1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 35 #define BTRFS_ROOT_TRANS_TAG 0 36 37 void put_transaction(struct btrfs_transaction *transaction) 38 { 39 WARN_ON(atomic_read(&transaction->use_count) == 0); 40 if (atomic_dec_and_test(&transaction->use_count)) { 41 BUG_ON(!list_empty(&transaction->list)); 42 WARN_ON(transaction->delayed_refs.root.rb_node); 43 memset(transaction, 0, sizeof(*transaction)); 44 kmem_cache_free(btrfs_transaction_cachep, transaction); 45 } 46 } 47 48 static noinline void switch_commit_root(struct btrfs_root *root) 49 { 50 free_extent_buffer(root->commit_root); 51 root->commit_root = btrfs_root_node(root); 52 } 53 54 /* 55 * either allocate a new transaction or hop into the existing one 56 */ 57 static noinline int join_transaction(struct btrfs_root *root, int type) 58 { 59 struct btrfs_transaction *cur_trans; 60 struct btrfs_fs_info *fs_info = root->fs_info; 61 62 spin_lock(&fs_info->trans_lock); 63 loop: 64 /* The file system has been taken offline. No new transactions. */ 65 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 66 spin_unlock(&fs_info->trans_lock); 67 return -EROFS; 68 } 69 70 if (fs_info->trans_no_join) { 71 /* 72 * If we are JOIN_NOLOCK we're already committing a current 73 * transaction, we just need a handle to deal with something 74 * when committing the transaction, such as inode cache and 75 * space cache. It is a special case. 76 */ 77 if (type != TRANS_JOIN_NOLOCK) { 78 spin_unlock(&fs_info->trans_lock); 79 return -EBUSY; 80 } 81 } 82 83 cur_trans = fs_info->running_transaction; 84 if (cur_trans) { 85 if (cur_trans->aborted) { 86 spin_unlock(&fs_info->trans_lock); 87 return cur_trans->aborted; 88 } 89 atomic_inc(&cur_trans->use_count); 90 atomic_inc(&cur_trans->num_writers); 91 cur_trans->num_joined++; 92 spin_unlock(&fs_info->trans_lock); 93 return 0; 94 } 95 spin_unlock(&fs_info->trans_lock); 96 97 /* 98 * If we are ATTACH, we just want to catch the current transaction, 99 * and commit it. If there is no transaction, just return ENOENT. 100 */ 101 if (type == TRANS_ATTACH) 102 return -ENOENT; 103 104 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 105 if (!cur_trans) 106 return -ENOMEM; 107 108 spin_lock(&fs_info->trans_lock); 109 if (fs_info->running_transaction) { 110 /* 111 * someone started a transaction after we unlocked. Make sure 112 * to redo the trans_no_join checks above 113 */ 114 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 115 cur_trans = fs_info->running_transaction; 116 goto loop; 117 } else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 118 spin_unlock(&fs_info->trans_lock); 119 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 120 return -EROFS; 121 } 122 123 atomic_set(&cur_trans->num_writers, 1); 124 cur_trans->num_joined = 0; 125 init_waitqueue_head(&cur_trans->writer_wait); 126 init_waitqueue_head(&cur_trans->commit_wait); 127 cur_trans->in_commit = 0; 128 cur_trans->blocked = 0; 129 /* 130 * One for this trans handle, one so it will live on until we 131 * commit the transaction. 132 */ 133 atomic_set(&cur_trans->use_count, 2); 134 cur_trans->commit_done = 0; 135 cur_trans->start_time = get_seconds(); 136 137 cur_trans->delayed_refs.root = RB_ROOT; 138 cur_trans->delayed_refs.num_entries = 0; 139 cur_trans->delayed_refs.num_heads_ready = 0; 140 cur_trans->delayed_refs.num_heads = 0; 141 cur_trans->delayed_refs.flushing = 0; 142 cur_trans->delayed_refs.run_delayed_start = 0; 143 144 /* 145 * although the tree mod log is per file system and not per transaction, 146 * the log must never go across transaction boundaries. 