xref: /openbmc/linux/fs/btrfs/transaction.c (revision ca90578000afb0d8f177ea36f7259a9c3640cf49)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "locking.h"
17 #include "tree-log.h"
18 #include "inode-map.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22 
23 #define BTRFS_ROOT_TRANS_TAG 0
24 
25 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
26 	[TRANS_STATE_RUNNING]		= 0U,
27 	[TRANS_STATE_BLOCKED]		=  __TRANS_START,
28 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
29 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
30 					   __TRANS_ATTACH |
31 					   __TRANS_JOIN),
32 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
33 					   __TRANS_ATTACH |
34 					   __TRANS_JOIN |
35 					   __TRANS_JOIN_NOLOCK),
36 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
37 					   __TRANS_ATTACH |
38 					   __TRANS_JOIN |
39 					   __TRANS_JOIN_NOLOCK),
40 };
41 
42 void btrfs_put_transaction(struct btrfs_transaction *transaction)
43 {
44 	WARN_ON(refcount_read(&transaction->use_count) == 0);
45 	if (refcount_dec_and_test(&transaction->use_count)) {
46 		BUG_ON(!list_empty(&transaction->list));
47 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
48 		if (transaction->delayed_refs.pending_csums)
49 			btrfs_err(transaction->fs_info,
50 				  "pending csums is %llu",
51 				  transaction->delayed_refs.pending_csums);
52 		while (!list_empty(&transaction->pending_chunks)) {
53 			struct extent_map *em;
54 
55 			em = list_first_entry(&transaction->pending_chunks,
56 					      struct extent_map, list);
57 			list_del_init(&em->list);
58 			free_extent_map(em);
59 		}
60 		/*
61 		 * If any block groups are found in ->deleted_bgs then it's
62 		 * because the transaction was aborted and a commit did not
63 		 * happen (things failed before writing the new superblock
64 		 * and calling btrfs_finish_extent_commit()), so we can not
65 		 * discard the physical locations of the block groups.
66 		 */
67 		while (!list_empty(&transaction->deleted_bgs)) {
68 			struct btrfs_block_group_cache *cache;
69 
70 			cache = list_first_entry(&transaction->deleted_bgs,
71 						 struct btrfs_block_group_cache,
72 						 bg_list);
73 			list_del_init(&cache->bg_list);
74 			btrfs_put_block_group_trimming(cache);
75 			btrfs_put_block_group(cache);
76 		}
77 		kfree(transaction);
78 	}
79 }
80 
81 static void clear_btree_io_tree(struct extent_io_tree *tree)
82 {
83 	spin_lock(&tree->lock);
84 	/*
85 	 * Do a single barrier for the waitqueue_active check here, the state
86 	 * of the waitqueue should not change once clear_btree_io_tree is
87 	 * called.
88 	 */
89 	smp_mb();
90 	while (!RB_EMPTY_ROOT(&tree->state)) {
91 		struct rb_node *node;
92 		struct extent_state *state;
93 
94 		node = rb_first(&tree->state);
95 		state = rb_entry(node, struct extent_state, rb_node);
96 		rb_erase(&state->rb_node, &tree->state);
97 		RB_CLEAR_NODE(&state->rb_node);
98 		/*
99 		 * btree io trees aren't supposed to have tasks waiting for
100 		 * changes in the flags of extent states ever.
101 		 */
102 		ASSERT(!waitqueue_active(&state->wq));
103 		free_extent_state(state);
104 
105 		cond_resched_lock(&tree->lock);
106 	}
107 	spin_unlock(&tree->lock);
108 }
109 
110 static noinline void switch_commit_roots(struct btrfs_transaction *trans)
111 {
112 	struct btrfs_fs_info *fs_info = trans->fs_info;
113 	struct btrfs_root *root, *tmp;
114 
115 	down_write(&fs_info->commit_root_sem);
116 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
117 				 dirty_list) {
118 		list_del_init(&root->dirty_list);
119 		free_extent_buffer(root->commit_root);
120 		root->commit_root = btrfs_root_node(root);
121 		if (is_fstree(root->objectid))
122 			btrfs_unpin_free_ino(root);
123 		clear_btree_io_tree(&root->dirty_log_pages);
124 	}
125 
126 	/* We can free old roots now. */
127 	spin_lock(&trans->dropped_roots_lock);
128 	while (!list_empty(&trans->dropped_roots)) {
129 		root = list_first_entry(&trans->dropped_roots,
130 					struct btrfs_root, root_list);
131 		list_del_init(&root->root_list);
132 		spin_unlock(&trans->dropped_roots_lock);
133 		btrfs_drop_and_free_fs_root(fs_info, root);
134 		spin_lock(&trans->dropped_roots_lock);
135 	}
136 	spin_unlock(&trans->dropped_roots_lock);
137 	up_write(&fs_info->commit_root_sem);
138 }
139 
140 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
141 					 unsigned int type)
142 {
143 	if (type & TRANS_EXTWRITERS)
144 		atomic_inc(&trans->num_extwriters);
145 }
146 
147 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
148 					 unsigned int type)
149 {
150 	if (type & TRANS_EXTWRITERS)
151 		atomic_dec(&trans->num_extwriters);
152 }
153 
154 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
155 					  unsigned int type)
156 {
157 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
158 }
159 
160 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
161 {
162 	return atomic_read(&trans->num_extwriters);
163 }
164 
165 /*
166  * either allocate a new transaction or hop into the existing one
167  */
168 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
169 				     unsigned int type)
170 {
171 	struct btrfs_transaction *cur_trans;
172 
173 	spin_lock(&fs_info->trans_lock);
174 loop:
175 	/* The file system has been taken offline. No new transactions. */
176 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
177 		spin_unlock(&fs_info->trans_lock);
178 		return -EROFS;
179 	}
180 
181 	cur_trans = fs_info->running_transaction;
182 	if (cur_trans) {
183 		if (cur_trans->aborted) {
184 			spin_unlock(&fs_info->trans_lock);
185 			return cur_trans->aborted;
186 		}
187 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
188 			spin_unlock(&fs_info->trans_lock);
189 			return -EBUSY;
190 		}
191 		refcount_inc(&cur_trans->use_count);
192 		atomic_inc(&cur_trans->num_writers);
193 		extwriter_counter_inc(cur_trans, type);
194 		spin_unlock(&fs_info->trans_lock);
195 		return 0;
196 	}
197 	spin_unlock(&fs_info->trans_lock);
198 
199 	/*
200 	 * If we are ATTACH, we just want to catch the current transaction,
201 	 * and commit it. If there is no transaction, just return ENOENT.
202 	 */
203 	if (type == TRANS_ATTACH)
204 		return -ENOENT;
205 
206 	/*
207 	 * JOIN_NOLOCK only happens during the transaction commit, so
208 	 * it is impossible that ->running_transaction is NULL
209 	 */
210 	BUG_ON(type == TRANS_JOIN_NOLOCK);
211 
212 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
213 	if (!cur_trans)
214 		return -ENOMEM;
215 
216 	spin_lock(&fs_info->trans_lock);
217 	if (fs_info->running_transaction) {
218 		/*
219 		 * someone started a transaction after we unlocked.  Make sure
220 		 * to redo the checks above
221 		 */
222 		kfree(cur_trans);
223 		goto loop;
224 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
225 		spin_unlock(&fs_info->trans_lock);
226 		kfree(cur_trans);
227 		return -EROFS;
228 	}
229 
230 	cur_trans->fs_info = fs_info;
231 	atomic_set(&cur_trans->num_writers, 1);
232 	extwriter_counter_init(cur_trans, type);
233 	init_waitqueue_head(&cur_trans->writer_wait);
234 	init_waitqueue_head(&cur_trans->commit_wait);
235 	init_waitqueue_head(&cur_trans->pending_wait);
236 	cur_trans->state = TRANS_STATE_RUNNING;
237 	/*
238 	 * One for this trans handle, one so it will live on until we
239 	 * commit the transaction.
240 	 */
241 	refcount_set(&cur_trans->use_count, 2);
242 	atomic_set(&cur_trans->pending_ordered, 0);
243 	cur_trans->flags = 0;
244 	cur_trans->start_time = get_seconds();
245 
246 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
247 
248 	cur_trans->delayed_refs.href_root = RB_ROOT;
249 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
250 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
251 
252 	/*
253 	 * although the tree mod log is per file system and not per transaction,
254 	 * the log must never go across transaction boundaries.
