xref: /openbmc/linux/fs/btrfs/transaction.c (revision b9ccfda2)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31 #include "volumes.h"
32 
33 #define BTRFS_ROOT_TRANS_TAG 0
34 
35 void put_transaction(struct btrfs_transaction *transaction)
36 {
37 	WARN_ON(atomic_read(&transaction->use_count) == 0);
38 	if (atomic_dec_and_test(&transaction->use_count)) {
39 		BUG_ON(!list_empty(&transaction->list));
40 		WARN_ON(transaction->delayed_refs.root.rb_node);
41 		WARN_ON(!list_empty(&transaction->delayed_refs.seq_head));
42 		memset(transaction, 0, sizeof(*transaction));
43 		kmem_cache_free(btrfs_transaction_cachep, transaction);
44 	}
45 }
46 
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49 	free_extent_buffer(root->commit_root);
50 	root->commit_root = btrfs_root_node(root);
51 }
52 
53 /*
54  * either allocate a new transaction or hop into the existing one
55  */
56 static noinline int join_transaction(struct btrfs_root *root, int nofail)
57 {
58 	struct btrfs_transaction *cur_trans;
59 	struct btrfs_fs_info *fs_info = root->fs_info;
60 
61 	spin_lock(&fs_info->trans_lock);
62 loop:
63 	/* The file system has been taken offline. No new transactions. */
64 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
65 		spin_unlock(&fs_info->trans_lock);
66 		return -EROFS;
67 	}
68 
69 	if (fs_info->trans_no_join) {
70 		if (!nofail) {
71 			spin_unlock(&fs_info->trans_lock);
72 			return -EBUSY;
73 		}
74 	}
75 
76 	cur_trans = fs_info->running_transaction;
77 	if (cur_trans) {
78 		if (cur_trans->aborted) {
79 			spin_unlock(&fs_info->trans_lock);
80 			return cur_trans->aborted;
81 		}
82 		atomic_inc(&cur_trans->use_count);
83 		atomic_inc(&cur_trans->num_writers);
84 		cur_trans->num_joined++;
85 		spin_unlock(&fs_info->trans_lock);
86 		return 0;
87 	}
88 	spin_unlock(&fs_info->trans_lock);
89 
90 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
91 	if (!cur_trans)
92 		return -ENOMEM;
93 
94 	spin_lock(&fs_info->trans_lock);
95 	if (fs_info->running_transaction) {
96 		/*
97 		 * someone started a transaction after we unlocked.  Make sure
98 		 * to redo the trans_no_join checks above
99 		 */
100 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
101 		cur_trans = fs_info->running_transaction;
102 		goto loop;
103 	} else if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
104 		spin_unlock(&root->fs_info->trans_lock);
105 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
106 		return -EROFS;
107 	}
108 
109 	atomic_set(&cur_trans->num_writers, 1);
110 	cur_trans->num_joined = 0;
111 	init_waitqueue_head(&cur_trans->writer_wait);
112 	init_waitqueue_head(&cur_trans->commit_wait);
113 	cur_trans->in_commit = 0;
114 	cur_trans->blocked = 0;
115 	/*
116 	 * One for this trans handle, one so it will live on until we
117 	 * commit the transaction.
118 	 */
119 	atomic_set(&cur_trans->use_count, 2);
120 	cur_trans->commit_done = 0;
121 	cur_trans->start_time = get_seconds();
122 
123 	cur_trans->delayed_refs.root = RB_ROOT;
124 	cur_trans->delayed_refs.num_entries = 0;
125 	cur_trans->delayed_refs.num_heads_ready = 0;
126 	cur_trans->delayed_refs.num_heads = 0;
127 	cur_trans->delayed_refs.flushing = 0;
128 	cur_trans->delayed_refs.run_delayed_start = 0;
129 	cur_trans->delayed_refs.seq = 1;
130 
131 	/*
132 	 * although the tree mod log is per file system and not per transaction,
133 	 * the log must never go across transaction boundaries.
134 	 */
135 	smp_mb();
136 	if (!list_empty(&fs_info->tree_mod_seq_list)) {
137 		printk(KERN_ERR "btrfs: tree_mod_seq_list not empty when "
138 			"creating a fresh transaction\n");
139 		WARN_ON(1);
140 	}
141 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) {
142 		printk(KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
143 			"creating a fresh transaction\n");
144 		WARN_ON(1);
145 	}
146 	atomic_set(&fs_info->tree_mod_seq, 0);
147 
148 	init_waitqueue_head(&cur_trans->delayed_refs.seq_wait);
149 	spin_lock_init(&cur_trans->commit_lock);
150 	spin_lock_init(&cur_trans->delayed_refs.lock);
151 	INIT_LIST_HEAD(&cur_trans->delayed_refs.seq_head);
152 
153 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
154 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
155 	extent_io_tree_init(&cur_trans->dirty_pages,
156 			     fs_info->btree_inode->i_mapping);
157 	fs_info->generation++;
158 	cur_trans->transid = fs_info->generation;
159 	fs_info->running_transaction = cur_trans;
160 	cur_trans->aborted = 0;
161 	spin_unlock(&fs_info->trans_lock);
162 
163 	return 0;
164 }
165 
166 /*
167  * this does all the record keeping required to make sure that a reference
168  * counted root is properly recorded in a given transaction.  This is required
169  * to make sure the old root from before we joined the transaction is deleted
170  * when the transaction commits
171  */
172 static int record_root_in_trans(struct btrfs_trans_handle *trans,
173 			       struct btrfs_root *root)
174 {
175 	if (root->ref_cows && root->last_trans < trans->transid) {
176 		WARN_ON(root == root->fs_info->extent_root);
177 		WARN_ON(root->commit_root != root->node);
178 
179 		/*
180 		 * see below for in_trans_setup usage rules
181 		 * we have the reloc mutex held now, so there
182 		 * is only one writer in this function
183 		 */
184 		root->in_trans_setup = 1;
185 
186 		/* make sure readers find in_trans_setup before
187 		 * they find our root->last_trans update
188 		 */
189 		smp_wmb();
190 
191 		spin_lock(&root->fs_info->fs_roots_radix_lock);
192 		if (root->last_trans == trans->transid) {
193 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
194 			return 0;
195 		}
196 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
197 			   (unsigned long)root->root_key.objectid,
198 			   BTRFS_ROOT_TRANS_TAG);
199 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
200 		root->last_trans = trans->transid;
201 
202 		/* this is pretty tricky.  We don't want to
203 		 * take the relocation lock in btrfs_record_root_in_trans
204 		 * unless we're really doing the first setup for this root in
205 		 * this transaction.
