1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 #include "qgroup.h" 35 36 #define BTRFS_ROOT_TRANS_TAG 0 37 38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 39 [TRANS_STATE_RUNNING] = 0U, 40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | 41 __TRANS_START), 42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | 43 __TRANS_START | 44 __TRANS_ATTACH), 45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | 46 __TRANS_START | 47 __TRANS_ATTACH | 48 __TRANS_JOIN), 49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | 50 __TRANS_START | 51 __TRANS_ATTACH | 52 __TRANS_JOIN | 53 __TRANS_JOIN_NOLOCK), 54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | 55 __TRANS_START | 56 __TRANS_ATTACH | 57 __TRANS_JOIN | 58 __TRANS_JOIN_NOLOCK), 59 }; 60 61 void btrfs_put_transaction(struct btrfs_transaction *transaction) 62 { 63 WARN_ON(atomic_read(&transaction->use_count) == 0); 64 if (atomic_dec_and_test(&transaction->use_count)) { 65 BUG_ON(!list_empty(&transaction->list)); 66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root)); 67 if (transaction->delayed_refs.pending_csums) 68 printk(KERN_ERR "pending csums is %llu\n", 69 transaction->delayed_refs.pending_csums); 70 while (!list_empty(&transaction->pending_chunks)) { 71 struct extent_map *em; 72 73 em = list_first_entry(&transaction->pending_chunks, 74 struct extent_map, list); 75 list_del_init(&em->list); 76 free_extent_map(em); 77 } 78 /* 79 * If any block groups are found in ->deleted_bgs then it's 80 * because the transaction was aborted and a commit did not 81 * happen (things failed before writing the new superblock 82 * and calling btrfs_finish_extent_commit()), so we can not 83 * discard the physical locations of the block groups. 84 */ 85 while (!list_empty(&transaction->deleted_bgs)) { 86 struct btrfs_block_group_cache *cache; 87 88 cache = list_first_entry(&transaction->deleted_bgs, 89 struct btrfs_block_group_cache, 90 bg_list); 91 list_del_init(&cache->bg_list); 92 btrfs_put_block_group_trimming(cache); 93 btrfs_put_block_group(cache); 94 } 95 kmem_cache_free(btrfs_transaction_cachep, transaction); 96 } 97 } 98 99 static void clear_btree_io_tree(struct extent_io_tree *tree) 100 { 101 spin_lock(&tree->lock); 102 /* 103 * Do a single barrier for the waitqueue_active check here, the state 104 * of the waitqueue should not change once clear_btree_io_tree is 105 * called. 106 */ 107 smp_mb(); 108 while (!RB_EMPTY_ROOT(&tree->state)) { 109 struct rb_node *node; 110 struct extent_state *state; 111 112 node = rb_first(&tree->state); 113 state = rb_entry(node, struct extent_state, rb_node); 114 rb_erase(&state->rb_node, &tree->state); 115 RB_CLEAR_NODE(&state->rb_node); 116 /* 117 * btree io trees aren't supposed to have tasks waiting for 118 * changes in the flags of extent states ever. 119 */ 120 ASSERT(!waitqueue_active(&state->wq)); 121 free_extent_state(state); 122 123 cond_resched_lock(&tree->lock); 124 } 125 spin_unlock(&tree->lock); 126 } 127 128 static noinline void switch_commit_roots(struct btrfs_transaction *trans, 129 struct btrfs_fs_info *fs_info) 130 { 131 struct btrfs_root *root, *tmp; 132 133 down_write(&fs_info->commit_root_sem); 134 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 135 dirty_list) { 136 list_del_init(&root->dirty_list); 137 free_extent_buffer(root->commit_root); 138 root->commit_root = btrfs_root_node(root); 139 if (is_fstree(root->objectid)) 140 btrfs_unpin_free_ino(root); 141 clear_btree_io_tree(&root->dirty_log_pages); 142 } 143 144 /* We can free old roots now. */ 145 spin_lock(&trans->dropped_roots_lock); 146 while (!list_empty(&trans->dropped_roots)) { 147 root = list_first_entry(&trans->dropped_roots, 148 struct btrfs_root, root_list); 149 list_del_init(&root->root_list); 150 spin_unlock(&trans->dropped_roots_lock); 151 btrfs_drop_and_free_fs_root(fs_info, root); 152 spin_lock(&trans->dropped_roots_lock); 153 } 154 spin_unlock(&trans->dropped_roots_lock); 155 up_write(&fs_info->commit_root_sem); 156 } 157 158 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 159 unsigned int type) 160 { 161 if (type & TRANS_EXTWRITERS) 162 atomic_inc(&trans->num_extwriters); 163 } 164 165 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 166 unsigned int type) 167 { 168 if (type & TRANS_EXTWRITERS) 169 atomic_dec(&trans->num_extwriters); 170 } 171 172 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 173 unsigned int type) 174 { 175 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 176 } 177 178 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 179 { 180 return atomic_read(&trans->num_extwriters); 181 } 182 183 /* 184 * either allocate a new transaction or hop into the existing one 185 */ 186 static noinline int join_transaction(struct btrfs_root *root, unsigned int type) 187 { 188 struct btrfs_transaction *cur_trans; 189 struct btrfs_fs_info *fs_info = root->fs_info; 190 191 spin_lock(&fs_info->trans_lock); 192 loop: 193 /* The file system has been taken offline. No new transactions. */ 194 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 195 spin_unlock(&fs_info->trans_lock); 196 return -EROFS; 197 } 198 199 cur_trans = fs_info->running_transaction; 200 if (cur_trans) { 201 if (cur_trans->aborted) { 202 spin_unlock(&fs_info->trans_lock); 203 return cur_trans->aborted; 204 } 205 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 206 spin_unlock(&fs_info->trans_lock); 207 return -EBUSY; 208 } 209 atomic_inc(&cur_trans->use_count); 210 atomic_inc(&cur_trans->num_writers); 211 extwriter_counter_inc(cur_trans, type); 212 spin_unlock(&fs_info->trans_lock); 213 return 0; 214 } 215 spin_unlock(&fs_info->trans_lock); 216 217 /* 218 * If we are ATTACH, we just want to catch the current transaction, 219 * and commit it. If there is no transaction, just return ENOENT. 220 */ 221 if (type == TRANS_ATTACH) 222 return -ENOENT; 223 224 /* 225 * JOIN_NOLOCK only happens during the transaction commit, so 226 * it is impossible that ->running_transaction is NULL 227 */ 228 BUG_ON(type == TRANS_JOIN_NOLOCK); 229 230 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 231 if (!cur_trans) 232 return -ENOMEM; 233 234 spin_lock(&fs_info->trans_lock); 235 if (fs_info->running_transaction) { 236 /* 237 * someone started a transaction after we unlocked. Make sure 238 * to redo the checks above 239 */ 240 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 241 goto loop; 242 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 243 spin_unlock(&fs_info->trans_lock); 244 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 245 return -EROFS; 246 } 247 248 atomic_set(&cur_trans->num_writers, 1); 249 extwriter_counter_init(cur_trans, type); 250 init_waitqueue_head(&cur_trans->writer_wait); 251 init_waitqueue_head(&cur_trans->commit_wait); 252 init_waitqueue_head(&cur_trans->pending_wait); 253 cur_trans->state = TRANS_STATE_RUNNING; 254 /* 255 * One for this trans handle, one so it will live on until we 256 * commit the transaction. 257 */ 258 atomic_set(&cur_trans->use_count, 2); 259 atomic_set(&cur_trans->pending_ordered, 0); 260 cur_trans->flags = 0; 261 cur_trans->start_time = get_seconds(); 262 263 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 264 265 cur_trans->delayed_refs.href_root = RB_ROOT; 266 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 267 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 268 269 /* 270 * although the tree mod log is per file system and not per transaction, 271 * the log must never go across transaction boundaries. 272 */ 273 smp_mb(); 274 if (!list_empty(&fs_info->tree_mod_seq_list)) 275 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when " 276 "creating a fresh transaction\n"); 277 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 278 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when " 279 "creating a fresh transaction\n"); 280 atomic64_set(&fs_info->tree_mod_seq, 0); 281 282 spin_lock_init(&cur_trans->delayed_refs.lock); 283 284 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 285 INIT_LIST_HEAD(&cur_trans->pending_chunks); 286 INIT_LIST_HEAD(&cur_trans->switch_commits); 287 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 288 INIT_LIST_HEAD(&cur_trans->io_bgs); 289 INIT_LIST_HEAD(&cur_trans->dropped_roots); 290 mutex_init(&cur_trans->cache_write_mutex); 291 cur_trans->num_dirty_bgs = 0; 292 spin_lock_init(&cur_trans->dirty_bgs_lock); 293 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 294 spin_lock_init(&cur_trans->dropped_roots_lock); 295 list_add_tail(&cur_trans->list, &fs_info->trans_list); 296 extent_io_tree_init(&cur_trans->dirty_pages, 297 fs_info->btree_inode->i_mapping); 298 fs_info->generation++; 299 cur_trans->transid = fs_info->generation; 300 fs_info->running_transaction = cur_trans; 301 cur_trans->aborted = 0; 302 spin_unlock(&fs_info->trans_lock); 303 304 return 0; 305 } 306 307 /* 308 * this does all the record keeping required to make sure that a reference 309 * counted root is properly recorded in a given