255 	 */
256 	smp_mb();
257 	if (!list_empty(&fs_info->tree_mod_seq_list))
258 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
259 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
260 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
261 	atomic64_set(&fs_info->tree_mod_seq, 0);
262 
263 	spin_lock_init(&cur_trans->delayed_refs.lock);
264 
265 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
266 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
267 	INIT_LIST_HEAD(&cur_trans->switch_commits);
268 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
269 	INIT_LIST_HEAD(&cur_trans->io_bgs);
270 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
271 	mutex_init(&cur_trans->cache_write_mutex);
272 	cur_trans->num_dirty_bgs = 0;
273 	spin_lock_init(&cur_trans->dirty_bgs_lock);
274 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
275 	spin_lock_init(&cur_trans->dropped_roots_lock);
276 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
277 	extent_io_tree_init(&cur_trans->dirty_pages,
278 			     fs_info->btree_inode);
279 	fs_info->generation++;
280 	cur_trans->transid = fs_info->generation;
281 	fs_info->running_transaction = cur_trans;
282 	cur_trans->aborted = 0;
283 	spin_unlock(&fs_info->trans_lock);
284 
285 	return 0;
286 }
287 
288 /*
289  * this does all the record keeping required to make sure that a reference
290  * counted root is properly recorded in a given transaction.  This is required
291  * to make sure the old root from before we joined the transaction is deleted
292  * when the transaction commits
293  */
294 static int record_root_in_trans(struct btrfs_trans_handle *trans,
295 			       struct btrfs_root *root,
296 			       int force)
297 {
298 	struct btrfs_fs_info *fs_info = root->fs_info;
299 
300 	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
301 	    root->last_trans < trans->transid) || force) {
302 		WARN_ON(root == fs_info->extent_root);
303 		WARN_ON(!force && root->commit_root != root->node);
304 
305 		/*
306 		 * see below for IN_TRANS_SETUP usage rules
307 		 * we have the reloc mutex held now, so there
308 		 * is only one writer in this function
309 		 */
310 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
311 
312 		/* make sure readers find IN_TRANS_SETUP before
313 		 * they find our root->last_trans update
314 		 */
315 		smp_wmb();
316 
317 		spin_lock(&fs_info->fs_roots_radix_lock);
318 		if (root->last_trans == trans->transid && !force) {
319 			spin_unlock(&fs_info->fs_roots_radix_lock);
320 			return 0;
321 		}
322 		radix_tree_tag_set(&fs_info->fs_roots_radix,
323 				   (unsigned long)root->root_key.objectid,
324 				   BTRFS_ROOT_TRANS_TAG);
325 		spin_unlock(&fs_info->fs_roots_radix_lock);
326 		root->last_trans = trans->transid;
327 
328 		/* this is pretty tricky.  We don't want to
329 		 * take the relocation lock in btrfs_record_root_in_trans
330 		 * unless we're really doing the first setup for this root in
331 		 * this transaction.
332 		 *
333 		 * Normally we'd use root->last_trans as a flag to decide
334 		 * if we want to take the expensive mutex.
335 		 *
336 		 * But, we have to set root->last_trans before we
337 		 * init the relocation root, otherwise, we trip over warnings
338 		 * in ctree.c.  The solution used here is to flag ourselves
339 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
340 		 * fixing up the reloc trees and everyone must wait.
341 		 *
342 		 * When this is zero, they can trust root->last_trans and fly
343 		 * through btrfs_record_root_in_trans without having to take the
344 		 * lock.  smp_wmb() makes sure that all the writes above are
345 		 * done before we pop in the zero below
346 		 */
347 		btrfs_init_reloc_root(trans, root);
348 		smp_mb__before_atomic();
349 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
350 	}
351 	return 0;
352 }
353 
354 
355 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
356 			    struct btrfs_root *root)
357 {
358 	struct btrfs_fs_info *fs_info = root->fs_info;
359 	struct btrfs_transaction *cur_trans = trans->transaction;
360 
361 	/* Add ourselves to the transaction dropped list */
362 	spin_lock(&cur_trans->dropped_roots_lock);
363 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
364 	spin_unlock(&cur_trans->dropped_roots_lock);
365 
366 	/* Make sure we don't try to update the root at commit time */
367 	spin_lock(&fs_info->fs_roots_radix_lock);
368 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
369 			     (unsigned long)root->root_key.objectid,
370 			     BTRFS_ROOT_TRANS_TAG);
371 	spin_unlock(&fs_info->fs_roots_radix_lock);
372 }
373 
374 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
375 			       struct btrfs_root *root)
376 {
377 	struct btrfs_fs_info *fs_info = root->fs_info;
378 
379 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
380 		return 0;
381 
382 	/*
383 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
384 	 * and barriers
385 	 */
386 	smp_rmb();
387 	if (root->last_trans == trans->transid &&
388 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
389 		return 0;
390 
391 	mutex_lock(&fs_info->reloc_mutex);
392 	record_root_in_trans(trans, root, 0);
393 	mutex_unlock(&fs_info->reloc_mutex);
394 
395 	return 0;
396 }
397 
398 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
399 {
400 	return (trans->state >= TRANS_STATE_BLOCKED &&
401 		trans->state < TRANS_STATE_UNBLOCKED &&
402 		!trans->aborted);
403 }
404 
405 /* wait for commit against the current transaction to become unblocked
406  * when this is done, it is safe to start a new transaction, but the current
407  * transaction might not be fully on disk.
408  */
409 static void wait_current_trans(struct btrfs_fs_info *fs_info)
410 {
411 	struct btrfs_transaction *cur_trans;
412 
413 	spin_lock(&fs_info->trans_lock);
414 	cur_trans = fs_info->running_transaction;
415 	if (cur_trans && is_transaction_blocked(cur_trans)) {
416 		refcount_inc(&cur_trans->use_count);
417 		spin_unlock(&fs_info->trans_lock);
418 
419 		wait_event(fs_info->transaction_wait,
420 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
421 			   cur_trans->aborted);
422 		btrfs_put_transaction(cur_trans);
423 	} else {
424 		spin_unlock(&fs_info->trans_lock);
425 	}
426 }
427 
428 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
429 {
430 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
431 		return 0;
432 
433 	if (type == TRANS_START)
434 		return 1;
435 
436 	return 0;
437 }
438 
439 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
440 {
441 	struct btrfs_fs_info *fs_info = root->fs_info;
442 
443 	if (!fs_info->reloc_ctl ||
444 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
445 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
446 	    root->reloc_root)
447 		return false;
448 
449 	return true;
450 }
451 
452 static struct btrfs_trans_handle *
453 start_transaction(struct btrfs_root *root, unsigned int num_items,
454 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
455 		  bool enforce_qgroups)
456 {
457 	struct btrfs_fs_info *fs_info = root->fs_info;
458 
459 	struct btrfs_trans_handle *h;
460 	struct btrfs_transaction *cur_trans;
461 	u64 num_bytes = 0;
462 	u64 qgroup_reserved = 0;
463 	bool reloc_reserved = false;
464 	int ret;
465 
466 	/* Send isn't supposed to start transactions. */
467 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
468 
469 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
470 		return ERR_PTR(-EROFS);
471 
472 	if (current->journal_info) {
473 		WARN_ON(type & TRANS_EXTWRITERS);
474 		h = current->journal_info;
475 		refcount_inc(&h->use_count);
476 		WARN_ON(refcount_read(&h->use_count) > 2);
477 		h->orig_rsv = h->block_rsv;
478 		h->block_rsv = NULL;
479 		goto got_it;
480 	}
481 
482 	/*
483 	 * Do the reservation before we join the transaction so we can do all
484 	 * the appropriate flushing if need be.
485 	 */
486 	if (num_items && root != fs_info->chunk_root) {
487 		qgroup_reserved = num_items * fs_info->nodesize;
488 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
489 				enforce_qgroups);
490 		if (ret)
491 			return ERR_PTR(ret);
492 
493 		num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
494 		/*
495 		 * Do the reservation for the relocation root creation
496 		 */
497 		if (need_reserve_reloc_root(root)) {
498 			num_bytes += fs_info->nodesize;
499 			reloc_reserved = true;
500 		}
501 
502 		ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
503 					  num_bytes, flush);
504 		if (ret)
505 			goto reserve_fail;
506 	}
507 again:
508 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
509 	if (!h) {
510 		ret = -ENOMEM;
511 		goto alloc_fail;
512 	}
513 
514 	/*
515 	 * If we are JOIN_NOLOCK we're already committing a transaction and
516 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
517 	 * because we're already holding a ref.  We need this because we could
518 	 * have raced in and did an fsync() on a file which can kick a commit
519 	 * and then we deadlock with somebody doing a freeze.
520 	 *
521 	 * If we are ATTACH, it means we just want to catch the current
522 	 * transaction and commit it, so we needn't do sb_start_intwrite().
523 	 */
524 	if (type & __TRANS_FREEZABLE)
525 		sb_start_intwrite(fs_info->sb);
526 
527 	if (may_wait_transaction(fs_info, type))
528 		wait_current_trans(fs_info);
529 
530 	do {
531 		ret = join_transaction(fs_info, type);
532 		if (ret == -EBUSY) {
533 			wait_current_trans(fs_info);
534 			if (unlikely(type == TRANS_ATTACH))
535 				ret = -ENOENT;
536 		}
537 	} while (ret == -EBUSY);
538 
539 	if (ret < 0)
540 		goto join_fail;
541 
542 	cur_trans = fs_info->running_transaction;
543 
544 	h->transid = cur_trans->transid;
545 	h->transaction = cur_trans;
546 	h->root = root;
547 	refcount_set(&h->use_count, 1);
548 	h->fs_info = root->fs_info;
549 
550 	h->type = type;
551 	h->can_flush_pending_bgs = true;
552 	INIT_LIST_HEAD(&h->new_bgs);
553 
554 	smp_mb();
555 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
556 	    may_wait_transaction(fs_info, type)) {
557 		current->journal_info = h;
558 		btrfs_commit_transaction(h);
559 		goto again;
560 	}
561 
562 	if (num_bytes) {
563 		trace_btrfs_space_reservation(fs_info, "transaction",
564 					      h->transid, num_bytes, 1);
565 		h->block_rsv = &fs_info->trans_block_rsv;
566 		h->bytes_reserved = num_bytes;
567 		h->reloc_reserved = reloc_reserved;
568 	}
569 
570 got_it:
571 	btrfs_record_root_in_trans(h, root);
572 
573 	if (!current->journal_info)
574 		current->journal_info = h;
575 	return h;
576 
577 join_fail:
578 	if (type & __TRANS_FREEZABLE)
579 		sb_end_intwrite(fs_info->sb);
580 	kmem_cache_free(btrfs_trans_handle_cachep, h);
581 alloc_fail:
582 	if (num_bytes)
583 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
584 					num_bytes);
585 reserve_fail:
586 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
587 	return ERR_PTR(ret);
588 }
589 
590 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
591 						   unsigned int num_items)
592 {
593 	return start_transaction(root, num_items, TRANS_START,
594 				 BTRFS_RESERVE_FLUSH_ALL, true);
595 }
596 
597 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
598 					struct btrfs_root *root,
599 					unsigned int num_items,
600 					int min_factor)
601 {
602 	struct btrfs_fs_info *fs_info = root->fs_info;
603 	struct btrfs_trans_handle *trans;
604 	u64 num_bytes;
605 	int ret;
606 
607 	/*
608 	 * We have two callers: unlink and block group removal.  The
609 	 * former should succeed even if we will temporarily exceed
610 	 * quota and the latter operates on the extent root so
611 	 * qgroup enforcement is ignored anyway.