206 		 *
207 		 * Normally we'd use root->last_trans as a flag to decide
208 		 * if we want to take the expensive mutex.
209 		 *
210 		 * But, we have to set root->last_trans before we
211 		 * init the relocation root, otherwise, we trip over warnings
212 		 * in ctree.c.  The solution used here is to flag ourselves
213 		 * with root->in_trans_setup.  When this is 1, we're still
214 		 * fixing up the reloc trees and everyone must wait.
215 		 *
216 		 * When this is zero, they can trust root->last_trans and fly
217 		 * through btrfs_record_root_in_trans without having to take the
218 		 * lock.  smp_wmb() makes sure that all the writes above are
219 		 * done before we pop in the zero below
220 		 */
221 		btrfs_init_reloc_root(trans, root);
222 		smp_wmb();
223 		root->in_trans_setup = 0;
224 	}
225 	return 0;
226 }
227 
228 
229 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
230 			       struct btrfs_root *root)
231 {
232 	if (!root->ref_cows)
233 		return 0;
234 
235 	/*
236 	 * see record_root_in_trans for comments about in_trans_setup usage
237 	 * and barriers
238 	 */
239 	smp_rmb();
240 	if (root->last_trans == trans->transid &&
241 	    !root->in_trans_setup)
242 		return 0;
243 
244 	mutex_lock(&root->fs_info->reloc_mutex);
245 	record_root_in_trans(trans, root);
246 	mutex_unlock(&root->fs_info->reloc_mutex);
247 
248 	return 0;
249 }
250 
251 /* wait for commit against the current transaction to become unblocked
252  * when this is done, it is safe to start a new transaction, but the current
253  * transaction might not be fully on disk.
254  */
255 static void wait_current_trans(struct btrfs_root *root)
256 {
257 	struct btrfs_transaction *cur_trans;
258 
259 	spin_lock(&root->fs_info->trans_lock);
260 	cur_trans = root->fs_info->running_transaction;
261 	if (cur_trans && cur_trans->blocked) {
262 		atomic_inc(&cur_trans->use_count);
263 		spin_unlock(&root->fs_info->trans_lock);
264 
265 		wait_event(root->fs_info->transaction_wait,
266 			   !cur_trans->blocked);
267 		put_transaction(cur_trans);
268 	} else {
269 		spin_unlock(&root->fs_info->trans_lock);
270 	}
271 }
272 
273 enum btrfs_trans_type {
274 	TRANS_START,
275 	TRANS_JOIN,
276 	TRANS_USERSPACE,
277 	TRANS_JOIN_NOLOCK,
278 };
279 
280 static int may_wait_transaction(struct btrfs_root *root, int type)
281 {
282 	if (root->fs_info->log_root_recovering)
283 		return 0;
284 
285 	if (type == TRANS_USERSPACE)
286 		return 1;
287 
288 	if (type == TRANS_START &&
289 	    !atomic_read(&root->fs_info->open_ioctl_trans))
290 		return 1;
291 
292 	return 0;
293 }
294 
295 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
296 						    u64 num_items, int type)
297 {
298 	struct btrfs_trans_handle *h;
299 	struct btrfs_transaction *cur_trans;
300 	u64 num_bytes = 0;
301 	int ret;
302 
303 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
304 		return ERR_PTR(-EROFS);
305 
306 	if (current->journal_info) {
307 		WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
308 		h = current->journal_info;
309 		h->use_count++;
310 		h->orig_rsv = h->block_rsv;
311 		h->block_rsv = NULL;
312 		goto got_it;
313 	}
314 
315 	/*
316 	 * Do the reservation before we join the transaction so we can do all
317 	 * the appropriate flushing if need be.
318 	 */
319 	if (num_items > 0 && root != root->fs_info->chunk_root) {
320 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
321 		ret = btrfs_block_rsv_add(root,
322 					  &root->fs_info->trans_block_rsv,
323 					  num_bytes);
324 		if (ret)
325 			return ERR_PTR(ret);
326 	}
327 again:
328 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
329 	if (!h)
330 		return ERR_PTR(-ENOMEM);
331 
332 	if (may_wait_transaction(root, type))
333 		wait_current_trans(root);
334 
335 	do {
336 		ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
337 		if (ret == -EBUSY)
338 			wait_current_trans(root);
339 	} while (ret == -EBUSY);
340 
341 	if (ret < 0) {
342 		kmem_cache_free(btrfs_trans_handle_cachep, h);
343 		return ERR_PTR(ret);
344 	}
345 
346 	cur_trans = root->fs_info->running_transaction;
347 
348 	h->transid = cur_trans->transid;
349 	h->transaction = cur_trans;
350 	h->blocks_used = 0;
351 	h->bytes_reserved = 0;
352 	h->delayed_ref_updates = 0;
353 	h->use_count = 1;
354 	h->block_rsv = NULL;
355 	h->orig_rsv = NULL;
356 	h->aborted = 0;
357 
358 	smp_mb();
359 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
360 		btrfs_commit_transaction(h, root);
361 		goto again;
362 	}
363 
364 	if (num_bytes) {
365 		trace_btrfs_space_reservation(root->fs_info, "transaction",
366 					      h->transid, num_bytes, 1);
367 		h->block_rsv = &root->fs_info->trans_block_rsv;
368 		h->bytes_reserved = num_bytes;
369 	}
370 
371 got_it:
372 	btrfs_record_root_in_trans(h, root);
373 
374 	if (!current->journal_info && type != TRANS_USERSPACE)
375 		current->journal_info = h;
376 	return h;
377 }
378 
379 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
380 						   int num_items)
381 {
382 	return start_transaction(root, num_items, TRANS_START);
383 }
384 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
385 {
386 	return start_transaction(root, 0, TRANS_JOIN);
387 }
388 
389 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
390 {
391 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
392 }
393 
394 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
395 {
396 	return start_transaction(root, 0, TRANS_USERSPACE);
397 }
398 
399 /* wait for a transaction commit to be fully complete */
400 static noinline void wait_for_commit(struct btrfs_root *root,
401 				    struct btrfs_transaction *commit)
402 {
403 	wait_event(commit->commit_wait, commit->commit_done);
404 }
405 
406 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
407 {
408 	struct btrfs_transaction *cur_trans = NULL, *t;
409 	int ret;
410 
411 	ret = 0;
412 	if (transid) {
413 		if (transid <= root->fs_info->last_trans_committed)
414 			goto out;
415 
416 		/* find specified transaction */
417 		spin_lock(&root->fs_info->trans_lock);
418 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
419 			if (t->transid == transid) {
420 				cur_trans = t;
421 				atomic_inc(&cur_trans->use_count);
422 				break;
423 			}
424 			if (t->transid > transid)
425 				break;
426 		}
427 		spin_unlock(&root->fs_info->trans_lock);
428 		ret = -EINVAL;
429 		if (!cur_trans)
