xref: /openbmc/linux/fs/btrfs/transaction.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 
31 #define BTRFS_ROOT_TRANS_TAG 0
32 
33 static noinline void put_transaction(struct btrfs_transaction *transaction)
34 {
35 	WARN_ON(transaction->use_count == 0);
36 	transaction->use_count--;
37 	if (transaction->use_count == 0) {
38 		list_del_init(&transaction->list);
39 		memset(transaction, 0, sizeof(*transaction));
40 		kmem_cache_free(btrfs_transaction_cachep, transaction);
41 	}
42 }
43 
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46 	free_extent_buffer(root->commit_root);
47 	root->commit_root = btrfs_root_node(root);
48 }
49 
50 /*
51  * either allocate a new transaction or hop into the existing one
52  */
53 static noinline int join_transaction(struct btrfs_root *root)
54 {
55 	struct btrfs_transaction *cur_trans;
56 	cur_trans = root->fs_info->running_transaction;
57 	if (!cur_trans) {
58 		cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
59 					     GFP_NOFS);
60 		BUG_ON(!cur_trans);
61 		root->fs_info->generation++;
62 		cur_trans->num_writers = 1;
63 		cur_trans->num_joined = 0;
64 		cur_trans->transid = root->fs_info->generation;
65 		init_waitqueue_head(&cur_trans->writer_wait);
66 		init_waitqueue_head(&cur_trans->commit_wait);
67 		cur_trans->in_commit = 0;
68 		cur_trans->blocked = 0;
69 		cur_trans->use_count = 1;
70 		cur_trans->commit_done = 0;
71 		cur_trans->start_time = get_seconds();
72 
73 		cur_trans->delayed_refs.root = RB_ROOT;
74 		cur_trans->delayed_refs.num_entries = 0;
75 		cur_trans->delayed_refs.num_heads_ready = 0;
76 		cur_trans->delayed_refs.num_heads = 0;
77 		cur_trans->delayed_refs.flushing = 0;
78 		cur_trans->delayed_refs.run_delayed_start = 0;
79 		spin_lock_init(&cur_trans->delayed_refs.lock);
80 
81 		INIT_LIST_HEAD(&cur_trans->pending_snapshots);
82 		list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
83 		extent_io_tree_init(&cur_trans->dirty_pages,
84 				     root->fs_info->btree_inode->i_mapping,
85 				     GFP_NOFS);
86 		spin_lock(&root->fs_info->new_trans_lock);
87 		root->fs_info->running_transaction = cur_trans;
88 		spin_unlock(&root->fs_info->new_trans_lock);
89 	} else {
90 		cur_trans->num_writers++;
91 		cur_trans->num_joined++;
92 	}
93 
94 	return 0;
95 }
96 
97 /*
98  * this does all the record keeping required to make sure that a reference
99  * counted root is properly recorded in a given transaction.  This is required
100  * to make sure the old root from before we joined the transaction is deleted
101  * when the transaction commits
102  */
103 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
104 					 struct btrfs_root *root)
105 {
106 	if (root->ref_cows && root->last_trans < trans->transid) {
107 		WARN_ON(root == root->fs_info->extent_root);
108 		WARN_ON(root->commit_root != root->node);
109 
110 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
111 			   (unsigned long)root->root_key.objectid,
112 			   BTRFS_ROOT_TRANS_TAG);
113 		root->last_trans = trans->transid;
114 		btrfs_init_reloc_root(trans, root);
115 	}
116 	return 0;
117 }
118 
119 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
120 			       struct btrfs_root *root)
121 {
122 	if (!root->ref_cows)
123 		return 0;
124 
125 	mutex_lock(&root->fs_info->trans_mutex);
126 	if (root->last_trans == trans->transid) {
127 		mutex_unlock(&root->fs_info->trans_mutex);
128 		return 0;
129 	}
130 
131 	record_root_in_trans(trans, root);
132 	mutex_unlock(&root->fs_info->trans_mutex);
133 	return 0;
134 }
135 
136 /* wait for commit against the current transaction to become unblocked
137  * when this is done, it is safe to start a new transaction, but the current
138  * transaction might not be fully on disk.
