xref: /openbmc/linux/fs/btrfs/transaction.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		if (transaction->delayed_refs.pending_csums)
68 			printk(KERN_ERR "pending csums is %llu\n",
69 			       transaction->delayed_refs.pending_csums);
70 		while (!list_empty(&transaction->pending_chunks)) {
71 			struct extent_map *em;
72 
73 			em = list_first_entry(&transaction->pending_chunks,
74 					      struct extent_map, list);
75 			list_del_init(&em->list);
76 			free_extent_map(em);
77 		}
78 		kmem_cache_free(btrfs_transaction_cachep, transaction);
79 	}
80 }
81 
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 	spin_lock(&tree->lock);
85 	while (!RB_EMPTY_ROOT(&tree->state)) {
86 		struct rb_node *node;
87 		struct extent_state *state;
88 
89 		node = rb_first(&tree->state);
90 		state = rb_entry(node, struct extent_state, rb_node);
91 		rb_erase(&state->rb_node, &tree->state);
92 		RB_CLEAR_NODE(&state->rb_node);
93 		/*
94 		 * btree io trees aren't supposed to have tasks waiting for
95 		 * changes in the flags of extent states ever.
96 		 */
97 		ASSERT(!waitqueue_active(&state->wq));
98 		free_extent_state(state);
99 
100 		cond_resched_lock(&tree->lock);
101 	}
102 	spin_unlock(&tree->lock);
103 }
104 
105 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
106 					 struct btrfs_fs_info *fs_info)
107 {
108 	struct btrfs_root *root, *tmp;
109 
110 	down_write(&fs_info->commit_root_sem);
111 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
112 				 dirty_list) {
113 		list_del_init(&root->dirty_list);
114 		free_extent_buffer(root->commit_root);
115 		root->commit_root = btrfs_root_node(root);
116 		if (is_fstree(root->objectid))
117 			btrfs_unpin_free_ino(root);
118 		clear_btree_io_tree(&root->dirty_log_pages);
119 	}
120 
121 	/* We can free old roots now. */
122 	spin_lock(&trans->dropped_roots_lock);
123 	while (!list_empty(&trans->dropped_roots)) {
124 		root = list_first_entry(&trans->dropped_roots,
125 					struct btrfs_root, root_list);
126 		list_del_init(&root->root_list);
127 		spin_unlock(&trans->dropped_roots_lock);
128 		btrfs_drop_and_free_fs_root(fs_info, root);
129 		spin_lock(&trans->dropped_roots_lock);
130 	}
131 	spin_unlock(&trans->dropped_roots_lock);
132 	up_write(&fs_info->commit_root_sem);
133 }
134 
135 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
136 					 unsigned int type)
137 {
138 	if (type & TRANS_EXTWRITERS)
139 		atomic_inc(&trans->num_extwriters);
140 }
141 
142 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
143 					 unsigned int type)
144 {
145 	if (type & TRANS_EXTWRITERS)
146 		atomic_dec(&trans->num_extwriters);
147 }
148 
149 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
150 					  unsigned int type)
151 {
152 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
153 }
154 
155 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
156 {
157 	return atomic_read(&trans->num_extwriters);
158 }
159 
160 /*
161  * either allocate a new transaction or hop into the existing one
162  */
163 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
164 {
165 	struct btrfs_transaction *cur_trans;
166 	struct btrfs_fs_info *fs_info = root->fs_info;
167 
168 	spin_lock(&fs_info->trans_lock);
169 loop:
170 	/* The file system has been taken offline. No new transactions. */
171 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
172 		spin_unlock(&fs_info->trans_lock);
173 		return -EROFS;
174 	}
175 
176 	cur_trans = fs_info->running_transaction;
177 	if (cur_trans) {
178 		if (cur_trans->aborted) {
179 			spin_unlock(&fs_info->trans_lock);
180 			return cur_trans->aborted;
181 		}
182 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
183 			spin_unlock(&fs_info->trans_lock);
184 			return -EBUSY;
185 		}
186 		atomic_inc(&cur_trans->use_count);
187 		atomic_inc(&cur_trans->num_writers);
188 		extwriter_counter_inc(cur_trans, type);
189 		spin_unlock(&fs_info->trans_lock);
190 		return 0;
191 	}
192 	spin_unlock(&fs_info->trans_lock);
193 
194 	/*
195 	 * If we are ATTACH, we just want to catch the current transaction,
196 	 * and commit it. If there is no transaction, just return ENOENT.
197 	 */
198 	if (type == TRANS_ATTACH)
199 		return -ENOENT;
200 
201 	/*
202 	 * JOIN_NOLOCK only happens during the transaction commit, so
203 	 * it is impossible that ->running_transaction is NULL
204 	 */
205 	BUG_ON(type == TRANS_JOIN_NOLOCK);
206 
207 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
208 	if (!cur_trans)
209 		return -ENOMEM;
210 
211 	spin_lock(&fs_info->trans_lock);
212 	if (fs_info->running_transaction) {
213 		/*
214 		 * someone started a transaction after we unlocked.  Make sure
215 		 * to redo the checks above
216 		 */
217 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
218 		goto loop;
219 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
220 		spin_unlock(&fs_info->trans_lock);
221 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
222 		return -EROFS;
223 	}
224 
225 	atomic_set(&cur_trans->num_writers, 1);
226 	extwriter_counter_init(cur_trans, type);
227 	init_waitqueue_head(&cur_trans->writer_wait);
228 	init_waitqueue_head(&cur_trans->commit_wait);
229 	cur_trans->state = TRANS_STATE_RUNNING;
230 	/*
231 	 * One for this trans handle, one so it will live on until we
232 	 * commit the transaction.
233 	 */
234 	atomic_set(&cur_trans->use_count, 2);
235 	cur_trans->have_free_bgs = 0;
236 	cur_trans->start_time = get_seconds();
237 	cur_trans->dirty_bg_run = 0;
238 
239 	cur_trans->delayed_refs.href_root = RB_ROOT;
240 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
241 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
242 	cur_trans->delayed_refs.num_heads_ready = 0;
243 	cur_trans->delayed_refs.pending_csums = 0;
244 	cur_trans->delayed_refs.num_heads = 0;
245 	cur_trans->delayed_refs.flushing = 0;
246 	cur_trans->delayed_refs.run_delayed_start = 0;
247 	cur_trans->delayed_refs.qgroup_to_skip = 0;
248 
249 	/*
250 	 * although the tree mod log is per file system and not per transaction,
251 	 * the log must never go across transaction boundaries.
252 	 */
253 	smp_mb();
254 	if (!list_empty(&fs_info->tree_mod_seq_list))
255 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
256 			"creating a fresh transaction\n");
257 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
258 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
259 			"creating a fresh transaction\n");
260 	atomic64_set(&fs_info->tree_mod_seq, 0);
261 
262 	spin_lock_init(&cur_trans->delayed_refs.lock);
263 
264 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
265 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
266 	INIT_LIST_HEAD(&cur_trans->switch_commits);
267 	INIT_LIST_HEAD(&cur_trans->pending_ordered);
268 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
269 	INIT_LIST_HEAD(&cur_trans->io_bgs);
270 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
271 	mutex_init(&cur_trans->cache_write_mutex);
272 	cur_trans->num_dirty_bgs = 0;
273 	spin_lock_init(&cur_trans->dirty_bgs_lock);
274 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
275 	spin_lock_init(&cur_trans->deleted_bgs_lock);
276 	spin_lock_init(&cur_trans->dropped_roots_lock);
277 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
278 	extent_io_tree_init(&cur_trans->dirty_pages,
279 			     fs_info->btree_inode->i_mapping);
280 	fs_info->generation++;
281 	cur_trans->transid = fs_info->generation;
282 	fs_info->running_transaction = cur_trans;
283 	cur_trans->aborted = 0;
284 	spin_unlock(&fs_info->trans_lock);
285 
286 	return 0;
287 }
288 
289 /*
290  * this does all the record keeping required to make sure that a reference
291  * counted root is properly recorded in a given transaction.  This is required
292  * to make sure the old root from before we joined the transaction is deleted
293  * when the transaction commits
294  */
295 static int record_root_in_trans(struct btrfs_trans_handle *trans,
296 			       struct btrfs_root *root)
297 {
298 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
299 	    root->last_trans < trans->transid) {
300 		WARN_ON(root == root->fs_info->extent_root);
301 		WARN_ON(root->commit_root != root->node);
302 
303 		/*
304 		 * see below for IN_TRANS_SETUP usage rules
305 		 * we have the reloc mutex held now, so there
306 		 * is only one writer in this function
307 		 */
308 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
309 
310 		/* make sure readers find IN_TRANS_SETUP before
311 		 * they find our root->last_trans update
312 		 */
313 		smp_wmb();
314 
315 		spin_lock(&root->fs_info->fs_roots_radix_lock);
316 		if (root->last_trans == trans->transid) {
317 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
318 			return 0;
319 		}
320 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
321 			   (unsigned long)root->root_key.objectid,
322 			   BTRFS_ROOT_TRANS_TAG);
323 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
324 		root->last_trans = trans->transid;
325 
326 		/* this is pretty tricky.  We don't want to
327 		 * take the relocation lock in btrfs_record_root_in_trans
328 		 * unless we're really doing the first setup for this root in
329 		 * this transaction.
