1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 #include "qgroup.h" 35 36 #define BTRFS_ROOT_TRANS_TAG 0 37 38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 39 [TRANS_STATE_RUNNING] = 0U, 40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | 41 __TRANS_START), 42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | 43 __TRANS_START | 44 __TRANS_ATTACH), 45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | 46 __TRANS_START | 47 __TRANS_ATTACH | 48 __TRANS_JOIN), 49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | 50 __TRANS_START | 51 __TRANS_ATTACH | 52 __TRANS_JOIN | 53 __TRANS_JOIN_NOLOCK), 54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | 55 __TRANS_START | 56 __TRANS_ATTACH | 57 __TRANS_JOIN | 58 __TRANS_JOIN_NOLOCK), 59 }; 60 61 void btrfs_put_transaction(struct btrfs_transaction *transaction) 62 { 63 WARN_ON(atomic_read(&transaction->use_count) == 0); 64 if (atomic_dec_and_test(&transaction->use_count)) { 65 BUG_ON(!list_empty(&transaction->list)); 66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root)); 67 if (transaction->delayed_refs.pending_csums) 68 printk(KERN_ERR "pending csums is %llu\n", 69 transaction->delayed_refs.pending_csums); 70 while (!list_empty(&transaction->pending_chunks)) { 71 struct extent_map *em; 72 73 em = list_first_entry(&transaction->pending_chunks, 74 struct extent_map, list); 75 list_del_init(&em->list); 76 free_extent_map(em); 77 } 78 kmem_cache_free(btrfs_transaction_cachep, transaction); 79 } 80 } 81 82 static void clear_btree_io_tree(struct extent_io_tree *tree) 83 { 84 spin_lock(&tree->lock); 85 while (!RB_EMPTY_ROOT(&tree->state)) { 86 struct rb_node *node; 87 struct extent_state *state; 88 89 node = rb_first(&tree->state); 90 state = rb_entry(node, struct extent_state, rb_node); 91 rb_erase(&state->rb_node, &tree->state); 92 RB_CLEAR_NODE(&state->rb_node); 93 /* 94 * btree io trees aren't supposed to have tasks waiting for 95 * changes in the flags of extent states ever. 96 */ 97 ASSERT(!waitqueue_active(&state->wq)); 98 free_extent_state(state); 99 100 cond_resched_lock(&tree->lock); 101 } 102 spin_unlock(&tree->lock); 103 } 104 105 static noinline void switch_commit_roots(struct btrfs_transaction *trans, 106 struct btrfs_fs_info *fs_info) 107 { 108 struct btrfs_root *root, *tmp; 109 110 down_write(&fs_info->commit_root_sem); 111 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 112 dirty_list) { 113 list_del_init(&root->dirty_list); 114 free_extent_buffer(root->commit_root); 115 root->commit_root = btrfs_root_node(root); 116 if (is_fstree(root->objectid)) 117 btrfs_unpin_free_ino(root); 118 clear_btree_io_tree(&root->dirty_log_pages); 119 } 120 121 /* We can free old roots now. */ 122 spin_lock(&trans->dropped_roots_lock); 123 while (!list_empty(&trans->dropped_roots)) { 124 root = list_first_entry(&trans->dropped_roots, 125 struct btrfs_root, root_list); 126 list_del_init(&root->root_list); 127 spin_unlock(&trans->dropped_roots_lock); 128 btrfs_drop_and_free_fs_root(fs_info, root); 129 spin_lock(&trans->dropped_roots_lock); 130 } 131 spin_unlock(&trans->dropped_roots_lock); 132 up_write(&fs_info->commit_root_sem); 133 } 134 135 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 136 unsigned int type) 137 { 138 if (type & TRANS_EXTWRITERS) 139 atomic_inc(&trans->num_extwriters); 140 } 141 142 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 143 unsigned int type) 144 { 145 if (type & TRANS_EXTWRITERS) 146 atomic_dec(&trans->num_extwriters); 147 } 148 149 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 150 unsigned int type) 151 { 152 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 153 } 154 155 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 156 { 157 return atomic_read(&trans->num_extwriters); 158 } 159 160 /* 161 * either allocate a new transaction or hop into the existing one 162 */ 163 static noinline int join_transaction(struct btrfs_root *root, unsigned int type) 164 { 165 struct btrfs_transaction *cur_trans; 166 struct btrfs_fs_info *fs_info = root->fs_info; 167 168 spin_lock(&fs_info->trans_lock); 169 loop: 170 /* The file system has been taken offline. No new transactions. */ 171 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 172 spin_unlock(&fs_info->trans_lock); 173 return -EROFS; 174 } 175 176 cur_trans = fs_info->running_transaction; 177 if (cur_trans) { 178 if (cur_trans->aborted) { 179 spin_unlock(&fs_info->trans_lock); 180 return cur_trans->aborted; 181 } 182 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 183 spin_unlock(&fs_info->trans_lock); 184 return -EBUSY; 185 } 186 atomic_inc(&cur_trans->use_count); 187 atomic_inc(&cur_trans->num_writers); 188 extwriter_counter_inc(cur_trans, type); 189 spin_unlock(&fs_info->trans_lock); 190 return 0; 191 } 192 spin_unlock(&fs_info->trans_lock); 193 194 /* 195 * If we are ATTACH, we just want to catch the current transaction, 196 * and commit it. If there is no transaction, just return ENOENT. 197 */ 198 if (type == TRANS_ATTACH) 199 return -ENOENT; 200 201 /* 202 * JOIN_NOLOCK only happens during the transaction commit, so 203 * it is impossible that ->running_transaction is NULL 204 */ 205 BUG_ON(type == TRANS_JOIN_NOLOCK); 206 207 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 208 if (!cur_trans) 209 return -ENOMEM; 210 211 spin_lock(&fs_info->trans_lock); 212 if (fs_info->running_transaction) { 213 /* 214 * someone started a transaction after we unlocked. Make sure 215 * to redo the checks above 216 */ 217 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 218 goto loop; 219 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 220 spin_unlock(&fs_info->trans_lock); 221 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 222 return -EROFS; 223 } 224 225 atomic_set(&cur_trans->num_writers, 1); 226 extwriter_counter_init(cur_trans, type); 227 init_waitqueue_head(&cur_trans->writer_wait); 228 init_waitqueue_head(&cur_trans->commit_wait); 229 cur_trans->state = TRANS_STATE_RUNNING; 230 /* 231 * One for this trans handle, one so it will live on until we 232 * commit the transaction. 233 */ 234 atomic_set(&cur_trans->use_count, 2); 235 cur_trans->have_free_bgs = 0; 236 cur_trans->start_time = get_seconds(); 237 cur_trans->dirty_bg_run = 0; 238 239 cur_trans->delayed_refs.href_root = RB_ROOT; 240 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 241 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 242 cur_trans->delayed_refs.num_heads_ready = 0; 243 cur_trans->delayed_refs.pending_csums = 0; 244 cur_trans->delayed_refs.num_heads = 0; 245 cur_trans->delayed_refs.flushing = 0; 246 cur_trans->delayed_refs.run_delayed_start = 0; 247 cur_trans->delayed_refs.qgroup_to_skip = 0; 248 249 /* 250 * although the tree mod log is per file system and not per transaction, 251 * the log must never go across transaction boundaries. 252 */ 253 smp_mb(); 254 if (!list_empty(&fs_info->tree_mod_seq_list)) 255 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when " 256 "creating a fresh transaction\n"); 257 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 258 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when " 259 "creating a fresh transaction\n"); 260 atomic64_set(&fs_info->tree_mod_seq, 0); 261 262 spin_lock_init(&cur_trans->delayed_refs.lock); 263 264 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 265 INIT_LIST_HEAD(&cur_trans->pending_chunks); 266 INIT_LIST_HEAD(&cur_trans->switch_commits); 267 INIT_LIST_HEAD(&cur_trans->pending_ordered); 268 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 269 INIT_LIST_HEAD(&cur_trans->io_bgs); 270 INIT_LIST_HEAD(&cur_trans->dropped_roots); 271 mutex_init(&cur_trans->cache_write_mutex); 272 cur_trans->num_dirty_bgs = 0; 273 spin_lock_init(&cur_trans->dirty_bgs_lock); 274 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 275 spin_lock_init(&cur_trans->deleted_bgs_lock); 276 spin_lock_init(&cur_trans->dropped_roots_lock); 277 list_add_tail(&cur_trans->list, &fs_info->trans_list); 278 extent_io_tree_init(&cur_trans->dirty_pages, 279 fs_info->btree_inode->i_mapping); 280 fs_info->generation++; 281 cur_trans->transid = fs_info->generation; 282 fs_info->running_transaction = cur_trans; 283 cur_trans->aborted = 0; 284 spin_unlock(&fs_info->trans_lock); 285 286 return 0; 287 } 288 289 /* 290 * this does all the record keeping required to make sure that a reference 291 * counted root is properly recorded in a given transaction. This is required 292 * to make sure the old root from before we joined the transaction is deleted 293 * when the transaction commits 294 */ 295 static int record_root_in_trans(struct btrfs_trans_handle *trans, 296 struct btrfs_root *root) 297 { 298 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 299 root->last_trans < trans->transid) { 300 WARN_ON(root == root->fs_info->extent_root); 301 WARN_ON(root->commit_root != root->node); 302 303 /* 304 * see below for IN_TRANS_SETUP usage rules 305 * we have the reloc mutex held now, so there 306 * is only one writer in this function 307 */ 308 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 309 310 /* make sure readers find IN_TRANS_SETUP before 311 * they find our root->last_trans update 312 */ 313 smp_wmb(); 314 315 spin_lock(&root->fs_info->fs_roots_radix_lock); 316 if (root->last_trans == trans->transid) { 317 spin_unlock(&root->fs_info->fs_roots_radix_lock); 318 return 0; 319 } 320 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 321 (unsigned long)root->root_key.objectid, 322 BTRFS_ROOT_TRANS_TAG); 323 spin_unlock(&root->fs_info->fs_roots_radix_lock); 324 root->last_trans = trans->transid; 325 326 /* this is pretty tricky. We don't want to 327 * take the relocation lock in btrfs_record_root_in_trans 328 * unless we're really doing the first setup for this root in 329 * this transaction. 