 free_extent_buffer(old); 1551 btrfs_abort_transaction(trans, ret); 1552 goto fail; 1553 } 1554 1555 btrfs_set_lock_blocking(old); 1556 1557 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1558 /* clean up in any case */ 1559 btrfs_tree_unlock(old); 1560 free_extent_buffer(old); 1561 if (ret) { 1562 btrfs_abort_transaction(trans, ret); 1563 goto fail; 1564 } 1565 /* see comments in should_cow_block() */ 1566 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1567 smp_wmb(); 1568 1569 btrfs_set_root_node(new_root_item, tmp); 1570 /* record when the snapshot was created in key.offset */ 1571 key.offset = trans->transid; 1572 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1573 btrfs_tree_unlock(tmp); 1574 free_extent_buffer(tmp); 1575 if (ret) { 1576 btrfs_abort_transaction(trans, ret); 1577 goto fail; 1578 } 1579 1580 /* 1581 * insert root back/forward references 1582 */ 1583 ret = btrfs_add_root_ref(trans, fs_info, objectid, 1584 parent_root->root_key.objectid, 1585 btrfs_ino(BTRFS_I(parent_inode)), index, 1586 dentry->d_name.name, dentry->d_name.len); 1587 if (ret) { 1588 btrfs_abort_transaction(trans, ret); 1589 goto fail; 1590 } 1591 1592 key.offset = (u64)-1; 1593 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key); 1594 if (IS_ERR(pending->snap)) { 1595 ret = PTR_ERR(pending->snap); 1596 btrfs_abort_transaction(trans, ret); 1597 goto fail; 1598 } 1599 1600 ret = btrfs_reloc_post_snapshot(trans, pending); 1601 if (ret) { 1602 btrfs_abort_transaction(trans, ret); 1603 goto fail; 1604 } 1605 1606 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1607 if (ret) { 1608 btrfs_abort_transaction(trans, ret); 1609 goto fail; 1610 } 1611 1612 /* 1613 * Do special qgroup accounting for snapshot, as we do some qgroup 1614 * snapshot hack to do fast snapshot. 1615 * To co-operate with that hack, we do hack again. 1616 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1617 */ 1618 ret = qgroup_account_snapshot(trans, root, parent_root, 1619 pending->inherit, objectid); 1620 if (ret < 0) 1621 goto fail; 1622 1623 ret = btrfs_insert_dir_item(trans, parent_root, 1624 dentry->d_name.name, dentry->d_name.len, 1625 BTRFS_I(parent_inode), &key, 1626 BTRFS_FT_DIR, index); 1627 /* We have check then name at the beginning, so it is impossible. */ 1628 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1629 if (ret) { 1630 btrfs_abort_transaction(trans, ret); 1631 goto fail; 1632 } 1633 1634 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1635 dentry->d_name.len * 2); 1636 parent_inode->i_mtime = parent_inode->i_ctime = 1637 current_time(parent_inode); 1638 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1639 if (ret) { 1640 btrfs_abort_transaction(trans, ret); 1641 goto fail; 1642 } 1643 ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b, 1644 BTRFS_UUID_KEY_SUBVOL, objectid); 1645 if (ret) { 1646 btrfs_abort_transaction(trans, ret); 1647 goto fail; 1648 } 1649 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1650 ret = btrfs_uuid_tree_add(trans, fs_info, 1651 new_root_item->received_uuid, 1652 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1653 objectid); 1654 if (ret && ret != -EEXIST) { 1655 btrfs_abort_transaction(trans, ret); 1656 goto fail; 1657 } 1658 } 1659 1660 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1661 if (ret) { 1662 btrfs_abort_transaction(trans, ret); 1663 goto fail; 1664 } 1665 1666 fail: 1667 pending->error = ret; 1668 dir_item_existed: 1669 trans->block_rsv = rsv; 1670 trans->bytes_reserved = 0; 1671 clear_skip_qgroup: 1672 btrfs_clear_skip_qgroup(trans); 1673 no_free_objectid: 1674 kfree(new_root_item); 