1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 31 #define BTRFS_ROOT_TRANS_TAG 0 32 33 static noinline void put_transaction(struct btrfs_transaction *transaction) 34 { 35 WARN_ON(transaction->use_count == 0); 36 transaction->use_count--; 37 if (transaction->use_count == 0) { 38 list_del_init(&transaction->list); 39 memset(transaction, 0, sizeof(*transaction)); 40 kmem_cache_free(btrfs_transaction_cachep, transaction); 41 } 42 } 43 44 static noinline void switch_commit_root(struct btrfs_root *root) 45 { 46 free_extent_buffer(root->commit_root); 47 root->commit_root = btrfs_root_node(root); 48 } 49 50 /* 51 * either allocate a new transaction or hop into the existing one 52 */ 53 static noinline int join_transaction(struct btrfs_root *root) 54 { 55 struct btrfs_transaction *cur_trans; 56 cur_trans = root->fs_info->running_transaction; 57 if (!cur_trans) { 58 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, 59 GFP_NOFS); 60 BUG_ON(!cur_trans); 61 root->fs_info->generation++; 62 cur_trans->num_writers = 1; 63 cur_trans->num_joined = 0; 64 cur_trans->transid = root->fs_info->generation; 65 init_waitqueue_head(&cur_trans->writer_wait); 66 init_waitqueue_head(&cur_trans->commit_wait); 67 cur_trans->in_commit = 0; 68 cur_trans->blocked = 0; 69 cur_trans->use_count = 1; 70 cur_trans->commit_done = 0; 71 cur_trans->start_time = get_seconds(); 72 73 cur_trans->delayed_refs.root = RB_ROOT; 74 cur_trans->delayed_refs.num_entries = 0; 75 cur_trans->delayed_refs.num_heads_ready = 0; 76 cur_trans->delayed_refs.num_heads = 0; 77 cur_trans->delayed_refs.flushing = 0; 78 cur_trans->delayed_refs.run_delayed_start = 0; 79 spin_lock_init(&cur_trans->delayed_refs.lock); 80 81 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 82 list_add_tail(&cur_trans->list, &root->fs_info->trans_list); 83 extent_io_tree_init(&cur_trans->dirty_pages, 84 root->fs_info->btree_inode->i_mapping, 85 GFP_NOFS); 86 spin_lock(&root->fs_info->new_trans_lock); 87 root->fs_info->running_transaction = cur_trans; 88 spin_unlock(&root->fs_info->new_trans_lock); 89 } else { 90 cur_trans->num_writers++; 91 cur_trans->num_joined++; 92 } 93 94 return 0; 95 } 96 97 /* 98 * this does all the record keeping required to make sure that a reference 99 * counted root is properly recorded in a given transaction. This is required 100 * to make sure the old root from before we joined the transaction is deleted 101 * when the transaction commits 102 */ 103 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans, 104 struct btrfs_root *root) 105 { 106 if (root->ref_cows && root->last_trans < trans->transid) { 107 WARN_ON(root == root->fs_info->extent_root); 108 WARN_ON(root->commit_root != root->node); 109 110 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 111 (unsigned long)root->root_key.objectid, 112 BTRFS_ROOT_TRANS_TAG); 113 root->last_trans = trans->transid; 114 btrfs_init_reloc_root(trans, root); 115 } 116 return 0; 117 } 118 119 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 120 struct btrfs_root *root) 121 { 122 if (!root->ref_cows) 123 return 0; 124 125 mutex_lock(&root->fs_info->trans_mutex); 126 if (root->last_trans == trans->transid) { 127 mutex_unlock(&root->fs_info->trans_mutex); 128 return 0; 129 } 130 131 record_root_in_trans(trans, root); 132 mutex_unlock(&root->fs_info->trans_mutex); 133 return 0; 134 } 135 136 /* wait for commit against the current transaction to become unblocked 137 * when this is done, it is safe to start a new transaction, but the current 138 * transaction might not be fully on disk. 139 */ 140 static void wait_current_trans(struct btrfs_root *root) 141 { 142 struct btrfs_transaction *cur_trans; 143 144 cur_trans = root->fs_info->running_transaction; 145 if (cur_trans && cur_trans->blocked) { 146 DEFINE_WAIT(wait); 147 cur_trans->use_count++; 148 while (1) { 149 prepare_to_wait(&root->fs_info->transaction_wait, &wait, 150 TASK_UNINTERRUPTIBLE); 151 if (!cur_trans->blocked) 152 break; 153 mutex_unlock(&root->fs_info->trans_mutex); 154 schedule(); 155 mutex_lock(&root->fs_info->trans_mutex); 156 } 157 finish_wait(&root->fs_info->transaction_wait, &wait); 158 put_transaction(cur_trans); 159 } 160 } 161 162 enum btrfs_trans_type { 163 TRANS_START, 164 TRANS_JOIN, 165 TRANS_USERSPACE, 166 TRANS_JOIN_NOLOCK, 167 }; 168 169 static int may_wait_transaction(struct btrfs_root *root, int type) 170 { 171 if (!root->fs_info->log_root_recovering && 172 ((type == TRANS_START && !root->fs_info->open_ioctl_trans) || 173 type == TRANS_USERSPACE)) 174 return 1; 175 return 0; 176 } 177 178 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root, 179 u64 num_items, int type) 180 { 181 struct btrfs_trans_handle *h; 182 struct btrfs_transaction *cur_trans; 183 int ret; 184 again: 185 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 186 if (!h) 187 return ERR_PTR(-ENOMEM); 188 189 if (type != TRANS_JOIN_NOLOCK) 190 