transaction. This is required 310 * to make sure the old root from before we joined the transaction is deleted 311 * when the transaction commits 312 */ 313 static int record_root_in_trans(struct btrfs_trans_handle *trans, 314 struct btrfs_root *root, 315 int force) 316 { 317 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 318 root->last_trans < trans->transid) || force) { 319 WARN_ON(root == root->fs_info->extent_root); 320 WARN_ON(root->commit_root != root->node); 321 322 /* 323 * see below for IN_TRANS_SETUP usage rules 324 * we have the reloc mutex held now, so there 325 * is only one writer in this function 326 */ 327 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 328 329 /* make sure readers find IN_TRANS_SETUP before 330 * they find our root->last_trans update 331 */ 332 smp_wmb(); 333 334 spin_lock(&root->fs_info->fs_roots_radix_lock); 335 if (root->last_trans == trans->transid && !force) { 336 spin_unlock(&root->fs_info->fs_roots_radix_lock); 337 return 0; 338 } 339 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 340 (unsigned long)root->root_key.objectid, 341 BTRFS_ROOT_TRANS_TAG); 342 spin_unlock(&root->fs_info->fs_roots_radix_lock); 343 root->last_trans = trans->transid; 344 345 /* this is pretty tricky. We don't want to 346 * take the relocation lock in btrfs_record_root_in_trans 347 * unless we're really doing the first setup for this root in 348 * this transaction. 349 * 350 * Normally we'd use root->last_trans as a flag to decide 351 * if we want to take the expensive mutex. 352 * 353 * But, we have to set root->last_trans before we 354 * init the relocation root, otherwise, we trip over warnings 355 * in ctree.c. The solution used here is to flag ourselves 356 * with root IN_TRANS_SETUP. When this is 1, we're still 357 * fixing up the reloc trees and everyone must wait. 358 * 359 * When this is zero, they can trust root->last_trans and fly 360 * through btrfs_record_root_in_trans without having to take the 361 * lock. smp_wmb() makes sure that all the writes above are 362 * done before we pop in the zero below 363 */ 364 btrfs_init_reloc_root(trans, root); 365 smp_mb__before_atomic(); 366 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 367 } 368 return 0; 369 } 370 371 372 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 373 struct btrfs_root *root) 374 { 375 struct btrfs_transaction *cur_trans = trans->transaction; 376 377 /* Add ourselves to the transaction dropped list */ 378 spin_lock(&cur_trans->dropped_roots_lock); 379 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 380 spin_unlock(&cur_trans->dropped_roots_lock); 381 382 /* Make sure we don't try to update the root at commit time */ 383 spin_lock(&root->fs_info->fs_roots_radix_lock); 384 radix_tree_tag_clear(&root->fs_info->fs_roots_radix, 385 (unsigned long)root->root_key.objectid, 386 BTRFS_ROOT_TRANS_TAG); 387 spin_unlock(&root->fs_info->fs_roots_radix_lock); 388 } 389 390 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 391 struct btrfs_root *root) 392 { 393 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 394 return 0; 395 396 /* 397 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 398 * and barriers 399 */ 400 smp_rmb(); 401 if (root->last_trans == trans->transid && 402 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 403 return 0; 404 405 mutex_lock(&root->fs_info->reloc_mutex); 406 record_root_in_trans(trans, root, 0); 407 mutex_unlock(&root->fs_info->reloc_mutex); 408 409 return 0; 410 } 411 412 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 413 { 414 return (trans->state >= TRANS_STATE_BLOCKED && 415 trans->state < TRANS_STATE_UNBLOCKED && 416 !trans->aborted); 417 } 418 419 /* wait for commit against the current transaction to become unblocked 420 * when this is done, it is safe to start a new transaction, but the current 421 * transaction might not be fully on disk. 422 */ 423 static void wait_current_trans(struct btrfs_root *root) 424 { 425 struct btrfs_transaction *cur_trans; 426 427 spin_lock(&root->fs_info->trans_lock); 428 cur_trans = root->fs_info->running_transaction; 429 if (cur_trans && is_transaction_blocked(cur_trans)) { 430 atomic_inc(&cur_trans->use_count); 431 spin_unlock(&root->fs_info->trans_lock); 432 433 wait_event(root->fs_info->transaction_wait, 434 cur_trans->state >= TRANS_STATE_UNBLOCKED || 435 cur_trans->aborted); 436 btrfs_put_transaction(cur_trans); 437 } else { 438 spin_unlock(&root->fs_info->trans_lock); 439 } 440 } 441 442 static int may_wait_transaction(struct btrfs_root *root, int type) 443 { 444 if (root->fs_info->log_root_recovering) 445 return 0; 446 447 if (type == TRANS_USERSPACE) 448 return 1; 449 450 if (type == TRANS_START && 451 !atomic_read(&root->fs_info->open_ioctl_trans)) 452 return 1; 453 454 return 0; 455 } 456 457 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 458 { 459 if (!root->fs_info->reloc_ctl || 460 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 461 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 462 root->reloc_root) 463 return false; 464 465 return true; 466 } 467 468 static struct btrfs_trans_handle * 469 start_transaction(struct btrfs_root *root, unsigned int num_items, 470 unsigned int type, enum btrfs_reserve_flush_enum flush) 471 { 472 struct btrfs_trans_handle *h; 473 struct btrfs_transaction *cur_trans; 474 u64 num_bytes = 0; 475 u64 qgroup_reserved = 0; 476 bool reloc_reserved = false; 477 int ret; 478 479 /* Send isn't supposed to start transactions. */ 480 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 481 482 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 483 return ERR_PTR(-EROFS); 484 485 if (current->journal_info) { 486 WARN_ON(type & TRANS_EXTWRITERS); 487 h = current->journal_info; 488 h->use_count++; 489 WARN_ON(h->use_count > 2); 490 h->orig_rsv = h->block_rsv; 491 h->block_rsv = NULL; 492 goto got_it; 493 } 494 495 /* 496 * Do the reservation before we join the transaction so we can do all 497 * the appropriate flushing if need be. 498 */ 499 if (num_items > 0 && root != root->fs_info->chunk_root) { 500 qgroup_reserved = num_items * root->nodesize; 501 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved); 502 if (ret) 503 return ERR_PTR(ret); 504 505 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 506 /* 507 * Do the reservation for the relocation root creation 508 */ 509 if (need_reserve_reloc_root(root)) { 510 num_bytes += root->nodesize; 511 reloc_reserved = true; 512 } 513 514 ret = btrfs_block_rsv_add(root, 515 &root->fs_info->trans_block_rsv, 516 num_bytes, flush); 517 if (ret) 518 goto reserve_fail; 519 } 520 again: 521 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 522 if (!h) { 523 ret = -ENOMEM; 524 goto alloc_fail; 525 } 526 527 /* 528 * If we are JOIN_NOLOCK we're already committing a transaction and 529 * waiting on this guy, so we don't need to do the sb_start_intwrite 530 * because we're already holding a ref. We need this because we could 531 * have raced in and did an fsync() on a file which can kick a commit 532 * and then we deadlock with somebody doing a freeze. 533 * 534 * If we are ATTACH, it means we just want to catch the current 535 * transaction and commit it, so we needn't do sb_start_intwrite(). 536 */ 537 if (type & __TRANS_FREEZABLE) 538 sb_start_intwrite(root->fs_info->sb); 539 540 if (may_wait_transaction(root, type)) 541 wait_current_trans(root); 542 543 do { 544 ret = join_transaction(root, type); 545 if (ret == -EBUSY) { 546 wait_current_trans(root); 547 if (unlikely(type == TRANS_ATTACH)) 548 ret = -ENOENT; 549 } 550 } while (ret == -EBUSY); 551 552 if (ret < 0) { 553 /* We must get the transaction if we are JOIN_NOLOCK. */ 554 BUG_ON(type == TRANS_JOIN_NOLOCK); 555 goto join_fail; 556 } 557 558 cur_trans = root->fs_info->running_transaction; 559 560 h->transid = cur_trans->transid; 561 h->transaction = cur_trans; 562 h->root = root; 563 h->use_count = 1; 564 h->fs_info = root->fs_info; 565 566 h->type = type; 567 h->can_flush_pending_bgs = true; 568 INIT_LIST_HEAD(&h->qgroup_ref_list); 569 INIT_LIST_HEAD(&h->new_bgs); 570 571 smp_mb(); 572 if (cur_trans->state >= TRANS_STATE_BLOCKED && 573 may_wait_transaction(root, type)) { 574 current->journal_info = h; 575 btrfs_commit_transaction(h, root); 576 goto again; 577 } 578 579 if (num_bytes) { 580 trace_btrfs_space_reservation(root->fs_info, "transaction", 581 h->transid, num_bytes, 1); 582 h->block_rsv = &root->fs_info->trans_block_rsv; 583 h->bytes_reserved = num_bytes; 584 h->reloc_reserved = reloc_reserved; 585 } 586 587 got_it: 588 btrfs_record_root_in_trans(h, root); 589 590 if (!current->journal_info && type != TRANS_USERSPACE) 591 current->journal_info = h; 592 return h; 593 594 join_fail: 595 if (type & __TRANS_FREEZABLE) 596 sb_end_intwrite(root->fs_info->sb); 597 kmem_cache_free(btrfs_trans_handle_cachep, h); 598 alloc_fail: 599 if (num_bytes) 600 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 601 num_bytes); 602 reserve_fail: 603 