1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "inode-map.h" 31 #include "volumes.h" 32 33 #define BTRFS_ROOT_TRANS_TAG 0 34 35 void put_transaction(struct btrfs_transaction *transaction) 36 { 37 WARN_ON(atomic_read(&transaction->use_count) == 0); 38 if (atomic_dec_and_test(&transaction->use_count)) { 39 BUG_ON(!list_empty(&transaction->list)); 40 WARN_ON(transaction->delayed_refs.root.rb_node); 41 WARN_ON(!list_empty(&transaction->delayed_refs.seq_head)); 42 memset(transaction, 0, sizeof(*transaction)); 43 kmem_cache_free(btrfs_transaction_cachep, transaction); 44 } 45 } 46 47 static noinline void switch_commit_root(struct btrfs_root *root) 48 { 49 free_extent_buffer(root->commit_root); 50 root->commit_root = btrfs_root_node(root); 51 } 52 53 /* 54 * either allocate a new transaction or hop into the existing one 55 */ 56 static noinline int join_transaction(struct btrfs_root *root, int nofail) 57 { 58 struct btrfs_transaction *cur_trans; 59 struct btrfs_fs_info *fs_info = root->fs_info; 60 61 spin_lock(&fs_info->trans_lock); 62 loop: 63 /* The file system has been taken offline. No new transactions. */ 64 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 65 spin_unlock(&fs_info->trans_lock); 66 return -EROFS; 67 } 68 69 if (fs_info->trans_no_join) { 70 if (!nofail) { 71 spin_unlock(&fs_info->trans_lock); 72 return -EBUSY; 73 } 74 } 75 76 cur_trans = fs_info->running_transaction; 77 if (cur_trans) { 78 if (cur_trans->aborted) { 79 spin_unlock(&fs_info->trans_lock); 80 return cur_trans->aborted; 81 } 82 atomic_inc(&cur_trans->use_count); 83 atomic_inc(&cur_trans->num_writers); 84 cur_trans->num_joined++; 85 spin_unlock(&fs_info->trans_lock); 86 return 0; 87 } 88 spin_unlock(&fs_info->trans_lock); 89 90 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 91 if (!cur_trans) 92 return -ENOMEM; 93 94 spin_lock(&fs_info->trans_lock); 95 if (fs_info->running_transaction) { 96 /* 97 * someone started a transaction after we unlocked. Make sure 98 * to redo the trans_no_join checks above 99 */ 100 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 101 cur_trans = fs_info->running_transaction; 102 goto loop; 103 } else if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 104 spin_unlock(&root->fs_info->trans_lock); 105 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 106 return -EROFS; 107 } 108 109 atomic_set(&cur_trans->num_writers, 1); 110 cur_trans->num_joined = 0; 111 init_waitqueue_head(&cur_trans->writer_wait); 112 init_waitqueue_head(&cur_trans->commit_wait); 113 cur_trans->in_commit = 0; 114 cur_trans->blocked = 0; 115 /* 116 * One for this trans handle, one so it will live on until we 117 * commit the transaction. 118 */ 119 atomic_set(&cur_trans->use_count, 2); 120 cur_trans->commit_done = 0; 121 cur_trans->start_time = get_seconds(); 122 123 cur_trans->delayed_refs.root = RB_ROOT; 124 cur_trans->delayed_refs.num_entries = 0; 125 cur_trans->delayed_refs.num_heads_ready = 0; 126 cur_trans->delayed_refs.num_heads = 0; 127 cur_trans->delayed_refs.flushing = 0; 128 cur_trans->delayed_refs.run_delayed_start = 0; 129 cur_trans->delayed_refs.seq = 1; 130 131 /* 132 * although the tree mod log is per file system and not per transaction, 133 * the log must never go across transaction boundaries. 134 */ 135 smp_mb(); 136 if (!list_empty(&fs_info->tree_mod_seq_list)) { 137 printk(KERN_ERR "btrfs: tree_mod_seq_list not empty when " 138 "creating a fresh transaction\n"); 139 WARN_ON(1); 140 } 141 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) { 142 printk(KERN_ERR "btrfs: tree_mod_log rb tree not empty when " 143 "creating a fresh transaction\n"); 144 WARN_ON(1); 145 } 146 atomic_set(&fs_info->tree_mod_seq, 0); 147 148 init_waitqueue_head(&cur_trans->delayed_refs.seq_wait); 149 spin_lock_init(&cur_trans->commit_lock); 150 spin_lock_init(&cur_trans->delayed_refs.lock); 151 INIT_LIST_HEAD(&cur_trans->delayed_refs.seq_head); 152 153 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 154 list_add_tail(&cur_trans->list, &fs_info->trans_list); 155 extent_io_tree_init(&cur_trans->dirty_pages, 156 fs_info->btree_inode->i_mapping); 157 fs_info->generation++; 158 cur_trans->transid = fs_info->generation; 159 fs_info->running_transaction = cur_trans; 160 cur_trans->aborted = 0; 161 spin_unlock(&fs_info->trans_lock); 162 163 return 0; 164 } 165 166 /* 167 * this does all the record keeping required to make sure that a reference 168 * counted root is properly recorded in a given transaction. This is required 169 * to make sure the old root from before we joined the transaction is deleted 170 * when the transaction commits 171 */ 172 static int record_root_in_trans(struct btrfs_trans_handle *trans, 173 struct btrfs_root *root) 174 { 175 if (root->ref_cows && root->last_trans < trans->transid) { 176 WARN_ON(root == root->fs_info->extent_root); 177 WARN_ON(root->commit_root != root->node); 178 179 /* 180 * see below for in_trans_setup usage rules 181 * we have the reloc mutex held now, so there 182 * is only one writer in this function 183 */ 184 root->in_trans_setup = 1; 185 186 /* make sure readers find in_trans_setup before 187 * they find our root->last_trans update 188 */ 189 smp_wmb(); 190 191 spin_lock(&root->fs_info->fs_roots_radix_lock); 192 if (root->last_trans == trans->transid) { 193 spin_unlock(&root->fs_info->fs_roots_radix_lock); 194 return 0; 195 } 196 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 197 (unsigned long)root->root_key.objectid, 198 BTRFS_ROOT_TRANS_TAG); 199 spin_unlock(&root->fs_info->fs_roots_radix_lock); 200 root->last_trans = trans->transid; 201 202 /* this is pretty tricky. We don't want to 203 * take the relocation lock in btrfs_record_root_in_trans 204 * unless we're really doing the first setup for this root in 205 * this transaction. 