139  */
140 static void wait_current_trans(struct btrfs_root *root)
141 {
142 	struct btrfs_transaction *cur_trans;
143 
144 	cur_trans = root->fs_info->running_transaction;
145 	if (cur_trans && cur_trans->blocked) {
146 		DEFINE_WAIT(wait);
147 		cur_trans->use_count++;
148 		while (1) {
149 			prepare_to_wait(&root->fs_info->transaction_wait, &wait,
150 					TASK_UNINTERRUPTIBLE);
151 			if (!cur_trans->blocked)
152 				break;
153 			mutex_unlock(&root->fs_info->trans_mutex);
154 			schedule();
155 			mutex_lock(&root->fs_info->trans_mutex);
156 		}
157 		finish_wait(&root->fs_info->transaction_wait, &wait);
158 		put_transaction(cur_trans);
159 	}
160 }
161 
162 enum btrfs_trans_type {
163 	TRANS_START,
164 	TRANS_JOIN,
165 	TRANS_USERSPACE,
166 	TRANS_JOIN_NOLOCK,
167 };
168 
169 static int may_wait_transaction(struct btrfs_root *root, int type)
170 {
171 	if (!root->fs_info->log_root_recovering &&
172 	    ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
173 	     type == TRANS_USERSPACE))
174 		return 1;
175 	return 0;
176 }
177 
178 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
179 						    u64 num_items, int type)
180 {
181 	struct btrfs_trans_handle *h;
182 	struct btrfs_transaction *cur_trans;
183 	int ret;
184 again:
185 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
186 	if (!h)
187 		return ERR_PTR(-ENOMEM);
188 
189 	if (type != TRANS_JOIN_NOLOCK)
190 		mutex_lock(&root->fs_info->trans_mutex);
191 	if (may_wait_transaction(root, type))
192 		wait_current_trans(root);
193 
194 	ret = join_transaction(root);
195 	BUG_ON(ret);
196 
197 	cur_trans = root->fs_info->running_transaction;
198 	cur_trans->use_count++;
199 	if (type != TRANS_JOIN_NOLOCK)
200 		mutex_unlock(&root->fs_info->trans_mutex);
201 
202 	h->transid = cur_trans->transid;
203 	h->transaction = cur_trans;
204 	h->blocks_used = 0;
205 	h->block_group = 0;
206 	h->bytes_reserved = 0;
207 	h->delayed_ref_updates = 0;
208 	h->block_rsv = NULL;
209 
210 	smp_mb();
211 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
212 		btrfs_commit_transaction(h, root);
213 		goto again;
214 	}
215 
216 	if (num_items > 0) {
217 		ret = btrfs_trans_reserve_metadata(h, root, num_items);
218 		if (ret == -EAGAIN) {
219 			btrfs_commit_transaction(h, root);
220 			goto again;
221 		}
222 		if (ret < 0) {
223 			btrfs_end_transaction(h, root);
224 			return ERR_PTR(ret);
225 		}
226 	}
227 
228 	if (type != TRANS_JOIN_NOLOCK)
229 		mutex_lock(&root->fs_info->trans_mutex);
230 	record_root_in_trans(h, root);
231 	if (type != TRANS_JOIN_NOLOCK)
232 		mutex_unlock(&root->fs_info->trans_mutex);
233 
234 	if (!current->journal_info && type != TRANS_USERSPACE)
235 		current->journal_info = h;
236 	return h;
237 }
238 
239 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
240 						   int num_items)
241 {
242 	return start_transaction(root, num_items, TRANS_START);
243 }
244 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
245 						   int num_blocks)
246 {
247 	return start_transaction(root, 0, TRANS_JOIN);
248 }
249 
250 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root,
251 							  int num_blocks)
252 {
253 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
254 }
255 
256 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
257 							 int num_blocks)
258 {
259 	return start_transaction(r, 0, TRANS_USERSPACE);
260 }
261 
262 /* wait for a transaction commit to be fully complete */
263 static noinline int wait_for_commit(struct btrfs_root *root,
264 				    struct btrfs_transaction *commit)
265 {
266 	DEFINE_WAIT(wait);
267 	mutex_lock(&root->fs_info->trans_mutex);
268 	while (!commit->commit_done) {
269 		prepare_to_wait(&commit->commit_wait, &wait,
270 				TASK_UNINTERRUPTIBLE);
271 		if (commit->commit_done)
272 			break;
273 		mutex_unlock(&root->fs_info->trans_mutex);
274 		schedule();
275 		mutex_lock(&root->fs_info->trans_mutex);
276 	}
277 	mutex_unlock(&root->fs_info->trans_mutex);
278 	finish_wait(&commit->commit_wait, &wait);
279 	return 0;
280 }
281 
282 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
283 {
284 	struct btrfs_transaction *cur_trans = NULL, *t;
285 	int ret;
286 
287 	mutex_lock(&root->fs_info->trans_mutex);
288 
289 	ret = 0;
290 	if (transid) {
291 		if (transid <= root->fs_info->last_trans_committed)
292 			goto out_unlock;
293 
294 		/* find specified transaction */
295 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
296 			if (t->transid == transid) {
297 				cur_trans = t;
298 				break;
299 			}
300 			if (t->transid > transid)
301 				break;
302 		}
303 		ret = -EINVAL;
304 		if (!cur_trans)
305 			goto out_unlock;  /* bad transid */
306 	} else {
307 		/* find newest transaction that is committing | committed */
308 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
309 					    list) {
310 			if (t->in_commit) {
311 				if (t->commit_done)
312 					goto out_unlock;
313 				cur_trans = t;
314 				break;
315 			}
316 		}
317 		if (!cur_trans)
318 			goto out_unlock;  /* nothing committing|committed */
319 	}
320 
321 	cur_trans->use_count++;
322 	mutex_unlock(&root->fs_info->trans_mutex);
323 
324 	wait_for_commit(root, cur_trans);
325 
326 	mutex_lock(&root->fs_info->trans_mutex);
327 	put_transaction(cur_trans);
328 	ret = 0;
329 out_unlock:
330 	mutex_unlock(&root->fs_info->trans_mutex);
331 	return ret;
332 }
333 
334 #if 0
335 /*
336  * rate limit against the drop_snapshot code.  This helps to slow down new
337  * operations if the drop_snapshot code isn't able to keep up.