147 */ 148 smp_mb(); 149 if (!list_empty(&fs_info->tree_mod_seq_list)) 150 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when " 151 "creating a fresh transaction\n"); 152 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 153 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when " 154 "creating a fresh transaction\n"); 155 atomic_set(&fs_info->tree_mod_seq, 0); 156 157 spin_lock_init(&cur_trans->commit_lock); 158 spin_lock_init(&cur_trans->delayed_refs.lock); 159 160 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 161 list_add_tail(&cur_trans->list, &fs_info->trans_list); 162 extent_io_tree_init(&cur_trans->dirty_pages, 163 fs_info->btree_inode->i_mapping); 164 fs_info->generation++; 165 cur_trans->transid = fs_info->generation; 166 fs_info->running_transaction = cur_trans; 167 cur_trans->aborted = 0; 168 spin_unlock(&fs_info->trans_lock); 169 170 return 0; 171 } 172 173 /* 174 * this does all the record keeping required to make sure that a reference 175 * counted root is properly recorded in a given transaction. This is required 176 * to make sure the old root from before we joined the transaction is deleted 177 * when the transaction commits 178 */ 179 static int record_root_in_trans(struct btrfs_trans_handle *trans, 180 struct btrfs_root *root) 181 { 182 if (root->ref_cows && root->last_trans < trans->transid) { 183 WARN_ON(root == root->fs_info->extent_root); 184 WARN_ON(root->commit_root != root->node); 185 186 /* 187 * see below for in_trans_setup usage rules 188 * we have the reloc mutex held now, so there 189 * is only one writer in this function 190 */ 191 root->in_trans_setup = 1; 192 193 /* make sure readers find in_trans_setup before 194 * they find our root->last_trans update 195 */ 196 smp_wmb(); 197 198 spin_lock(&root->fs_info->fs_roots_radix_lock); 199 if (root->last_trans == trans->transid) { 200 spin_unlock(&root->fs_info->fs_roots_radix_lock); 201 return 0; 202 } 203 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 204 (unsigned long)root->root_key.objectid, 205 BTRFS_ROOT_TRANS_TAG); 206 spin_unlock(&root->fs_info->fs_roots_radix_lock); 207 root->last_trans = trans->transid; 208 209 /* this is pretty tricky. We don't want to 210 * take the relocation lock in btrfs_record_root_in_trans 211 * unless we're really doing the first setup for this root in 212 * this transaction. 213 * 214 * Normally we'd use root->last_trans as a flag to decide 215 * if we want to take the expensive mutex. 216 * 217 * But, we have to set root->last_trans before we 218 * init the relocation root, otherwise, we trip over warnings 219 * in ctree.c. The solution used here is to flag ourselves 220 * with root->in_trans_setup. When this is 1, we're still 221 * fixing up the reloc trees and everyone must wait. 222 * 223 * When this is zero, they can trust root->last_trans and fly 224 * through btrfs_record_root_in_trans without having to take the 225 * lock. smp_wmb() makes sure that all the writes above are 226 * done before we pop in the zero below 227 */ 228 btrfs_init_reloc_root(trans, root); 229 smp_wmb(); 230 root->in_trans_setup = 0; 231 } 232 return 0; 233 } 234 235 236 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 237 struct btrfs_root *root) 238 { 239 if (!root->ref_cows) 240 return 0; 241 242 /* 243 * see record_root_in_trans for comments about in_trans_setup usage 244 * and barriers 245 */ 246 smp_rmb(); 247 if (root->last_trans == trans->transid && 248 !root->in_trans_setup) 249 return 0; 250 251 mutex_lock(&root->fs_info->reloc_mutex); 252 record_root_in_trans(trans, root); 253 mutex_unlock(&root->fs_info->reloc_mutex); 254 255 return 0; 256 } 257 258 /* wait for commit against the current transaction to become unblocked 259 * when this is done, it is safe to start a new transaction, but the current 260 * transaction might not be fully on disk. 261 */ 262 static void wait_current_trans(struct btrfs_root *root) 263 { 264 struct btrfs_transaction *cur_trans; 265 266 spin_lock(&root->fs_info->trans_lock); 267 cur_trans = root->fs_info->running_transaction; 268 if (cur_trans && cur_trans->blocked) { 269 atomic_inc(&cur_trans->use_count); 270 spin_unlock(&root->fs_info->trans_lock); 271 272 wait_event(root->fs_info->transaction_wait, 273 !cur_trans->blocked); 274 put_transaction(cur_trans); 275 } else { 276 spin_unlock(&root->fs_info->trans_lock); 277 } 278 } 279 280 static int may_wait_transaction(struct btrfs_root *root, int type) 281 { 282 if (root->fs_info->log_root_recovering) 283 return 0; 284 285 if (type == TRANS_USERSPACE) 286 return 1; 287 288 if (type == TRANS_START && 289 !atomic_read(&root->fs_info->open_ioctl_trans)) 290 return 1; 291 292 return 0; 293 } 294 295 static struct