1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "locking.h" 17 #include "tree-log.h" 18 #include "inode-map.h" 19 #include "volumes.h" 20 #include "dev-replace.h" 21 #include "qgroup.h" 22 23 #define BTRFS_ROOT_TRANS_TAG 0 24 25 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 26 [TRANS_STATE_RUNNING] = 0U, 27 [TRANS_STATE_BLOCKED] = __TRANS_START, 28 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 29 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 30 __TRANS_ATTACH | 31 __TRANS_JOIN), 32 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 33 __TRANS_ATTACH | 34 __TRANS_JOIN | 35 __TRANS_JOIN_NOLOCK), 36 [TRANS_STATE_COMPLETED] = (__TRANS_START | 37 __TRANS_ATTACH | 38 __TRANS_JOIN | 39 __TRANS_JOIN_NOLOCK), 40 }; 41 42 void btrfs_put_transaction(struct btrfs_transaction *transaction) 43 { 44 WARN_ON(refcount_read(&transaction->use_count) == 0); 45 if (refcount_dec_and_test(&transaction->use_count)) { 46 BUG_ON(!list_empty(&transaction->list)); 47 WARN_ON(!RB_EMPTY_ROOT( 48 &transaction->delayed_refs.href_root.rb_root)); 49 if (transaction->delayed_refs.pending_csums) 50 btrfs_err(transaction->fs_info, 51 "pending csums is %llu", 52 transaction->delayed_refs.pending_csums); 53 /* 54 * If any block groups are found in ->deleted_bgs then it's 55 * because the transaction was aborted and a commit did not 56 * happen (things failed before writing the new superblock 57 * and calling btrfs_finish_extent_commit()), so we can not 58 * discard the physical locations of the block groups. 59 */ 60 while (!list_empty(&transaction->deleted_bgs)) { 61 struct btrfs_block_group_cache *cache; 62 63 cache = list_first_entry(&transaction->deleted_bgs, 64 struct btrfs_block_group_cache, 65 bg_list); 66 list_del_init(&cache->bg_list); 67 btrfs_put_block_group_trimming(cache); 68 btrfs_put_block_group(cache); 69 } 70 WARN_ON(!list_empty(&transaction->dev_update_list)); 71 kfree(transaction); 72 } 73 } 74 75 static noinline void switch_commit_roots(struct btrfs_transaction *trans) 76 { 77 struct btrfs_fs_info *fs_info = trans->fs_info; 78 struct btrfs_root *root, *tmp; 79 80 down_write(&fs_info->commit_root_sem); 81 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 82 dirty_list) { 83 list_del_init(&root->dirty_list); 84 free_extent_buffer(root->commit_root); 85 root->commit_root = btrfs_root_node(root); 86 if (is_fstree(root->root_key.objectid)) 87 btrfs_unpin_free_ino(root); 88 extent_io_tree_release(&root->dirty_log_pages); 89 btrfs_qgroup_clean_swapped_blocks(root); 90 } 91 92 /* We can free old roots now. */ 93 spin_lock(&trans->dropped_roots_lock); 94 while (!list_empty(&trans->dropped_roots)) { 95 root = list_first_entry(&trans->dropped_roots, 96 struct btrfs_root, root_list); 97 list_del_init(&root->root_list); 98 spin_unlock(&trans->dropped_roots_lock); 99 btrfs_drop_and_free_fs_root(fs_info, root); 100 spin_lock(&trans->dropped_roots_lock); 101 } 102 spin_unlock(&trans->dropped_roots_lock); 103 up_write(&fs_info->commit_root_sem); 104 } 105 106 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 107 unsigned int type) 108 { 109 if (type & TRANS_EXTWRITERS) 110 atomic_inc(&trans->num_extwriters); 111 } 112 113 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 114 unsigned int type) 115 { 116 if (type & TRANS_EXTWRITERS) 117 atomic_dec(&trans->num_extwriters); 118 } 119 120 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 121 unsigned int type) 122 { 123 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 124 } 125 126 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 127 { 128 return atomic_read(&trans->num_extwriters); 129 } 130 131 /* 132 * To be called after all the new block groups attached to the transaction 133 * handle have been created (btrfs_create_pending_block_groups()). 134 */ 135 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 136 { 137 struct btrfs_fs_info *fs_info = trans->fs_info; 138 139 if (!trans->chunk_bytes_reserved) 140 return; 141 142 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 143 144 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 145 trans->chunk_bytes_reserved); 146 trans->chunk_bytes_reserved = 0; 147 } 148 149 /* 150 * either allocate a new transaction or hop into the existing one 151 */ 152 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 153 unsigned int type) 154 { 155 struct btrfs_transaction *cur_trans; 156 157 spin_lock(&fs_info->trans_lock); 158 loop: 159 /* The file system has been taken offline. No new transactions. */ 160 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 161 spin_unlock(&fs_info->trans_lock); 162 return -EROFS; 163 } 164 165 cur_trans = fs_info->running_transaction; 166 if (cur_trans) { 167 if (cur_trans->aborted) { 168 spin_unlock(&fs_info->trans_lock); 169 return cur_trans->aborted; 170 } 171 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 172 spin_unlock(&fs_info->trans_lock); 173 return -EBUSY; 174 } 175 refcount_inc(&cur_trans->use_count); 176 atomic_inc(&cur_trans->num_writers); 177 extwriter_counter_inc(cur_trans, type); 178 spin_unlock(&fs_info->trans_lock); 179 return 0; 180 } 181 spin_unlock(&fs_info->trans_lock); 182 183 /* 184 * If we are ATTACH, we just want to catch the current transaction, 185 * and commit it. If there is no transaction, just return ENOENT. 186 */ 187 if (type == TRANS_ATTACH) 188 return -ENOENT; 189 190 /* 191 * JOIN_NOLOCK only happens during the transaction commit, so 192 * it is impossible that ->running_transaction is NULL 193 */ 194 BUG_ON(type == TRANS_JOIN_NOLOCK); 195 196 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 197 if (!cur_trans) 198 return -ENOMEM; 199 200 spin_lock(&fs_info->trans_lock); 201 if (fs_info->running_transaction) { 202 /* 203 * someone started a transaction after we unlocked. Make sure 204 * to redo the checks above 205 */ 206 kfree(cur_trans); 207 goto loop; 208 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 209 spin_unlock(&fs_info->trans_lock); 210 kfree(cur_trans); 211 return -EROFS; 212 } 213 214 cur_trans->fs_info = fs_info; 215 atomic_set(&cur_trans->num_writers, 1); 216 extwriter_counter_init(cur_trans, type); 217 init_waitqueue_head(&cur_trans->writer_wait); 218 init_waitqueue_head(&cur_trans->commit_wait); 219 cur_trans->state = TRANS_STATE_RUNNING; 220 /* 221 * One for this trans handle, one so it will live on until we 222 * commit the transaction. 223 */ 224 refcount_set(&cur_trans->use_count, 2); 225 cur_trans->flags = 0; 226 cur_trans->start_time = ktime_get_seconds(); 227 228 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 229 230 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 231 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 232 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 233 234 /* 235 * although the tree mod log is per file system and not per transaction, 236 * the log must never go across transaction boundaries. 237 */ 238 smp_mb(); 239 if (!list_empty(&fs_info->tree_mod_seq_list)) 240 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 241 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 242 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 243 atomic64_set(&fs_info->tree_mod_seq, 0); 244 245 spin_lock_init(&cur_trans->delayed_refs.lock); 246 247 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 248 INIT_LIST_HEAD(&cur_trans->dev_update_list); 249 INIT_LIST_HEAD(&cur_trans->switch_commits); 250 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 251 INIT_LIST_HEAD(&cur_trans->io_bgs); 252 INIT_LIST_HEAD(&cur_trans->dropped_roots); 253 mutex_init(&cur_trans->cache_write_mutex); 254 spin_lock_init(&cur_trans->dirty_bgs_lock); 255 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 256 spin_lock_init(&cur_trans->dropped_roots_lock); 257 list_add_tail(&cur_trans->list, &fs_info->trans_list); 258 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 259 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode); 260 fs_info->generation++; 261 cur_trans->transid = fs_info->generation; 262 fs_info->running_transaction = cur_trans; 263 cur_trans->aborted = 0; 264 spin_unlock(&fs_info->trans_lock); 265 266 return 0; 267 } 268 269 /* 270 * this does all the record keeping required to make sure that a reference 271 * counted root is properly recorded in a given transaction. This is required 272 * to make sure the old root from before we joined the transaction is deleted 273 * when the transaction commits 274 */ 275 static int record_root_in_trans(struct btrfs_trans_handle *trans, 276 struct btrfs_root *root, 277 int force) 278 { 279 struct btrfs_fs_info *fs_info = root->fs_info; 280 281 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 282 root->last_trans < trans->transid) || force) { 283 WARN_ON(root == fs_info->extent_root); 284 WARN_ON(!force && root->commit_root != root->node); 285 286 /* 287 * see below for IN_TRANS_SETUP usage rules 288 * we have the reloc mutex held now, so there 289 * is only one writer in this function 290 */ 291 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 292 293 /* make sure readers find IN_TRANS_SETUP before 294 * they find our root->last_trans update 295 */ 296 smp_wmb(); 297 298 spin_lock(&fs_info->fs_roots_radix_lock); 299 if (root->last_trans == trans->transid && !force) { 300 spin_unlock(&fs_info->fs_roots_radix_lock); 301 return 0; 302 } 303 radix_tree_tag_set(&fs_info->fs_roots_radix, 304 (unsigned long)root->root_key.objectid, 305 BTRFS_ROOT_TRANS_TAG); 306 spin_unlock(&fs_info->fs_roots_radix_lock); 307 root->last_trans = trans->transid; 308 309 /* this is pretty tricky. We don't want to 310 * take the relocation lock in btrfs_record_root_in_trans 311 * unless we're really doing the first setup for this root in 312 * this transaction. 