330 		 *
331 		 * Normally we'd use root->last_trans as a flag to decide
332 		 * if we want to take the expensive mutex.
333 		 *
334 		 * But, we have to set root->last_trans before we
335 		 * init the relocation root, otherwise, we trip over warnings
336 		 * in ctree.c.  The solution used here is to flag ourselves
337 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
338 		 * fixing up the reloc trees and everyone must wait.
339 		 *
340 		 * When this is zero, they can trust root->last_trans and fly
341 		 * through btrfs_record_root_in_trans without having to take the
342 		 * lock.  smp_wmb() makes sure that all the writes above are
343 		 * done before we pop in the zero below
344 		 */
345 		btrfs_init_reloc_root(trans, root);
346 		smp_mb__before_atomic();
347 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
348 	}
349 	return 0;
350 }
351 
352 
353 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
354 			    struct btrfs_root *root)
355 {
356 	struct btrfs_transaction *cur_trans = trans->transaction;
357 
358 	/* Add ourselves to the transaction dropped list */
359 	spin_lock(&cur_trans->dropped_roots_lock);
360 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
361 	spin_unlock(&cur_trans->dropped_roots_lock);
362 
363 	/* Make sure we don't try to update the root at commit time */
364 	spin_lock(&root->fs_info->fs_roots_radix_lock);
365 	radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
366 			     (unsigned long)root->root_key.objectid,
367 			     BTRFS_ROOT_TRANS_TAG);
368 	spin_unlock(&root->fs_info->fs_roots_radix_lock);
369 }
370 
371 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
372 			       struct btrfs_root *root)
373 {
374 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
375 		return 0;
376 
377 	/*
378 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
379 	 * and barriers
380 	 */
381 	smp_rmb();
382 	if (root->last_trans == trans->transid &&
383 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
384 		return 0;
385 
386 	mutex_lock(&root->fs_info->reloc_mutex);
387 	record_root_in_trans(trans, root);
388 	mutex_unlock(&root->fs_info->reloc_mutex);
389 
390 	return 0;
391 }
392 
393 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
394 {
395 	return (trans->state >= TRANS_STATE_BLOCKED &&
396 		trans->state < TRANS_STATE_UNBLOCKED &&
397 		!trans->aborted);
398 }
399 
400 /* wait for commit against the current transaction to become unblocked
401  * when this is done, it is safe to start a new transaction, but the current
402  * transaction might not be fully on disk.
403  */
404 static void wait_current_trans(struct btrfs_root *root)
405 {
406 	struct btrfs_transaction *cur_trans;
407 
408 	spin_lock(&root->fs_info->trans_lock);
409 	cur_trans = root->fs_info->running_transaction;
410 	if (cur_trans && is_transaction_blocked(cur_trans)) {
411 		atomic_inc(&cur_trans->use_count);
412 		spin_unlock(&root->fs_info->trans_lock);
413 
414 		wait_event(root->fs_info->transaction_wait,
415 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
416 			   cur_trans->aborted);
417 		btrfs_put_transaction(cur_trans);
418 	} else {
419 		spin_unlock(&root->fs_info->trans_lock);
420 	}
421 }
422 
423 static int may_wait_transaction(struct btrfs_root *root, int type)
424 {
425 	if (root->fs_info->log_root_recovering)
426 		return 0;
427 
428 	if (type == TRANS_USERSPACE)
429 		return 1;
430 
431 	if (type == TRANS_START &&
432 	    !atomic_read(&root->fs_info->open_ioctl_trans))
433 		return 1;
434 
435 	return 0;
436 }
437 
438 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
439 {
440 	if (!root->fs_info->reloc_ctl ||
441 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
442 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
443 	    root->reloc_root)
444 		return false;
445 
446 	return true;
447 }
448 
449 static struct btrfs_trans_handle *
450 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
451 		  enum btrfs_reserve_flush_enum flush)
452 {
453 	struct btrfs_trans_handle *h;
454 	struct btrfs_transaction *cur_trans;
455 	u64 num_bytes = 0;
456 	u64 qgroup_reserved = 0;
457 	bool reloc_reserved = false;
458 	int ret;
459 
460 	/* Send isn't supposed to start transactions. */
461 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
462 
463 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
464 		return ERR_PTR(-EROFS);
465 
466 	if (current->journal_info) {
467 		WARN_ON(type & TRANS_EXTWRITERS);
468 		h = current->journal_info;
469 		h->use_count++;
470 		WARN_ON(h->use_count > 2);
471 		h->orig_rsv = h->block_rsv;
472 		h->block_rsv = NULL;
473 		goto got_it;
474 	}
475 
476 	/*
477 	 * Do the reservation before we join the transaction so we can do all
478 	 * the appropriate flushing if need be.
479 	 */
480 	if (num_items > 0 && root != root->fs_info->chunk_root) {
481 		if (root->fs_info->quota_enabled &&
482 		    is_fstree(root->root_key.objectid)) {
483 			qgroup_reserved = num_items * root->nodesize;
484 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
485 			if (ret)
486 				return ERR_PTR(ret);
487 		}
488 
489 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
490 		/*
491 		 * Do the reservation for the relocation root creation
492 		 */
493 		if (need_reserve_reloc_root(root)) {
494 			num_bytes += root->nodesize;
495 			reloc_reserved = true;
496 		}
497 
498 		ret = btrfs_block_rsv_add(root,
499 					  &root->fs_info->trans_block_rsv,
500 					  num_bytes, flush);
501 		if (ret)
502 			goto reserve_fail;
503 	}
504 again:
505 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
506 	if (!h) {
507 		ret = -ENOMEM;
508 		goto alloc_fail;
509 	}
510 
511 	/*
512 	 * If we are JOIN_NOLOCK we're already committing a transaction and
513 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
514 	 * because we're already holding a ref.  We need this because we could
515 	 * have raced in and did an fsync() on a file which can kick a commit
516 	 * and then we deadlock with somebody doing a freeze.
517 	 *
518 	 * If we are ATTACH, it means we just want to catch the current
519 	 * transaction and commit it, so we needn't do sb_start_intwrite().
520 	 */
521 	if (type & __TRANS_FREEZABLE)
522 		sb_start_intwrite(root->fs_info->sb);
523 
524 	if (may_wait_transaction(root, type))
525 		wait_current_trans(root);
526 
527 	do {
528 		ret = join_transaction(root, type);
529 		if (ret == -EBUSY) {
530 			wait_current_trans(root);
531 			if (unlikely(type == TRANS_ATTACH))
532 				ret = -ENOENT;
533 		}
534 	} while (ret == -EBUSY);
535 
536 	if (ret < 0) {
537 		/* We must get the transaction if we are JOIN_NOLOCK. */
538 		BUG_ON(type == TRANS_JOIN_NOLOCK);
539 		goto join_fail;
540 	}
541 
542 	cur_trans = root->fs_info->running_transaction;
543 
544 	h->transid = cur_trans->transid;
545 	h->transaction = cur_trans;
546 	h->blocks_used = 0;
547 	h->bytes_reserved = 0;
548 	h->chunk_bytes_reserved = 0;
549 	h->root = root;
550 	h->delayed_ref_updates = 0;
551 	h->use_count = 1;
552 	h->adding_csums = 0;
553 	h->block_rsv = NULL;
554 	h->orig_rsv = NULL;
555 	h->aborted = 0;
556 	h->qgroup_reserved = 0;
557 	h->delayed_ref_elem.seq = 0;
558 	h->type = type;
559 	h->allocating_chunk = false;
560 	h->can_flush_pending_bgs = true;
561 	h->reloc_reserved = false;
562 	h->sync = false;
563 	INIT_LIST_HEAD(&h->qgroup_ref_list);
564 	INIT_LIST_HEAD(&h->new_bgs);
565 	INIT_LIST_HEAD(&h->ordered);
566 
567 	smp_mb();
568 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
569 	    may_wait_transaction(root, type)) {
570 		current->journal_info = h;
571 		btrfs_commit_transaction(h, root);
572 		goto again;
573 	}
574 
575 	if (num_bytes) {
576 		trace_btrfs_space_reservation(root->fs_info, "transaction",
577 					      h->transid, num_bytes, 1);
578 		h->block_rsv = &root->fs_info->trans_block_rsv;
579 		h->bytes_reserved = num_bytes;
580 		h->reloc_reserved = reloc_reserved;
581 	}
582 	h->qgroup_reserved = qgroup_reserved;
583 
584 got_it:
585 	btrfs_record_root_in_trans(h, root);
586 
587 	if (!current->journal_info && type != TRANS_USERSPACE)
588 		current->journal_info = h;
589 	return h;
590 
591 join_fail:
592 	if (type & __TRANS_FREEZABLE)
593 		sb_end_intwrite(root->fs_info->sb);
594 	kmem_cache_free(btrfs_trans_handle_cachep, h);
595 alloc_fail:
596 	if (num_bytes)
597 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
598 					num_bytes);
599 reserve_fail:
600 	if (qgroup_reserved)
601 		btrfs_qgroup_free(root, qgroup_reserved);
602 	return ERR_PTR(ret);
603 }
604 
605 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
606 						   int num_items)
607 {
608 	return start_transaction(root, num_items, TRANS_START,
609 				 BTRFS_RESERVE_FLUSH_ALL);
610 }
611 
612 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
613 					struct btrfs_root *root, int num_items)
614 {
615 	return start_transaction(root, num_items, TRANS_START,
616 				 BTRFS_RESERVE_FLUSH_LIMIT);
617 }
618 
619 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
620 {
621 	return start_transaction(root, 0, TRANS_JOIN, 0);
622 }
623 
624 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
625 {
626 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
627 }
628 
629 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
630 {
631 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
632 }
633 
634 /*
635  * btrfs_attach_transaction() - catch the running transaction
636  *
637  * It is used when we want to commit the current the transaction, but
638  * don't want to start a new one.