430 			goto out;  /* bad transid */
431 	} else {
432 		/* find newest transaction that is committing | committed */
433 		spin_lock(&root->fs_info->trans_lock);
434 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
435 					    list) {
436 			if (t->in_commit) {
437 				if (t->commit_done)
438 					break;
439 				cur_trans = t;
440 				atomic_inc(&cur_trans->use_count);
441 				break;
442 			}
443 		}
444 		spin_unlock(&root->fs_info->trans_lock);
445 		if (!cur_trans)
446 			goto out;  /* nothing committing|committed */
447 	}
448 
449 	wait_for_commit(root, cur_trans);
450 
451 	put_transaction(cur_trans);
452 	ret = 0;
453 out:
454 	return ret;
455 }
456 
457 void btrfs_throttle(struct btrfs_root *root)
458 {
459 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
460 		wait_current_trans(root);
461 }
462 
463 static int should_end_transaction(struct btrfs_trans_handle *trans,
464 				  struct btrfs_root *root)
465 {
466 	int ret;
467 
468 	ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
469 	return ret ? 1 : 0;
470 }
471 
472 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
473 				 struct btrfs_root *root)
474 {
475 	struct btrfs_transaction *cur_trans = trans->transaction;
476 	struct btrfs_block_rsv *rsv = trans->block_rsv;
477 	int updates;
478 	int err;
479 
480 	smp_mb();
481 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
482 		return 1;
483 
484 	/*
485 	 * We need to do this in case we're deleting csums so the global block
486 	 * rsv get's used instead of the csum block rsv.
487 	 */
488 	trans->block_rsv = NULL;
489 
490 	updates = trans->delayed_ref_updates;
491 	trans->delayed_ref_updates = 0;
492 	if (updates) {
493 		err = btrfs_run_delayed_refs(trans, root, updates);
494 		if (err) /* Error code will also eval true */
495 			return err;
496 	}
497 
498 	trans->block_rsv = rsv;
499 
500 	return should_end_transaction(trans, root);
501 }
502 
503 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
504 			  struct btrfs_root *root, int throttle, int lock)
505 {
506 	struct btrfs_transaction *cur_trans = trans->transaction;
507 	struct btrfs_fs_info *info = root->fs_info;
508 	int count = 0;
509 	int err = 0;
510 
511 	if (--trans->use_count) {
512 		trans->block_rsv = trans->orig_rsv;
513 		return 0;
514 	}
515 
516 	btrfs_trans_release_metadata(trans, root);
517 	trans->block_rsv = NULL;
518 	while (count < 2) {
519 		unsigned long cur = trans->delayed_ref_updates;
520 		trans->delayed_ref_updates = 0;
521 		if (cur &&
522 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
523 			trans->delayed_ref_updates = 0;
524 			btrfs_run_delayed_refs(trans, root, cur);
525 		} else {
526 			break;
527 		}
528 		count++;
529 	}
530 
531 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
532 	    should_end_transaction(trans, root)) {
533 		trans->transaction->blocked = 1;
534 		smp_wmb();
535 	}
536 
537 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
538 		if (throttle) {
539 			/*
540 			 * We may race with somebody else here so end up having
541 			 * to call end_transaction on ourselves again, so inc
542 			 * our use_count.
543 			 */
544 			trans->use_count++;
545 			return btrfs_commit_transaction(trans, root);
546 		} else {
547 			wake_up_process(info->transaction_kthread);
548 		}
549 	}
550 
551 	WARN_ON(cur_trans != info->running_transaction);
552 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
553 	atomic_dec(&cur_trans->num_writers);
554 
555 	smp_mb();
556 	if (waitqueue_active(&cur_trans->writer_wait))
557 		wake_up(&cur_trans->writer_wait);
558 	put_transaction(cur_trans);
559 
560 	if (current->journal_info == trans)
561 		current->journal_info = NULL;
562 
563 	if (throttle)
564 		btrfs_run_delayed_iputs(root);
565 
566 	if (trans->aborted ||
567 	    root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
568 		err = -EIO;
569 	}
570 
571 	memset(trans, 0, sizeof(*trans));
572 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
573 	return err;
574 }
575 
576 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
577 			  struct btrfs_root *root)
578 {
579 	int ret;
580 
581 	ret = __btrfs_end_transaction(trans, root, 0, 1);
582 	if (ret)
583 		return ret;
584 	return 0;
585 }
586 
587 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
588 				   struct btrfs_root *root)
589 {
590 	int ret;
591 
592 	ret = __btrfs_end_transaction(trans, root, 1, 1);
593 	if (ret)
594 		return ret;
595 	return 0;
596 }
597 
598 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
599 				 struct btrfs_root *root)
600 {
601 	int ret;
602 
603 	ret = __btrfs_end_transaction(trans, root, 0, 0);
604 	if (ret)
605 		return ret;
606 	return 0;
607 }
608 
609 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
610 				struct btrfs_root *root)
611 {
612 	return __btrfs_end_transaction(trans, root, 1, 1);
613 }
614 
615 /*
616  * when btree blocks are allocated, they have some corresponding bits set for
617  * them in one of two extent_io trees.  This is used to make sure all of
618  * those extents are sent to disk but does not wait on them
619  */
620 int btrfs_write_marked_extents(struct btrfs_root *root,
621 			       struct extent_io_tree *dirty_pages, int mark)
622 {
623 	int err = 0;
624 	int werr = 0;
625 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
626 	u64 start = 0;
627 	u64 end;
628 
629 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
630 				      mark)) {
631 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
632 				   GFP_NOFS);
633 		err = filemap_fdatawrite_range(mapping, start, end);
634 		if (err)
635 			werr = err;
636 		cond_resched();
637 		start = end + 1;
638 	}
639 	if (err)
640 		werr = err;
641 	return werr;
642 }
643 
644 /*
645  * when btree blocks are allocated, they have some corresponding bits set for
646  * them in one of two extent_io trees.  This is used to make sure all of
647  * those extents are on disk for transaction or log commit.  We wait
648  * on all the pages and clear them from the dirty pages state tree
649  */
650 int btrfs_wait_marked_extents(struct btrfs_root *root,
651 			      struct extent_io_tree *dirty_pages, int mark)
652 {
653 	int err = 0;
654 	int werr = 0;
655 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
656 	u64 start = 0;
657 	u64 end;
658 
659 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
660 				      EXTENT_NEED_WAIT)) {