612 	 */
613 	trans = start_transaction(root, num_items, TRANS_START,
614 				  BTRFS_RESERVE_FLUSH_ALL, false);
615 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
616 		return trans;
617 
618 	trans = btrfs_start_transaction(root, 0);
619 	if (IS_ERR(trans))
620 		return trans;
621 
622 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
623 	ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
624 				       num_bytes, min_factor);
625 	if (ret) {
626 		btrfs_end_transaction(trans);
627 		return ERR_PTR(ret);
628 	}
629 
630 	trans->block_rsv = &fs_info->trans_block_rsv;
631 	trans->bytes_reserved = num_bytes;
632 	trace_btrfs_space_reservation(fs_info, "transaction",
633 				      trans->transid, num_bytes, 1);
634 
635 	return trans;
636 }
637 
638 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
639 {
640 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
641 				 true);
642 }
643 
644 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
645 {
646 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
647 				 BTRFS_RESERVE_NO_FLUSH, true);
648 }
649 
650 /*
651  * btrfs_attach_transaction() - catch the running transaction
652  *
653  * It is used when we want to commit the current the transaction, but
654  * don't want to start a new one.
655  *
656  * Note: If this function return -ENOENT, it just means there is no
657  * running transaction. But it is possible that the inactive transaction
658  * is still in the memory, not fully on disk. If you hope there is no
659  * inactive transaction in the fs when -ENOENT is returned, you should
660  * invoke
661  *     btrfs_attach_transaction_barrier()
662  */
663 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
664 {
665 	return start_transaction(root, 0, TRANS_ATTACH,
666 				 BTRFS_RESERVE_NO_FLUSH, true);
667 }
668 
669 /*
670  * btrfs_attach_transaction_barrier() - catch the running transaction
671  *
672  * It is similar to the above function, the differentia is this one
673  * will wait for all the inactive transactions until they fully
674  * complete.
675  */
676 struct btrfs_trans_handle *
677 btrfs_attach_transaction_barrier(struct btrfs_root *root)
678 {
679 	struct btrfs_trans_handle *trans;
680 
681 	trans = start_transaction(root, 0, TRANS_ATTACH,
682 				  BTRFS_RESERVE_NO_FLUSH, true);
683 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
684 		btrfs_wait_for_commit(root->fs_info, 0);
685 
686 	return trans;
687 }
688 
689 /* wait for a transaction commit to be fully complete */
690 static noinline void wait_for_commit(struct btrfs_transaction *commit)
691 {
692 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
693 }
694 
695 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
696 {
697 	struct btrfs_transaction *cur_trans = NULL, *t;
698 	int ret = 0;
699 
700 	if (transid) {
701 		if (transid <= fs_info->last_trans_committed)
702 			goto out;
703 
704 		/* find specified transaction */
705 		spin_lock(&fs_info->trans_lock);
706 		list_for_each_entry(t, &fs_info->trans_list, list) {
707 			if (t->transid == transid) {
708 				cur_trans = t;
709 				refcount_inc(&cur_trans->use_count);
710 				ret = 0;
711 				break;
712 			}
713 			if (t->transid > transid) {
714 				ret = 0;
715 				break;
716 			}
717 		}
718 		spin_unlock(&fs_info->trans_lock);
719 
720 		/*
721 		 * The specified transaction doesn't exist, or we
722 		 * raced with btrfs_commit_transaction
723 		 */
724 		if (!cur_trans) {
725 			if (transid > fs_info->last_trans_committed)
726 				ret = -EINVAL;
727 			goto out;
728 		}
729 	} else {
730 		/* find newest transaction that is committing | committed */
731 		spin_lock(&fs_info->trans_lock);
732 		list_for_each_entry_reverse(t, &fs_info->trans_list,
733 					    list) {
734 			if (t->state >= TRANS_STATE_COMMIT_START) {
735 				if (t->state == TRANS_STATE_COMPLETED)
736 					break;
737 				cur_trans = t;
738 				refcount_inc(&cur_trans->use_count);
739 				break;
740 			}
741 		}
742 		spin_unlock(&fs_info->trans_lock);
743 		if (!cur_trans)
744 			goto out;  /* nothing committing|committed */
745 	}
746 
747 	wait_for_commit(cur_trans);
748 	btrfs_put_transaction(cur_trans);
749 out:
750 	return ret;
751 }
752 
753 void btrfs_throttle(struct btrfs_fs_info *fs_info)
754 {
755 	wait_current_trans(fs_info);
756 }
757 
758 static int should_end_transaction(struct btrfs_trans_handle *trans)
759 {
760 	struct btrfs_fs_info *fs_info = trans->fs_info;
761 
762 	if (btrfs_check_space_for_delayed_refs(trans, fs_info))
763 		return 1;
764 
765 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
766 }
767 
768 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
769 {
770 	struct btrfs_transaction *cur_trans = trans->transaction;
771 	int updates;
772 	int err;
773 
774 	smp_mb();
775 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
776 	    cur_trans->delayed_refs.flushing)
777 		return 1;
778 
779 	updates = trans->delayed_ref_updates;
780 	trans->delayed_ref_updates = 0;
781 	if (updates) {
782 		err = btrfs_run_delayed_refs(trans, updates * 2);
783 		if (err) /* Error code will also eval true */
784 			return err;
785 	}
786 
787 	return should_end_transaction(trans);
788 }
789 
790 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
791 
792 {
793 	struct btrfs_fs_info *fs_info = trans->fs_info;
794 
795 	if (!trans->block_rsv) {
796 		ASSERT(!trans->bytes_reserved);
797 		return;
798 	}
799 
800 	if (!trans->bytes_reserved)
801 		return;
802 
803 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
804 	trace_btrfs_space_reservation(fs_info, "transaction",
805 				      trans->transid, trans->bytes_reserved, 0);
806 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
807 				trans->bytes_reserved);
808 	trans->bytes_reserved = 0;
809 }
810 
811 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
812 				   int throttle)
813 {
814 	struct btrfs_fs_info *info = trans->fs_info;
815 	struct btrfs_transaction *cur_trans = trans->transaction;
816 	u64 transid = trans->transid;
817 	unsigned long cur = trans->delayed_ref_updates;
818 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
819 	int err = 0;
820 	int must_run_delayed_refs = 0;
821 
822 	if (refcount_read(&trans->use_count) > 1) {
823 		refcount_dec(&trans->use_count);
824 		trans->block_rsv = trans->orig_rsv;
825 		return 0;
826 	}
827 
828 	btrfs_trans_release_metadata(trans);
829 	trans->block_rsv = NULL;
830 
831 	if (!list_empty(&trans->new_bgs))
832 		btrfs_create_pending_block_groups(trans);
833 
834 	trans->delayed_ref_updates = 0;
835 	if (!trans->sync) {
836 		must_run_delayed_refs =
837 			btrfs_should_throttle_delayed_refs(trans, info);
838 		cur = max_t(unsigned long, cur, 32);
839 
840 		/*
841 		 * don't make the caller wait if they are from a NOLOCK
842 		 * or ATTACH transaction, it will deadlock with commit
843 		 */
844 		if (must_run_delayed_refs == 1 &&
845 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
846 			must_run_delayed_refs = 2;
847 	}
848 
849 	btrfs_trans_release_metadata(trans);
850 	trans->block_rsv = NULL;
851 
852 	if (!list_empty(&trans->new_bgs))
853 		btrfs_create_pending_block_groups(trans);
854 
855 	btrfs_trans_release_chunk_metadata(trans);
856 
857 	if (lock && should_end_transaction(trans) &&
858 	    READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
859 		spin_lock(&info->trans_lock);
860 		if (cur_trans->state == TRANS_STATE_RUNNING)
861 			cur_trans->state = TRANS_STATE_BLOCKED;
862 		spin_unlock(&info->trans_lock);
863 	}
864 
865 	if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
866 		if (throttle)
867 			return btrfs_commit_transaction(trans);
868 		else
869 			wake_up_process(info->transaction_kthread);
870 	}
871 
872 	if (trans->type & __TRANS_FREEZABLE)
873 		sb_end_intwrite(info->sb);
874 
875 	WARN_ON(cur_trans != info->running_transaction);
876 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
877 	atomic_dec(&cur_trans->num_writers);
878 	extwriter_counter_dec(cur_trans, trans->type);
879 
880 	/*
881 	 * Make sure counter is updated before we wake up waiters.