330 * 331 * Normally we'd use root->last_trans as a flag to decide 332 * if we want to take the expensive mutex. 333 * 334 * But, we have to set root->last_trans before we 335 * init the relocation root, otherwise, we trip over warnings 336 * in ctree.c. The solution used here is to flag ourselves 337 * with root IN_TRANS_SETUP. When this is 1, we're still 338 * fixing up the reloc trees and everyone must wait. 339 * 340 * When this is zero, they can trust root->last_trans and fly 341 * through btrfs_record_root_in_trans without having to take the 342 * lock. smp_wmb() makes sure that all the writes above are 343 * done before we pop in the zero below 344 */ 345 btrfs_init_reloc_root(trans, root); 346 smp_mb__before_atomic(); 347 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 348 } 349 return 0; 350 } 351 352 353 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 354 struct btrfs_root *root) 355 { 356 struct btrfs_transaction *cur_trans = trans->transaction; 357 358 /* Add ourselves to the transaction dropped list */ 359 spin_lock(&cur_trans->dropped_roots_lock); 360 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 361 spin_unlock(&cur_trans->dropped_roots_lock); 362 363 /* Make sure we don't try to update the root at commit time */ 364 spin_lock(&root->fs_info->fs_roots_radix_lock); 365 radix_tree_tag_clear(&root->fs_info->fs_roots_radix, 366 (unsigned long)root->root_key.objectid, 367 BTRFS_ROOT_TRANS_TAG); 368 spin_unlock(&root->fs_info->fs_roots_radix_lock); 369 } 370 371 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 372 struct btrfs_root *root) 373 { 374 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 375 return 0; 376 377 /* 378 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 379 * and barriers 380 */ 381 smp_rmb(); 382 if (root->last_trans == trans->transid && 383 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 384 return 0; 385 386 mutex_lock(&root->fs_info->reloc_mutex); 387 record_root_in_trans(trans, root); 388 mutex_unlock(&root->fs_info->reloc_mutex); 389 390 return 0; 391 } 392 393 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 394 { 395 return (trans->state >= TRANS_STATE_BLOCKED && 396 trans->state < TRANS_STATE_UNBLOCKED && 397 !trans->aborted); 398 } 399 400 /* wait for commit against the current transaction to become unblocked 401 * when this is done, it is safe to start a new transaction, but the current 402 * transaction might not be fully on disk. 403 */ 404 static void wait_current_trans(struct btrfs_root *root) 405 { 406 struct btrfs_transaction *cur_trans; 407 408 spin_lock(&root->fs_info->trans_lock); 409 cur_trans = root->fs_info->running_transaction; 410 if (cur_trans && is_transaction_blocked(cur_trans)) { 411 atomic_inc(&cur_trans->use_count); 412 spin_unlock(&root->fs_info->trans_lock); 413 414 wait_event(root->fs_info->transaction_wait, 415 cur_trans->state >= TRANS_STATE_UNBLOCKED || 416 cur_trans->aborted); 417 btrfs_put_transaction(cur_trans); 418 } else { 419 spin_unlock(&root->fs_info->trans_lock); 420 } 421 } 422 423 static int may_wait_transaction(struct btrfs_root *root, int type) 424 { 425 if (root->fs_info->log_root_recovering) 426 return 0; 427 428 if (type == TRANS_USERSPACE) 429 return 1; 430 431 if (type == TRANS_START && 432 !atomic_read(&root->fs_info->open_ioctl_trans)) 433 return 1; 434 435 return 0; 436 } 437 438 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 439 { 440 if (!root->fs_info->reloc_ctl || 441 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 442 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 443 root->reloc_root) 444 return false; 445 446 return true; 447 } 448 449 static struct btrfs_trans_handle * 450 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type, 451 enum btrfs_reserve_flush_enum flush) 452 { 453 struct btrfs_trans_handle *h; 454 struct btrfs_transaction *cur_trans; 455 u64 num_bytes = 0; 456 u64 qgroup_reserved = 0; 457 bool reloc_reserved = false; 458 int ret; 459 460 /* Send isn't supposed to start transactions. */ 461 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 462 463 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 464 return ERR_PTR(-EROFS); 465 466 if (current->journal_info) { 467 WARN_ON(type & TRANS_EXTWRITERS); 468 h = current->journal_info; 469 h->use_count++; 470 WARN_ON(h->use_count > 2); 471 h->orig_rsv = h->block_rsv; 472 h->block_rsv = NULL; 473 goto got_it; 474 } 475 476 /* 477 * Do the reservation before we join the transaction so we can do all 478 * the appropriate flushing if need be. 479 */ 480 if (num_items > 0 && root != root->fs_info->chunk_root) { 481 if (root->fs_info->quota_enabled && 482 is_fstree(root->root_key.objectid)) { 483 qgroup_reserved = num_items * root->nodesize; 484 ret = btrfs_qgroup_reserve(root, qgroup_reserved); 485 if (ret) 486 return ERR_PTR(ret); 487 } 488 489 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 490 /* 491 * Do the reservation for the relocation root creation 492 */ 493 if (need_reserve_reloc_root(root)) { 494 num_bytes += root->nodesize; 495 reloc_reserved = true; 496 } 497 498 ret = btrfs_block_rsv_add(root, 499 &root->fs_info->trans_block_rsv, 500 num_bytes, flush); 501 if (ret) 502 goto reserve_fail; 503 } 504 again: 505 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 506 if (!h) { 507 ret = -ENOMEM; 508 goto alloc_fail; 509 } 510 511 /* 512 * If we are JOIN_NOLOCK we're already committing a transaction and 513 * waiting on this guy, so we don't need to do the sb_start_intwrite 514 * because we're already holding a ref. We need this because we could 515 * have raced in and did an fsync() on a file which can kick a commit 516 * and then we deadlock with somebody doing a freeze. 517 * 518 * If we are ATTACH, it means we just want to catch the current 519 * transaction and commit it, so we needn't do sb_start_intwrite(). 520 */ 521 if (type & __TRANS_FREEZABLE) 522 sb_start_intwrite(root->fs_info->sb); 523 524 if (may_wait_transaction(root, type)) 525 wait_current_trans(root); 526 527 do { 528 ret = join_transaction(root, type); 529 if (ret == -EBUSY) { 530 wait_current_trans(root); 531 if (unlikely(type == TRANS_ATTACH)) 532 ret = -ENOENT; 533 } 534 } while (ret == -EBUSY); 535 536 if (ret < 0) { 537 /* We must get the transaction if we are JOIN_NOLOCK. */ 538 BUG_ON(type == TRANS_JOIN_NOLOCK); 539 goto join_fail; 540 } 541 542 cur_trans = root->fs_info->running_transaction; 543 544 h->transid = cur_trans->transid; 545 h->transaction = cur_trans; 546 h->blocks_used = 0; 547 h->bytes_reserved = 0; 548 h->chunk_bytes_reserved = 0; 549 h->root = root; 550 h->delayed_ref_updates = 0; 551 h->use_count = 1; 552 h->adding_csums = 0; 553 h->block_rsv = NULL; 554 h->orig_rsv = NULL; 555 h->aborted = 0; 556 h->qgroup_reserved = 0; 557 h->delayed_ref_elem.seq = 0; 558 h->type = type; 559 h->allocating_chunk = false; 560 h->reloc_reserved = false; 561 h->sync = false; 562 INIT_LIST_HEAD(&h->qgroup_ref_list); 563 INIT_LIST_HEAD(&h->new_bgs); 564 INIT_LIST_HEAD(&h->ordered); 565 566 smp_mb(); 567 if (cur_trans->state >= TRANS_STATE_BLOCKED && 568 may_wait_transaction(root, type)) { 569 current->journal_info = h; 570 btrfs_commit_transaction(h, root); 571 goto again; 572 } 573 574 if (num_bytes) { 575 trace_btrfs_space_reservation(root->fs_info, "transaction", 576 h->transid, num_bytes, 1); 577 h->block_rsv = &root->fs_info->trans_block_rsv; 