661 		clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
662 		err = filemap_fdatawait_range(mapping, start, end);
663 		if (err)
664 			werr = err;
665 		cond_resched();
666 		start = end + 1;
667 	}
668 	if (err)
669 		werr = err;
670 	return werr;
671 }
672 
673 /*
674  * when btree blocks are allocated, they have some corresponding bits set for
675  * them in one of two extent_io trees.  This is used to make sure all of
676  * those extents are on disk for transaction or log commit
677  */
678 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
679 				struct extent_io_tree *dirty_pages, int mark)
680 {
681 	int ret;
682 	int ret2;
683 
684 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
685 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
686 
687 	if (ret)
688 		return ret;
689 	if (ret2)
690 		return ret2;
691 	return 0;
692 }
693 
694 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
695 				     struct btrfs_root *root)
696 {
697 	if (!trans || !trans->transaction) {
698 		struct inode *btree_inode;
699 		btree_inode = root->fs_info->btree_inode;
700 		return filemap_write_and_wait(btree_inode->i_mapping);
701 	}
702 	return btrfs_write_and_wait_marked_extents(root,
703 					   &trans->transaction->dirty_pages,
704 					   EXTENT_DIRTY);
705 }
706 
707 /*
708  * this is used to update the root pointer in the tree of tree roots.
709  *
710  * But, in the case of the extent allocation tree, updating the root
711  * pointer may allocate blocks which may change the root of the extent
712  * allocation tree.
713  *
714  * So, this loops and repeats and makes sure the cowonly root didn't
715  * change while the root pointer was being updated in the metadata.
716  */
717 static int update_cowonly_root(struct btrfs_trans_handle *trans,
718 			       struct btrfs_root *root)
719 {
720 	int ret;
721 	u64 old_root_bytenr;
722 	u64 old_root_used;
723 	struct btrfs_root *tree_root = root->fs_info->tree_root;
724 
725 	old_root_used = btrfs_root_used(&root->root_item);
726 	btrfs_write_dirty_block_groups(trans, root);
727 
728 	while (1) {
729 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
730 		if (old_root_bytenr == root->node->start &&
731 		    old_root_used == btrfs_root_used(&root->root_item))
732 			break;
733 
734 		btrfs_set_root_node(&root->root_item, root->node);
735 		ret = btrfs_update_root(trans, tree_root,
736 					&root->root_key,
737 					&root->root_item);
738 		if (ret)
739 			return ret;
740 
741 		old_root_used = btrfs_root_used(&root->root_item);
742 		ret = btrfs_write_dirty_block_groups(trans, root);
743 		if (ret)
744 			return ret;
745 	}
746 
747 	if (root != root->fs_info->extent_root)
748 		switch_commit_root(root);
749 
750 	return 0;
751 }
752 
753 /*
754  * update all the cowonly tree roots on disk
755  *
756  * The error handling in this function may not be obvious. Any of the
757  * failures will cause the file system to go offline. We still need
758  * to clean up the delayed refs.
759  */
760 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
761 					 struct btrfs_root *root)
762 {
763 	struct btrfs_fs_info *fs_info = root->fs_info;
764 	struct list_head *next;
765 	struct extent_buffer *eb;
766 	int ret;
767 
768 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
769 	if (ret)
770 		return ret;
771 
772 	eb = btrfs_lock_root_node(fs_info->tree_root);
773 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
774 			      0, &eb);
775 	btrfs_tree_unlock(eb);
776 	free_extent_buffer(eb);
777 
778 	if (ret)
779 		return ret;
780 
781 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
782 	if (ret)
783 		return ret;
784 
785 	ret = btrfs_run_dev_stats(trans, root->fs_info);
786 	BUG_ON(ret);
787 
788 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
789 		next = fs_info->dirty_cowonly_roots.next;
790 		list_del_init(next);
791 		root = list_entry(next, struct btrfs_root, dirty_list);
792 
793 		ret = update_cowonly_root(trans, root);
794 		if (ret)
795 			return ret;
796 	}
797 
798 	down_write(&fs_info->extent_commit_sem);
799 	switch_commit_root(fs_info->extent_root);
800 	up_write(&fs_info->extent_commit_sem);
801 
802 	return 0;
803 }
804 
805 /*
806  * dead roots are old snapshots that need to be deleted.  This allocates
807  * a dirty root struct and adds it into the list of dead roots that need to
808  * be deleted
809  */
810 int btrfs_add_dead_root(struct btrfs_root *root)
811 {
812 	spin_lock(&root->fs_info->trans_lock);
813 	list_add(&root->root_list, &root->fs_info->dead_roots);
814 	spin_unlock(&root->fs_info->trans_lock);
815 	return 0;
816 }
817 
818 /*
819  * update all the cowonly tree roots on disk
820  */
821 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
822 				    struct btrfs_root *root)
823 {
824 	struct btrfs_root *gang[8];
825 	struct btrfs_fs_info *fs_info = root->fs_info;
826 	int i;
827 	int ret;
828 	int err = 0;
829 
830 	spin_lock(&fs_info->fs_roots_radix_lock);
831 	while (1) {
832 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
833 						 (void **)gang, 0,
834 						 ARRAY_SIZE(gang),
835 						 BTRFS_ROOT_TRANS_TAG);
836 		if (ret == 0)
837 			break;
838 		for (i = 0; i < ret; i++) {
839 			root = gang[i];
840 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
841 					(unsigned long)root->root_key.objectid,
842 					BTRFS_ROOT_TRANS_TAG);
843 			spin_unlock(&fs_info->fs_roots_radix_lock);
844 
845 			btrfs_free_log(trans, root);
846 			btrfs_update_reloc_root(trans, root);
847 			btrfs_orphan_commit_root(trans, root);
848 
849 			btrfs_save_ino_cache(root, trans);
850 
851 			/* see comments in should_cow_block() */
852 			root->force_cow = 0;
853 			smp_wmb();
854 
855 			if (root->commit_root != root->node) {
856 				mutex_lock(&root->fs_commit_mutex);
857 				switch_commit_root(root);
858 				btrfs_unpin_free_ino(root);
859 				mutex_unlock(&root->fs_commit_mutex);
860 
861 				btrfs_set_root_node(&root->root_item,
862 						    root->node);
863 			}
864 
865 			err = btrfs_update_root(trans, fs_info->tree_root,
866 						&root->root_key,
867 						&root->root_item);
868 			spin_lock(&fs_info->fs_roots_radix_lock);
869 			if (err)
870 				break;
871 		}
872 	}
873 	spin_unlock(&fs_info->fs_roots_radix_lock);
874 	return err;
875 }
876 
877 /*
878  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
879  * otherwise every leaf in the btree is read and defragged.