313 * 314 * Normally we'd use root->last_trans as a flag to decide 315 * if we want to take the expensive mutex. 316 * 317 * But, we have to set root->last_trans before we 318 * init the relocation root, otherwise, we trip over warnings 319 * in ctree.c. The solution used here is to flag ourselves 320 * with root IN_TRANS_SETUP. When this is 1, we're still 321 * fixing up the reloc trees and everyone must wait. 322 * 323 * When this is zero, they can trust root->last_trans and fly 324 * through btrfs_record_root_in_trans without having to take the 325 * lock. smp_wmb() makes sure that all the writes above are 326 * done before we pop in the zero below 327 */ 328 btrfs_init_reloc_root(trans, root); 329 smp_mb__before_atomic(); 330 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 331 } 332 return 0; 333 } 334 335 336 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 337 struct btrfs_root *root) 338 { 339 struct btrfs_fs_info *fs_info = root->fs_info; 340 struct btrfs_transaction *cur_trans = trans->transaction; 341 342 /* Add ourselves to the transaction dropped list */ 343 spin_lock(&cur_trans->dropped_roots_lock); 344 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 345 spin_unlock(&cur_trans->dropped_roots_lock); 346 347 /* Make sure we don't try to update the root at commit time */ 348 spin_lock(&fs_info->fs_roots_radix_lock); 349 radix_tree_tag_clear(&fs_info->fs_roots_radix, 350 (unsigned long)root->root_key.objectid, 351 BTRFS_ROOT_TRANS_TAG); 352 spin_unlock(&fs_info->fs_roots_radix_lock); 353 } 354 355 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 356 struct btrfs_root *root) 357 { 358 struct btrfs_fs_info *fs_info = root->fs_info; 359 360 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 361 return 0; 362 363 /* 364 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 365 * and barriers 366 */ 367 smp_rmb(); 368 if (root->last_trans == trans->transid && 369 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 370 return 0; 371 372 mutex_lock(&fs_info->reloc_mutex); 373 record_root_in_trans(trans, root, 0); 374 mutex_unlock(&fs_info->reloc_mutex); 375 376 return 0; 377 } 378 379 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 380 { 381 return (trans->state >= TRANS_STATE_BLOCKED && 382 trans->state < TRANS_STATE_UNBLOCKED && 383 !trans->aborted); 384 } 385 386 /* wait for commit against the current transaction to become unblocked 387 * when this is done, it is safe to start a new transaction, but the current 388 * transaction might not be fully on disk. 389 */ 390 static void wait_current_trans(struct btrfs_fs_info *fs_info) 391 { 392 struct btrfs_transaction *cur_trans; 393 394 spin_lock(&fs_info->trans_lock); 395 cur_trans = fs_info->running_transaction; 396 if (cur_trans && is_transaction_blocked(cur_trans)) { 397 refcount_inc(&cur_trans->use_count); 398 spin_unlock(&fs_info->trans_lock); 399 400 wait_event(fs_info->transaction_wait, 401 cur_trans->state >= TRANS_STATE_UNBLOCKED || 402 cur_trans->aborted); 403 btrfs_put_transaction(cur_trans); 404 } else { 405 spin_unlock(&fs_info->trans_lock); 406 } 407 } 408 409 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 410 { 411 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 412 return 0; 413 414 if (type == TRANS_START) 415 return 1; 416 417 return 0; 418 } 419 420 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 421 { 422 struct btrfs_fs_info *fs_info = root->fs_info; 423 424 if (!fs_info->reloc_ctl || 425 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 426 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 427 root->reloc_root) 428 return false; 429 430 return true; 431 } 432 433 static struct btrfs_trans_handle * 434 start_transaction(struct btrfs_root *root, unsigned int num_items, 435 unsigned int type, enum btrfs_reserve_flush_enum flush, 436 bool enforce_qgroups) 437 { 438 struct btrfs_fs_info *fs_info = root->fs_info; 439 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 440 struct btrfs_trans_handle *h; 441 struct btrfs_transaction *cur_trans; 442 u64 num_bytes = 0; 443 u64 qgroup_reserved = 0; 444 bool reloc_reserved = false; 445 int ret; 446 447 /* Send isn't supposed to start transactions. */ 448 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 449 450 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 451 return ERR_PTR(-EROFS); 452 453 if (current->journal_info) { 454 WARN_ON(type & TRANS_EXTWRITERS); 455 h = current->journal_info; 456 refcount_inc(&h->use_count); 457 WARN_ON(refcount_read(&h->use_count) > 2); 458 h->orig_rsv = h->block_rsv; 459 h->block_rsv = NULL; 460 goto got_it; 461 } 462 463 /* 464 * Do the reservation before we join the transaction so we can do all 465 * the appropriate flushing if need be. 466 */ 467 if (num_items && root != fs_info->chunk_root) { 468 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 469 u64 delayed_refs_bytes = 0; 470 471 qgroup_reserved = num_items * fs_info->nodesize; 472 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 473 enforce_qgroups); 474 if (ret) 475 return ERR_PTR(ret); 476 477 /* 478 * We want to reserve all the bytes we may need all at once, so 479 * we only do 1 enospc flushing cycle per transaction start. We 480 * accomplish this by simply assuming we'll do 2 x num_items 481 * worth of delayed refs updates in this trans handle, and 482 * refill that amount for whatever is missing in the reserve. 483 */ 484 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); 485 if (delayed_refs_rsv->full == 0) { 486 delayed_refs_bytes = num_bytes; 487 num_bytes <<= 1; 488 } 489 490 /* 491 * Do the reservation for the relocation root creation 492 */ 493 if (need_reserve_reloc_root(root)) { 494 num_bytes += fs_info->nodesize; 495 reloc_reserved = true; 496 } 497 498 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush); 499 if (ret) 500 goto reserve_fail; 501 if (delayed_refs_bytes) { 502 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 503 delayed_refs_bytes); 504 num_bytes -= delayed_refs_bytes; 505 } 506 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 507 !delayed_refs_rsv->full) { 508 /* 509 * Some people call with btrfs_start_transaction(root, 0) 510 * because they can be throttled, but have some other mechanism 511 * for reserving space. We still want these guys to refill the 512 * delayed block_rsv so just add 1 items worth of reservation 513 * here. 514 */ 515 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 516 if (ret) 517 goto reserve_fail; 518 } 519 again: 520 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 521 if (!h) { 522 ret = -ENOMEM; 523 goto alloc_fail; 524 } 525 526 /* 527 * If we are JOIN_NOLOCK we're already committing a transaction and 528 * waiting on this guy, so we don't need to do the sb_start_intwrite 529 * because we're already holding a ref. We need this because we could 530 * have raced in and did an fsync() on a file which can kick a commit 531 * and then we deadlock with somebody doing a freeze. 532 * 533 * If we are ATTACH, it means we just want to catch the current 534 * transaction and commit it, so we needn't do sb_start_intwrite(). 535 */ 536 if (type & __TRANS_FREEZABLE) 537 sb_start_intwrite(fs_info->sb); 538 539 if (may_wait_transaction(fs_info, type)) 540 wait_current_trans(fs_info); 541 542 do { 543 ret = join_transaction(fs_info, type); 544 if (ret == -EBUSY) { 545 wait_current_trans(fs_info); 546 if (unlikely(type == TRANS_ATTACH)) 547 ret = -ENOENT; 548 } 549 } while (ret == -EBUSY); 550 551 if (ret < 0) 552 goto join_fail; 553 554 cur_trans = fs_info->running_transaction; 555 556 h->transid = cur_trans->transid; 557 h->transaction = cur_trans; 558 h->root = root; 559 refcount_set(&h->use_count, 1); 560 h->fs_info = root->fs_info; 561 562 h->type = type; 563 h->can_flush_pending_bgs = true; 564 INIT_LIST_HEAD(&h->new_bgs); 565 566 smp_mb(); 567 if (cur_trans->state >= TRANS_STATE_BLOCKED && 568 may_wait_transaction(fs_info, type)) { 569 current->journal_info = h; 570 btrfs_commit_transaction(h); 571 goto again; 572 } 573 574 if (num_bytes) { 575 trace_btrfs_space_reservation(fs_info, "transaction", 576 h->transid, num_bytes, 1); 577 h->block_rsv = &fs_info->trans_block_rsv; 578 h->bytes_reserved = num_bytes; 579 h->reloc_reserved = reloc_reserved; 580 } 581 582 got_it: 583 btrfs_record_root_in_trans(h, root); 584 585 if (!current->journal_info) 586 current->journal_info = h; 587 return h; 588 589 join_fail: 590 if (type & __TRANS_FREEZABLE) 591 sb_end_intwrite(fs_info->sb); 592 kmem_cache_free(btrfs_trans_handle_cachep, h); 593 alloc_fail: 594 if (num_bytes) 595 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 596 num_bytes); 597 reserve_fail: 598 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 599 return ERR_PTR(ret); 600 } 601 602 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 603 unsigned int num_items) 604 { 605 return start_transaction(root, num_items, TRANS_START, 606 BTRFS_RESERVE_FLUSH_ALL, true); 607 } 608 609 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 610 struct btrfs_root *root, 611 unsigned int num_items, 612 int min_factor) 613 { 614 struct btrfs_fs_info *fs_info = root->fs_info; 615 struct btrfs_trans_handle *trans; 616 u64 num_bytes; 617 int ret; 618 619 /* 620 * We have two callers: unlink and block group removal. The 621 * former should succeed even if we will temporarily exceed 622 * quota and the latter operates on the extent root so 623 * qgroup enforcement is ignored anyway. 