578 h->bytes_reserved = num_bytes; 579 h->reloc_reserved = reloc_reserved; 580 } 581 h->qgroup_reserved = qgroup_reserved; 582 583 got_it: 584 btrfs_record_root_in_trans(h, root); 585 586 if (!current->journal_info && type != TRANS_USERSPACE) 587 current->journal_info = h; 588 return h; 589 590 join_fail: 591 if (type & __TRANS_FREEZABLE) 592 sb_end_intwrite(root->fs_info->sb); 593 kmem_cache_free(btrfs_trans_handle_cachep, h); 594 alloc_fail: 595 if (num_bytes) 596 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 597 num_bytes); 598 reserve_fail: 599 if (qgroup_reserved) 600 btrfs_qgroup_free(root, qgroup_reserved); 601 return ERR_PTR(ret); 602 } 603 604 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 605 int num_items) 606 { 607 return start_transaction(root, num_items, TRANS_START, 608 BTRFS_RESERVE_FLUSH_ALL); 609 } 610 611 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 612 struct btrfs_root *root, int num_items) 613 { 614 return start_transaction(root, num_items, TRANS_START, 615 BTRFS_RESERVE_FLUSH_LIMIT); 616 } 617 618 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 619 { 620 return start_transaction(root, 0, TRANS_JOIN, 0); 621 } 622 623 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 624 { 625 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0); 626 } 627 628 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 629 { 630 return start_transaction(root, 0, TRANS_USERSPACE, 0); 631 } 632 633 /* 634 * btrfs_attach_transaction() - catch the running transaction 635 * 636 * It is used when we want to commit the current the transaction, but 637 * don't want to start a new one. 638 * 639 * Note: If this function return -ENOENT, it just means there is no 640 * running transaction. But it is possible that the inactive transaction 641 * is still in the memory, not fully on disk. If you hope there is no 642 * inactive transaction in the fs when -ENOENT is returned, you should 643 * invoke 644 * btrfs_attach_transaction_barrier() 645 */ 646 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 647 { 648 return start_transaction(root, 0, TRANS_ATTACH, 0); 649 } 650 651 /* 652 * btrfs_attach_transaction_barrier() - catch the running transaction 653 * 654 * It is similar to the above function, the differentia is this one 655 * will wait for all the inactive transactions until they fully 656 * complete. 657 */ 658 struct btrfs_trans_handle * 659 btrfs_attach_transaction_barrier(struct btrfs_root *root) 660 { 661 struct btrfs_trans_handle *trans; 662 663 trans = start_transaction(root, 0, TRANS_ATTACH, 0); 664 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 665 btrfs_wait_for_commit(root, 0); 666 667 return trans; 668 } 669 670 /* wait for a transaction commit to be fully complete */ 671 static noinline void wait_for_commit(struct btrfs_root *root, 672 struct btrfs_transaction *commit) 673 { 674 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 675 } 676 677 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 678 { 679 struct btrfs_transaction *cur_trans = NULL, *t; 680 int ret = 0; 681 682 if (transid) { 683 if (transid <= root->fs_info->last_trans_committed) 684 goto out; 685 686 /* find specified transaction */ 687 spin_lock(&root->fs_info->trans_lock); 688 list_for_each_entry(t, &root->fs_info->trans_list, list) { 689 if (t->transid == transid) { 690 cur_trans = t; 691 atomic_inc(&cur_trans->use_count); 692 ret = 0; 693 break; 694 } 695 if (t->transid > transid) { 696 ret = 0; 697 break; 698 } 699 } 700 spin_unlock(&root->fs_info->trans_lock); 701 702 /* 703 * The specified transaction doesn't exist, or we 704 * raced with btrfs_commit_transaction 705 */ 706 if (!cur_trans) { 707 if (transid > root->fs_info->last_trans_committed) 708 ret = -EINVAL; 709 goto out; 710 } 711 } else { 712 /* find newest transaction that is committing | committed */ 713 spin_lock(&root->fs_info->trans_lock); 714 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 715 list) { 716 if (t->state >= TRANS_STATE_COMMIT_START) { 717 if (t->state == TRANS_STATE_COMPLETED) 718 break; 719 cur_trans = t; 720 atomic_inc(&cur_trans->use_count); 721 break; 722 } 723 } 724 spin_unlock(&root->fs_info->trans_lock); 725 if (!cur_trans) 726 goto out; /* nothing committing|committed */ 727 } 728 729 wait_for_commit(root, cur_trans); 730 btrfs_put_transaction(cur_trans); 731 out: 732 return ret; 733 } 734 735 void btrfs_throttle(struct btrfs_root *root) 736 { 737 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 738 wait_current_trans(root); 739 } 740 741 static int should_end_transaction(struct btrfs_trans_handle *trans, 742 struct btrfs_root *root) 743 { 744 if (root->fs_info->global_block_rsv.space_info->full && 745 btrfs_check_space_for_delayed_refs(trans, root)) 746 return 1; 747 748 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 749 } 750 751 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 752 struct btrfs_root *root) 753 { 754 struct btrfs_transaction *cur_trans = trans->transaction; 755 int updates; 756 int err; 757 758 smp_mb(); 759 if (cur_trans->state >= TRANS_STATE_BLOCKED || 760 cur_trans->delayed_refs.flushing) 761 return 1; 762 763 updates = trans->delayed_ref_updates; 764 trans->delayed_ref_updates = 0; 765 if (updates) { 766 err = btrfs_run_delayed_refs(trans, root, updates * 2); 767 if (err) /* Error code will also eval true */ 768 return err; 769 } 770 771 return should_end_transaction(trans, root); 772 } 773 774 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 775 struct btrfs_root *root, int throttle) 776 { 777 struct btrfs_transaction *cur_trans = trans->transaction; 778 struct btrfs_fs_info *info = root->fs_info; 779 unsigned long cur = trans->delayed_ref_updates; 780 int lock = (trans->type != TRANS_JOIN_NOLOCK); 781 int err = 0; 782 int must_run_delayed_refs = 0; 783 784 if (trans->use_count > 1) { 785 trans->use_count--; 786 trans->block_rsv = trans->orig_rsv; 787 return 0; 788 } 789 790 btrfs_trans_release_metadata(trans, root); 791 trans->block_rsv = NULL; 792 793 if (!list_empty(&trans->new_bgs)) 794 btrfs_create_pending_block_groups(trans, root); 795 796 if (!list_empty(&trans->ordered)) { 797 spin_lock(&info->trans_lock); 798 list_splice_init(&trans->ordered, &cur_trans->pending_ordered); 799 spin_unlock(&info->trans_lock); 800 } 801 802 trans->delayed_ref_updates = 0; 803 if (!trans->sync) { 804 must_run_delayed_refs = 805 btrfs_should_throttle_delayed_refs(trans, root); 806 cur = max_t(unsigned long, cur, 32); 807 808 /* 809 * don't make the caller wait if they are from a NOLOCK 810 * or ATTACH transaction, it will deadlock with commit 811 */ 812 if (must_run_delayed_refs == 1 && 813 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH))) 814 must_run_delayed_refs = 2; 815 } 816 817 if (trans->qgroup_reserved) { 818 /* 819 * the same root has to be passed here between start_transaction 820 * and end_transaction. Subvolume quota depends on this. 821 */ 822 btrfs_qgroup_free(trans->root, trans->qgroup_reserved); 823 trans->qgroup_reserved = 0; 824 } 825 826 btrfs_trans_release_metadata(trans, root); 827 trans->block_rsv = NULL; 828 829 if (!list_empty(&trans->new_bgs)) 830 btrfs_create_pending_block_groups(trans, root); 831 832 btrfs_trans_release_chunk_metadata(trans); 833 834 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 835 should_end_transaction(trans, root) && 836 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 837 spin_lock(&info->trans_lock); 838 if (cur_trans->state == TRANS_STATE_RUNNING) 839 cur_trans->state = TRANS_STATE_BLOCKED; 840 spin_unlock(&info->trans_lock); 841 } 842 843 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 844 if (throttle) 845 return btrfs_commit_transaction(trans, root); 846 else 847 wake_up_process(info->transaction_kthread); 848 } 849 850 if (trans->type & __TRANS_FREEZABLE) 851 sb_end_intwrite(root->fs_info->sb); 852 853 WARN_ON(cur_trans != info->running_transaction); 854 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 855 atomic_dec(&cur_trans->num_writers); 856 extwriter_counter_dec(cur_trans, trans->type); 857 858 smp_mb(); 859 if (waitqueue_active(&cur_trans->writer_wait)) 860 wake_up(&cur_trans->writer_wait); 861 btrfs_put_transaction(cur_trans); 862 863 if (current->journal_info == trans) 864 current->journal_info = NULL; 865 866 if (throttle) 867 btrfs_run_delayed_iputs(root); 868 869 if (trans->aborted || 870 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 871 wake_up_process(info->transaction_kthread); 872 err = -EIO; 873 } 874 assert_qgroups_uptodate(trans); 875 876 