880  */
881 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
882 {
883 	struct btrfs_fs_info *info = root->fs_info;
884 	struct btrfs_trans_handle *trans;
885 	int ret;
886 	unsigned long nr;
887 
888 	if (xchg(&root->defrag_running, 1))
889 		return 0;
890 
891 	while (1) {
892 		trans = btrfs_start_transaction(root, 0);
893 		if (IS_ERR(trans))
894 			return PTR_ERR(trans);
895 
896 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
897 
898 		nr = trans->blocks_used;
899 		btrfs_end_transaction(trans, root);
900 		btrfs_btree_balance_dirty(info->tree_root, nr);
901 		cond_resched();
902 
903 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
904 			break;
905 	}
906 	root->defrag_running = 0;
907 	return ret;
908 }
909 
910 /*
911  * new snapshots need to be created at a very specific time in the
912  * transaction commit.  This does the actual creation
913  */
914 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
915 				   struct btrfs_fs_info *fs_info,
916 				   struct btrfs_pending_snapshot *pending)
917 {
918 	struct btrfs_key key;
919 	struct btrfs_root_item *new_root_item;
920 	struct btrfs_root *tree_root = fs_info->tree_root;
921 	struct btrfs_root *root = pending->root;
922 	struct btrfs_root *parent_root;
923 	struct btrfs_block_rsv *rsv;
924 	struct inode *parent_inode;
925 	struct dentry *parent;
926 	struct dentry *dentry;
927 	struct extent_buffer *tmp;
928 	struct extent_buffer *old;
929 	int ret;
930 	u64 to_reserve = 0;
931 	u64 index = 0;
932 	u64 objectid;
933 	u64 root_flags;
934 
935 	rsv = trans->block_rsv;
936 
937 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
938 	if (!new_root_item) {
939 		ret = pending->error = -ENOMEM;
940 		goto fail;
941 	}
942 
943 	ret = btrfs_find_free_objectid(tree_root, &objectid);
944 	if (ret) {
945 		pending->error = ret;
946 		goto fail;
947 	}
948 
949 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
950 
951 	if (to_reserve > 0) {
952 		ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
953 						  to_reserve);
954 		if (ret) {
955 			pending->error = ret;
956 			goto fail;
957 		}
958 	}
959 
960 	key.objectid = objectid;
961 	key.offset = (u64)-1;
962 	key.type = BTRFS_ROOT_ITEM_KEY;
963 
964 	trans->block_rsv = &pending->block_rsv;
965 
966 	dentry = pending->dentry;
967 	parent = dget_parent(dentry);
968 	parent_inode = parent->d_inode;
969 	parent_root = BTRFS_I(parent_inode)->root;
970 	record_root_in_trans(trans, parent_root);
971 
972 	/*
973 	 * insert the directory item
974 	 */
975 	ret = btrfs_set_inode_index(parent_inode, &index);
976 	BUG_ON(ret); /* -ENOMEM */
977 	ret = btrfs_insert_dir_item(trans, parent_root,
978 				dentry->d_name.name, dentry->d_name.len,
979 				parent_inode, &key,
980 				BTRFS_FT_DIR, index);
981 	if (ret == -EEXIST) {
982 		pending->error = -EEXIST;
983 		dput(parent);
984 		goto fail;
985 	} else if (ret) {
986 		goto abort_trans_dput;
987 	}
988 
989 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
990 					 dentry->d_name.len * 2);
991 	ret = btrfs_update_inode(trans, parent_root, parent_inode);
992 	if (ret)
993 		goto abort_trans_dput;
994 
995 	/*
996 	 * pull in the delayed directory update
997 	 * and the delayed inode item
998 	 * otherwise we corrupt the FS during
999 	 * snapshot
1000 	 */
1001 	ret = btrfs_run_delayed_items(trans, root);
1002 	if (ret) { /* Transaction aborted */
1003 		dput(parent);
1004 		goto fail;
1005 	}
1006 
1007 	record_root_in_trans(trans, root);
1008 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1009 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1010 	btrfs_check_and_init_root_item(new_root_item);
1011 
1012 	root_flags = btrfs_root_flags(new_root_item);
1013 	if (pending->readonly)
1014 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1015 	else
1016 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1017 	btrfs_set_root_flags(new_root_item, root_flags);
1018 
1019 	old = btrfs_lock_root_node(root);
1020 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1021 	if (ret) {
1022 		btrfs_tree_unlock(old);
1023 		free_extent_buffer(old);
1024 		goto abort_trans_dput;
1025 	}
1026 
1027 	btrfs_set_lock_blocking(old);
1028 
1029 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1030 	/* clean up in any case */
1031 	btrfs_tree_unlock(old);
1032 	free_extent_buffer(old);
1033 	if (ret)
1034 		goto abort_trans_dput;
1035 
1036 	/* see comments in should_cow_block() */
1037 	root->force_cow = 1;
1038 	smp_wmb();
1039 
1040 	btrfs_set_root_node(new_root_item, tmp);
1041 	/* record when the snapshot was created in key.offset */
1042 	key.offset = trans->transid;
1043 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1044 	btrfs_tree_unlock(tmp);
1045 	free_extent_buffer(tmp);
1046 	if (ret)
1047 		goto abort_trans_dput;
1048 
1049 	/*
1050 	 * insert root back/forward references
1051 	 */
1052 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1053 				 parent_root->root_key.objectid,