btrfs_qgroup_free_meta(root, qgroup_reserved); 604 return ERR_PTR(ret); 605 } 606 607 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 608 unsigned int num_items) 609 { 610 return start_transaction(root, num_items, TRANS_START, 611 BTRFS_RESERVE_FLUSH_ALL); 612 } 613 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 614 struct btrfs_root *root, 615 unsigned int num_items, 616 int min_factor) 617 { 618 struct btrfs_trans_handle *trans; 619 u64 num_bytes; 620 int ret; 621 622 trans = btrfs_start_transaction(root, num_items); 623 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 624 return trans; 625 626 trans = btrfs_start_transaction(root, 0); 627 if (IS_ERR(trans)) 628 return trans; 629 630 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 631 ret = btrfs_cond_migrate_bytes(root->fs_info, 632 &root->fs_info->trans_block_rsv, 633 num_bytes, 634 min_factor); 635 if (ret) { 636 btrfs_end_transaction(trans, root); 637 return ERR_PTR(ret); 638 } 639 640 trans->block_rsv = &root->fs_info->trans_block_rsv; 641 trans->bytes_reserved = num_bytes; 642 trace_btrfs_space_reservation(root->fs_info, "transaction", 643 trans->transid, num_bytes, 1); 644 645 return trans; 646 } 647 648 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 649 struct btrfs_root *root, 650 unsigned int num_items) 651 { 652 return start_transaction(root, num_items, TRANS_START, 653 BTRFS_RESERVE_FLUSH_LIMIT); 654 } 655 656 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 657 { 658 return start_transaction(root, 0, TRANS_JOIN, 659 BTRFS_RESERVE_NO_FLUSH); 660 } 661 662 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 663 { 664 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 665 BTRFS_RESERVE_NO_FLUSH); 666 } 667 668 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 669 { 670 return start_transaction(root, 0, TRANS_USERSPACE, 671 BTRFS_RESERVE_NO_FLUSH); 672 } 673 674 /* 675 * btrfs_attach_transaction() - catch the running transaction 676 * 677 * It is used when we want to commit the current the transaction, but 678 * don't want to start a new one. 679 * 680 * Note: If this function return -ENOENT, it just means there is no 681 * running transaction. But it is possible that the inactive transaction 682 * is still in the memory, not fully on disk. If you hope there is no 683 * inactive transaction in the fs when -ENOENT is returned, you should 684 * invoke 685 * btrfs_attach_transaction_barrier() 686 */ 687 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 688 { 689 return start_transaction(root, 0, TRANS_ATTACH, 690 BTRFS_RESERVE_NO_FLUSH); 691 } 692 693 /* 694 * btrfs_attach_transaction_barrier() - catch the running transaction 695 * 696 * It is similar to the above function, the differentia is this one 697 * will wait for all the inactive transactions until they fully 698 * complete. 699 */ 700 struct btrfs_trans_handle * 701 btrfs_attach_transaction_barrier(struct btrfs_root *root) 702 { 703 struct btrfs_trans_handle *trans; 704 705 trans = start_transaction(root, 0, TRANS_ATTACH, 706 BTRFS_RESERVE_NO_FLUSH); 707 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 708 btrfs_wait_for_commit(root, 0); 709 710 return trans; 711 } 712 713 /* wait for a transaction commit to be fully complete */ 714 static noinline void wait_for_commit(struct btrfs_root *root, 715 struct btrfs_transaction *commit) 716 { 717 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 718 } 719 720 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 721 { 722 struct btrfs_transaction *cur_trans = NULL, *t; 723 int ret = 0; 724 725 if (transid) { 726 if (transid <= root->fs_info->last_trans_committed) 727 goto out; 728 729 /* find specified transaction */ 730 spin_lock(&root->fs_info->trans_lock); 731 list_for_each_entry(t, &root->fs_info->trans_list, list) { 732 if (t->transid == transid) { 733 cur_trans = t; 734 atomic_inc(&cur_trans->use_count); 735 ret = 0; 736 break; 737 } 738 if (t->transid > transid) { 739 ret = 0; 740 break; 741 } 742 } 743 spin_unlock(&root->fs_info->trans_lock); 744 745 /* 746 * The specified transaction doesn't exist, or we 747 * raced with btrfs_commit_transaction 748 */ 749 if (!cur_trans) { 750 if (transid > root->fs_info->last_trans_committed) 751 ret = -EINVAL; 752 goto out; 753 } 754 } else { 755 /* find newest transaction that is committing | committed */ 756 spin_lock(&root->fs_info->trans_lock); 757 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 758 list) { 759 if (t->state >= TRANS_STATE_COMMIT_START) { 760 if (t->state == TRANS_STATE_COMPLETED) 761 break; 762 cur_trans = t; 763 atomic_inc(&cur_trans->use_count); 764 break; 765 } 766 } 767 spin_unlock(&root->fs_info->trans_lock); 768 if (!cur_trans) 769 goto out; /* nothing committing|committed */ 770 } 771 772 wait_for_commit(root, cur_trans); 773 btrfs_put_transaction(cur_trans); 774 out: 775 return ret; 776 } 777 778 void btrfs_throttle(struct btrfs_root *root) 779 { 780 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 781 wait_current_trans(root); 782 } 783 784 static int should_end_transaction(struct btrfs_trans_handle *trans, 785 struct btrfs_root *root) 786 { 787 if (root->fs_info->global_block_rsv.space_info->full && 788 btrfs_check_space_for_delayed_refs(trans, root)) 789 return 1; 790 791 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 792 } 793 794 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 795 struct btrfs_root *root) 796 { 797 struct btrfs_transaction *cur_trans = trans->transaction; 798 int updates; 799 int err; 800 801 smp_mb(); 802 if (cur_trans->state >= TRANS_STATE_BLOCKED || 803 cur_trans->delayed_refs.flushing) 804 return 1; 805 806 updates = trans->delayed_ref_updates; 807 trans->delayed_ref_updates = 0; 808 if (updates) { 809 err = btrfs_run_delayed_refs(trans, root, updates * 2); 810 if (err) /* Error code will also eval true */ 811 return err; 812 } 813 814 return should_end_transaction(trans, root); 815 } 816 817 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 818 struct btrfs_root *root, int throttle) 819 { 820 struct btrfs_transaction *cur_trans = trans->transaction; 821 struct btrfs_fs_info *info = root->fs_info; 822 u64 transid = trans->transid; 823 unsigned long cur = trans->delayed_ref_updates; 824 int lock = (trans->type != TRANS_JOIN_NOLOCK); 825 int err = 0; 826 int must_run_delayed_refs = 0; 827 828 if (trans->use_count > 1) { 829 trans->use_count--; 830 trans->block_rsv = trans->orig_rsv; 831 return 0; 832 } 833 834 btrfs_trans_release_metadata(trans, root); 835 trans->block_rsv = NULL; 836 837 if (!list_empty(&trans->new_bgs)) 838 btrfs_create_pending_block_groups(trans, root); 839 840 trans->delayed_ref_updates = 0; 841 if (!trans->sync) { 842 must_run_delayed_refs = 843 btrfs_should_throttle_delayed_refs(trans, root); 844 cur = max_t(unsigned long, cur, 32); 845 846 /* 847 * don't make the caller wait if they are from a NOLOCK 848 * or ATTACH transaction, it will deadlock with commit 849 */ 850 if (must_run_delayed_refs == 1 && 851 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH))) 852 must_run_delayed_refs = 2; 853 } 854 855 btrfs_trans_release_metadata(trans, root); 856 trans->block_rsv = NULL; 857 858 if (!list_empty(&trans->new_bgs)) 859 btrfs_create_pending_block_groups(trans, root); 860 861 btrfs_trans_release_chunk_metadata(trans); 862 863 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 864 should_end_transaction(trans, root) && 865 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 866 spin_lock(&info->trans_lock); 867 if (cur_trans->state == TRANS_STATE_RUNNING) 868 cur_trans->state = TRANS_STATE_BLOCKED; 869 spin_unlock(&info->trans_lock); 870 } 871 872 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 873 if (throttle) 874 return btrfs_commit_transaction(trans, root); 875 else 876 wake_up_process(info->transaction_kthread); 877 } 878 879 if (trans->type & __TRANS_FREEZABLE) 880 sb_end_intwrite(root->fs_info->sb); 881 882 WARN_ON(cur_trans != info->running_transaction); 883 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 884 atomic_dec(&cur_trans->num_writers); 885 extwriter_counter_dec(cur_trans, trans->type); 886 887 /* 888 * Make sure counter is updated before we wake up waiters. 