338  */
339 static void throttle_on_drops(struct btrfs_root *root)
340 {
341 	struct btrfs_fs_info *info = root->fs_info;
342 	int harder_count = 0;
343 
344 harder:
345 	if (atomic_read(&info->throttles)) {
346 		DEFINE_WAIT(wait);
347 		int thr;
348 		thr = atomic_read(&info->throttle_gen);
349 
350 		do {
351 			prepare_to_wait(&info->transaction_throttle,
352 					&wait, TASK_UNINTERRUPTIBLE);
353 			if (!atomic_read(&info->throttles)) {
354 				finish_wait(&info->transaction_throttle, &wait);
355 				break;
356 			}
357 			schedule();
358 			finish_wait(&info->transaction_throttle, &wait);
359 		} while (thr == atomic_read(&info->throttle_gen));
360 		harder_count++;
361 
362 		if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
363 		    harder_count < 2)
364 			goto harder;
365 
366 		if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
367 		    harder_count < 10)
368 			goto harder;
369 
370 		if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
371 		    harder_count < 20)
372 			goto harder;
373 	}
374 }
375 #endif
376 
377 void btrfs_throttle(struct btrfs_root *root)
378 {
379 	mutex_lock(&root->fs_info->trans_mutex);
380 	if (!root->fs_info->open_ioctl_trans)
381 		wait_current_trans(root);
382 	mutex_unlock(&root->fs_info->trans_mutex);
383 }
384 
385 static int should_end_transaction(struct btrfs_trans_handle *trans,
386 				  struct btrfs_root *root)
387 {
388 	int ret;
389 	ret = btrfs_block_rsv_check(trans, root,
390 				    &root->fs_info->global_block_rsv, 0, 5);
391 	return ret ? 1 : 0;
392 }
393 
394 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
395 				 struct btrfs_root *root)
396 {
397 	struct btrfs_transaction *cur_trans = trans->transaction;
398 	int updates;
399 
400 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
401 		return 1;
402 
403 	updates = trans->delayed_ref_updates;
404 	trans->delayed_ref_updates = 0;
405 	if (updates)
406 		btrfs_run_delayed_refs(trans, root, updates);
407 
408 	return should_end_transaction(trans, root);
409 }
410 
411 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
412 			  struct btrfs_root *root, int throttle, int lock)
413 {
414 	struct btrfs_transaction *cur_trans = trans->transaction;
415 	struct btrfs_fs_info *info = root->fs_info;
416 	int count = 0;
417 
418 	while (count < 4) {
419 		unsigned long cur = trans->delayed_ref_updates;
420 		trans->delayed_ref_updates = 0;
421 		if (cur &&
422 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
423 			trans->delayed_ref_updates = 0;
424 
425 			/*
426 			 * do a full flush if the transaction is trying
427 			 * to close
428 			 */
429 			if (trans->transaction->delayed_refs.flushing)
430 				cur = 0;
431 			btrfs_run_delayed_refs(trans, root, cur);
432 		} else {
433 			break;
434 		}
435 		count++;
436 	}
437 
438 	btrfs_trans_release_metadata(trans, root);
439 
440 	if (lock && !root->fs_info->open_ioctl_trans &&
441 	    should_end_transaction(trans, root))
442 		trans->transaction->blocked = 1;
443 
444 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
445 		if (throttle)
446 			return btrfs_commit_transaction(trans, root);
447 		else
448 			wake_up_process(info->transaction_kthread);
449 	}
450 
451 	if (lock)
452 		mutex_lock(&info->trans_mutex);
453 	WARN_ON(cur_trans != info->running_transaction);
454 	WARN_ON(cur_trans->num_writers < 1);
455 	cur_trans->num_writers--;
456 
457 	smp_mb();
458 	if (waitqueue_active(&cur_trans->writer_wait))
459 		wake_up(&cur_trans->writer_wait);
460 	put_transaction(cur_trans);
461 	if (lock)
462 		mutex_unlock(&info->trans_mutex);
463 
464 	if (current->journal_info == trans)
465 		current->journal_info = NULL;
466 	memset(trans, 0, sizeof(*trans));
467 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
468 
469 	if (throttle)
470 		btrfs_run_delayed_iputs(root);
471 
472 	return 0;
473 }
474 
475 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
476 			  struct btrfs_root *root)
477 {
478 	return __btrfs_end_transaction(trans, root, 0, 1);
479 }
480 
481 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
482 				   struct btrfs_root *root)
483 {
484 	return __btrfs_end_transaction(trans, root, 1, 1);
485 }
486 
487 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
488 				 struct btrfs_root *root)
489 {
490 	return __btrfs_end_transaction(trans, root, 0, 0);
491 }
492 
493 /*
494  * when btree blocks are allocated, they have some corresponding bits set for
495  * them in one of two extent_io trees.  This is used to make sure all of
496  * those extents are sent to disk but does not wait on them
497  */
498 int btrfs_write_marked_extents(struct btrfs_root *root,
499 			       struct extent_io_tree *dirty_pages, int mark)
500 {
501 	int ret;
502 	int err = 0;
503 	int werr = 0;
504 	struct page *page;
505 	struct inode *btree_inode = root->fs_info->btree_inode;
506 	u64 start = 0;
507 	u64 end;
508 	unsigned long index;
509 
510 	while (1) {
511 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
512 					    mark);
513 		if (ret)
514 			break;
515 		while (start <= end) {
516 			cond_resched();
517 
518 			index = start >> PAGE_CACHE_SHIFT;
519 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
520 			page = find_get_page(btree_inode->i_mapping, index);
521 			if (!page)
522 				continue;
523 
524 			btree_lock_page_hook(page);
525 			if (!page->mapping) {
526 				unlock_page(page);
527 				page_cache_release(page);
528 				continue;
529 			}
530 
531 			if (PageWriteback(page)) {
532 				if (PageDirty(page))
533 					wait_on_page_writeback(page);
534 				else {
535 					unlock_page(page);
536 					page_cache_release(page);
537 					continue;
538 				}
539 			}
540 			err = write_one_page(page, 0);
541 			if (err)
542 				werr = err;
543 			page_cache_release(page);
544 		}
545 	}
546 	if (err)
547 		werr = err;
548 	return werr;
549 }
550 
551 /*
552  * when btree blocks are allocated, they have some corresponding bits set for
553  * them in one of two extent_io trees.  This is used to make sure all of
554  * those extents are on disk for transaction or log commit.  We wait
555  * on all the pages and clear them from the dirty pages state tree
556  */
557 int btrfs_wait_marked_extents(struct btrfs_root *root,