kmem_cache_free(btrfs_trans_handle_cachep, trans); 877 if (must_run_delayed_refs) { 878 btrfs_async_run_delayed_refs(root, cur, 879 must_run_delayed_refs == 1); 880 } 881 return err; 882 } 883 884 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 885 struct btrfs_root *root) 886 { 887 return __btrfs_end_transaction(trans, root, 0); 888 } 889 890 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 891 struct btrfs_root *root) 892 { 893 return __btrfs_end_transaction(trans, root, 1); 894 } 895 896 /* 897 * when btree blocks are allocated, they have some corresponding bits set for 898 * them in one of two extent_io trees. This is used to make sure all of 899 * those extents are sent to disk but does not wait on them 900 */ 901 int btrfs_write_marked_extents(struct btrfs_root *root, 902 struct extent_io_tree *dirty_pages, int mark) 903 { 904 int err = 0; 905 int werr = 0; 906 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 907 struct extent_state *cached_state = NULL; 908 u64 start = 0; 909 u64 end; 910 911 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 912 mark, &cached_state)) { 913 bool wait_writeback = false; 914 915 err = convert_extent_bit(dirty_pages, start, end, 916 EXTENT_NEED_WAIT, 917 mark, &cached_state, GFP_NOFS); 918 /* 919 * convert_extent_bit can return -ENOMEM, which is most of the 920 * time a temporary error. So when it happens, ignore the error 921 * and wait for writeback of this range to finish - because we 922 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 923 * to btrfs_wait_marked_extents() would not know that writeback 924 * for this range started and therefore wouldn't wait for it to 925 * finish - we don't want to commit a superblock that points to 926 * btree nodes/leafs for which writeback hasn't finished yet 927 * (and without errors). 928 * We cleanup any entries left in the io tree when committing 929 * the transaction (through clear_btree_io_tree()). 930 */ 931 if (err == -ENOMEM) { 932 err = 0; 933 wait_writeback = true; 934 } 935 if (!err) 936 err = filemap_fdatawrite_range(mapping, start, end); 937 if (err) 938 werr = err; 939 else if (wait_writeback) 940 werr = filemap_fdatawait_range(mapping, start, end); 941 free_extent_state(cached_state); 942 cached_state = NULL; 943 cond_resched(); 944 start = end + 1; 945 } 946 return werr; 947 } 948 949 /* 950 * when btree blocks are allocated, they have some corresponding bits set for 951 * them in one of two extent_io trees. This is used to make sure all of 952 * those extents are on disk for transaction or log commit. We wait 953 * on all the pages and clear them from the dirty pages state tree 954 */ 955 int btrfs_wait_marked_extents(struct btrfs_root *root, 956 struct extent_io_tree *dirty_pages, int mark) 957 { 958 int err = 0; 959 int werr = 0; 960 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 961 struct extent_state *cached_state = NULL; 962 u64 start = 0; 963 u64 end; 964 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 965 bool errors = false; 966 967 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 968 EXTENT_NEED_WAIT, &cached_state)) { 969 /* 970 * Ignore -ENOMEM errors returned by clear_extent_bit(). 971 * When committing the transaction, we'll remove any entries 972 * left in the io tree. For a log commit, we don't remove them 973 * after committing the log because the tree can be accessed 974 * concurrently - we do it only at transaction commit time when 975 * it's safe to do it (through clear_btree_io_tree()). 976 */ 977 err = clear_extent_bit(dirty_pages, start, end, 978 EXTENT_NEED_WAIT, 979 0, 0, &cached_state, GFP_NOFS); 980 if (err == -ENOMEM) 981 err = 0; 982 if (!err) 983 err = filemap_fdatawait_range(mapping, start, end); 984 if (err) 985 werr = err; 986 free_extent_state(cached_state); 987 cached_state = NULL; 988 cond_resched(); 989 start = end + 1; 990 } 991 if (err) 992 werr = err; 993 994 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 995 if ((mark & EXTENT_DIRTY) && 996 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, 997 &btree_ino->runtime_flags)) 998 errors = true; 999 1000 if ((mark & EXTENT_NEW) && 1001 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, 1002 &btree_ino->runtime_flags)) 1003 errors = true; 1004 } else { 1005 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR, 1006 &btree_ino->runtime_flags)) 1007 errors = true; 1008 } 1009 1010 if (errors && !werr) 1011 werr = -EIO; 1012 1013 return werr; 1014 } 1015 1016 /* 1017 * when btree blocks are allocated, they have some corresponding bits set for 1018 * them in one of two extent_io trees. This is used to make sure all of 1019 * those extents are on disk for transaction or log commit 1020 */ 1021 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 1022 struct extent_io_tree *dirty_pages, int mark) 1023 { 1024 int ret; 1025 int ret2; 1026 struct blk_plug plug; 1027 1028 blk_start_plug(&plug); 1029 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 1030 blk_finish_plug(&plug); 1031 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 1032 1033 if (ret) 1034 return ret; 1035 if (ret2) 1036 return ret2; 1037 return 0; 1038 } 1039 1040 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 1041 struct btrfs_root *root) 1042 { 1043 int ret; 1044 1045 ret = btrfs_write_and_wait_marked_extents(root, 1046 &trans->transaction->dirty_pages, 1047 EXTENT_DIRTY); 1048 clear_btree_io_tree(&trans->transaction->dirty_pages); 1049 1050 return ret; 1051 } 1052 1053 /* 1054 * this is used to update the root pointer in the tree of tree roots. 1055 * 1056 * But, in the case of the extent allocation tree, updating the root 1057 * pointer may allocate blocks which may change the root of the extent 1058 * allocation tree. 1059 * 1060 * So, this loops and repeats and makes sure the cowonly root didn't 1061 * change while the root pointer was being updated in the metadata. 1062 */ 1063 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1064 struct btrfs_root *root) 1065 { 1066 int ret; 1067 u64 old_root_bytenr; 1068 u64 old_root_used; 1069 struct btrfs_root *tree_root = root->fs_info->tree_root; 1070 1071 old_root_used = btrfs_root_used(&root->root_item); 1072 1073 while (1) { 1074 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1075 if (old_root_bytenr == root->node->start && 1076 old_root_used == btrfs_root_used(&root->root_item)) 1077 break; 1078 1079 btrfs_set_root_node(&root->root_item, root->node); 1080 ret = btrfs_update_root(trans, tree_root, 1081 &root->root_key, 1082 &root->root_item); 1083 if (ret) 1084 return ret; 1085 1086 old_root_used = btrfs_root_used(&root->root_item); 1087 } 1088 1089 return 0; 1090 } 1091 1092 /* 1093 * update all the cowonly tree roots on disk 1094 * 1095 * The error handling in this function may not be obvious. Any of the 1096 * failures will cause the file system to go offline. We still need 1097 * to clean up the delayed refs. 1098 */ 1099 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 1100 struct btrfs_root *root) 1101 { 1102 struct btrfs_fs_info *fs_info = root->fs_info; 1103 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1104 struct list_head *io_bgs = &trans->transaction->io_bgs; 1105 struct list_head *next; 1106 struct extent_buffer *eb; 1107 int ret; 1108 1109 eb = btrfs_lock_root_node(fs_info->tree_root); 1110 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1111 0, &eb); 1112 btrfs_tree_unlock(eb); 1113 free_extent_buffer(eb); 1114 1115 if (ret) 1116 return ret; 1117 1118 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1119 if (ret) 1120 return ret; 1121 1122 ret = btrfs_run_dev_stats(trans, root->fs_info); 1123 if (ret) 1124 return ret; 1125 ret = btrfs_run_dev_replace(trans, root->fs_info); 1126 if (ret) 1127 return ret; 1128 ret = btrfs_run_qgroups(trans, root->fs_info); 1129 if (ret) 1130 return ret; 1131 1132 ret = btrfs_setup_space_cache(trans, root); 1133 if (ret) 1134 return ret; 1135 1136 /* run_qgroups might have added some more refs */ 1137 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1138 if (ret) 1139 return ret; 1140 again: 1141 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1142 next = fs_info->dirty_cowonly_roots.next; 1143 list_del_init(next); 1144 root = list_entry(next, struct btrfs_root, dirty_list); 1145 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1146 1147 if (root != fs_info->extent_root) 1148 list_add_tail(&root->dirty_list, 1149 &trans->transaction->switch_commits); 1150 ret = update_cowonly_root(trans, root); 1151 if (ret) 1152 return ret; 1153 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1154 if (ret) 1155 