889 */ 890 smp_mb(); 891 if (waitqueue_active(&cur_trans->writer_wait)) 892 wake_up(&cur_trans->writer_wait); 893 btrfs_put_transaction(cur_trans); 894 895 if (current->journal_info == trans) 896 current->journal_info = NULL; 897 898 if (throttle) 899 btrfs_run_delayed_iputs(root); 900 901 if (trans->aborted || 902 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 903 wake_up_process(info->transaction_kthread); 904 err = -EIO; 905 } 906 assert_qgroups_uptodate(trans); 907 908 kmem_cache_free(btrfs_trans_handle_cachep, trans); 909 if (must_run_delayed_refs) { 910 btrfs_async_run_delayed_refs(root, cur, transid, 911 must_run_delayed_refs == 1); 912 } 913 return err; 914 } 915 916 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 917 struct btrfs_root *root) 918 { 919 return __btrfs_end_transaction(trans, root, 0); 920 } 921 922 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 923 struct btrfs_root *root) 924 { 925 return __btrfs_end_transaction(trans, root, 1); 926 } 927 928 /* 929 * when btree blocks are allocated, they have some corresponding bits set for 930 * them in one of two extent_io trees. This is used to make sure all of 931 * those extents are sent to disk but does not wait on them 932 */ 933 int btrfs_write_marked_extents(struct btrfs_root *root, 934 struct extent_io_tree *dirty_pages, int mark) 935 { 936 int err = 0; 937 int werr = 0; 938 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 939 struct extent_state *cached_state = NULL; 940 u64 start = 0; 941 u64 end; 942 943 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 944 mark, &cached_state)) { 945 bool wait_writeback = false; 946 947 err = convert_extent_bit(dirty_pages, start, end, 948 EXTENT_NEED_WAIT, 949 mark, &cached_state); 950 /* 951 * convert_extent_bit can return -ENOMEM, which is most of the 952 * time a temporary error. So when it happens, ignore the error 953 * and wait for writeback of this range to finish - because we 954 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 955 * to btrfs_wait_marked_extents() would not know that writeback 956 * for this range started and therefore wouldn't wait for it to 957 * finish - we don't want to commit a superblock that points to 958 * btree nodes/leafs for which writeback hasn't finished yet 959 * (and without errors). 960 * We cleanup any entries left in the io tree when committing 961 * the transaction (through clear_btree_io_tree()). 962 */ 963 if (err == -ENOMEM) { 964 err = 0; 965 wait_writeback = true; 966 } 967 if (!err) 968 err = filemap_fdatawrite_range(mapping, start, end); 969 if (err) 970 werr = err; 971 else if (wait_writeback) 972 werr = filemap_fdatawait_range(mapping, start, end); 973 free_extent_state(cached_state); 974 cached_state = NULL; 975 cond_resched(); 976 start = end + 1; 977 } 978 return werr; 979 } 980 981 /* 982 * when btree blocks are allocated, they have some corresponding bits set for 983 * them in one of two extent_io trees. This is used to make sure all of 984 * those extents are on disk for transaction or log commit. We wait 985 * on all the pages and clear them from the dirty pages state tree 986 */ 987 int btrfs_wait_marked_extents(struct btrfs_root *root, 988 struct extent_io_tree *dirty_pages, int mark) 989 { 990 int err = 0; 991 int werr = 0; 992 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 993 struct extent_state *cached_state = NULL; 994 u64 start = 0; 995 u64 end; 996 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 997 bool errors = false; 998 999 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1000 EXTENT_NEED_WAIT, &cached_state)) { 1001 /* 1002 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1003 * When committing the transaction, we'll remove any entries 1004 * left in the io tree. For a log commit, we don't remove them 1005 * after committing the log because the tree can be accessed 1006 * concurrently - we do it only at transaction commit time when 1007 * it's safe to do it (through clear_btree_io_tree()). 1008 */ 1009 err = clear_extent_bit(dirty_pages, start, end, 1010 EXTENT_NEED_WAIT, 1011 0, 0, &cached_state, GFP_NOFS); 1012 if (err == -ENOMEM) 1013 err = 0; 1014 if (!err) 1015 err = filemap_fdatawait_range(mapping, start, end); 1016 if (err) 1017 werr = err; 1018 free_extent_state(cached_state); 1019 cached_state = NULL; 1020 cond_resched(); 1021 start = end + 1; 1022 } 1023 if (err) 1024 werr = err; 1025 1026 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 1027 if ((mark & EXTENT_DIRTY) && 1028 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, 1029 &btree_ino->runtime_flags)) 1030 errors = true; 1031 1032 if ((mark & EXTENT_NEW) && 1033 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, 1034 &btree_ino->runtime_flags)) 1035 errors = true; 1036 } else { 1037 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR, 1038 &btree_ino->runtime_flags)) 1039 errors = true; 1040 } 1041 1042 if (errors && !werr) 1043 werr = -EIO; 1044 1045 return werr; 1046 } 1047 1048 /* 1049 * when btree blocks are allocated, they have some corresponding bits set for 1050 * them in one of two extent_io trees. This is used to make sure all of 1051 * those extents are on disk for transaction or log commit 1052 */ 1053 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 1054 struct extent_io_tree *dirty_pages, int mark) 1055 { 1056 int ret; 1057 int ret2; 1058 struct blk_plug plug; 1059 1060 blk_start_plug(&plug); 1061 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 1062 blk_finish_plug(&plug); 1063 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 1064 1065 if (ret) 1066 return ret; 1067 if (ret2) 1068 return ret2; 1069 return 0; 1070 } 1071 1072 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 1073 struct btrfs_root *root) 1074 { 1075 int ret; 1076 1077 ret = btrfs_write_and_wait_marked_extents(root, 1078 &trans->transaction->dirty_pages, 1079 EXTENT_DIRTY); 1080 clear_btree_io_tree(&trans->transaction->dirty_pages); 1081 1082 return ret; 1083 } 1084 1085 /* 1086 * this is used to update the root pointer in the tree of tree roots. 1087 * 1088 * But, in the case of the extent allocation tree, updating the root 1089 * pointer may allocate blocks which may change the root of the extent 1090 * allocation tree. 1091 * 1092 * So, this loops and repeats and makes sure the cowonly root didn't 1093 * change while the root pointer was being updated in the metadata. 1094 */ 1095 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1096 struct btrfs_root *root) 1097 { 1098 int ret; 1099 u64 old_root_bytenr; 1100 u64 old_root_used; 1101 struct btrfs_root *tree_root = root->fs_info->tree_root; 1102 1103 old_root_used = btrfs_root_used(&root->root_item); 1104 1105 while (1) { 1106 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1107 if (old_root_bytenr == root->node->start && 1108 old_root_used == btrfs_root_used(&root->root_item)) 1109 break; 1110 1111 btrfs_set_root_node(&root->root_item, root->node); 1112 ret = btrfs_update_root(trans, tree_root, 1113 &root->root_key, 1114 &root->root_item); 1115 if (ret) 1116 return ret; 1117 1118 old_root_used = btrfs_root_used(&root->root_item); 1119 } 1120 1121 return 0; 1122 } 1123 1124 /* 1125 * update all the cowonly tree roots on disk 1126 * 1127 * The error handling in this function may not be obvious. Any of the 1128 * failures will cause the file system to go offline. We still need 1129 * to clean up the delayed refs. 1130 */ 1131 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 1132 struct btrfs_root *root) 1133 { 1134 struct btrfs_fs_info *fs_info = root->fs_info; 1135 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1136 struct list_head *io_bgs = &trans->transaction->io_bgs; 1137 struct list_head *next; 1138 struct extent_buffer *eb; 1139 int ret; 1140 1141 eb = btrfs_lock_root_node(fs_info->tree_root); 1142 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1143 0, &eb); 1144 btrfs_tree_unlock(eb); 1145 free_extent_buffer(eb); 1146 1147 if (ret) 1148 return ret; 1149 1150 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1151 if (ret) 1152 return ret; 1153 1154 ret = btrfs_run_dev_stats(trans, root->fs_info); 1155 if (ret) 1156 return ret; 1157 ret = btrfs_run_dev_replace(trans, root->fs_info); 1158 if (ret) 1159 return ret; 1160 ret = btrfs_run_qgroups(trans, root->fs_info); 1161 if (ret) 1162 return ret; 1163 1164 ret = btrfs_setup_space_cache(trans, root); 1165 if (ret) 1166 return ret; 1167 1168 /* run_qgroups might have added some more refs */ 1169 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1170 if (ret) 1171 return ret; 1172 again: 1173 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1174 next = fs_info->dirty_cowonly_roots.next; 1175 list_del_init(next); 1176 root = list_entry(next, struct btrfs_root, dirty_list); 1177 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1178 1179 if (root != fs_info->extent_root) 1180 list_add_tail(&root->dirty_list, 1181 &trans->transaction->switch_commits); 1182 ret = update_cowonly_root(trans, root); 1183 if (ret) 1184 return ret; 1185 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1186 if (ret) 1187 return ret; 1188 } 1189 1190 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1191 ret = btrfs_write_dirty_block_groups(trans, root); 1192 if (ret) 1193 return ret; 1194 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1195 if (ret) 1196 return ret; 1197 } 1198 1199 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1200 goto again; 1201 1202 list_add_tail(&fs_info->extent_root->dirty_list, 1203 &trans->transaction->switch_commits); 1204 btrfs_after_dev_replace_commit(fs_info); 1205 1206 return 0; 1207 } 1208 1209 /* 1210 * dead roots are old snapshots that need to be deleted. This allocates 1211 * a dirty root struct and adds it into the list of