624 */ 625 trans = start_transaction(root, num_items, TRANS_START, 626 BTRFS_RESERVE_FLUSH_ALL, false); 627 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 628 return trans; 629 630 trans = btrfs_start_transaction(root, 0); 631 if (IS_ERR(trans)) 632 return trans; 633 634 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); 635 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv, 636 num_bytes, min_factor); 637 if (ret) { 638 btrfs_end_transaction(trans); 639 return ERR_PTR(ret); 640 } 641 642 trans->block_rsv = &fs_info->trans_block_rsv; 643 trans->bytes_reserved = num_bytes; 644 trace_btrfs_space_reservation(fs_info, "transaction", 645 trans->transid, num_bytes, 1); 646 647 return trans; 648 } 649 650 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 651 { 652 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 653 true); 654 } 655 656 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 657 { 658 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 659 BTRFS_RESERVE_NO_FLUSH, true); 660 } 661 662 /* 663 * btrfs_attach_transaction() - catch the running transaction 664 * 665 * It is used when we want to commit the current the transaction, but 666 * don't want to start a new one. 667 * 668 * Note: If this function return -ENOENT, it just means there is no 669 * running transaction. But it is possible that the inactive transaction 670 * is still in the memory, not fully on disk. If you hope there is no 671 * inactive transaction in the fs when -ENOENT is returned, you should 672 * invoke 673 * btrfs_attach_transaction_barrier() 674 */ 675 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 676 { 677 return start_transaction(root, 0, TRANS_ATTACH, 678 BTRFS_RESERVE_NO_FLUSH, true); 679 } 680 681 /* 682 * btrfs_attach_transaction_barrier() - catch the running transaction 683 * 684 * It is similar to the above function, the difference is this one 685 * will wait for all the inactive transactions until they fully 686 * complete. 687 */ 688 struct btrfs_trans_handle * 689 btrfs_attach_transaction_barrier(struct btrfs_root *root) 690 { 691 struct btrfs_trans_handle *trans; 692 693 trans = start_transaction(root, 0, TRANS_ATTACH, 694 BTRFS_RESERVE_NO_FLUSH, true); 695 if (trans == ERR_PTR(-ENOENT)) 696 btrfs_wait_for_commit(root->fs_info, 0); 697 698 return trans; 699 } 700 701 /* wait for a transaction commit to be fully complete */ 702 static noinline void wait_for_commit(struct btrfs_transaction *commit) 703 { 704 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 705 } 706 707 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 708 { 709 struct btrfs_transaction *cur_trans = NULL, *t; 710 int ret = 0; 711 712 if (transid) { 713 if (transid <= fs_info->last_trans_committed) 714 goto out; 715 716 /* find specified transaction */ 717 spin_lock(&fs_info->trans_lock); 718 list_for_each_entry(t, &fs_info->trans_list, list) { 719 if (t->transid == transid) { 720 cur_trans = t; 721 refcount_inc(&cur_trans->use_count); 722 ret = 0; 723 break; 724 } 725 if (t->transid > transid) { 726 ret = 0; 727 break; 728 } 729 } 730 spin_unlock(&fs_info->trans_lock); 731 732 /* 733 * The specified transaction doesn't exist, or we 734 * raced with btrfs_commit_transaction 735 */ 736 if (!cur_trans) { 737 if (transid > fs_info->last_trans_committed) 738 ret = -EINVAL; 739 goto out; 740 } 741 } else { 742 /* find newest transaction that is committing | committed */ 743 spin_lock(&fs_info->trans_lock); 744 list_for_each_entry_reverse(t, &fs_info->trans_list, 745 list) { 746 if (t->state >= TRANS_STATE_COMMIT_START) { 747 if (t->state == TRANS_STATE_COMPLETED) 748 break; 749 cur_trans = t; 750 refcount_inc(&cur_trans->use_count); 751 break; 752 } 753 } 754 spin_unlock(&fs_info->trans_lock); 755 if (!cur_trans) 756 goto out; /* nothing committing|committed */ 757 } 758 759 wait_for_commit(cur_trans); 760 btrfs_put_transaction(cur_trans); 761 out: 762 return ret; 763 } 764 765 void btrfs_throttle(struct btrfs_fs_info *fs_info) 766 { 767 wait_current_trans(fs_info); 768 } 769 770 static int should_end_transaction(struct btrfs_trans_handle *trans) 771 { 772 struct btrfs_fs_info *fs_info = trans->fs_info; 773 774 if (btrfs_check_space_for_delayed_refs(fs_info)) 775 return 1; 776 777 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 778 } 779 780 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 781 { 782 struct btrfs_transaction *cur_trans = trans->transaction; 783 784 smp_mb(); 785 if (cur_trans->state >= TRANS_STATE_BLOCKED || 786 cur_trans->delayed_refs.flushing) 787 return 1; 788 789 return should_end_transaction(trans); 790 } 791 792 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 793 794 { 795 struct btrfs_fs_info *fs_info = trans->fs_info; 796 797 if (!trans->block_rsv) { 798 ASSERT(!trans->bytes_reserved); 799 return; 800 } 801 802 if (!trans->bytes_reserved) 803 return; 804 805 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 806 trace_btrfs_space_reservation(fs_info, "transaction", 807 trans->transid, trans->bytes_reserved, 0); 808 btrfs_block_rsv_release(fs_info, trans->block_rsv, 809 trans->bytes_reserved); 810 trans->bytes_reserved = 0; 811 } 812 813 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 814 int throttle) 815 { 816 struct btrfs_fs_info *info = trans->fs_info; 817 struct btrfs_transaction *cur_trans = trans->transaction; 818 int lock = (trans->type != TRANS_JOIN_NOLOCK); 819 int err = 0; 820 821 if (refcount_read(&trans->use_count) > 1) { 822 refcount_dec(&trans->use_count); 823 trans->block_rsv = trans->orig_rsv; 824 return 0; 825 } 826 827 btrfs_trans_release_metadata(trans); 828 trans->block_rsv = NULL; 829 830 btrfs_create_pending_block_groups(trans); 831 832 btrfs_trans_release_chunk_metadata(trans); 833 834 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 835 if (throttle) 836 return btrfs_commit_transaction(trans); 837 else 838 wake_up_process(info->transaction_kthread); 839 } 840 841 if (trans->type & __TRANS_FREEZABLE) 842 sb_end_intwrite(info->sb); 843 844 WARN_ON(cur_trans != info->running_transaction); 845 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 846 atomic_dec(&cur_trans->num_writers); 847 extwriter_counter_dec(cur_trans, trans->type); 848 849 cond_wake_up(&cur_trans->writer_wait); 850 btrfs_put_transaction(cur_trans); 851 852 if (current->journal_info == trans) 853 current->journal_info = NULL; 854 855 if (throttle) 856 btrfs_run_delayed_iputs(info); 857 858 if (trans->aborted || 859 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 860 wake_up_process(info->transaction_kthread); 861 err = -EIO; 862 } 863 864 kmem_cache_free(btrfs_trans_handle_cachep, trans); 865 return err; 866 } 867 868 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 869 { 870 return __btrfs_end_transaction(trans, 0); 871 } 872 873 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 874 { 875 return __btrfs_end_transaction(trans, 1); 876 } 877 878 /* 879 * when btree blocks are allocated, they have some corresponding bits set for 880 * them in one of two extent_io trees. This is used to make sure all of 881 * those extents are sent to disk but does not wait on them 882 */ 883 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 884 struct extent_io_tree *dirty_pages, int mark) 885 { 886 int err = 0; 887 int werr = 0; 888 struct address_space *mapping = fs_info->btree_inode->i_mapping; 889 struct extent_state *cached_state = NULL; 890 u64 start = 0; 891 u64 end; 892 893 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 894 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 895 mark, &cached_state)) { 896 bool wait_writeback = false; 897 898 err = convert_extent_bit(dirty_pages, start, end, 899 EXTENT_NEED_WAIT, 900 mark, &cached_state); 901 /* 902 * convert_extent_bit can return -ENOMEM, which is most of the 903 * time a temporary error. So when it happens, ignore the error 904 * and wait for writeback of this range to finish - because we 905 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 906 * to __btrfs_wait_marked_extents() would not know that 907 * writeback for this range started and therefore wouldn't 908 * wait for it to finish - we don't want to commit a 909 * superblock that points to btree nodes/leafs for which 910 * writeback hasn't finished yet (and without errors). 