882 	 */
883 	smp_mb();
884 	if (waitqueue_active(&cur_trans->writer_wait))
885 		wake_up(&cur_trans->writer_wait);
886 	btrfs_put_transaction(cur_trans);
887 
888 	if (current->journal_info == trans)
889 		current->journal_info = NULL;
890 
891 	if (throttle)
892 		btrfs_run_delayed_iputs(info);
893 
894 	if (trans->aborted ||
895 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
896 		wake_up_process(info->transaction_kthread);
897 		err = -EIO;
898 	}
899 
900 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
901 	if (must_run_delayed_refs) {
902 		btrfs_async_run_delayed_refs(info, cur, transid,
903 					     must_run_delayed_refs == 1);
904 	}
905 	return err;
906 }
907 
908 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
909 {
910 	return __btrfs_end_transaction(trans, 0);
911 }
912 
913 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
914 {
915 	return __btrfs_end_transaction(trans, 1);
916 }
917 
918 /*
919  * when btree blocks are allocated, they have some corresponding bits set for
920  * them in one of two extent_io trees.  This is used to make sure all of
921  * those extents are sent to disk but does not wait on them
922  */
923 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
924 			       struct extent_io_tree *dirty_pages, int mark)
925 {
926 	int err = 0;
927 	int werr = 0;
928 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
929 	struct extent_state *cached_state = NULL;
930 	u64 start = 0;
931 	u64 end;
932 
933 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
934 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
935 				      mark, &cached_state)) {
936 		bool wait_writeback = false;
937 
938 		err = convert_extent_bit(dirty_pages, start, end,
939 					 EXTENT_NEED_WAIT,
940 					 mark, &cached_state);
941 		/*
942 		 * convert_extent_bit can return -ENOMEM, which is most of the
943 		 * time a temporary error. So when it happens, ignore the error
944 		 * and wait for writeback of this range to finish - because we
945 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
946 		 * to __btrfs_wait_marked_extents() would not know that
947 		 * writeback for this range started and therefore wouldn't
948 		 * wait for it to finish - we don't want to commit a
949 		 * superblock that points to btree nodes/leafs for which
950 		 * writeback hasn't finished yet (and without errors).
951 		 * We cleanup any entries left in the io tree when committing
952 		 * the transaction (through clear_btree_io_tree()).
953 		 */
954 		if (err == -ENOMEM) {
955 			err = 0;
956 			wait_writeback = true;
957 		}
958 		if (!err)
959 			err = filemap_fdatawrite_range(mapping, start, end);
960 		if (err)
961 			werr = err;
962 		else if (wait_writeback)
963 			werr = filemap_fdatawait_range(mapping, start, end);
964 		free_extent_state(cached_state);
965 		cached_state = NULL;
966 		cond_resched();
967 		start = end + 1;
968 	}
969 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
970 	return werr;
971 }
972 
973 /*
974  * when btree blocks are allocated, they have some corresponding bits set for
975  * them in one of two extent_io trees.  This is used to make sure all of
976  * those extents are on disk for transaction or log commit.  We wait
977  * on all the pages and clear them from the dirty pages state tree
978  */
979 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
980 				       struct extent_io_tree *dirty_pages)
981 {
982 	int err = 0;
983 	int werr = 0;
984 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
985 	struct extent_state *cached_state = NULL;
986 	u64 start = 0;
987 	u64 end;
988 
989 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
990 				      EXTENT_NEED_WAIT, &cached_state)) {
991 		/*
992 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
993 		 * When committing the transaction, we'll remove any entries
994 		 * left in the io tree. For a log commit, we don't remove them
995 		 * after committing the log because the tree can be accessed
996 		 * concurrently - we do it only at transaction commit time when
997 		 * it's safe to do it (through clear_btree_io_tree()).
998 		 */
999 		err = clear_extent_bit(dirty_pages, start, end,
1000 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1001 		if (err == -ENOMEM)
1002 			err = 0;
1003 		if (!err)
1004 			err = filemap_fdatawait_range(mapping, start, end);
1005 		if (err)
1006 			werr = err;
1007 		free_extent_state(cached_state);
1008 		cached_state = NULL;
1009 		cond_resched();
1010 		start = end + 1;
1011 	}
1012 	if (err)
1013 		werr = err;
1014 	return werr;
1015 }
1016 
1017 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1018 		       struct extent_io_tree *dirty_pages)
1019 {
1020 	bool errors = false;
1021 	int err;
1022 
1023 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1024 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1025 		errors = true;
1026 
1027 	if (errors && !err)
1028 		err = -EIO;
1029 	return err;
1030 }
1031 
1032 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1033 {
1034 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1035 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1036 	bool errors = false;
1037 	int err;
1038 
1039 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1040 
1041 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1042 	if ((mark & EXTENT_DIRTY) &&
1043 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1044 		errors = true;
1045 
1046 	if ((mark & EXTENT_NEW) &&
1047 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1048 		errors = true;
1049 
1050 	if (errors && !err)
1051 		err = -EIO;
1052 	return err;
1053 }
1054 
1055 /*
1056  * When btree blocks are allocated the corresponding extents are marked dirty.
1057  * This function ensures such extents are persisted on disk for transaction or
1058  * log commit.
1059  *
1060  * @trans: transaction whose dirty pages we'd like to write
1061  */
1062 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1063 {
1064 	int ret;
1065 	int ret2;
1066 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1067 	struct btrfs_fs_info *fs_info = trans->fs_info;
1068 	struct blk_plug plug;
1069 
1070 	blk_start_plug(&plug);
1071 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1072 	blk_finish_plug(&plug);
1073 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1074 
1075 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1076 
1077 	if (ret)
1078 		return ret;
1079 	else if (ret2)
1080 		return ret2;
1081 	else
1082 		return 0;
1083 }
1084 
1085 /*
1086  * this is used to update the root pointer in the tree of tree roots.
1087  *
1088  * But, in the case of the extent allocation tree, updating the root
1089  * pointer may allocate blocks which may change the root of the extent
1090  * allocation tree.
1091  *
1092  * So, this loops and repeats and makes sure the cowonly root didn't
1093  * change while the root pointer was being updated in the metadata.
1094  */
1095 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1096 			       struct btrfs_root *root)
1097 {
1098 	int ret;
1099 	u64 old_root_bytenr;
1100 	u64 old_root_used;
1101 	struct btrfs_fs_info *fs_info = root->fs_info;
1102 	struct btrfs_root *tree_root = fs_info->tree_root;
1103 
1104 	old_root_used = btrfs_root_used(&root->root_item);
1105 
1106 	while (1) {
1107 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1108 		if (old_root_bytenr == root->node->start &&
1109 		    old_root_used == btrfs_root_used(&root->root_item))
1110 			break;
1111 
1112 		btrfs_set_root_node(&root->root_item, root->node);
1113 		ret = btrfs_update_root(trans, tree_root,
1114 					&root->root_key,
1115 					&root->root_item);
1116 		if (ret)
1117 			return ret;
1118 
1119 		old_root_used = btrfs_root_used(&root->root_item);
1120 	}
1121 
1122 	return 0;
1123 }
1124 
1125 /*
1126  * update all the cowonly tree roots on disk
1127  *
1128  * The error handling in this function may not be obvious. Any of the
1129  * failures will cause the file system to go offline. We still need
1130  * to clean up the delayed refs.
1131  */
1132 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1133 {
1134 	struct btrfs_fs_info *fs_info = trans->fs_info;
1135 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1136 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1137 	struct list_head *next;
1138 	struct extent_buffer *eb;
1139 	int ret;
1140 
1141 	eb = btrfs_lock_root_node(fs_info->tree_root);
1142 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1143 			      0, &eb);
1144 	btrfs_tree_unlock(eb);
1145 	free_extent_buffer(eb);
1146 
1147 	if (ret)
1148 		return ret;
1149 
1150 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1151 	if (ret)
1152 		return ret;
1153 
1154 	ret = btrfs_run_dev_stats(trans, fs_info);
1155 	if (ret)
1156 		return ret;
1157 	ret = btrfs_run_dev_replace(trans, fs_info);
1158 	if (ret)
1159 		return ret;
1160 	ret = btrfs_run_qgroups(trans, fs_info);
1161 	if (ret)
1162 		return ret;
1163 
1164 	ret = btrfs_setup_space_cache(trans, fs_info);
1165 	if (ret)
1166 		return ret;
1167 
1168 	/* run_qgroups might have added some more refs */
1169 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1170 	if (ret)
1171 		return ret;
1172 again:
1173 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1174 		struct btrfs_root *root;
1175 		next = fs_info->dirty_cowonly_roots.next;
1176 		list_del_init(next);
1177 		root = list_entry(next, struct btrfs_root, dirty_list);
1178 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1179 
1180 		if (root != fs_info->extent_root)
1181 			list_add_tail(&root->dirty_list,
1182 				      &trans->transaction->switch_commits);
1183 		ret = update_cowonly_root(trans, root);
1184 		if (ret)
1185 			return ret;
1186 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1187 		if (ret)
1188 			return ret;
1189 	}
1190 
1191 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1192 		ret = btrfs_write_dirty_block_groups(trans, fs_info);
1193 		if (ret)
1194 			return ret;
1195 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1196 		if (ret)
1197 			return ret;
1198 	}
1199 
1200 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1201 		goto again;
1202 
1203 	list_add_tail(&fs_info->extent_root->dirty_list,
1204 		      &trans->transaction->switch_commits);
1205 	btrfs_after_dev_replace_commit(fs_info);
1206 
1207 	return 0;
1208 }
1209 
1210 /*
1211  * dead roots are old snapshots that need to be deleted.  This allocates
1212  * a dirty root struct and adds it into the list of dead roots that need to
1213  * be deleted
1214  */
1215 void btrfs_add_dead_root(struct btrfs_root *root)
1216 {
1217 	struct btrfs_fs_info *fs_info = root->fs_info;
1218 
1219 	spin_lock(&fs_info->trans_lock);
1220 	if (list_empty(&root->root_list))
1221 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1222 	spin_unlock(&fs_info->trans_lock);
1223 }
1224 
1225 /*
1226  * update all the cowonly tree roots on disk
1227  */
1228 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1229 {
1230 	struct btrfs_fs_info *fs_info = trans->fs_info;
1231 	struct btrfs_root *gang[8];
1232 	int i;
1233 	int ret;
1234 	int err = 0;
1235 
1236 	spin_lock(&fs_info->fs_roots_radix_lock);
1237 	while (1) {
1238 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1239 						 (void **)gang, 0,
1240 						 ARRAY_SIZE(gang),
1241 						 BTRFS_ROOT_TRANS_TAG);
1242 		if (ret == 0)
1243 			break;
1244 		for (i = 0; i < ret; i++) {
1245 			struct btrfs_root *root = gang[i];
1246 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1247 					(unsigned long)root->root_key.objectid,
1248 					BTRFS_ROOT_TRANS_TAG);
1249 			spin_unlock(&fs_info->fs_roots_radix_lock);
1250 
1251 			btrfs_free_log(trans, root);
1252 			btrfs_update_reloc_root(trans, root);
1253 			btrfs_orphan_commit_root(trans, root);
1254 
1255 			btrfs_save_ino_cache(root, trans);
1256 
1257 			/* see comments in should_cow_block() */
1258 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1259 			smp_mb__after_atomic();
1260 
1261 			if (root->commit_root != root->node) {
1262 				list_add_tail(&root->dirty_list,
1263 					&trans->transaction->switch_commits);
1264 				btrfs_set_root_node(&root->root_item,
1265 						    root->node);
1266 			}
1267 
1268 			err = btrfs_update_root(trans, fs_info->tree_root,
1269 						&root->root_key,
1270 						&root->root_item);
1271 			spin_lock(&fs_info->fs_roots_radix_lock);
1272 			if (err)
1273 				break;
1274 			btrfs_qgroup_free_meta_all_pertrans(root);
1275 		}
1276 	}
1277 	spin_unlock(&fs_info->fs_roots_radix_lock);
1278 	return err;
1279 }
1280 
1281 /*
1282  * defrag a given btree.