mutex_lock(&root->fs_info->trans_mutex); 191 if (may_wait_transaction(root, type)) 192 wait_current_trans(root); 193 194 ret = join_transaction(root); 195 BUG_ON(ret); 196 197 cur_trans = root->fs_info->running_transaction; 198 cur_trans->use_count++; 199 if (type != TRANS_JOIN_NOLOCK) 200 mutex_unlock(&root->fs_info->trans_mutex); 201 202 h->transid = cur_trans->transid; 203 h->transaction = cur_trans; 204 h->blocks_used = 0; 205 h->block_group = 0; 206 h->bytes_reserved = 0; 207 h->delayed_ref_updates = 0; 208 h->block_rsv = NULL; 209 210 smp_mb(); 211 if (cur_trans->blocked && may_wait_transaction(root, type)) { 212 btrfs_commit_transaction(h, root); 213 goto again; 214 } 215 216 if (num_items > 0) { 217 ret = btrfs_trans_reserve_metadata(h, root, num_items); 218 if (ret == -EAGAIN) { 219 btrfs_commit_transaction(h, root); 220 goto again; 221 } 222 if (ret < 0) { 223 btrfs_end_transaction(h, root); 224 return ERR_PTR(ret); 225 } 226 } 227 228 if (type != TRANS_JOIN_NOLOCK) 229 mutex_lock(&root->fs_info->trans_mutex); 230 record_root_in_trans(h, root); 231 if (type != TRANS_JOIN_NOLOCK) 232 mutex_unlock(&root->fs_info->trans_mutex); 233 234 if (!current->journal_info && type != TRANS_USERSPACE) 235 current->journal_info = h; 236 return h; 237 } 238 239 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 240 int num_items) 241 { 242 return start_transaction(root, num_items, TRANS_START); 243 } 244 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root, 245 int num_blocks) 246 { 247 return start_transaction(root, 0, TRANS_JOIN); 248 } 249 250 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root, 251 int num_blocks) 252 { 253 return start_transaction(root, 0, TRANS_JOIN_NOLOCK); 254 } 255 256 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r, 257 int num_blocks) 258 { 259 return start_transaction(r, 0, TRANS_USERSPACE); 260 } 261 262 /* wait for a transaction commit to be fully complete */ 263 static noinline int wait_for_commit(struct btrfs_root *root, 264 struct btrfs_transaction *commit) 265 { 266 DEFINE_WAIT(wait); 267 mutex_lock(&root->fs_info->trans_mutex); 268 while (!commit->commit_done) { 269 prepare_to_wait(&commit->commit_wait, &wait, 270 TASK_UNINTERRUPTIBLE); 271 if (commit->commit_done) 272 break; 273 mutex_unlock(&root->fs_info->trans_mutex); 274 schedule(); 275 mutex_lock(&root->fs_info->trans_mutex); 276 } 277 mutex_unlock(&root->fs_info->trans_mutex); 278 finish_wait(&commit->commit_wait, &wait); 279 return 0; 280 } 281 282 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 283 { 284 struct btrfs_transaction *cur_trans = NULL, *t; 285 int ret; 286 287 mutex_lock(&root->fs_info->trans_mutex); 288 289 ret = 0; 290 if (transid) { 291 if (transid <= root->fs_info->last_trans_committed) 292 goto out_unlock; 293 294 /* find specified transaction */ 295 list_for_each_entry(t, &root->fs_info->trans_list, list) { 296 if (t->transid == transid) { 297 cur_trans = t; 298 break; 299 } 300 if (t->transid > transid) 301 break; 302 } 303 ret = -EINVAL; 304 if (!cur_trans) 305 goto out_unlock; /* bad transid */ 306 } else { 307 /* find newest transaction that is committing | committed */ 308 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 309 list) { 310 if (t->in_commit) { 311 if (t->commit_done) 312 goto out_unlock; 313 cur_trans = t; 314 break; 315 } 316 } 317 if (!cur_trans) 318 goto out_unlock; /* nothing committing|committed */ 319 } 320 321 cur_trans->use_count++; 322 mutex_unlock(&root->fs_info->trans_mutex); 323 324 wait_for_commit(root, cur_trans); 325 326 mutex_lock(&root->fs_info->trans_mutex); 327 put_transaction(cur_trans); 328 ret = 0; 329 out_unlock: 330 mutex_unlock(&root->fs_info->trans_mutex); 331 return ret; 332 } 333 334 #if 0 335 /* 336 * rate limit against the drop_snapshot code. This helps to slow down new 337 * operations if the drop_snapshot code isn't able to keep up. 338 */ 339 static void throttle_on_drops(struct btrfs_root *root) 340 { 341 struct btrfs_fs_info *info = root->fs_info; 342 int harder_count = 0; 343 344 harder: 345 if (atomic_read(&info->throttles)) { 346 DEFINE_WAIT(wait); 347 int thr; 348 thr = atomic_read(&info->throttle_gen); 349 350 do { 351 prepare_to_wait(&info->transaction_throttle, 352 &wait, TASK_UNINTERRUPTIBLE); 353 if (!atomic_read(&info->throttles)) { 354 finish_wait(&info->transaction_throttle, &wait); 355 break; 356 } 357 schedule(); 358 finish_wait(&info->transaction_throttle, &wait); 359 } while (thr == atomic_read(&info->throttle_gen)); 360 harder_count++; 361 362 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 && 363 harder_count < 2) 364 goto harder; 365 366 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 && 367 harder_count < 10) 368 goto harder; 369 370 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 && 371 harder_count < 20) 372 goto harder; 373 } 374 } 375 #endif 376 377 void btrfs_throttle(struct btrfs_root *root) 378 { 379 mutex_lock(&root->fs_info->trans_mutex); 380 if (!root->fs_info->open_ioctl_trans) 381 wait_current_trans(root); 382 mutex_unlock(&root->fs_info->trans_mutex); 383 } 384 385 static int should_end_transaction(struct btrfs_trans_handle *trans, 386 struct btrfs_root *root) 387 { 388 int ret; 389 ret = btrfs_block_rsv_check(trans, root, 390 &root->fs_info->global_block_rsv, 0, 5); 391 return ret ? 