206 * 207 * Normally we'd use root->last_trans as a flag to decide 208 * if we want to take the expensive mutex. 209 * 210 * But, we have to set root->last_trans before we 211 * init the relocation root, otherwise, we trip over warnings 212 * in ctree.c. The solution used here is to flag ourselves 213 * with root->in_trans_setup. When this is 1, we're still 214 * fixing up the reloc trees and everyone must wait. 215 * 216 * When this is zero, they can trust root->last_trans and fly 217 * through btrfs_record_root_in_trans without having to take the 218 * lock. smp_wmb() makes sure that all the writes above are 219 * done before we pop in the zero below 220 */ 221 btrfs_init_reloc_root(trans, root); 222 smp_wmb(); 223 root->in_trans_setup = 0; 224 } 225 return 0; 226 } 227 228 229 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 230 struct btrfs_root *root) 231 { 232 if (!root->ref_cows) 233 return 0; 234 235 /* 236 * see record_root_in_trans for comments about in_trans_setup usage 237 * and barriers 238 */ 239 smp_rmb(); 240 if (root->last_trans == trans->transid && 241 !root->in_trans_setup) 242 return 0; 243 244 mutex_lock(&root->fs_info->reloc_mutex); 245 record_root_in_trans(trans, root); 246 mutex_unlock(&root->fs_info->reloc_mutex); 247 248 return 0; 249 } 250 251 /* wait for commit against the current transaction to become unblocked 252 * when this is done, it is safe to start a new transaction, but the current 253 * transaction might not be fully on disk. 254 */ 255 static void wait_current_trans(struct btrfs_root *root) 256 { 257 struct btrfs_transaction *cur_trans; 258 259 spin_lock(&root->fs_info->trans_lock); 260 cur_trans = root->fs_info->running_transaction; 261 if (cur_trans && cur_trans->blocked) { 262 atomic_inc(&cur_trans->use_count); 263 spin_unlock(&root->fs_info->trans_lock); 264 265 wait_event(root->fs_info->transaction_wait, 266 !cur_trans->blocked); 267 put_transaction(cur_trans); 268 } else { 269 spin_unlock(&root->fs_info->trans_lock); 270 } 271 } 272 273 enum btrfs_trans_type { 274 TRANS_START, 275 TRANS_JOIN, 276 TRANS_USERSPACE, 277 TRANS_JOIN_NOLOCK, 278 }; 279 280 static int may_wait_transaction(struct btrfs_root *root, int type) 281 { 282 if (root->fs_info->log_root_recovering) 283 return 0; 284 285 if (type == TRANS_USERSPACE) 286 return 1; 287 288 if (type == TRANS_START && 289 !atomic_read(&root->fs_info->open_ioctl_trans)) 290 return 1; 291 292 return 0; 293 } 294 295 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root, 296 u64 num_items, int type) 297 { 298 struct btrfs_trans_handle *h; 299 struct btrfs_transaction *cur_trans; 300 u64 num_bytes = 0; 301 int ret; 302 303 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) 304 return ERR_PTR(-EROFS); 305 306 if (current->journal_info) { 307 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK); 308 h = current->journal_info; 309 h->use_count++; 310 h->orig_rsv = h->block_rsv; 311 h->block_rsv = NULL; 312 goto got_it; 313 } 314 315 /* 316 * Do the reservation before we join the transaction so we can do all 317 * the appropriate flushing if need be. 318 */ 319 if (num_items > 0 && root != root->fs_info->chunk_root) { 320 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 321 ret = btrfs_block_rsv_add(root, 322 &root->fs_info->trans_block_rsv, 323 num_bytes); 324 if (ret) 325 return ERR_PTR(ret); 326 } 327 again: 328 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 329 if (!h) 330 return ERR_PTR(-ENOMEM); 331 332 if (may_wait_transaction(root, type)) 333 wait_current_trans(root); 334 335 do { 336 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK); 337 if (ret == -EBUSY) 338 wait_current_trans(root); 339 } while (ret == -EBUSY); 340 341 if (ret < 0) { 342 kmem_cache_free(btrfs_trans_handle_cachep, h); 343 return ERR_PTR(ret); 344 } 345 346 cur_trans = root->fs_info->running_transaction; 347 348 h->transid = cur_trans->transid; 349 h->transaction = cur_trans; 350 h->blocks_used = 0; 351 h->bytes_reserved = 0; 352 h->delayed_ref_updates = 0; 353 h->use_count = 1; 354 h->block_rsv = NULL; 355 h->orig_rsv = NULL; 356 h->aborted = 0; 357 358 smp_mb(); 359 if (cur_trans->blocked && may_wait_transaction(root, type)) { 360 btrfs_commit_transaction(h, root); 361 goto again; 362 } 363 364 if (num_bytes) { 365 trace_btrfs_space_reservation(root->fs_info, "transaction", 366 h->transid, num_bytes, 1); 367 h->block_rsv = &root->fs_info->trans_block_rsv; 368 h->bytes_reserved = num_bytes; 369 } 370 371 got_it: 372 btrfs_record_root_in_trans(h, root); 373 374 if (!current->journal_info && type != TRANS_USERSPACE) 375 current->journal_info = h; 376 return h; 377 } 378 379 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 380 int num_items) 381 { 382 return start_transaction(root, num_items, TRANS_START); 383 } 384 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 385 { 386 return start_transaction(root, 0, TRANS_JOIN); 387 } 388 389 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 390 { 391 return start_transaction(root, 0, TRANS_JOIN_NOLOCK); 392 } 393 394 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 395 { 396 return start_transaction(root, 0, TRANS_USERSPACE); 397 } 398 399 /* wait for a transaction commit to be fully complete */ 400 static noinline void wait_for_commit(struct btrfs_root *root, 401 struct btrfs_transaction *commit) 402 { 403 wait_event(commit->commit_wait, commit->commit_done); 404 } 405 406 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 407 { 408 struct btrfs_transaction *cur_trans = NULL, *t; 409 int ret; 410 411 ret = 0; 412 if (transid) { 413 if (transid <= root->fs_info->last_trans_committed) 414 goto out; 415 416 /* find specified transaction */ 417 spin_lock(&root->fs_info->trans_lock); 418 list_for_each_entry(t, &root->fs_info->trans_list, list) { 419 if (t->transid == transid) { 420 cur_trans = t; 421 atomic_inc(&cur_trans->use_count); 422 break; 423 } 424 if (t->transid > transid) 425 break; 426 } 427 spin_unlock(&root->fs_info->trans_lock); 428 ret = -EINVAL; 429 if (!cur_trans) 430 goto out; /* bad transid */ 431 } else { 432 /* find newest transaction that is committing | committed */ 433 spin_lock(&root->fs_info->trans_lock); 434 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 435 list) { 436 if (t->in_commit) { 437 if (t->commit_done) 438 break; 439 cur_trans = t; 440 atomic_inc(&cur_trans->use_count); 441 break; 442 } 443 } 444 spin_unlock(&root->fs_info->trans_lock); 445 if (!cur_trans) 446 goto out; /* nothing committing|committed */ 447 } 448 449 wait_for_commit(root, cur_trans); 450 451 put_transaction(cur_trans); 452 ret = 0; 453 out: 454 return ret; 455 } 456 457 void btrfs_throttle(struct btrfs_root *root) 458 { 459 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 460 wait_current_trans(root); 461 } 462 463 static int should_end_transaction(struct btrfs_trans_handle *trans, 464 struct btrfs_root *root) 465 { 466 int ret; 467 468 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 469 return ret ? 1 : 0; 470 } 471 472 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 473 struct btrfs_root *root) 474 { 475 struct btrfs_transaction *cur_trans = trans->transaction; 476 struct btrfs_block_rsv *rsv = trans->block_rsv; 477 int updates; 478 int err; 479 480 smp_mb(); 481 if (cur_trans->blocked || cur_trans->delayed_refs.flushing) 482 return 1; 483 484 /* 485 * We need to do this in case we're deleting csums so the global block 486 * rsv get's used instead of the csum block rsv. 487 */ 488 trans->block_rsv = NULL; 489 490 updates = trans->delayed_ref_updates; 491 trans->delayed_ref_updates = 0; 492 if (updates) { 493 err = btrfs_run_delayed_refs(trans, root, updates); 494 if (err) /* Error code will also eval true */ 495 return err; 496 } 497 498 trans->block_rsv = rsv; 499 500 return should_end_transaction(trans, root); 501 } 502 503 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 504 struct btrfs_root *root, int throttle, int lock) 505 { 506 struct btrfs_transaction *cur_trans = trans->transaction; 507 struct btrfs_fs_info *info = root->fs_info; 508 int count = 0; 509 int err = 0; 510 511 if (--trans->use_count) { 512 trans->block_rsv = trans->orig_rsv; 513 return 0; 514 } 515 516 btrfs_trans_release_metadata(trans, root); 517 trans->block_rsv = NULL; 518 while (count < 2) { 519 unsigned long cur = trans->delayed_ref_updates; 520 trans->delayed_ref_updates = 0; 521 if (cur && 522 trans->transaction->delayed_refs.num_heads_ready > 64) { 523 trans->delayed_ref_updates = 0; 524 btrfs_run_delayed_refs(trans, root, cur); 525 } else { 526 break; 527 } 528 count++; 529 } 530 531 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 532 should_end_transaction(trans, root)) { 533 trans->transaction->blocked = 1; 534 smp_wmb(); 535 } 536 537 if (lock && cur_trans->blocked && !cur_trans->in_commit) { 538 if (throttle) { 539 /* 540 * We may race with somebody else here so end up having 541 * to call end_transaction on ourselves again, so inc 542 * our use_count. 543 */ 544 trans->use_count++; 545 return btrfs_commit_transaction(trans, root); 546 } else { 547 wake_up_process(info->transaction_kthread); 548 } 549 } 550 551 WARN_ON(cur_trans != info->running_transaction); 552 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 553 atomic_dec(&cur_trans->num_writers); 554 555 smp_mb(); 556 if (waitqueue_active(&cur_trans->writer_wait)) 557 wake_up(&cur_trans->writer_wait); 558 put_transaction(cur_trans); 559 560 if (current->journal_info == trans) 561 current->journal_info = NULL; 562 563 if (throttle) 564 btrfs_run_delayed_iputs(root); 565 566 if (trans->aborted || 567 root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 568 err = -EIO; 569 } 570 571 memset(trans, 0, sizeof(*trans)); 572 kmem_cache_free(btrfs_trans_handle_cachep, trans); 573 return err; 574 } 575 576 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 577 struct btrfs_root *root) 578 { 579 int ret; 580 581 ret = __btrfs_end_transaction(trans, root, 0, 1); 582 if (ret) 583 return ret; 584 return 0; 585 } 586 587 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 588 struct btrfs_root *root) 589 { 590 int ret; 591 592 ret = __btrfs_end_transaction(trans, root, 1, 1); 593 if (ret) 594 return ret; 595 return 0; 596 } 597 598 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans, 599 struct btrfs_root *root) 600 { 601 int ret; 602 603 ret = __btrfs_end_transaction(trans, root, 0, 0); 604 if (ret) 605 return ret; 606 return 0; 607 } 608 609 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans, 610 struct btrfs_root *root) 611 { 612 return __btrfs_end_transaction(trans, root, 1, 1); 613 } 614 615 /* 616 * when btree blocks are allocated, they have some corresponding bits set for 617 * them in one of two extent_io