1054 				 btrfs_ino(parent_inode), index,
1055 				 dentry->d_name.name, dentry->d_name.len);
1056 	dput(parent);
1057 	if (ret)
1058 		goto fail;
1059 
1060 	key.offset = (u64)-1;
1061 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1062 	if (IS_ERR(pending->snap)) {
1063 		ret = PTR_ERR(pending->snap);
1064 		goto abort_trans;
1065 	}
1066 
1067 	ret = btrfs_reloc_post_snapshot(trans, pending);
1068 	if (ret)
1069 		goto abort_trans;
1070 	ret = 0;
1071 fail:
1072 	kfree(new_root_item);
1073 	trans->block_rsv = rsv;
1074 	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1075 	return ret;
1076 
1077 abort_trans_dput:
1078 	dput(parent);
1079 abort_trans:
1080 	btrfs_abort_transaction(trans, root, ret);
1081 	goto fail;
1082 }
1083 
1084 /*
1085  * create all the snapshots we've scheduled for creation
1086  */
1087 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1088 					     struct btrfs_fs_info *fs_info)
1089 {
1090 	struct btrfs_pending_snapshot *pending;
1091 	struct list_head *head = &trans->transaction->pending_snapshots;
1092 
1093 	list_for_each_entry(pending, head, list)
1094 		create_pending_snapshot(trans, fs_info, pending);
1095 	return 0;
1096 }
1097 
1098 static void update_super_roots(struct btrfs_root *root)
1099 {
1100 	struct btrfs_root_item *root_item;
1101 	struct btrfs_super_block *super;
1102 
1103 	super = root->fs_info->super_copy;
1104 
1105 	root_item = &root->fs_info->chunk_root->root_item;
1106 	super->chunk_root = root_item->bytenr;
1107 	super->chunk_root_generation = root_item->generation;
1108 	super->chunk_root_level = root_item->level;
1109 
1110 	root_item = &root->fs_info->tree_root->root_item;
1111 	super->root = root_item->bytenr;
1112 	super->generation = root_item->generation;
1113 	super->root_level = root_item->level;
1114 	if (btrfs_test_opt(root, SPACE_CACHE))
1115 		super->cache_generation = root_item->generation;
1116 }
1117 
1118 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1119 {
1120 	int ret = 0;
1121 	spin_lock(&info->trans_lock);
1122 	if (info->running_transaction)
1123 		ret = info->running_transaction->in_commit;
1124 	spin_unlock(&info->trans_lock);
1125 	return ret;
1126 }
1127 
1128 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1129 {
1130 	int ret = 0;
1131 	spin_lock(&info->trans_lock);
1132 	if (info->running_transaction)
1133 		ret = info->running_transaction->blocked;
1134 	spin_unlock(&info->trans_lock);
1135 	return ret;
1136 }
1137 
1138 /*
1139  * wait for the current transaction commit to start and block subsequent
1140  * transaction joins
1141  */
1142 static void wait_current_trans_commit_start(struct btrfs_root *root,
1143 					    struct btrfs_transaction *trans)
1144 {
1145 	wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1146 }
1147 
1148 /*
1149  * wait for the current transaction to start and then become unblocked.
1150  * caller holds ref.
1151  */
1152 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1153 					 struct btrfs_transaction *trans)
1154 {
1155 	wait_event(root->fs_info->transaction_wait,
1156 		   trans->commit_done || (trans->in_commit && !trans->blocked));
1157 }
1158 
1159 /*
1160  * commit transactions asynchronously. once btrfs_commit_transaction_async
1161  * returns, any subsequent transaction will not be allowed to join.
1162  */
1163 struct btrfs_async_commit {
1164 	struct btrfs_trans_handle *newtrans;
1165 	struct btrfs_root *root;
1166 	struct delayed_work work;
1167 };
1168 
1169 static void do_async_commit(struct work_struct *work)
1170 {
1171 	struct btrfs_async_commit *ac =
1172 		container_of(work, struct btrfs_async_commit, work.work);
1173 
1174 	btrfs_commit_transaction(ac->newtrans, ac->root);
1175 	kfree(ac);
1176 }
1177 
1178 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1179 				   struct btrfs_root *root,
1180 				   int wait_for_unblock)
1181 {
1182 	struct btrfs_async_commit *ac;
1183 	struct btrfs_transaction *cur_trans;
1184 
1185 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1186 	if (!ac)
1187 		return -ENOMEM;
1188 
1189 	INIT_DELAYED_WORK(&ac->work, do_async_commit);
1190 	ac->root = root;
1191 	ac->newtrans = btrfs_join_transaction(root);
1192 	if (IS_ERR(ac->newtrans)) {
1193 		int err = PTR_ERR(ac->newtrans);
1194 		kfree(ac);
1195 		return err;
1196 	}
1197 
1198 	/* take transaction reference */
1199 	cur_trans = trans->transaction;
1200 	atomic_inc(&cur_trans->use_count);
1201 
1202 	btrfs_end_transaction(trans, root);
1203 	schedule_delayed_work(&ac->work, 0);
1204 
1205 	/* wait for transaction to start and unblock */
1206 	if (wait_for_unblock)
1207 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1208 	else
1209 		wait_current_trans_commit_start(root, cur_trans);
1210 
1211 	if (current->journal_info == trans)
1212 		current->journal_info = NULL;
1213 
1214 	put_transaction(cur_trans);
1215 	return 0;
1216 }
1217 
1218 
1219 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1220 				struct btrfs_root *root, int err)