911 * We cleanup any entries left in the io tree when committing 912 * the transaction (through extent_io_tree_release()). 913 */ 914 if (err == -ENOMEM) { 915 err = 0; 916 wait_writeback = true; 917 } 918 if (!err) 919 err = filemap_fdatawrite_range(mapping, start, end); 920 if (err) 921 werr = err; 922 else if (wait_writeback) 923 werr = filemap_fdatawait_range(mapping, start, end); 924 free_extent_state(cached_state); 925 cached_state = NULL; 926 cond_resched(); 927 start = end + 1; 928 } 929 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 930 return werr; 931 } 932 933 /* 934 * when btree blocks are allocated, they have some corresponding bits set for 935 * them in one of two extent_io trees. This is used to make sure all of 936 * those extents are on disk for transaction or log commit. We wait 937 * on all the pages and clear them from the dirty pages state tree 938 */ 939 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 940 struct extent_io_tree *dirty_pages) 941 { 942 int err = 0; 943 int werr = 0; 944 struct address_space *mapping = fs_info->btree_inode->i_mapping; 945 struct extent_state *cached_state = NULL; 946 u64 start = 0; 947 u64 end; 948 949 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 950 EXTENT_NEED_WAIT, &cached_state)) { 951 /* 952 * Ignore -ENOMEM errors returned by clear_extent_bit(). 953 * When committing the transaction, we'll remove any entries 954 * left in the io tree. For a log commit, we don't remove them 955 * after committing the log because the tree can be accessed 956 * concurrently - we do it only at transaction commit time when 957 * it's safe to do it (through extent_io_tree_release()). 958 */ 959 err = clear_extent_bit(dirty_pages, start, end, 960 EXTENT_NEED_WAIT, 0, 0, &cached_state); 961 if (err == -ENOMEM) 962 err = 0; 963 if (!err) 964 err = filemap_fdatawait_range(mapping, start, end); 965 if (err) 966 werr = err; 967 free_extent_state(cached_state); 968 cached_state = NULL; 969 cond_resched(); 970 start = end + 1; 971 } 972 if (err) 973 werr = err; 974 return werr; 975 } 976 977 int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 978 struct extent_io_tree *dirty_pages) 979 { 980 bool errors = false; 981 int err; 982 983 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 984 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 985 errors = true; 986 987 if (errors && !err) 988 err = -EIO; 989 return err; 990 } 991 992 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 993 { 994 struct btrfs_fs_info *fs_info = log_root->fs_info; 995 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 996 bool errors = false; 997 int err; 998 999 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1000 1001 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1002 if ((mark & EXTENT_DIRTY) && 1003 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1004 errors = true; 1005 1006 if ((mark & EXTENT_NEW) && 1007 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1008 errors = true; 1009 1010 if (errors && !err) 1011 err = -EIO; 1012 return err; 1013 } 1014 1015 /* 1016 * When btree blocks are allocated the corresponding extents are marked dirty. 1017 * This function ensures such extents are persisted on disk for transaction or 1018 * log commit. 1019 * 1020 * @trans: transaction whose dirty pages we'd like to write 1021 */ 1022 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1023 { 1024 int ret; 1025 int ret2; 1026 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1027 struct btrfs_fs_info *fs_info = trans->fs_info; 1028 struct blk_plug plug; 1029 1030 blk_start_plug(&plug); 1031 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1032 blk_finish_plug(&plug); 1033 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1034 1035 extent_io_tree_release(&trans->transaction->dirty_pages); 1036 1037 if (ret) 1038 return ret; 1039 else if (ret2) 1040 return ret2; 1041 else 1042 return 0; 1043 } 1044 1045 /* 1046 * this is used to update the root pointer in the tree of tree roots. 1047 * 1048 * But, in the case of the extent allocation tree, updating the root 1049 * pointer may allocate blocks which may change the root of the extent 1050 * allocation tree. 1051 * 1052 * So, this loops and repeats and makes sure the cowonly root didn't 1053 * change while the root pointer was being updated in the metadata. 1054 */ 1055 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1056 struct btrfs_root *root) 1057 { 1058 int ret; 1059 u64 old_root_bytenr; 1060 u64 old_root_used; 1061 struct btrfs_fs_info *fs_info = root->fs_info; 1062 struct btrfs_root *tree_root = fs_info->tree_root; 1063 1064 old_root_used = btrfs_root_used(&root->root_item); 1065 1066 while (1) { 1067 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1068 if (old_root_bytenr == root->node->start && 1069 old_root_used == btrfs_root_used(&root->root_item)) 1070 break; 1071 1072 btrfs_set_root_node(&root->root_item, root->node); 1073 ret = btrfs_update_root(trans, tree_root, 1074 &root->root_key, 1075 &root->root_item); 1076 if (ret) 1077 return ret; 1078 1079 old_root_used = btrfs_root_used(&root->root_item); 1080 } 1081 1082 return 0; 1083 } 1084 1085 /* 1086 * update all the cowonly tree roots on disk 1087 * 1088 * The error handling in this function may not be obvious. Any of the 1089 * failures will cause the file system to go offline. We still need 1090 * to clean up the delayed refs. 1091 */ 1092 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1093 { 1094 struct btrfs_fs_info *fs_info = trans->fs_info; 1095 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1096 struct list_head *io_bgs = &trans->transaction->io_bgs; 1097 struct list_head *next; 1098 struct extent_buffer *eb; 1099 int ret; 1100 1101 eb = btrfs_lock_root_node(fs_info->tree_root); 1102 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1103 0, &eb); 1104 btrfs_tree_unlock(eb); 1105 free_extent_buffer(eb); 1106 1107 if (ret) 1108 return ret; 1109 1110 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1111 if (ret) 1112 return ret; 1113 1114 ret = btrfs_run_dev_stats(trans); 1115 if (ret) 1116 return ret; 1117 ret = btrfs_run_dev_replace(trans); 1118 if (ret) 1119 return ret; 1120 ret = btrfs_run_qgroups(trans); 1121 if (ret) 1122 return ret; 1123 1124 ret = btrfs_setup_space_cache(trans); 1125 if (ret) 1126 return ret; 1127 1128 /* run_qgroups might have added some more refs */ 1129 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1130 if (ret) 1131 return ret; 1132 again: 1133 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1134 struct btrfs_root *root; 1135 next = fs_info->dirty_cowonly_roots.next; 1136 list_del_init(next); 1137 root = list_entry(next, struct btrfs_root, dirty_list); 1138 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1139 1140 if (root != fs_info->extent_root) 1141 list_add_tail(&root->dirty_list, 1142 &trans->transaction->switch_commits); 1143 ret = update_cowonly_root(trans, root); 1144 if (ret) 1145 return ret; 1146 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1147 if (ret) 1148 return ret; 1149 } 1150 1151 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1152 ret = btrfs_write_dirty_block_groups(trans); 1153 if (ret) 1154 return ret; 1155 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1156 if (ret) 1157 return ret; 1158 } 1159 1160 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1161 goto again; 1162 1163 list_add_tail(&fs_info->extent_root->dirty_list, 1164 &trans->transaction->switch_commits); 1165 1166 /* Update dev-replace pointer once everything is committed */ 1167 fs_info->dev_replace.committed_cursor_left = 1168 fs_info->dev_replace.cursor_left_last_write_of_item; 1169 1170 return 0; 1171 } 1172 1173 /* 1174 * dead roots are old snapshots that need to be deleted. This allocates 1175 * a dirty root struct and adds it into the list of dead roots that need to 1176 * be deleted 1177 */ 1178 void btrfs_add_dead_root(struct btrfs_root *root) 1179 { 1180 struct btrfs_fs_info *fs_info = root->fs_info; 1181 1182 spin_lock(&fs_info->trans_lock); 1183 if (list_empty(&root->root_list)) 1184 list_add_tail(&root->root_list, &fs_info->dead_roots); 1185 spin_unlock(&fs_info->trans_lock); 1186 } 1187 1188 /* 1189 * update all the cowonly tree roots on disk 1190 */ 1191 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1192 { 1193 struct btrfs_fs_info *fs_info = trans->fs_info; 1194 struct btrfs_root *gang[8]; 1195 int i; 1196 int ret; 1197 int err = 0; 1198 1199 spin_lock(&fs_info->fs_roots_radix_lock); 1200 while (1) { 1201 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1202 (void **)gang, 0, 1203 ARRAY_SIZE(gang), 1204 BTRFS_ROOT_TRANS_TAG); 1205 if (ret == 0) 1206 break; 1207 for (i = 0; i < ret; i++) { 1208 struct btrfs_root *root = gang[i]; 1209 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1210 (unsigned long)root->root_key.objectid, 1211 BTRFS_ROOT_TRANS_TAG); 1212 spin_unlock(&fs_info->fs_roots_radix_lock); 1213 1214 btrfs_free_log(trans, root); 1215 btrfs_update_reloc_root(trans, root); 1216 1217 btrfs_save_ino_cache(root, trans); 1218 1219 /* see comments in should_cow_block() */ 1220 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1221 smp_mb__after_atomic(); 1222 1223 if (root->commit_root != root->node) { 1224 list_add_tail(&root->dirty_list, 1225 &trans->transaction->switch_commits); 1226 btrfs_set_root_node(&root->root_item, 1227 root->node); 1228 } 1229 1230 err = btrfs_update_root(trans, fs_info->tree_root, 1231 &root->root_key, 1232 &root->root_item); 1233 spin_lock(&fs_info->fs_roots_radix_lock); 1234 if (err) 1235 break; 1236 btrfs_qgroup_free_meta_all_pertrans(root); 1237 } 1238 } 1239 spin_unlock(&fs_info->fs_roots_radix_lock); 1240 return err; 1241 } 1242 1243 /* 1244 * defrag a given btree. 