1675 pending->root_item = NULL; 1676 btrfs_free_path(path); 1677 pending->path = NULL; 1678 1679 return ret; 1680 } 1681 1682 /* 1683 * create all the snapshots we've scheduled for creation 1684 */ 1685 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1686 { 1687 struct btrfs_pending_snapshot *pending, *next; 1688 struct list_head *head = &trans->transaction->pending_snapshots; 1689 int ret = 0; 1690 1691 list_for_each_entry_safe(pending, next, head, list) { 1692 list_del(&pending->list); 1693 ret = create_pending_snapshot(trans, pending); 1694 if (ret) 1695 break; 1696 } 1697 return ret; 1698 } 1699 1700 static void update_super_roots(struct btrfs_fs_info *fs_info) 1701 { 1702 struct btrfs_root_item *root_item; 1703 struct btrfs_super_block *super; 1704 1705 super = fs_info->super_copy; 1706 1707 root_item = &fs_info->chunk_root->root_item; 1708 super->chunk_root = root_item->bytenr; 1709 super->chunk_root_generation = root_item->generation; 1710 super->chunk_root_level = root_item->level; 1711 1712 root_item = &fs_info->tree_root->root_item; 1713 super->root = root_item->bytenr; 1714 super->generation = root_item->generation; 1715 super->root_level = root_item->level; 1716 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1717 super->cache_generation = root_item->generation; 1718 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1719 super->uuid_tree_generation = root_item->generation; 1720 } 1721 1722 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1723 { 1724 struct btrfs_transaction *trans; 1725 int ret = 0; 1726 1727 spin_lock(&info->trans_lock); 1728 trans = info->running_transaction; 1729 if (trans) 1730 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1731 spin_unlock(&info->trans_lock); 1732 return ret; 1733 } 1734 1735 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1736 { 1737 struct btrfs_transaction *trans; 1738 int ret = 0; 1739 1740 spin_lock(&info->trans_lock); 1741 trans = info->running_transaction; 1742 if (trans) 1743 ret = is_transaction_blocked(trans); 1744 spin_unlock(&info->trans_lock); 1745 return ret; 1746 } 1747 1748 /* 1749 * wait for the current transaction commit to start and block subsequent 1750 * transaction joins 1751 */ 1752 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, 1753 struct btrfs_transaction *trans) 1754 { 1755 wait_event(fs_info->transaction_blocked_wait, 1756 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted); 1757 } 1758 1759 /* 1760 * wait for the current transaction to start and then become unblocked. 1761 * caller holds ref. 1762 */ 1763 static void wait_current_trans_commit_start_and_unblock( 1764 struct btrfs_fs_info *fs_info, 1765 struct btrfs_transaction *trans) 1766 { 1767 wait_event(fs_info->transaction_wait, 1768 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted); 1769 } 1770 1771 /* 1772 * commit transactions asynchronously. once btrfs_commit_transaction_async 1773 * returns, any subsequent transaction will not be allowed to join. 1774 */ 1775 struct btrfs_async_commit { 1776 struct btrfs_trans_handle *newtrans; 1777 struct work_struct work; 1778 }; 1779 1780 static void do_async_commit(struct work_struct *work) 1781 { 1782 struct btrfs_async_commit *ac = 1783 container_of(work, struct btrfs_async_commit, work); 1784 1785 /* 1786 * We've got freeze protection passed with the transaction. 