1 : 0; 392 } 393 394 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 395 struct btrfs_root *root) 396 { 397 struct btrfs_transaction *cur_trans = trans->transaction; 398 int updates; 399 400 if (cur_trans->blocked || cur_trans->delayed_refs.flushing) 401 return 1; 402 403 updates = trans->delayed_ref_updates; 404 trans->delayed_ref_updates = 0; 405 if (updates) 406 btrfs_run_delayed_refs(trans, root, updates); 407 408 return should_end_transaction(trans, root); 409 } 410 411 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 412 struct btrfs_root *root, int throttle, int lock) 413 { 414 struct btrfs_transaction *cur_trans = trans->transaction; 415 struct btrfs_fs_info *info = root->fs_info; 416 int count = 0; 417 418 while (count < 4) { 419 unsigned long cur = trans->delayed_ref_updates; 420 trans->delayed_ref_updates = 0; 421 if (cur && 422 trans->transaction->delayed_refs.num_heads_ready > 64) { 423 trans->delayed_ref_updates = 0; 424 425 /* 426 * do a full flush if the transaction is trying 427 * to close 428 */ 429 if (trans->transaction->delayed_refs.flushing) 430 cur = 0; 431 btrfs_run_delayed_refs(trans, root, cur); 432 } else { 433 break; 434 } 435 count++; 436 } 437 438 btrfs_trans_release_metadata(trans, root); 439 440 if (lock && !root->fs_info->open_ioctl_trans && 441 should_end_transaction(trans, root)) 442 trans->transaction->blocked = 1; 443 444 if (lock && cur_trans->blocked && !cur_trans->in_commit) { 445 if (throttle) 446 return btrfs_commit_transaction(trans, root); 447 else 448 wake_up_process(info->transaction_kthread); 449 } 450 451 if (lock) 452 mutex_lock(&info->trans_mutex); 453 WARN_ON(cur_trans != info->running_transaction); 454 WARN_ON(cur_trans->num_writers < 1); 455 cur_trans->num_writers--; 456 457 smp_mb(); 458 if (waitqueue_active(&cur_trans->writer_wait)) 459 wake_up(&cur_trans->writer_wait); 460 put_transaction(cur_trans); 461 if (lock) 462 mutex_unlock(&info->trans_mutex); 463 464 if (current->journal_info == trans) 465 current->journal_info = NULL; 466 memset(trans, 0, sizeof(*trans)); 467 kmem_cache_free(btrfs_trans_handle_cachep, trans); 468 469 if (throttle) 470 btrfs_run_delayed_iputs(root); 471 472 return 0; 473 } 474 475 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 476 struct btrfs_root *root) 477 { 478 return __btrfs_end_transaction(trans, root, 0, 1); 479 } 480 481 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 482 struct btrfs_root *root) 483 { 484 return __btrfs_end_transaction(trans, root, 1, 1); 485 } 486 487 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans, 488 struct btrfs_root *root) 489 { 490 return __btrfs_end_transaction(trans, root, 0, 0); 491 } 492 493 /* 494 * when btree blocks are allocated, they have some corresponding bits set for 495 * them in one of two extent_io trees. This is used to make sure all of 496 * those extents are sent to disk but does not wait on them 497 */ 498 int btrfs_write_marked_extents(struct btrfs_root *root, 499 struct extent_io_tree *dirty_pages, int mark) 500 { 501 int ret; 502 int err = 0; 503 int werr = 0; 504 struct page *page; 505 struct inode *btree_inode = root->fs_info->btree_inode; 506 u64 start = 0; 507 u64 end; 508 unsigned long index; 509 510 while (1) { 511 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 512 mark); 513 if (ret) 514 break; 515 while (start <= end) { 516 cond_resched(); 517 518 index = start >> PAGE_CACHE_SHIFT; 519 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 520 page = find_get_page(btree_inode->i_mapping, index); 521 if (!page) 522 continue; 523 524 btree_lock_page_hook(page); 525 if (!page->mapping) { 526 unlock_page(page); 527 page_cache_release(page); 528 continue; 529 } 530 531 if (PageWriteback(page)) { 532 if (PageDirty(page)) 533 wait_on_page_writeback(page); 534 else { 535 unlock_page(page); 536 page_cache_release(page); 537 continue; 538 } 539 } 540 err = write_one_page(page, 0); 541 if (err) 542 werr = err; 543 page_cache_release(page); 544 } 545 } 546 if (err) 547 werr = err; 548 return werr; 549 } 550 551 /* 552 * when btree blocks are allocated, they have some corresponding bits set for 553 * them in one of two extent_io trees. This is used to make sure all of 554 * those extents are on disk for transaction or log commit. We wait 555 * on all the pages and clear them from the dirty pages state tree 556 */ 557 int btrfs_wait_marked_extents(struct btrfs_root *root, 558 struct extent_io_tree *dirty_pages, int mark) 559 { 560 int ret; 561 int err = 0; 562 int werr = 0; 563 struct page *page; 564 struct inode *btree_inode = root->fs_info->btree_inode; 565 u64 start = 0; 566 u64 end; 567 unsigned long index; 568 569 while (1) { 570 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 571 mark); 572 if (ret) 573 break; 574 575 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 576 while (start <= end) { 577 index = start >> PAGE_CACHE_SHIFT; 578 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 579 page = find_get_page(btree_inode->i_mapping, index); 580 if (!page) 581 continue; 582 if (PageDirty(page)) { 583 btree_lock_page_hook(page); 584 wait_on_page_writeback(page); 585 err = write_one_page(page, 0); 586 if (err) 587 werr = err; 588 } 589 wait_on_page_writeback(page); 590 page_cache_release(page); 591 cond_resched(); 592 } 593 } 594 if (err) 595 werr = err; 596 return werr; 597 } 598 599 /* 600 * when btree blocks are allocated, they have some corresponding bits set for 601 * them in one of two extent_io trees. This is used to make sure all of 602 * those extents are on disk for transaction or log commit 603 */ 604 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 605 struct extent_io_tree *dirty_pages, int mark) 606 { 607 int ret; 608 int ret2; 609 610 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 611 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 612 return ret || ret2; 613 } 614 615 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 616 struct btrfs_root *root) 617 { 618 if (!trans || !trans->transaction) { 619 struct inode *btree_inode; 620 btree_inode = root->fs_info->btree_inode; 621 return filemap_write_and_wait(btree_inode->i_mapping); 622 } 623 return btrfs_write_and_wait_marked_extents(root, 624 &trans->transaction->dirty_pages, 625 EXTENT_DIRTY); 626 } 627 628 /* 629 * this is used to update the root pointer in the tree of tree roots. 630 * 631 * But, in the case of the extent allocation tree, updating the root 632 * pointer may allocate blocks which may change the root of the extent 633 * allocation tree. 634 * 635 * So, this loops and repeats and makes sure the cowonly root didn't 636 * change while the root pointer was being updated in the metadata. 637 */ 638 static int update_cowonly_root(struct btrfs_trans_handle *trans, 639 struct btrfs_root *root) 640 { 641 int ret; 642 u64 old_root_bytenr; 643 u64 old_root_used; 644 struct btrfs_root *tree_root = root->fs_info->tree_root; 645 646 old_root_used = btrfs_root_used(&root->root_item); 647 btrfs_write_dirty_block_groups(trans, root); 648 649 while (1) { 650 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 651 if (old_root_bytenr == root->node->start && 652 old_root_used == btrfs_root_used(&root->root_item)) 653 break; 654 655 btrfs_set_root_node(&root->root_item, root->node); 656 ret = btrfs_update_root(trans, tree_root, 657 &root->root_key, 658 &root->root_item); 659 BUG_ON(ret); 660 661 old_root_used = btrfs_root_used(&root->root_item); 662 ret = btrfs_write_dirty_block_groups(trans, root); 663 BUG_ON(ret); 664 } 665 666 if (root != root->fs_info->extent_root) 667 switch_commit_root(root); 668 669 return 0; 670 } 671 672 /* 673 * update all the cowonly tree roots on disk 674 */ 675 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 676 struct btrfs_root *root) 677 { 678 struct btrfs_fs_info *fs_info = root->fs_info; 679 struct list_head *next; 680 struct extent_buffer *eb; 681 int ret; 682 683 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 684 BUG_ON(ret); 685 686 eb = btrfs_lock_root_node(fs_info->tree_root); 687 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb); 688 btrfs_tree_unlock(eb); 689 free_extent_buffer(eb); 690 691 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 692 BUG_ON(ret); 693 694 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 695 next = fs_info->dirty_cowonly_roots.next; 696 list_del_init(next); 697 root = list_entry(next, struct btrfs_root, dirty_list); 698 699 update_cowonly_root(trans, root); 700 } 701 702 down_write(&fs_info->extent_commit_sem); 703 switch_commit_root(fs_info->extent_root); 704 up_write(&fs_info->extent_commit_sem); 705 706 return 0; 707 } 708 709 /* 710 * dead roots are old snapshots that need to be deleted. This allocates 711 * a dirty root struct and adds it into the list of dead roots that need to 712 * be deleted 713 */ 714 int btrfs_add_dead_root(struct btrfs_root *root) 715 { 716 mutex_lock(&root->fs_info->trans_mutex); 717 list_add(&root->root_list, &root->fs_info->dead_roots); 718 mutex_unlock(&root->fs_info->trans_mutex); 719 return 0; 720 } 721 722 /* 723 * update all the cowonly tree roots on disk 724 */ 725 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 726 struct btrfs_root *root) 727 { 728 struct btrfs_root *gang[8]; 729 struct btrfs_fs_info *fs_info = root->fs_info; 730 int i; 731 int ret; 732 int err = 0; 733 734 while (1) { 735 