639  *
640  * Note: If this function return -ENOENT, it just means there is no
641  * running transaction. But it is possible that the inactive transaction
642  * is still in the memory, not fully on disk. If you hope there is no
643  * inactive transaction in the fs when -ENOENT is returned, you should
644  * invoke
645  *     btrfs_attach_transaction_barrier()
646  */
647 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
648 {
649 	return start_transaction(root, 0, TRANS_ATTACH, 0);
650 }
651 
652 /*
653  * btrfs_attach_transaction_barrier() - catch the running transaction
654  *
655  * It is similar to the above function, the differentia is this one
656  * will wait for all the inactive transactions until they fully
657  * complete.
658  */
659 struct btrfs_trans_handle *
660 btrfs_attach_transaction_barrier(struct btrfs_root *root)
661 {
662 	struct btrfs_trans_handle *trans;
663 
664 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
665 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
666 		btrfs_wait_for_commit(root, 0);
667 
668 	return trans;
669 }
670 
671 /* wait for a transaction commit to be fully complete */
672 static noinline void wait_for_commit(struct btrfs_root *root,
673 				    struct btrfs_transaction *commit)
674 {
675 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
676 }
677 
678 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
679 {
680 	struct btrfs_transaction *cur_trans = NULL, *t;
681 	int ret = 0;
682 
683 	if (transid) {
684 		if (transid <= root->fs_info->last_trans_committed)
685 			goto out;
686 
687 		/* find specified transaction */
688 		spin_lock(&root->fs_info->trans_lock);
689 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
690 			if (t->transid == transid) {
691 				cur_trans = t;
692 				atomic_inc(&cur_trans->use_count);
693 				ret = 0;
694 				break;
695 			}
696 			if (t->transid > transid) {
697 				ret = 0;
698 				break;
699 			}
700 		}
701 		spin_unlock(&root->fs_info->trans_lock);
702 
703 		/*
704 		 * The specified transaction doesn't exist, or we
705 		 * raced with btrfs_commit_transaction
706 		 */
707 		if (!cur_trans) {
708 			if (transid > root->fs_info->last_trans_committed)
709 				ret = -EINVAL;
710 			goto out;
711 		}
712 	} else {
713 		/* find newest transaction that is committing | committed */
714 		spin_lock(&root->fs_info->trans_lock);
715 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
716 					    list) {
717 			if (t->state >= TRANS_STATE_COMMIT_START) {
718 				if (t->state == TRANS_STATE_COMPLETED)
719 					break;
720 				cur_trans = t;
721 				atomic_inc(&cur_trans->use_count);
722 				break;
723 			}
724 		}
725 		spin_unlock(&root->fs_info->trans_lock);
726 		if (!cur_trans)
727 			goto out;  /* nothing committing|committed */
728 	}
729 
730 	wait_for_commit(root, cur_trans);
731 	btrfs_put_transaction(cur_trans);
732 out:
733 	return ret;
734 }
735 
736 void btrfs_throttle(struct btrfs_root *root)
737 {
738 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
739 		wait_current_trans(root);
740 }
741 
742 static int should_end_transaction(struct btrfs_trans_handle *trans,
743 				  struct btrfs_root *root)
744 {
745 	if (root->fs_info->global_block_rsv.space_info->full &&
746 	    btrfs_check_space_for_delayed_refs(trans, root))
747 		return 1;
748 
749 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
750 }
751 
752 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
753 				 struct btrfs_root *root)
754 {
755 	struct btrfs_transaction *cur_trans = trans->transaction;
756 	int updates;
757 	int err;
758 
759 	smp_mb();
760 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
761 	    cur_trans->delayed_refs.flushing)
762 		return 1;
763 
764 	updates = trans->delayed_ref_updates;
765 	trans->delayed_ref_updates = 0;
766 	if (updates) {
767 		err = btrfs_run_delayed_refs(trans, root, updates * 2);
768 		if (err) /* Error code will also eval true */
769 			return err;
770 	}
771 
772 	return should_end_transaction(trans, root);
773 }
774 
775 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
776 			  struct btrfs_root *root, int throttle)
777 {
778 	struct btrfs_transaction *cur_trans = trans->transaction;
779 	struct btrfs_fs_info *info = root->fs_info;
780 	unsigned long cur = trans->delayed_ref_updates;
781 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
782 	int err = 0;
783 	int must_run_delayed_refs = 0;
784 
785 	if (trans->use_count > 1) {
786 		trans->use_count--;
787 		trans->block_rsv = trans->orig_rsv;
788 		return 0;
789 	}
790 
791 	btrfs_trans_release_metadata(trans, root);
792 	trans->block_rsv = NULL;
793 
794 	if (!list_empty(&trans->new_bgs))
795 		btrfs_create_pending_block_groups(trans, root);
796 
797 	if (!list_empty(&trans->ordered)) {
798 		spin_lock(&info->trans_lock);
799 		list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
800 		spin_unlock(&info->trans_lock);
801 	}
802 
803 	trans->delayed_ref_updates = 0;
804 	if (!trans->sync) {
805 		must_run_delayed_refs =
806 			btrfs_should_throttle_delayed_refs(trans, root);
807 		cur = max_t(unsigned long, cur, 32);
808 
809 		/*
810 		 * don't make the caller wait if they are from a NOLOCK
811 		 * or ATTACH transaction, it will deadlock with commit
812 		 */
813 		if (must_run_delayed_refs == 1 &&
814 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
815 			must_run_delayed_refs = 2;
816 	}
817 
818 	if (trans->qgroup_reserved) {
819 		/*
820 		 * the same root has to be passed here between start_transaction
821 		 * and end_transaction. Subvolume quota depends on this.
822 		 */
823 		btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
824 		trans->qgroup_reserved = 0;
825 	}
826 
827 	btrfs_trans_release_metadata(trans, root);
828 	trans->block_rsv = NULL;
829 
830 	if (!list_empty(&trans->new_bgs))
831 		btrfs_create_pending_block_groups(trans, root);
832 
833 	btrfs_trans_release_chunk_metadata(trans);
834 
835 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
836 	    should_end_transaction(trans, root) &&
837 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
838 		spin_lock(&info->trans_lock);
839 		if (cur_trans->state == TRANS_STATE_RUNNING)
840 			cur_trans->state = TRANS_STATE_BLOCKED;
841 		spin_unlock(&info->trans_lock);
842 	}
843 
844 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
845 		if (throttle)
846 			return btrfs_commit_transaction(trans, root);
847 		else
848 			wake_up_process(info->transaction_kthread);
849 	}
850 
851 	if (trans->type & __TRANS_FREEZABLE)
852 		sb_end_intwrite(root->fs_info->sb);
853 
854 	WARN_ON(cur_trans != info->running_transaction);
855 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
856 	atomic_dec(&cur_trans->num_writers);
857 	extwriter_counter_dec(cur_trans, trans->type);
858 
859 	smp_mb();
860 	if (waitqueue_active(&cur_trans->writer_wait))
861 		wake_up(&cur_trans->writer_wait);
862 	btrfs_put_transaction(cur_trans);
863 
864 	if (current->journal_info == trans)
865 		current->journal_info = NULL;
866 
867 	if (throttle)
868 		btrfs_run_delayed_iputs(root);
869 
870 	if (trans->aborted ||
871 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
872 		wake_up_process(info->transaction_kthread);
873 		err = -EIO;
874 	}
875 	assert_qgroups_uptodate(trans);
876 
877 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
878 	if (must_run_delayed_refs) {
879 		btrfs_async_run_delayed_refs(root, cur,
880 					     must_run_delayed_refs == 1);
881 	}
882 	return err;
883 }
884 
885 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
886 			  struct btrfs_root *root)
887 {
888 	return __btrfs_end_transaction(trans, root, 0);
889 }
890 
891 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
892 				   struct btrfs_root *root)
893 {
894 	return __btrfs_end_transaction(trans, root, 1);
895 }
896 
897 /*
898  * when btree blocks are allocated, they have some corresponding bits set for
899  * them in one of two extent_io trees.  This is used to make sure all of
900  * those extents are sent to disk but does not wait on them
901  */
902 int btrfs_write_marked_extents(struct btrfs_root *root,
903 			       struct extent_io_tree *dirty_pages, int mark)
904 {
905 	int err = 0;
906 	int werr = 0;
907 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
908 	struct extent_state *cached_state = NULL;
909 	u64 start = 0;
910 	u64 end;
911 
912 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
913 				      mark, &cached_state)) {
914 		bool wait_writeback = false;
915 
916 		err = convert_extent_bit(dirty_pages, start, end,
917 					 EXTENT_NEED_WAIT,
918 					 mark, &cached_state, GFP_NOFS);
919 		/*
920 		 * convert_extent_bit can return -ENOMEM, which is most of the
921 		 * time a temporary error. So when it happens, ignore the error
922 		 * and wait for writeback of this range to finish - because we
923 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
924 		 * to btrfs_wait_marked_extents() would not know that writeback
925 		 * for this range started and therefore wouldn't wait for it to
926 		 * finish - we don't want to commit a superblock that points to
927 		 * btree nodes/leafs for which writeback hasn't finished yet
928 		 * (and without errors).