btrfs_trans_handle * 296 start_transaction(struct btrfs_root *root, u64 num_items, int type, 297 enum btrfs_reserve_flush_enum flush) 298 { 299 struct btrfs_trans_handle *h; 300 struct btrfs_transaction *cur_trans; 301 u64 num_bytes = 0; 302 int ret; 303 u64 qgroup_reserved = 0; 304 305 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) 306 return ERR_PTR(-EROFS); 307 308 if (current->journal_info) { 309 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK); 310 h = current->journal_info; 311 h->use_count++; 312 WARN_ON(h->use_count > 2); 313 h->orig_rsv = h->block_rsv; 314 h->block_rsv = NULL; 315 goto got_it; 316 } 317 318 /* 319 * Do the reservation before we join the transaction so we can do all 320 * the appropriate flushing if need be. 321 */ 322 if (num_items > 0 && root != root->fs_info->chunk_root) { 323 if (root->fs_info->quota_enabled && 324 is_fstree(root->root_key.objectid)) { 325 qgroup_reserved = num_items * root->leafsize; 326 ret = btrfs_qgroup_reserve(root, qgroup_reserved); 327 if (ret) 328 return ERR_PTR(ret); 329 } 330 331 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 332 ret = btrfs_block_rsv_add(root, 333 &root->fs_info->trans_block_rsv, 334 num_bytes, flush); 335 if (ret) 336 goto reserve_fail; 337 } 338 again: 339 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 340 if (!h) { 341 ret = -ENOMEM; 342 goto alloc_fail; 343 } 344 345 /* 346 * If we are JOIN_NOLOCK we're already committing a transaction and 347 * waiting on this guy, so we don't need to do the sb_start_intwrite 348 * because we're already holding a ref. We need this because we could 349 * have raced in and did an fsync() on a file which can kick a commit 350 * and then we deadlock with somebody doing a freeze. 351 * 352 * If we are ATTACH, it means we just want to catch the current 353 * transaction and commit it, so we needn't do sb_start_intwrite(). 354 */ 355 if (type < TRANS_JOIN_NOLOCK) 356 sb_start_intwrite(root->fs_info->sb); 357 358 if (may_wait_transaction(root, type)) 359 wait_current_trans(root); 360 361 do { 362 ret = join_transaction(root, type); 363 if (ret == -EBUSY) 364 wait_current_trans(root); 365 } while (ret == -EBUSY); 366 367 if (ret < 0) { 368 /* We must get the transaction if we are JOIN_NOLOCK. */ 369 BUG_ON(type == TRANS_JOIN_NOLOCK); 370 goto join_fail; 371 } 372 373 cur_trans = root->fs_info->running_transaction; 374 375 h->transid = cur_trans->transid; 376 h->transaction = cur_trans; 377 h->blocks_used = 0; 378 h->bytes_reserved = 0; 379 h->root = root; 380 h->delayed_ref_updates = 0; 381 h->use_count = 1; 382 h->adding_csums = 0; 383 h->block_rsv = NULL; 384 h->orig_rsv = NULL; 385 h->aborted = 0; 386 h->qgroup_reserved = qgroup_reserved; 387 h->delayed_ref_elem.seq = 0; 388 h->type = type; 389 INIT_LIST_HEAD(&h->qgroup_ref_list); 390 INIT_LIST_HEAD(&h->new_bgs); 391 392 smp_mb(); 393 if (cur_trans->blocked && may_wait_transaction(root, type)) { 394 btrfs_commit_transaction(h, root); 395 goto again; 396 } 397 398 if (num_bytes) { 399 trace_btrfs_space_reservation(root->fs_info, "transaction", 400 h->transid, num_bytes, 1); 401 h->block_rsv = &root->fs_info->trans_block_rsv; 402 h->bytes_reserved = num_bytes; 403 } 404 405 got_it: 406 btrfs_record_root_in_trans(h, root); 407 408 if (!current->journal_info && type != TRANS_USERSPACE) 409 current->journal_info = h; 410 return h; 411 412 join_fail: 413 if (type < TRANS_JOIN_NOLOCK) 414 sb_end_intwrite(root->fs_info->sb); 415 kmem_cache_free(btrfs_trans_handle_cachep, h); 416 alloc_fail: 417 if (num_bytes) 418 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 419 num_bytes); 420 reserve_fail: 421 if (qgroup_reserved) 422 btrfs_qgroup_free(root, qgroup_reserved); 423 return ERR_PTR(ret); 424 } 425 426 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 427 int num_items) 428 { 429 return start_transaction(root, num_items, TRANS_START, 430 BTRFS_RESERVE_FLUSH_ALL); 431 } 432 433 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 434 struct btrfs_root *root, int num_items) 435 { 436 return start_transaction(root, num_items, TRANS_START, 437 BTRFS_RESERVE_FLUSH_LIMIT); 438 } 439 440 