xref: /openbmc/linux/fs/btrfs/transaction.c (revision bc5aa3a0)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		if (transaction->delayed_refs.pending_csums)
68 			printk(KERN_ERR "pending csums is %llu\n",
69 			       transaction->delayed_refs.pending_csums);
70 		while (!list_empty(&transaction->pending_chunks)) {
71 			struct extent_map *em;
72 
73 			em = list_first_entry(&transaction->pending_chunks,
74 					      struct extent_map, list);
75 			list_del_init(&em->list);
76 			free_extent_map(em);
77 		}
78 		/*
79 		 * If any block groups are found in ->deleted_bgs then it's
80 		 * because the transaction was aborted and a commit did not
81 		 * happen (things failed before writing the new superblock
82 		 * and calling btrfs_finish_extent_commit()), so we can not
83 		 * discard the physical locations of the block groups.
84 		 */
85 		while (!list_empty(&transaction->deleted_bgs)) {
86 			struct btrfs_block_group_cache *cache;
87 
88 			cache = list_first_entry(&transaction->deleted_bgs,
89 						 struct btrfs_block_group_cache,
90 						 bg_list);
91 			list_del_init(&cache->bg_list);
92 			btrfs_put_block_group_trimming(cache);
93 			btrfs_put_block_group(cache);
94 		}
95 		kmem_cache_free(btrfs_transaction_cachep, transaction);
96 	}
97 }
98 
99 static void clear_btree_io_tree(struct extent_io_tree *tree)
100 {
101 	spin_lock(&tree->lock);
102 	/*
103 	 * Do a single barrier for the waitqueue_active check here, the state
104 	 * of the waitqueue should not change once clear_btree_io_tree is
105 	 * called.
106 	 */
107 	smp_mb();
108 	while (!RB_EMPTY_ROOT(&tree->state)) {
109 		struct rb_node *node;
110 		struct extent_state *state;
111 
112 		node = rb_first(&tree->state);
113 		state = rb_entry(node, struct extent_state, rb_node);
114 		rb_erase(&state->rb_node, &tree->state);
115 		RB_CLEAR_NODE(&state->rb_node);
116 		/*
117 		 * btree io trees aren't supposed to have tasks waiting for
118 		 * changes in the flags of extent states ever.
119 		 */
120 		ASSERT(!waitqueue_active(&state->wq));
121 		free_extent_state(state);
122 
123 		cond_resched_lock(&tree->lock);
124 	}
125 	spin_unlock(&tree->lock);
126 }
127 
128 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
129 					 struct btrfs_fs_info *fs_info)
130 {
131 	struct btrfs_root *root, *tmp;
132 
133 	down_write(&fs_info->commit_root_sem);
134 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
135 				 dirty_list) {
136 		list_del_init(&root->dirty_list);
137 		free_extent_buffer(root->commit_root);
138 		root->commit_root = btrfs_root_node(root);
139 		if (is_fstree(root->objectid))
140 			btrfs_unpin_free_ino(root);
141 		clear_btree_io_tree(&root->dirty_log_pages);
142 	}
143 
144 	/* We can free old roots now. */
145 	spin_lock(&trans->dropped_roots_lock);
146 	while (!list_empty(&trans->dropped_roots)) {
147 		root = list_first_entry(&trans->dropped_roots,
148 					struct btrfs_root, root_list);
149 		list_del_init(&root->root_list);
150 		spin_unlock(&trans->dropped_roots_lock);
151 		btrfs_drop_and_free_fs_root(fs_info, root);
152 		spin_lock(&trans->dropped_roots_lock);
153 	}
154 	spin_unlock(&trans->dropped_roots_lock);
155 	up_write(&fs_info->commit_root_sem);
156 }
157 
158 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
159 					 unsigned int type)
160 {
161 	if (type & TRANS_EXTWRITERS)
162 		atomic_inc(&trans->num_extwriters);
163 }
164 
165 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
166 					 unsigned int type)
167 {
168 	if (type & TRANS_EXTWRITERS)
169 		atomic_dec(&trans->num_extwriters);
170 }
171 
172 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
173 					  unsigned int type)
174 {
175 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
176 }
177 
178 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
179 {
180 	return atomic_read(&trans->num_extwriters);
181 }
182 
183 /*
184  * either allocate a new transaction or hop into the existing one
185  */
186 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
187 {
188 	struct btrfs_transaction *cur_trans;
189 	struct btrfs_fs_info *fs_info = root->fs_info;
190 
191 	spin_lock(&fs_info->trans_lock);
192 loop:
193 	/* The file system has been taken offline. No new transactions. */
194 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
195 		spin_unlock(&fs_info->trans_lock);
196 		return -EROFS;
197 	}
198 
199 	cur_trans = fs_info->running_transaction;
200 	if (cur_trans) {
201 		if (cur_trans->aborted) {
202 			spin_unlock(&fs_info->trans_lock);
203 			return cur_trans->aborted;
204 		}
205 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
206 			spin_unlock(&fs_info->trans_lock);
207 			return -EBUSY;
208 		}
209 		atomic_inc(&cur_trans->use_count);
210 		atomic_inc(&cur_trans->num_writers);
211 		extwriter_counter_inc(cur_trans, type);
212 		spin_unlock(&fs_info->trans_lock);
213 		return 0;
214 	}
215 	spin_unlock(&fs_info->trans_lock);
216 
217 	/*
218 	 * If we are ATTACH, we just want to catch the current transaction,
219 	 * and commit it. If there is no transaction, just return ENOENT.
220 	 */
221 	if (type == TRANS_ATTACH)
222 		return -ENOENT;
223 
224 	/*
225 	 * JOIN_NOLOCK only happens during the transaction commit, so
226 	 * it is impossible that ->running_transaction is NULL
227 	 */
228 	BUG_ON(type == TRANS_JOIN_NOLOCK);
229 
230 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
231 	if (!cur_trans)
232 		return -ENOMEM;
233 
234 	spin_lock(&fs_info->trans_lock);
235 	if (fs_info->running_transaction) {
236 		/*
237 		 * someone started a transaction after we unlocked.  Make sure
238 		 * to redo the checks above
239 		 */
240 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
241 		goto loop;
242 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
243 		spin_unlock(&fs_info->trans_lock);
244 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
245 		return -EROFS;
246 	}
247 
248 	atomic_set(&cur_trans->num_writers, 1);
249 	extwriter_counter_init(cur_trans, type);
250 	init_waitqueue_head(&cur_trans->writer_wait);
251 	init_waitqueue_head(&cur_trans->commit_wait);
252 	init_waitqueue_head(&cur_trans->pending_wait);
253 	cur_trans->state = TRANS_STATE_RUNNING;
254 	/*
255 	 * One for this trans handle, one so it will live on until we
256 	 * commit the transaction.
257 	 */
258 	atomic_set(&cur_trans->use_count, 2);
259 	atomic_set(&cur_trans->pending_ordered, 0);
260 	cur_trans->flags = 0;
261 	cur_trans->start_time = get_seconds();
262 
263 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
264 
265 	cur_trans->delayed_refs.href_root = RB_ROOT;
266 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
267 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
268 
269 	/*
270 	 * although the tree mod log is per file system and not per transaction,
271 	 * the log must never go across transaction boundaries.
272 	 */
273 	smp_mb();
274 	if (!list_empty(&fs_info->tree_mod_seq_list))
275 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
276 			"creating a fresh transaction\n");
277 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
278 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
279 			"creating a fresh transaction\n");
280 	atomic64_set(&fs_info->tree_mod_seq, 0);
281 
282 	spin_lock_init(&cur_trans->delayed_refs.lock);
283 
284 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 	INIT_LIST_HEAD(&cur_trans->switch_commits);
287 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 	INIT_LIST_HEAD(&cur_trans->io_bgs);
289 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 	mutex_init(&cur_trans->cache_write_mutex);
291 	cur_trans->num_dirty_bgs = 0;
292 	spin_lock_init(&cur_trans->dirty_bgs_lock);
293 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 	spin_lock_init(&cur_trans->dropped_roots_lock);
295 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 	extent_io_tree_init(&cur_trans->dirty_pages,
297 			     fs_info->btree_inode->i_mapping);
298 	fs_info->generation++;
299 	cur_trans->transid = fs_info->generation;
300 	fs_info->running_transaction = cur_trans;
301 	cur_trans->aborted = 0;
302 	spin_unlock(&fs_info->trans_lock);
303 
304 	return 0;
305 }
306 
307 /*
308  * this does all the record keeping required to make sure that a reference
309  * counted root is properly recorded in a given transaction.  This is required
310  * to make sure the old root from before we joined the transaction is deleted
311  * when the transaction commits
312  */
313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 			       struct btrfs_root *root,
315 			       int force)
316 {
317 	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
318 	    root->last_trans < trans->transid) || force) {
319 		WARN_ON(root == root->fs_info->extent_root);
320 		WARN_ON(root->commit_root != root->node);
321 
322 		/*
323 		 * see below for IN_TRANS_SETUP usage rules
324 		 * we have the reloc mutex held now, so there
325 		 * is only one writer in this function
326 		 */
327 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
328 
329 		/* make sure readers find IN_TRANS_SETUP before
330 		 * they find our root->last_trans update
331 		 */
332 		smp_wmb();
333 
334 		spin_lock(&root->fs_info->fs_roots_radix_lock);
335 		if (root->last_trans == trans->transid && !force) {
336 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
337 			return 0;
338 		}
339 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
340 			   (unsigned long)root->root_key.objectid,
341 			   BTRFS_ROOT_TRANS_TAG);
342 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
343 		root->last_trans = trans->transid;
344 
345 		/* this is pretty tricky.  We don't want to
346 		 * take the relocation lock in btrfs_record_root_in_trans
347 		 * unless we're really doing the first setup for this root in
348 		 * this transaction.