929 		 * We cleanup any entries left in the io tree when committing
930 		 * the transaction (through clear_btree_io_tree()).
931 		 */
932 		if (err == -ENOMEM) {
933 			err = 0;
934 			wait_writeback = true;
935 		}
936 		if (!err)
937 			err = filemap_fdatawrite_range(mapping, start, end);
938 		if (err)
939 			werr = err;
940 		else if (wait_writeback)
941 			werr = filemap_fdatawait_range(mapping, start, end);
942 		free_extent_state(cached_state);
943 		cached_state = NULL;
944 		cond_resched();
945 		start = end + 1;
946 	}
947 	return werr;
948 }
949 
950 /*
951  * when btree blocks are allocated, they have some corresponding bits set for
952  * them in one of two extent_io trees.  This is used to make sure all of
953  * those extents are on disk for transaction or log commit.  We wait
954  * on all the pages and clear them from the dirty pages state tree
955  */
956 int btrfs_wait_marked_extents(struct btrfs_root *root,
957 			      struct extent_io_tree *dirty_pages, int mark)
958 {
959 	int err = 0;
960 	int werr = 0;
961 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
962 	struct extent_state *cached_state = NULL;
963 	u64 start = 0;
964 	u64 end;
965 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
966 	bool errors = false;
967 
968 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
969 				      EXTENT_NEED_WAIT, &cached_state)) {
970 		/*
971 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
972 		 * When committing the transaction, we'll remove any entries
973 		 * left in the io tree. For a log commit, we don't remove them
974 		 * after committing the log because the tree can be accessed
975 		 * concurrently - we do it only at transaction commit time when
976 		 * it's safe to do it (through clear_btree_io_tree()).
977 		 */
978 		err = clear_extent_bit(dirty_pages, start, end,
979 				       EXTENT_NEED_WAIT,
980 				       0, 0, &cached_state, GFP_NOFS);
981 		if (err == -ENOMEM)
982 			err = 0;
983 		if (!err)
984 			err = filemap_fdatawait_range(mapping, start, end);
985 		if (err)
986 			werr = err;
987 		free_extent_state(cached_state);
988 		cached_state = NULL;
989 		cond_resched();
990 		start = end + 1;
991 	}
992 	if (err)
993 		werr = err;
994 
995 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
996 		if ((mark & EXTENT_DIRTY) &&
997 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
998 				       &btree_ino->runtime_flags))
999 			errors = true;
1000 
1001 		if ((mark & EXTENT_NEW) &&
1002 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1003 				       &btree_ino->runtime_flags))
1004 			errors = true;
1005 	} else {
1006 		if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1007 				       &btree_ino->runtime_flags))
1008 			errors = true;
1009 	}
1010 
1011 	if (errors && !werr)
1012 		werr = -EIO;
1013 
1014 	return werr;
1015 }
1016 
1017 /*
1018  * when btree blocks are allocated, they have some corresponding bits set for
1019  * them in one of two extent_io trees.  This is used to make sure all of
1020  * those extents are on disk for transaction or log commit
1021  */
1022 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1023 				struct extent_io_tree *dirty_pages, int mark)
1024 {
1025 	int ret;
1026 	int ret2;
1027 	struct blk_plug plug;
1028 
1029 	blk_start_plug(&plug);
1030 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1031 	blk_finish_plug(&plug);
1032 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1033 
1034 	if (ret)
1035 		return ret;
1036 	if (ret2)
1037 		return ret2;
1038 	return 0;
1039 }
1040 
1041 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1042 				     struct btrfs_root *root)
1043 {
1044 	int ret;
1045 
1046 	ret = btrfs_write_and_wait_marked_extents(root,
1047 					   &trans->transaction->dirty_pages,
1048 					   EXTENT_DIRTY);
1049 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1050 
1051 	return ret;
1052 }
1053 
1054 /*
1055  * this is used to update the root pointer in the tree of tree roots.
1056  *
1057  * But, in the case of the extent allocation tree, updating the root
1058  * pointer may allocate blocks which may change the root of the extent
1059  * allocation tree.
1060  *
1061  * So, this loops and repeats and makes sure the cowonly root didn't
1062  * change while the root pointer was being updated in the metadata.
1063  */
1064 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1065 			       struct btrfs_root *root)
1066 {
1067 	int ret;
1068 	u64 old_root_bytenr;
1069 	u64 old_root_used;
1070 	struct btrfs_root *tree_root = root->fs_info->tree_root;
1071 
1072 	old_root_used = btrfs_root_used(&root->root_item);
1073 
1074 	while (1) {
1075 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1076 		if (old_root_bytenr == root->node->start &&
1077 		    old_root_used == btrfs_root_used(&root->root_item))
1078 			break;
1079 
1080 		btrfs_set_root_node(&root->root_item, root->node);
1081 		ret = btrfs_update_root(trans, tree_root,
1082 					&root->root_key,
1083 					&root->root_item);
1084 		if (ret)
1085 			return ret;
1086 
1087 		old_root_used = btrfs_root_used(&root->root_item);
1088 	}
1089 
1090 	return 0;
1091 }
1092 
1093 /*
1094  * update all the cowonly tree roots on disk
1095  *
1096  * The error handling in this function may not be obvious. Any of the
1097  * failures will cause the file system to go offline. We still need
1098  * to clean up the delayed refs.
1099  */
1100 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1101 					 struct btrfs_root *root)
1102 {
1103 	struct btrfs_fs_info *fs_info = root->fs_info;
1104 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1105 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1106 	struct list_head *next;
1107 	struct extent_buffer *eb;
1108 	int ret;
1109 
1110 	eb = btrfs_lock_root_node(fs_info->tree_root);
1111 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1112 			      0, &eb);
1113 	btrfs_tree_unlock(eb);
1114 	free_extent_buffer(eb);
1115 
1116 	if (ret)
1117 		return ret;
1118 
1119 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1120 	if (ret)
1121 		return ret;
1122 
1123 	ret = btrfs_run_dev_stats(trans, root->fs_info);
1124 	if (ret)
1125 		return ret;
1126 	ret = btrfs_run_dev_replace(trans, root->fs_info);
1127 	if (ret)
1128 		return ret;
1129 	ret = btrfs_run_qgroups(trans, root->fs_info);
1130 	if (ret)
1131 		return ret;
1132 
1133 	ret = btrfs_setup_space_cache(trans, root);
1134 	if (ret)
1135 		return ret;
1136 
1137 	/* run_qgroups might have added some more refs */
1138 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1139 	if (ret)
1140 		return ret;
1141 again:
1142 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1143 		next = fs_info->dirty_cowonly_roots.next;
1144 		list_del_init(next);
1145 		root = list_entry(next, struct btrfs_root, dirty_list);
1146 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1147 
1148 		if (root != fs_info->extent_root)
1149 			list_add_tail(&root->dirty_list,
1150 				      &trans->transaction->switch_commits);
1151 		ret = update_cowonly_root(trans, root);
1152 		if (ret)
1153 			return ret;
1154 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1155 		if (ret)
1156 			return ret;
1157 	}
1158 
1159 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1160 		ret = btrfs_write_dirty_block_groups(trans, root);
1161 		if (ret)
1162 			return ret;
1163 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1164 		if (ret)
1165 			return ret;
1166 	}
1167 
1168 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1169 		goto again;
1170 
1171 	list_add_tail(&fs_info->extent_root->dirty_list,
1172 		      &trans->transaction->switch_commits);
1173 	btrfs_after_dev_replace_commit(fs_info);
1174 
1175 	return 0;
1176 }
1177 
1178 /*
1179  * dead roots are old snapshots that need to be deleted.  This allocates
1180  * a dirty root struct and adds it into the list of dead roots that need to
1181  * be deleted
1182  */
1183 void btrfs_add_dead_root(struct btrfs_root *root)
1184 {
1185 	spin_lock(&root->fs_info->trans_lock);
1186 	if (list_empty(&root->root_list))
1187 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1188 	spin_unlock(&root->fs_info->trans_lock);
1189 }
1190 
1191 /*
1192  * update all the cowonly tree roots on disk
1193  */
1194 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1195 				    struct btrfs_root *root)
1196 {
1197 	struct btrfs_root *gang[8];
1198 	struct btrfs_fs_info *fs_info = root->fs_info;
1199 	int i;
1200 	int ret;
1201 	int err = 0;
1202 
1203 	spin_lock(&fs_info->fs_roots_radix_lock);
1204 	while (1) {
1205 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1206 						 (void **)gang, 0,
1207 						 ARRAY_SIZE(gang),
1208 						 BTRFS_ROOT_TRANS_TAG);
1209 		if (ret == 0)
1210 			break;
1211 		for (i = 0; i < ret; i++) {
1212 			root = gang[i];
1213 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1214 					(unsigned long)root->root_key.objectid,
1215 					BTRFS_ROOT_TRANS_TAG);
1216 			spin_unlock(&fs_info->fs_roots_radix_lock);
1217 
1218 			btrfs_free_log(trans, root);
1219 			btrfs_update_reloc_root(trans, root);
1220 			btrfs_orphan_commit_root(trans, root);
1221 
1222 			btrfs_save_ino_cache(root, trans);
1223 
1224 			/* see comments in should_cow_block() */
1225 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1226 			smp_mb__after_atomic();
1227 
1228 			if (root->commit_root != root->node) {
1229 				list_add_tail(&root->dirty_list,
1230 					&trans->transaction->switch_commits);
1231 				btrfs_set_root_node(&root->root_item,
1232 						    root->node);
1233 			}
1234 
1235 			err = btrfs_update_root(trans, fs_info->tree_root,
1236 						&root->root_key,
1237 						&root->root_item);
1238 			spin_lock(&fs_info->fs_roots_radix_lock);
1239 			if (err)
1240 				break;
1241 		}
1242 	}
1243 	spin_unlock(&fs_info->fs_roots_radix_lock);
1244 	return err;
1245 }
1246 
1247 /*
1248  * defrag a given btree.