1283  * Every leaf in the btree is read and defragged.
1284  */
1285 int btrfs_defrag_root(struct btrfs_root *root)
1286 {
1287 	struct btrfs_fs_info *info = root->fs_info;
1288 	struct btrfs_trans_handle *trans;
1289 	int ret;
1290 
1291 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1292 		return 0;
1293 
1294 	while (1) {
1295 		trans = btrfs_start_transaction(root, 0);
1296 		if (IS_ERR(trans))
1297 			return PTR_ERR(trans);
1298 
1299 		ret = btrfs_defrag_leaves(trans, root);
1300 
1301 		btrfs_end_transaction(trans);
1302 		btrfs_btree_balance_dirty(info);
1303 		cond_resched();
1304 
1305 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1306 			break;
1307 
1308 		if (btrfs_defrag_cancelled(info)) {
1309 			btrfs_debug(info, "defrag_root cancelled");
1310 			ret = -EAGAIN;
1311 			break;
1312 		}
1313 	}
1314 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1315 	return ret;
1316 }
1317 
1318 /*
1319  * Do all special snapshot related qgroup dirty hack.
1320  *
1321  * Will do all needed qgroup inherit and dirty hack like switch commit
1322  * roots inside one transaction and write all btree into disk, to make
1323  * qgroup works.
1324  */
1325 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1326 				   struct btrfs_root *src,
1327 				   struct btrfs_root *parent,
1328 				   struct btrfs_qgroup_inherit *inherit,
1329 				   u64 dst_objectid)
1330 {
1331 	struct btrfs_fs_info *fs_info = src->fs_info;
1332 	int ret;
1333 
1334 	/*
1335 	 * Save some performance in the case that qgroups are not
1336 	 * enabled. If this check races with the ioctl, rescan will
1337 	 * kick in anyway.
1338 	 */
1339 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1340 		return 0;
1341 
1342 	/*
1343 	 * Ensure dirty @src will be commited.  Or, after comming
1344 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1345 	 * recorded root will never be updated again, causing an outdated root
1346 	 * item.
1347 	 */
1348 	record_root_in_trans(trans, src, 1);
1349 
1350 	/*
1351 	 * We are going to commit transaction, see btrfs_commit_transaction()
1352 	 * comment for reason locking tree_log_mutex
1353 	 */
1354 	mutex_lock(&fs_info->tree_log_mutex);
1355 
1356 	ret = commit_fs_roots(trans);
1357 	if (ret)
1358 		goto out;
1359 	ret = btrfs_qgroup_account_extents(trans);
1360 	if (ret < 0)
1361 		goto out;
1362 
1363 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1364 	ret = btrfs_qgroup_inherit(trans, fs_info,
1365 				   src->root_key.objectid, dst_objectid,
1366 				   inherit);
1367 	if (ret < 0)
1368 		goto out;
1369 
1370 	/*
1371 	 * Now we do a simplified commit transaction, which will:
1372 	 * 1) commit all subvolume and extent tree
1373 	 *    To ensure all subvolume and extent tree have a valid
1374 	 *    commit_root to accounting later insert_dir_item()
1375 	 * 2) write all btree blocks onto disk
1376 	 *    This is to make sure later btree modification will be cowed
1377 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1378 	 * In this simplified commit, we don't really care about other trees
1379 	 * like chunk and root tree, as they won't affect qgroup.
1380 	 * And we don't write super to avoid half committed status.
1381 	 */
1382 	ret = commit_cowonly_roots(trans);
1383 	if (ret)
1384 		goto out;
1385 	switch_commit_roots(trans->transaction);
1386 	ret = btrfs_write_and_wait_transaction(trans);
1387 	if (ret)
1388 		btrfs_handle_fs_error(fs_info, ret,
1389 			"Error while writing out transaction for qgroup");
1390 
1391 out:
1392 	mutex_unlock(&fs_info->tree_log_mutex);
1393 
1394 	/*
1395 	 * Force parent root to be updated, as we recorded it before so its
1396 	 * last_trans == cur_transid.
1397 	 * Or it won't be committed again onto disk after later
1398 	 * insert_dir_item()
1399 	 */
1400 	if (!ret)
1401 		record_root_in_trans(trans, parent, 1);
1402 	return ret;
1403 }
1404 
1405 /*
1406  * new snapshots need to be created at a very specific time in the
1407  * transaction commit.  This does the actual creation.
1408  *
1409  * Note:
1410  * If the error which may affect the commitment of the current transaction
1411  * happens, we should return the error number. If the error which just affect
1412  * the creation of the pending snapshots, just return 0.
1413  */
1414 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1415 				   struct btrfs_pending_snapshot *pending)
1416 {
1417 
1418 	struct btrfs_fs_info *fs_info = trans->fs_info;
1419 	struct btrfs_key key;
1420 	struct btrfs_root_item *new_root_item;
1421 	struct btrfs_root *tree_root = fs_info->tree_root;
1422 	struct btrfs_root *root = pending->root;
1423 	struct btrfs_root *parent_root;
1424 	struct btrfs_block_rsv *rsv;
1425 	struct inode *parent_inode;
1426 	struct btrfs_path *path;
1427 	struct btrfs_dir_item *dir_item;
1428 	struct dentry *dentry;
1429 	struct extent_buffer *tmp;
1430 	struct extent_buffer *old;
1431 	struct timespec cur_time;
1432 	int ret = 0;
1433 	u64 to_reserve = 0;
1434 	u64 index = 0;
1435 	u64 objectid;
1436 	u64 root_flags;
1437 	uuid_le new_uuid;
1438 
1439 	ASSERT(pending->path);
1440 	path = pending->path;
1441 
1442 	ASSERT(pending->root_item);
1443 	new_root_item = pending->root_item;
1444 
1445 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1446 	if (pending->error)
1447 		goto no_free_objectid;
1448 
1449 	/*
1450 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1451 	 * accounted by later btrfs_qgroup_inherit().