trees. This is used to make sure all of 618 * those extents are sent to disk but does not wait on them 619 */ 620 int btrfs_write_marked_extents(struct btrfs_root *root, 621 struct extent_io_tree *dirty_pages, int mark) 622 { 623 int err = 0; 624 int werr = 0; 625 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 626 u64 start = 0; 627 u64 end; 628 629 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 630 mark)) { 631 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark, 632 GFP_NOFS); 633 err = filemap_fdatawrite_range(mapping, start, end); 634 if (err) 635 werr = err; 636 cond_resched(); 637 start = end + 1; 638 } 639 if (err) 640 werr = err; 641 return werr; 642 } 643 644 /* 645 * when btree blocks are allocated, they have some corresponding bits set for 646 * them in one of two extent_io trees. This is used to make sure all of 647 * those extents are on disk for transaction or log commit. We wait 648 * on all the pages and clear them from the dirty pages state tree 649 */ 650 int btrfs_wait_marked_extents(struct btrfs_root *root, 651 struct extent_io_tree *dirty_pages, int mark) 652 { 653 int err = 0; 654 int werr = 0; 655 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 656 u64 start = 0; 657 u64 end; 658 659 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 660 EXTENT_NEED_WAIT)) { 661 clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS); 662 err = filemap_fdatawait_range(mapping, start, end); 663 if (err) 664 werr = err; 665 cond_resched(); 666 start = end + 1; 667 } 668 if (err) 669 werr = err; 670 return werr; 671 } 672 673 /* 674 * when btree blocks are allocated, they have some corresponding bits set for 675 * them in one of two extent_io trees. This is used to make sure all of 676 * those extents are on disk for transaction or log commit 677 */ 678 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 679 struct extent_io_tree *dirty_pages, int mark) 680 { 681 int ret; 682 int ret2; 683 684 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 685 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 686 687 if (ret) 688 return ret; 689 if (ret2) 690 return ret2; 691 return 0; 692 } 693 694 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 695 struct btrfs_root *root) 696 { 697 if (!trans || !trans->transaction) { 698 struct inode *btree_inode; 699 btree_inode = root->fs_info->btree_inode; 700 return filemap_write_and_wait(btree_inode->i_mapping); 701 } 702 return btrfs_write_and_wait_marked_extents(root, 703 &trans->transaction->dirty_pages, 704 EXTENT_DIRTY); 705 } 706 707 /* 708 * this is used to update the root pointer in the tree of tree roots. 709 * 710 * But, in the case of the extent allocation tree, updating the root 711 * pointer may allocate blocks which may change the root of the extent 712 * allocation tree. 713 * 714 * So, this loops and repeats and makes sure the cowonly root didn't 715 * change while the root pointer was being updated in the metadata. 716 */ 717 static int update_cowonly_root(struct btrfs_trans_handle *trans, 718 struct btrfs_root *root) 719 { 720 int ret; 721 u64 old_root_bytenr; 722 u64 old_root_used; 723 struct btrfs_root *tree_root = root->fs_info->tree_root; 724 725 old_root_used = btrfs_root_used(&root->root_item); 726 btrfs_write_dirty_block_groups(trans, root); 727 728 while (1) { 729 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 730 if (old_root_bytenr == root->node->start && 731 old_root_used == btrfs_root_used(&root->root_item)) 732 break; 733 734 btrfs_set_root_node(&root->root_item, root->node); 735 ret = btrfs_update_root(trans, tree_root, 736 &root->root_key, 737 &root->root_item); 738 if (ret) 739 return ret; 740 741 old_root_used = btrfs_root_used(&root->root_item); 742 ret = btrfs_write_dirty_block_groups(trans, root); 743 if (ret) 744 return ret; 745 } 746 747 if (root != root->fs_info->extent_root) 748 switch_commit_root(root); 749 750 return 0; 751 } 752 753 /* 754 * update all the cowonly tree roots on disk 755 * 756 * The error handling in this function may not be obvious. Any of the 757 * failures will cause the file system to go offline. We still need 758 * to clean up the delayed refs. 759 */ 760 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 761 struct btrfs_root *root) 762 { 763 struct btrfs_fs_info *fs_info = root->fs_info; 764 struct list_head *next; 765 struct extent_buffer *eb; 766 int ret; 767 768 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 769 if (ret) 770 return ret; 771 772 eb = btrfs_lock_root_node(fs_info->tree_root); 773 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 774 0, &eb); 775 btrfs_tree_unlock(eb); 776 free_extent_buffer(eb); 777 778 if (ret) 779 return ret; 780 781 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 782 if (ret) 783 return ret; 784 785 ret = btrfs_run_dev_stats(trans, root->fs_info); 786 BUG_ON(ret); 787 788 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 789 next = fs_info->dirty_cowonly_roots.next; 790 list_del_init(next); 791 root = list_entry(next, struct btrfs_root, dirty_list); 792 793 ret = update_cowonly_root(trans, root); 794 if (ret) 795 return ret; 796 } 797 798 down_write(&fs_info->extent_commit_sem); 799 switch_commit_root(fs_info->extent_root); 800 up_write(&fs_info->extent_commit_sem); 801 802 return 0; 803 } 804 805 /* 806 * dead roots are old snapshots that need to be deleted. This allocates 807 * a dirty root struct and adds it into the list of dead roots that need to 808 * be deleted 809 */ 810 int btrfs_add_dead_root(struct