558 			      struct extent_io_tree *dirty_pages, int mark)
559 {
560 	int ret;
561 	int err = 0;
562 	int werr = 0;
563 	struct page *page;
564 	struct inode *btree_inode = root->fs_info->btree_inode;
565 	u64 start = 0;
566 	u64 end;
567 	unsigned long index;
568 
569 	while (1) {
570 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
571 					    mark);
572 		if (ret)
573 			break;
574 
575 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
576 		while (start <= end) {
577 			index = start >> PAGE_CACHE_SHIFT;
578 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
579 			page = find_get_page(btree_inode->i_mapping, index);
580 			if (!page)
581 				continue;
582 			if (PageDirty(page)) {
583 				btree_lock_page_hook(page);
584 				wait_on_page_writeback(page);
585 				err = write_one_page(page, 0);
586 				if (err)
587 					werr = err;
588 			}
589 			wait_on_page_writeback(page);
590 			page_cache_release(page);
591 			cond_resched();
592 		}
593 	}
594 	if (err)
595 		werr = err;
596 	return werr;
597 }
598 
599 /*
600  * when btree blocks are allocated, they have some corresponding bits set for
601  * them in one of two extent_io trees.  This is used to make sure all of
602  * those extents are on disk for transaction or log commit
603  */
604 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
605 				struct extent_io_tree *dirty_pages, int mark)
606 {
607 	int ret;
608 	int ret2;
609 
610 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
611 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
612 	return ret || ret2;
613 }
614 
615 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
616 				     struct btrfs_root *root)
617 {
618 	if (!trans || !trans->transaction) {
619 		struct inode *btree_inode;
620 		btree_inode = root->fs_info->btree_inode;
621 		return filemap_write_and_wait(btree_inode->i_mapping);
622 	}
623 	return btrfs_write_and_wait_marked_extents(root,
624 					   &trans->transaction->dirty_pages,
625 					   EXTENT_DIRTY);
626 }
627 
628 /*
629  * this is used to update the root pointer in the tree of tree roots.
630  *
631  * But, in the case of the extent allocation tree, updating the root
632  * pointer may allocate blocks which may change the root of the extent
633  * allocation tree.
634  *
635  * So, this loops and repeats and makes sure the cowonly root didn't
636  * change while the root pointer was being updated in the metadata.
637  */
638 static int update_cowonly_root(struct btrfs_trans_handle *trans,
639 			       struct btrfs_root *root)
640 {
641 	int ret;
642 	u64 old_root_bytenr;
643 	u64 old_root_used;
644 	struct btrfs_root *tree_root = root->fs_info->tree_root;
645 
646 	old_root_used = btrfs_root_used(&root->root_item);
647 	btrfs_write_dirty_block_groups(trans, root);
648 
649 	while (1) {
650 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
651 		if (old_root_bytenr == root->node->start &&
652 		    old_root_used == btrfs_root_used(&root->root_item))
653 			break;
654 
655 		btrfs_set_root_node(&root->root_item, root->node);
656 		ret = btrfs_update_root(trans, tree_root,
657 					&root->root_key,
658 					&root->root_item);
659 		BUG_ON(ret);
660 
661 		old_root_used = btrfs_root_used(&root->root_item);
662 		ret = btrfs_write_dirty_block_groups(trans, root);
663 		BUG_ON(ret);
664 	}
665 
666 	if (root != root->fs_info->extent_root)
667 		switch_commit_root(root);
668 
669 	return 0;
670 }
671 
672 /*
673  * update all the cowonly tree roots on disk
674  */
675 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
676 					 struct btrfs_root *root)
677 {
678 	struct btrfs_fs_info *fs_info = root->fs_info;
679 	struct list_head *next;
680 	struct extent_buffer *eb;
681 	int ret;
682 
683 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
684 	BUG_ON(ret);
685 
686 	eb = btrfs_lock_root_node(fs_info->tree_root);
687 	btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
688 	btrfs_tree_unlock(eb);
689 	free_extent_buffer(eb);
690 
691 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
692 	BUG_ON(ret);
693 
694 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
695 		next = fs_info->dirty_cowonly_roots.next;
696 		list_del_init(next);
697 		root = list_entry(next, struct btrfs_root, dirty_list);
698 
699 		update_cowonly_root(trans, root);
700 	}
701 
702 	down_write(&fs_info->extent_commit_sem);
703 	switch_commit_root(fs_info->extent_root);
704 	up_write(&fs_info->extent_commit_sem);
705 
706 	return 0;
707 }
708 
709 /*
710  * dead roots are old snapshots that need to be deleted.  This allocates
711  * a dirty root struct and adds it into the list of dead roots that need to
712  * be deleted
713  */
714 int btrfs_add_dead_root(struct btrfs_root *root)
715 {
716 	mutex_lock(&root->fs_info->trans_mutex);
717 	list_add(&root->root_list, &root->fs_info->dead_roots);
718 	mutex_unlock(&root->fs_info->trans_mutex);
719 	return 0;
720 }
721 
722 /*
723  * update all the cowonly tree roots on disk
724  */
725 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
726 				    struct btrfs_root *root)
727 {
728 	struct btrfs_root *gang[8];
729 	struct btrfs_fs_info *fs_info = root->fs_info;
730 	int i;
731 	int ret;
732 	int err = 0;
733 
734 	while (1) {
735 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
736 						 (void **)gang, 0,
737 						 ARRAY_SIZE(gang),
738 						 BTRFS_ROOT_TRANS_TAG);
739 		if (ret == 0)
740 			break;
741 		for (i = 0; i < ret; i++) {
742 			root = gang[i];
743 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
744 					(unsigned long)root->root_key.objectid,
745 					BTRFS_ROOT_TRANS_TAG);
746 
747 			btrfs_free_log(trans, root);
748 			btrfs_update_reloc_root(trans, root);
749 			btrfs_orphan_commit_root(trans, root);
750 
751 			if (root->commit_root != root->node) {
752 				switch_commit_root(root);
753 				btrfs_set_root_node(&root->root_item,
754 						    root->node);
755 			}
756 
757 			err = btrfs_update_root(trans, fs_info->tree_root,
758 						&root->root_key,
759 						&root->root_item);
760 			if (err)
761 				break;
762 		}
763 	}
764 	return err;
765 }
766 
767 /*
768  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
769  * otherwise every leaf in the btree is read and defragged.