349 		 *
350 		 * Normally we'd use root->last_trans as a flag to decide
351 		 * if we want to take the expensive mutex.
352 		 *
353 		 * But, we have to set root->last_trans before we
354 		 * init the relocation root, otherwise, we trip over warnings
355 		 * in ctree.c.  The solution used here is to flag ourselves
356 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
357 		 * fixing up the reloc trees and everyone must wait.
358 		 *
359 		 * When this is zero, they can trust root->last_trans and fly
360 		 * through btrfs_record_root_in_trans without having to take the
361 		 * lock.  smp_wmb() makes sure that all the writes above are
362 		 * done before we pop in the zero below
363 		 */
364 		btrfs_init_reloc_root(trans, root);
365 		smp_mb__before_atomic();
366 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
367 	}
368 	return 0;
369 }
370 
371 
372 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
373 			    struct btrfs_root *root)
374 {
375 	struct btrfs_transaction *cur_trans = trans->transaction;
376 
377 	/* Add ourselves to the transaction dropped list */
378 	spin_lock(&cur_trans->dropped_roots_lock);
379 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
380 	spin_unlock(&cur_trans->dropped_roots_lock);
381 
382 	/* Make sure we don't try to update the root at commit time */
383 	spin_lock(&root->fs_info->fs_roots_radix_lock);
384 	radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
385 			     (unsigned long)root->root_key.objectid,
386 			     BTRFS_ROOT_TRANS_TAG);
387 	spin_unlock(&root->fs_info->fs_roots_radix_lock);
388 }
389 
390 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
391 			       struct btrfs_root *root)
392 {
393 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
394 		return 0;
395 
396 	/*
397 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
398 	 * and barriers
399 	 */
400 	smp_rmb();
401 	if (root->last_trans == trans->transid &&
402 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
403 		return 0;
404 
405 	mutex_lock(&root->fs_info->reloc_mutex);
406 	record_root_in_trans(trans, root, 0);
407 	mutex_unlock(&root->fs_info->reloc_mutex);
408 
409 	return 0;
410 }
411 
412 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
413 {
414 	return (trans->state >= TRANS_STATE_BLOCKED &&
415 		trans->state < TRANS_STATE_UNBLOCKED &&
416 		!trans->aborted);
417 }
418 
419 /* wait for commit against the current transaction to become unblocked
420  * when this is done, it is safe to start a new transaction, but the current
421  * transaction might not be fully on disk.
422  */
423 static void wait_current_trans(struct btrfs_root *root)
424 {
425 	struct btrfs_transaction *cur_trans;
426 
427 	spin_lock(&root->fs_info->trans_lock);
428 	cur_trans = root->fs_info->running_transaction;
429 	if (cur_trans && is_transaction_blocked(cur_trans)) {
430 		atomic_inc(&cur_trans->use_count);
431 		spin_unlock(&root->fs_info->trans_lock);
432 
433 		wait_event(root->fs_info->transaction_wait,
434 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
435 			   cur_trans->aborted);
436 		btrfs_put_transaction(cur_trans);
437 	} else {
438 		spin_unlock(&root->fs_info->trans_lock);
439 	}
440 }
441 
442 static int may_wait_transaction(struct btrfs_root *root, int type)
443 {
444 	if (root->fs_info->log_root_recovering)
445 		return 0;
446 
447 	if (type == TRANS_USERSPACE)
448 		return 1;
449 
450 	if (type == TRANS_START &&
451 	    !atomic_read(&root->fs_info->open_ioctl_trans))
452 		return 1;
453 
454 	return 0;
455 }
456 
457 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
458 {
459 	if (!root->fs_info->reloc_ctl ||
460 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
461 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
462 	    root->reloc_root)
463 		return false;
464 
465 	return true;
466 }
467 
468 static struct btrfs_trans_handle *
469 start_transaction(struct btrfs_root *root, unsigned int num_items,
470 		  unsigned int type, enum btrfs_reserve_flush_enum flush)
471 {
472 	struct btrfs_trans_handle *h;
473 	struct btrfs_transaction *cur_trans;
474 	u64 num_bytes = 0;
475 	u64 qgroup_reserved = 0;
476 	bool reloc_reserved = false;
477 	int ret;
478 
479 	/* Send isn't supposed to start transactions. */
480 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
481 
482 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
483 		return ERR_PTR(-EROFS);
484 
485 	if (current->journal_info) {
486 		WARN_ON(type & TRANS_EXTWRITERS);
487 		h = current->journal_info;
488 		h->use_count++;
489 		WARN_ON(h->use_count > 2);
490 		h->orig_rsv = h->block_rsv;
491 		h->block_rsv = NULL;
492 		goto got_it;
493 	}
494 
495 	/*
496 	 * Do the reservation before we join the transaction so we can do all
497 	 * the appropriate flushing if need be.
498 	 */
499 	if (num_items > 0 && root != root->fs_info->chunk_root) {
500 		qgroup_reserved = num_items * root->nodesize;
501 		ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
502 		if (ret)
503 			return ERR_PTR(ret);
504 
505 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
506 		/*
507 		 * Do the reservation for the relocation root creation
508 		 */
509 		if (need_reserve_reloc_root(root)) {
510 			num_bytes += root->nodesize;
511 			reloc_reserved = true;
512 		}
513 
514 		ret = btrfs_block_rsv_add(root,
515 					  &root->fs_info->trans_block_rsv,
516 					  num_bytes, flush);
517 		if (ret)
518 			goto reserve_fail;
519 	}
520 again:
521 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
522 	if (!h) {
523 		ret = -ENOMEM;
524 		goto alloc_fail;
525 	}
526 
527 	/*
528 	 * If we are JOIN_NOLOCK we're already committing a transaction and
529 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
530 	 * because we're already holding a ref.  We need this because we could
531 	 * have raced in and did an fsync() on a file which can kick a commit
532 	 * and then we deadlock with somebody doing a freeze.
533 	 *
534 	 * If we are ATTACH, it means we just want to catch the current
535 	 * transaction and commit it, so we needn't do sb_start_intwrite().
536 	 */
537 	if (type & __TRANS_FREEZABLE)
538 		sb_start_intwrite(root->fs_info->sb);
539 
540 	if (may_wait_transaction(root, type))
541 		wait_current_trans(root);
542 
543 	do {
544 		ret = join_transaction(root, type);
545 		if (ret == -EBUSY) {
546 			wait_current_trans(root);
547 			if (unlikely(type == TRANS_ATTACH))
548 				ret = -ENOENT;
549 		}
550 	} while (ret == -EBUSY);
551 
552 	if (ret < 0) {
553 		/* We must get the transaction if we are JOIN_NOLOCK. */
554 		BUG_ON(type == TRANS_JOIN_NOLOCK);
555 		goto join_fail;
556 	}
557 
558 	cur_trans = root->fs_info->running_transaction;
559 
560 	h->transid = cur_trans->transid;
561 	h->transaction = cur_trans;
562 	h->root = root;
563 	h->use_count = 1;
564 	h->fs_info = root->fs_info;
565 
566 	h->type = type;
567 	h->can_flush_pending_bgs = true;
568 	INIT_LIST_HEAD(&h->qgroup_ref_list);
569 	INIT_LIST_HEAD(&h->new_bgs);
570 
571 	smp_mb();
572 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
573 	    may_wait_transaction(root, type)) {
574 		current->journal_info = h;
575 		btrfs_commit_transaction(h, root);
576 		goto again;
577 	}
578 
579 	if (num_bytes) {
580 		trace_btrfs_space_reservation(root->fs_info, "transaction",
581 					      h->transid, num_bytes, 1);
582 		h->block_rsv = &root->fs_info->trans_block_rsv;
583 		h->bytes_reserved = num_bytes;
584 		h->reloc_reserved = reloc_reserved;
585 	}
586 
587 got_it:
588 	btrfs_record_root_in_trans(h, root);
589 
590 	if (!current->journal_info && type != TRANS_USERSPACE)
591 		current->journal_info = h;
592 	return h;
593 
594 join_fail:
595 	if (type & __TRANS_FREEZABLE)
596 		sb_end_intwrite(root->fs_info->sb);
597 	kmem_cache_free(btrfs_trans_handle_cachep, h);
598 alloc_fail:
599 	if (num_bytes)
600 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
601 					num_bytes);
602 reserve_fail:
603 	btrfs_qgroup_free_meta(root, qgroup_reserved);
604 	return ERR_PTR(ret);
605 }
606 
607 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
608 						   unsigned int num_items)
609 {
610 	return start_transaction(root, num_items, TRANS_START,
611 				 BTRFS_RESERVE_FLUSH_ALL);
612 }
613 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
614 					struct btrfs_root *root,
615 					unsigned int num_items,
616 					int min_factor)
617 {
618 	struct btrfs_trans_handle *trans;
619 	u64 num_bytes;
620 	int ret;
621 
622 	trans = btrfs_start_transaction(root, num_items);
623 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
624 		return trans;
625 
626 	trans = btrfs_start_transaction(root, 0);
627 	if (IS_ERR(trans))
628 		return trans;
629 
630 	num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
631 	ret = btrfs_cond_migrate_bytes(root->fs_info,
632 				       &root->fs_info->trans_block_rsv,
633 				       num_bytes,
634 				       min_factor);
635 	if (ret) {
636 		btrfs_end_transaction(trans, root);
637 		return ERR_PTR(ret);
638 	}
639 
640 	trans->block_rsv = &root->fs_info->trans_block_rsv;
641 	trans->bytes_reserved = num_bytes;
642 	trace_btrfs_space_reservation(root->fs_info, "transaction",
643 				      trans->transid, num_bytes, 1);
644 
645 	return trans;
646 }
647 
648 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
649 					struct btrfs_root *root,
650 					unsigned int num_items)
651 {
652 	return start_transaction(root, num_items, TRANS_START,
653 				 BTRFS_RESERVE_FLUSH_LIMIT);
654 }
655 
656 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
657 {
658 	return start_transaction(root, 0, TRANS_JOIN,
659 				 BTRFS_RESERVE_NO_FLUSH);
660 }
661 
662 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
663 {
664 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
665 				 BTRFS_RESERVE_NO_FLUSH);
666 }
667 
668 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
669 {
670 	return start_transaction(root, 0, TRANS_USERSPACE,
671 				 BTRFS_RESERVE_NO_FLUSH);
672 }
673 
674 /*
675  * btrfs_attach_transaction() - catch the running transaction
676  *
677  * It is used when we want to commit the current the transaction, but
678  * don't want to start a new one.