btrfs_root *root) 811 { 812 spin_lock(&root->fs_info->trans_lock); 813 list_add(&root->root_list, &root->fs_info->dead_roots); 814 spin_unlock(&root->fs_info->trans_lock); 815 return 0; 816 } 817 818 /* 819 * update all the cowonly tree roots on disk 820 */ 821 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 822 struct btrfs_root *root) 823 { 824 struct btrfs_root *gang[8]; 825 struct btrfs_fs_info *fs_info = root->fs_info; 826 int i; 827 int ret; 828 int err = 0; 829 830 spin_lock(&fs_info->fs_roots_radix_lock); 831 while (1) { 832 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 833 (void **)gang, 0, 834 ARRAY_SIZE(gang), 835 BTRFS_ROOT_TRANS_TAG); 836 if (ret == 0) 837 break; 838 for (i = 0; i < ret; i++) { 839 root = gang[i]; 840 radix_tree_tag_clear(&fs_info->fs_roots_radix, 841 (unsigned long)root->root_key.objectid, 842 BTRFS_ROOT_TRANS_TAG); 843 spin_unlock(&fs_info->fs_roots_radix_lock); 844 845 btrfs_free_log(trans, root); 846 btrfs_update_reloc_root(trans, root); 847 btrfs_orphan_commit_root(trans, root); 848 849 btrfs_save_ino_cache(root, trans); 850 851 /* see comments in should_cow_block() */ 852 root->force_cow = 0; 853 smp_wmb(); 854 855 if (root->commit_root != root->node) { 856 mutex_lock(&root->fs_commit_mutex); 857 switch_commit_root(root); 858 btrfs_unpin_free_ino(root); 859 mutex_unlock(&root->fs_commit_mutex); 860 861 btrfs_set_root_node(&root->root_item, 862 root->node); 863 } 864 865 err = btrfs_update_root(trans, fs_info->tree_root, 866 &root->root_key, 867 &root->root_item); 868 spin_lock(&fs_info->fs_roots_radix_lock); 869 if (err) 870 break; 871 } 872 } 873 spin_unlock(&fs_info->fs_roots_radix_lock); 874 return err; 875 } 876 877 /* 878 * defrag a given btree. If cacheonly == 1, this won't read from the disk, 879 * otherwise every leaf in the btree is read and defragged. 880 */ 881 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly) 882 { 883 struct btrfs_fs_info *info = root->fs_info; 884 struct btrfs_trans_handle *trans; 885 int ret; 886 unsigned long nr; 887 888 if (xchg(&root->defrag_running, 1)) 889 return 0; 890 891 while (1) { 892 trans = btrfs_start_transaction(root, 0); 893 if (IS_ERR(trans)) 894 return PTR_ERR(trans); 895 896 ret = btrfs_defrag_leaves(trans, root, cacheonly); 897 898 nr = trans->blocks_used; 899 btrfs_end_transaction(trans, root); 900 btrfs_btree_balance_dirty(info->tree_root, nr); 901 cond_resched(); 902 903 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 904 break; 905 } 906 root->defrag_running = 0; 907 return ret; 908 } 909 910 /* 911 * new snapshots need to be created at a very specific time in the 912 * transaction commit. This does the actual creation 913 */ 914 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 915 struct btrfs_fs_info *fs_info, 916 struct btrfs_pending_snapshot *pending) 917 { 918 struct btrfs_key key; 919 struct btrfs_root_item *new_root_item; 920 struct btrfs_root *tree_root = fs_info->tree_root; 921 struct btrfs_root *root = pending->root; 922 struct btrfs_root *parent_root; 923 struct btrfs_block_rsv *rsv; 924 struct inode *parent_inode; 925 struct dentry *parent; 926 struct dentry *dentry; 927 struct extent_buffer *tmp; 928 struct extent_buffer *old; 929 int ret; 930 u64 to_reserve = 0; 931 u64 index = 0; 932 u64 objectid; 933 u64 root_flags; 934 935 rsv = trans->block_rsv; 936 937 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 938 if (!new_root_item) { 939 ret = pending->error = -ENOMEM; 940 goto fail; 941 } 942 943 ret = btrfs_find_free_objectid(tree_root, &objectid); 944 if (ret) { 945 pending->error = ret; 946 goto fail; 947 } 948 949 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve); 950 951 if (to_reserve > 0) { 952 ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv, 953 to_reserve); 954 if (ret) { 955 pending->error = ret; 956 goto fail; 957 } 958 } 959 960 key.objectid = objectid; 961 key.offset = (u64)-1; 962 key.type = BTRFS_ROOT_ITEM_KEY; 963 964 trans->block_rsv = &pending->block_rsv; 965 966 dentry = pending->dentry; 967 parent = dget_parent(dentry); 968 parent_inode = parent->d_inode; 969 parent_root = BTRFS_I(parent_inode)->root; 970 record_root_in_trans(trans, parent_root); 971 972 /* 973 * insert the directory item 974 */ 975 ret = btrfs_set_inode_index(parent_inode, &index); 976 BUG_ON(ret); /* -ENOMEM */ 977 ret = btrfs_insert_dir_item(trans, parent_root, 978 dentry->d_name.name, dentry->d_name.len, 979 parent_inode, &key, 980 BTRFS_FT_DIR, index); 981 if (ret == -EEXIST) { 982 pending->error = -EEXIST; 983 dput(parent); 984 goto fail; 985 } else if (ret) { 986 goto abort_trans_dput; 987 } 988 989 btrfs_i_size_write(parent_inode, parent_inode->i_size + 990 dentry->d_name.len * 2); 991 ret = btrfs_update_inode(trans, parent_root, parent_inode); 992 if (ret) 993 goto abort_trans_dput; 994 995 /* 996 * pull in the delayed directory update 997 * and the delayed inode item 998 * otherwise we corrupt the FS during 999 * snapshot 1000 */ 1001 ret = btrfs_run_delayed_items(trans, root); 1002 if (ret) { /* Transaction aborted */ 1003 dput(parent); 1004 goto fail; 1005 } 1006 1007 record_root_in_trans(trans, root); 1008 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1009 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1010 btrfs_check_and_init_root_item(new_root_item); 1011 1012 root_flags = btrfs_root_flags(new_root_item); 1013 if (pending->readonly) 1014 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1015 else 1016 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1017 