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 441 { 442 return start_transaction(root, 0, TRANS_JOIN, 0); 443 } 444 445 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 446 { 447 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0); 448 } 449 450 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 451 { 452 return start_transaction(root, 0, TRANS_USERSPACE, 0); 453 } 454 455 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 456 { 457 return start_transaction(root, 0, TRANS_ATTACH, 0); 458 } 459 460 /* wait for a transaction commit to be fully complete */ 461 static noinline void wait_for_commit(struct btrfs_root *root, 462 struct btrfs_transaction *commit) 463 { 464 wait_event(commit->commit_wait, commit->commit_done); 465 } 466 467 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 468 { 469 struct btrfs_transaction *cur_trans = NULL, *t; 470 int ret = 0; 471 472 if (transid) { 473 if (transid <= root->fs_info->last_trans_committed) 474 goto out; 475 476 ret = -EINVAL; 477 /* find specified transaction */ 478 spin_lock(&root->fs_info->trans_lock); 479 list_for_each_entry(t, &root->fs_info->trans_list, list) { 480 if (t->transid == transid) { 481 cur_trans = t; 482 atomic_inc(&cur_trans->use_count); 483 ret = 0; 484 break; 485 } 486 if (t->transid > transid) { 487 ret = 0; 488 break; 489 } 490 } 491 spin_unlock(&root->fs_info->trans_lock); 492 /* The specified transaction doesn't exist */ 493 if (!cur_trans) 494 goto out; 495 } else { 496 /* find newest transaction that is committing | committed */ 497 spin_lock(&root->fs_info->trans_lock); 498 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 499 list) { 500 if (t->in_commit) { 501 if (t->commit_done) 502 break; 503 cur_trans = t; 504 atomic_inc(&cur_trans->use_count); 505 break; 506 } 507 } 508 spin_unlock(&root->fs_info->trans_lock); 509 if (!cur_trans) 510 goto out; /* nothing committing|committed */ 511 } 512 513 wait_for_commit(root, cur_trans); 514 put_transaction(cur_trans); 515 out: 516 return ret; 517 } 518 519 void btrfs_throttle(struct btrfs_root *root) 520 { 521 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 522 wait_current_trans(root); 523 } 524 525 static int should_end_transaction(struct btrfs_trans_handle *trans, 526 struct btrfs_root *root) 527 { 528 int ret; 529 530 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 531 return ret ? 1 : 0; 532 } 533 534 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 535 struct btrfs_root *root) 536 { 537 struct btrfs_transaction *cur_trans = trans->transaction; 538 int updates; 539 int err; 540 541 smp_mb(); 542 if (cur_trans->blocked || cur_trans->delayed_refs.flushing) 543 return 1; 544 545 updates = trans->delayed_ref_updates; 546 trans->delayed_ref_updates = 0; 547 if (updates) { 548 err = btrfs_run_delayed_refs(trans, root, updates); 549 if (err) /* Error code will also eval true */ 550 return err; 551 } 552 553 return should_end_transaction(trans, root); 554 } 555 556 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 557 struct btrfs_root *root, int throttle) 558 { 559 struct btrfs_transaction *cur_trans = trans->transaction; 560 struct btrfs_fs_info *info = root->fs_info; 561 int count = 0; 562 int lock = (trans->type != TRANS_JOIN_NOLOCK); 563 int err = 0; 564 565 if (--trans->use_count) { 566 trans->block_rsv = trans->orig_rsv; 567 return 0; 568 } 569 570 /* 571 * do the qgroup accounting as early as possible 572 */ 573 err = btrfs_delayed_refs_qgroup_accounting(trans, info); 574 575 btrfs_trans_release_metadata(trans, root); 576 trans->block_rsv = NULL; 577 /* 578 * the same root has to be passed to start_transaction and 579 * end_transaction. Subvolume quota depends on this. 580 */ 581 WARN_ON(trans->root != root); 582 583 if (trans->qgroup_reserved) { 584 btrfs_qgroup_free(root, trans->qgroup_reserved); 585 trans->qgroup_reserved = 0; 586 } 587 588 if (!list_empty(&trans->new_bgs)) 589 btrfs_create_pending_block_groups(trans, root); 590 591 while (count < 2) { 592 unsigned long cur = trans->delayed_ref_updates; 593 trans->delayed_ref_updates = 0; 594 if (cur && 595 trans->transaction->delayed_refs.num_heads_ready > 64) { 596 