1787 * Tell lockdep about it. 1788 */ 1789 if (ac->newtrans->type & __TRANS_FREEZABLE) 1790 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1791 1792 current->journal_info = ac->newtrans; 1793 1794 btrfs_commit_transaction(ac->newtrans); 1795 kfree(ac); 1796 } 1797 1798 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1799 int wait_for_unblock) 1800 { 1801 struct btrfs_fs_info *fs_info = trans->fs_info; 1802 struct btrfs_async_commit *ac; 1803 struct btrfs_transaction *cur_trans; 1804 1805 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1806 if (!ac) 1807 return -ENOMEM; 1808 1809 INIT_WORK(&ac->work, do_async_commit); 1810 ac->newtrans = btrfs_join_transaction(trans->root); 1811 if (IS_ERR(ac->newtrans)) { 1812 int err = PTR_ERR(ac->newtrans); 1813 kfree(ac); 1814 return err; 1815 } 1816 1817 /* take transaction reference */ 1818 cur_trans = trans->transaction; 1819 refcount_inc(&cur_trans->use_count); 1820 1821 btrfs_end_transaction(trans); 1822 1823 /* 1824 * Tell lockdep we've released the freeze rwsem, since the 1825 * async commit thread will be the one to unlock it. 1826 */ 1827 if (ac->newtrans->type & __TRANS_FREEZABLE) 1828 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1829 1830 schedule_work(&ac->work); 1831 1832 /* wait for transaction to start and unblock */ 1833 if (wait_for_unblock) 1834 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); 1835 else 1836 wait_current_trans_commit_start(fs_info, cur_trans); 1837 1838 if (current->journal_info == trans) 1839 current->journal_info = NULL; 1840 1841 btrfs_put_transaction(cur_trans); 1842 return 0; 1843 } 1844 1845 1846 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1847 { 1848 struct btrfs_fs_info *fs_info = trans->fs_info; 1849 struct btrfs_transaction *cur_trans = trans->transaction; 1850 DEFINE_WAIT(wait); 1851 1852 WARN_ON(refcount_read(&trans->use_count) > 1); 1853 1854 btrfs_abort_transaction(trans, err); 1855 1856 spin_lock(&fs_info->trans_lock); 1857 1858 /* 1859 * If the transaction is removed from the list, it means this 1860 * transaction has been committed successfully, so it is impossible 1861 * to call the cleanup function. 1862 */ 1863 BUG_ON(list_empty(&cur_trans->list)); 1864 1865 list_del_init(&cur_trans->list); 1866 if (cur_trans == fs_info->running_transaction) { 1867 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1868 spin_unlock(&fs_info->trans_lock); 1869 wait_event(cur_trans->writer_wait, 1870 atomic_read(&cur_trans->num_writers) == 1); 1871 1872 spin_lock(&fs_info->trans_lock); 1873 } 1874 spin_unlock(&fs_info->trans_lock); 1875 1876 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1877 1878 spin_lock(&fs_info->trans_lock); 1879 if (cur_trans == fs_info->running_transaction) 1880 fs_info->running_transaction = NULL; 1881 spin_unlock(&fs_info->trans_lock); 1882 1883 if (trans->type & __TRANS_FREEZABLE) 1884 sb_end_intwrite(fs_info->sb); 1885 btrfs_put_transaction(cur_trans); 1886 btrfs_put_transaction(cur_trans); 1887 1888 trace_btrfs_transaction_commit(trans->root); 1889 1890 if (current->journal_info == trans) 1891 current->journal_info = NULL; 1892 btrfs_scrub_cancel(fs_info); 1893 1894 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1895 } 1896 1897 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1898 { 1899 /* 1900 * We use writeback_inodes_sb here because if we used 1901 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 1902 * Currently are holding the fs freeze lock, if we do an async flush 1903 * we'll do btrfs_join_transaction() and deadlock because we need to 1904 * wait for the fs freeze lock. Using the direct flushing we benefit 1905 * from already being in a transaction and our join_transaction doesn't 1906 * have to re-take the fs freeze lock. 1907 */ 1908 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 1909 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 1910 return 0; 1911 } 1912 