770  */
771 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
772 {
773 	struct btrfs_fs_info *info = root->fs_info;
774 	struct btrfs_trans_handle *trans;
775 	int ret;
776 	unsigned long nr;
777 
778 	if (xchg(&root->defrag_running, 1))
779 		return 0;
780 
781 	while (1) {
782 		trans = btrfs_start_transaction(root, 0);
783 		if (IS_ERR(trans))
784 			return PTR_ERR(trans);
785 
786 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
787 
788 		nr = trans->blocks_used;
789 		btrfs_end_transaction(trans, root);
790 		btrfs_btree_balance_dirty(info->tree_root, nr);
791 		cond_resched();
792 
793 		if (root->fs_info->closing || ret != -EAGAIN)
794 			break;
795 	}
796 	root->defrag_running = 0;
797 	return ret;
798 }
799 
800 #if 0
801 /*
802  * when dropping snapshots, we generate a ton of delayed refs, and it makes
803  * sense not to join the transaction while it is trying to flush the current
804  * queue of delayed refs out.
805  *
806  * This is used by the drop snapshot code only
807  */
808 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
809 {
810 	DEFINE_WAIT(wait);
811 
812 	mutex_lock(&info->trans_mutex);
813 	while (info->running_transaction &&
814 	       info->running_transaction->delayed_refs.flushing) {
815 		prepare_to_wait(&info->transaction_wait, &wait,
816 				TASK_UNINTERRUPTIBLE);
817 		mutex_unlock(&info->trans_mutex);
818 
819 		schedule();
820 
821 		mutex_lock(&info->trans_mutex);
822 		finish_wait(&info->transaction_wait, &wait);
823 	}
824 	mutex_unlock(&info->trans_mutex);
825 	return 0;
826 }
827 
828 /*
829  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
830  * all of them
831  */
832 int btrfs_drop_dead_root(struct btrfs_root *root)
833 {
834 	struct btrfs_trans_handle *trans;
835 	struct btrfs_root *tree_root = root->fs_info->tree_root;
836 	unsigned long nr;
837 	int ret;
838 
839 	while (1) {
840 		/*
841 		 * we don't want to jump in and create a bunch of
842 		 * delayed refs if the transaction is starting to close
843 		 */
844 		wait_transaction_pre_flush(tree_root->fs_info);
845 		trans = btrfs_start_transaction(tree_root, 1);
846 
847 		/*
848 		 * we've joined a transaction, make sure it isn't
849 		 * closing right now
850 		 */
851 		if (trans->transaction->delayed_refs.flushing) {
852 			btrfs_end_transaction(trans, tree_root);
853 			continue;
854 		}
855 
856 		ret = btrfs_drop_snapshot(trans, root);
857 		if (ret != -EAGAIN)
858 			break;
859 
860 		ret = btrfs_update_root(trans, tree_root,
861 					&root->root_key,
862 					&root->root_item);
863 		if (ret)
864 			break;
865 
866 		nr = trans->blocks_used;
867 		ret = btrfs_end_transaction(trans, tree_root);
868 		BUG_ON(ret);
869 
870 		btrfs_btree_balance_dirty(tree_root, nr);
871 		cond_resched();
872 	}
873 	BUG_ON(ret);
874 
875 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
876 	BUG_ON(ret);
877 
878 	nr = trans->blocks_used;
879 	ret = btrfs_end_transaction(trans, tree_root);
880 	BUG_ON(ret);
881 
882 	free_extent_buffer(root->node);
883 	free_extent_buffer(root->commit_root);
884 	kfree(root);
885 
886 	btrfs_btree_balance_dirty(tree_root, nr);
887 	return ret;
888 }
889 #endif
890 
891 /*
892  * new snapshots need to be created at a very specific time in the
893  * transaction commit.  This does the actual creation
894  */
895 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
896 				   struct btrfs_fs_info *fs_info,
897 				   struct btrfs_pending_snapshot *pending)
898 {
899 	struct btrfs_key key;
900 	struct btrfs_root_item *new_root_item;
901 	struct btrfs_root *tree_root = fs_info->tree_root;
902 	struct btrfs_root *root = pending->root;
903 	struct btrfs_root *parent_root;
904 	struct inode *parent_inode;
905 	struct dentry *parent;
906 	struct dentry *dentry;
907 	struct extent_buffer *tmp;
908 	struct extent_buffer *old;
909 	int ret;
910 	u64 to_reserve = 0;
911 	u64 index = 0;
912 	u64 objectid;
913 
914 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
915 	if (!new_root_item) {
916 		pending->error = -ENOMEM;
917 		goto fail;
918 	}
919 
920 	ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
921 	if (ret) {
922 		pending->error = ret;
923 		goto fail;
924 	}
925 
926 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
927 	btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
928 
929 	if (to_reserve > 0) {
930 		ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
931 					  to_reserve);
932 		if (ret) {
933 			pending->error = ret;
934 			goto fail;
935 		}
936 	}
937 
938 	key.objectid = objectid;
939 	key.offset = (u64)-1;
940 	key.type = BTRFS_ROOT_ITEM_KEY;
941 
942 	trans->block_rsv = &pending->block_rsv;
943 
944 	dentry = pending->dentry;