1245 * Every leaf in the btree is read and defragged. 1246 */ 1247 int btrfs_defrag_root(struct btrfs_root *root) 1248 { 1249 struct btrfs_fs_info *info = root->fs_info; 1250 struct btrfs_trans_handle *trans; 1251 int ret; 1252 1253 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1254 return 0; 1255 1256 while (1) { 1257 trans = btrfs_start_transaction(root, 0); 1258 if (IS_ERR(trans)) 1259 return PTR_ERR(trans); 1260 1261 ret = btrfs_defrag_leaves(trans, root); 1262 1263 btrfs_end_transaction(trans); 1264 btrfs_btree_balance_dirty(info); 1265 cond_resched(); 1266 1267 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1268 break; 1269 1270 if (btrfs_defrag_cancelled(info)) { 1271 btrfs_debug(info, "defrag_root cancelled"); 1272 ret = -EAGAIN; 1273 break; 1274 } 1275 } 1276 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1277 return ret; 1278 } 1279 1280 /* 1281 * Do all special snapshot related qgroup dirty hack. 1282 * 1283 * Will do all needed qgroup inherit and dirty hack like switch commit 1284 * roots inside one transaction and write all btree into disk, to make 1285 * qgroup works. 1286 */ 1287 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1288 struct btrfs_root *src, 1289 struct btrfs_root *parent, 1290 struct btrfs_qgroup_inherit *inherit, 1291 u64 dst_objectid) 1292 { 1293 struct btrfs_fs_info *fs_info = src->fs_info; 1294 int ret; 1295 1296 /* 1297 * Save some performance in the case that qgroups are not 1298 * enabled. If this check races with the ioctl, rescan will 1299 * kick in anyway. 1300 */ 1301 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1302 return 0; 1303 1304 /* 1305 * Ensure dirty @src will be committed. Or, after coming 1306 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1307 * recorded root will never be updated again, causing an outdated root 1308 * item. 1309 */ 1310 record_root_in_trans(trans, src, 1); 1311 1312 /* 1313 * We are going to commit transaction, see btrfs_commit_transaction() 1314 * comment for reason locking tree_log_mutex 1315 */ 1316 mutex_lock(&fs_info->tree_log_mutex); 1317 1318 ret = commit_fs_roots(trans); 1319 if (ret) 1320 goto out; 1321 ret = btrfs_qgroup_account_extents(trans); 1322 if (ret < 0) 1323 goto out; 1324 1325 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1326 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1327 inherit); 1328 if (ret < 0) 1329 goto out; 1330 1331 /* 1332 * Now we do a simplified commit transaction, which will: 1333 * 1) commit all subvolume and extent tree 1334 * To ensure all subvolume and extent tree have a valid 1335 * commit_root to accounting later insert_dir_item() 1336 * 2) write all btree blocks onto disk 1337 * This is to make sure later btree modification will be cowed 1338 * Or commit_root can be populated and cause wrong qgroup numbers 1339 * In this simplified commit, we don't really care about other trees 1340 * like chunk and root tree, as they won't affect qgroup. 1341 * And we don't write super to avoid half committed status. 1342 */ 1343 ret = commit_cowonly_roots(trans); 1344 if (ret) 1345 goto out; 1346 switch_commit_roots(trans->transaction); 1347 ret = btrfs_write_and_wait_transaction(trans); 1348 if (ret) 1349 btrfs_handle_fs_error(fs_info, ret, 1350 "Error while writing out transaction for qgroup"); 1351 1352 out: 1353 mutex_unlock(&fs_info->tree_log_mutex); 1354 1355 /* 1356 * Force parent root to be updated, as we recorded it before so its 1357 * last_trans == cur_transid. 1358 * Or it won't be committed again onto disk after later 1359 * insert_dir_item() 1360 */ 1361 if (!ret) 1362 record_root_in_trans(trans, parent, 1); 1363 return ret; 1364 } 1365 1366 /* 1367 * new snapshots need to be created at a very specific time in the 1368 * transaction commit. This does the actual creation. 1369 * 1370 * Note: 1371 * If the error which may affect the commitment of the current transaction 1372 * happens, we should return the error number. If the error which just affect 1373 * the creation of the pending snapshots, just return 0. 1374 */ 1375 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1376 struct btrfs_pending_snapshot *pending) 1377 { 1378 1379 struct btrfs_fs_info *fs_info = trans->fs_info; 1380 struct btrfs_key key; 1381 struct btrfs_root_item *new_root_item; 1382 struct btrfs_root *tree_root = fs_info->tree_root; 1383 struct btrfs_root *root = pending->root; 1384 struct btrfs_root *parent_root; 1385 struct btrfs_block_rsv *rsv; 1386 struct inode *parent_inode; 1387 struct btrfs_path *path; 1388 struct btrfs_dir_item *dir_item; 1389 struct dentry *dentry; 1390 struct extent_buffer *tmp; 1391 struct extent_buffer *old; 1392 struct timespec64 cur_time; 1393 int ret = 0; 1394 u64 to_reserve = 0; 1395 u64 index = 0; 1396 u64 objectid; 1397 u64 root_flags; 1398 uuid_le new_uuid; 1399 1400 ASSERT(pending->path); 1401 path = pending->path; 1402 1403 ASSERT(pending->root_item); 1404 new_root_item = pending->root_item; 1405 1406 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1407 if (pending->error) 1408 goto no_free_objectid; 1409 1410 /* 1411 * Make qgroup to skip current new snapshot's qgroupid, as it is 1412 * accounted by later btrfs_qgroup_inherit(). 1413 */ 1414 btrfs_set_skip_qgroup(trans, objectid); 1415 1416 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1417 1418 if (to_reserve > 0) { 1419 pending->error = btrfs_block_rsv_add(root, 1420 &pending->block_rsv, 1421 to_reserve, 1422 BTRFS_RESERVE_NO_FLUSH); 1423 if (pending->error) 1424 goto clear_skip_qgroup; 1425 } 1426 1427 key.objectid = objectid; 1428 key.offset = (u64)-1; 1429 key.type = BTRFS_ROOT_ITEM_KEY; 1430 1431 rsv = trans->block_rsv; 1432 trans->block_rsv = &pending->block_rsv; 1433 trans->bytes_reserved = trans->block_rsv->reserved; 1434 trace_btrfs_space_reservation(fs_info, "transaction", 1435 trans->transid, 1436 trans->bytes_reserved, 1); 1437 dentry = pending->dentry; 1438 parent_inode = pending->dir; 1439 parent_root = BTRFS_I(parent_inode)->root; 1440 record_root_in_trans(trans, parent_root, 0); 1441 1442 cur_time = current_time(parent_inode); 1443 1444 /* 1445 * insert the directory item 1446 */ 1447 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1448 BUG_ON(ret); /* -ENOMEM */ 1449 1450 /* check if there is a file/dir which has the same name. */ 1451 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1452 btrfs_ino(BTRFS_I(parent_inode)), 1453 dentry->d_name.name, 1454 dentry->d_name.len, 0); 1455 if (dir_item != NULL && !IS_ERR(dir_item)) { 1456 pending->error = -EEXIST; 1457 goto dir_item_existed; 1458 } else if (IS_ERR(dir_item)) { 1459 ret = PTR_ERR(dir_item); 1460 btrfs_abort_transaction(trans, ret); 1461 goto fail; 1462 } 1463 btrfs_release_path(path); 1464 1465 /* 1466 * pull in the delayed directory update 1467 * and the delayed inode item 1468 * otherwise we corrupt the FS during 1469 * snapshot 1470 */ 1471 ret = btrfs_run_delayed_items(trans); 1472 if (ret) { /* Transaction aborted */ 1473 btrfs_abort_transaction(trans, ret); 1474 goto fail; 1475 } 1476 1477 record_root_in_trans(trans, root, 0); 1478 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1479 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1480 btrfs_check_and_init_root_item(new_root_item); 1481 1482 root_flags = btrfs_root_flags(new_root_item); 1483 if (pending->readonly) 1484 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1485 else 1486 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1487 btrfs_set_root_flags(new_root_item, root_flags); 1488 1489 btrfs_set_root_generation_v2(new_root_item, 1490 trans->transid); 1491 uuid_le_gen(&new_uuid); 1492 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1493 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1494 BTRFS_UUID_SIZE); 1495 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1496 memset(new_root_item->received_uuid, 0, 1497 sizeof(new_root_item->received_uuid)); 