1913 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1914 { 1915 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 1916 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1917 } 1918 1919 static inline void 1920 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans) 1921 { 1922 wait_event(cur_trans->pending_wait, 1923 atomic_read(&cur_trans->pending_ordered) == 0); 1924 } 1925 1926 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 1927 { 1928 struct btrfs_fs_info *fs_info = trans->fs_info; 1929 struct btrfs_transaction *cur_trans = trans->transaction; 1930 struct btrfs_transaction *prev_trans = NULL; 1931 int ret; 1932 1933 /* Stop the commit early if ->aborted is set */ 1934 if (unlikely(READ_ONCE(cur_trans->aborted))) { 1935 ret = cur_trans->aborted; 1936 btrfs_end_transaction(trans); 1937 return ret; 1938 } 1939 1940 /* make a pass through all the delayed refs we have so far 1941 * any runnings procs may add more while we are here 1942 */ 1943 ret = btrfs_run_delayed_refs(trans, 0); 1944 if (ret) { 1945 btrfs_end_transaction(trans); 1946 return ret; 1947 } 1948 1949 btrfs_trans_release_metadata(trans); 1950 trans->block_rsv = NULL; 1951 1952 cur_trans = trans->transaction; 1953 1954 /* 1955 * set the flushing flag so procs in this transaction have to 1956 * start sending their work down. 1957 */ 1958 cur_trans->delayed_refs.flushing = 1; 1959 smp_wmb(); 1960 1961 if (!list_empty(&trans->new_bgs)) 1962 btrfs_create_pending_block_groups(trans); 1963 1964 ret = btrfs_run_delayed_refs(trans, 0); 1965 if (ret) { 1966 btrfs_end_transaction(trans); 1967 return ret; 1968 } 1969 1970 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 1971 int run_it = 0; 1972 1973 /* this mutex is also taken before trying to set 1974 * block groups readonly. We need to make sure 1975 * that nobody has set a block group readonly 1976 * after a extents from that block group have been 1977 * allocated for cache files. btrfs_set_block_group_ro 1978 * will wait for the transaction to commit if it 1979 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 1980 * 1981 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 1982 * only one process starts all the block group IO. It wouldn't 1983 * hurt to have more than one go through, but there's no 1984 * real advantage to it either. 1985 */ 1986 mutex_lock(&fs_info->ro_block_group_mutex); 1987 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 1988 &cur_trans->flags)) 1989 run_it = 1; 1990 mutex_unlock(&fs_info->ro_block_group_mutex); 1991 1992 if (run_it) { 1993 ret = btrfs_start_dirty_block_groups(trans); 1994 if (ret) { 1995 btrfs_end_transaction(trans); 1996 return ret; 1997 } 1998 } 1999 } 2000 2001 spin_lock(&fs_info->trans_lock); 2002 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2003 spin_unlock(&fs_info->trans_lock); 2004 refcount_inc(&cur_trans->use_count); 2005 ret = btrfs_end_transaction(trans); 2006 2007 wait_for_commit(cur_trans); 2008 2009 if (unlikely(cur_trans->aborted)) 2010 ret = cur_trans->aborted; 2011 2012 btrfs_put_transaction(cur_trans); 2013 2014 return ret; 2015 } 2016 2017 cur_trans->state = TRANS_STATE_COMMIT_START; 2018 wake_up(&fs_info->transaction_blocked_wait); 2019 2020 if (cur_trans->list.prev != &fs_info->trans_list) { 2021 prev_trans = list_entry(cur_trans->list.prev, 2022 struct btrfs_transaction, list); 2023 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2024 refcount_inc(&prev_trans->use_count); 2025 spin_unlock(&fs_info->trans_lock); 2026 2027 wait_for_commit(prev_trans); 2028 ret = prev_trans->aborted; 2029 2030 btrfs_put_transaction(prev_trans); 2031 if (ret) 2032 goto