1249  * Every leaf in the btree is read and defragged.
1250  */
1251 int btrfs_defrag_root(struct btrfs_root *root)
1252 {
1253 	struct btrfs_fs_info *info = root->fs_info;
1254 	struct btrfs_trans_handle *trans;
1255 	int ret;
1256 
1257 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1258 		return 0;
1259 
1260 	while (1) {
1261 		trans = btrfs_start_transaction(root, 0);
1262 		if (IS_ERR(trans))
1263 			return PTR_ERR(trans);
1264 
1265 		ret = btrfs_defrag_leaves(trans, root);
1266 
1267 		btrfs_end_transaction(trans, root);
1268 		btrfs_btree_balance_dirty(info->tree_root);
1269 		cond_resched();
1270 
1271 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1272 			break;
1273 
1274 		if (btrfs_defrag_cancelled(root->fs_info)) {
1275 			pr_debug("BTRFS: defrag_root cancelled\n");
1276 			ret = -EAGAIN;
1277 			break;
1278 		}
1279 	}
1280 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1281 	return ret;
1282 }
1283 
1284 /*
1285  * new snapshots need to be created at a very specific time in the
1286  * transaction commit.  This does the actual creation.
1287  *
1288  * Note:
1289  * If the error which may affect the commitment of the current transaction
1290  * happens, we should return the error number. If the error which just affect
1291  * the creation of the pending snapshots, just return 0.
1292  */
1293 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1294 				   struct btrfs_fs_info *fs_info,
1295 				   struct btrfs_pending_snapshot *pending)
1296 {
1297 	struct btrfs_key key;
1298 	struct btrfs_root_item *new_root_item;
1299 	struct btrfs_root *tree_root = fs_info->tree_root;
1300 	struct btrfs_root *root = pending->root;
1301 	struct btrfs_root *parent_root;
1302 	struct btrfs_block_rsv *rsv;
1303 	struct inode *parent_inode;
1304 	struct btrfs_path *path;
1305 	struct btrfs_dir_item *dir_item;
1306 	struct dentry *dentry;
1307 	struct extent_buffer *tmp;
1308 	struct extent_buffer *old;
1309 	struct timespec cur_time = CURRENT_TIME;
1310 	int ret = 0;
1311 	u64 to_reserve = 0;
1312 	u64 index = 0;
1313 	u64 objectid;
1314 	u64 root_flags;
1315 	uuid_le new_uuid;
1316 
1317 	path = btrfs_alloc_path();
1318 	if (!path) {
1319 		pending->error = -ENOMEM;
1320 		return 0;
1321 	}
1322 
1323 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1324 	if (!new_root_item) {
1325 		pending->error = -ENOMEM;
1326 		goto root_item_alloc_fail;
1327 	}
1328 
1329 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1330 	if (pending->error)
1331 		goto no_free_objectid;
1332 
1333 	/*
1334 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1335 	 * accounted by later btrfs_qgroup_inherit().
1336 	 */
1337 	btrfs_set_skip_qgroup(trans, objectid);
1338 
1339 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1340 
1341 	if (to_reserve > 0) {
1342 		pending->error = btrfs_block_rsv_add(root,
1343 						     &pending->block_rsv,
1344 						     to_reserve,
1345 						     BTRFS_RESERVE_NO_FLUSH);
1346 		if (pending->error)
1347 			goto clear_skip_qgroup;
1348 	}
1349 
1350 	key.objectid = objectid;
1351 	key.offset = (u64)-1;
1352 	key.type = BTRFS_ROOT_ITEM_KEY;
1353 
1354 	rsv = trans->block_rsv;
1355 	trans->block_rsv = &pending->block_rsv;
1356 	trans->bytes_reserved = trans->block_rsv->reserved;
1357 
1358 	dentry = pending->dentry;
1359 	parent_inode = pending->dir;
1360 	parent_root = BTRFS_I(parent_inode)->root;
1361 	record_root_in_trans(trans, parent_root);
1362 
1363 	/*
1364 	 * insert the directory item
1365 	 */
1366 	ret = btrfs_set_inode_index(parent_inode, &index);
1367 	BUG_ON(ret); /* -ENOMEM */
1368 
1369 	/* check if there is a file/dir which has the same name. */
1370 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1371 					 btrfs_ino(parent_inode),
1372 					 dentry->d_name.name,
1373 					 dentry->d_name.len, 0);
1374 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1375 		pending->error = -EEXIST;
1376 		goto dir_item_existed;
1377 	} else if (IS_ERR(dir_item)) {
1378 		ret = PTR_ERR(dir_item);
1379 		btrfs_abort_transaction(trans, root, ret);
1380 		goto fail;
1381 	}
1382 	btrfs_release_path(path);
1383 
1384 	/*
1385 	 * pull in the delayed directory update
1386 	 * and the delayed inode item
1387 	 * otherwise we corrupt the FS during
1388 	 * snapshot
1389 	 */
1390 	ret = btrfs_run_delayed_items(trans, root);
1391 	if (ret) {	/* Transaction aborted */
1392 		btrfs_abort_transaction(trans, root, ret);
1393 		goto fail;
1394 	}
1395 
1396 	record_root_in_trans(trans, root);
1397 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1398 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1399 	btrfs_check_and_init_root_item(new_root_item);
1400 
1401 	root_flags = btrfs_root_flags(new_root_item);
1402 	if (pending->readonly)
1403 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1404 	else
1405 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1406 	btrfs_set_root_flags(new_root_item, root_flags);
1407 
1408 	btrfs_set_root_generation_v2(new_root_item,
1409 			trans->transid);
1410 	uuid_le_gen(&new_uuid);
1411 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1412 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1413 			BTRFS_UUID_SIZE);
1414 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1415 		memset(new_root_item->received_uuid, 0,
1416 		       sizeof(new_root_item->received_uuid));
1417 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1418 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1419 		btrfs_set_root_stransid(new_root_item, 0);
1420 		btrfs_set_root_rtransid(new_root_item, 0);
1421 	}
1422 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1423 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1424 	btrfs_set_root_otransid(new_root_item, trans->transid);
1425 
1426 	old = btrfs_lock_root_node(root);
1427 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1428 	if (ret) {
1429 		btrfs_tree_unlock(old);
1430 		free_extent_buffer(old);
1431 		btrfs_abort_transaction(trans, root, ret);
1432 		goto fail;
1433 	}
1434 
1435 	btrfs_set_lock_blocking(old);
1436 
1437 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1438 	/* clean up in any case */
1439 	btrfs_tree_unlock(old);
1440 	free_extent_buffer(old);
1441 	if (ret) {
1442 		btrfs_abort_transaction(trans, root, ret);
1443 		goto fail;
1444 	}
1445 	/* see comments in should_cow_block() */
1446 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1447 	smp_wmb();
1448 
1449 	btrfs_set_root_node(new_root_item, tmp);
1450 	/* record when the snapshot was created in key.offset */
1451 	key.offset = trans->transid;
1452 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1453 	btrfs_tree_unlock(tmp);
1454 	free_extent_buffer(tmp);
1455 	if (ret) {
1456 		btrfs_abort_transaction(trans, root, ret);
1457 		goto fail;
1458 	}
1459 
1460 	/*
1461 	 * insert root back/forward references
1462 	 */
1463 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1464 				 parent_root->root_key.objectid,
1465 				 btrfs_ino(parent_inode), index,
1466 				 dentry->d_name.name, dentry->d_name.len);
1467 	if (ret) {
1468 		btrfs_abort_transaction(trans, root, ret);
1469 		goto fail;
1470 	}
1471 
1472 	key.offset = (u64)-1;
1473 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1474 	if (IS_ERR(pending->snap)) {
1475 		ret = PTR_ERR(pending->snap);
1476 		btrfs_abort_transaction(trans, root, ret);
1477 		goto fail;
1478 	}
1479 
1480 	ret = btrfs_reloc_post_snapshot(trans, pending);
1481 	if (ret) {
1482 		btrfs_abort_transaction(trans, root, ret);
1483 		goto fail;
1484 	}
1485 
1486 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1487 	if (ret) {
1488 		btrfs_abort_transaction(trans, root, ret);
1489 		goto fail;
1490 	}
1491 
1492 	ret = btrfs_insert_dir_item(trans, parent_root,
1493 				    dentry->d_name.name, dentry->d_name.len,