btrfs_set_root_flags(new_root_item, root_flags); 1018 1019 old = btrfs_lock_root_node(root); 1020 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1021 if (ret) { 1022 btrfs_tree_unlock(old); 1023 free_extent_buffer(old); 1024 goto abort_trans_dput; 1025 } 1026 1027 btrfs_set_lock_blocking(old); 1028 1029 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1030 /* clean up in any case */ 1031 btrfs_tree_unlock(old); 1032 free_extent_buffer(old); 1033 if (ret) 1034 goto abort_trans_dput; 1035 1036 /* see comments in should_cow_block() */ 1037 root->force_cow = 1; 1038 smp_wmb(); 1039 1040 btrfs_set_root_node(new_root_item, tmp); 1041 /* record when the snapshot was created in key.offset */ 1042 key.offset = trans->transid; 1043 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1044 btrfs_tree_unlock(tmp); 1045 free_extent_buffer(tmp); 1046 if (ret) 1047 goto abort_trans_dput; 1048 1049 /* 1050 * insert root back/forward references 1051 */ 1052 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1053 parent_root->root_key.objectid, 1054 btrfs_ino(parent_inode), index, 1055 dentry->d_name.name, dentry->d_name.len); 1056 dput(parent); 1057 if (ret) 1058 goto fail; 1059 1060 key.offset = (u64)-1; 1061 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1062 if (IS_ERR(pending->snap)) { 1063 ret = PTR_ERR(pending->snap); 1064 goto abort_trans; 1065 } 1066 1067 ret = btrfs_reloc_post_snapshot(trans, pending); 1068 if (ret) 1069 goto abort_trans; 1070 ret = 0; 1071 fail: 1072 kfree(new_root_item); 1073 trans->block_rsv = rsv; 1074 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1); 1075 return ret; 1076 1077 abort_trans_dput: 1078 dput(parent); 1079 abort_trans: 1080 btrfs_abort_transaction(trans, root, ret); 1081 goto fail; 1082 } 1083 1084 /* 1085 * create all the snapshots we've scheduled for creation 1086 */ 1087 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1088 struct btrfs_fs_info *fs_info) 1089 { 1090 struct btrfs_pending_snapshot *pending; 1091 struct list_head *head = &trans->transaction->pending_snapshots; 1092 1093 list_for_each_entry(pending, head, list) 1094 create_pending_snapshot(trans, fs_info, pending); 1095 return 0; 1096 } 1097 1098 static void update_super_roots(struct btrfs_root *root) 1099 { 1100 struct btrfs_root_item *root_item; 1101 struct btrfs_super_block *super; 1102 1103 super = root->fs_info->super_copy; 1104 1105 root_item = &root->fs_info->chunk_root->root_item; 1106 super->chunk_root = root_item->bytenr; 1107 super->chunk_root_generation = root_item->generation; 1108 super->chunk_root_level = root_item->level; 1109 1110 root_item = &root->fs_info->tree_root->root_item; 1111 super->root = root_item->bytenr; 1112 super->generation = root_item->generation; 1113 super->root_level = root_item->level; 1114 if (btrfs_test_opt(root, SPACE_CACHE)) 1115 super->cache_generation = root_item->generation; 1116 } 1117 1118 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1119 { 1120 int ret = 0; 1121 spin_lock(&info->trans_lock); 1122 if (info->running_transaction) 1123 ret = info->running_transaction->in_commit; 1124 spin_unlock(&info->trans_lock); 1125 return ret; 1126 } 1127 1128 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1129 { 1130 int ret = 0; 1131 spin_lock(&info->trans_lock); 1132 if (info->running_transaction) 1133 ret = info->running_transaction->blocked; 1134 spin_unlock(&info->trans_lock); 1135 return ret; 1136 } 1137 1138 /* 1139 * wait for the current transaction commit to start and block subsequent 1140 * transaction joins 1141 */ 1142 static void wait_current_trans_commit_start(struct btrfs_root *root, 1143 struct btrfs_transaction *trans) 1144 { 1145 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit); 1146 } 1147 1148 /* 1149 * wait for the current transaction to start and then become unblocked. 1150 * caller holds ref. 1151 */ 1152 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1153 struct btrfs_transaction *trans) 1154 { 1155 wait_event(root->fs_info->transaction_wait, 1156 trans->commit_done || (trans->in_commit && !trans->blocked)); 1157 } 1158 1159 /* 1160 * commit transactions asynchronously. once btrfs_commit_transaction_async 1161 * returns, any subsequent transaction will not be allowed to join. 1162 */ 1163 struct btrfs_async_commit { 1164 struct btrfs_trans_handle *newtrans; 1165 struct btrfs_root *root; 1166 struct delayed_work work; 1167 }; 1168 1169 static void do_async_commit(struct work_struct *work) 1170 { 1171 struct btrfs_async_commit *ac = 1172 container_of(work, struct btrfs_async_commit, work.work); 1173 1174 btrfs_commit_transaction(ac->newtrans, ac->root); 1175 kfree(ac); 1176 } 1177 1178 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1179 struct btrfs_root *root, 1180 int wait_for_unblock) 1181 { 1182 struct btrfs_async_commit *ac; 1183 struct btrfs_transaction *cur_trans; 1184 1185 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1186 if (!ac) 1187 return -ENOMEM; 1188 1189 INIT_DELAYED_WORK(&ac->work, do_async_commit); 1190 ac->root = root; 1191 ac->newtrans = btrfs_join_transaction(root); 1192 if (IS_ERR(ac->newtrans)) { 1193 int err = PTR_ERR(ac->newtrans); 1194 kfree(ac); 1195 return err; 1196 } 1197 1198 /* take transaction reference */ 1199 cur_trans = trans->transaction; 1200 atomic_inc(&cur_trans->use_count); 1201 1202 btrfs_end_transaction(trans, root); 1203 schedule_delayed_work(&ac->work, 0); 1204 1205 /* wait for transaction to start and unblock */ 1206 if (wait_for_unblock) 