trans->delayed_ref_updates = 0; 597 btrfs_run_delayed_refs(trans, root, cur); 598 } else { 599 break; 600 } 601 count++; 602 } 603 btrfs_trans_release_metadata(trans, root); 604 trans->block_rsv = NULL; 605 606 if (!list_empty(&trans->new_bgs)) 607 btrfs_create_pending_block_groups(trans, root); 608 609 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 610 should_end_transaction(trans, root)) { 611 trans->transaction->blocked = 1; 612 smp_wmb(); 613 } 614 615 if (lock && cur_trans->blocked && !cur_trans->in_commit) { 616 if (throttle) { 617 /* 618 * We may race with somebody else here so end up having 619 * to call end_transaction on ourselves again, so inc 620 * our use_count. 621 */ 622 trans->use_count++; 623 return btrfs_commit_transaction(trans, root); 624 } else { 625 wake_up_process(info->transaction_kthread); 626 } 627 } 628 629 if (trans->type < TRANS_JOIN_NOLOCK) 630 sb_end_intwrite(root->fs_info->sb); 631 632 WARN_ON(cur_trans != info->running_transaction); 633 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 634 atomic_dec(&cur_trans->num_writers); 635 636 smp_mb(); 637 if (waitqueue_active(&cur_trans->writer_wait)) 638 wake_up(&cur_trans->writer_wait); 639 put_transaction(cur_trans); 640 641 if (current->journal_info == trans) 642 current->journal_info = NULL; 643 644 if (throttle) 645 btrfs_run_delayed_iputs(root); 646 647 if (trans->aborted || 648 root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 649 err = -EIO; 650 } 651 assert_qgroups_uptodate(trans); 652 653 memset(trans, 0, sizeof(*trans)); 654 kmem_cache_free(btrfs_trans_handle_cachep, trans); 655 return err; 656 } 657 658 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 659 struct btrfs_root *root) 660 { 661 int ret; 662 663 ret = __btrfs_end_transaction(trans, root, 0); 664 if (ret) 665 return ret; 666 return 0; 667 } 668 669 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 670 struct btrfs_root *root) 671 { 672 int ret; 673 674 ret = __btrfs_end_transaction(trans, root, 1); 675 if (ret) 676 return ret; 677 return 0; 678 } 679 680 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans, 681 struct btrfs_root *root) 682 { 683 return __btrfs_end_transaction(trans, root, 1); 684 } 685 686 /* 687 * when btree blocks are allocated, they have some corresponding bits set for 688 * them in one of two extent_io trees. This is used to make sure all of 689 * those extents are sent to disk but does not wait on them 690 */ 691 int btrfs_write_marked_extents(struct btrfs_root *root, 692 struct extent_io_tree *dirty_pages, int mark) 693 { 694 int err = 0; 695 int werr = 0; 696 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 697 struct extent_state *cached_state = NULL; 698 u64 start = 0; 699 u64 end; 700 701 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 702 mark, &cached_state)) { 703 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 704 mark, &cached_state, GFP_NOFS); 705 cached_state = NULL; 706 err = filemap_fdatawrite_range(mapping, start, end); 707 if (err) 708 werr = err; 709 cond_resched(); 710 start = end + 1; 711 } 712 if (err) 713 werr = err; 714 return werr; 715 } 716 717 /* 718 * when btree blocks are allocated, they have some corresponding bits set for 719 * them in one of two extent_io trees. This is used to make sure all of 720 * those extents are on disk for transaction or log commit. We wait 721 * on all the pages and clear them from the dirty pages state tree 722 */ 723 int btrfs_wait_marked_extents(struct btrfs_root *root, 724 struct extent_io_tree *dirty_pages, int mark) 725 { 726 int err = 0; 727 int werr = 0; 728 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 729 struct extent_state *cached_state = NULL; 730 u64 start = 0; 731 u64 end; 732 733 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 734 EXTENT_NEED_WAIT, &cached_state)) { 735 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 736 0, 0, &cached_state, GFP_NOFS); 737 err = filemap_fdatawait_range(mapping, start, end); 738 if (err) 739 werr = err; 740 cond_resched(); 741 start = end + 1; 742 } 743 if (err) 744 werr = err; 745 return werr; 746 } 747 748 /* 749 * when btree blocks are