1498 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1499 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1500 btrfs_set_root_stransid(new_root_item, 0); 1501 btrfs_set_root_rtransid(new_root_item, 0); 1502 } 1503 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1504 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1505 btrfs_set_root_otransid(new_root_item, trans->transid); 1506 1507 old = btrfs_lock_root_node(root); 1508 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1509 if (ret) { 1510 btrfs_tree_unlock(old); 1511 free_extent_buffer(old); 1512 btrfs_abort_transaction(trans, ret); 1513 goto fail; 1514 } 1515 1516 btrfs_set_lock_blocking_write(old); 1517 1518 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1519 /* clean up in any case */ 1520 btrfs_tree_unlock(old); 1521 free_extent_buffer(old); 1522 if (ret) { 1523 btrfs_abort_transaction(trans, ret); 1524 goto fail; 1525 } 1526 /* see comments in should_cow_block() */ 1527 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1528 smp_wmb(); 1529 1530 btrfs_set_root_node(new_root_item, tmp); 1531 /* record when the snapshot was created in key.offset */ 1532 key.offset = trans->transid; 1533 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1534 btrfs_tree_unlock(tmp); 1535 free_extent_buffer(tmp); 1536 if (ret) { 1537 btrfs_abort_transaction(trans, ret); 1538 goto fail; 1539 } 1540 1541 /* 1542 * insert root back/forward references 1543 */ 1544 ret = btrfs_add_root_ref(trans, objectid, 1545 parent_root->root_key.objectid, 1546 btrfs_ino(BTRFS_I(parent_inode)), index, 1547 dentry->d_name.name, dentry->d_name.len); 1548 if (ret) { 1549 btrfs_abort_transaction(trans, ret); 1550 goto fail; 1551 } 1552 1553 key.offset = (u64)-1; 1554 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key); 1555 if (IS_ERR(pending->snap)) { 1556 ret = PTR_ERR(pending->snap); 1557 btrfs_abort_transaction(trans, ret); 1558 goto fail; 1559 } 1560 1561 ret = btrfs_reloc_post_snapshot(trans, pending); 1562 if (ret) { 1563 btrfs_abort_transaction(trans, ret); 1564 goto fail; 1565 } 1566 1567 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1568 if (ret) { 1569 btrfs_abort_transaction(trans, ret); 1570 goto fail; 1571 } 1572 1573 /* 1574 * Do special qgroup accounting for snapshot, as we do some qgroup 1575 * snapshot hack to do fast snapshot. 1576 * To co-operate with that hack, we do hack again. 1577 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1578 */ 1579 ret = qgroup_account_snapshot(trans, root, parent_root, 1580 pending->inherit, objectid); 1581 if (ret < 0) 1582 goto fail; 1583 1584 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1585 dentry->d_name.len, BTRFS_I(parent_inode), 1586 &key, BTRFS_FT_DIR, index); 1587 /* We have check then name at the beginning, so it is impossible. */ 1588 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1589 if (ret) { 1590 btrfs_abort_transaction(trans, ret); 1591 goto fail; 1592 } 1593 1594 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1595 dentry->d_name.len * 2); 1596 parent_inode->i_mtime = parent_inode->i_ctime = 1597 current_time(parent_inode); 1598 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1599 if (ret) { 1600 btrfs_abort_transaction(trans, ret); 1601 goto fail; 1602 } 1603 ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL, 1604 objectid); 1605 if (ret) { 1606 btrfs_abort_transaction(trans, ret); 1607 goto fail; 1608 } 1609 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1610 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1611 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1612 objectid); 1613 if (ret && ret != -EEXIST) { 1614 btrfs_abort_transaction(trans, ret); 1615 goto fail; 1616 } 1617 } 1618 1619 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1620 if (ret) { 1621 btrfs_abort_transaction(trans, ret); 1622 goto fail; 1623 } 1624 1625 fail: 1626 pending->error = ret; 1627 dir_item_existed: 1628 trans->block_rsv = rsv; 1629 trans->bytes_reserved = 0; 1630 clear_skip_qgroup: 1631 btrfs_clear_skip_qgroup(trans); 1632 no_free_objectid: 1633 kfree(new_root_item); 1634 pending->root_item = NULL; 1635 btrfs_free_path(path); 1636 pending->path = NULL; 1637 1638 return ret; 1639 } 1640 1641 /* 1642 * create all the snapshots we've scheduled for creation 1643 */ 1644 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1645 { 1646 struct btrfs_pending_snapshot *pending, *next; 1647 struct list_head *head = &trans->transaction->pending_snapshots; 1648 int ret = 0; 1649 1650 list_for_each_entry_safe(pending, next, head, list) { 1651 list_del(&pending->list); 1652 ret = create_pending_snapshot(trans, pending); 1653 if (ret) 1654 break; 1655 } 1656 return ret; 1657 } 1658 1659 static void update_super_roots(struct btrfs_fs_info *fs_info) 1660 { 1661 struct btrfs_root_item *root_item; 1662 struct btrfs_super_block *super; 1663 1664 super = fs_info->super_copy; 1665 1666 root_item = &fs_info->chunk_root->root_item; 1667 super->chunk_root = root_item->bytenr; 1668 super->chunk_root_generation = root_item->generation; 1669 super->chunk_root_level = root_item->level; 1670 1671 root_item = &fs_info->tree_root->root_item; 1672 super->root = root_item->bytenr; 1673 super->generation = root_item->generation; 1674 super->root_level = root_item->level; 1675 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1676 super->cache_generation = root_item->generation; 1677 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1678 super->uuid_tree_generation = root_item->generation; 1679 } 1680 1681 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1682 { 1683 struct btrfs_transaction *trans; 1684 int ret = 0; 1685 1686 spin_lock(&info->trans_lock); 1687 trans = info->running_transaction; 1688 if (trans) 1689 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1690 spin_unlock(&info->trans_lock); 1691 return ret; 1692 } 1693 1694 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1695 { 1696 struct btrfs_transaction *trans; 1697 int ret = 0; 1698 1699 spin_lock(&info->trans_lock); 1700 trans = info->running_transaction; 1701 if (trans) 1702 ret = is_transaction_blocked(trans); 1703 spin_unlock(&info->trans_lock); 1704 return ret; 1705 } 1706 1707 /* 1708 * wait for the current transaction commit to start and block subsequent 1709 * transaction joins 1710 */ 1711 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, 1712 struct btrfs_transaction *trans) 1713 { 1714 wait_event(fs_info->transaction_blocked_wait, 1715 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted); 1716 } 1717 1718 /* 1719 * wait for the current transaction to start and then become unblocked. 1720 * caller holds ref. 1721 */ 1722 static void wait_current_trans_commit_start_and_unblock( 1723 struct btrfs_fs_info *fs_info, 1724 struct btrfs_transaction *trans) 1725 { 1726 wait_event(fs_info->transaction_wait, 1727 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted); 1728 } 1729 1730 /* 1731 * commit transactions asynchronously. once btrfs_commit_transaction_async 1732 * returns, any subsequent transaction will not be allowed to join. 1733 */ 1734 struct btrfs_async_commit { 1735 struct btrfs_trans_handle *newtrans; 1736 struct work_struct work; 1737 }; 1738 1739 static void do_async_commit(struct work_struct *work) 1740 { 1741 struct btrfs_async_commit *ac = 1742 container_of(work, struct btrfs_async_commit, work); 1743 1744 /* 1745 * We've got freeze protection passed with the transaction. 1746 * Tell lockdep about it. 1747 */ 1748 if (ac->newtrans->type & __TRANS_FREEZABLE) 1749 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1750 1751 current->journal_info = ac->newtrans; 1752 1753 btrfs_commit_transaction(ac->newtrans); 1754 kfree(ac); 1755 } 1756 1757 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1758 int wait_for_unblock) 1759 { 1760 struct btrfs_fs_info *fs_info = trans->fs_info; 1761 struct btrfs_async_commit *ac; 1762 struct btrfs_transaction *cur_trans; 1763 1764 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1765 if (!ac) 1766 return -ENOMEM; 1767 1768 INIT_WORK(&ac->work, do_async_commit); 1769 ac->newtrans = btrfs_join_transaction(trans->root); 1770 if (IS_ERR(ac->newtrans)) { 1771 int err = PTR_ERR(ac->newtrans); 1772 kfree(ac); 1773 return err; 1774 } 1775 1776 /* take transaction reference */ 1777 cur_trans = trans->transaction; 1778 refcount_inc(&cur_trans->use_count); 1779 1780 btrfs_end_transaction(trans); 1781 1782 /* 1783 * Tell lockdep we've released the freeze rwsem, since the 1784 * async commit thread will be the one to unlock it. 1785 */ 1786 if (ac->newtrans->type & __TRANS_FREEZABLE) 1787 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1788 1789 schedule_work(&ac->work); 1790 1791 /* wait for transaction to start and unblock */ 1792 if (wait_for_unblock) 1793 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); 1794 else 1795 wait_current_trans_commit_start(fs_info, cur_trans); 1796 1797 if (current->journal_info == trans) 1798 current->journal_info = NULL; 1799 1800 btrfs_put_transaction(cur_trans); 1801 return 0; 1802 } 1803 1804 1805 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1806 { 1807 struct btrfs_fs_info *fs_info = trans->fs_info; 1808 struct btrfs_transaction *cur_trans = trans->transaction; 1809 1810 WARN_ON(refcount_read(&trans->use_count) > 1); 1811 1812 btrfs_abort_transaction(trans, err); 1813 1814 spin_lock(&fs_info->trans_lock); 1815 1816 /* 1817 * If the transaction is removed from the list, it means this 1818 * transaction has been committed successfully, so it is impossible 1819 * to call the cleanup function. 