1207 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1208 else 1209 wait_current_trans_commit_start(root, cur_trans); 1210 1211 if (current->journal_info == trans) 1212 current->journal_info = NULL; 1213 1214 put_transaction(cur_trans); 1215 return 0; 1216 } 1217 1218 1219 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1220 struct btrfs_root *root, int err) 1221 { 1222 struct btrfs_transaction *cur_trans = trans->transaction; 1223 1224 WARN_ON(trans->use_count > 1); 1225 1226 btrfs_abort_transaction(trans, root, err); 1227 1228 spin_lock(&root->fs_info->trans_lock); 1229 list_del_init(&cur_trans->list); 1230 if (cur_trans == root->fs_info->running_transaction) { 1231 root->fs_info->running_transaction = NULL; 1232 root->fs_info->trans_no_join = 0; 1233 } 1234 spin_unlock(&root->fs_info->trans_lock); 1235 1236 btrfs_cleanup_one_transaction(trans->transaction, root); 1237 1238 put_transaction(cur_trans); 1239 put_transaction(cur_trans); 1240 1241 trace_btrfs_transaction_commit(root); 1242 1243 btrfs_scrub_continue(root); 1244 1245 if (current->journal_info == trans) 1246 current->journal_info = NULL; 1247 1248 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1249 } 1250 1251 /* 1252 * btrfs_transaction state sequence: 1253 * in_commit = 0, blocked = 0 (initial) 1254 * in_commit = 1, blocked = 1 1255 * blocked = 0 1256 * commit_done = 1 1257 */ 1258 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1259 struct btrfs_root *root) 1260 { 1261 unsigned long joined = 0; 1262 struct btrfs_transaction *cur_trans = trans->transaction; 1263 struct btrfs_transaction *prev_trans = NULL; 1264 DEFINE_WAIT(wait); 1265 int ret = -EIO; 1266 int should_grow = 0; 1267 unsigned long now = get_seconds(); 1268 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT); 1269 1270 btrfs_run_ordered_operations(root, 0); 1271 1272 btrfs_trans_release_metadata(trans, root); 1273 trans->block_rsv = NULL; 1274 1275 if (cur_trans->aborted) 1276 goto cleanup_transaction; 1277 1278 /* make a pass through all the delayed refs we have so far 1279 * any runnings procs may add more while we are here 1280 */ 1281 ret = btrfs_run_delayed_refs(trans, root, 0); 1282 if (ret) 1283 goto cleanup_transaction; 1284 1285 cur_trans = trans->transaction; 1286 1287 /* 1288 * set the flushing flag so procs in this transaction have to 1289 * start sending their work down. 1290 */ 1291 cur_trans->delayed_refs.flushing = 1; 1292 1293 ret = btrfs_run_delayed_refs(trans, root, 0); 1294 if (ret) 1295 goto cleanup_transaction; 1296 1297 spin_lock(&cur_trans->commit_lock); 1298 if (cur_trans->in_commit) { 1299 spin_unlock(&cur_trans->commit_lock); 1300 atomic_inc(&cur_trans->use_count); 1301 ret = btrfs_end_transaction(trans, root); 1302 1303 wait_for_commit(root, cur_trans); 1304 1305 put_transaction(cur_trans); 1306 1307 return ret; 1308 } 1309 1310 trans->transaction->in_commit = 1; 1311 trans->transaction->blocked = 1; 1312 spin_unlock(&cur_trans->commit_lock); 1313 wake_up(&root->fs_info->transaction_blocked_wait); 1314 1315 spin_lock(&root->fs_info->trans_lock); 1316 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1317 prev_trans = list_entry(cur_trans->list.prev, 1318 struct btrfs_transaction, list); 1319 if (!prev_trans->commit_done) { 1320 atomic_inc(&prev_trans->use_count); 1321 spin_unlock(&root->fs_info->trans_lock); 1322 1323 wait_for_commit(root, prev_trans); 1324 1325 put_transaction(prev_trans); 1326 } else { 1327 spin_unlock(&root->fs_info->trans_lock); 1328 } 1329 } else { 1330 spin_unlock(&root->fs_info->trans_lock); 1331 } 1332 1333 if (now < cur_trans->start_time || now - cur_trans->start_time < 1) 1334 should_grow = 1; 1335 1336 do { 1337 int snap_pending = 0; 1338 1339 joined = cur_trans->num_joined; 1340 if (!list_empty(&trans->transaction->pending_snapshots)) 1341 snap_pending = 1; 1342 1343 WARN_ON(cur_trans != trans->transaction); 1344 1345 if (flush_on_commit || snap_pending) { 1346 btrfs_start_delalloc_inodes(root, 1); 1347 btrfs_wait_ordered_extents(root, 0, 1); 1348 } 1349 1350 ret = btrfs_run_delayed_items(trans, root); 1351 if (ret) 1352 goto cleanup_transaction; 1353 1354 /* 1355 * rename don't use btrfs_join_transaction, so, once we 1356 * set the transaction to blocked above, we aren't going 1357 * to get any new ordered operations. We can safely run 1358 * it here and no for sure that nothing new will be added 1359 * to the list 1360 */ 1361 btrfs_run_ordered_operations(root, 1); 1362 1363 prepare_to_wait(&cur_trans->writer_wait, &wait, 1364 TASK_UNINTERRUPTIBLE); 1365 1366 if (atomic_read(&cur_trans->num_writers) > 1) 1367 schedule_timeout(MAX_SCHEDULE_TIMEOUT); 1368 else if (should_grow) 1369 schedule_timeout(1); 1370 1371 finish_wait(&cur_trans->writer_wait, &wait); 1372 } while (atomic_read(&cur_trans->num_writers) > 1 || 1373 (should_grow && cur_trans->num_joined != joined)); 1374 1375 /* 1376 * Ok now we need to make sure to block out any other joins while we 1377 * commit the transaction. We could have started a join before setting 1378 * no_join so make sure to wait for num_writers to == 1 again. 