679  *
680  * Note: If this function return -ENOENT, it just means there is no
681  * running transaction. But it is possible that the inactive transaction
682  * is still in the memory, not fully on disk. If you hope there is no
683  * inactive transaction in the fs when -ENOENT is returned, you should
684  * invoke
685  *     btrfs_attach_transaction_barrier()
686  */
687 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
688 {
689 	return start_transaction(root, 0, TRANS_ATTACH,
690 				 BTRFS_RESERVE_NO_FLUSH);
691 }
692 
693 /*
694  * btrfs_attach_transaction_barrier() - catch the running transaction
695  *
696  * It is similar to the above function, the differentia is this one
697  * will wait for all the inactive transactions until they fully
698  * complete.
699  */
700 struct btrfs_trans_handle *
701 btrfs_attach_transaction_barrier(struct btrfs_root *root)
702 {
703 	struct btrfs_trans_handle *trans;
704 
705 	trans = start_transaction(root, 0, TRANS_ATTACH,
706 				  BTRFS_RESERVE_NO_FLUSH);
707 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
708 		btrfs_wait_for_commit(root, 0);
709 
710 	return trans;
711 }
712 
713 /* wait for a transaction commit to be fully complete */
714 static noinline void wait_for_commit(struct btrfs_root *root,
715 				    struct btrfs_transaction *commit)
716 {
717 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
718 }
719 
720 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
721 {
722 	struct btrfs_transaction *cur_trans = NULL, *t;
723 	int ret = 0;
724 
725 	if (transid) {
726 		if (transid <= root->fs_info->last_trans_committed)
727 			goto out;
728 
729 		/* find specified transaction */
730 		spin_lock(&root->fs_info->trans_lock);
731 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
732 			if (t->transid == transid) {
733 				cur_trans = t;
734 				atomic_inc(&cur_trans->use_count);
735 				ret = 0;
736 				break;
737 			}
738 			if (t->transid > transid) {
739 				ret = 0;
740 				break;
741 			}
742 		}
743 		spin_unlock(&root->fs_info->trans_lock);
744 
745 		/*
746 		 * The specified transaction doesn't exist, or we
747 		 * raced with btrfs_commit_transaction
748 		 */
749 		if (!cur_trans) {
750 			if (transid > root->fs_info->last_trans_committed)
751 				ret = -EINVAL;
752 			goto out;
753 		}
754 	} else {
755 		/* find newest transaction that is committing | committed */
756 		spin_lock(&root->fs_info->trans_lock);
757 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
758 					    list) {
759 			if (t->state >= TRANS_STATE_COMMIT_START) {
760 				if (t->state == TRANS_STATE_COMPLETED)
761 					break;
762 				cur_trans = t;
763 				atomic_inc(&cur_trans->use_count);
764 				break;
765 			}
766 		}
767 		spin_unlock(&root->fs_info->trans_lock);
768 		if (!cur_trans)
769 			goto out;  /* nothing committing|committed */
770 	}
771 
772 	wait_for_commit(root, cur_trans);
773 	btrfs_put_transaction(cur_trans);
774 out:
775 	return ret;
776 }
777 
778 void btrfs_throttle(struct btrfs_root *root)
779 {
780 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
781 		wait_current_trans(root);
782 }
783 
784 static int should_end_transaction(struct btrfs_trans_handle *trans,
785 				  struct btrfs_root *root)
786 {
787 	if (root->fs_info->global_block_rsv.space_info->full &&
788 	    btrfs_check_space_for_delayed_refs(trans, root))
789 		return 1;
790 
791 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
792 }
793 
794 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
795 				 struct btrfs_root *root)
796 {
797 	struct btrfs_transaction *cur_trans = trans->transaction;
798 	int updates;
799 	int err;
800 
801 	smp_mb();
802 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
803 	    cur_trans->delayed_refs.flushing)
804 		return 1;
805 
806 	updates = trans->delayed_ref_updates;
807 	trans->delayed_ref_updates = 0;
808 	if (updates) {
809 		err = btrfs_run_delayed_refs(trans, root, updates * 2);
810 		if (err) /* Error code will also eval true */
811 			return err;
812 	}
813 
814 	return should_end_transaction(trans, root);
815 }
816 
817 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
818 			  struct btrfs_root *root, int throttle)
819 {
820 	struct btrfs_transaction *cur_trans = trans->transaction;
821 	struct btrfs_fs_info *info = root->fs_info;
822 	u64 transid = trans->transid;
823 	unsigned long cur = trans->delayed_ref_updates;
824 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
825 	int err = 0;
826 	int must_run_delayed_refs = 0;
827 
828 	if (trans->use_count > 1) {
829 		trans->use_count--;
830 		trans->block_rsv = trans->orig_rsv;
831 		return 0;
832 	}
833 
834 	btrfs_trans_release_metadata(trans, root);
835 	trans->block_rsv = NULL;
836 
837 	if (!list_empty(&trans->new_bgs))
838 		btrfs_create_pending_block_groups(trans, root);
839 
840 	trans->delayed_ref_updates = 0;
841 	if (!trans->sync) {
842 		must_run_delayed_refs =
843 			btrfs_should_throttle_delayed_refs(trans, root);
844 		cur = max_t(unsigned long, cur, 32);
845 
846 		/*
847 		 * don't make the caller wait if they are from a NOLOCK
848 		 * or ATTACH transaction, it will deadlock with commit
849 		 */
850 		if (must_run_delayed_refs == 1 &&
851 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
852 			must_run_delayed_refs = 2;
853 	}
854 
855 	btrfs_trans_release_metadata(trans, root);
856 	trans->block_rsv = NULL;
857 
858 	if (!list_empty(&trans->new_bgs))
859 		btrfs_create_pending_block_groups(trans, root);
860 
861 	btrfs_trans_release_chunk_metadata(trans);
862 
863 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
864 	    should_end_transaction(trans, root) &&
865 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
866 		spin_lock(&info->trans_lock);
867 		if (cur_trans->state == TRANS_STATE_RUNNING)
868 			cur_trans->state = TRANS_STATE_BLOCKED;
869 		spin_unlock(&info->trans_lock);
870 	}
871 
872 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
873 		if (throttle)
874 			return btrfs_commit_transaction(trans, root);
875 		else
876 			wake_up_process(info->transaction_kthread);
877 	}
878 
879 	if (trans->type & __TRANS_FREEZABLE)
880 		sb_end_intwrite(root->fs_info->sb);
881 
882 	WARN_ON(cur_trans != info->running_transaction);
883 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
884 	atomic_dec(&cur_trans->num_writers);
885 	extwriter_counter_dec(cur_trans, trans->type);
886 
887 	/*
888 	 * Make sure counter is updated before we wake up waiters.
889 	 */
890 	smp_mb();
891 	if (waitqueue_active(&cur_trans->writer_wait))
892 		wake_up(&cur_trans->writer_wait);
893 	btrfs_put_transaction(cur_trans);
894 
895 	if (current->journal_info == trans)
896 		current->journal_info = NULL;
897 
898 	if (throttle)
899 		btrfs_run_delayed_iputs(root);
900 
901 	if (trans->aborted ||
902 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
903 		wake_up_process(info->transaction_kthread);
904 		err = -EIO;
905 	}
906 	assert_qgroups_uptodate(trans);
907 
908 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
909 	if (must_run_delayed_refs) {
910 		btrfs_async_run_delayed_refs(root, cur, transid,
911 					     must_run_delayed_refs == 1);
912 	}
913 	return err;
914 }
915 
916 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
917 			  struct btrfs_root *root)
918 {
919 	return __btrfs_end_transaction(trans, root, 0);
920 }
921 
922 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
923 				   struct btrfs_root *root)
924 {
925 	return __btrfs_end_transaction(trans, root, 1);
926 }
927 
928 /*
929  * when btree blocks are allocated, they have some corresponding bits set for
930  * them in one of two extent_io trees.  This is used to make sure all of
931  * those extents are sent to disk but does not wait on them
932  */
933 int btrfs_write_marked_extents(struct btrfs_root *root,
934 			       struct extent_io_tree *dirty_pages, int mark)
935 {
936 	int err = 0;
937 	int werr = 0;
938 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
939 	struct extent_state *cached_state = NULL;
940 	u64 start = 0;
941 	u64 end;
942 
943 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
944 				      mark, &cached_state)) {
945 		bool wait_writeback = false;
946 
947 		err = convert_extent_bit(dirty_pages, start, end,
948 					 EXTENT_NEED_WAIT,
949 					 mark, &cached_state);
950 		/*
951 		 * convert_extent_bit can return -ENOMEM, which is most of the
952 		 * time a temporary error. So when it happens, ignore the error
953 		 * and wait for writeback of this range to finish - because we
954 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
955 		 * to btrfs_wait_marked_extents() would not know that writeback
956 		 * for this range started and therefore wouldn't wait for it to
957 		 * finish - we don't want to commit a superblock that points to
958 		 * btree nodes/leafs for which writeback hasn't finished yet
959 		 * (and without errors).