945 	parent = dget_parent(dentry);
946 	parent_inode = parent->d_inode;
947 	parent_root = BTRFS_I(parent_inode)->root;
948 	record_root_in_trans(trans, parent_root);
949 
950 	/*
951 	 * insert the directory item
952 	 */
953 	ret = btrfs_set_inode_index(parent_inode, &index);
954 	BUG_ON(ret);
955 	ret = btrfs_insert_dir_item(trans, parent_root,
956 				dentry->d_name.name, dentry->d_name.len,
957 				parent_inode->i_ino, &key,
958 				BTRFS_FT_DIR, index);
959 	BUG_ON(ret);
960 
961 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
962 					 dentry->d_name.len * 2);
963 	ret = btrfs_update_inode(trans, parent_root, parent_inode);
964 	BUG_ON(ret);
965 
966 	record_root_in_trans(trans, root);
967 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
968 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
969 
970 	old = btrfs_lock_root_node(root);
971 	btrfs_cow_block(trans, root, old, NULL, 0, &old);
972 	btrfs_set_lock_blocking(old);
973 
974 	btrfs_copy_root(trans, root, old, &tmp, objectid);
975 	btrfs_tree_unlock(old);
976 	free_extent_buffer(old);
977 
978 	btrfs_set_root_node(new_root_item, tmp);
979 	/* record when the snapshot was created in key.offset */
980 	key.offset = trans->transid;
981 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
982 	btrfs_tree_unlock(tmp);
983 	free_extent_buffer(tmp);
984 	BUG_ON(ret);
985 
986 	/*
987 	 * insert root back/forward references
988 	 */
989 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
990 				 parent_root->root_key.objectid,
991 				 parent_inode->i_ino, index,
992 				 dentry->d_name.name, dentry->d_name.len);
993 	BUG_ON(ret);
994 	dput(parent);
995 
996 	key.offset = (u64)-1;
997 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
998 	BUG_ON(IS_ERR(pending->snap));
999 
1000 	btrfs_reloc_post_snapshot(trans, pending);
1001 	btrfs_orphan_post_snapshot(trans, pending);
1002 fail:
1003 	kfree(new_root_item);
1004 	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1005 	return 0;
1006 }
1007 
1008 /*
1009  * create all the snapshots we've scheduled for creation
1010  */
1011 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1012 					     struct btrfs_fs_info *fs_info)
1013 {
1014 	struct btrfs_pending_snapshot *pending;
1015 	struct list_head *head = &trans->transaction->pending_snapshots;
1016 	int ret;
1017 
1018 	list_for_each_entry(pending, head, list) {
1019 		ret = create_pending_snapshot(trans, fs_info, pending);
1020 		BUG_ON(ret);
1021 	}
1022 	return 0;
1023 }
1024 
1025 static void update_super_roots(struct btrfs_root *root)
1026 {
1027 	struct btrfs_root_item *root_item;
1028 	struct btrfs_super_block *super;
1029 
1030 	super = &root->fs_info->super_copy;
1031 
1032 	root_item = &root->fs_info->chunk_root->root_item;
1033 	super->chunk_root = root_item->bytenr;
1034 	super->chunk_root_generation = root_item->generation;
1035 	super->chunk_root_level = root_item->level;
1036 
1037 	root_item = &root->fs_info->tree_root->root_item;
1038 	super->root = root_item->bytenr;
1039 	super->generation = root_item->generation;
1040 	super->root_level = root_item->level;
1041 	if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1042 		super->cache_generation = root_item->generation;
1043 }
1044 
1045 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1046 {
1047 	int ret = 0;
1048 	spin_lock(&info->new_trans_lock);
1049 	if (info->running_transaction)
1050 		ret = info->running_transaction->in_commit;
1051 	spin_unlock(&info->new_trans_lock);
1052 	return ret;
1053 }
1054 
1055 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1056 {
1057 	int ret = 0;
1058 	spin_lock(&info->new_trans_lock);
1059 	if (info->running_transaction)
1060 		ret = info->running_transaction->blocked;
1061 	spin_unlock(&info->new_trans_lock);
1062 	return ret;
1063 }
1064 
1065 /*
1066  * wait for the current transaction commit to start and block subsequent
1067  * transaction joins
1068  */
1069 static void wait_current_trans_commit_start(struct btrfs_root *root,
1070 					    struct btrfs_transaction *trans)
1071 {
1072 	DEFINE_WAIT(wait);
1073 
1074 	if (trans->in_commit)
1075 		return;
1076 
1077 	while (1) {
1078 		prepare_to_wait(&root->fs_info->transaction_blocked_wait, &wait,
1079 				TASK_UNINTERRUPTIBLE);
1080 		if (trans->in_commit) {
1081 			finish_wait(&root->fs_info->transaction_blocked_wait,
1082 				    &wait);
1083 			break;
1084 		}
1085 		mutex_unlock(&root->fs_info->trans_mutex);
1086 		schedule();
1087 		mutex_lock(&root->fs_info->trans_mutex);
1088 		finish_wait(&root->fs_info->transaction_blocked_wait, &wait);
1089 	}
1090 }
1091 
1092 /*
1093  * wait for the current transaction to start and then become unblocked.
1094  * caller holds ref.