1494 				    parent_inode, &key,
1495 				    BTRFS_FT_DIR, index);
1496 	/* We have check then name at the beginning, so it is impossible. */
1497 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1498 	if (ret) {
1499 		btrfs_abort_transaction(trans, root, ret);
1500 		goto fail;
1501 	}
1502 
1503 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1504 					 dentry->d_name.len * 2);
1505 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1506 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1507 	if (ret) {
1508 		btrfs_abort_transaction(trans, root, ret);
1509 		goto fail;
1510 	}
1511 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1512 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1513 	if (ret) {
1514 		btrfs_abort_transaction(trans, root, ret);
1515 		goto fail;
1516 	}
1517 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1518 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1519 					  new_root_item->received_uuid,
1520 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1521 					  objectid);
1522 		if (ret && ret != -EEXIST) {
1523 			btrfs_abort_transaction(trans, root, ret);
1524 			goto fail;
1525 		}
1526 	}
1527 
1528 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1529 	if (ret) {
1530 		btrfs_abort_transaction(trans, root, ret);
1531 		goto fail;
1532 	}
1533 
1534 	/*
1535 	 * account qgroup counters before qgroup_inherit()
1536 	 */
1537 	ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1538 	if (ret)
1539 		goto fail;
1540 	ret = btrfs_qgroup_account_extents(trans, fs_info);
1541 	if (ret)
1542 		goto fail;
1543 	ret = btrfs_qgroup_inherit(trans, fs_info,
1544 				   root->root_key.objectid,
1545 				   objectid, pending->inherit);
1546 	if (ret) {
1547 		btrfs_abort_transaction(trans, root, ret);
1548 		goto fail;
1549 	}
1550 
1551 fail:
1552 	pending->error = ret;
1553 dir_item_existed:
1554 	trans->block_rsv = rsv;
1555 	trans->bytes_reserved = 0;
1556 clear_skip_qgroup:
1557 	btrfs_clear_skip_qgroup(trans);
1558 no_free_objectid:
1559 	kfree(new_root_item);
1560 root_item_alloc_fail:
1561 	btrfs_free_path(path);
1562 	return ret;
1563 }
1564 
1565 /*
1566  * create all the snapshots we've scheduled for creation
1567  */
1568 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1569 					     struct btrfs_fs_info *fs_info)
1570 {
1571 	struct btrfs_pending_snapshot *pending, *next;
1572 	struct list_head *head = &trans->transaction->pending_snapshots;
1573 	int ret = 0;
1574 
1575 	list_for_each_entry_safe(pending, next, head, list) {
1576 		list_del(&pending->list);
1577 		ret = create_pending_snapshot(trans, fs_info, pending);
1578 		if (ret)
1579 			break;
1580 	}
1581 	return ret;
1582 }
1583 
1584 static void update_super_roots(struct btrfs_root *root)
1585 {
1586 	struct btrfs_root_item *root_item;
1587 	struct btrfs_super_block *super;
1588 
1589 	super = root->fs_info->super_copy;
1590 
1591 	root_item = &root->fs_info->chunk_root->root_item;
1592 	super->chunk_root = root_item->bytenr;
1593 	super->chunk_root_generation = root_item->generation;
1594 	super->chunk_root_level = root_item->level;
1595 
1596 	root_item = &root->fs_info->tree_root->root_item;
1597 	super->root = root_item->bytenr;
1598 	super->generation = root_item->generation;
1599 	super->root_level = root_item->level;
1600 	if (btrfs_test_opt(root, SPACE_CACHE))
1601 		super->cache_generation = root_item->generation;
1602 	if (root->fs_info->update_uuid_tree_gen)
1603 		super->uuid_tree_generation = root_item->generation;
1604 }
1605 
1606 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1607 {
1608 	struct btrfs_transaction *trans;
1609 	int ret = 0;
1610 
1611 	spin_lock(&info->trans_lock);
1612 	trans = info->running_transaction;
1613 	if (trans)
1614 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1615 	spin_unlock(&info->trans_lock);
1616 	return ret;
1617 }
1618 
1619 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1620 {
1621 	struct btrfs_transaction *trans;
1622 	int ret = 0;
1623 
1624 	spin_lock(&info->trans_lock);
1625 	trans = info->running_transaction;
1626 	if (trans)
1627 		ret = is_transaction_blocked(trans);
1628 	spin_unlock(&info->trans_lock);
1629 	return ret;
1630 }
1631 
1632 /*
1633  * wait for the current transaction commit to start and block subsequent
1634  * transaction joins
1635  */
1636 static void wait_current_trans_commit_start(struct btrfs_root *root,
1637 					    struct btrfs_transaction *trans)
1638 {
1639 	wait_event(root->fs_info->transaction_blocked_wait,
1640 		   trans->state >= TRANS_STATE_COMMIT_START ||
1641 		   trans->aborted);
1642 }
1643 
1644 /*
1645  * wait for the current transaction to start and then become unblocked.
1646  * caller holds ref.
1647  */
1648 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1649 					 struct btrfs_transaction *trans)
1650 {
1651 	wait_event(root->fs_info->transaction_wait,
1652 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1653 		   trans->aborted);
1654 }
1655 
1656 /*
1657  * commit transactions asynchronously. once btrfs_commit_transaction_async
1658  * returns, any subsequent transaction will not be allowed to join.
1659  */
1660 struct btrfs_async_commit {
1661 	struct btrfs_trans_handle *newtrans;
1662 	struct btrfs_root *root;
1663 	struct work_struct work;
1664 };
1665 
1666 static void do_async_commit(struct work_struct *work)
1667 {
1668 	struct btrfs_async_commit *ac =
1669 		container_of(work, struct btrfs_async_commit, work);
1670 
1671 	/*
1672 	 * We've got freeze protection passed with the transaction.
1673 	 * Tell lockdep about it.
1674 	 */
1675 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1676 		__sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1677 
1678 	current->journal_info = ac->newtrans;
1679 
1680 	btrfs_commit_transaction(ac->newtrans, ac->root);
1681 	kfree(ac);
1682 }
1683 
1684 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1685 				   struct btrfs_root *root,
1686 				   int wait_for_unblock)
1687 {
1688 	struct btrfs_async_commit *ac;
1689 	struct btrfs_transaction *cur_trans;
1690 
1691 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1692 	if (!ac)
1693 		return -ENOMEM;
1694 
1695 	INIT_WORK(&ac->work, do_async_commit);
1696 	ac->root = root;
1697 	ac->newtrans = btrfs_join_transaction(root);
1698 	if (IS_ERR(ac->newtrans)) {
1699 		int err = PTR_ERR(ac->newtrans);
1700 		kfree(ac);
1701 		return err;
1702 	}
1703 
1704 	/* take transaction reference */
1705 	cur_trans = trans->transaction;
1706 	atomic_inc(&cur_trans->use_count);
1707 
1708 	btrfs_end_transaction(trans, root);
1709 
1710 	/*
1711 	 * Tell lockdep we've released the freeze rwsem, since the
1712 	 * async commit thread will be the one to unlock it.
1713 	 */
1714 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1715 		__sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1716 
1717 	schedule_work(&ac->work);
1718 
1719 	/* wait for transaction to start and unblock */
1720 	if (wait_for_unblock)
1721 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1722 	else
1723 		wait_current_trans_commit_start(root, cur_trans);
1724 
1725 	if (current->journal_info == trans)
1726 		current->journal_info = NULL;
1727 
1728 	btrfs_put_transaction(cur_trans);
1729 	return 0;
1730 }
1731 
1732 
1733 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1734 				struct btrfs_root *root, int err)
1735 {
1736 	struct btrfs_transaction *cur_trans = trans->transaction;
1737 	DEFINE_WAIT(wait);
1738 
1739 	WARN_ON(trans->use_count > 1);
1740 
1741 	btrfs_abort_transaction(trans, root, err);
1742 
1743 	spin_lock(&root->fs_info->trans_lock);
1744 
1745 	/*
1746 	 * If the transaction is removed from the list, it means this
1747 	 * transaction has been committed successfully, so it is impossible
1748 	 * to call the cleanup function.