allocated, they have some corresponding bits set for 750 * them in one of two extent_io trees. This is used to make sure all of 751 * those extents are on disk for transaction or log commit 752 */ 753 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 754 struct extent_io_tree *dirty_pages, int mark) 755 { 756 int ret; 757 int ret2; 758 759 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 760 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 761 762 if (ret) 763 return ret; 764 if (ret2) 765 return ret2; 766 return 0; 767 } 768 769 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 770 struct btrfs_root *root) 771 { 772 if (!trans || !trans->transaction) { 773 struct inode *btree_inode; 774 btree_inode = root->fs_info->btree_inode; 775 return filemap_write_and_wait(btree_inode->i_mapping); 776 } 777 return btrfs_write_and_wait_marked_extents(root, 778 &trans->transaction->dirty_pages, 779 EXTENT_DIRTY); 780 } 781 782 /* 783 * this is used to update the root pointer in the tree of tree roots. 784 * 785 * But, in the case of the extent allocation tree, updating the root 786 * pointer may allocate blocks which may change the root of the extent 787 * allocation tree. 788 * 789 * So, this loops and repeats and makes sure the cowonly root didn't 790 * change while the root pointer was being updated in the metadata. 791 */ 792 static int update_cowonly_root(struct btrfs_trans_handle *trans, 793 struct btrfs_root *root) 794 { 795 int ret; 796 u64 old_root_bytenr; 797 u64 old_root_used; 798 struct btrfs_root *tree_root = root->fs_info->tree_root; 799 800 old_root_used = btrfs_root_used(&root->root_item); 801 btrfs_write_dirty_block_groups(trans, root); 802 803 while (1) { 804 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 805 if (old_root_bytenr == root->node->start && 806 old_root_used == btrfs_root_used(&root->root_item)) 807 break; 808 809 btrfs_set_root_node(&root->root_item, root->node); 810 ret = btrfs_update_root(trans, tree_root, 811 &root->root_key, 812 &root->root_item); 813 if (ret) 814 return ret; 815 816 old_root_used = btrfs_root_used(&root->root_item); 817 ret = btrfs_write_dirty_block_groups(trans, root); 818 if (ret) 819 return ret; 820 } 821 822 if (root != root->fs_info->extent_root) 823 switch_commit_root(root); 824 825 return 0; 826 } 827 828 /* 829 * update all the cowonly tree roots on disk 830 * 831 * The error handling in this function may not be obvious. Any of the 832 * failures will cause the file system to go offline. We still need 833 * to clean up the delayed refs. 834 */ 835 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 836 struct btrfs_root *root) 837 { 838 struct btrfs_fs_info *fs_info = root->fs_info; 839 struct list_head *next; 840 struct extent_buffer *eb; 841 int ret; 842 843 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 844 if (ret) 845 return ret; 846 847 eb = btrfs_lock_root_node(fs_info->tree_root); 848 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 849 0, &eb); 850 btrfs_tree_unlock(eb); 851 free_extent_buffer(eb); 852 853 if (ret) 854 return ret; 855 856 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 857 if (ret) 858 return ret; 859 860 ret = btrfs_run_dev_stats(trans, root->fs_info); 861 WARN_ON(ret); 862 ret = btrfs_run_dev_replace(trans, root->fs_info); 863 WARN_ON(ret); 864 865 ret = btrfs_run_qgroups(trans, root->fs_info); 866 BUG_ON(ret); 867 868 /* run_qgroups might have added some more refs */ 869 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 870 BUG_ON(ret); 871 872 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 873 next = fs_info->dirty_cowonly_roots.next; 874 list_del_init(next); 875 root = list_entry(next, struct btrfs_root, dirty_list); 876 877 ret = update_cowonly_root(trans, root); 878 if (ret) 879 return ret; 880 } 881 882 down_write(&fs_info->extent_commit_sem); 883 switch_commit_root(fs_info->extent_root); 884 up_write(&fs_info->extent_commit_sem); 885 886 btrfs_after_dev_replace_commit(fs_info); 887 888 return 0; 889 } 890 891 /* 892 * dead roots are old snapshots that need to be deleted. This allocates 893 * a dirty root struct and adds it into the list of dead