1452 	 */
1453 	btrfs_set_skip_qgroup(trans, objectid);
1454 
1455 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1456 
1457 	if (to_reserve > 0) {
1458 		pending->error = btrfs_block_rsv_add(root,
1459 						     &pending->block_rsv,
1460 						     to_reserve,
1461 						     BTRFS_RESERVE_NO_FLUSH);
1462 		if (pending->error)
1463 			goto clear_skip_qgroup;
1464 	}
1465 
1466 	key.objectid = objectid;
1467 	key.offset = (u64)-1;
1468 	key.type = BTRFS_ROOT_ITEM_KEY;
1469 
1470 	rsv = trans->block_rsv;
1471 	trans->block_rsv = &pending->block_rsv;
1472 	trans->bytes_reserved = trans->block_rsv->reserved;
1473 	trace_btrfs_space_reservation(fs_info, "transaction",
1474 				      trans->transid,
1475 				      trans->bytes_reserved, 1);
1476 	dentry = pending->dentry;
1477 	parent_inode = pending->dir;
1478 	parent_root = BTRFS_I(parent_inode)->root;
1479 	record_root_in_trans(trans, parent_root, 0);
1480 
1481 	cur_time = current_time(parent_inode);
1482 
1483 	/*
1484 	 * insert the directory item
1485 	 */
1486 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1487 	BUG_ON(ret); /* -ENOMEM */
1488 
1489 	/* check if there is a file/dir which has the same name. */
1490 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1491 					 btrfs_ino(BTRFS_I(parent_inode)),
1492 					 dentry->d_name.name,
1493 					 dentry->d_name.len, 0);
1494 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1495 		pending->error = -EEXIST;
1496 		goto dir_item_existed;
1497 	} else if (IS_ERR(dir_item)) {
1498 		ret = PTR_ERR(dir_item);
1499 		btrfs_abort_transaction(trans, ret);
1500 		goto fail;
1501 	}
1502 	btrfs_release_path(path);
1503 
1504 	/*
1505 	 * pull in the delayed directory update
1506 	 * and the delayed inode item
1507 	 * otherwise we corrupt the FS during
1508 	 * snapshot
1509 	 */
1510 	ret = btrfs_run_delayed_items(trans);
1511 	if (ret) {	/* Transaction aborted */
1512 		btrfs_abort_transaction(trans, ret);
1513 		goto fail;
1514 	}
1515 
1516 	record_root_in_trans(trans, root, 0);
1517 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1518 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1519 	btrfs_check_and_init_root_item(new_root_item);
1520 
1521 	root_flags = btrfs_root_flags(new_root_item);
1522 	if (pending->readonly)
1523 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1524 	else
1525 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1526 	btrfs_set_root_flags(new_root_item, root_flags);
1527 
1528 	btrfs_set_root_generation_v2(new_root_item,
1529 			trans->transid);
1530 	uuid_le_gen(&new_uuid);
1531 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1532 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1533 			BTRFS_UUID_SIZE);
1534 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1535 		memset(new_root_item->received_uuid, 0,
1536 		       sizeof(new_root_item->received_uuid));
1537 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1538 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1539 		btrfs_set_root_stransid(new_root_item, 0);
1540 		btrfs_set_root_rtransid(new_root_item, 0);
1541 	}
1542 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1543 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1544 	btrfs_set_root_otransid(new_root_item, trans->transid);
1545 
1546 	old = btrfs_lock_root_node(root);
1547 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1548 	if (ret) {
1549 		btrfs_tree_unlock(old);
1550 		free_extent_buffer(old);
1551 		btrfs_abort_transaction(trans, ret);
1552 		goto fail;
1553 	}
1554 
1555 	btrfs_set_lock_blocking(old);
1556 
1557 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1558 	/* clean up in any case */
1559 	btrfs_tree_unlock(old);
1560 	free_extent_buffer(old);
1561 	if (ret) {
1562 		btrfs_abort_transaction(trans, ret);
1563 		goto fail;
1564 	}
1565 	/* see comments in should_cow_block() */
1566 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1567 	smp_wmb();
1568 
1569 	btrfs_set_root_node(new_root_item, tmp);
1570 	/* record when the snapshot was created in key.offset */
1571 	key.offset = trans->transid;
1572 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1573 	btrfs_tree_unlock(tmp);
1574 	free_extent_buffer(tmp);
1575 	if (ret) {
1576 		btrfs_abort_transaction(trans, ret);
1577 		goto fail;
1578 	}
1579 
1580 	/*
1581 	 * insert root back/forward references
1582 	 */
1583 	ret = btrfs_add_root_ref(trans, fs_info, objectid,
1584 				 parent_root->root_key.objectid,
1585 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1586 				 dentry->d_name.name, dentry->d_name.len);
1587 	if (ret) {
1588 		btrfs_abort_transaction(trans, ret);
1589 		goto fail;
1590 	}
1591 
1592 	key.offset = (u64)-1;
1593 	pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1594 	if (IS_ERR(pending->snap)) {
1595 		ret = PTR_ERR(pending->snap);
1596 		btrfs_abort_transaction(trans, ret);
1597 		goto fail;
1598 	}
1599 
1600 	ret = btrfs_reloc_post_snapshot(trans, pending);
1601 	if (ret) {
1602 		btrfs_abort_transaction(trans, ret);
1603 		goto fail;
1604 	}
1605 
1606 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1607 	if (ret) {
1608 		btrfs_abort_transaction(trans, ret);
1609 		goto fail;
1610 	}
1611 
1612 	/*
1613 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1614 	 * snapshot hack to do fast snapshot.
1615 	 * To co-operate with that hack, we do hack again.
1616 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1617 	 */
1618 	ret = qgroup_account_snapshot(trans, root, parent_root,
1619 				      pending->inherit, objectid);
1620 	if (ret < 0)
1621 		goto fail;
1622 
1623 	ret = btrfs_insert_dir_item(trans, parent_root,
1624 				    dentry->d_name.name, dentry->d_name.len,
1625 				    BTRFS_I(parent_inode), &key,
1626 				    BTRFS_FT_DIR, index);
1627 	/* We have check then name at the beginning, so it is impossible. */
1628 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1629 	if (ret) {
1630 		btrfs_abort_transaction(trans, ret);
1631 		goto fail;
1632 	}
1633 
1634 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1635 					 dentry->d_name.len * 2);
1636 	parent_inode->i_mtime = parent_inode->i_ctime =
1637 		current_time(parent_inode);
1638 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1639 	if (ret) {
1640 		btrfs_abort_transaction(trans, ret);
1641 		goto fail;
1642 	}
1643 	ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b,
1644 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1645 	if (ret) {
1646 		btrfs_abort_transaction(trans, ret);
1647 		goto fail;
1648 	}
1649 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1650 		ret = btrfs_uuid_tree_add(trans, fs_info,
1651 					  new_root_item->received_uuid,
1652 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1653 					  objectid);
1654 		if (ret && ret != -EEXIST) {
1655 			btrfs_abort_transaction(trans, ret);
1656 			goto fail;
1657 		}
1658 	}
1659 
1660 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1661 	if (ret) {
1662 		btrfs_abort_transaction(trans, ret);
1663 		goto fail;
1664 	}
1665 
1666 fail:
1667 	pending->error = ret;
1668 dir_item_existed:
1669 	trans->block_rsv = rsv;
1670 	trans->bytes_reserved = 0;
1671 clear_skip_qgroup:
1672 	btrfs_clear_skip_qgroup(trans);
1673 no_free_objectid:
1674 	kfree(new_root_item);
1675 	pending->root_item = NULL;
1676 	btrfs_free_path(path);
1677 	pending->path = NULL;
1678 
1679 	return ret;
1680 }
1681 
1682 /*
1683  * create all the snapshots we've scheduled for creation
1684  */
1685 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1686 {
1687 	struct btrfs_pending_snapshot *pending, *next;
1688 	struct list_head *head = &trans->transaction->pending_snapshots;
1689 	int ret = 0;
1690 
1691 	list_for_each_entry_safe(pending, next, head, list) {
1692 		list_del(&pending->list);
1693 		ret = create_pending_snapshot(trans, pending);
1694 		if (ret)
1695 			break;
1696 	}
1697 	return ret;
1698 }
1699 
1700 static void update_super_roots(struct btrfs_fs_info *fs_info)
1701 {
1702 	struct btrfs_root_item *root_item;
1703 	struct btrfs_super_block *super;
1704 
1705 	super = fs_info->super_copy;
1706 
1707 	root_item = &fs_info->chunk_root->root_item;
1708 	super->chunk_root = root_item->bytenr;
1709 	super->chunk_root_generation = root_item->generation;
1710 	super->chunk_root_level = root_item->level;
1711 
1712 	root_item = &fs_info->tree_root->root_item;
1713 	super->root = root_item->bytenr;
1714 	super->generation = root_item->generation;
1715 	super->root_level = root_item->level;
1716 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1717 		super->cache_generation = root_item->generation;
1718 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1719 		super->uuid_tree_generation = root_item->generation;
1720 }
1721 
1722 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1723 {
1724 	struct btrfs_transaction *trans;
1725 	int ret = 0;
1726 
1727 	spin_lock(&info->trans_lock);
1728 	trans = info->running_transaction;
1729 	if (trans)
1730 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1731 	spin_unlock(&info->trans_lock);
1732 	return ret;
1733 }
1734 
1735 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1736 {
1737 	struct btrfs_transaction *trans;
1738 	int ret = 0;
1739 
1740 	spin_lock(&info->trans_lock);
1741 	trans = info->running_transaction;
1742 	if (trans)
1743 		ret = is_transaction_blocked(trans);
1744 	spin_unlock(&info->trans_lock);
1745 	return ret;
1746 }
1747 
1748 /*
1749  * wait for the current transaction commit to start and block subsequent
1750  * transaction joins
1751  */
1752 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1753 					    struct btrfs_transaction *trans)
1754 {
1755 	wait_event(fs_info->transaction_blocked_wait,
1756 		   trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1757 }
1758 
1759 /*
1760  * wait for the current transaction to start and then become unblocked.
1761  * caller holds ref.
1762  */
1763 static void wait_current_trans_commit_start_and_unblock(
1764 					struct btrfs_fs_info *fs_info,
1765 					struct btrfs_transaction *trans)
1766 {
1767 	wait_event(fs_info->transaction_wait,
1768 		   trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1769 }
1770 
1771 /*
1772  * commit transactions asynchronously. once btrfs_commit_transaction_async
1773  * returns, any subsequent transaction will not be allowed to join.
1774  */
1775 struct btrfs_async_commit {
1776 	struct btrfs_trans_handle *newtrans;
1777 	struct work_struct work;
1778 };
1779 
1780 static void do_async_commit(struct work_struct *work)
1781 {
1782 	struct btrfs_async_commit *ac =
1783 		container_of(work, struct btrfs_async_commit, work);
1784 
1785 	/*
1786 	 * We've got freeze protection passed with the transaction.
1787 	 * Tell lockdep about it.
1788 	 */
1789 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1790 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1791 
1792 	current->journal_info = ac->newtrans;
1793 
1794 	btrfs_commit_transaction(ac->newtrans);
1795 	kfree(ac);
1796 }
1797 
1798 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1799 				   int wait_for_unblock)
1800 {
1801 	struct btrfs_fs_info *fs_info = trans->fs_info;
1802 	struct btrfs_async_commit *ac;
1803 	struct btrfs_transaction *cur_trans;
1804 
1805 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1806 	if (!ac)
1807 		return -ENOMEM;
1808 
1809 	INIT_WORK(&ac->work, do_async_commit);
1810 	ac->newtrans = btrfs_join_transaction(trans->root);
1811 	if (IS_ERR(ac->newtrans)) {
1812 		int err = PTR_ERR(ac->newtrans);
1813 		kfree(ac);
1814 		return err;
1815 	}
1816 
1817 	/* take transaction reference */
1818 	cur_trans = trans->transaction;
1819 	refcount_inc(&cur_trans->use_count);
1820 
1821 	btrfs_end_transaction(trans);
1822 
1823 	/*
1824 	 * Tell lockdep we've released the freeze rwsem, since the
1825 	 * async commit thread will be the one to unlock it.