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 736 (void **)gang, 0, 737 ARRAY_SIZE(gang), 738 BTRFS_ROOT_TRANS_TAG); 739 if (ret == 0) 740 break; 741 for (i = 0; i < ret; i++) { 742 root = gang[i]; 743 radix_tree_tag_clear(&fs_info->fs_roots_radix, 744 (unsigned long)root->root_key.objectid, 745 BTRFS_ROOT_TRANS_TAG); 746 747 btrfs_free_log(trans, root); 748 btrfs_update_reloc_root(trans, root); 749 btrfs_orphan_commit_root(trans, root); 750 751 if (root->commit_root != root->node) { 752 switch_commit_root(root); 753 btrfs_set_root_node(&root->root_item, 754 root->node); 755 } 756 757 err = btrfs_update_root(trans, fs_info->tree_root, 758 &root->root_key, 759 &root->root_item); 760 if (err) 761 break; 762 } 763 } 764 return err; 765 } 766 767 /* 768 * defrag a given btree. If cacheonly == 1, this won't read from the disk, 769 * otherwise every leaf in the btree is read and defragged. 770 */ 771 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly) 772 { 773 struct btrfs_fs_info *info = root->fs_info; 774 struct btrfs_trans_handle *trans; 775 int ret; 776 unsigned long nr; 777 778 if (xchg(&root->defrag_running, 1)) 779 return 0; 780 781 while (1) { 782 trans = btrfs_start_transaction(root, 0); 783 if (IS_ERR(trans)) 784 return PTR_ERR(trans); 785 786 ret = btrfs_defrag_leaves(trans, root, cacheonly); 787 788 nr = trans->blocks_used; 789 btrfs_end_transaction(trans, root); 790 btrfs_btree_balance_dirty(info->tree_root, nr); 791 cond_resched(); 792 793 if (root->fs_info->closing || ret != -EAGAIN) 794 break; 795 } 796 root->defrag_running = 0; 797 return ret; 798 } 799 800 #if 0 801 /* 802 * when dropping snapshots, we generate a ton of delayed refs, and it makes 803 * sense not to join the transaction while it is trying to flush the current 804 * queue of delayed refs out. 805 * 806 * This is used by the drop snapshot code only 807 */ 808 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info) 809 { 810 DEFINE_WAIT(wait); 811 812 mutex_lock(&info->trans_mutex); 813 while (info->running_transaction && 814 info->running_transaction->delayed_refs.flushing) { 815 prepare_to_wait(&info->transaction_wait, &wait, 816 TASK_UNINTERRUPTIBLE); 817 mutex_unlock(&info->trans_mutex); 818 819 schedule(); 820 821 mutex_lock(&info->trans_mutex); 822 finish_wait(&info->transaction_wait, &wait); 823 } 824 mutex_unlock(&info->trans_mutex); 825 return 0; 826 } 827 828 /* 829 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on 830 * all of them 831 */ 832 int btrfs_drop_dead_root(struct btrfs_root *root) 833 { 834 struct btrfs_trans_handle *trans; 835 struct btrfs_root *tree_root = root->fs_info->tree_root; 836 unsigned long nr; 837 int ret; 838 839 while (1) { 840 /* 841 * we don't want to jump in and create a bunch of 842 * delayed refs if the transaction is starting to close 843 */ 844 wait_transaction_pre_flush(tree_root->fs_info); 845 trans = btrfs_start_transaction(tree_root, 1); 846 847 /* 848 * we've joined a transaction, make sure it isn't 849 * closing right now 850 */ 851 if (trans->transaction->delayed_refs.flushing) { 852 btrfs_end_transaction(trans, tree_root); 853 continue; 854 } 855 856 ret = btrfs_drop_snapshot(trans, root); 857 if (ret != -EAGAIN) 858 break; 859 860 ret = btrfs_update_root(trans, tree_root, 861 &root->root_key, 862 &root->root_item); 863 if (ret) 864 break; 865 866 nr = trans->blocks_used; 867 ret = btrfs_end_transaction(trans, tree_root); 868 BUG_ON(ret); 869 870 btrfs_btree_balance_dirty(tree_root, nr); 871 cond_resched(); 872 } 873 BUG_ON(ret); 874 875 ret = btrfs_del_root(trans, tree_root, &root->root_key); 876 BUG_ON(ret); 877 878 nr = trans->blocks_used; 879 ret = btrfs_end_transaction(trans, tree_root); 880 BUG_ON(ret); 881 882 free_extent_buffer(root->node); 883 free_extent_buffer(root->commit_root); 884 kfree(root); 885 886 btrfs_btree_balance_dirty(tree_root, nr); 887 return ret; 888 } 889 #endif 890 891 /* 892 * new snapshots need to be created at a very specific time in the 893 * transaction commit. This does the actual creation 894 */ 895 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 896 struct btrfs_fs_info *fs_info, 897 struct btrfs_pending_snapshot *pending) 898 { 899 struct btrfs_key key; 900 struct btrfs_root_item *new_root_item; 901 struct btrfs_root *tree_root = fs_info->tree_root; 902 struct btrfs_root *root = pending->root; 903 struct btrfs_root *parent_root; 904 struct inode *parent_inode; 905 struct dentry *parent; 906 struct dentry *dentry; 907 struct extent_buffer *tmp; 908 struct extent_buffer *old; 909 int ret; 910 u64 to_reserve = 0; 911 u64 index = 0; 912 u64 objectid; 913 914 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 915 if (!new_root_item) { 916 pending->error = -ENOMEM; 917 goto fail; 918 } 919 920 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid); 921 if (ret) { 922 pending->error = ret; 923 goto fail; 924 } 925 926 