cleanup_transaction; 2033 } else { 2034 spin_unlock(&fs_info->trans_lock); 2035 } 2036 } else { 2037 spin_unlock(&fs_info->trans_lock); 2038 } 2039 2040 extwriter_counter_dec(cur_trans, trans->type); 2041 2042 ret = btrfs_start_delalloc_flush(fs_info); 2043 if (ret) 2044 goto cleanup_transaction; 2045 2046 ret = btrfs_run_delayed_items(trans); 2047 if (ret) 2048 goto cleanup_transaction; 2049 2050 wait_event(cur_trans->writer_wait, 2051 extwriter_counter_read(cur_trans) == 0); 2052 2053 /* some pending stuffs might be added after the previous flush. */ 2054 ret = btrfs_run_delayed_items(trans); 2055 if (ret) 2056 goto cleanup_transaction; 2057 2058 btrfs_wait_delalloc_flush(fs_info); 2059 2060 btrfs_wait_pending_ordered(cur_trans); 2061 2062 btrfs_scrub_pause(fs_info); 2063 /* 2064 * Ok now we need to make sure to block out any other joins while we 2065 * commit the transaction. We could have started a join before setting 2066 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2067 */ 2068 spin_lock(&fs_info->trans_lock); 2069 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2070 spin_unlock(&fs_info->trans_lock); 2071 wait_event(cur_trans->writer_wait, 2072 atomic_read(&cur_trans->num_writers) == 1); 2073 2074 /* ->aborted might be set after the previous check, so check it */ 2075 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2076 ret = cur_trans->aborted; 2077 goto scrub_continue; 2078 } 2079 /* 2080 * the reloc mutex makes sure that we stop 2081 * the balancing code from coming in and moving 2082 * extents around in the middle of the commit 2083 */ 2084 mutex_lock(&fs_info->reloc_mutex); 2085 2086 /* 2087 * We needn't worry about the delayed items because we will 2088 * deal with them in create_pending_snapshot(), which is the 2089 * core function of the snapshot creation. 2090 */ 2091 ret = create_pending_snapshots(trans); 2092 if (ret) { 2093 mutex_unlock(&fs_info->reloc_mutex); 2094 goto scrub_continue; 2095 } 2096 2097 /* 2098 * We insert the dir indexes of the snapshots and update the inode 2099 * of the snapshots' parents after the snapshot creation, so there 2100 * are some delayed items which are not dealt with. Now deal with 2101 * them. 2102 * 2103 * We needn't worry that this operation will corrupt the snapshots, 2104 * because all the tree which are snapshoted will be forced to COW 2105 * the nodes and leaves. 2106 */ 2107 ret = btrfs_run_delayed_items(trans); 2108 if (ret) { 2109 mutex_unlock(&fs_info->reloc_mutex); 2110 goto scrub_continue; 2111 } 2112 2113 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2114 if (ret) { 2115 mutex_unlock(&fs_info->reloc_mutex); 2116 goto scrub_continue; 2117 } 2118 2119 /* 2120 * make sure none of the code above managed to slip in a 2121 * delayed item 2122 */ 2123 btrfs_assert_delayed_root_empty(fs_info); 2124 2125 WARN_ON(cur_trans != trans->transaction); 2126 2127 /* btrfs_commit_tree_roots is responsible for getting the 2128 * various roots consistent with each other. Every pointer 2129 * in the tree of tree roots has to point to the most up to date 2130 * root for every subvolume and other tree. So, we have to keep 2131 * the tree logging code from jumping in and changing any 2132 * of the trees. 2133 * 2134 * At this point in the commit, there can't be any tree-log 2135 * writers, but a little lower down we drop the trans mutex 2136 * and let new people in. By holding the tree_log_mutex 2137 * from now until after the super is written, we avoid races 2138 * with the tree-log code. 2139 */ 2140 mutex_lock(&fs_info->tree_log_mutex); 2141 2142 ret = commit_fs_roots(trans); 2143 if (ret) { 2144 mutex_unlock(&fs_info->tree_log_mutex); 2145 mutex_unlock(&fs_info->reloc_mutex); 2146 goto scrub_continue; 2147 } 2148 2149 /* 2150 * Since the transaction is done, we can apply the pending changes 2151 * before the next transaction. 