960 		 * We cleanup any entries left in the io tree when committing
961 		 * the transaction (through clear_btree_io_tree()).
962 		 */
963 		if (err == -ENOMEM) {
964 			err = 0;
965 			wait_writeback = true;
966 		}
967 		if (!err)
968 			err = filemap_fdatawrite_range(mapping, start, end);
969 		if (err)
970 			werr = err;
971 		else if (wait_writeback)
972 			werr = filemap_fdatawait_range(mapping, start, end);
973 		free_extent_state(cached_state);
974 		cached_state = NULL;
975 		cond_resched();
976 		start = end + 1;
977 	}
978 	return werr;
979 }
980 
981 /*
982  * when btree blocks are allocated, they have some corresponding bits set for
983  * them in one of two extent_io trees.  This is used to make sure all of
984  * those extents are on disk for transaction or log commit.  We wait
985  * on all the pages and clear them from the dirty pages state tree
986  */
987 int btrfs_wait_marked_extents(struct btrfs_root *root,
988 			      struct extent_io_tree *dirty_pages, int mark)
989 {
990 	int err = 0;
991 	int werr = 0;
992 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
993 	struct extent_state *cached_state = NULL;
994 	u64 start = 0;
995 	u64 end;
996 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
997 	bool errors = false;
998 
999 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1000 				      EXTENT_NEED_WAIT, &cached_state)) {
1001 		/*
1002 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1003 		 * When committing the transaction, we'll remove any entries
1004 		 * left in the io tree. For a log commit, we don't remove them
1005 		 * after committing the log because the tree can be accessed
1006 		 * concurrently - we do it only at transaction commit time when
1007 		 * it's safe to do it (through clear_btree_io_tree()).
1008 		 */
1009 		err = clear_extent_bit(dirty_pages, start, end,
1010 				       EXTENT_NEED_WAIT,
1011 				       0, 0, &cached_state, GFP_NOFS);
1012 		if (err == -ENOMEM)
1013 			err = 0;
1014 		if (!err)
1015 			err = filemap_fdatawait_range(mapping, start, end);
1016 		if (err)
1017 			werr = err;
1018 		free_extent_state(cached_state);
1019 		cached_state = NULL;
1020 		cond_resched();
1021 		start = end + 1;
1022 	}
1023 	if (err)
1024 		werr = err;
1025 
1026 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1027 		if ((mark & EXTENT_DIRTY) &&
1028 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
1029 				       &btree_ino->runtime_flags))
1030 			errors = true;
1031 
1032 		if ((mark & EXTENT_NEW) &&
1033 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1034 				       &btree_ino->runtime_flags))
1035 			errors = true;
1036 	} else {
1037 		if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1038 				       &btree_ino->runtime_flags))
1039 			errors = true;
1040 	}
1041 
1042 	if (errors && !werr)
1043 		werr = -EIO;
1044 
1045 	return werr;
1046 }
1047 
1048 /*
1049  * when btree blocks are allocated, they have some corresponding bits set for
1050  * them in one of two extent_io trees.  This is used to make sure all of
1051  * those extents are on disk for transaction or log commit
1052  */
1053 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1054 				struct extent_io_tree *dirty_pages, int mark)
1055 {
1056 	int ret;
1057 	int ret2;
1058 	struct blk_plug plug;
1059 
1060 	blk_start_plug(&plug);
1061 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1062 	blk_finish_plug(&plug);
1063 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1064 
1065 	if (ret)
1066 		return ret;
1067 	if (ret2)
1068 		return ret2;
1069 	return 0;
1070 }
1071 
1072 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1073 				     struct btrfs_root *root)
1074 {
1075 	int ret;
1076 
1077 	ret = btrfs_write_and_wait_marked_extents(root,
1078 					   &trans->transaction->dirty_pages,
1079 					   EXTENT_DIRTY);
1080 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1081 
1082 	return ret;
1083 }
1084 
1085 /*
1086  * this is used to update the root pointer in the tree of tree roots.
1087  *
1088  * But, in the case of the extent allocation tree, updating the root
1089  * pointer may allocate blocks which may change the root of the extent
1090  * allocation tree.
1091  *
1092  * So, this loops and repeats and makes sure the cowonly root didn't
1093  * change while the root pointer was being updated in the metadata.
1094  */
1095 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1096 			       struct btrfs_root *root)
1097 {
1098 	int ret;
1099 	u64 old_root_bytenr;
1100 	u64 old_root_used;
1101 	struct btrfs_root *tree_root = root->fs_info->tree_root;
1102 
1103 	old_root_used = btrfs_root_used(&root->root_item);
1104 
1105 	while (1) {
1106 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1107 		if (old_root_bytenr == root->node->start &&
1108 		    old_root_used == btrfs_root_used(&root->root_item))
1109 			break;
1110 
1111 		btrfs_set_root_node(&root->root_item, root->node);
1112 		ret = btrfs_update_root(trans, tree_root,
1113 					&root->root_key,
1114 					&root->root_item);
1115 		if (ret)
1116 			return ret;
1117 
1118 		old_root_used = btrfs_root_used(&root->root_item);
1119 	}
1120 
1121 	return 0;
1122 }
1123 
1124 /*
1125  * update all the cowonly tree roots on disk
1126  *
1127  * The error handling in this function may not be obvious. Any of the
1128  * failures will cause the file system to go offline. We still need
1129  * to clean up the delayed refs.
1130  */
1131 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1132 					 struct btrfs_root *root)
1133 {
1134 	struct btrfs_fs_info *fs_info = root->fs_info;
1135 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1136 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1137 	struct list_head *next;
1138 	struct extent_buffer *eb;
1139 	int ret;
1140 
1141 	eb = btrfs_lock_root_node(fs_info->tree_root);
1142 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1143 			      0, &eb);
1144 	btrfs_tree_unlock(eb);
1145 	free_extent_buffer(eb);
1146 
1147 	if (ret)
1148 		return ret;
1149 
1150 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1151 	if (ret)
1152 		return ret;
1153 
1154 	ret = btrfs_run_dev_stats(trans, root->fs_info);
1155 	if (ret)
1156 		return ret;
1157 	ret = btrfs_run_dev_replace(trans, root->fs_info);
1158 	if (ret)
1159 		return ret;
1160 	ret = btrfs_run_qgroups(trans, root->fs_info);
1161 	if (ret)
1162 		return ret;
1163 
1164 	ret = btrfs_setup_space_cache(trans, root);
1165 	if (ret)
1166 		return ret;
1167 
1168 	/* run_qgroups might have added some more refs */
1169 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1170 	if (ret)
1171 		return ret;
1172 again:
1173 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1174 		next = fs_info->dirty_cowonly_roots.next;
1175 		list_del_init(next);
1176 		root = list_entry(next, struct btrfs_root, dirty_list);
1177 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1178 
1179 		if (root != fs_info->extent_root)
1180 			list_add_tail(&root->dirty_list,
1181 				      &trans->transaction->switch_commits);
1182 		ret = update_cowonly_root(trans, root);
1183 		if (ret)
1184 			return ret;
1185 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1186 		if (ret)
1187 			return ret;
1188 	}
1189 
1190 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1191 		ret = btrfs_write_dirty_block_groups(trans, root);
1192 		if (ret)
1193 			return ret;
1194 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1195 		if (ret)
1196 			return ret;
1197 	}
1198 
1199 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1200 		goto again;
1201 
1202 	list_add_tail(&fs_info->extent_root->dirty_list,
1203 		      &trans->transaction->switch_commits);
1204 	btrfs_after_dev_replace_commit(fs_info);
1205 
1206 	return 0;
1207 }
1208 
1209 /*
1210  * dead roots are old snapshots that need to be deleted.  This allocates
1211  * a dirty root struct and adds it into the list of dead roots that need to
1212  * be deleted
1213  */
1214 void btrfs_add_dead_root(struct btrfs_root *root)
1215 {
1216 	spin_lock(&root->fs_info->trans_lock);
1217 	if (list_empty(&root->root_list))
1218 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1219 	spin_unlock(&root->fs_info->trans_lock);
1220 }
1221 
1222 /*
1223  * update all the cowonly tree roots on disk
1224  */
1225 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1226 				    struct btrfs_root *root)
1227 {
1228 	struct btrfs_root *gang[8];
1229 	struct btrfs_fs_info *fs_info = root->fs_info;
1230 	int i;
1231 	int ret;
1232 	int err = 0;
1233 
1234 	spin_lock(&fs_info->fs_roots_radix_lock);
1235 	while (1) {
1236 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1237 						 (void **)gang, 0,
1238 						 ARRAY_SIZE(gang),
1239 						 BTRFS_ROOT_TRANS_TAG);
1240 		if (ret == 0)
1241 			break;
1242 		for (i = 0; i < ret; i++) {
1243 			root = gang[i];
1244 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1245 					(unsigned long)root->root_key.objectid,
1246 					BTRFS_ROOT_TRANS_TAG);
1247 			spin_unlock(&fs_info->fs_roots_radix_lock);
1248 
1249 			btrfs_free_log(trans, root);
1250 			btrfs_update_reloc_root(trans, root);
1251 			btrfs_orphan_commit_root(trans, root);
1252 
1253 			btrfs_save_ino_cache(root, trans);
1254 
1255 			/* see comments in should_cow_block() */
1256 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1257 			smp_mb__after_atomic();
1258 
1259 			if (root->commit_root != root->node) {
1260 				list_add_tail(&root->dirty_list,
1261 					&trans->transaction->switch_commits);
1262 				btrfs_set_root_node(&root->root_item,
1263 						    root->node);
1264 			}
1265 
1266 			err = btrfs_update_root(trans, fs_info->tree_root,
1267 						&root->root_key,
1268 						&root->root_item);
1269 			spin_lock(&fs_info->fs_roots_radix_lock);
1270 			if (err)
1271 				break;
1272 			btrfs_qgroup_free_meta_all(root);
1273 		}
1274 	}
1275 	spin_unlock(&fs_info->fs_roots_radix_lock);
1276 	return err;
1277 }
1278 
1279 /*
1280  * defrag a given btree.