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve); 927 btrfs_orphan_pre_snapshot(trans, pending, &to_reserve); 928 929 if (to_reserve > 0) { 930 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv, 931 to_reserve); 932 if (ret) { 933 pending->error = ret; 934 goto fail; 935 } 936 } 937 938 key.objectid = objectid; 939 key.offset = (u64)-1; 940 key.type = BTRFS_ROOT_ITEM_KEY; 941 942 trans->block_rsv = &pending->block_rsv; 943 944 dentry = pending->dentry; 945 parent = dget_parent(dentry); 946 parent_inode = parent->d_inode; 947 parent_root = BTRFS_I(parent_inode)->root; 948 record_root_in_trans(trans, parent_root); 949 950 /* 951 * insert the directory item 952 */ 953 ret = btrfs_set_inode_index(parent_inode, &index); 954 BUG_ON(ret); 955 ret = btrfs_insert_dir_item(trans, parent_root, 956 dentry->d_name.name, dentry->d_name.len, 957 parent_inode->i_ino, &key, 958 BTRFS_FT_DIR, index); 959 BUG_ON(ret); 960 961 btrfs_i_size_write(parent_inode, parent_inode->i_size + 962 dentry->d_name.len * 2); 963 ret = btrfs_update_inode(trans, parent_root, parent_inode); 964 BUG_ON(ret); 965 966 record_root_in_trans(trans, root); 967 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 968 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 969 970 old = btrfs_lock_root_node(root); 971 btrfs_cow_block(trans, root, old, NULL, 0, &old); 972 btrfs_set_lock_blocking(old); 973 974 btrfs_copy_root(trans, root, old, &tmp, objectid); 975 btrfs_tree_unlock(old); 976 free_extent_buffer(old); 977 978 btrfs_set_root_node(new_root_item, tmp); 979 /* record when the snapshot was created in key.offset */ 980 key.offset = trans->transid; 981 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 982 btrfs_tree_unlock(tmp); 983 free_extent_buffer(tmp); 984 BUG_ON(ret); 985 986 /* 987 * insert root back/forward references 988 */ 989 ret = btrfs_add_root_ref(trans, tree_root, objectid, 990 parent_root->root_key.objectid, 991 parent_inode->i_ino, index, 992 dentry->d_name.name, dentry->d_name.len); 993 BUG_ON(ret); 994 dput(parent); 995 996 key.offset = (u64)-1; 997 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 998 BUG_ON(IS_ERR(pending->snap)); 999 1000 btrfs_reloc_post_snapshot(trans, pending); 1001 btrfs_orphan_post_snapshot(trans, pending); 1002 fail: 1003 kfree(new_root_item); 1004 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1); 1005 return 0; 1006 } 1007 1008 /* 1009 * create all the snapshots we've scheduled for creation 1010 */ 1011 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1012 struct btrfs_fs_info *fs_info) 1013 { 1014 struct btrfs_pending_snapshot *pending; 1015 struct list_head *head = &trans->transaction->pending_snapshots; 1016 int ret; 1017 1018 list_for_each_entry(pending, head, list) { 1019 ret = create_pending_snapshot(trans, fs_info, pending); 1020 BUG_ON(ret); 1021 } 1022 return 0; 1023 } 1024 1025 static void update_super_roots(struct btrfs_root *root) 1026 { 1027 struct btrfs_root_item *root_item; 1028 struct btrfs_super_block *super; 1029 1030 super = &root->fs_info->super_copy; 1031 1032 root_item = &root->fs_info->chunk_root->root_item; 1033 super->chunk_root = root_item->bytenr; 1034 super->chunk_root_generation = root_item->generation; 1035 super->chunk_root_level = root_item->level; 1036 1037 root_item = &root->fs_info->tree_root->root_item; 1038 super->root = root_item->bytenr; 1039 super->generation = root_item->generation; 1040 super->root_level = root_item->level; 1041 if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE)) 1042 super->cache_generation = root_item->generation; 1043 } 1044 1045 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1046 { 1047 int ret = 0; 1048 spin_lock(&info->new_trans_lock); 1049 if (info->running_transaction) 1050 ret = info->running_transaction->in_commit; 1051 spin_unlock(&info->new_trans_lock); 1052 return ret; 1053 } 1054 1055 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1056 { 1057 int ret = 0; 1058 spin_lock(&info->new_trans_lock); 1059 if (info->running_transaction) 1060 ret = info->running_transaction->blocked; 1061 spin_unlock(&info->new_trans_lock); 1062 return ret; 1063 } 1064 1065 /* 1066 * wait for the current transaction commit to start and block subsequent 1067 * transaction joins 1068 */ 1069 static void wait_current_trans_commit_start(struct btrfs_root *root, 1070 struct btrfs_transaction *trans) 1071 { 1072 DEFINE_WAIT(wait); 1073 1074 if (trans->in_commit) 1075 return; 1076 1077 while (1) { 1078 prepare_to_wait(&root->fs_info->transaction_blocked_wait, &wait, 1079 TASK_UNINTERRUPTIBLE); 1080 if (trans->in_commit) { 1081 finish_wait(&root->fs_info->transaction_blocked_wait, 1082 &wait); 1083 break; 1084 } 1085 mutex_unlock(&root->fs_info->trans_mutex); 1086 schedule(); 1087 mutex_lock(&root->fs_info->trans_mutex); 1088 finish_wait(&root->fs_info->transaction_blocked_wait, &wait); 1089 } 1090 } 1091 1092 /* 1093 * wait for the current transaction to start and then become unblocked. 