1749 	 */
1750 	BUG_ON(list_empty(&cur_trans->list));
1751 
1752 	list_del_init(&cur_trans->list);
1753 	if (cur_trans == root->fs_info->running_transaction) {
1754 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1755 		spin_unlock(&root->fs_info->trans_lock);
1756 		wait_event(cur_trans->writer_wait,
1757 			   atomic_read(&cur_trans->num_writers) == 1);
1758 
1759 		spin_lock(&root->fs_info->trans_lock);
1760 	}
1761 	spin_unlock(&root->fs_info->trans_lock);
1762 
1763 	btrfs_cleanup_one_transaction(trans->transaction, root);
1764 
1765 	spin_lock(&root->fs_info->trans_lock);
1766 	if (cur_trans == root->fs_info->running_transaction)
1767 		root->fs_info->running_transaction = NULL;
1768 	spin_unlock(&root->fs_info->trans_lock);
1769 
1770 	if (trans->type & __TRANS_FREEZABLE)
1771 		sb_end_intwrite(root->fs_info->sb);
1772 	btrfs_put_transaction(cur_trans);
1773 	btrfs_put_transaction(cur_trans);
1774 
1775 	trace_btrfs_transaction_commit(root);
1776 
1777 	if (current->journal_info == trans)
1778 		current->journal_info = NULL;
1779 	btrfs_scrub_cancel(root->fs_info);
1780 
1781 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1782 }
1783 
1784 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1785 {
1786 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1787 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1788 	return 0;
1789 }
1790 
1791 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1792 {
1793 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1794 		btrfs_wait_ordered_roots(fs_info, -1);
1795 }
1796 
1797 static inline void
1798 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1799 			   struct btrfs_fs_info *fs_info)
1800 {
1801 	struct btrfs_ordered_extent *ordered;
1802 
1803 	spin_lock(&fs_info->trans_lock);
1804 	while (!list_empty(&cur_trans->pending_ordered)) {
1805 		ordered = list_first_entry(&cur_trans->pending_ordered,
1806 					   struct btrfs_ordered_extent,
1807 					   trans_list);
1808 		list_del_init(&ordered->trans_list);
1809 		spin_unlock(&fs_info->trans_lock);
1810 
1811 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1812 						   &ordered->flags));
1813 		btrfs_put_ordered_extent(ordered);
1814 		spin_lock(&fs_info->trans_lock);
1815 	}
1816 	spin_unlock(&fs_info->trans_lock);
1817 }
1818 
1819 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1820 			     struct btrfs_root *root)
1821 {
1822 	struct btrfs_transaction *cur_trans = trans->transaction;
1823 	struct btrfs_transaction *prev_trans = NULL;
1824 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1825 	int ret;
1826 
1827 	/* Stop the commit early if ->aborted is set */
1828 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1829 		ret = cur_trans->aborted;
1830 		btrfs_end_transaction(trans, root);
1831 		return ret;
1832 	}
1833 
1834 	/* make a pass through all the delayed refs we have so far
1835 	 * any runnings procs may add more while we are here
1836 	 */
1837 	ret = btrfs_run_delayed_refs(trans, root, 0);
1838 	if (ret) {
1839 		btrfs_end_transaction(trans, root);
1840 		return ret;
1841 	}
1842 
1843 	btrfs_trans_release_metadata(trans, root);
1844 	trans->block_rsv = NULL;
1845 	if (trans->qgroup_reserved) {
1846 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1847 		trans->qgroup_reserved = 0;
1848 	}
1849 
1850 	cur_trans = trans->transaction;
1851 
1852 	/*
1853 	 * set the flushing flag so procs in this transaction have to
1854 	 * start sending their work down.
1855 	 */
1856 	cur_trans->delayed_refs.flushing = 1;
1857 	smp_wmb();
1858 
1859 	if (!list_empty(&trans->new_bgs))
1860 		btrfs_create_pending_block_groups(trans, root);
1861 
1862 	ret = btrfs_run_delayed_refs(trans, root, 0);
1863 	if (ret) {
1864 		btrfs_end_transaction(trans, root);
1865 		return ret;
1866 	}
1867 
1868 	if (!cur_trans->dirty_bg_run) {
1869 		int run_it = 0;
1870 
1871 		/* this mutex is also taken before trying to set
1872 		 * block groups readonly.  We need to make sure
1873 		 * that nobody has set a block group readonly
1874 		 * after a extents from that block group have been
1875 		 * allocated for cache files.  btrfs_set_block_group_ro
1876 		 * will wait for the transaction to commit if it
1877 		 * finds dirty_bg_run = 1
1878 		 *
1879 		 * The dirty_bg_run flag is also used to make sure only
1880 		 * one process starts all the block group IO.  It wouldn't
1881 		 * hurt to have more than one go through, but there's no
1882 		 * real advantage to it either.
1883 		 */
1884 		mutex_lock(&root->fs_info->ro_block_group_mutex);
1885 		if (!cur_trans->dirty_bg_run) {
1886 			run_it = 1;
1887 			cur_trans->dirty_bg_run = 1;
1888 		}
1889 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
1890 
1891 		if (run_it)
1892 			ret = btrfs_start_dirty_block_groups(trans, root);
1893 	}
1894 	if (ret) {
1895 		btrfs_end_transaction(trans, root);
1896 		return ret;
1897 	}
1898 
1899 	spin_lock(&root->fs_info->trans_lock);
1900 	list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
1901 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1902 		spin_unlock(&root->fs_info->trans_lock);
1903 		atomic_inc(&cur_trans->use_count);
1904 		ret = btrfs_end_transaction(trans, root);
1905 
1906 		wait_for_commit(root, cur_trans);
1907 
1908 		if (unlikely(cur_trans->aborted))
1909 			ret = cur_trans->aborted;
1910 
1911 		btrfs_put_transaction(cur_trans);
1912 
1913 		return ret;
1914 	}
1915 
1916 	cur_trans->state = TRANS_STATE_COMMIT_START;
1917 	wake_up(&root->fs_info->transaction_blocked_wait);
1918 
1919 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1920 		prev_trans = list_entry(cur_trans->list.prev,
1921 					struct btrfs_transaction, list);
1922 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1923 			atomic_inc(&prev_trans->use_count);
1924 			spin_unlock(&root->fs_info->trans_lock);
1925 
1926 			wait_for_commit(root, prev_trans);
1927 			ret = prev_trans->aborted;
1928 
1929 			btrfs_put_transaction(prev_trans);
1930 			if (ret)
1931 				goto cleanup_transaction;
1932 		} else {
1933 			spin_unlock(&root->fs_info->trans_lock);
1934 		}
1935 	} else {
1936 		spin_unlock(&root->fs_info->trans_lock);
1937 	}
1938 
1939 	extwriter_counter_dec(cur_trans, trans->type);
1940 
1941 	ret = btrfs_start_delalloc_flush(root->fs_info);
1942 	if (ret)
1943 		goto cleanup_transaction;
1944 
1945 	ret = btrfs_run_delayed_items(trans, root);
1946 	if (ret)
1947 		goto cleanup_transaction;
1948 
1949 	wait_event(cur_trans->writer_wait,
1950 		   extwriter_counter_read(cur_trans) == 0);
1951 
1952 	/* some pending stuffs might be added after the previous flush. */
1953 	ret = btrfs_run_delayed_items(trans, root);
1954 	if (ret)
1955 		goto cleanup_transaction;
1956 
1957 	btrfs_wait_delalloc_flush(root->fs_info);
1958 
1959 	btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1960 
1961 	btrfs_scrub_pause(root);
1962 	/*
1963 	 * Ok now we need to make sure to block out any other joins while we
1964 	 * commit the transaction.  We could have started a join before setting
1965 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1966 	 */
1967 	spin_lock(&root->fs_info->trans_lock);
1968 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1969 	spin_unlock(&root->fs_info->trans_lock);
1970 	wait_event(cur_trans->writer_wait,
1971 		   atomic_read(&cur_trans->num_writers) == 1);
1972 
1973 	/* ->aborted might be set after the previous check, so check it */
1974 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1975 		ret = cur_trans->aborted;
1976 		goto scrub_continue;
1977 	}
1978 	/*
1979 	 * the reloc mutex makes sure that we stop
1980 	 * the balancing code from coming in and moving
1981 	 * extents around in the middle of the commit
1982 	 */
1983 	mutex_lock(&root->fs_info->reloc_mutex);
1984 
1985 	/*
1986 	 * We needn't worry about the delayed items because we will
1987 	 * deal with them in create_pending_snapshot(), which is the
1988 	 * core function of the snapshot creation.
1989 	 */
1990 	ret = create_pending_snapshots(trans, root->fs_info);
1991 	if (ret) {
1992 		mutex_unlock(&root->fs_info->reloc_mutex);
1993 		goto scrub_continue;
1994 	}
1995 
1996 	/*
1997 	 * We insert the dir indexes of the snapshots and update the inode
1998 	 * of the snapshots' parents after the snapshot creation, so there
1999 	 * are some delayed items which are not dealt with. Now deal with
2000 	 * them.
2001 	 *
2002 	 * We needn't worry that this operation will corrupt the snapshots,
2003 	 * because all the tree which are snapshoted will be forced to COW
2004 	 * the nodes and leaves.