1281  * Every leaf in the btree is read and defragged.
1282  */
1283 int btrfs_defrag_root(struct btrfs_root *root)
1284 {
1285 	struct btrfs_fs_info *info = root->fs_info;
1286 	struct btrfs_trans_handle *trans;
1287 	int ret;
1288 
1289 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1290 		return 0;
1291 
1292 	while (1) {
1293 		trans = btrfs_start_transaction(root, 0);
1294 		if (IS_ERR(trans))
1295 			return PTR_ERR(trans);
1296 
1297 		ret = btrfs_defrag_leaves(trans, root);
1298 
1299 		btrfs_end_transaction(trans, root);
1300 		btrfs_btree_balance_dirty(info->tree_root);
1301 		cond_resched();
1302 
1303 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1304 			break;
1305 
1306 		if (btrfs_defrag_cancelled(root->fs_info)) {
1307 			pr_debug("BTRFS: defrag_root cancelled\n");
1308 			ret = -EAGAIN;
1309 			break;
1310 		}
1311 	}
1312 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1313 	return ret;
1314 }
1315 
1316 /*
1317  * Do all special snapshot related qgroup dirty hack.
1318  *
1319  * Will do all needed qgroup inherit and dirty hack like switch commit
1320  * roots inside one transaction and write all btree into disk, to make
1321  * qgroup works.
1322  */
1323 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1324 				   struct btrfs_root *src,
1325 				   struct btrfs_root *parent,
1326 				   struct btrfs_qgroup_inherit *inherit,
1327 				   u64 dst_objectid)
1328 {
1329 	struct btrfs_fs_info *fs_info = src->fs_info;
1330 	int ret;
1331 
1332 	/*
1333 	 * Save some performance in the case that qgroups are not
1334 	 * enabled. If this check races with the ioctl, rescan will
1335 	 * kick in anyway.
1336 	 */
1337 	mutex_lock(&fs_info->qgroup_ioctl_lock);
1338 	if (!fs_info->quota_enabled) {
1339 		mutex_unlock(&fs_info->qgroup_ioctl_lock);
1340 		return 0;
1341 	}
1342 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
1343 
1344 	/*
1345 	 * We are going to commit transaction, see btrfs_commit_transaction()
1346 	 * comment for reason locking tree_log_mutex
1347 	 */
1348 	mutex_lock(&fs_info->tree_log_mutex);
1349 
1350 	ret = commit_fs_roots(trans, src);
1351 	if (ret)
1352 		goto out;
1353 	ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1354 	if (ret < 0)
1355 		goto out;
1356 	ret = btrfs_qgroup_account_extents(trans, fs_info);
1357 	if (ret < 0)
1358 		goto out;
1359 
1360 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1361 	ret = btrfs_qgroup_inherit(trans, fs_info,
1362 				   src->root_key.objectid, dst_objectid,
1363 				   inherit);
1364 	if (ret < 0)
1365 		goto out;
1366 
1367 	/*
1368 	 * Now we do a simplified commit transaction, which will:
1369 	 * 1) commit all subvolume and extent tree
1370 	 *    To ensure all subvolume and extent tree have a valid
1371 	 *    commit_root to accounting later insert_dir_item()
1372 	 * 2) write all btree blocks onto disk
1373 	 *    This is to make sure later btree modification will be cowed
1374 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1375 	 * In this simplified commit, we don't really care about other trees
1376 	 * like chunk and root tree, as they won't affect qgroup.
1377 	 * And we don't write super to avoid half committed status.
1378 	 */
1379 	ret = commit_cowonly_roots(trans, src);
1380 	if (ret)
1381 		goto out;
1382 	switch_commit_roots(trans->transaction, fs_info);
1383 	ret = btrfs_write_and_wait_transaction(trans, src);
1384 	if (ret)
1385 		btrfs_handle_fs_error(fs_info, ret,
1386 			"Error while writing out transaction for qgroup");
1387 
1388 out:
1389 	mutex_unlock(&fs_info->tree_log_mutex);
1390 
1391 	/*
1392 	 * Force parent root to be updated, as we recorded it before so its
1393 	 * last_trans == cur_transid.
1394 	 * Or it won't be committed again onto disk after later
1395 	 * insert_dir_item()
1396 	 */
1397 	if (!ret)
1398 		record_root_in_trans(trans, parent, 1);
1399 	return ret;
1400 }
1401 
1402 /*
1403  * new snapshots need to be created at a very specific time in the
1404  * transaction commit.  This does the actual creation.
1405  *
1406  * Note:
1407  * If the error which may affect the commitment of the current transaction
1408  * happens, we should return the error number. If the error which just affect
1409  * the creation of the pending snapshots, just return 0.
1410  */
1411 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1412 				   struct btrfs_fs_info *fs_info,
1413 				   struct btrfs_pending_snapshot *pending)
1414 {
1415 	struct btrfs_key key;
1416 	struct btrfs_root_item *new_root_item;
1417 	struct btrfs_root *tree_root = fs_info->tree_root;
1418 	struct btrfs_root *root = pending->root;
1419 	struct btrfs_root *parent_root;
1420 	struct btrfs_block_rsv *rsv;
1421 	struct inode *parent_inode;
1422 	struct btrfs_path *path;
1423 	struct btrfs_dir_item *dir_item;
1424 	struct dentry *dentry;
1425 	struct extent_buffer *tmp;
1426 	struct extent_buffer *old;
1427 	struct timespec cur_time;
1428 	int ret = 0;
1429 	u64 to_reserve = 0;
1430 	u64 index = 0;
1431 	u64 objectid;
1432 	u64 root_flags;
1433 	uuid_le new_uuid;
1434 
1435 	ASSERT(pending->path);
1436 	path = pending->path;
1437 
1438 	ASSERT(pending->root_item);
1439 	new_root_item = pending->root_item;
1440 
1441 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1442 	if (pending->error)
1443 		goto no_free_objectid;
1444 
1445 	/*
1446 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1447 	 * accounted by later btrfs_qgroup_inherit().