return ret; 1156 } 1157 1158 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1159 ret = btrfs_write_dirty_block_groups(trans, root); 1160 if (ret) 1161 return ret; 1162 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1163 if (ret) 1164 return ret; 1165 } 1166 1167 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1168 goto again; 1169 1170 list_add_tail(&fs_info->extent_root->dirty_list, 1171 &trans->transaction->switch_commits); 1172 btrfs_after_dev_replace_commit(fs_info); 1173 1174 return 0; 1175 } 1176 1177 /* 1178 * dead roots are old snapshots that need to be deleted. This allocates 1179 * a dirty root struct and adds it into the list of dead roots that need to 1180 * be deleted 1181 */ 1182 void btrfs_add_dead_root(struct btrfs_root *root) 1183 { 1184 spin_lock(&root->fs_info->trans_lock); 1185 if (list_empty(&root->root_list)) 1186 list_add_tail(&root->root_list, &root->fs_info->dead_roots); 1187 spin_unlock(&root->fs_info->trans_lock); 1188 } 1189 1190 /* 1191 * update all the cowonly tree roots on disk 1192 */ 1193 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 1194 struct btrfs_root *root) 1195 { 1196 struct btrfs_root *gang[8]; 1197 struct btrfs_fs_info *fs_info = root->fs_info; 1198 int i; 1199 int ret; 1200 int err = 0; 1201 1202 spin_lock(&fs_info->fs_roots_radix_lock); 1203 while (1) { 1204 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1205 (void **)gang, 0, 1206 ARRAY_SIZE(gang), 1207 BTRFS_ROOT_TRANS_TAG); 1208 if (ret == 0) 1209 break; 1210 for (i = 0; i < ret; i++) { 1211 root = gang[i]; 1212 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1213 (unsigned long)root->root_key.objectid, 1214 BTRFS_ROOT_TRANS_TAG); 1215 spin_unlock(&fs_info->fs_roots_radix_lock); 1216 1217 btrfs_free_log(trans, root); 1218 btrfs_update_reloc_root(trans, root); 1219 btrfs_orphan_commit_root(trans, root); 1220 1221 btrfs_save_ino_cache(root, trans); 1222 1223 /* see comments in should_cow_block() */ 1224 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1225 smp_mb__after_atomic(); 1226 1227 if (root->commit_root != root->node) { 1228 list_add_tail(&root->dirty_list, 1229 &trans->transaction->switch_commits); 1230 btrfs_set_root_node(&root->root_item, 1231 root->node); 1232 } 1233 1234 err = btrfs_update_root(trans, fs_info->tree_root, 1235 &root->root_key, 1236 &root->root_item); 1237 spin_lock(&fs_info->fs_roots_radix_lock); 1238 if (err) 1239 break; 1240 } 1241 } 1242 spin_unlock(&fs_info->fs_roots_radix_lock); 1243 return err; 1244 } 1245 1246 /* 1247 * defrag a given btree. 1248 * Every leaf in the btree is read and defragged. 1249 */ 1250 int btrfs_defrag_root(struct btrfs_root *root) 1251 { 1252 struct btrfs_fs_info *info = root->fs_info; 1253 struct btrfs_trans_handle *trans; 1254 int ret; 1255 1256 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1257 return 0; 1258 1259 while (1) { 1260 trans = btrfs_start_transaction(root, 0); 1261 if (IS_ERR(trans)) 1262 return PTR_ERR(trans); 1263 1264 ret = btrfs_defrag_leaves(trans, root); 1265 1266 btrfs_end_transaction(trans, root); 1267 btrfs_btree_balance_dirty(info->tree_root); 1268 cond_resched(); 1269 1270 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 1271 break; 1272 1273 if (btrfs_defrag_cancelled(root->fs_info)) { 1274 pr_debug("BTRFS: defrag_root cancelled\n"); 1275 ret = -EAGAIN; 1276 break; 1277 } 1278 } 1279 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1280 return ret; 1281 } 1282 1283 /* 1284 * new snapshots need to be created at a very specific time in the 1285 * transaction commit. This does the actual creation. 1286 * 1287 * Note: 1288 * If the error which may affect the commitment of the current transaction 1289 * happens, we should return the error number. If the error which just affect 1290 * the creation of the pending snapshots, just return 0. 1291 */ 1292 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1293 struct btrfs_fs_info *fs_info, 1294 struct btrfs_pending_snapshot *pending) 1295 { 1296 struct btrfs_key key; 1297 struct btrfs_root_item *new_root_item; 1298 struct btrfs_root *tree_root = fs_info->tree_root; 1299 struct btrfs_root *root = pending->root; 1300 struct btrfs_root *parent_root; 1301 struct btrfs_block_rsv *rsv; 1302 struct inode *parent_inode; 1303 struct btrfs_path *path; 1304 struct btrfs_dir_item *dir_item; 1305 struct dentry *dentry; 1306 struct extent_buffer *tmp; 1307 struct extent_buffer *old; 1308 struct timespec cur_time = CURRENT_TIME; 1309 int ret = 0; 1310 u64 to_reserve = 0; 1311 u64 index = 0; 1312 u64 objectid; 1313 u64 root_flags; 1314 uuid_le new_uuid; 1315 1316 path = btrfs_alloc_path(); 1317 if (!path) { 1318 pending->error = -ENOMEM; 1319 return 0; 1320 } 1321 1322 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 1323 if (!new_root_item) { 1324 pending->error = -ENOMEM; 1325 goto root_item_alloc_fail; 1326 } 1327 1328 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1329 if (pending->error) 1330 goto no_free_objectid; 1331 1332 /* 1333 * Make qgroup to skip current new snapshot's qgroupid, as it is 1334 * accounted by later btrfs_qgroup_inherit(). 1335 */ 1336 btrfs_set_skip_qgroup(trans, objectid); 1337 1338 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1339 1340 if (to_reserve > 0) { 1341 pending->error = btrfs_block_rsv_add(root, 1342 &pending->block_rsv, 1343 to_reserve, 1344 BTRFS_RESERVE_NO_FLUSH); 1345 if (pending->error) 1346 goto clear_skip_qgroup; 1347 } 1348 1349 key.objectid = objectid; 1350 key.offset = (u64)-1; 1351 key.type = BTRFS_ROOT_ITEM_KEY; 1352 1353 rsv = trans->block_rsv; 1354 trans->block_rsv = &pending->block_rsv; 1355 trans->bytes_reserved = trans->block_rsv->reserved; 1356 1357 dentry = pending->dentry; 1358 parent_inode = pending->dir; 1359 parent_root = BTRFS_I(parent_inode)->root; 1360 record_root_in_trans(trans, parent_root); 1361 1362 /* 1363 * insert the directory item 1364 */ 1365 ret = btrfs_set_inode_index(parent_inode, &index); 1366 BUG_ON(ret); /* -ENOMEM */ 1367 1368 /* check if there is a file/dir which has the same name. */ 1369 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1370 btrfs_ino(parent_inode), 1371 dentry->d_name.name, 1372 dentry->d_name.len, 0); 1373 if (dir_item != NULL && !IS_ERR(dir_item)) { 1374 pending->error = -EEXIST; 1375 goto dir_item_existed; 1376 } else if (IS_ERR(dir_item)) { 1377 ret = PTR_ERR(dir_item); 1378 btrfs_abort_transaction(trans, root, ret); 1379 goto fail; 1380 } 1381 btrfs_release_path(path); 1382 1383 /* 1384 * pull in the delayed directory update 1385 * and the delayed inode item 1386 * otherwise we corrupt the FS during 1387 * snapshot 1388 */ 1389 ret = btrfs_run_delayed_items(trans, root); 1390 if (ret) { /* Transaction aborted */ 1391 btrfs_abort_transaction(trans, root, ret); 1392 goto fail; 1393 } 1394 1395 record_root_in_trans(trans, root); 1396 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1397 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1398 btrfs_check_and_init_root_item(new_root_item); 1399 1400 root_flags = btrfs_root_flags(new_root_item); 1401 if (pending->readonly) 1402 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1403 else 1404 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1405 btrfs_set_root_flags(new_root_item, root_flags); 1406 1407 btrfs_set_root_generation_v2(new_root_item, 1408 trans->transid); 1409 uuid_le_gen(&new_uuid); 1410 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1411 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1412 BTRFS_UUID_SIZE); 1413 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1414 memset(new_root_item->received_uuid, 0, 1415 sizeof(new_root_item->received_uuid)); 1416 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1417 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1418 btrfs_set_root_stransid(new_root_item, 0); 1419 btrfs_set_root_rtransid(new_root_item, 0); 1420 } 1421 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1422 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1423 btrfs_set_root_otransid(new_root_item, trans->transid); 1424 1425 old = btrfs_lock_root_node(root); 1426 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1427 if (ret) { 1428 btrfs_tree_unlock(old); 1429 free_extent_buffer(old); 1430 btrfs_abort_transaction(trans, root, ret); 1431 goto fail; 1432 } 1433 1434 btrfs_set_lock_blocking(old); 1435 1436 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1437 /* clean up in any case */ 1438 btrfs_tree_unlock(old); 1439 free_extent_buffer(old); 1440 if (ret) { 1441 btrfs_abort_transaction(trans, root, ret); 1442 goto fail; 1443 } 1444 /* see comments in should_cow_block() */ 1445 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1446 smp_wmb(); 1447 1448 btrfs_set_root_node(new_root_item, tmp); 1449 /* record when the snapshot was created in key.offset */ 1450 key.offset = trans->transid; 1451 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1452 btrfs_tree_unlock(tmp); 1453 free_extent_buffer(tmp); 1454 if (ret) { 1455 btrfs_abort_transaction(trans, root, ret); 1456 goto fail; 1457 } 1458 1459 /* 1460 * insert root back/forward references 1461 */ 1462 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1463 parent_root->root_key.objectid, 1464 btrfs_ino(parent_inode), index, 1465 dentry->d_name.name, dentry->d_name.len); 1466 if (ret) { 1467 btrfs_abort_transaction(trans, root, ret); 1468 goto fail; 1469 } 1470 1471 key.offset = (u64)-1; 1472 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1473 if (IS_ERR(pending->snap)) { 1474 ret = PTR_ERR(pending->snap); 1475 btrfs_abort_transaction(trans, root, ret); 1476 goto fail; 1477 } 1478 1479 ret = btrfs_reloc_post_snapshot(trans, pending); 1480 if (ret) { 1481 btrfs_abort_transaction(trans, root, ret); 1482 goto fail; 1483 } 1484 1485 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1486 if (ret) { 1487 btrfs_abort_transaction(trans, root, ret); 1488 goto fail; 1489 } 1490 1491 ret = btrfs_insert_dir_item(trans, parent_root, 1492 dentry->d_name.name, dentry->d_name.len, 1493 parent_inode, &key, 1494 BTRFS_FT_DIR, index); 1495 /* We have check then name at the beginning, so it is impossible. */ 1496 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1497 if (ret) { 1498 btrfs_abort_transaction(trans, root, ret); 1499 goto fail; 1500 } 1501 1502 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1503 dentry->d_name.len * 2); 1504 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 1505 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1506 if (ret) { 1507 btrfs_abort_transaction(trans, root, ret); 1508 goto fail; 1509 } 1510 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b, 1511 BTRFS_UUID_KEY_SUBVOL, objectid); 1512 if (ret) { 1513 btrfs_abort_transaction(trans, root, ret); 1514 goto fail; 1515 } 1516 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1517 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 1518 new_root_item->received_uuid, 1519 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1520 objectid); 1521 if (ret && ret != -EEXIST) { 1522 btrfs_abort_transaction(trans, root, ret); 1523 goto fail; 1524 } 1525 } 1526 1527 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1528 if (ret) { 1529 btrfs_abort_transaction(trans, root, ret); 1530 goto fail; 1531 } 1532 1533 /* 1534 * account qgroup counters before qgroup_inherit() 1535 */ 1536 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info); 1537 if (ret) 1538 goto fail; 1539 ret = btrfs_qgroup_account_extents(trans, fs_info); 1540 if (ret) 1541 goto fail; 1542 ret = btrfs_qgroup_inherit(trans, fs_info, 1543 root->root_key.objectid, 1544 objectid, pending->inherit); 1545 if (ret) { 1546 btrfs_abort_transaction(trans, root, ret); 1547 goto fail; 1548 } 1549 1550 fail: 1551 pending->error = ret; 1552 dir_item_existed: 1553 trans->block_rsv = rsv; 1554 trans->bytes_reserved = 0; 1555 clear_skip_qgroup: 1556 btrfs_clear_skip_qgroup(trans); 1557 no_free_objectid: 1558 kfree(new_root_item); 1559 root_item_alloc_fail: 1560 btrfs_free_path(path); 1561 return ret; 1562 } 1563 1564 /* 1565 * create all the snapshots we've scheduled for creation 1566 */ 1567 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1568 struct btrfs_fs_info *fs_info) 1569 { 1570 struct btrfs_pending_snapshot *pending, *next; 1571 struct list_head *head = &trans->transaction->pending_snapshots; 1572 int ret = 0; 1573 1574 list_for_each_entry_safe(pending, next, head, list) { 1575 list_del(&pending->list); 1576 ret = create_pending_snapshot(trans, fs_info, pending); 1577 if (ret) 1578 break; 1579 } 1580 return ret; 1581 } 1582 1583 static void update_super_roots(struct btrfs_root *root) 1584 { 1585 struct btrfs_root_item *root_item; 1586 struct btrfs_super_block *super; 1587 1588 super = root->fs_info->super_copy; 1589 1590 root_item = &root->fs_info->chunk_root->root_item; 1591 super->chunk_root = root_item->bytenr; 1592 super->chunk_root_generation = root_item->generation; 1593 super->chunk_root_level = root_item->level; 1594 1595 root_item = &root->fs_info->tree_root->root_item; 1596 super->root = root_item->bytenr; 1597 super->generation = root_item->generation; 1598 super->root_level = root_item->level; 1599 if (btrfs_test_opt(root, SPACE_CACHE)) 1600 super->cache_generation = root_item->generation; 1601 if (root->fs_info->update_uuid_tree_gen) 1602 super->uuid_tree_generation = root_item->generation; 1603 } 1604 1605 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1606 { 1607 struct btrfs_transaction *trans; 1608 int ret = 0; 1609 1610 spin_lock(&info->trans_lock); 1611 trans = info->running_transaction; 1612 if (trans) 1613 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1614 spin_unlock(&info->trans_lock); 1615 return ret; 1616 } 1617 1618 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1619 { 1620 struct btrfs_transaction *trans; 1621 int ret = 0; 1622 1623 spin_lock(&info->trans_lock); 1624 trans = info->running_transaction; 1625 if (trans) 1626 ret = is_transaction_blocked(trans); 1627 spin_unlock(&info->trans_lock); 1628 return ret; 1629 } 1630 1631 /* 1632 * wait for the current transaction commit to start and block subsequent 1633 * transaction joins 1634 */ 1635 static void wait_current_trans_commit_start(struct btrfs_root *root, 1636 struct btrfs_transaction *trans) 1637 { 1638 wait_event(root->fs_info->transaction_blocked_wait, 1639 trans->state >= TRANS_STATE_COMMIT_START || 1640 trans->aborted); 1641 } 1642 1643 /* 1644 * wait for the current transaction to start and then become unblocked. 1645 * caller holds ref. 1646 */ 1647 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1648 struct btrfs_transaction *trans) 1649 { 1650 wait_event(root->fs_info->transaction_wait, 1651 trans->state >= TRANS_STATE_UNBLOCKED || 1652 trans->aborted); 1653 } 1654 1655 /* 1656 * commit transactions asynchronously. once btrfs_commit_transaction_async 1657 * returns, any subsequent transaction will not be allowed to join. 1658 */ 1659 struct btrfs_async_commit { 1660 struct btrfs_trans_handle *newtrans; 1661 struct btrfs_root *root; 1662 struct work_struct work; 1663 }; 1664 1665 static void do_async_commit(struct work_struct *work) 1666 { 1667 struct btrfs_async_commit *ac = 1668 container_of(work, struct btrfs_async_commit, work); 1669 1670 /* 1671 * We've got freeze protection passed with the transaction. 1672 * Tell lockdep about it. 1673 */ 1674 if (ac->newtrans->type & __TRANS_FREEZABLE) 1675 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS); 1676 1677 current->journal_info = ac->newtrans; 1678 1679 btrfs_commit_transaction(ac->newtrans, ac->root); 1680 kfree(ac); 1681 } 1682 1683 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1684 struct btrfs_root *root, 1685 int wait_for_unblock) 1686 { 1687 struct btrfs_async_commit *ac; 1688 struct btrfs_transaction *cur_trans; 1689 1690 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1691 if (!ac) 1692 return -ENOMEM; 1693 1694 INIT_WORK(&ac->work, do_async_commit); 1695 ac->root = root; 1696 ac->newtrans = btrfs_join_transaction(root); 1697 if (IS_ERR(ac->newtrans)) { 1698 int err = PTR_ERR(ac->newtrans); 1699 kfree(ac); 1700 return err; 1701 } 1702 1703 /* take transaction reference */ 1704 cur_trans = trans->transaction; 1705 atomic_inc(&cur_trans->use_count); 1706 1707 btrfs_end_transaction(trans, root); 1708 1709 /* 1710 * Tell lockdep we've released the freeze rwsem, since the 1711 * async commit thread will be the one to unlock it. 1712 */ 1713 if (ac->newtrans->type & __TRANS_FREEZABLE) 1714 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS); 1715 1716 schedule_work(&ac->work); 1717 1718 /* wait for transaction to start and unblock */ 1719 if (wait_for_unblock) 1720 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1721 else 1722 wait_current_trans_commit_start(root, cur_trans); 1723 1724 if (current->journal_info == trans) 1725 current->journal_info = NULL; 1726 1727 btrfs_put_transaction(cur_trans); 1728 return 0; 1729 } 1730 1731 1732 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1733 struct btrfs_root *root, int err) 1734 { 1735 struct btrfs_transaction *cur_trans = trans->transaction; 1736 DEFINE_WAIT(wait); 1737 1738 WARN_ON(trans->use_count > 1); 1739 1740 btrfs_abort_transaction(trans, root, err); 1741 1742 spin_lock(&root->fs_info->trans_lock); 1743 1744 /* 1745 * If the transaction is removed from the list, it means this 1746 * transaction has been committed successfully, so it is impossible 1747 * to call the cleanup function. 