2005 	 */
2006 	ret = btrfs_run_delayed_items(trans, root);
2007 	if (ret) {
2008 		mutex_unlock(&root->fs_info->reloc_mutex);
2009 		goto scrub_continue;
2010 	}
2011 
2012 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2013 	if (ret) {
2014 		mutex_unlock(&root->fs_info->reloc_mutex);
2015 		goto scrub_continue;
2016 	}
2017 
2018 	/* Reocrd old roots for later qgroup accounting */
2019 	ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2020 	if (ret) {
2021 		mutex_unlock(&root->fs_info->reloc_mutex);
2022 		goto scrub_continue;
2023 	}
2024 
2025 	/*
2026 	 * make sure none of the code above managed to slip in a
2027 	 * delayed item
2028 	 */
2029 	btrfs_assert_delayed_root_empty(root);
2030 
2031 	WARN_ON(cur_trans != trans->transaction);
2032 
2033 	/* btrfs_commit_tree_roots is responsible for getting the
2034 	 * various roots consistent with each other.  Every pointer
2035 	 * in the tree of tree roots has to point to the most up to date
2036 	 * root for every subvolume and other tree.  So, we have to keep
2037 	 * the tree logging code from jumping in and changing any
2038 	 * of the trees.
2039 	 *
2040 	 * At this point in the commit, there can't be any tree-log
2041 	 * writers, but a little lower down we drop the trans mutex
2042 	 * and let new people in.  By holding the tree_log_mutex
2043 	 * from now until after the super is written, we avoid races
2044 	 * with the tree-log code.
2045 	 */
2046 	mutex_lock(&root->fs_info->tree_log_mutex);
2047 
2048 	ret = commit_fs_roots(trans, root);
2049 	if (ret) {
2050 		mutex_unlock(&root->fs_info->tree_log_mutex);
2051 		mutex_unlock(&root->fs_info->reloc_mutex);
2052 		goto scrub_continue;
2053 	}
2054 
2055 	/*
2056 	 * Since the transaction is done, we can apply the pending changes
2057 	 * before the next transaction.
2058 	 */
2059 	btrfs_apply_pending_changes(root->fs_info);
2060 
2061 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2062 	 * safe to free the root of tree log roots
2063 	 */
2064 	btrfs_free_log_root_tree(trans, root->fs_info);
2065 
2066 	/*
2067 	 * Since fs roots are all committed, we can get a quite accurate
2068 	 * new_roots. So let's do quota accounting.
2069 	 */
2070 	ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2071 	if (ret < 0) {
2072 		mutex_unlock(&root->fs_info->tree_log_mutex);
2073 		mutex_unlock(&root->fs_info->reloc_mutex);
2074 		goto scrub_continue;
2075 	}
2076 
2077 	ret = commit_cowonly_roots(trans, root);
2078 	if (ret) {
2079 		mutex_unlock(&root->fs_info->tree_log_mutex);
2080 		mutex_unlock(&root->fs_info->reloc_mutex);
2081 		goto scrub_continue;
2082 	}
2083 
2084 	/*
2085 	 * The tasks which save the space cache and inode cache may also
2086 	 * update ->aborted, check it.
2087 	 */
2088 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2089 		ret = cur_trans->aborted;
2090 		mutex_unlock(&root->fs_info->tree_log_mutex);
2091 		mutex_unlock(&root->fs_info->reloc_mutex);
2092 		goto scrub_continue;
2093 	}
2094 
2095 	btrfs_prepare_extent_commit(trans, root);
2096 
2097 	cur_trans = root->fs_info->running_transaction;
2098 
2099 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2100 			    root->fs_info->tree_root->node);
2101 	list_add_tail(&root->fs_info->tree_root->dirty_list,
2102 		      &cur_trans->switch_commits);
2103 
2104 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2105 			    root->fs_info->chunk_root->node);
2106 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
2107 		      &cur_trans->switch_commits);
2108 
2109 	switch_commit_roots(cur_trans, root->fs_info);
2110 
2111 	assert_qgroups_uptodate(trans);
2112 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2113 	ASSERT(list_empty(&cur_trans->io_bgs));
2114 	update_super_roots(root);
2115 
2116 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2117 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2118 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2119 	       sizeof(*root->fs_info->super_copy));
2120 
2121 	btrfs_update_commit_device_size(root->fs_info);
2122 	btrfs_update_commit_device_bytes_used(root, cur_trans);
2123 
2124 	clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2125 	clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2126 
2127 	btrfs_trans_release_chunk_metadata(trans);
2128 
2129 	spin_lock(&root->fs_info->trans_lock);
2130 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2131 	root->fs_info->running_transaction = NULL;
2132 	spin_unlock(&root->fs_info->trans_lock);
2133 	mutex_unlock(&root->fs_info->reloc_mutex);
2134 
2135 	wake_up(&root->fs_info->transaction_wait);
2136 
2137 	ret = btrfs_write_and_wait_transaction(trans, root);
2138 	if (ret) {
2139 		btrfs_error(root->fs_info, ret,
2140 			    "Error while writing out transaction");
2141 		mutex_unlock(&root->fs_info->tree_log_mutex);
2142 		goto scrub_continue;
2143 	}
2144 
2145 	ret = write_ctree_super(trans, root, 0);
2146 	if (ret) {
2147 		mutex_unlock(&root->fs_info->tree_log_mutex);
2148 		goto scrub_continue;
2149 	}
2150 
2151 	/*
2152 	 * the super is written, we can safely allow the tree-loggers
2153 	 * to go about their business
2154 	 */
2155 	mutex_unlock(&root->fs_info->tree_log_mutex);
2156 
2157 	btrfs_finish_extent_commit(trans, root);
2158 
2159 	if (cur_trans->have_free_bgs)
2160 		btrfs_clear_space_info_full(root->fs_info);
2161 
2162 	root->fs_info->last_trans_committed = cur_trans->transid;
2163 	/*
2164 	 * We needn't acquire the lock here because there is no other task
2165 	 * which can change it.
2166 	 */
2167 	cur_trans->state = TRANS_STATE_COMPLETED;
2168 	wake_up(&cur_trans->commit_wait);
2169 
2170 	spin_lock(&root->fs_info->trans_lock);
2171 	list_del_init(&cur_trans->list);
2172 	spin_unlock(&root->fs_info->trans_lock);
2173 
2174 	btrfs_put_transaction(cur_trans);
2175 	btrfs_put_transaction(cur_trans);
2176 
2177 	if (trans->type & __TRANS_FREEZABLE)
2178 		sb_end_intwrite(root->fs_info->sb);
2179 
2180 	trace_btrfs_transaction_commit(root);
2181 
2182 	btrfs_scrub_continue(root);
2183 
2184 	if (current->journal_info == trans)
2185 		current->journal_info = NULL;
2186 
2187 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2188 
2189 	if (current != root->fs_info->transaction_kthread &&
2190 	    current != root->fs_info->cleaner_kthread)
2191 		btrfs_run_delayed_iputs(root);
2192 
2193 	return ret;
2194 
2195 scrub_continue:
2196 	btrfs_scrub_continue(root);
2197 cleanup_transaction:
2198 	btrfs_trans_release_metadata(trans, root);
2199 	btrfs_trans_release_chunk_metadata(trans);
2200 	trans->block_rsv = NULL;
2201 	if (trans->qgroup_reserved) {
2202 		btrfs_qgroup_free(root, trans->qgroup_reserved);
2203 		trans->qgroup_reserved = 0;
2204 	}
2205 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2206 	if (current->journal_info == trans)
2207 		current->journal_info = NULL;
2208 	cleanup_transaction(trans, root, ret);
2209 
2210 	return ret;
2211 }
2212 
2213 /*
2214  * return < 0 if error
2215  * 0 if there are no more dead_roots at the time of call
2216  * 1 there are more to be processed, call me again
2217  *
2218  * The return value indicates there are certainly more snapshots to delete, but
2219  * if there comes a new one during processing, it may return 0. We don't mind,
2220  * because btrfs_commit_super will poke cleaner thread and it will process it a
2221  * few seconds later.
2222  */
2223 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2224 {
2225 	int ret;
2226 	struct btrfs_fs_info *fs_info = root->fs_info;
2227 
2228 	spin_lock(&fs_info->trans_lock);
2229 	if (list_empty(&fs_info->dead_roots)) {
2230 		spin_unlock(&fs_info->trans_lock);
2231 		return 0;
2232 	}
2233 	root = list_first_entry(&fs_info->dead_roots,
2234 			struct btrfs_root, root_list);
2235 	list_del_init(&root->root_list);
2236 	spin_unlock(&fs_info->trans_lock);
2237 
2238 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2239 
2240 	btrfs_kill_all_delayed_nodes(root);
2241 
2242 	if (btrfs_header_backref_rev(root->node) <
2243 			BTRFS_MIXED_BACKREF_REV)
2244 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2245 	else
2246 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2247 
2248 	return (ret < 0) ? 0 : 1;
2249 }
2250 
2251 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2252 {
2253 	unsigned long prev;
2254 	unsigned long bit;
2255 
2256 	prev = xchg(&fs_info->pending_changes, 0);
2257 	if (!prev)
2258 		return;
2259 
2260 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2261 	if (prev & bit)
2262 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2263 	prev &= ~bit;
2264 
2265 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2266 	if (prev & bit)
2267 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2268 	prev &= ~bit;
2269 
2270 	bit = 1 << BTRFS_PENDING_COMMIT;
2271 	if (prev & bit)
2272 		btrfs_debug(fs_info, "pending commit done");
2273 	prev &= ~bit;
2274 
2275 	if (prev)
2276 		btrfs_warn(fs_info,
2277 			"unknown pending changes left 0x%lx, ignoring", prev);
2278 }
2279