1448 	 */
1449 	btrfs_set_skip_qgroup(trans, objectid);
1450 
1451 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1452 
1453 	if (to_reserve > 0) {
1454 		pending->error = btrfs_block_rsv_add(root,
1455 						     &pending->block_rsv,
1456 						     to_reserve,
1457 						     BTRFS_RESERVE_NO_FLUSH);
1458 		if (pending->error)
1459 			goto clear_skip_qgroup;
1460 	}
1461 
1462 	key.objectid = objectid;
1463 	key.offset = (u64)-1;
1464 	key.type = BTRFS_ROOT_ITEM_KEY;
1465 
1466 	rsv = trans->block_rsv;
1467 	trans->block_rsv = &pending->block_rsv;
1468 	trans->bytes_reserved = trans->block_rsv->reserved;
1469 	trace_btrfs_space_reservation(root->fs_info, "transaction",
1470 				      trans->transid,
1471 				      trans->bytes_reserved, 1);
1472 	dentry = pending->dentry;
1473 	parent_inode = pending->dir;
1474 	parent_root = BTRFS_I(parent_inode)->root;
1475 	record_root_in_trans(trans, parent_root, 0);
1476 
1477 	cur_time = current_fs_time(parent_inode->i_sb);
1478 
1479 	/*
1480 	 * insert the directory item
1481 	 */
1482 	ret = btrfs_set_inode_index(parent_inode, &index);
1483 	BUG_ON(ret); /* -ENOMEM */
1484 
1485 	/* check if there is a file/dir which has the same name. */
1486 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1487 					 btrfs_ino(parent_inode),
1488 					 dentry->d_name.name,
1489 					 dentry->d_name.len, 0);
1490 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1491 		pending->error = -EEXIST;
1492 		goto dir_item_existed;
1493 	} else if (IS_ERR(dir_item)) {
1494 		ret = PTR_ERR(dir_item);
1495 		btrfs_abort_transaction(trans, ret);
1496 		goto fail;
1497 	}
1498 	btrfs_release_path(path);
1499 
1500 	/*
1501 	 * pull in the delayed directory update
1502 	 * and the delayed inode item
1503 	 * otherwise we corrupt the FS during
1504 	 * snapshot
1505 	 */
1506 	ret = btrfs_run_delayed_items(trans, root);
1507 	if (ret) {	/* Transaction aborted */
1508 		btrfs_abort_transaction(trans, ret);
1509 		goto fail;
1510 	}
1511 
1512 	record_root_in_trans(trans, root, 0);
1513 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1514 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1515 	btrfs_check_and_init_root_item(new_root_item);
1516 
1517 	root_flags = btrfs_root_flags(new_root_item);
1518 	if (pending->readonly)
1519 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1520 	else
1521 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1522 	btrfs_set_root_flags(new_root_item, root_flags);
1523 
1524 	btrfs_set_root_generation_v2(new_root_item,
1525 			trans->transid);
1526 	uuid_le_gen(&new_uuid);
1527 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1528 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1529 			BTRFS_UUID_SIZE);
1530 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1531 		memset(new_root_item->received_uuid, 0,
1532 		       sizeof(new_root_item->received_uuid));
1533 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1534 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1535 		btrfs_set_root_stransid(new_root_item, 0);
1536 		btrfs_set_root_rtransid(new_root_item, 0);
1537 	}
1538 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1539 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1540 	btrfs_set_root_otransid(new_root_item, trans->transid);
1541 
1542 	old = btrfs_lock_root_node(root);
1543 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1544 	if (ret) {
1545 		btrfs_tree_unlock(old);
1546 		free_extent_buffer(old);
1547 		btrfs_abort_transaction(trans, ret);
1548 		goto fail;
1549 	}
1550 
1551 	btrfs_set_lock_blocking(old);
1552 
1553 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1554 	/* clean up in any case */
1555 	btrfs_tree_unlock(old);
1556 	free_extent_buffer(old);
1557 	if (ret) {
1558 		btrfs_abort_transaction(trans, ret);
1559 		goto fail;
1560 	}
1561 	/* see comments in should_cow_block() */
1562 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1563 	smp_wmb();
1564 
1565 	btrfs_set_root_node(new_root_item, tmp);
1566 	/* record when the snapshot was created in key.offset */
1567 	key.offset = trans->transid;
1568 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1569 	btrfs_tree_unlock(tmp);
1570 	free_extent_buffer(tmp);
1571 	if (ret) {
1572 		btrfs_abort_transaction(trans, ret);
1573 		goto fail;
1574 	}
1575 
1576 	/*
1577 	 * insert root back/forward references
1578 	 */
1579 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1580 				 parent_root->root_key.objectid,
1581 				 btrfs_ino(parent_inode), index,
1582 				 dentry->d_name.name, dentry->d_name.len);
1583 	if (ret) {
1584 		btrfs_abort_transaction(trans, ret);
1585 		goto fail;
1586 	}
1587 
1588 	key.offset = (u64)-1;
1589 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1590 	if (IS_ERR(pending->snap)) {
1591 		ret = PTR_ERR(pending->snap);
1592 		btrfs_abort_transaction(trans, ret);
1593 		goto fail;
1594 	}
1595 
1596 	ret = btrfs_reloc_post_snapshot(trans, pending);
1597 	if (ret) {
1598 		btrfs_abort_transaction(trans, ret);
1599 		goto fail;
1600 	}
1601 
1602 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1603 	if (ret) {
1604 		btrfs_abort_transaction(trans, ret);
1605 		goto fail;
1606 	}
1607 
1608 	/*
1609 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1610 	 * snapshot hack to do fast snapshot.
1611 	 * To co-operate with that hack, we do hack again.
1612 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1613 	 */
1614 	ret = qgroup_account_snapshot(trans, root, parent_root,
1615 				      pending->inherit, objectid);
1616 	if (ret < 0)
1617 		goto fail;
1618 
1619 	ret = btrfs_insert_dir_item(trans, parent_root,
1620 				    dentry->d_name.name, dentry->d_name.len,
1621 				    parent_inode, &key,
1622 				    BTRFS_FT_DIR, index);
1623 	/* We have check then name at the beginning, so it is impossible. */
1624 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1625 	if (ret) {
1626 		btrfs_abort_transaction(trans, ret);
1627 		goto fail;
1628 	}
1629 
1630 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1631 					 dentry->d_name.len * 2);
1632 	parent_inode->i_mtime = parent_inode->i_ctime =
1633 		current_fs_time(parent_inode->i_sb);
1634 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1635 	if (ret) {
1636 		btrfs_abort_transaction(trans, ret);
1637 		goto fail;
1638 	}
1639 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1640 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1641 	if (ret) {
1642 		btrfs_abort_transaction(trans, ret);
1643 		goto fail;
1644 	}
1645 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1646 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1647 					  new_root_item->received_uuid,
1648 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1649 					  objectid);
1650 		if (ret && ret != -EEXIST) {
1651 			btrfs_abort_transaction(trans, ret);
1652 			goto fail;
1653 		}
1654 	}
1655 
1656 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1657 	if (ret) {
1658 		btrfs_abort_transaction(trans, ret);
1659 		goto fail;
1660 	}
1661 
1662 fail:
1663 	pending->error = ret;
1664 dir_item_existed:
1665 	trans->block_rsv = rsv;
1666 	trans->bytes_reserved = 0;
1667 clear_skip_qgroup:
1668 	btrfs_clear_skip_qgroup(trans);
1669 no_free_objectid:
1670 	kfree(new_root_item);
1671 	pending->root_item = NULL;
1672 	btrfs_free_path(path);
1673 	pending->path = NULL;
1674 
1675 	return ret;
1676 }
1677 
1678 /*
1679  * create all the snapshots we've scheduled for creation
1680  */
1681 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1682 					     struct btrfs_fs_info *fs_info)
1683 {
1684 	struct btrfs_pending_snapshot *pending, *next;
1685 	struct list_head *head = &trans->transaction->pending_snapshots;
1686 	int ret = 0;
1687 
1688 	list_for_each_entry_safe(pending, next, head, list) {
1689 		list_del(&pending->list);
1690 		ret = create_pending_snapshot(trans, fs_info, pending);
1691 		if (ret)
1692 			break;
1693 	}
1694 	return ret;
1695 }
1696 
1697 static void update_super_roots(struct btrfs_root *root)
1698 {
1699 	struct btrfs_root_item *root_item;
1700 	struct btrfs_super_block *super;
1701 
1702 	super = root->fs_info->super_copy;
1703 
1704 	root_item = &root->fs_info->chunk_root->root_item;
1705 	super->chunk_root = root_item->bytenr;
1706 	super->chunk_root_generation = root_item->generation;
1707 	super->chunk_root_level = root_item->level;
1708 
1709 	root_item = &root->fs_info->tree_root->root_item;
1710 	super->root = root_item->bytenr;
1711 	super->generation = root_item->generation;
1712 	super->root_level = root_item->level;
1713 	if (btrfs_test_opt(root->fs_info, SPACE_CACHE))
1714 		super->cache_generation = root_item->generation;
1715 	if (root->fs_info->update_uuid_tree_gen)
1716 		super->uuid_tree_generation = root_item->generation;
1717 }
1718 
1719 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1720 {
1721 	struct btrfs_transaction *trans;
1722 	int ret = 0;
1723 
1724 	spin_lock(&info->trans_lock);
1725 	trans = info->running_transaction;
1726 	if (trans)
1727 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1728 	spin_unlock(&info->trans_lock);
1729 	return ret;
1730 }
1731 
1732 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1733 {
1734 	struct btrfs_transaction *trans;
1735 	int ret = 0;
1736 
1737 	spin_lock(&info->trans_lock);
1738 	trans = info->running_transaction;
1739 	if (trans)
1740 		ret = is_transaction_blocked(trans);
1741 	spin_unlock(&info->trans_lock);
1742 	return ret;
1743 }
1744 
1745 /*
1746  * wait for the current transaction commit to start and block subsequent
1747  * transaction joins
1748  */
1749 static void wait_current_trans_commit_start(struct btrfs_root *root,
1750 					    struct btrfs_transaction *trans)
1751 {
1752 	wait_event(root->fs_info->transaction_blocked_wait,
1753 		   trans->state >= TRANS_STATE_COMMIT_START ||
1754 		   trans->aborted);
1755 }
1756 
1757 /*
1758  * wait for the current transaction to start and then become unblocked.
1759  * caller holds ref.
1760  */
1761 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1762 					 struct btrfs_transaction *trans)
1763 {
1764 	wait_event(root->fs_info->transaction_wait,
1765 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1766 		   trans->aborted);
1767 }
1768 
1769 /*
1770  * commit transactions asynchronously. once btrfs_commit_transaction_async
1771  * returns, any subsequent transaction will not be allowed to join.
1772  */
1773 struct btrfs_async_commit {
1774 	struct btrfs_trans_handle *newtrans;
1775 	struct btrfs_root *root;
1776 	struct work_struct work;
1777 };
1778 
1779 static void do_async_commit(struct work_struct *work)
1780 {
1781 	struct btrfs_async_commit *ac =
1782 		container_of(work, struct btrfs_async_commit, work);
1783 
1784 	/*
1785 	 * We've got freeze protection passed with the transaction.
1786 	 * Tell lockdep about it.
1787 	 */
1788 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1789 		__sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1790 
1791 	current->journal_info = ac->newtrans;
1792 
1793 	btrfs_commit_transaction(ac->newtrans, ac->root);
1794 	kfree(ac);
1795 }
1796 
1797 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1798 				   struct btrfs_root *root,
1799 				   int wait_for_unblock)
1800 {
1801 	struct btrfs_async_commit *ac;
1802 	struct btrfs_transaction *cur_trans;
1803 
1804 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1805 	if (!ac)
1806 		return -ENOMEM;
1807 
1808 	INIT_WORK(&ac->work, do_async_commit);
1809 	ac->root = root;
1810 	ac->newtrans = btrfs_join_transaction(root);
1811 	if (IS_ERR(ac->newtrans)) {
1812 		int err = PTR_ERR(ac->newtrans);
1813 		kfree(ac);
1814 		return err;
1815 	}
1816 
1817 	/* take transaction reference */
1818 	cur_trans = trans->transaction;
1819 	atomic_inc(&cur_trans->use_count);
1820 
1821 	btrfs_end_transaction(trans, root);
1822 
1823 	/*
1824 	 * Tell lockdep we've released the freeze rwsem, since the
1825 	 * async commit thread will be the one to unlock it.