1221 {
1222 	struct btrfs_transaction *cur_trans = trans->transaction;
1223 
1224 	WARN_ON(trans->use_count > 1);
1225 
1226 	btrfs_abort_transaction(trans, root, err);
1227 
1228 	spin_lock(&root->fs_info->trans_lock);
1229 	list_del_init(&cur_trans->list);
1230 	if (cur_trans == root->fs_info->running_transaction) {
1231 		root->fs_info->running_transaction = NULL;
1232 		root->fs_info->trans_no_join = 0;
1233 	}
1234 	spin_unlock(&root->fs_info->trans_lock);
1235 
1236 	btrfs_cleanup_one_transaction(trans->transaction, root);
1237 
1238 	put_transaction(cur_trans);
1239 	put_transaction(cur_trans);
1240 
1241 	trace_btrfs_transaction_commit(root);
1242 
1243 	btrfs_scrub_continue(root);
1244 
1245 	if (current->journal_info == trans)
1246 		current->journal_info = NULL;
1247 
1248 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1249 }
1250 
1251 /*
1252  * btrfs_transaction state sequence:
1253  *    in_commit = 0, blocked = 0  (initial)
1254  *    in_commit = 1, blocked = 1
1255  *    blocked = 0
1256  *    commit_done = 1
1257  */
1258 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1259 			     struct btrfs_root *root)
1260 {
1261 	unsigned long joined = 0;
1262 	struct btrfs_transaction *cur_trans = trans->transaction;
1263 	struct btrfs_transaction *prev_trans = NULL;
1264 	DEFINE_WAIT(wait);
1265 	int ret = -EIO;
1266 	int should_grow = 0;
1267 	unsigned long now = get_seconds();
1268 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1269 
1270 	btrfs_run_ordered_operations(root, 0);
1271 
1272 	btrfs_trans_release_metadata(trans, root);
1273 	trans->block_rsv = NULL;
1274 
1275 	if (cur_trans->aborted)
1276 		goto cleanup_transaction;
1277 
1278 	/* make a pass through all the delayed refs we have so far
1279 	 * any runnings procs may add more while we are here
1280 	 */
1281 	ret = btrfs_run_delayed_refs(trans, root, 0);
1282 	if (ret)
1283 		goto cleanup_transaction;
1284 
1285 	cur_trans = trans->transaction;
1286 
1287 	/*
1288 	 * set the flushing flag so procs in this transaction have to
1289 	 * start sending their work down.
1290 	 */
1291 	cur_trans->delayed_refs.flushing = 1;
1292 
1293 	ret = btrfs_run_delayed_refs(trans, root, 0);
1294 	if (ret)
1295 		goto cleanup_transaction;
1296 
1297 	spin_lock(&cur_trans->commit_lock);
1298 	if (cur_trans->in_commit) {
1299 		spin_unlock(&cur_trans->commit_lock);
1300 		atomic_inc(&cur_trans->use_count);
1301 		ret = btrfs_end_transaction(trans, root);
1302 
1303 		wait_for_commit(root, cur_trans);
1304 
1305 		put_transaction(cur_trans);
1306 
1307 		return ret;
1308 	}
1309 
1310 	trans->transaction->in_commit = 1;
1311 	trans->transaction->blocked = 1;
1312 	spin_unlock(&cur_trans->commit_lock);
1313 	wake_up(&root->fs_info->transaction_blocked_wait);
1314 
1315 	spin_lock(&root->fs_info->trans_lock);
1316 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1317 		prev_trans = list_entry(cur_trans->list.prev,
1318 					struct btrfs_transaction, list);
1319 		if (!prev_trans->commit_done) {
1320 			atomic_inc(&prev_trans->use_count);
1321 			spin_unlock(&root->fs_info->trans_lock);
1322 
1323 			wait_for_commit(root, prev_trans);
1324 
1325 			put_transaction(prev_trans);
1326 		} else {
1327 			spin_unlock(&root->fs_info->trans_lock);
1328 		}
1329 	} else {
1330 		spin_unlock(&root->fs_info->trans_lock);
1331 	}
1332 
1333 	if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1334 		should_grow = 1;
1335 
1336 	do {
1337 		int snap_pending = 0;
1338 
1339 		joined = cur_trans->num_joined;
1340 		if (!list_empty(&trans->transaction->pending_snapshots))
1341 			snap_pending = 1;
1342 
1343 		WARN_ON(cur_trans != trans->transaction);
1344 
1345 		if (flush_on_commit || snap_pending) {
1346 			btrfs_start_delalloc_inodes(root, 1);
1347 			btrfs_wait_ordered_extents(root, 0, 1);
1348 		}
1349 
1350 		ret = btrfs_run_delayed_items(trans, root);
1351 		if (ret)
1352 			goto cleanup_transaction;
1353 
1354 		/*
1355 		 * rename don't use btrfs_join_transaction, so, once we
1356 		 * set the transaction to blocked above, we aren't going
1357 		 * to get any new ordered operations.  We can safely run
1358 		 * it here and no for sure that nothing new will be added
1359 		 * to the list
1360 		 */
1361 		btrfs_run_ordered_operations(root, 1);
1362 
1363 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1364 				TASK_UNINTERRUPTIBLE);
1365 
1366 		if (atomic_read(&cur_trans->num_writers) > 1)
1367 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1368 		else if (should_grow)
1369 			schedule_timeout(1);
1370 
1371 		finish_wait(&cur_trans->writer_wait, &wait);
1372 	} while (atomic_read(&cur_trans->num_writers) > 1 ||
1373 		 (should_grow && cur_trans->num_joined != joined));
1374 
1375 	/*
1376 	 * Ok now we need to make sure to block out any other joins while we
1377 	 * commit the transaction.  We could have started a join before setting
1378 	 * no_join so make sure to wait for num_writers to == 1 again.