dead roots that need to 1212 * be deleted 1213 */ 1214 void btrfs_add_dead_root(struct btrfs_root *root) 1215 { 1216 spin_lock(&root->fs_info->trans_lock); 1217 if (list_empty(&root->root_list)) 1218 list_add_tail(&root->root_list, &root->fs_info->dead_roots); 1219 spin_unlock(&root->fs_info->trans_lock); 1220 } 1221 1222 /* 1223 * update all the cowonly tree roots on disk 1224 */ 1225 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 1226 struct btrfs_root *root) 1227 { 1228 struct btrfs_root *gang[8]; 1229 struct btrfs_fs_info *fs_info = root->fs_info; 1230 int i; 1231 int ret; 1232 int err = 0; 1233 1234 spin_lock(&fs_info->fs_roots_radix_lock); 1235 while (1) { 1236 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1237 (void **)gang, 0, 1238 ARRAY_SIZE(gang), 1239 BTRFS_ROOT_TRANS_TAG); 1240 if (ret == 0) 1241 break; 1242 for (i = 0; i < ret; i++) { 1243 root = gang[i]; 1244 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1245 (unsigned long)root->root_key.objectid, 1246 BTRFS_ROOT_TRANS_TAG); 1247 spin_unlock(&fs_info->fs_roots_radix_lock); 1248 1249 btrfs_free_log(trans, root); 1250 btrfs_update_reloc_root(trans, root); 1251 btrfs_orphan_commit_root(trans, root); 1252 1253 btrfs_save_ino_cache(root, trans); 1254 1255 /* see comments in should_cow_block() */ 1256 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1257 smp_mb__after_atomic(); 1258 1259 if (root->commit_root != root->node) { 1260 list_add_tail(&root->dirty_list, 1261 &trans->transaction->switch_commits); 1262 btrfs_set_root_node(&root->root_item, 1263 root->node); 1264 } 1265 1266 err = btrfs_update_root(trans, fs_info->tree_root, 1267 &root->root_key, 1268 &root->root_item); 1269 spin_lock(&fs_info->fs_roots_radix_lock); 1270 if (err) 1271 break; 1272 btrfs_qgroup_free_meta_all(root); 1273 } 1274 } 1275 spin_unlock(&fs_info->fs_roots_radix_lock); 1276 return err; 1277 } 1278 1279 /* 1280 * defrag a given btree. 1281 * Every leaf in the btree is read and defragged. 1282 */ 1283 int btrfs_defrag_root(struct btrfs_root *root) 1284 { 1285 struct btrfs_fs_info *info = root->fs_info; 1286 struct btrfs_trans_handle *trans; 1287 int ret; 1288 1289 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1290 return 0; 1291 1292 while (1) { 1293 trans = btrfs_start_transaction(root, 0); 1294 if (IS_ERR(trans)) 1295 return PTR_ERR(trans); 1296 1297 ret = btrfs_defrag_leaves(trans, root); 1298 1299 btrfs_end_transaction(trans, root); 1300 btrfs_btree_balance_dirty(info->tree_root); 1301 cond_resched(); 1302 1303 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 1304 break; 1305 1306 if (btrfs_defrag_cancelled(root->fs_info)) { 1307 pr_debug("BTRFS: defrag_root cancelled\n"); 1308 ret = -EAGAIN; 1309 break; 1310 } 1311 } 1312 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1313 return ret; 1314 } 1315 1316 /* 1317 * Do all special snapshot related qgroup dirty hack. 1318 * 1319 * Will do all needed qgroup inherit and dirty hack like switch commit 1320 * roots inside one transaction and write all btree into disk, to make 1321 * qgroup works. 1322 */ 1323 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1324 struct btrfs_root *src, 1325 struct btrfs_root *parent, 1326 struct btrfs_qgroup_inherit *inherit, 1327 u64 dst_objectid) 1328 { 1329 struct btrfs_fs_info *fs_info = src->fs_info; 1330 int ret; 1331 1332 /* 1333 * Save some performance in the case that qgroups are not 1334 * enabled. If this check races with the ioctl, rescan will 1335 * kick in anyway. 1336 */ 1337 mutex_lock(&fs_info->qgroup_ioctl_lock); 1338 if (!fs_info->quota_enabled) { 1339 mutex_unlock(&fs_info->qgroup_ioctl_lock); 1340 return 0; 1341 } 1342 mutex_unlock(&fs_info->qgroup_ioctl_lock); 1343 1344 /* 1345 * We are going to commit transaction, see btrfs_commit_transaction() 1346 * comment for reason locking tree_log_mutex 1347 */ 1348 mutex_lock(&fs_info->tree_log_mutex); 1349 1350 ret = commit_fs_roots(trans, src); 1351 if (ret) 1352 goto out; 1353 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info); 1354 if (ret < 0) 1355 goto out; 1356 ret = btrfs_qgroup_account_extents(trans, fs_info); 1357 if (ret < 0) 1358 goto out; 1359 1360 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1361 ret = btrfs_qgroup_inherit(trans, fs_info, 1362 src->root_key.objectid, dst_objectid, 1363 inherit); 1364 if (ret < 0) 1365 goto out; 1366 1367 /* 1368 * Now we do a simplified commit transaction, which will: 1369 * 1) commit all subvolume and extent tree 1370 * To ensure all subvolume and extent tree have a valid 1371 * commit_root to accounting later insert_dir_item() 1372 * 2) write all btree blocks onto disk 1373 * This is to make sure later btree modification will be cowed 1374 * Or commit_root can be populated and cause wrong qgroup numbers 1375 * In this simplified commit, we don't really care about other trees 1376 * like chunk and root tree, as they won't affect qgroup. 1377 * And we don't write super to avoid half committed status. 1378 */ 1379 ret = commit_cowonly_roots(trans, src); 1380 if (ret) 1381 goto out; 1382 switch_commit_roots(trans->transaction, fs_info); 1383 ret = btrfs_write_and_wait_transaction(trans, src); 1384 if (ret) 1385 btrfs_handle_fs_error(fs_info, ret, 1386 "Error while writing out transaction for qgroup"); 1387 1388 out: 1389 mutex_unlock(&fs_info->tree_log_mutex); 1390 1391 /* 1392 * Force parent root to be updated, as we recorded it before so its 1393 * last_trans == cur_transid. 1394 * Or it won't be committed again onto disk after later 1395 * insert_dir_item() 1396 */ 1397 if (!ret) 1398 record_root_in_trans(trans, parent, 1); 1399 return ret; 1400 } 1401 1402 /* 1403 * new snapshots need to be created at a very specific time in the 1404 * transaction commit. This does the actual creation. 1405 * 1406 * Note: 1407 * If the error which may affect the commitment of the current transaction 1408 * happens, we should return the error number. If the error which just affect 1409 * the creation of the pending snapshots, just return 0. 1410 */ 1411 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1412 struct btrfs_fs_info *fs_info, 1413 struct btrfs_pending_snapshot *pending) 1414 { 1415 struct btrfs_key key; 1416 struct btrfs_root_item *new_root_item; 1417 struct btrfs_root *tree_root = fs_info->tree_root; 1418 struct btrfs_root *root = pending->root; 1419 struct btrfs_root *parent_root; 1420 struct btrfs_block_rsv *rsv; 1421 struct inode *parent_inode; 1422 struct btrfs_path *path; 1423 struct btrfs_dir_item *dir_item; 1424 struct dentry *dentry; 1425 struct extent_buffer *tmp; 1426 struct extent_buffer *old; 1427 struct timespec cur_time; 1428 int ret = 0; 1429 u64 to_reserve = 0; 1430 u64 index = 0; 1431 u64 objectid; 1432 u64 root_flags; 1433 uuid_le new_uuid; 1434 1435 ASSERT(pending->path); 1436 path = pending->path; 1437 1438 ASSERT(pending->root_item); 1439 new_root_item = pending->root_item; 1440 1441 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1442 if (pending->error) 1443 goto no_free_objectid; 1444 1445 /* 1446 * Make qgroup to skip current new snapshot's qgroupid, as it is 1447 * accounted by later btrfs_qgroup_inherit(). 1448 */ 1449 btrfs_set_skip_qgroup(trans, objectid); 1450 1451 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1452 1453 if (to_reserve > 0) { 1454 pending->error = btrfs_block_rsv_add(root, 1455 &pending->block_rsv, 1456 to_reserve, 1457 BTRFS_RESERVE_NO_FLUSH); 1458 if (pending->error) 1459 goto clear_skip_qgroup; 1460 } 1461 1462 key.objectid = objectid; 1463 key.offset = (u64)-1; 1464 key.type = BTRFS_ROOT_ITEM_KEY; 1465 1466 rsv = trans->block_rsv; 1467 trans->block_rsv = &pending->block_rsv; 1468 trans->bytes_reserved = trans->block_rsv->reserved; 1469 trace_btrfs_space_reservation(root->fs_info, "transaction", 1470 trans->transid, 1471 trans->bytes_reserved, 1); 1472 dentry = pending->dentry; 1473 parent_inode = pending->dir; 1474 parent_root = BTRFS_I(parent_inode)->root; 1475 record_root_in_trans(trans, parent_root, 0); 1476 1477 cur_time = current_fs_time(parent_inode->i_sb); 1478 1479 /* 1480 * insert the directory item 1481 */ 1482 ret = btrfs_set_inode_index(parent_inode, &index); 1483 BUG_ON(ret); /* -ENOMEM */ 1484 1485 /* check if there is a file/dir which has the same name. */ 1486 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1487 btrfs_ino(parent_inode), 1488 dentry->d_name.name, 1489 dentry->d_name.len, 0); 1490 if (dir_item != NULL && !IS_ERR(dir_item)) { 1491 pending->error = -EEXIST; 1492 goto dir_item_existed; 1493 } else if (IS_ERR(dir_item)) { 1494 ret = PTR_ERR(dir_item); 1495 btrfs_abort_transaction(trans, ret); 1496 goto fail; 1497 } 1498 btrfs_release_path(path); 1499 1500 /* 1501 * pull in the delayed directory update 1502 * and the delayed inode item 1503 * otherwise we corrupt the FS during 1504 * snapshot 1505 */ 1506 ret = btrfs_run_delayed_items(trans, root); 1507 if (ret) { /* Transaction aborted */ 1508 btrfs_abort_transaction(trans, ret); 1509 goto