1094 * caller holds ref. 1095 */ 1096 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1097 struct btrfs_transaction *trans) 1098 { 1099 DEFINE_WAIT(wait); 1100 1101 if (trans->commit_done || (trans->in_commit && !trans->blocked)) 1102 return; 1103 1104 while (1) { 1105 prepare_to_wait(&root->fs_info->transaction_wait, &wait, 1106 TASK_UNINTERRUPTIBLE); 1107 if (trans->commit_done || 1108 (trans->in_commit && !trans->blocked)) { 1109 finish_wait(&root->fs_info->transaction_wait, 1110 &wait); 1111 break; 1112 } 1113 mutex_unlock(&root->fs_info->trans_mutex); 1114 schedule(); 1115 mutex_lock(&root->fs_info->trans_mutex); 1116 finish_wait(&root->fs_info->transaction_wait, 1117 &wait); 1118 } 1119 } 1120 1121 /* 1122 * commit transactions asynchronously. once btrfs_commit_transaction_async 1123 * returns, any subsequent transaction will not be allowed to join. 1124 */ 1125 struct btrfs_async_commit { 1126 struct btrfs_trans_handle *newtrans; 1127 struct btrfs_root *root; 1128 struct delayed_work work; 1129 }; 1130 1131 static void do_async_commit(struct work_struct *work) 1132 { 1133 struct btrfs_async_commit *ac = 1134 container_of(work, struct btrfs_async_commit, work.work); 1135 1136 btrfs_commit_transaction(ac->newtrans, ac->root); 1137 kfree(ac); 1138 } 1139 1140 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1141 struct btrfs_root *root, 1142 int wait_for_unblock) 1143 { 1144 struct btrfs_async_commit *ac; 1145 struct btrfs_transaction *cur_trans; 1146 1147 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1148 BUG_ON(!ac); 1149 1150 INIT_DELAYED_WORK(&ac->work, do_async_commit); 1151 ac->root = root; 1152 ac->newtrans = btrfs_join_transaction(root, 0); 1153 1154 /* take transaction reference */ 1155 mutex_lock(&root->fs_info->trans_mutex); 1156 cur_trans = trans->transaction; 1157 cur_trans->use_count++; 1158 mutex_unlock(&root->fs_info->trans_mutex); 1159 1160 btrfs_end_transaction(trans, root); 1161 schedule_delayed_work(&ac->work, 0); 1162 1163 /* wait for transaction to start and unblock */ 1164 mutex_lock(&root->fs_info->trans_mutex); 1165 if (wait_for_unblock) 1166 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1167 else 1168 wait_current_trans_commit_start(root, cur_trans); 1169 put_transaction(cur_trans); 1170 mutex_unlock(&root->fs_info->trans_mutex); 1171 1172 return 0; 1173 } 1174 1175 /* 1176 * btrfs_transaction state sequence: 1177 * in_commit = 0, blocked = 0 (initial) 1178 * in_commit = 1, blocked = 1 1179 * blocked = 0 1180 * commit_done = 1 1181 */ 1182 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1183 struct btrfs_root *root) 1184 { 1185 unsigned long joined = 0; 1186 struct btrfs_transaction *cur_trans; 1187 struct btrfs_transaction *prev_trans = NULL; 1188 DEFINE_WAIT(wait); 1189 int ret; 1190 int should_grow = 0; 1191 unsigned long now = get_seconds(); 1192 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT); 1193 1194 btrfs_run_ordered_operations(root, 0); 1195 1196 /* make a pass through all the delayed refs we have so far 1197 * any runnings procs may add more while we are here 1198 */ 1199 ret = btrfs_run_delayed_refs(trans, root, 0); 1200 BUG_ON(ret); 1201 1202 btrfs_trans_release_metadata(trans, root); 1203 1204 cur_trans = trans->transaction; 1205 /* 1206 * set the flushing flag so procs in this transaction have to 1207 * start sending their work down. 1208 */ 1209 cur_trans->delayed_refs.flushing = 1; 1210 1211 ret = btrfs_run_delayed_refs(trans, root, 0); 1212 BUG_ON(ret); 1213 1214 mutex_lock(&root->fs_info->trans_mutex); 1215 if (cur_trans->in_commit) { 1216 cur_trans->use_count++; 1217 mutex_unlock(&root->fs_info->trans_mutex); 1218 btrfs_end_transaction(trans, root); 1219 1220 ret = wait_for_commit(root, cur_trans); 1221 BUG_ON(ret); 1222 1223 mutex_lock(&root->fs_info->trans_mutex); 1224 put_transaction(cur_trans); 1225 mutex_unlock(&root->fs_info->trans_mutex); 1226 1227 return 0; 1228 } 1229 1230 trans->transaction->in_commit = 1; 1231 trans->transaction->blocked = 1; 1232 wake_up(&root->fs_info->transaction_blocked_wait); 1233 1234 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1235 prev_trans = list_entry(cur_trans->list.prev, 1236 struct btrfs_transaction, list); 1237 if (!prev_trans->commit_done) { 1238 prev_trans->use_count++; 1239 mutex_unlock(&root->fs_info->trans_mutex); 1240 1241 wait_for_commit(root, prev_trans); 1242 1243 mutex_lock(&root->fs_info->trans_mutex); 1244 put_transaction(prev_trans); 1245 } 1246 } 1247 1248 if (now < cur_trans->start_time || now - cur_trans->start_time < 1) 1249 should_grow = 1; 1250 1251 do { 1252 int snap_pending = 0; 1253 joined = cur_trans->num_joined; 1254 if (!list_empty(&trans->transaction->pending_snapshots)) 1255 snap_pending = 1; 1256 1257 WARN_ON(cur_trans != trans->transaction); 1258 