1748 */ 1749 BUG_ON(list_empty(&cur_trans->list)); 1750 1751 list_del_init(&cur_trans->list); 1752 if (cur_trans == root->fs_info->running_transaction) { 1753 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1754 spin_unlock(&root->fs_info->trans_lock); 1755 wait_event(cur_trans->writer_wait, 1756 atomic_read(&cur_trans->num_writers) == 1); 1757 1758 spin_lock(&root->fs_info->trans_lock); 1759 } 1760 spin_unlock(&root->fs_info->trans_lock); 1761 1762 btrfs_cleanup_one_transaction(trans->transaction, root); 1763 1764 spin_lock(&root->fs_info->trans_lock); 1765 if (cur_trans == root->fs_info->running_transaction) 1766 root->fs_info->running_transaction = NULL; 1767 spin_unlock(&root->fs_info->trans_lock); 1768 1769 if (trans->type & __TRANS_FREEZABLE) 1770 sb_end_intwrite(root->fs_info->sb); 1771 btrfs_put_transaction(cur_trans); 1772 btrfs_put_transaction(cur_trans); 1773 1774 trace_btrfs_transaction_commit(root); 1775 1776 if (current->journal_info == trans) 1777 current->journal_info = NULL; 1778 btrfs_scrub_cancel(root->fs_info); 1779 1780 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1781 } 1782 1783 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1784 { 1785 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1786 return btrfs_start_delalloc_roots(fs_info, 1, -1); 1787 return 0; 1788 } 1789 1790 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1791 { 1792 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1793 btrfs_wait_ordered_roots(fs_info, -1); 1794 } 1795 1796 static inline void 1797 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans, 1798 struct btrfs_fs_info *fs_info) 1799 { 1800 struct btrfs_ordered_extent *ordered; 1801 1802 spin_lock(&fs_info->trans_lock); 1803 while (!list_empty(&cur_trans->pending_ordered)) { 1804 ordered = list_first_entry(&cur_trans->pending_ordered, 1805 struct btrfs_ordered_extent, 1806 trans_list); 1807 list_del_init(&ordered->trans_list); 1808 spin_unlock(&fs_info->trans_lock); 1809 1810 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE, 1811 &ordered->flags)); 1812 btrfs_put_ordered_extent(ordered); 1813 spin_lock(&fs_info->trans_lock); 1814 } 1815 spin_unlock(&fs_info->trans_lock); 1816 } 1817 1818 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1819 struct btrfs_root *root) 1820 { 1821 struct btrfs_transaction *cur_trans = trans->transaction; 1822 struct btrfs_transaction *prev_trans = NULL; 1823 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 1824 int ret; 1825 1826 /* Stop the commit early if ->aborted is set */ 1827 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1828 ret = cur_trans->aborted; 1829 btrfs_end_transaction(trans, root); 1830 return ret; 1831 } 1832 1833 /* make a pass through all the delayed refs we have so far 1834 * any runnings procs may add more while we are here 1835 */ 1836 ret = btrfs_run_delayed_refs(trans, root, 0); 1837 if (ret) { 1838 btrfs_end_transaction(trans, root); 1839 return ret; 1840 } 1841 1842 btrfs_trans_release_metadata(trans, root); 1843 trans->block_rsv = NULL; 1844 if (trans->qgroup_reserved) { 1845 btrfs_qgroup_free(root, trans->qgroup_reserved); 1846 trans->qgroup_reserved = 0; 1847 } 1848 1849 cur_trans = trans->transaction; 1850 1851 /* 1852 * set the flushing flag so procs in this transaction have to 1853 * start sending their work down. 1854 */ 1855 cur_trans->delayed_refs.flushing = 1; 1856 smp_wmb(); 1857 1858 if (!list_empty(&trans->new_bgs)) 1859 btrfs_create_pending_block_groups(trans, root); 1860 1861 ret = btrfs_run_delayed_refs(trans, root, 0); 1862 if (ret) { 1863 btrfs_end_transaction(trans, root); 1864 return ret; 1865 } 1866 1867 if (!cur_trans->dirty_bg_run) { 1868 int run_it = 0; 1869 1870 /* this mutex is also taken before trying to set 1871 * block groups readonly. We need to make sure 1872 * that nobody has set a block group readonly 1873 * after a extents from that block group have been 1874 * allocated for cache files. btrfs_set_block_group_ro 1875 * will wait for the transaction to commit if it 1876 * finds dirty_bg_run = 1 1877 * 1878 * The dirty_bg_run flag is also used to make sure only 1879 * one process starts all the block group IO. It wouldn't 1880 * hurt to have more than one go through, but there's no 1881 * real advantage to it either. 1882 */ 1883 mutex_lock(&root->fs_info->ro_block_group_mutex); 1884 if (!cur_trans->dirty_bg_run) { 1885 run_it = 1; 1886 cur_trans->dirty_bg_run = 1; 1887 } 1888 mutex_unlock(&root->fs_info->ro_block_group_mutex); 1889 1890 if (run_it) 1891 ret = btrfs_start_dirty_block_groups(trans, root); 1892 } 1893 if (ret) { 1894 btrfs_end_transaction(trans, root); 1895 return ret; 1896 } 1897 1898 spin_lock(&root->fs_info->trans_lock); 1899 list_splice_init(&trans->ordered, &cur_trans->pending_ordered); 1900 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 1901 spin_unlock(&root->fs_info->trans_lock); 1902 atomic_inc(&cur_trans->use_count); 1903 ret = btrfs_end_transaction(trans, root); 1904 1905 wait_for_commit(root, cur_trans); 1906 1907 if (unlikely(cur_trans->aborted)) 1908 ret = cur_trans->aborted; 1909 1910 btrfs_put_transaction(cur_trans); 1911 1912 return ret; 1913 } 1914 1915 cur_trans->state = TRANS_STATE_COMMIT_START; 1916 wake_up(&root->fs_info->transaction_blocked_wait); 1917 1918 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1919 prev_trans = list_entry(cur_trans->list.prev, 1920 struct btrfs_transaction, list); 1921 if (prev_trans->state != TRANS_STATE_COMPLETED) { 1922 atomic_inc(&prev_trans->use_count); 1923 spin_unlock(&root->fs_info->trans_lock); 1924 1925 wait_for_commit(root, prev_trans); 1926 ret = prev_trans->aborted; 1927 1928 btrfs_put_transaction(prev_trans); 1929 if (ret) 1930 goto cleanup_transaction; 1931 } else { 1932 spin_unlock(&root->fs_info->trans_lock); 1933 } 1934 } else { 1935 spin_unlock(&root->fs_info->trans_lock); 1936 } 1937 1938 extwriter_counter_dec(cur_trans, trans->type); 1939 1940 ret = btrfs_start_delalloc_flush(root->fs_info); 1941 if (ret) 1942 goto cleanup_transaction; 1943 1944 ret = btrfs_run_delayed_items(trans, root); 1945 if (ret) 1946 goto cleanup_transaction; 1947 1948 wait_event(cur_trans->writer_wait, 1949 extwriter_counter_read(cur_trans) == 0); 1950 1951 /* some pending stuffs might be added after the previous flush. */ 1952 ret = btrfs_run_delayed_items(trans, root); 1953 if (ret) 1954 goto cleanup_transaction; 1955 1956 btrfs_wait_delalloc_flush(root->fs_info); 1957 1958 btrfs_wait_pending_ordered(cur_trans, root->fs_info); 1959 1960 btrfs_scrub_pause(root); 1961 /* 1962 * Ok now we need to make sure to block out any other joins while we 1963 * commit the transaction. We could have started a join before setting 1964 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 1965 */ 1966 spin_lock(&root->fs_info->trans_lock); 1967 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1968 spin_unlock(&root->fs_info->trans_lock); 1969 wait_event(cur_trans->writer_wait, 1970 atomic_read(&cur_trans->num_writers) == 1); 1971 1972 /* ->aborted might be set after the previous check, so check it */ 1973 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1974 ret = cur_trans->aborted; 1975 goto scrub_continue; 1976 } 1977 /* 1978 * the reloc mutex makes sure that we stop 1979 * the balancing code from coming in and moving 1980 * extents around in the middle of the commit 1981 */ 1982 mutex_lock(&root->fs_info->reloc_mutex); 1983 1984 /* 1985 * We needn't worry about the delayed items because we will 1986 * deal with them in create_pending_snapshot(), which is the 1987 * core function of the snapshot creation. 1988 */ 1989 ret = create_pending_snapshots(trans, root->fs_info); 1990 if (ret) { 1991 mutex_unlock(&root->fs_info->reloc_mutex); 1992 goto scrub_continue; 1993 } 1994 1995 /* 1996 * We insert the dir indexes of the snapshots and update the inode 1997 * of the snapshots' parents after the snapshot creation, so there 1998 * are some delayed items which are not dealt with. Now deal with 1999 * them. 2000 * 2001 * We needn't worry that this operation will corrupt the snapshots, 2002 * because all the tree which are snapshoted will be forced to COW 2003 * the nodes and leaves. 