1826 	 */
1827 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1828 		__sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1829 
1830 	schedule_work(&ac->work);
1831 
1832 	/* wait for transaction to start and unblock */
1833 	if (wait_for_unblock)
1834 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1835 	else
1836 		wait_current_trans_commit_start(root, cur_trans);
1837 
1838 	if (current->journal_info == trans)
1839 		current->journal_info = NULL;
1840 
1841 	btrfs_put_transaction(cur_trans);
1842 	return 0;
1843 }
1844 
1845 
1846 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1847 				struct btrfs_root *root, int err)
1848 {
1849 	struct btrfs_transaction *cur_trans = trans->transaction;
1850 	DEFINE_WAIT(wait);
1851 
1852 	WARN_ON(trans->use_count > 1);
1853 
1854 	btrfs_abort_transaction(trans, err);
1855 
1856 	spin_lock(&root->fs_info->trans_lock);
1857 
1858 	/*
1859 	 * If the transaction is removed from the list, it means this
1860 	 * transaction has been committed successfully, so it is impossible
1861 	 * to call the cleanup function.
1862 	 */
1863 	BUG_ON(list_empty(&cur_trans->list));
1864 
1865 	list_del_init(&cur_trans->list);
1866 	if (cur_trans == root->fs_info->running_transaction) {
1867 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1868 		spin_unlock(&root->fs_info->trans_lock);
1869 		wait_event(cur_trans->writer_wait,
1870 			   atomic_read(&cur_trans->num_writers) == 1);
1871 
1872 		spin_lock(&root->fs_info->trans_lock);
1873 	}
1874 	spin_unlock(&root->fs_info->trans_lock);
1875 
1876 	btrfs_cleanup_one_transaction(trans->transaction, root);
1877 
1878 	spin_lock(&root->fs_info->trans_lock);
1879 	if (cur_trans == root->fs_info->running_transaction)
1880 		root->fs_info->running_transaction = NULL;
1881 	spin_unlock(&root->fs_info->trans_lock);
1882 
1883 	if (trans->type & __TRANS_FREEZABLE)
1884 		sb_end_intwrite(root->fs_info->sb);
1885 	btrfs_put_transaction(cur_trans);
1886 	btrfs_put_transaction(cur_trans);
1887 
1888 	trace_btrfs_transaction_commit(root);
1889 
1890 	if (current->journal_info == trans)
1891 		current->journal_info = NULL;
1892 	btrfs_scrub_cancel(root->fs_info);
1893 
1894 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1895 }
1896 
1897 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1898 {
1899 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1900 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1901 	return 0;
1902 }
1903 
1904 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1905 {
1906 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1907 		btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1908 }
1909 
1910 static inline void
1911 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1912 {
1913 	wait_event(cur_trans->pending_wait,
1914 		   atomic_read(&cur_trans->pending_ordered) == 0);
1915 }
1916 
1917 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1918 			     struct btrfs_root *root)
1919 {
1920 	struct btrfs_transaction *cur_trans = trans->transaction;
1921 	struct btrfs_transaction *prev_trans = NULL;
1922 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1923 	int ret;
1924 
1925 	/* Stop the commit early if ->aborted is set */
1926 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1927 		ret = cur_trans->aborted;
1928 		btrfs_end_transaction(trans, root);
1929 		return ret;
1930 	}
1931 
1932 	/* make a pass through all the delayed refs we have so far
1933 	 * any runnings procs may add more while we are here
1934 	 */
1935 	ret = btrfs_run_delayed_refs(trans, root, 0);
1936 	if (ret) {
1937 		btrfs_end_transaction(trans, root);
1938 		return ret;
1939 	}
1940 
1941 	btrfs_trans_release_metadata(trans, root);
1942 	trans->block_rsv = NULL;
1943 
1944 	cur_trans = trans->transaction;
1945 
1946 	/*
1947 	 * set the flushing flag so procs in this transaction have to
1948 	 * start sending their work down.
1949 	 */
1950 	cur_trans->delayed_refs.flushing = 1;
1951 	smp_wmb();
1952 
1953 	if (!list_empty(&trans->new_bgs))
1954 		btrfs_create_pending_block_groups(trans, root);
1955 
1956 	ret = btrfs_run_delayed_refs(trans, root, 0);
1957 	if (ret) {
1958 		btrfs_end_transaction(trans, root);
1959 		return ret;
1960 	}
1961 
1962 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1963 		int run_it = 0;
1964 
1965 		/* this mutex is also taken before trying to set
1966 		 * block groups readonly.  We need to make sure
1967 		 * that nobody has set a block group readonly
1968 		 * after a extents from that block group have been
1969 		 * allocated for cache files.  btrfs_set_block_group_ro
1970 		 * will wait for the transaction to commit if it
1971 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1972 		 *
1973 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1974 		 * only one process starts all the block group IO.  It wouldn't
1975 		 * hurt to have more than one go through, but there's no
1976 		 * real advantage to it either.
1977 		 */
1978 		mutex_lock(&root->fs_info->ro_block_group_mutex);
1979 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1980 				      &cur_trans->flags))
1981 			run_it = 1;
1982 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
1983 
1984 		if (run_it)
1985 			ret = btrfs_start_dirty_block_groups(trans, root);
1986 	}
1987 	if (ret) {
1988 		btrfs_end_transaction(trans, root);
1989 		return ret;
1990 	}
1991 
1992 	spin_lock(&root->fs_info->trans_lock);
1993 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1994 		spin_unlock(&root->fs_info->trans_lock);
1995 		atomic_inc(&cur_trans->use_count);
1996 		ret = btrfs_end_transaction(trans, root);
1997 
1998 		wait_for_commit(root, cur_trans);
1999 
2000 		if (unlikely(cur_trans->aborted))
2001 			ret = cur_trans->aborted;
2002 
2003 		btrfs_put_transaction(cur_trans);
2004 
2005 		return ret;
2006 	}
2007 
2008 	cur_trans->state = TRANS_STATE_COMMIT_START;
2009 	wake_up(&root->fs_info->transaction_blocked_wait);
2010 
2011 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
2012 		prev_trans = list_entry(cur_trans->list.prev,
2013 					struct btrfs_transaction, list);
2014 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2015 			atomic_inc(&prev_trans->use_count);
2016 			spin_unlock(&root->fs_info->trans_lock);
2017 
2018 			wait_for_commit(root, prev_trans);
2019 			ret = prev_trans->aborted;
2020 
2021 			btrfs_put_transaction(prev_trans);
2022 			if (ret)
2023 				goto cleanup_transaction;
2024 		} else {
2025 			spin_unlock(&root->fs_info->trans_lock);
2026 		}
2027 	} else {
2028 		spin_unlock(&root->fs_info->trans_lock);
2029 	}
2030 
2031 	extwriter_counter_dec(cur_trans, trans->type);
2032 
2033 	ret = btrfs_start_delalloc_flush(root->fs_info);
2034 	if (ret)
2035 		goto cleanup_transaction;
2036 
2037 	ret = btrfs_run_delayed_items(trans, root);
2038 	if (ret)
2039 		goto cleanup_transaction;
2040 
2041 	wait_event(cur_trans->writer_wait,
2042 		   extwriter_counter_read(cur_trans) == 0);
2043 
2044 	/* some pending stuffs might be added after the previous flush. */
2045 	ret = btrfs_run_delayed_items(trans, root);
2046 	if (ret)
2047 		goto cleanup_transaction;
2048 
2049 	btrfs_wait_delalloc_flush(root->fs_info);
2050 
2051 	btrfs_wait_pending_ordered(cur_trans);
2052 
2053 	btrfs_scrub_pause(root);
2054 	/*
2055 	 * Ok now we need to make sure to block out any other joins while we
2056 	 * commit the transaction.  We could have started a join before setting
2057 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2058 	 */
2059 	spin_lock(&root->fs_info->trans_lock);
2060 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2061 	spin_unlock(&root->fs_info->trans_lock);
2062 	wait_event(cur_trans->writer_wait,
2063 		   atomic_read(&cur_trans->num_writers) == 1);
2064 
2065 	/* ->aborted might be set after the previous check, so check it */
2066 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2067 		ret = cur_trans->aborted;
2068 		goto scrub_continue;
2069 	}
2070 	/*
2071 	 * the reloc mutex makes sure that we stop
2072 	 * the balancing code from coming in and moving
2073 	 * extents around in the middle of the commit
2074 	 */
2075 	mutex_lock(&root->fs_info->reloc_mutex);
2076 
2077 	/*
2078 	 * We needn't worry about the delayed items because we will
2079 	 * deal with them in create_pending_snapshot(), which is the
2080 	 * core function of the snapshot creation.
2081 	 */
2082 	ret = create_pending_snapshots(trans, root->fs_info);
2083 	if (ret) {
2084 		mutex_unlock(&root->fs_info->reloc_mutex);
2085 		goto scrub_continue;
2086 	}
2087 
2088 	/*
2089 	 * We insert the dir indexes of the snapshots and update the inode
2090 	 * of the snapshots' parents after the snapshot creation, so there
2091 	 * are some delayed items which are not dealt with. Now deal with
2092 	 * them.
2093 	 *
2094 	 * We needn't worry that this operation will corrupt the snapshots,
2095 	 * because all the tree which are snapshoted will be forced to COW
2096 	 * the nodes and leaves.