fail; 1510 } 1511 1512 record_root_in_trans(trans, root, 0); 1513 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1514 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1515 btrfs_check_and_init_root_item(new_root_item); 1516 1517 root_flags = btrfs_root_flags(new_root_item); 1518 if (pending->readonly) 1519 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1520 else 1521 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1522 btrfs_set_root_flags(new_root_item, root_flags); 1523 1524 btrfs_set_root_generation_v2(new_root_item, 1525 trans->transid); 1526 uuid_le_gen(&new_uuid); 1527 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1528 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1529 BTRFS_UUID_SIZE); 1530 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1531 memset(new_root_item->received_uuid, 0, 1532 sizeof(new_root_item->received_uuid)); 1533 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1534 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1535 btrfs_set_root_stransid(new_root_item, 0); 1536 btrfs_set_root_rtransid(new_root_item, 0); 1537 } 1538 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1539 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1540 btrfs_set_root_otransid(new_root_item, trans->transid); 1541 1542 old = btrfs_lock_root_node(root); 1543 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1544 if (ret) { 1545 btrfs_tree_unlock(old); 1546 free_extent_buffer(old); 1547 btrfs_abort_transaction(trans, ret); 1548 goto fail; 1549 } 1550 1551 btrfs_set_lock_blocking(old); 1552 1553 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1554 /* clean up in any case */ 1555 btrfs_tree_unlock(old); 1556 free_extent_buffer(old); 1557 if (ret) { 1558 btrfs_abort_transaction(trans, ret); 1559 goto fail; 1560 } 1561 /* see comments in should_cow_block() */ 1562 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1563 smp_wmb(); 1564 1565 btrfs_set_root_node(new_root_item, tmp); 1566 /* record when the snapshot was created in key.offset */ 1567 key.offset = trans->transid; 1568 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1569 btrfs_tree_unlock(tmp); 1570 free_extent_buffer(tmp); 1571 if (ret) { 1572 btrfs_abort_transaction(trans, ret); 1573 goto fail; 1574 } 1575 1576 /* 1577 * insert root back/forward references 1578 */ 1579 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1580 parent_root->root_key.objectid, 1581 btrfs_ino(parent_inode), index, 1582 dentry->d_name.name, dentry->d_name.len); 1583 if (ret) { 1584 btrfs_abort_transaction(trans, ret); 1585 goto fail; 1586 } 1587 1588 key.offset = (u64)-1; 1589 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1590 if (IS_ERR(pending->snap)) { 1591 ret = PTR_ERR(pending->snap); 1592 btrfs_abort_transaction(trans, ret); 1593 goto fail; 1594 } 1595 1596 ret = btrfs_reloc_post_snapshot(trans, pending); 1597 if (ret) { 1598 btrfs_abort_transaction(trans, ret); 1599 goto fail; 1600 } 1601 1602 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1603 if (ret) { 1604 btrfs_abort_transaction(trans, ret); 1605 goto fail; 1606 } 1607 1608 /* 1609 * Do special qgroup accounting for snapshot, as we do some qgroup 1610 * snapshot hack to do fast snapshot. 1611 * To co-operate with that hack, we do hack again. 1612 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1613 */ 1614 ret = qgroup_account_snapshot(trans, root, parent_root, 1615 pending->inherit, objectid); 1616 if (ret < 0) 1617 goto fail; 1618 1619 ret = btrfs_insert_dir_item(trans, parent_root, 1620 dentry->d_name.name, dentry->d_name.len, 1621 parent_inode, &key, 1622 BTRFS_FT_DIR, index); 1623 /* We have check then name at the beginning, so it is impossible. */ 1624 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1625 if (ret) { 1626 btrfs_abort_transaction(trans, ret); 1627 goto fail; 1628 } 1629 1630 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1631 dentry->d_name.len * 2); 1632 parent_inode->i_mtime = parent_inode->i_ctime = 1633 current_fs_time(parent_inode->i_sb); 1634 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1635 if (ret) { 1636 btrfs_abort_transaction(trans, ret); 1637 goto fail; 1638 } 1639 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b, 1640 BTRFS_UUID_KEY_SUBVOL, objectid); 1641 if (ret) { 1642 btrfs_abort_transaction(trans, ret); 1643 goto fail; 1644 } 1645 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1646 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 1647 new_root_item->received_uuid, 1648 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1649 objectid); 1650 if (ret && ret != -EEXIST) { 1651 btrfs_abort_transaction(trans, ret); 1652 goto fail; 1653 } 1654 } 1655 1656 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1657 if (ret) { 1658 btrfs_abort_transaction(trans, ret); 1659 goto fail; 1660 } 1661 1662 fail: 1663 pending->error = ret; 1664 dir_item_existed: 1665 trans->block_rsv = rsv; 1666 trans->bytes_reserved = 0; 1667 clear_skip_qgroup: 1668 btrfs_clear_skip_qgroup(trans); 1669 no_free_objectid: 1670 kfree(new_root_item); 1671 pending->root_item = NULL; 1672 btrfs_free_path(path); 1673 pending->path = NULL; 1674 1675 return ret; 1676 } 1677 1678 /* 1679 * create all the snapshots we've scheduled for creation 1680 */ 1681 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1682 struct btrfs_fs_info *fs_info) 1683 { 1684 struct btrfs_pending_snapshot *pending, *next; 1685 struct list_head *head = &trans->transaction->pending_snapshots; 1686 int ret = 0; 1687 1688 list_for_each_entry_safe(pending, next, head, list) { 1689 list_del(&pending->list); 1690 ret = create_pending_snapshot(trans, fs_info, pending); 1691 if (ret) 1692 break; 1693 } 1694 return ret; 1695 } 1696 1697 static void update_super_roots(struct btrfs_root *root) 1698 { 1699 struct btrfs_root_item *root_item; 1700 struct btrfs_super_block *super; 1701 1702 super = root->fs_info->super_copy; 1703 1704 root_item = &root->fs_info->chunk_root->root_item; 1705 super->chunk_root = root_item->bytenr; 1706 super->chunk_root_generation = root_item->generation; 1707 super->chunk_root_level = root_item->level; 1708 1709 root_item = &root->fs_info->tree_root->root_item; 1710 super->root = root_item->bytenr; 1711 super->generation = root_item->generation; 1712 super->root_level = root_item->level; 1713 if (btrfs_test_opt(root->fs_info, SPACE_CACHE)) 1714 super->cache_generation = root_item->generation; 1715 if (root->fs_info->update_uuid_tree_gen) 1716 super->uuid_tree_generation = root_item->generation; 1717 } 1718 1719 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1720 { 1721 struct btrfs_transaction *trans; 1722 int ret = 0; 1723 1724 spin_lock(&info->trans_lock); 1725 trans = info->running_transaction; 1726 if (trans) 1727 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1728 spin_unlock(&info->trans_lock); 1729 return ret; 1730 } 1731 1732 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1733 { 1734 struct btrfs_transaction *trans; 1735 int ret = 0; 1736 1737 spin_lock(&info->trans_lock); 1738 trans = info->running_transaction; 1739 if (trans) 1740 ret = is_transaction_blocked(trans); 1741 spin_unlock(&info->trans_lock); 1742 return ret; 1743 } 1744 1745 /* 1746 * wait for the current transaction commit to start and block subsequent 1747 * transaction joins 1748 */ 1749 static void wait_current_trans_commit_start(struct btrfs_root *root, 1750 struct btrfs_transaction *trans) 1751 { 1752 wait_event(root->fs_info->transaction_blocked_wait, 1753 trans->state >= TRANS_STATE_COMMIT_START || 1754 trans->aborted); 1755 } 1756 1757 /* 1758 * wait for the current transaction to start and then become unblocked. 1759 * caller holds ref. 1760 */ 1761 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1762 struct btrfs_transaction *trans) 1763 { 1764 wait_event(root->fs_info->transaction_wait, 1765 trans->state >= TRANS_STATE_UNBLOCKED || 1766 trans->aborted); 1767 } 1768 1769 /* 1770 * commit transactions asynchronously. once btrfs_commit_transaction_async 1771 * returns, any subsequent transaction will not be allowed to join. 1772 */ 1773 struct btrfs_async_commit { 1774 struct btrfs_trans_handle *newtrans; 1775 struct btrfs_root *root; 1776 struct work_struct work; 1777 }; 1778 1779 static void do_async_commit(struct work_struct *work) 1780 { 1781 struct btrfs_async_commit *ac = 1782 container_of(work, struct btrfs_async_commit, work); 1783 1784 /* 1785 * We've got freeze protection passed with the transaction. 