1379 */ 1380 spin_lock(&root->fs_info->trans_lock); 1381 root->fs_info->trans_no_join = 1; 1382 spin_unlock(&root->fs_info->trans_lock); 1383 wait_event(cur_trans->writer_wait, 1384 atomic_read(&cur_trans->num_writers) == 1); 1385 1386 /* 1387 * the reloc mutex makes sure that we stop 1388 * the balancing code from coming in and moving 1389 * extents around in the middle of the commit 1390 */ 1391 mutex_lock(&root->fs_info->reloc_mutex); 1392 1393 ret = btrfs_run_delayed_items(trans, root); 1394 if (ret) { 1395 mutex_unlock(&root->fs_info->reloc_mutex); 1396 goto cleanup_transaction; 1397 } 1398 1399 ret = create_pending_snapshots(trans, root->fs_info); 1400 if (ret) { 1401 mutex_unlock(&root->fs_info->reloc_mutex); 1402 goto cleanup_transaction; 1403 } 1404 1405 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1406 if (ret) { 1407 mutex_unlock(&root->fs_info->reloc_mutex); 1408 goto cleanup_transaction; 1409 } 1410 1411 /* 1412 * make sure none of the code above managed to slip in a 1413 * delayed item 1414 */ 1415 btrfs_assert_delayed_root_empty(root); 1416 1417 WARN_ON(cur_trans != trans->transaction); 1418 1419 btrfs_scrub_pause(root); 1420 /* btrfs_commit_tree_roots is responsible for getting the 1421 * various roots consistent with each other. Every pointer 1422 * in the tree of tree roots has to point to the most up to date 1423 * root for every subvolume and other tree. So, we have to keep 1424 * the tree logging code from jumping in and changing any 1425 * of the trees. 1426 * 1427 * At this point in the commit, there can't be any tree-log 1428 * writers, but a little lower down we drop the trans mutex 1429 * and let new people in. By holding the tree_log_mutex 1430 * from now until after the super is written, we avoid races 1431 * with the tree-log code. 1432 */ 1433 mutex_lock(&root->fs_info->tree_log_mutex); 1434 1435 ret = commit_fs_roots(trans, root); 1436 if (ret) { 1437 mutex_unlock(&root->fs_info->tree_log_mutex); 1438 mutex_unlock(&root->fs_info->reloc_mutex); 1439 goto cleanup_transaction; 1440 } 1441 1442 /* commit_fs_roots gets rid of all the tree log roots, it is now 1443 * safe to free the root of tree log roots 1444 */ 1445 btrfs_free_log_root_tree(trans, root->fs_info); 1446 1447 ret = commit_cowonly_roots(trans, root); 1448 if (ret) { 1449 mutex_unlock(&root->fs_info->tree_log_mutex); 1450 mutex_unlock(&root->fs_info->reloc_mutex); 1451 goto cleanup_transaction; 1452 } 1453 1454 btrfs_prepare_extent_commit(trans, root); 1455 1456 cur_trans = root->fs_info->running_transaction; 1457 1458 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 1459 root->fs_info->tree_root->node); 1460 switch_commit_root(root->fs_info->tree_root); 1461 1462 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 1463 root->fs_info->chunk_root->node); 1464 switch_commit_root(root->fs_info->chunk_root); 1465 1466 update_super_roots(root); 1467 1468 if (!root->fs_info->log_root_recovering) { 1469 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 1470 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 1471 } 1472 1473 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 1474 sizeof(*root->fs_info->super_copy)); 1475 1476 trans->transaction->blocked = 0; 1477 spin_lock(&root->fs_info->trans_lock); 1478 root->fs_info->running_transaction = NULL; 1479 root->fs_info->trans_no_join = 0; 1480 spin_unlock(&root->fs_info->trans_lock); 1481 mutex_unlock(&root->fs_info->reloc_mutex); 1482 1483 wake_up(&root->fs_info->transaction_wait); 1484 1485 ret = btrfs_write_and_wait_transaction(trans, root); 1486 if (ret) { 1487 btrfs_error(root->fs_info, ret, 1488 "Error while writing out transaction."); 1489 mutex_unlock(&root->fs_info->tree_log_mutex); 1490 goto cleanup_transaction; 1491 } 1492 1493 ret = write_ctree_super(trans, root, 0); 1494 if (ret) { 1495 mutex_unlock(&root->fs_info->tree_log_mutex); 1496 goto cleanup_transaction; 1497 } 1498 1499 /* 1500 * the super is written, we can safely allow the tree-loggers 1501 * to go about their business 1502 */ 1503 mutex_unlock(&root->fs_info->tree_log_mutex); 1504 1505 btrfs_finish_extent_commit(trans, root); 1506 1507 cur_trans->commit_done = 1; 1508 1509 root->fs_info->last_trans_committed = cur_trans->transid; 1510 1511 wake_up(&cur_trans->commit_wait); 1512 1513 spin_lock(&root->fs_info->trans_lock); 1514 list_del_init(&cur_trans->list); 1515 spin_unlock(&root->fs_info->trans_lock); 1516 1517 put_transaction(cur_trans); 1518 put_transaction(cur_trans); 1519 1520 trace_btrfs_transaction_commit(root); 1521 1522 btrfs_scrub_continue(root); 1523 1524 if (current->journal_info == trans) 1525 current->journal_info = NULL; 1526 1527 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1528 1529 if (current != root->fs_info->transaction_kthread) 1530 btrfs_run_delayed_iputs(root); 1531 1532 return ret; 1533 1534 cleanup_transaction: 1535 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n"); 1536 // WARN_ON(1); 1537 if (current->journal_info == trans) 1538 current->journal_info = NULL; 1539 cleanup_transaction(trans, root, ret); 1540 1541 return ret; 1542 } 1543 1544 /* 1545 * interface function to delete all the snapshots we have scheduled for deletion 1546 */ 1547 int btrfs_clean_old_snapshots(struct btrfs_root *root) 1548 { 1549 LIST_HEAD(list); 1550 struct btrfs_fs_info *fs_info = root->fs_info; 1551 1552 spin_lock(&fs_info->trans_lock); 1553 list_splice_init(&fs_info->dead_roots, &list); 1554 spin_unlock(&fs_info->trans_lock); 1555 1556 while (!list_empty(&list)) { 1557 int ret; 1558 1559 root = list_entry(list.next, struct btrfs_root, root_list); 1560 list_del(&root->root_list); 1561 1562 btrfs_kill_all_delayed_nodes(root); 1563 1564 if (btrfs_header_backref_rev(root->node) < 1565 BTRFS_MIXED_BACKREF_REV) 1566 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 1567 else 1568 ret =btrfs_drop_snapshot(root, NULL, 1, 0); 1569 BUG_ON(ret < 0); 1570 } 1571 return 0; 1572 } 1573