2097 	 */
2098 	ret = btrfs_run_delayed_items(trans, root);
2099 	if (ret) {
2100 		mutex_unlock(&root->fs_info->reloc_mutex);
2101 		goto scrub_continue;
2102 	}
2103 
2104 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2105 	if (ret) {
2106 		mutex_unlock(&root->fs_info->reloc_mutex);
2107 		goto scrub_continue;
2108 	}
2109 
2110 	/* Reocrd old roots for later qgroup accounting */
2111 	ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2112 	if (ret) {
2113 		mutex_unlock(&root->fs_info->reloc_mutex);
2114 		goto scrub_continue;
2115 	}
2116 
2117 	/*
2118 	 * make sure none of the code above managed to slip in a
2119 	 * delayed item
2120 	 */
2121 	btrfs_assert_delayed_root_empty(root);
2122 
2123 	WARN_ON(cur_trans != trans->transaction);
2124 
2125 	/* btrfs_commit_tree_roots is responsible for getting the
2126 	 * various roots consistent with each other.  Every pointer
2127 	 * in the tree of tree roots has to point to the most up to date
2128 	 * root for every subvolume and other tree.  So, we have to keep
2129 	 * the tree logging code from jumping in and changing any
2130 	 * of the trees.
2131 	 *
2132 	 * At this point in the commit, there can't be any tree-log
2133 	 * writers, but a little lower down we drop the trans mutex
2134 	 * and let new people in.  By holding the tree_log_mutex
2135 	 * from now until after the super is written, we avoid races
2136 	 * with the tree-log code.
2137 	 */
2138 	mutex_lock(&root->fs_info->tree_log_mutex);
2139 
2140 	ret = commit_fs_roots(trans, root);
2141 	if (ret) {
2142 		mutex_unlock(&root->fs_info->tree_log_mutex);
2143 		mutex_unlock(&root->fs_info->reloc_mutex);
2144 		goto scrub_continue;
2145 	}
2146 
2147 	/*
2148 	 * Since the transaction is done, we can apply the pending changes
2149 	 * before the next transaction.
2150 	 */
2151 	btrfs_apply_pending_changes(root->fs_info);
2152 
2153 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2154 	 * safe to free the root of tree log roots
2155 	 */
2156 	btrfs_free_log_root_tree(trans, root->fs_info);
2157 
2158 	/*
2159 	 * Since fs roots are all committed, we can get a quite accurate
2160 	 * new_roots. So let's do quota accounting.
2161 	 */
2162 	ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2163 	if (ret < 0) {
2164 		mutex_unlock(&root->fs_info->tree_log_mutex);
2165 		mutex_unlock(&root->fs_info->reloc_mutex);
2166 		goto scrub_continue;
2167 	}
2168 
2169 	ret = commit_cowonly_roots(trans, root);
2170 	if (ret) {
2171 		mutex_unlock(&root->fs_info->tree_log_mutex);
2172 		mutex_unlock(&root->fs_info->reloc_mutex);
2173 		goto scrub_continue;
2174 	}
2175 
2176 	/*
2177 	 * The tasks which save the space cache and inode cache may also
2178 	 * update ->aborted, check it.
2179 	 */
2180 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2181 		ret = cur_trans->aborted;
2182 		mutex_unlock(&root->fs_info->tree_log_mutex);
2183 		mutex_unlock(&root->fs_info->reloc_mutex);
2184 		goto scrub_continue;
2185 	}
2186 
2187 	btrfs_prepare_extent_commit(trans, root);
2188 
2189 	cur_trans = root->fs_info->running_transaction;
2190 
2191 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2192 			    root->fs_info->tree_root->node);
2193 	list_add_tail(&root->fs_info->tree_root->dirty_list,
2194 		      &cur_trans->switch_commits);
2195 
2196 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2197 			    root->fs_info->chunk_root->node);
2198 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
2199 		      &cur_trans->switch_commits);
2200 
2201 	switch_commit_roots(cur_trans, root->fs_info);
2202 
2203 	assert_qgroups_uptodate(trans);
2204 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2205 	ASSERT(list_empty(&cur_trans->io_bgs));
2206 	update_super_roots(root);
2207 
2208 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2209 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2210 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2211 	       sizeof(*root->fs_info->super_copy));
2212 
2213 	btrfs_update_commit_device_size(root->fs_info);
2214 	btrfs_update_commit_device_bytes_used(root, cur_trans);
2215 
2216 	clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2217 	clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2218 
2219 	btrfs_trans_release_chunk_metadata(trans);
2220 
2221 	spin_lock(&root->fs_info->trans_lock);
2222 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2223 	root->fs_info->running_transaction = NULL;
2224 	spin_unlock(&root->fs_info->trans_lock);
2225 	mutex_unlock(&root->fs_info->reloc_mutex);
2226 
2227 	wake_up(&root->fs_info->transaction_wait);
2228 
2229 	ret = btrfs_write_and_wait_transaction(trans, root);
2230 	if (ret) {
2231 		btrfs_handle_fs_error(root->fs_info, ret,
2232 			    "Error while writing out transaction");
2233 		mutex_unlock(&root->fs_info->tree_log_mutex);
2234 		goto scrub_continue;
2235 	}
2236 
2237 	ret = write_ctree_super(trans, root, 0);
2238 	if (ret) {
2239 		mutex_unlock(&root->fs_info->tree_log_mutex);
2240 		goto scrub_continue;
2241 	}
2242 
2243 	/*
2244 	 * the super is written, we can safely allow the tree-loggers
2245 	 * to go about their business
2246 	 */
2247 	mutex_unlock(&root->fs_info->tree_log_mutex);
2248 
2249 	btrfs_finish_extent_commit(trans, root);
2250 
2251 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2252 		btrfs_clear_space_info_full(root->fs_info);
2253 
2254 	root->fs_info->last_trans_committed = cur_trans->transid;
2255 	/*
2256 	 * We needn't acquire the lock here because there is no other task
2257 	 * which can change it.
2258 	 */
2259 	cur_trans->state = TRANS_STATE_COMPLETED;
2260 	wake_up(&cur_trans->commit_wait);
2261 
2262 	spin_lock(&root->fs_info->trans_lock);
2263 	list_del_init(&cur_trans->list);
2264 	spin_unlock(&root->fs_info->trans_lock);
2265 
2266 	btrfs_put_transaction(cur_trans);
2267 	btrfs_put_transaction(cur_trans);
2268 
2269 	if (trans->type & __TRANS_FREEZABLE)
2270 		sb_end_intwrite(root->fs_info->sb);
2271 
2272 	trace_btrfs_transaction_commit(root);
2273 
2274 	btrfs_scrub_continue(root);
2275 
2276 	if (current->journal_info == trans)
2277 		current->journal_info = NULL;
2278 
2279 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2280 
2281 	/*
2282 	 * If fs has been frozen, we can not handle delayed iputs, otherwise
2283 	 * it'll result in deadlock about SB_FREEZE_FS.
2284 	 */
2285 	if (current != root->fs_info->transaction_kthread &&
2286 	    current != root->fs_info->cleaner_kthread &&
2287 	    !root->fs_info->fs_frozen)
2288 		btrfs_run_delayed_iputs(root);
2289 
2290 	return ret;
2291 
2292 scrub_continue:
2293 	btrfs_scrub_continue(root);
2294 cleanup_transaction:
2295 	btrfs_trans_release_metadata(trans, root);
2296 	btrfs_trans_release_chunk_metadata(trans);
2297 	trans->block_rsv = NULL;
2298 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2299 	if (current->journal_info == trans)
2300 		current->journal_info = NULL;
2301 	cleanup_transaction(trans, root, ret);
2302 
2303 	return ret;
2304 }
2305 
2306 /*
2307  * return < 0 if error
2308  * 0 if there are no more dead_roots at the time of call
2309  * 1 there are more to be processed, call me again
2310  *
2311  * The return value indicates there are certainly more snapshots to delete, but
2312  * if there comes a new one during processing, it may return 0. We don't mind,
2313  * because btrfs_commit_super will poke cleaner thread and it will process it a
2314  * few seconds later.
2315  */
2316 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2317 {
2318 	int ret;
2319 	struct btrfs_fs_info *fs_info = root->fs_info;
2320 
2321 	spin_lock(&fs_info->trans_lock);
2322 	if (list_empty(&fs_info->dead_roots)) {
2323 		spin_unlock(&fs_info->trans_lock);
2324 		return 0;
2325 	}
2326 	root = list_first_entry(&fs_info->dead_roots,
2327 			struct btrfs_root, root_list);
2328 	list_del_init(&root->root_list);
2329 	spin_unlock(&fs_info->trans_lock);
2330 
2331 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2332 
2333 	btrfs_kill_all_delayed_nodes(root);
2334 
2335 	if (btrfs_header_backref_rev(root->node) <
2336 			BTRFS_MIXED_BACKREF_REV)
2337 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2338 	else
2339 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2340 
2341 	return (ret < 0) ? 0 : 1;
2342 }
2343 
2344 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2345 {
2346 	unsigned long prev;
2347 	unsigned long bit;
2348 
2349 	prev = xchg(&fs_info->pending_changes, 0);
2350 	if (!prev)
2351 		return;
2352 
2353 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2354 	if (prev & bit)
2355 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2356 	prev &= ~bit;
2357 
2358 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2359 	if (prev & bit)
2360 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2361 	prev &= ~bit;
2362 
2363 	bit = 1 << BTRFS_PENDING_COMMIT;
2364 	if (prev & bit)
2365 		btrfs_debug(fs_info, "pending commit done");
2366 	prev &= ~bit;
2367 
2368 	if (prev)
2369 		btrfs_warn(fs_info,
2370 			"unknown pending changes left 0x%lx, ignoring", prev);
2371 }
2372