2152 */ 2153 btrfs_apply_pending_changes(fs_info); 2154 2155 /* commit_fs_roots gets rid of all the tree log roots, it is now 2156 * safe to free the root of tree log roots 2157 */ 2158 btrfs_free_log_root_tree(trans, fs_info); 2159 2160 /* 2161 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates 2162 * new delayed refs. Must handle them or qgroup can be wrong. 2163 */ 2164 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2165 if (ret) { 2166 mutex_unlock(&fs_info->tree_log_mutex); 2167 mutex_unlock(&fs_info->reloc_mutex); 2168 goto scrub_continue; 2169 } 2170 2171 /* 2172 * Since fs roots are all committed, we can get a quite accurate 2173 * new_roots. So let's do quota accounting. 2174 */ 2175 ret = btrfs_qgroup_account_extents(trans); 2176 if (ret < 0) { 2177 mutex_unlock(&fs_info->tree_log_mutex); 2178 mutex_unlock(&fs_info->reloc_mutex); 2179 goto scrub_continue; 2180 } 2181 2182 ret = commit_cowonly_roots(trans); 2183 if (ret) { 2184 mutex_unlock(&fs_info->tree_log_mutex); 2185 mutex_unlock(&fs_info->reloc_mutex); 2186 goto scrub_continue; 2187 } 2188 2189 /* 2190 * The tasks which save the space cache and inode cache may also 2191 * update ->aborted, check it. 2192 */ 2193 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2194 ret = cur_trans->aborted; 2195 mutex_unlock(&fs_info->tree_log_mutex); 2196 mutex_unlock(&fs_info->reloc_mutex); 2197 goto scrub_continue; 2198 } 2199 2200 btrfs_prepare_extent_commit(fs_info); 2201 2202 cur_trans = fs_info->running_transaction; 2203 2204 btrfs_set_root_node(&fs_info->tree_root->root_item, 2205 fs_info->tree_root->node); 2206 list_add_tail(&fs_info->tree_root->dirty_list, 2207 &cur_trans->switch_commits); 2208 2209 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2210 fs_info->chunk_root->node); 2211 list_add_tail(&fs_info->chunk_root->dirty_list, 2212 &cur_trans->switch_commits); 2213 2214 switch_commit_roots(cur_trans); 2215 2216 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2217 ASSERT(list_empty(&cur_trans->io_bgs)); 2218 update_super_roots(fs_info); 2219 2220 btrfs_set_super_log_root(fs_info->super_copy, 0); 2221 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2222 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2223 sizeof(*fs_info->super_copy)); 2224 2225 btrfs_update_commit_device_size(fs_info); 2226 btrfs_update_commit_device_bytes_used(cur_trans); 2227 2228 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2229 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2230 2231 btrfs_trans_release_chunk_metadata(trans); 2232 2233 spin_lock(&fs_info->trans_lock); 2234 cur_trans->state = TRANS_STATE_UNBLOCKED; 2235 fs_info->running_transaction = NULL; 2236 spin_unlock(&fs_info->trans_lock); 2237 mutex_unlock(&fs_info->reloc_mutex); 2238 2239 wake_up(&fs_info->transaction_wait); 2240 2241 ret = btrfs_write_and_wait_transaction(trans); 2242 if (ret) { 2243 btrfs_handle_fs_error(fs_info, ret, 2244 "Error while writing out transaction"); 2245 mutex_unlock(&fs_info->tree_log_mutex); 2246 goto scrub_continue; 2247 } 2248 2249 ret = write_all_supers(fs_info, 0); 2250 /* 2251 * the super is written, we can safely allow the tree-loggers 2252 * to go about their business 2253 */ 2254 mutex_unlock(&fs_info->tree_log_mutex); 2255 if (ret) 2256 goto scrub_continue; 2257 2258 btrfs_finish_extent_commit(trans); 2259 2260 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2261 