2004 */ 2005 ret = btrfs_run_delayed_items(trans, root); 2006 if (ret) { 2007 mutex_unlock(&root->fs_info->reloc_mutex); 2008 goto scrub_continue; 2009 } 2010 2011 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 2012 if (ret) { 2013 mutex_unlock(&root->fs_info->reloc_mutex); 2014 goto scrub_continue; 2015 } 2016 2017 /* Reocrd old roots for later qgroup accounting */ 2018 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info); 2019 if (ret) { 2020 mutex_unlock(&root->fs_info->reloc_mutex); 2021 goto scrub_continue; 2022 } 2023 2024 /* 2025 * make sure none of the code above managed to slip in a 2026 * delayed item 2027 */ 2028 btrfs_assert_delayed_root_empty(root); 2029 2030 WARN_ON(cur_trans != trans->transaction); 2031 2032 /* btrfs_commit_tree_roots is responsible for getting the 2033 * various roots consistent with each other. Every pointer 2034 * in the tree of tree roots has to point to the most up to date 2035 * root for every subvolume and other tree. So, we have to keep 2036 * the tree logging code from jumping in and changing any 2037 * of the trees. 2038 * 2039 * At this point in the commit, there can't be any tree-log 2040 * writers, but a little lower down we drop the trans mutex 2041 * and let new people in. By holding the tree_log_mutex 2042 * from now until after the super is written, we avoid races 2043 * with the tree-log code. 2044 */ 2045 mutex_lock(&root->fs_info->tree_log_mutex); 2046 2047 ret = commit_fs_roots(trans, root); 2048 if (ret) { 2049 mutex_unlock(&root->fs_info->tree_log_mutex); 2050 mutex_unlock(&root->fs_info->reloc_mutex); 2051 goto scrub_continue; 2052 } 2053 2054 /* 2055 * Since the transaction is done, we can apply the pending changes 2056 * before the next transaction. 2057 */ 2058 btrfs_apply_pending_changes(root->fs_info); 2059 2060 /* commit_fs_roots gets rid of all the tree log roots, it is now 2061 * safe to free the root of tree log roots 2062 */ 2063 btrfs_free_log_root_tree(trans, root->fs_info); 2064 2065 /* 2066 * Since fs roots are all committed, we can get a quite accurate 2067 * new_roots. So let's do quota accounting. 2068 */ 2069 ret = btrfs_qgroup_account_extents(trans, root->fs_info); 2070 if (ret < 0) { 2071 mutex_unlock(&root->fs_info->tree_log_mutex); 2072 mutex_unlock(&root->fs_info->reloc_mutex); 2073 goto scrub_continue; 2074 } 2075 2076 ret = commit_cowonly_roots(trans, root); 2077 if (ret) { 2078 mutex_unlock(&root->fs_info->tree_log_mutex); 2079 mutex_unlock(&root->fs_info->reloc_mutex); 2080 goto scrub_continue; 2081 } 2082 2083 /* 2084 * The tasks which save the space cache and inode cache may also 2085 * update ->aborted, check it. 2086 */ 2087 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 2088 ret = cur_trans->aborted; 2089 mutex_unlock(&root->fs_info->tree_log_mutex); 2090 mutex_unlock(&root->fs_info->reloc_mutex); 2091 goto scrub_continue; 2092 } 2093 2094 btrfs_prepare_extent_commit(trans, root); 2095 2096 cur_trans = root->fs_info->running_transaction; 2097 2098 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 2099 root->fs_info->tree_root->node); 2100 list_add_tail(&root->fs_info->tree_root->dirty_list, 2101 &cur_trans->switch_commits); 2102 2103 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 2104 root->fs_info->chunk_root->node); 2105 list_add_tail(&root->fs_info->chunk_root->dirty_list, 2106 &cur_trans->switch_commits); 2107 2108 switch_commit_roots(cur_trans, root->fs_info); 2109 2110 assert_qgroups_uptodate(trans); 2111 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2112 ASSERT(list_empty(&cur_trans->io_bgs)); 2113 update_super_roots(root); 2114 2115 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 2116 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 2117 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 2118 sizeof(*root->fs_info->super_copy)); 2119 2120 btrfs_update_commit_device_size(root->fs_info); 2121 btrfs_update_commit_device_bytes_used(root, cur_trans); 2122 2123 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 2124 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 2125 2126 btrfs_trans_release_chunk_metadata(trans); 2127 2128 spin_lock(&root->fs_info->trans_lock); 2129 cur_trans->state = TRANS_STATE_UNBLOCKED; 2130 root->fs_info->running_transaction = NULL; 2131 spin_unlock(&root->fs_info->trans_lock); 2132 mutex_unlock(&root->fs_info->reloc_mutex); 2133 2134 wake_up(&root->fs_info->transaction_wait); 2135 2136 ret = btrfs_write_and_wait_transaction(trans, root); 2137 if (ret) { 2138 btrfs_error(root->fs_info, ret, 2139 "Error while writing out transaction"); 2140 mutex_unlock(&root->fs_info->tree_log_mutex); 2141 goto scrub_continue; 2142 } 2143 2144 ret = write_ctree_super(trans, root, 0); 2145 if (ret) { 2146 mutex_unlock(&root->fs_info->tree_log_mutex); 2147 goto scrub_continue; 2148 } 2149 2150 /* 2151 * the super is written, we can safely allow the tree-loggers 2152 * to go about their business 2153 */ 2154 mutex_unlock(&root->fs_info->tree_log_mutex); 2155 2156 btrfs_finish_extent_commit(trans, root); 2157 2158 if (cur_trans->have_free_bgs) 2159 btrfs_clear_space_info_full(root->fs_info); 2160 2161 root->fs_info->last_trans_committed = cur_trans->transid; 2162 /* 2163 * We needn't acquire the lock here because there is no other task 2164 * which can change it. 2165 */ 2166 cur_trans->state = TRANS_STATE_COMPLETED; 2167 wake_up(&cur_trans->commit_wait); 2168 2169 spin_lock(&root->fs_info->trans_lock); 2170 list_del_init(&cur_trans->list); 2171 spin_unlock(&root->fs_info->trans_lock); 2172 2173 btrfs_put_transaction(cur_trans); 2174 btrfs_put_transaction(cur_trans); 2175 2176 if (trans->type & __TRANS_FREEZABLE) 2177 sb_end_intwrite(root->fs_info->sb); 2178 2179 trace_btrfs_transaction_commit(root); 2180 2181 btrfs_scrub_continue(root); 2182 2183 if (current->journal_info == trans) 2184 current->journal_info = NULL; 2185 2186 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2187 2188 if (current != root->fs_info->transaction_kthread && 2189 current != root->fs_info->cleaner_kthread) 2190 btrfs_run_delayed_iputs(root); 2191 2192 return ret; 2193 2194 scrub_continue: 2195 btrfs_scrub_continue(root); 2196 cleanup_transaction: 2197 btrfs_trans_release_metadata(trans, root); 2198 btrfs_trans_release_chunk_metadata(trans); 2199 trans->block_rsv = NULL; 2200 if (trans->qgroup_reserved) { 2201 btrfs_qgroup_free(root, trans->qgroup_reserved); 2202 trans->qgroup_reserved = 0; 2203 } 2204 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction."); 2205 if (current->journal_info == trans) 2206 current->journal_info = NULL; 2207 cleanup_transaction(trans, root, ret); 2208 2209 return ret; 2210 } 2211 2212 /* 2213 * return < 0 if error 2214 * 0 if there are no more dead_roots at the time of call 2215 * 1 there are more to be processed, call me again 2216 * 2217 * The return value indicates there are certainly more snapshots to delete, but 2218 * if there comes a new one during processing, it may return 0. We don't mind, 2219 * because btrfs_commit_super will poke cleaner thread and it will process it a 2220 * few seconds later. 2221 */ 2222 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2223 { 2224 int ret; 2225 struct btrfs_fs_info *fs_info = root->fs_info; 2226 2227 spin_lock(&fs_info->trans_lock); 2228 if (list_empty(&fs_info->dead_roots)) { 2229 spin_unlock(&fs_info->trans_lock); 2230 return 0; 2231 } 2232 root = list_first_entry(&fs_info->dead_roots, 2233 struct btrfs_root, root_list); 2234 list_del_init(&root->root_list); 2235 spin_unlock(&fs_info->trans_lock); 2236 2237 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid); 2238 2239 btrfs_kill_all_delayed_nodes(root); 2240 2241 if (btrfs_header_backref_rev(root->node) < 2242 BTRFS_MIXED_BACKREF_REV) 2243 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2244 else 2245 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2246 2247 return (ret < 0) ? 0 : 1; 2248 } 2249 2250 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2251 { 2252 unsigned long prev; 2253 unsigned long bit; 2254 2255 prev = xchg(&fs_info->pending_changes, 0); 2256 if (!prev) 2257 return; 2258 2259 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2260 if (prev & bit) 2261 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2262 prev &= ~bit; 2263 2264 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2265 if (prev & bit) 2266 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2267 prev &= ~bit; 2268 2269 bit = 1 << BTRFS_PENDING_COMMIT; 2270 if (prev & bit) 2271 btrfs_debug(fs_info, "pending commit done"); 2272 prev &= ~bit; 2273 2274 if (prev) 2275 btrfs_warn(fs_info, 2276 "unknown pending changes left 0x%lx, ignoring", prev); 2277 } 2278