1786 * Tell lockdep about it. 1787 */ 1788 if (ac->newtrans->type & __TRANS_FREEZABLE) 1789 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS); 1790 1791 current->journal_info = ac->newtrans; 1792 1793 btrfs_commit_transaction(ac->newtrans, ac->root); 1794 kfree(ac); 1795 } 1796 1797 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1798 struct btrfs_root *root, 1799 int wait_for_unblock) 1800 { 1801 struct btrfs_async_commit *ac; 1802 struct btrfs_transaction *cur_trans; 1803 1804 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1805 if (!ac) 1806 return -ENOMEM; 1807 1808 INIT_WORK(&ac->work, do_async_commit); 1809 ac->root = root; 1810 ac->newtrans = btrfs_join_transaction(root); 1811 if (IS_ERR(ac->newtrans)) { 1812 int err = PTR_ERR(ac->newtrans); 1813 kfree(ac); 1814 return err; 1815 } 1816 1817 /* take transaction reference */ 1818 cur_trans = trans->transaction; 1819 atomic_inc(&cur_trans->use_count); 1820 1821 btrfs_end_transaction(trans, root); 1822 1823 /* 1824 * Tell lockdep we've released the freeze rwsem, since the 1825 * async commit thread will be the one to unlock it. 1826 */ 1827 if (ac->newtrans->type & __TRANS_FREEZABLE) 1828 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS); 1829 1830 schedule_work(&ac->work); 1831 1832 /* wait for transaction to start and unblock */ 1833 if (wait_for_unblock) 1834 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1835 else 1836 wait_current_trans_commit_start(root, cur_trans); 1837 1838 if (current->journal_info == trans) 1839 current->journal_info = NULL; 1840 1841 btrfs_put_transaction(cur_trans); 1842 return 0; 1843 } 1844 1845 1846 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1847 struct btrfs_root *root, int err) 1848 { 1849 struct btrfs_transaction *cur_trans = trans->transaction; 1850 DEFINE_WAIT(wait); 1851 1852 WARN_ON(trans->use_count > 1); 1853 1854 btrfs_abort_transaction(trans, err); 1855 1856 spin_lock(&root->fs_info->trans_lock); 1857 1858 /* 1859 * If the transaction is removed from the list, it means this 1860 * transaction has been committed successfully, so it is impossible 1861 * to call the cleanup function. 1862 */ 1863 BUG_ON(list_empty(&cur_trans->list)); 1864 1865 list_del_init(&cur_trans->list); 1866 if (cur_trans == root->fs_info->running_transaction) { 1867 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1868 spin_unlock(&root->fs_info->trans_lock); 1869 wait_event(cur_trans->writer_wait, 1870 atomic_read(&cur_trans->num_writers) == 1); 1871 1872 spin_lock(&root->fs_info->trans_lock); 1873 } 1874 spin_unlock(&root->fs_info->trans_lock); 1875 1876 btrfs_cleanup_one_transaction(trans->transaction, root); 1877 1878 spin_lock(&root->fs_info->trans_lock); 1879 if (cur_trans == root->fs_info->running_transaction) 1880 root->fs_info->running_transaction = NULL; 1881 spin_unlock(&root->fs_info->trans_lock); 1882 1883 if (trans->type & __TRANS_FREEZABLE) 1884 sb_end_intwrite(root->fs_info->sb); 1885 btrfs_put_transaction(cur_trans); 1886 btrfs_put_transaction(cur_trans); 1887 1888 trace_btrfs_transaction_commit(root); 1889 1890 if (current->journal_info == trans) 1891 current->journal_info = NULL; 1892 btrfs_scrub_cancel(root->fs_info); 1893 1894 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1895 } 1896 1897 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1898 { 1899 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 1900 return btrfs_start_delalloc_roots(fs_info, 1, -1); 1901 return 0; 1902 } 1903 1904 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1905 { 1906 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 1907 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1); 1908 } 1909 1910 static inline void 1911 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans) 1912 { 1913 wait_event(cur_trans->pending_wait, 1914 atomic_read(&cur_trans->pending_ordered) == 0); 1915 } 1916 1917 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1918 struct btrfs_root *root) 1919 { 1920 struct btrfs_transaction *cur_trans = trans->transaction; 1921 struct btrfs_transaction *prev_trans = NULL; 1922 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 1923 int ret; 1924 1925 /* Stop the commit early if ->aborted is set */ 1926 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1927 ret = cur_trans->aborted; 1928 btrfs_end_transaction(trans, root); 1929 return ret; 1930 } 1931 1932 /* make a pass through all the delayed refs we have so far 1933 * any runnings procs may add more while we are here 1934 */ 1935 ret = btrfs_run_delayed_refs(trans, root, 0); 1936 if (ret) { 1937 btrfs_end_transaction(trans, root); 1938 return ret; 1939 } 1940 1941 btrfs_trans_release_metadata(trans, root); 1942 trans->block_rsv = NULL; 1943 1944 cur_trans = trans->transaction; 1945 1946 /* 1947 * set the flushing flag so procs in this transaction have to 1948 * start sending their work down. 1949 */ 1950 cur_trans->delayed_refs.flushing = 1; 1951 smp_wmb(); 1952 1953 if (!list_empty(&trans->new_bgs)) 1954 btrfs_create_pending_block_groups(trans, root); 1955 1956 ret = btrfs_run_delayed_refs(trans, root, 0); 1957 if (ret) { 1958 btrfs_end_transaction(trans, root); 1959 return ret; 1960 } 1961 1962 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 1963 int run_it = 0; 1964 1965 /* this mutex is also taken before trying to set 1966 * block groups readonly. We need to make sure 1967 * that nobody has set a block group readonly 1968 * after a extents from that block group have been 1969 * allocated for cache files. btrfs_set_block_group_ro 1970 * will wait for the transaction to commit if it 1971 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 1972 * 1973 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 1974 * only one process starts all the block group IO. It wouldn't 1975 * hurt to have more than one go through, but there's no 1976 * real advantage to it either. 1977 */ 1978 mutex_lock(&root->fs_info->ro_block_group_mutex); 1979 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 1980 &cur_trans->flags)) 1981 run_it = 1; 1982 mutex_unlock(&root->fs_info->ro_block_group_mutex); 1983 1984 if (run_it) 1985 ret = btrfs_start_dirty_block_groups(trans, root); 1986 } 1987 if (ret) { 1988 btrfs_end_transaction(trans, root); 1989 return ret; 1990 } 1991 1992 spin_lock(&root->fs_info->trans_lock); 1993 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 1994 spin_unlock(&root->fs_info->trans_lock); 1995 atomic_inc(&cur_trans->use_count); 1996 ret = btrfs_end_transaction(trans, root); 1997 1998 wait_for_commit(root, cur_trans); 1999 2000 if (unlikely(cur_trans->aborted)) 2001 ret = cur_trans->aborted; 2002 2003 btrfs_put_transaction(cur_trans); 2004 2005 return ret; 2006 } 2007 2008 cur_trans->state = TRANS_STATE_COMMIT_START; 2009 wake_up(&root->fs_info->transaction_blocked_wait); 2010 2011 if (cur_trans->list.prev != &root->fs_info->trans_list) { 2012 prev_trans = list_entry(cur_trans->list.prev, 2013 struct btrfs_transaction, list); 2014 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2015 atomic_inc(&prev_trans->use_count); 2016 spin_unlock(&root->fs_info->trans_lock); 2017 2018 wait_for_commit(root, prev_trans); 2019 ret = prev_trans->aborted; 2020 2021 btrfs_put_transaction(prev_trans); 2022 if (ret) 2023 goto cleanup_transaction; 2024 } else { 2025 spin_unlock(&root->fs_info->trans_lock); 2026 } 2027 } else { 2028 spin_unlock(&root->fs_info->trans_lock); 2029 } 2030 2031 extwriter_counter_dec(cur_trans, trans->type); 2032 2033 ret = btrfs_start_delalloc_flush(root->fs_info); 2034 if (ret) 2035 goto cleanup_transaction; 2036 2037 ret = btrfs_run_delayed_items(trans, root); 2038 if (ret) 2039 goto cleanup_transaction; 2040 2041 wait_event(cur_trans->writer_wait, 2042 extwriter_counter_read(cur_trans) == 0); 2043 2044 /* some pending stuffs might be added after the previous flush. */ 2045 ret = btrfs_run_delayed_items(trans, root); 2046 if (ret) 2047 goto cleanup_transaction; 2048 2049 btrfs_wait_delalloc_flush(root->fs_info); 2050 2051 btrfs_wait_pending_ordered(cur_trans); 2052 2053 btrfs_scrub_pause(root); 2054 /* 2055 * Ok now we need to make sure to block out any other joins while we 2056 * commit the transaction. We could have started a join before setting 2057 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2058 */ 2059 spin_lock(&root->fs_info->trans_lock); 2060 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2061 spin_unlock(&root->fs_info->trans_lock); 2062 wait_event(cur_trans->writer_wait, 2063 atomic_read(&cur_trans->num_writers) == 1); 2064 2065 /* ->aborted might be set after the previous check, so check it */ 2066 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 2067 ret = cur_trans->aborted; 2068 goto scrub_continue; 2069 } 2070 /* 2071 * the reloc mutex makes sure that we stop 2072 * the balancing code from coming in and moving 2073 * extents around in the middle of the commit 2074 */ 2075 mutex_lock(&root->fs_info->reloc_mutex); 2076 2077 /* 2078 * We needn't worry about the delayed items because we will 2079 * deal with them in create_pending_snapshot(), which is the 2080 * core function of the snapshot creation. 2081 */ 2082 ret = create_pending_snapshots(trans, root->fs_info); 2083 if (ret) { 2084 mutex_unlock(&root->fs_info->reloc_mutex); 2085 goto scrub_continue; 2086 } 2087 2088 /* 2089 * We insert the dir indexes of the snapshots and update the inode 2090 * of the snapshots' parents after the snapshot creation, so there 2091 * are some delayed items which are not dealt with. Now deal with 2092 * them. 2093 * 2094 * We needn't worry that this operation will corrupt the snapshots, 2095 * because all the tree which are snapshoted will be forced to COW 2096 * the nodes and leaves. 