1826 	 */
1827 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1828 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1829 
1830 	schedule_work(&ac->work);
1831 
1832 	/* wait for transaction to start and unblock */
1833 	if (wait_for_unblock)
1834 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1835 	else
1836 		wait_current_trans_commit_start(fs_info, cur_trans);
1837 
1838 	if (current->journal_info == trans)
1839 		current->journal_info = NULL;
1840 
1841 	btrfs_put_transaction(cur_trans);
1842 	return 0;
1843 }
1844 
1845 
1846 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1847 {
1848 	struct btrfs_fs_info *fs_info = trans->fs_info;
1849 	struct btrfs_transaction *cur_trans = trans->transaction;
1850 	DEFINE_WAIT(wait);
1851 
1852 	WARN_ON(refcount_read(&trans->use_count) > 1);
1853 
1854 	btrfs_abort_transaction(trans, err);
1855 
1856 	spin_lock(&fs_info->trans_lock);
1857 
1858 	/*
1859 	 * If the transaction is removed from the list, it means this
1860 	 * transaction has been committed successfully, so it is impossible
1861 	 * to call the cleanup function.
1862 	 */
1863 	BUG_ON(list_empty(&cur_trans->list));
1864 
1865 	list_del_init(&cur_trans->list);
1866 	if (cur_trans == fs_info->running_transaction) {
1867 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1868 		spin_unlock(&fs_info->trans_lock);
1869 		wait_event(cur_trans->writer_wait,
1870 			   atomic_read(&cur_trans->num_writers) == 1);
1871 
1872 		spin_lock(&fs_info->trans_lock);
1873 	}
1874 	spin_unlock(&fs_info->trans_lock);
1875 
1876 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1877 
1878 	spin_lock(&fs_info->trans_lock);
1879 	if (cur_trans == fs_info->running_transaction)
1880 		fs_info->running_transaction = NULL;
1881 	spin_unlock(&fs_info->trans_lock);
1882 
1883 	if (trans->type & __TRANS_FREEZABLE)
1884 		sb_end_intwrite(fs_info->sb);
1885 	btrfs_put_transaction(cur_trans);
1886 	btrfs_put_transaction(cur_trans);
1887 
1888 	trace_btrfs_transaction_commit(trans->root);
1889 
1890 	if (current->journal_info == trans)
1891 		current->journal_info = NULL;
1892 	btrfs_scrub_cancel(fs_info);
1893 
1894 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1895 }
1896 
1897 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1898 {
1899 	/*
1900 	 * We use writeback_inodes_sb here because if we used
1901 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1902 	 * Currently are holding the fs freeze lock, if we do an async flush
1903 	 * we'll do btrfs_join_transaction() and deadlock because we need to
1904 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
1905 	 * from already being in a transaction and our join_transaction doesn't
1906 	 * have to re-take the fs freeze lock.
1907 	 */
1908 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1909 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1910 	return 0;
1911 }
1912 
1913 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1914 {
1915 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1916 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1917 }
1918 
1919 static inline void
1920 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1921 {
1922 	wait_event(cur_trans->pending_wait,
1923 		   atomic_read(&cur_trans->pending_ordered) == 0);
1924 }
1925 
1926 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1927 {
1928 	struct btrfs_fs_info *fs_info = trans->fs_info;
1929 	struct btrfs_transaction *cur_trans = trans->transaction;
1930 	struct btrfs_transaction *prev_trans = NULL;
1931 	int ret;
1932 
1933 	/* Stop the commit early if ->aborted is set */
1934 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
1935 		ret = cur_trans->aborted;
1936 		btrfs_end_transaction(trans);
1937 		return ret;
1938 	}
1939 
1940 	/* make a pass through all the delayed refs we have so far
1941 	 * any runnings procs may add more while we are here
1942 	 */
1943 	ret = btrfs_run_delayed_refs(trans, 0);
1944 	if (ret) {
1945 		btrfs_end_transaction(trans);
1946 		return ret;
1947 	}
1948 
1949 	btrfs_trans_release_metadata(trans);
1950 	trans->block_rsv = NULL;
1951 
1952 	cur_trans = trans->transaction;
1953 
1954 	/*
1955 	 * set the flushing flag so procs in this transaction have to
1956 	 * start sending their work down.
1957 	 */
1958 	cur_trans->delayed_refs.flushing = 1;
1959 	smp_wmb();
1960 
1961 	if (!list_empty(&trans->new_bgs))
1962 		btrfs_create_pending_block_groups(trans);
1963 
1964 	ret = btrfs_run_delayed_refs(trans, 0);
1965 	if (ret) {
1966 		btrfs_end_transaction(trans);
1967 		return ret;
1968 	}
1969 
1970 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1971 		int run_it = 0;
1972 
1973 		/* this mutex is also taken before trying to set
1974 		 * block groups readonly.  We need to make sure
1975 		 * that nobody has set a block group readonly
1976 		 * after a extents from that block group have been
1977 		 * allocated for cache files.  btrfs_set_block_group_ro
1978 		 * will wait for the transaction to commit if it
1979 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1980 		 *
1981 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1982 		 * only one process starts all the block group IO.  It wouldn't
1983 		 * hurt to have more than one go through, but there's no
1984 		 * real advantage to it either.
1985 		 */
1986 		mutex_lock(&fs_info->ro_block_group_mutex);
1987 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1988 				      &cur_trans->flags))
1989 			run_it = 1;
1990 		mutex_unlock(&fs_info->ro_block_group_mutex);
1991 
1992 		if (run_it) {
1993 			ret = btrfs_start_dirty_block_groups(trans);
1994 			if (ret) {
1995 				btrfs_end_transaction(trans);
1996 				return ret;
1997 			}
1998 		}
1999 	}
2000 
2001 	spin_lock(&fs_info->trans_lock);
2002 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2003 		spin_unlock(&fs_info->trans_lock);
2004 		refcount_inc(&cur_trans->use_count);
2005 		ret = btrfs_end_transaction(trans);
2006 
2007 		wait_for_commit(cur_trans);
2008 
2009 		if (unlikely(cur_trans->aborted))
2010 			ret = cur_trans->aborted;
2011 
2012 		btrfs_put_transaction(cur_trans);
2013 
2014 		return ret;
2015 	}
2016 
2017 	cur_trans->state = TRANS_STATE_COMMIT_START;
2018 	wake_up(&fs_info->transaction_blocked_wait);
2019 
2020 	if (cur_trans->list.prev != &fs_info->trans_list) {
2021 		prev_trans = list_entry(cur_trans->list.prev,
2022 					struct btrfs_transaction, list);
2023 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2024 			refcount_inc(&prev_trans->use_count);
2025 			spin_unlock(&fs_info->trans_lock);
2026 
2027 			wait_for_commit(prev_trans);
2028 			ret = prev_trans->aborted;
2029 
2030 			btrfs_put_transaction(prev_trans);
2031 			if (ret)
2032 				goto cleanup_transaction;
2033 		} else {
2034 			spin_unlock(&fs_info->trans_lock);
2035 		}
2036 	} else {
2037 		spin_unlock(&fs_info->trans_lock);
2038 	}
2039 
2040 	extwriter_counter_dec(cur_trans, trans->type);
2041 
2042 	ret = btrfs_start_delalloc_flush(fs_info);
2043 	if (ret)
2044 		goto cleanup_transaction;
2045 
2046 	ret = btrfs_run_delayed_items(trans);
2047 	if (ret)
2048 		goto cleanup_transaction;
2049 
2050 	wait_event(cur_trans->writer_wait,
2051 		   extwriter_counter_read(cur_trans) == 0);
2052 
2053 	/* some pending stuffs might be added after the previous flush. */
2054 	ret = btrfs_run_delayed_items(trans);
2055 	if (ret)
2056 		goto cleanup_transaction;
2057 
2058 	btrfs_wait_delalloc_flush(fs_info);
2059 
2060 	btrfs_wait_pending_ordered(cur_trans);
2061 
2062 	btrfs_scrub_pause(fs_info);
2063 	/*
2064 	 * Ok now we need to make sure to block out any other joins while we
2065 	 * commit the transaction.  We could have started a join before setting
2066 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2067 	 */
2068 	spin_lock(&fs_info->trans_lock);
2069 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2070 	spin_unlock(&fs_info->trans_lock);
2071 	wait_event(cur_trans->writer_wait,
2072 		   atomic_read(&cur_trans->num_writers) == 1);
2073 
2074 	/* ->aborted might be set after the previous check, so check it */
2075 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2076 		ret = cur_trans->aborted;
2077 		goto scrub_continue;
2078 	}
2079 	/*
2080 	 * the reloc mutex makes sure that we stop
2081 	 * the balancing code from coming in and moving
2082 	 * extents around in the middle of the commit
2083 	 */
2084 	mutex_lock(&fs_info->reloc_mutex);
2085 
2086 	/*
2087 	 * We needn't worry about the delayed items because we will
2088 	 * deal with them in create_pending_snapshot(), which is the
2089 	 * core function of the snapshot creation.
2090 	 */
2091 	ret = create_pending_snapshots(trans);
2092 	if (ret) {
2093 		mutex_unlock(&fs_info->reloc_mutex);
2094 		goto scrub_continue;
2095 	}
2096 
2097 	/*
2098 	 * We insert the dir indexes of the snapshots and update the inode
2099 	 * of the snapshots' parents after the snapshot creation, so there
2100 	 * are some delayed items which are not dealt with. Now deal with
2101 	 * them.
2102 	 *
2103 	 * We needn't worry that this operation will corrupt the snapshots,
2104 	 * because all the tree which are snapshoted will be forced to COW
2105 	 * the nodes and leaves.