btrfs_clear_space_info_full(fs_info); 2262 2263 fs_info->last_trans_committed = cur_trans->transid; 2264 /* 2265 * We needn't acquire the lock here because there is no other task 2266 * which can change it. 2267 */ 2268 cur_trans->state = TRANS_STATE_COMPLETED; 2269 wake_up(&cur_trans->commit_wait); 2270 2271 spin_lock(&fs_info->trans_lock); 2272 list_del_init(&cur_trans->list); 2273 spin_unlock(&fs_info->trans_lock); 2274 2275 btrfs_put_transaction(cur_trans); 2276 btrfs_put_transaction(cur_trans); 2277 2278 if (trans->type & __TRANS_FREEZABLE) 2279 sb_end_intwrite(fs_info->sb); 2280 2281 trace_btrfs_transaction_commit(trans->root); 2282 2283 btrfs_scrub_continue(fs_info); 2284 2285 if (current->journal_info == trans) 2286 current->journal_info = NULL; 2287 2288 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2289 2290 /* 2291 * If fs has been frozen, we can not handle delayed iputs, otherwise 2292 * it'll result in deadlock about SB_FREEZE_FS. 2293 */ 2294 if (current != fs_info->transaction_kthread && 2295 current != fs_info->cleaner_kthread && 2296 !test_bit(BTRFS_FS_FROZEN, &fs_info->flags)) 2297 btrfs_run_delayed_iputs(fs_info); 2298 2299 return ret; 2300 2301 scrub_continue: 2302 btrfs_scrub_continue(fs_info); 2303 cleanup_transaction: 2304 btrfs_trans_release_metadata(trans); 2305 btrfs_trans_release_chunk_metadata(trans); 2306 trans->block_rsv = NULL; 2307 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2308 if (current->journal_info == trans) 2309 current->journal_info = NULL; 2310 cleanup_transaction(trans, ret); 2311 2312 return ret; 2313 } 2314 2315 /* 2316 * return < 0 if error 2317 * 0 if there are no more dead_roots at the time of call 2318 * 1 there are more to be processed, call me again 2319 * 2320 * The return value indicates there are certainly more snapshots to delete, but 2321 * if there comes a new one during processing, it may return 0. We don't mind, 2322 * because btrfs_commit_super will poke cleaner thread and it will process it a 2323 * few seconds later. 2324 */ 2325 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2326 { 2327 int ret; 2328 struct btrfs_fs_info *fs_info = root->fs_info; 2329 2330 spin_lock(&fs_info->trans_lock); 2331 if (list_empty(&fs_info->dead_roots)) { 2332 spin_unlock(&fs_info->trans_lock); 2333 return 0; 2334 } 2335 root = list_first_entry(&fs_info->dead_roots, 2336 struct btrfs_root, root_list); 2337 list_del_init(&root->root_list); 2338 spin_unlock(&fs_info->trans_lock); 2339 2340 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid); 2341 2342 btrfs_kill_all_delayed_nodes(root); 2343 2344 if (btrfs_header_backref_rev(root->node) < 2345 BTRFS_MIXED_BACKREF_REV) 2346 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2347 else 2348 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2349 2350 return (ret < 0) ? 0 : 1; 2351 } 2352 2353 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2354 { 2355 unsigned long prev; 2356 unsigned long bit; 2357 2358 prev = xchg(&fs_info->pending_changes, 0); 2359 if (!prev) 2360 return; 2361 2362 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2363 if (prev & bit) 2364 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2365 prev &= ~bit; 2366 2367 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2368 if (prev & bit) 2369 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2370 prev &= ~bit; 2371 2372 bit = 1 << BTRFS_PENDING_COMMIT; 2373 if (prev & bit) 2374 btrfs_debug(fs_info, "pending commit done"); 2375 prev &= ~bit; 2376 2377 if (prev) 2378 btrfs_warn(fs_info, 2379 "unknown pending changes left 0x%lx, ignoring", prev); 2380 } 2381