1095  */
1096 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1097 					 struct btrfs_transaction *trans)
1098 {
1099 	DEFINE_WAIT(wait);
1100 
1101 	if (trans->commit_done || (trans->in_commit && !trans->blocked))
1102 		return;
1103 
1104 	while (1) {
1105 		prepare_to_wait(&root->fs_info->transaction_wait, &wait,
1106 				TASK_UNINTERRUPTIBLE);
1107 		if (trans->commit_done ||
1108 		    (trans->in_commit && !trans->blocked)) {
1109 			finish_wait(&root->fs_info->transaction_wait,
1110 				    &wait);
1111 			break;
1112 		}
1113 		mutex_unlock(&root->fs_info->trans_mutex);
1114 		schedule();
1115 		mutex_lock(&root->fs_info->trans_mutex);
1116 		finish_wait(&root->fs_info->transaction_wait,
1117 			    &wait);
1118 	}
1119 }
1120 
1121 /*
1122  * commit transactions asynchronously. once btrfs_commit_transaction_async
1123  * returns, any subsequent transaction will not be allowed to join.
1124  */
1125 struct btrfs_async_commit {
1126 	struct btrfs_trans_handle *newtrans;
1127 	struct btrfs_root *root;
1128 	struct delayed_work work;
1129 };
1130 
1131 static void do_async_commit(struct work_struct *work)
1132 {
1133 	struct btrfs_async_commit *ac =
1134 		container_of(work, struct btrfs_async_commit, work.work);
1135 
1136 	btrfs_commit_transaction(ac->newtrans, ac->root);
1137 	kfree(ac);
1138 }
1139 
1140 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1141 				   struct btrfs_root *root,
1142 				   int wait_for_unblock)
1143 {
1144 	struct btrfs_async_commit *ac;
1145 	struct btrfs_transaction *cur_trans;
1146 
1147 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1148 	BUG_ON(!ac);
1149 
1150 	INIT_DELAYED_WORK(&ac->work, do_async_commit);
1151 	ac->root = root;
1152 	ac->newtrans = btrfs_join_transaction(root, 0);
1153 
1154 	/* take transaction reference */
1155 	mutex_lock(&root->fs_info->trans_mutex);
1156 	cur_trans = trans->transaction;
1157 	cur_trans->use_count++;
1158 	mutex_unlock(&root->fs_info->trans_mutex);
1159 
1160 	btrfs_end_transaction(trans, root);
1161 	schedule_delayed_work(&ac->work, 0);
1162 
1163 	/* wait for transaction to start and unblock */
1164 	mutex_lock(&root->fs_info->trans_mutex);
1165 	if (wait_for_unblock)
1166 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1167 	else
1168 		wait_current_trans_commit_start(root, cur_trans);
1169 	put_transaction(cur_trans);
1170 	mutex_unlock(&root->fs_info->trans_mutex);
1171 
1172 	return 0;
1173 }
1174 
1175 /*
1176  * btrfs_transaction state sequence:
1177  *    in_commit = 0, blocked = 0  (initial)
1178  *    in_commit = 1, blocked = 1
1179  *    blocked = 0
1180  *    commit_done = 1
1181  */
1182 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1183 			     struct btrfs_root *root)
1184 {
1185 	unsigned long joined = 0;
1186 	struct btrfs_transaction *cur_trans;
1187 	struct btrfs_transaction *prev_trans = NULL;
1188 	DEFINE_WAIT(wait);
1189 	int ret;
1190 	int should_grow = 0;
1191 	unsigned long now = get_seconds();
1192 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1193 
1194 	btrfs_run_ordered_operations(root, 0);
1195 
1196 	/* make a pass through all the delayed refs we have so far
1197 	 * any runnings procs may add more while we are here
1198 	 */
1199 	ret = btrfs_run_delayed_refs(trans, root, 0);
1200 	BUG_ON(ret);
1201 
1202 	btrfs_trans_release_metadata(trans, root);
1203 
1204 	cur_trans = trans->transaction;
1205 	/*
1206 	 * set the flushing flag so procs in this transaction have to
1207 	 * start sending their work down.
1208 	 */
1209 	cur_trans->delayed_refs.flushing = 1;
1210 
1211 	ret = btrfs_run_delayed_refs(trans, root, 0);
1212 	BUG_ON(ret);
1213 
1214 	mutex_lock(&root->fs_info->trans_mutex);
1215 	if (cur_trans->in_commit) {
1216 		cur_trans->use_count++;
1217 		mutex_unlock(&root->fs_info->trans_mutex);
1218 		btrfs_end_transaction(trans, root);
1219 
1220 		ret = wait_for_commit(root, cur_trans);
1221 		BUG_ON(ret);
1222 
1223 		mutex_lock(&root->fs_info->trans_mutex);
1224 		put_transaction(cur_trans);
1225 		mutex_unlock(&root->fs_info->trans_mutex);
1226 
1227 		return 0;
1228 	}
1229 
1230 	trans->transaction->in_commit = 1;
1231 	trans->transaction->blocked = 1;
1232 	wake_up(&root->fs_info->transaction_blocked_wait);
1233 
1234 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1235 		prev_trans = list_entry(cur_trans->list.prev,
1236 					struct btrfs_transaction, list);
1237 		if (!prev_trans->commit_done) {
1238 			prev_trans->use_count++;
1239 			mutex_unlock(&root->fs_info->trans_mutex);
1240 
1241 			wait_for_commit(root, prev_trans);
1242 
1243 			mutex_lock(&root->fs_info->trans_mutex);
1244 			put_transaction(prev_trans);
1245 		}
1246 	}
1247 
1248 	if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1249 		should_grow = 1;
1250 
1251 	do {
1252 		int snap_pending = 0;
1253 		joined = cur_trans->num_joined;
1254 		if (!list_empty(&trans->transaction->pending_snapshots))
1255 			snap_pending = 1;
1256 
1257 		WARN_ON(cur_trans != trans->transaction);
1258 		mutex_unlock(&root->fs_info->trans_mutex);
1259 