1820 */ 1821 BUG_ON(list_empty(&cur_trans->list)); 1822 1823 list_del_init(&cur_trans->list); 1824 if (cur_trans == fs_info->running_transaction) { 1825 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1826 spin_unlock(&fs_info->trans_lock); 1827 wait_event(cur_trans->writer_wait, 1828 atomic_read(&cur_trans->num_writers) == 1); 1829 1830 spin_lock(&fs_info->trans_lock); 1831 } 1832 spin_unlock(&fs_info->trans_lock); 1833 1834 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1835 1836 spin_lock(&fs_info->trans_lock); 1837 if (cur_trans == fs_info->running_transaction) 1838 fs_info->running_transaction = NULL; 1839 spin_unlock(&fs_info->trans_lock); 1840 1841 if (trans->type & __TRANS_FREEZABLE) 1842 sb_end_intwrite(fs_info->sb); 1843 btrfs_put_transaction(cur_trans); 1844 btrfs_put_transaction(cur_trans); 1845 1846 trace_btrfs_transaction_commit(trans->root); 1847 1848 if (current->journal_info == trans) 1849 current->journal_info = NULL; 1850 btrfs_scrub_cancel(fs_info); 1851 1852 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1853 } 1854 1855 /* 1856 * Release reserved delayed ref space of all pending block groups of the 1857 * transaction and remove them from the list 1858 */ 1859 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 1860 { 1861 struct btrfs_fs_info *fs_info = trans->fs_info; 1862 struct btrfs_block_group_cache *block_group, *tmp; 1863 1864 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 1865 btrfs_delayed_refs_rsv_release(fs_info, 1); 1866 list_del_init(&block_group->bg_list); 1867 } 1868 } 1869 1870 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans) 1871 { 1872 struct btrfs_fs_info *fs_info = trans->fs_info; 1873 1874 /* 1875 * We use writeback_inodes_sb here because if we used 1876 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 1877 * Currently are holding the fs freeze lock, if we do an async flush 1878 * we'll do btrfs_join_transaction() and deadlock because we need to 1879 * wait for the fs freeze lock. Using the direct flushing we benefit 1880 * from already being in a transaction and our join_transaction doesn't 1881 * have to re-take the fs freeze lock. 1882 */ 1883 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) { 1884 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 1885 } else { 1886 struct btrfs_pending_snapshot *pending; 1887 struct list_head *head = &trans->transaction->pending_snapshots; 1888 1889 /* 1890 * Flush dellaloc for any root that is going to be snapshotted. 1891 * This is done to avoid a corrupted version of files, in the 1892 * snapshots, that had both buffered and direct IO writes (even 1893 * if they were done sequentially) due to an unordered update of 1894 * the inode's size on disk. 1895 */ 1896 list_for_each_entry(pending, head, list) { 1897 int ret; 1898 1899 ret = btrfs_start_delalloc_snapshot(pending->root); 1900 if (ret) 1901 return ret; 1902 } 1903 } 1904 return 0; 1905 } 1906 1907 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans) 1908 { 1909 struct btrfs_fs_info *fs_info = trans->fs_info; 1910 1911 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) { 1912 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1913 } else { 1914 struct btrfs_pending_snapshot *pending; 1915 struct list_head *head = &trans->transaction->pending_snapshots; 1916 1917 /* 1918 * Wait for any dellaloc that we started previously for the roots 1919 * that are going to be snapshotted. This is to avoid a corrupted 1920 * version of files in the snapshots that had both buffered and 1921 * direct IO writes (even if they were done sequentially). 1922 */ 1923 list_for_each_entry(pending, head, list) 1924 btrfs_wait_ordered_extents(pending->root, 1925 U64_MAX, 0, U64_MAX); 1926 } 1927 } 1928 1929 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 1930 { 1931 struct btrfs_fs_info *fs_info = trans->fs_info; 1932 struct btrfs_transaction *cur_trans = trans->transaction; 1933 struct btrfs_transaction *prev_trans = NULL; 1934 int ret; 1935 1936 /* Stop the commit early if ->aborted is set */ 1937 if (unlikely(READ_ONCE(cur_trans->aborted))) { 1938 ret = cur_trans->aborted; 1939 btrfs_end_transaction(trans); 1940 return ret; 1941 } 1942 1943 btrfs_trans_release_metadata(trans); 1944 trans->block_rsv = NULL; 1945 1946 /* make a pass through all the delayed refs we have so far 1947 * any runnings procs may add more while we are here 1948 */ 1949 ret = btrfs_run_delayed_refs(trans, 0); 1950 if (ret) { 1951 btrfs_end_transaction(trans); 1952 return ret; 1953 } 1954 1955 cur_trans = trans->transaction; 1956 1957 /* 1958 * set the flushing flag so procs in this transaction have to 1959 * start sending their work down. 1960 */ 1961 cur_trans->delayed_refs.flushing = 1; 1962 smp_wmb(); 1963 1964 btrfs_create_pending_block_groups(trans); 1965 1966 ret = btrfs_run_delayed_refs(trans, 0); 1967 if (ret) { 1968 btrfs_end_transaction(trans); 1969 return ret; 1970 } 1971 1972 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 1973 int run_it = 0; 1974 1975 /* this mutex is also taken before trying to set 1976 * block groups readonly. We need to make sure 1977 * that nobody has set a block group readonly 1978 * after a extents from that block group have been 1979 * allocated for cache files. btrfs_set_block_group_ro 1980 * will wait for the transaction to commit if it 1981 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 1982 * 1983 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 1984 * only one process starts all the block group IO. It wouldn't 1985 * hurt to have more than one go through, but there's no 1986 * real advantage to it either. 1987 */ 1988 mutex_lock(&fs_info->ro_block_group_mutex); 1989 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 1990 &cur_trans->flags)) 1991 run_it = 1; 1992 mutex_unlock(&fs_info->ro_block_group_mutex); 1993 1994 if (run_it) { 1995 ret = btrfs_start_dirty_block_groups(trans); 1996 if (ret) { 1997 btrfs_end_transaction(trans); 1998 return ret; 1999 } 2000 } 2001 } 2002 2003 spin_lock(&fs_info->trans_lock); 2004 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2005 spin_unlock(&fs_info->trans_lock); 2006 refcount_inc(&cur_trans->use_count); 2007 ret = btrfs_end_transaction(trans); 2008 2009 wait_for_commit(cur_trans); 2010 2011 if (unlikely(cur_trans->aborted)) 2012 ret = cur_trans->aborted; 2013 2014 btrfs_put_transaction(cur_trans); 2015 2016 return ret; 2017 } 2018 2019 cur_trans->state = TRANS_STATE_COMMIT_START; 2020 wake_up(&fs_info->transaction_blocked_wait); 2021 2022 if (cur_trans->list.prev != &fs_info->trans_list) { 2023 prev_trans = list_entry(cur_trans->list.prev, 2024 struct btrfs_transaction, list); 2025 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2026 refcount_inc(&prev_trans->use_count); 2027 spin_unlock(&fs_info->trans_lock); 2028 2029 wait_for_commit(prev_trans); 2030 ret = prev_trans->aborted; 2031 2032 btrfs_put_transaction(prev_trans); 2033 if (ret) 2034 goto cleanup_transaction; 2035 } else { 2036 spin_unlock(&fs_info->trans_lock); 2037 } 2038 } else { 2039 spin_unlock(&fs_info->trans_lock); 2040 } 2041 2042 extwriter_counter_dec(cur_trans, trans->type); 2043 2044 ret = btrfs_start_delalloc_flush(trans); 2045 if (ret) 2046 goto cleanup_transaction; 2047 2048 ret = btrfs_run_delayed_items(trans); 2049 if (ret) 2050 goto cleanup_transaction; 2051 2052 wait_event(cur_trans->writer_wait, 2053 extwriter_counter_read(cur_trans) == 0); 2054 2055 /* some pending stuffs might be added after the previous flush. */ 2056 ret = btrfs_run_delayed_items(trans); 2057 if (ret) 2058 goto cleanup_transaction; 2059 2060 btrfs_wait_delalloc_flush(trans); 2061 2062 btrfs_scrub_pause(fs_info); 2063 /* 2064 * Ok now we need to make sure to block out any other joins while we 2065 * commit the transaction. We could have started a join before setting 2066 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2067 */ 2068 spin_lock(&fs_info->trans_lock); 2069 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2070 spin_unlock(&fs_info->trans_lock); 2071 wait_event(cur_trans->writer_wait, 2072 atomic_read(&cur_trans->num_writers) == 1); 2073 2074 /* ->aborted might be set after the previous check, so check it */ 2075 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2076 ret = cur_trans->aborted; 2077 goto scrub_continue; 2078 } 2079 /* 2080 * the reloc mutex makes sure that we stop 2081 * the balancing code from coming in and moving 2082 * extents around in the middle of the commit 2083 */ 2084 mutex_lock(&fs_info->reloc_mutex); 2085 2086 /* 2087 * We needn't worry about the delayed items because we will 2088 * deal with them in create_pending_snapshot(), which is the 2089 * core function of the snapshot creation. 