2097 */ 2098 ret = btrfs_run_delayed_items(trans, root); 2099 if (ret) { 2100 mutex_unlock(&root->fs_info->reloc_mutex); 2101 goto scrub_continue; 2102 } 2103 2104 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 2105 if (ret) { 2106 mutex_unlock(&root->fs_info->reloc_mutex); 2107 goto scrub_continue; 2108 } 2109 2110 /* Reocrd old roots for later qgroup accounting */ 2111 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info); 2112 if (ret) { 2113 mutex_unlock(&root->fs_info->reloc_mutex); 2114 goto scrub_continue; 2115 } 2116 2117 /* 2118 * make sure none of the code above managed to slip in a 2119 * delayed item 2120 */ 2121 btrfs_assert_delayed_root_empty(root); 2122 2123 WARN_ON(cur_trans != trans->transaction); 2124 2125 /* btrfs_commit_tree_roots is responsible for getting the 2126 * various roots consistent with each other. Every pointer 2127 * in the tree of tree roots has to point to the most up to date 2128 * root for every subvolume and other tree. So, we have to keep 2129 * the tree logging code from jumping in and changing any 2130 * of the trees. 2131 * 2132 * At this point in the commit, there can't be any tree-log 2133 * writers, but a little lower down we drop the trans mutex 2134 * and let new people in. By holding the tree_log_mutex 2135 * from now until after the super is written, we avoid races 2136 * with the tree-log code. 2137 */ 2138 mutex_lock(&root->fs_info->tree_log_mutex); 2139 2140 ret = commit_fs_roots(trans, root); 2141 if (ret) { 2142 mutex_unlock(&root->fs_info->tree_log_mutex); 2143 mutex_unlock(&root->fs_info->reloc_mutex); 2144 goto scrub_continue; 2145 } 2146 2147 /* 2148 * Since the transaction is done, we can apply the pending changes 2149 * before the next transaction. 2150 */ 2151 btrfs_apply_pending_changes(root->fs_info); 2152 2153 /* commit_fs_roots gets rid of all the tree log roots, it is now 2154 * safe to free the root of tree log roots 2155 */ 2156 btrfs_free_log_root_tree(trans, root->fs_info); 2157 2158 /* 2159 * Since fs roots are all committed, we can get a quite accurate 2160 * new_roots. So let's do quota accounting. 2161 */ 2162 ret = btrfs_qgroup_account_extents(trans, root->fs_info); 2163 if (ret < 0) { 2164 mutex_unlock(&root->fs_info->tree_log_mutex); 2165 mutex_unlock(&root->fs_info->reloc_mutex); 2166 goto scrub_continue; 2167 } 2168 2169 ret = commit_cowonly_roots(trans, root); 2170 if (ret) { 2171 mutex_unlock(&root->fs_info->tree_log_mutex); 2172 mutex_unlock(&root->fs_info->reloc_mutex); 2173 goto scrub_continue; 2174 } 2175 2176 /* 2177 * The tasks which save the space cache and inode cache may also 2178 * update ->aborted, check it. 2179 */ 2180 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 2181 ret = cur_trans->aborted; 2182 mutex_unlock(&root->fs_info->tree_log_mutex); 2183 mutex_unlock(&root->fs_info->reloc_mutex); 2184 goto scrub_continue; 2185 } 2186 2187 btrfs_prepare_extent_commit(trans, root); 2188 2189 cur_trans = root->fs_info->running_transaction; 2190 2191 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 2192 root->fs_info->tree_root->node); 2193 list_add_tail(&root->fs_info->tree_root->dirty_list, 2194 &cur_trans->switch_commits); 2195 2196 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 2197 root->fs_info->chunk_root->node); 2198 list_add_tail(&root->fs_info->chunk_root->dirty_list, 2199 &cur_trans->switch_commits); 2200 2201 switch_commit_roots(cur_trans, root->fs_info); 2202 2203 assert_qgroups_uptodate(trans); 2204 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2205 ASSERT(list_empty(&cur_trans->io_bgs)); 2206 update_super_roots(root); 2207 2208 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 2209 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 2210 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 2211 sizeof(*root->fs_info->super_copy)); 2212 2213 btrfs_update_commit_device_size(root->fs_info); 2214 btrfs_update_commit_device_bytes_used(root, cur_trans); 2215 2216 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 2217 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 2218 2219 btrfs_trans_release_chunk_metadata(trans); 2220 2221 spin_lock(&root->fs_info->trans_lock); 2222 cur_trans->state = TRANS_STATE_UNBLOCKED; 2223 root->fs_info->running_transaction = NULL; 2224 spin_unlock(&root->fs_info->trans_lock); 2225 mutex_unlock(&root->fs_info->reloc_mutex); 2226 2227 wake_up(&root->fs_info->transaction_wait); 2228 2229 ret = btrfs_write_and_wait_transaction(trans, root); 2230 if (ret) { 2231 btrfs_handle_fs_error(root->fs_info, ret, 2232 "Error while writing out transaction"); 2233 mutex_unlock(&root->fs_info->tree_log_mutex); 2234 goto scrub_continue; 2235 } 2236 2237 ret = write_ctree_super(trans, root, 0); 2238 if (ret) { 2239 mutex_unlock(&root->fs_info->tree_log_mutex); 2240 goto scrub_continue; 2241 } 2242 2243 /* 2244 * the super is written, we can safely allow the tree-loggers 2245 * to go about their business 2246 */ 2247 mutex_unlock(&root->fs_info->tree_log_mutex); 2248 2249 btrfs_finish_extent_commit(trans, root); 2250 2251 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2252 btrfs_clear_space_info_full(root->fs_info); 2253 2254 root->fs_info->last_trans_committed = cur_trans->transid; 2255 /* 2256 * We needn't acquire the lock here because there is no other task 2257 * which can change it. 2258 */ 2259 cur_trans->state = TRANS_STATE_COMPLETED; 2260 wake_up(&cur_trans->commit_wait); 2261 2262 spin_lock(&root->fs_info->trans_lock); 2263 list_del_init(&cur_trans->list); 2264 spin_unlock(&root->fs_info->trans_lock); 2265 2266 btrfs_put_transaction(cur_trans); 2267 btrfs_put_transaction(cur_trans); 2268 2269 if (trans->type & __TRANS_FREEZABLE) 2270 sb_end_intwrite(root->fs_info->sb); 2271 2272 trace_btrfs_transaction_commit(root); 2273 2274 btrfs_scrub_continue(root); 2275 2276 if (current->journal_info == trans) 2277 current->journal_info = NULL; 2278 2279 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2280 2281 /* 2282 * If fs has been frozen, we can not handle delayed iputs, otherwise 2283 * it'll result in deadlock about SB_FREEZE_FS. 2284 */ 2285 if (current != root->fs_info->transaction_kthread && 2286 current != root->fs_info->cleaner_kthread && 2287 !root->fs_info->fs_frozen) 2288 btrfs_run_delayed_iputs(root); 2289 2290 return ret; 2291 2292 scrub_continue: 2293 btrfs_scrub_continue(root); 2294 cleanup_transaction: 2295 btrfs_trans_release_metadata(trans, root); 2296 btrfs_trans_release_chunk_metadata(trans); 2297 trans->block_rsv = NULL; 2298 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction."); 2299 if (current->journal_info == trans) 2300 current->journal_info = NULL; 2301 cleanup_transaction(trans, root, ret); 2302 2303 return ret; 2304 } 2305 2306 /* 2307 * return < 0 if error 2308 * 0 if there are no more dead_roots at the time of call 2309 * 1 there are more to be processed, call me again 2310 * 2311 * The return value indicates there are certainly more snapshots to delete, but 2312 * if there comes a new one during processing, it may return 0. We don't mind, 2313 * because btrfs_commit_super will poke cleaner thread and it will process it a 2314 * few seconds later. 2315 */ 2316 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2317 { 2318 int ret; 2319 struct btrfs_fs_info *fs_info = root->fs_info; 2320 2321 spin_lock(&fs_info->trans_lock); 2322 if (list_empty(&fs_info->dead_roots)) { 2323 spin_unlock(&fs_info->trans_lock); 2324 return 0; 2325 } 2326 root = list_first_entry(&fs_info->dead_roots, 2327 struct btrfs_root, root_list); 2328 list_del_init(&root->root_list); 2329 spin_unlock(&fs_info->trans_lock); 2330 2331 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid); 2332 2333 btrfs_kill_all_delayed_nodes(root); 2334 2335 if (btrfs_header_backref_rev(root->node) < 2336 BTRFS_MIXED_BACKREF_REV) 2337 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2338 else 2339 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2340 2341 return (ret < 0) ? 0 : 1; 2342 } 2343 2344 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2345 { 2346 unsigned long prev; 2347 unsigned long bit; 2348 2349 prev = xchg(&fs_info->pending_changes, 0); 2350 if (!prev) 2351 return; 2352 2353 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2354 if (prev & bit) 2355 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2356 prev &= ~bit; 2357 2358 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2359 if (prev & bit) 2360 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2361 prev &= ~bit; 2362 2363 bit = 1 << BTRFS_PENDING_COMMIT; 2364 if (prev & bit) 2365 btrfs_debug(fs_info, "pending commit done"); 2366 prev &= ~bit; 2367 2368 if (prev) 2369 btrfs_warn(fs_info, 2370 "unknown pending changes left 0x%lx, ignoring", prev); 2371 } 2372