roots that need to 894 * be deleted 895 */ 896 int btrfs_add_dead_root(struct btrfs_root *root) 897 { 898 spin_lock(&root->fs_info->trans_lock); 899 list_add(&root->root_list, &root->fs_info->dead_roots); 900 spin_unlock(&root->fs_info->trans_lock); 901 return 0; 902 } 903 904 /* 905 * update all the cowonly tree roots on disk 906 */ 907 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 908 struct btrfs_root *root) 909 { 910 struct btrfs_root *gang[8]; 911 struct btrfs_fs_info *fs_info = root->fs_info; 912 int i; 913 int ret; 914 int err = 0; 915 916 spin_lock(&fs_info->fs_roots_radix_lock); 917 while (1) { 918 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 919 (void **)gang, 0, 920 ARRAY_SIZE(gang), 921 BTRFS_ROOT_TRANS_TAG); 922 if (ret == 0) 923 break; 924 for (i = 0; i < ret; i++) { 925 root = gang[i]; 926 radix_tree_tag_clear(&fs_info->fs_roots_radix, 927 (unsigned long)root->root_key.objectid, 928 BTRFS_ROOT_TRANS_TAG); 929 spin_unlock(&fs_info->fs_roots_radix_lock); 930 931 btrfs_free_log(trans, root); 932 btrfs_update_reloc_root(trans, root); 933 btrfs_orphan_commit_root(trans, root); 934 935 btrfs_save_ino_cache(root, trans); 936 937 /* see comments in should_cow_block() */ 938 root->force_cow = 0; 939 smp_wmb(); 940 941 if (root->commit_root != root->node) { 942 mutex_lock(&root->fs_commit_mutex); 943 switch_commit_root(root); 944 btrfs_unpin_free_ino(root); 945 mutex_unlock(&root->fs_commit_mutex); 946 947 btrfs_set_root_node(&root->root_item, 948 root->node); 949 } 950 951 err = btrfs_update_root(trans, fs_info->tree_root, 952 &root->root_key, 953 &root->root_item); 954 spin_lock(&fs_info->fs_roots_radix_lock); 955 if (err) 956 break; 957 } 958 } 959 spin_unlock(&fs_info->fs_roots_radix_lock); 960 return err; 961 } 962 963 /* 964 * defrag a given btree. If cacheonly == 1, this won't read from the disk, 965 * otherwise every leaf in the btree is read and defragged. 966 */ 967 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly) 968 { 969 struct btrfs_fs_info *info = root->fs_info; 970 struct btrfs_trans_handle *trans; 971 int ret; 972 973 if (xchg(&root->defrag_running, 1)) 974 return 0; 975 976 while (1) { 977 trans = btrfs_start_transaction(root, 0); 978 if (IS_ERR(trans)) 979 return PTR_ERR(trans); 980 981 ret = btrfs_defrag_leaves(trans, root, cacheonly); 982 983 btrfs_end_transaction(trans, root); 984 btrfs_btree_balance_dirty(info->tree_root); 985 cond_resched(); 986 987 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 988 break; 989 } 990 root->defrag_running = 0; 991 return ret; 992 } 993 994 /* 995 * new snapshots need to be created at a very specific time in the 996 * transaction commit. This does the actual creation 997 */ 998 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 999 struct btrfs_fs_info *fs_info, 1000 struct btrfs_pending_snapshot *pending) 1001 { 1002 struct btrfs_key key; 1003 struct btrfs_root_item *new_root_item; 1004 struct btrfs_root *tree_root = fs_info->tree_root; 1005 struct btrfs_root *root = pending->root; 1006 struct btrfs_root *parent_root; 1007 struct btrfs_block_rsv *rsv; 1008 struct inode *parent_inode; 1009 struct btrfs_path *path; 1010 struct btrfs_dir_item *dir_item; 1011 struct dentry *parent; 1012 struct dentry *dentry; 1013 struct extent_buffer *tmp; 1014 struct extent_buffer *old; 1015 struct timespec cur_time = CURRENT_TIME; 1016 int ret; 1017 u64 to_reserve = 0; 1018 u64 index = 0; 1019 u64 objectid; 1020 u64 root_flags; 1021 uuid_le new_uuid; 1022 1023 path = btrfs_alloc_path(); 1024 if (!path) { 1025 ret = pending->error = -ENOMEM; 1026 goto path_alloc_fail; 1027 } 1028 1029 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 1030 if (!new_root_item) { 1031 ret = pending->error = -ENOMEM; 1032 goto root_item_alloc_fail; 1033 } 1034 1035 ret = btrfs_find_free_objectid(tree_root, &objectid); 1036 if (ret) { 1037 pending->error = ret; 1038 goto no_free_objectid; 1039 } 1040 1041 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve); 1042 1043 if (to_reserve > 0) { 1044 ret = btrfs_block_rsv_add(root, &pending->block_rsv, 1045 to_reserve, 1046 BTRFS_RESERVE_NO_FLUSH); 1047 if (ret) { 1048 