2090 */ 2091 ret = create_pending_snapshots(trans); 2092 if (ret) { 2093 mutex_unlock(&fs_info->reloc_mutex); 2094 goto scrub_continue; 2095 } 2096 2097 /* 2098 * We insert the dir indexes of the snapshots and update the inode 2099 * of the snapshots' parents after the snapshot creation, so there 2100 * are some delayed items which are not dealt with. Now deal with 2101 * them. 2102 * 2103 * We needn't worry that this operation will corrupt the snapshots, 2104 * because all the tree which are snapshoted will be forced to COW 2105 * the nodes and leaves. 2106 */ 2107 ret = btrfs_run_delayed_items(trans); 2108 if (ret) { 2109 mutex_unlock(&fs_info->reloc_mutex); 2110 goto scrub_continue; 2111 } 2112 2113 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2114 if (ret) { 2115 mutex_unlock(&fs_info->reloc_mutex); 2116 goto scrub_continue; 2117 } 2118 2119 /* 2120 * make sure none of the code above managed to slip in a 2121 * delayed item 2122 */ 2123 btrfs_assert_delayed_root_empty(fs_info); 2124 2125 WARN_ON(cur_trans != trans->transaction); 2126 2127 /* btrfs_commit_tree_roots is responsible for getting the 2128 * various roots consistent with each other. Every pointer 2129 * in the tree of tree roots has to point to the most up to date 2130 * root for every subvolume and other tree. So, we have to keep 2131 * the tree logging code from jumping in and changing any 2132 * of the trees. 2133 * 2134 * At this point in the commit, there can't be any tree-log 2135 * writers, but a little lower down we drop the trans mutex 2136 * and let new people in. By holding the tree_log_mutex 2137 * from now until after the super is written, we avoid races 2138 * with the tree-log code. 2139 */ 2140 mutex_lock(&fs_info->tree_log_mutex); 2141 2142 ret = commit_fs_roots(trans); 2143 if (ret) { 2144 mutex_unlock(&fs_info->tree_log_mutex); 2145 mutex_unlock(&fs_info->reloc_mutex); 2146 goto scrub_continue; 2147 } 2148 2149 /* 2150 * Since the transaction is done, we can apply the pending changes 2151 * before the next transaction. 2152 */ 2153 btrfs_apply_pending_changes(fs_info); 2154 2155 /* commit_fs_roots gets rid of all the tree log roots, it is now 2156 * safe to free the root of tree log roots 2157 */ 2158 btrfs_free_log_root_tree(trans, fs_info); 2159 2160 /* 2161 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates 2162 * new delayed refs. Must handle them or qgroup can be wrong. 2163 */ 2164 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2165 if (ret) { 2166 mutex_unlock(&fs_info->tree_log_mutex); 2167 mutex_unlock(&fs_info->reloc_mutex); 2168 goto scrub_continue; 2169 } 2170 2171 /* 2172 * Since fs roots are all committed, we can get a quite accurate 2173 * new_roots. So let's do quota accounting. 2174 */ 2175 ret = btrfs_qgroup_account_extents(trans); 2176 if (ret < 0) { 2177 mutex_unlock(&fs_info->tree_log_mutex); 2178 mutex_unlock(&fs_info->reloc_mutex); 2179 goto scrub_continue; 2180 } 2181 2182 ret = commit_cowonly_roots(trans); 2183 if (ret) { 2184 mutex_unlock(&fs_info->tree_log_mutex); 2185 mutex_unlock(&fs_info->reloc_mutex); 2186 goto scrub_continue; 2187 } 2188 2189 /* 2190 * The tasks which save the space cache and inode cache may also 2191 * update ->aborted, check it. 2192 */ 2193 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2194 ret = cur_trans->aborted; 2195 mutex_unlock(&fs_info->tree_log_mutex); 2196 mutex_unlock(&fs_info->reloc_mutex); 2197 goto scrub_continue; 2198 } 2199 2200 btrfs_prepare_extent_commit(fs_info); 2201 2202 cur_trans = fs_info->running_transaction; 2203 2204 btrfs_set_root_node(&fs_info->tree_root->root_item, 2205 fs_info->tree_root->node); 2206 list_add_tail(&fs_info->tree_root->dirty_list, 2207 &cur_trans->switch_commits); 2208 2209 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2210 fs_info->chunk_root->node); 2211 list_add_tail(&fs_info->chunk_root->dirty_list, 2212 &cur_trans->switch_commits); 2213 2214 switch_commit_roots(cur_trans); 2215 2216 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2217 ASSERT(list_empty(&cur_trans->io_bgs)); 2218 update_super_roots(fs_info); 2219 2220 btrfs_set_super_log_root(fs_info->super_copy, 0); 2221 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2222 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2223 sizeof(*fs_info->super_copy)); 2224 2225 btrfs_commit_device_sizes(cur_trans); 2226 2227 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2228 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2229 2230 btrfs_trans_release_chunk_metadata(trans); 2231 2232 spin_lock(&fs_info->trans_lock); 2233 cur_trans->state = TRANS_STATE_UNBLOCKED; 2234 fs_info->running_transaction = NULL; 2235 spin_unlock(&fs_info->trans_lock); 2236 mutex_unlock(&fs_info->reloc_mutex); 2237 2238 wake_up(&fs_info->transaction_wait); 2239 2240 ret = btrfs_write_and_wait_transaction(trans); 2241 if (ret) { 2242 btrfs_handle_fs_error(fs_info, ret, 2243 "Error while writing out transaction"); 2244 mutex_unlock(&fs_info->tree_log_mutex); 2245 goto scrub_continue; 2246 } 2247 2248 ret = write_all_supers(fs_info, 0); 2249 /* 2250 * the super is written, we can safely allow the tree-loggers 2251 * to go about their business 2252 */ 2253 mutex_unlock(&fs_info->tree_log_mutex); 2254 if (ret) 2255 goto scrub_continue; 2256 2257 btrfs_finish_extent_commit(trans); 2258 2259 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2260 btrfs_clear_space_info_full(fs_info); 2261 2262 fs_info->last_trans_committed = cur_trans->transid; 2263 /* 2264 * We needn't acquire the lock here because there is no other task 2265 * which can change it. 2266 */ 2267 cur_trans->state = TRANS_STATE_COMPLETED; 2268 wake_up(&cur_trans->commit_wait); 2269 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags); 2270 2271 spin_lock(&fs_info->trans_lock); 2272 list_del_init(&cur_trans->list); 2273 spin_unlock(&fs_info->trans_lock); 2274 2275 btrfs_put_transaction(cur_trans); 2276 btrfs_put_transaction(cur_trans); 2277 2278 if (trans->type & __TRANS_FREEZABLE) 2279 sb_end_intwrite(fs_info->sb); 2280 2281 trace_btrfs_transaction_commit(trans->root); 2282 2283 btrfs_scrub_continue(fs_info); 2284 2285 if (current->journal_info == trans) 2286 current->journal_info = NULL; 2287 2288 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2289 2290 return ret; 2291 2292 scrub_continue: 2293 btrfs_scrub_continue(fs_info); 2294 cleanup_transaction: 2295 btrfs_trans_release_metadata(trans); 2296 btrfs_cleanup_pending_block_groups(trans); 2297 btrfs_trans_release_chunk_metadata(trans); 2298 trans->block_rsv = NULL; 2299 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2300 if (current->journal_info == trans) 2301 current->journal_info = NULL; 2302 cleanup_transaction(trans, ret); 2303 2304 return ret; 2305 } 2306 2307 /* 2308 * return < 0 if error 2309 * 0 if there are no more dead_roots at the time of call 2310 * 1 there are more to be processed, call me again 2311 * 2312 * The return value indicates there are certainly more snapshots to delete, but 2313 * if there comes a new one during processing, it may return 0. We don't mind, 2314 * because btrfs_commit_super will poke cleaner thread and it will process it a 2315 * few seconds later. 2316 */ 2317 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2318 { 2319 int ret; 2320 struct btrfs_fs_info *fs_info = root->fs_info; 2321 2322 spin_lock(&fs_info->trans_lock); 2323 if (list_empty(&fs_info->dead_roots)) { 2324 spin_unlock(&fs_info->trans_lock); 2325 return 0; 2326 } 2327 root = list_first_entry(&fs_info->dead_roots, 2328 struct btrfs_root, root_list); 2329 list_del_init(&root->root_list); 2330 spin_unlock(&fs_info->trans_lock); 2331 2332 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2333 2334 btrfs_kill_all_delayed_nodes(root); 2335 2336 if (btrfs_header_backref_rev(root->node) < 2337 BTRFS_MIXED_BACKREF_REV) 2338 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2339 else 2340 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2341 2342 return (ret < 0) ? 0 : 1; 2343 } 2344 2345 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2346 { 2347 unsigned long prev; 2348 unsigned long bit; 2349 2350 prev = xchg(&fs_info->pending_changes, 0); 2351 if (!prev) 2352 return; 2353 2354 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2355 if (prev & bit) 2356 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2357 prev &= ~bit; 2358 2359 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2360 if (prev & bit) 2361 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2362 prev &= ~bit; 2363 2364 bit = 1 << BTRFS_PENDING_COMMIT; 2365 if (prev & bit) 2366 btrfs_debug(fs_info, "pending commit done"); 2367 prev &= ~bit; 2368 2369 if (prev) 2370 btrfs_warn(fs_info, 2371 "unknown pending changes left 0x%lx, ignoring", prev); 2372 } 2373