mutex_unlock(&root->fs_info->trans_mutex); 1259 1260 if (flush_on_commit || snap_pending) { 1261 btrfs_start_delalloc_inodes(root, 1); 1262 ret = btrfs_wait_ordered_extents(root, 0, 1); 1263 BUG_ON(ret); 1264 } 1265 1266 /* 1267 * rename don't use btrfs_join_transaction, so, once we 1268 * set the transaction to blocked above, we aren't going 1269 * to get any new ordered operations. We can safely run 1270 * it here and no for sure that nothing new will be added 1271 * to the list 1272 */ 1273 btrfs_run_ordered_operations(root, 1); 1274 1275 prepare_to_wait(&cur_trans->writer_wait, &wait, 1276 TASK_UNINTERRUPTIBLE); 1277 1278 smp_mb(); 1279 if (cur_trans->num_writers > 1) 1280 schedule_timeout(MAX_SCHEDULE_TIMEOUT); 1281 else if (should_grow) 1282 schedule_timeout(1); 1283 1284 mutex_lock(&root->fs_info->trans_mutex); 1285 finish_wait(&cur_trans->writer_wait, &wait); 1286 } while (cur_trans->num_writers > 1 || 1287 (should_grow && cur_trans->num_joined != joined)); 1288 1289 ret = create_pending_snapshots(trans, root->fs_info); 1290 BUG_ON(ret); 1291 1292 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1293 BUG_ON(ret); 1294 1295 WARN_ON(cur_trans != trans->transaction); 1296 1297 /* btrfs_commit_tree_roots is responsible for getting the 1298 * various roots consistent with each other. Every pointer 1299 * in the tree of tree roots has to point to the most up to date 1300 * root for every subvolume and other tree. So, we have to keep 1301 * the tree logging code from jumping in and changing any 1302 * of the trees. 1303 * 1304 * At this point in the commit, there can't be any tree-log 1305 * writers, but a little lower down we drop the trans mutex 1306 * and let new people in. By holding the tree_log_mutex 1307 * from now until after the super is written, we avoid races 1308 * with the tree-log code. 1309 */ 1310 mutex_lock(&root->fs_info->tree_log_mutex); 1311 1312 ret = commit_fs_roots(trans, root); 1313 BUG_ON(ret); 1314 1315 /* commit_fs_roots gets rid of all the tree log roots, it is now 1316 * safe to free the root of tree log roots 1317 */ 1318 btrfs_free_log_root_tree(trans, root->fs_info); 1319 1320 ret = commit_cowonly_roots(trans, root); 1321 BUG_ON(ret); 1322 1323 btrfs_prepare_extent_commit(trans, root); 1324 1325 cur_trans = root->fs_info->running_transaction; 1326 spin_lock(&root->fs_info->new_trans_lock); 1327 root->fs_info->running_transaction = NULL; 1328 spin_unlock(&root->fs_info->new_trans_lock); 1329 1330 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 1331 root->fs_info->tree_root->node); 1332 switch_commit_root(root->fs_info->tree_root); 1333 1334 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 1335 root->fs_info->chunk_root->node); 1336 switch_commit_root(root->fs_info->chunk_root); 1337 1338 update_super_roots(root); 1339 1340 if (!root->fs_info->log_root_recovering) { 1341 btrfs_set_super_log_root(&root->fs_info->super_copy, 0); 1342 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0); 1343 } 1344 1345 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy, 1346 sizeof(root->fs_info->super_copy)); 1347 1348 trans->transaction->blocked = 0; 1349 1350 wake_up(&root->fs_info->transaction_wait); 1351 1352 mutex_unlock(&root->fs_info->trans_mutex); 1353 ret = btrfs_write_and_wait_transaction(trans, root); 1354 BUG_ON(ret); 1355 write_ctree_super(trans, root, 0); 1356 1357 /* 1358 * the super is written, we can safely allow the tree-loggers 1359 * to go about their business 1360 */ 1361 mutex_unlock(&root->fs_info->tree_log_mutex); 1362 1363 btrfs_finish_extent_commit(trans, root); 1364 1365 mutex_lock(&root->fs_info->trans_mutex); 1366 1367 cur_trans->commit_done = 1; 1368 1369 root->fs_info->last_trans_committed = cur_trans->transid; 1370 1371 wake_up(&cur_trans->commit_wait); 1372 1373 put_transaction(cur_trans); 1374 put_transaction(cur_trans); 1375 1376 mutex_unlock(&root->fs_info->trans_mutex); 1377 1378 if (current->journal_info == trans) 1379 current->journal_info = NULL; 1380 1381 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1382 1383 if (current != root->fs_info->transaction_kthread) 1384 btrfs_run_delayed_iputs(root); 1385 1386 return ret; 1387 } 1388 1389 /* 1390 * interface function to delete all the snapshots we have scheduled for deletion 1391 */ 1392 int btrfs_clean_old_snapshots(struct btrfs_root *root) 1393 { 1394 LIST_HEAD(list); 1395 struct btrfs_fs_info *fs_info = root->fs_info; 1396 1397 mutex_lock(&fs_info->trans_mutex); 1398 list_splice_init(&fs_info->dead_roots, &list); 1399 mutex_unlock(&fs_info->trans_mutex); 1400 1401 while (!list_empty(&list)) { 1402 root = list_entry(list.next, struct btrfs_root, root_list); 1403 list_del(&root->root_list); 1404 1405 if (btrfs_header_backref_rev(root->node) < 1406 BTRFS_MIXED_BACKREF_REV) 1407 btrfs_drop_snapshot(root, NULL, 0); 1408 else 1409 btrfs_drop_snapshot(root, NULL, 1); 1410 } 1411 return 0; 1412 } 1413