1260 		if (flush_on_commit || snap_pending) {
1261 			btrfs_start_delalloc_inodes(root, 1);
1262 			ret = btrfs_wait_ordered_extents(root, 0, 1);
1263 			BUG_ON(ret);
1264 		}
1265 
1266 		/*
1267 		 * rename don't use btrfs_join_transaction, so, once we
1268 		 * set the transaction to blocked above, we aren't going
1269 		 * to get any new ordered operations.  We can safely run
1270 		 * it here and no for sure that nothing new will be added
1271 		 * to the list
1272 		 */
1273 		btrfs_run_ordered_operations(root, 1);
1274 
1275 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1276 				TASK_UNINTERRUPTIBLE);
1277 
1278 		smp_mb();
1279 		if (cur_trans->num_writers > 1)
1280 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1281 		else if (should_grow)
1282 			schedule_timeout(1);
1283 
1284 		mutex_lock(&root->fs_info->trans_mutex);
1285 		finish_wait(&cur_trans->writer_wait, &wait);
1286 	} while (cur_trans->num_writers > 1 ||
1287 		 (should_grow && cur_trans->num_joined != joined));
1288 
1289 	ret = create_pending_snapshots(trans, root->fs_info);
1290 	BUG_ON(ret);
1291 
1292 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1293 	BUG_ON(ret);
1294 
1295 	WARN_ON(cur_trans != trans->transaction);
1296 
1297 	/* btrfs_commit_tree_roots is responsible for getting the
1298 	 * various roots consistent with each other.  Every pointer
1299 	 * in the tree of tree roots has to point to the most up to date
1300 	 * root for every subvolume and other tree.  So, we have to keep
1301 	 * the tree logging code from jumping in and changing any
1302 	 * of the trees.
1303 	 *
1304 	 * At this point in the commit, there can't be any tree-log
1305 	 * writers, but a little lower down we drop the trans mutex
1306 	 * and let new people in.  By holding the tree_log_mutex
1307 	 * from now until after the super is written, we avoid races
1308 	 * with the tree-log code.
1309 	 */
1310 	mutex_lock(&root->fs_info->tree_log_mutex);
1311 
1312 	ret = commit_fs_roots(trans, root);
1313 	BUG_ON(ret);
1314 
1315 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1316 	 * safe to free the root of tree log roots
1317 	 */
1318 	btrfs_free_log_root_tree(trans, root->fs_info);
1319 
1320 	ret = commit_cowonly_roots(trans, root);
1321 	BUG_ON(ret);
1322 
1323 	btrfs_prepare_extent_commit(trans, root);
1324 
1325 	cur_trans = root->fs_info->running_transaction;
1326 	spin_lock(&root->fs_info->new_trans_lock);
1327 	root->fs_info->running_transaction = NULL;
1328 	spin_unlock(&root->fs_info->new_trans_lock);
1329 
1330 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1331 			    root->fs_info->tree_root->node);
1332 	switch_commit_root(root->fs_info->tree_root);
1333 
1334 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1335 			    root->fs_info->chunk_root->node);
1336 	switch_commit_root(root->fs_info->chunk_root);
1337 
1338 	update_super_roots(root);
1339 
1340 	if (!root->fs_info->log_root_recovering) {
1341 		btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1342 		btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1343 	}
1344 
1345 	memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1346 	       sizeof(root->fs_info->super_copy));
1347 
1348 	trans->transaction->blocked = 0;
1349 
1350 	wake_up(&root->fs_info->transaction_wait);
1351 
1352 	mutex_unlock(&root->fs_info->trans_mutex);
1353 	ret = btrfs_write_and_wait_transaction(trans, root);
1354 	BUG_ON(ret);
1355 	write_ctree_super(trans, root, 0);
1356 
1357 	/*
1358 	 * the super is written, we can safely allow the tree-loggers
1359 	 * to go about their business
1360 	 */
1361 	mutex_unlock(&root->fs_info->tree_log_mutex);
1362 
1363 	btrfs_finish_extent_commit(trans, root);
1364 
1365 	mutex_lock(&root->fs_info->trans_mutex);
1366 
1367 	cur_trans->commit_done = 1;
1368 
1369 	root->fs_info->last_trans_committed = cur_trans->transid;
1370 
1371 	wake_up(&cur_trans->commit_wait);
1372 
1373 	put_transaction(cur_trans);
1374 	put_transaction(cur_trans);
1375 
1376 	mutex_unlock(&root->fs_info->trans_mutex);
1377 
1378 	if (current->journal_info == trans)
1379 		current->journal_info = NULL;
1380 
1381 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1382 
1383 	if (current != root->fs_info->transaction_kthread)
1384 		btrfs_run_delayed_iputs(root);
1385 
1386 	return ret;
1387 }
1388 
1389 /*
1390  * interface function to delete all the snapshots we have scheduled for deletion
1391  */
1392 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1393 {
1394 	LIST_HEAD(list);
1395 	struct btrfs_fs_info *fs_info = root->fs_info;
1396 
1397 	mutex_lock(&fs_info->trans_mutex);
1398 	list_splice_init(&fs_info->dead_roots, &list);
1399 	mutex_unlock(&fs_info->trans_mutex);
1400 
1401 	while (!list_empty(&list)) {
1402 		root = list_entry(list.next, struct btrfs_root, root_list);
1403 		list_del(&root->root_list);
1404 
1405 		if (btrfs_header_backref_rev(root->node) <
1406 		    BTRFS_MIXED_BACKREF_REV)
1407 			btrfs_drop_snapshot(root, NULL, 0);
1408 		else
1409 			btrfs_drop_snapshot(root, NULL, 1);
1410 	}
1411 	return 0;
1412 }
1413