1379 	 */
1380 	spin_lock(&root->fs_info->trans_lock);
1381 	root->fs_info->trans_no_join = 1;
1382 	spin_unlock(&root->fs_info->trans_lock);
1383 	wait_event(cur_trans->writer_wait,
1384 		   atomic_read(&cur_trans->num_writers) == 1);
1385 
1386 	/*
1387 	 * the reloc mutex makes sure that we stop
1388 	 * the balancing code from coming in and moving
1389 	 * extents around in the middle of the commit
1390 	 */
1391 	mutex_lock(&root->fs_info->reloc_mutex);
1392 
1393 	ret = btrfs_run_delayed_items(trans, root);
1394 	if (ret) {
1395 		mutex_unlock(&root->fs_info->reloc_mutex);
1396 		goto cleanup_transaction;
1397 	}
1398 
1399 	ret = create_pending_snapshots(trans, root->fs_info);
1400 	if (ret) {
1401 		mutex_unlock(&root->fs_info->reloc_mutex);
1402 		goto cleanup_transaction;
1403 	}
1404 
1405 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1406 	if (ret) {
1407 		mutex_unlock(&root->fs_info->reloc_mutex);
1408 		goto cleanup_transaction;
1409 	}
1410 
1411 	/*
1412 	 * make sure none of the code above managed to slip in a
1413 	 * delayed item
1414 	 */
1415 	btrfs_assert_delayed_root_empty(root);
1416 
1417 	WARN_ON(cur_trans != trans->transaction);
1418 
1419 	btrfs_scrub_pause(root);
1420 	/* btrfs_commit_tree_roots is responsible for getting the
1421 	 * various roots consistent with each other.  Every pointer
1422 	 * in the tree of tree roots has to point to the most up to date
1423 	 * root for every subvolume and other tree.  So, we have to keep
1424 	 * the tree logging code from jumping in and changing any
1425 	 * of the trees.
1426 	 *
1427 	 * At this point in the commit, there can't be any tree-log
1428 	 * writers, but a little lower down we drop the trans mutex
1429 	 * and let new people in.  By holding the tree_log_mutex
1430 	 * from now until after the super is written, we avoid races
1431 	 * with the tree-log code.
1432 	 */
1433 	mutex_lock(&root->fs_info->tree_log_mutex);
1434 
1435 	ret = commit_fs_roots(trans, root);
1436 	if (ret) {
1437 		mutex_unlock(&root->fs_info->tree_log_mutex);
1438 		mutex_unlock(&root->fs_info->reloc_mutex);
1439 		goto cleanup_transaction;
1440 	}
1441 
1442 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1443 	 * safe to free the root of tree log roots
1444 	 */
1445 	btrfs_free_log_root_tree(trans, root->fs_info);
1446 
1447 	ret = commit_cowonly_roots(trans, root);
1448 	if (ret) {
1449 		mutex_unlock(&root->fs_info->tree_log_mutex);
1450 		mutex_unlock(&root->fs_info->reloc_mutex);
1451 		goto cleanup_transaction;
1452 	}
1453 
1454 	btrfs_prepare_extent_commit(trans, root);
1455 
1456 	cur_trans = root->fs_info->running_transaction;
1457 
1458 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1459 			    root->fs_info->tree_root->node);
1460 	switch_commit_root(root->fs_info->tree_root);
1461 
1462 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1463 			    root->fs_info->chunk_root->node);
1464 	switch_commit_root(root->fs_info->chunk_root);
1465 
1466 	update_super_roots(root);
1467 
1468 	if (!root->fs_info->log_root_recovering) {
1469 		btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1470 		btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1471 	}
1472 
1473 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1474 	       sizeof(*root->fs_info->super_copy));
1475 
1476 	trans->transaction->blocked = 0;
1477 	spin_lock(&root->fs_info->trans_lock);
1478 	root->fs_info->running_transaction = NULL;
1479 	root->fs_info->trans_no_join = 0;
1480 	spin_unlock(&root->fs_info->trans_lock);
1481 	mutex_unlock(&root->fs_info->reloc_mutex);
1482 
1483 	wake_up(&root->fs_info->transaction_wait);
1484 
1485 	ret = btrfs_write_and_wait_transaction(trans, root);
1486 	if (ret) {
1487 		btrfs_error(root->fs_info, ret,
1488 			    "Error while writing out transaction.");
1489 		mutex_unlock(&root->fs_info->tree_log_mutex);
1490 		goto cleanup_transaction;
1491 	}
1492 
1493 	ret = write_ctree_super(trans, root, 0);
1494 	if (ret) {
1495 		mutex_unlock(&root->fs_info->tree_log_mutex);
1496 		goto cleanup_transaction;
1497 	}
1498 
1499 	/*
1500 	 * the super is written, we can safely allow the tree-loggers
1501 	 * to go about their business
1502 	 */
1503 	mutex_unlock(&root->fs_info->tree_log_mutex);
1504 
1505 	btrfs_finish_extent_commit(trans, root);
1506 
1507 	cur_trans->commit_done = 1;
1508 
1509 	root->fs_info->last_trans_committed = cur_trans->transid;
1510 
1511 	wake_up(&cur_trans->commit_wait);
1512 
1513 	spin_lock(&root->fs_info->trans_lock);
1514 	list_del_init(&cur_trans->list);
1515 	spin_unlock(&root->fs_info->trans_lock);
1516 
1517 	put_transaction(cur_trans);
1518 	put_transaction(cur_trans);
1519 
1520 	trace_btrfs_transaction_commit(root);
1521 
1522 	btrfs_scrub_continue(root);
1523 
1524 	if (current->journal_info == trans)
1525 		current->journal_info = NULL;
1526 
1527 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1528 
1529 	if (current != root->fs_info->transaction_kthread)
1530 		btrfs_run_delayed_iputs(root);
1531 
1532 	return ret;
1533 
1534 cleanup_transaction:
1535 	btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1536 //	WARN_ON(1);
1537 	if (current->journal_info == trans)
1538 		current->journal_info = NULL;
1539 	cleanup_transaction(trans, root, ret);
1540 
1541 	return ret;
1542 }
1543 
1544 /*
1545  * interface function to delete all the snapshots we have scheduled for deletion
1546  */
1547 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1548 {
1549 	LIST_HEAD(list);
1550 	struct btrfs_fs_info *fs_info = root->fs_info;
1551 
1552 	spin_lock(&fs_info->trans_lock);
1553 	list_splice_init(&fs_info->dead_roots, &list);
1554 	spin_unlock(&fs_info->trans_lock);
1555 
1556 	while (!list_empty(&list)) {
1557 		int ret;
1558 
1559 		root = list_entry(list.next, struct btrfs_root, root_list);
1560 		list_del(&root->root_list);
1561 
1562 		btrfs_kill_all_delayed_nodes(root);
1563 
1564 		if (btrfs_header_backref_rev(root->node) <
1565 		    BTRFS_MIXED_BACKREF_REV)
1566 			ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1567 		else
1568 			ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1569 		BUG_ON(ret < 0);
1570 	}
1571 	return 0;
1572 }
1573