2106 	 */
2107 	ret = btrfs_run_delayed_items(trans);
2108 	if (ret) {
2109 		mutex_unlock(&fs_info->reloc_mutex);
2110 		goto scrub_continue;
2111 	}
2112 
2113 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2114 	if (ret) {
2115 		mutex_unlock(&fs_info->reloc_mutex);
2116 		goto scrub_continue;
2117 	}
2118 
2119 	/*
2120 	 * make sure none of the code above managed to slip in a
2121 	 * delayed item
2122 	 */
2123 	btrfs_assert_delayed_root_empty(fs_info);
2124 
2125 	WARN_ON(cur_trans != trans->transaction);
2126 
2127 	/* btrfs_commit_tree_roots is responsible for getting the
2128 	 * various roots consistent with each other.  Every pointer
2129 	 * in the tree of tree roots has to point to the most up to date
2130 	 * root for every subvolume and other tree.  So, we have to keep
2131 	 * the tree logging code from jumping in and changing any
2132 	 * of the trees.
2133 	 *
2134 	 * At this point in the commit, there can't be any tree-log
2135 	 * writers, but a little lower down we drop the trans mutex
2136 	 * and let new people in.  By holding the tree_log_mutex
2137 	 * from now until after the super is written, we avoid races
2138 	 * with the tree-log code.
2139 	 */
2140 	mutex_lock(&fs_info->tree_log_mutex);
2141 
2142 	ret = commit_fs_roots(trans);
2143 	if (ret) {
2144 		mutex_unlock(&fs_info->tree_log_mutex);
2145 		mutex_unlock(&fs_info->reloc_mutex);
2146 		goto scrub_continue;
2147 	}
2148 
2149 	/*
2150 	 * Since the transaction is done, we can apply the pending changes
2151 	 * before the next transaction.
2152 	 */
2153 	btrfs_apply_pending_changes(fs_info);
2154 
2155 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2156 	 * safe to free the root of tree log roots
2157 	 */
2158 	btrfs_free_log_root_tree(trans, fs_info);
2159 
2160 	/*
2161 	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2162 	 * new delayed refs. Must handle them or qgroup can be wrong.
2163 	 */
2164 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2165 	if (ret) {
2166 		mutex_unlock(&fs_info->tree_log_mutex);
2167 		mutex_unlock(&fs_info->reloc_mutex);
2168 		goto scrub_continue;
2169 	}
2170 
2171 	/*
2172 	 * Since fs roots are all committed, we can get a quite accurate
2173 	 * new_roots. So let's do quota accounting.
2174 	 */
2175 	ret = btrfs_qgroup_account_extents(trans);
2176 	if (ret < 0) {
2177 		mutex_unlock(&fs_info->tree_log_mutex);
2178 		mutex_unlock(&fs_info->reloc_mutex);
2179 		goto scrub_continue;
2180 	}
2181 
2182 	ret = commit_cowonly_roots(trans);
2183 	if (ret) {
2184 		mutex_unlock(&fs_info->tree_log_mutex);
2185 		mutex_unlock(&fs_info->reloc_mutex);
2186 		goto scrub_continue;
2187 	}
2188 
2189 	/*
2190 	 * The tasks which save the space cache and inode cache may also
2191 	 * update ->aborted, check it.
2192 	 */
2193 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2194 		ret = cur_trans->aborted;
2195 		mutex_unlock(&fs_info->tree_log_mutex);
2196 		mutex_unlock(&fs_info->reloc_mutex);
2197 		goto scrub_continue;
2198 	}
2199 
2200 	btrfs_prepare_extent_commit(fs_info);
2201 
2202 	cur_trans = fs_info->running_transaction;
2203 
2204 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2205 			    fs_info->tree_root->node);
2206 	list_add_tail(&fs_info->tree_root->dirty_list,
2207 		      &cur_trans->switch_commits);
2208 
2209 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2210 			    fs_info->chunk_root->node);
2211 	list_add_tail(&fs_info->chunk_root->dirty_list,
2212 		      &cur_trans->switch_commits);
2213 
2214 	switch_commit_roots(cur_trans);
2215 
2216 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2217 	ASSERT(list_empty(&cur_trans->io_bgs));
2218 	update_super_roots(fs_info);
2219 
2220 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2221 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2222 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2223 	       sizeof(*fs_info->super_copy));
2224 
2225 	btrfs_update_commit_device_size(fs_info);
2226 	btrfs_update_commit_device_bytes_used(cur_trans);
2227 
2228 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2229 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2230 
2231 	btrfs_trans_release_chunk_metadata(trans);
2232 
2233 	spin_lock(&fs_info->trans_lock);
2234 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2235 	fs_info->running_transaction = NULL;
2236 	spin_unlock(&fs_info->trans_lock);
2237 	mutex_unlock(&fs_info->reloc_mutex);
2238 
2239 	wake_up(&fs_info->transaction_wait);
2240 
2241 	ret = btrfs_write_and_wait_transaction(trans);
2242 	if (ret) {
2243 		btrfs_handle_fs_error(fs_info, ret,
2244 				      "Error while writing out transaction");
2245 		mutex_unlock(&fs_info->tree_log_mutex);
2246 		goto scrub_continue;
2247 	}
2248 
2249 	ret = write_all_supers(fs_info, 0);
2250 	/*
2251 	 * the super is written, we can safely allow the tree-loggers
2252 	 * to go about their business
2253 	 */
2254 	mutex_unlock(&fs_info->tree_log_mutex);
2255 	if (ret)
2256 		goto scrub_continue;
2257 
2258 	btrfs_finish_extent_commit(trans);
2259 
2260 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2261 		btrfs_clear_space_info_full(fs_info);
2262 
2263 	fs_info->last_trans_committed = cur_trans->transid;
2264 	/*
2265 	 * We needn't acquire the lock here because there is no other task
2266 	 * which can change it.
2267 	 */
2268 	cur_trans->state = TRANS_STATE_COMPLETED;
2269 	wake_up(&cur_trans->commit_wait);
2270 
2271 	spin_lock(&fs_info->trans_lock);
2272 	list_del_init(&cur_trans->list);
2273 	spin_unlock(&fs_info->trans_lock);
2274 
2275 	btrfs_put_transaction(cur_trans);
2276 	btrfs_put_transaction(cur_trans);
2277 
2278 	if (trans->type & __TRANS_FREEZABLE)
2279 		sb_end_intwrite(fs_info->sb);
2280 
2281 	trace_btrfs_transaction_commit(trans->root);
2282 
2283 	btrfs_scrub_continue(fs_info);
2284 
2285 	if (current->journal_info == trans)
2286 		current->journal_info = NULL;
2287 
2288 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2289 
2290 	/*
2291 	 * If fs has been frozen, we can not handle delayed iputs, otherwise
2292 	 * it'll result in deadlock about SB_FREEZE_FS.
2293 	 */
2294 	if (current != fs_info->transaction_kthread &&
2295 	    current != fs_info->cleaner_kthread &&
2296 	    !test_bit(BTRFS_FS_FROZEN, &fs_info->flags))
2297 		btrfs_run_delayed_iputs(fs_info);
2298 
2299 	return ret;
2300 
2301 scrub_continue:
2302 	btrfs_scrub_continue(fs_info);
2303 cleanup_transaction:
2304 	btrfs_trans_release_metadata(trans);
2305 	btrfs_trans_release_chunk_metadata(trans);
2306 	trans->block_rsv = NULL;
2307 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2308 	if (current->journal_info == trans)
2309 		current->journal_info = NULL;
2310 	cleanup_transaction(trans, ret);
2311 
2312 	return ret;
2313 }
2314 
2315 /*
2316  * return < 0 if error
2317  * 0 if there are no more dead_roots at the time of call
2318  * 1 there are more to be processed, call me again
2319  *
2320  * The return value indicates there are certainly more snapshots to delete, but
2321  * if there comes a new one during processing, it may return 0. We don't mind,
2322  * because btrfs_commit_super will poke cleaner thread and it will process it a
2323  * few seconds later.
2324  */
2325 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2326 {
2327 	int ret;
2328 	struct btrfs_fs_info *fs_info = root->fs_info;
2329 
2330 	spin_lock(&fs_info->trans_lock);
2331 	if (list_empty(&fs_info->dead_roots)) {
2332 		spin_unlock(&fs_info->trans_lock);
2333 		return 0;
2334 	}
2335 	root = list_first_entry(&fs_info->dead_roots,
2336 			struct btrfs_root, root_list);
2337 	list_del_init(&root->root_list);
2338 	spin_unlock(&fs_info->trans_lock);
2339 
2340 	btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2341 
2342 	btrfs_kill_all_delayed_nodes(root);
2343 
2344 	if (btrfs_header_backref_rev(root->node) <
2345 			BTRFS_MIXED_BACKREF_REV)
2346 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2347 	else
2348 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2349 
2350 	return (ret < 0) ? 0 : 1;
2351 }
2352 
2353 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2354 {
2355 	unsigned long prev;
2356 	unsigned long bit;
2357 
2358 	prev = xchg(&fs_info->pending_changes, 0);
2359 	if (!prev)
2360 		return;
2361 
2362 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2363 	if (prev & bit)
2364 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2365 	prev &= ~bit;
2366 
2367 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2368 	if (prev & bit)
2369 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2370 	prev &= ~bit;
2371 
2372 	bit = 1 << BTRFS_PENDING_COMMIT;
2373 	if (prev & bit)
2374 		btrfs_debug(fs_info, "pending commit done");
2375 	prev &= ~bit;
2376 
2377 	if (prev)
2378 		btrfs_warn(fs_info,
2379 			"unknown pending changes left 0x%lx, ignoring", prev);
2380 }
2381