pending->error = ret; 1049 goto no_free_objectid; 1050 } 1051 } 1052 1053 ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid, 1054 objectid, pending->inherit); 1055 if (ret) { 1056 pending->error = ret; 1057 goto no_free_objectid; 1058 } 1059 1060 key.objectid = objectid; 1061 key.offset = (u64)-1; 1062 key.type = BTRFS_ROOT_ITEM_KEY; 1063 1064 rsv = trans->block_rsv; 1065 trans->block_rsv = &pending->block_rsv; 1066 1067 dentry = pending->dentry; 1068 parent = dget_parent(dentry); 1069 parent_inode = parent->d_inode; 1070 parent_root = BTRFS_I(parent_inode)->root; 1071 record_root_in_trans(trans, parent_root); 1072 1073 /* 1074 * insert the directory item 1075 */ 1076 ret = btrfs_set_inode_index(parent_inode, &index); 1077 BUG_ON(ret); /* -ENOMEM */ 1078 1079 /* check if there is a file/dir which has the same name. */ 1080 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1081 btrfs_ino(parent_inode), 1082 dentry->d_name.name, 1083 dentry->d_name.len, 0); 1084 if (dir_item != NULL && !IS_ERR(dir_item)) { 1085 pending->error = -EEXIST; 1086 goto fail; 1087 } else if (IS_ERR(dir_item)) { 1088 ret = PTR_ERR(dir_item); 1089 btrfs_abort_transaction(trans, root, ret); 1090 goto fail; 1091 } 1092 btrfs_release_path(path); 1093 1094 /* 1095 * pull in the delayed directory update 1096 * and the delayed inode item 1097 * otherwise we corrupt the FS during 1098 * snapshot 1099 */ 1100 ret = btrfs_run_delayed_items(trans, root); 1101 if (ret) { /* Transaction aborted */ 1102 btrfs_abort_transaction(trans, root, ret); 1103 goto fail; 1104 } 1105 1106 record_root_in_trans(trans, root); 1107 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1108 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1109 btrfs_check_and_init_root_item(new_root_item); 1110 1111 root_flags = btrfs_root_flags(new_root_item); 1112 if (pending->readonly) 1113 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1114 else 1115 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1116 btrfs_set_root_flags(new_root_item, root_flags); 1117 1118 btrfs_set_root_generation_v2(new_root_item, 1119 trans->transid); 1120 uuid_le_gen(&new_uuid); 1121 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1122 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1123 BTRFS_UUID_SIZE); 1124 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec); 1125 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec); 1126 btrfs_set_root_otransid(new_root_item, trans->transid); 1127 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1128 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1129 btrfs_set_root_stransid(new_root_item, 0); 1130 btrfs_set_root_rtransid(new_root_item, 0); 1131 1132 old = btrfs_lock_root_node(root); 1133 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1134 if (ret) { 1135 btrfs_tree_unlock(old); 1136 free_extent_buffer(old); 1137 btrfs_abort_transaction(trans, root, ret); 1138 goto fail; 1139 } 1140 1141 btrfs_set_lock_blocking(old); 1142 1143 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1144 /* clean up in any case */ 1145 btrfs_tree_unlock(old); 1146 free_extent_buffer(old); 1147 if (ret) { 1148 btrfs_abort_transaction(trans, root, ret); 1149 goto fail; 1150 } 1151 1152 /* see comments in should_cow_block() */ 1153 root->force_cow = 1; 1154 smp_wmb(); 1155 1156 btrfs_set_root_node(new_root_item, tmp); 1157 /* record when the snapshot was created in key.offset */ 1158 key.offset = trans->transid; 1159 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1160 btrfs_tree_unlock(tmp); 1161 free_extent_buffer(tmp); 1162 if (ret) { 1163 btrfs_abort_transaction(trans, root, ret); 1164 goto fail; 1165 } 1166 1167 /* 1168 * insert root back/forward references 1169 */ 1170 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1171 parent_root->root_key.objectid, 1172 btrfs_ino(parent_inode), index, 1173 dentry->d_name.name, dentry->d_name.len); 1174 if (ret) { 1175 btrfs_abort_transaction(trans, root, ret); 1176 goto fail; 1177 } 1178 1179 key.offset = (u64)-1; 1180 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1181 if (IS_ERR(pending->snap)) { 1182 ret = PTR_ERR(pending->snap); 1183 btrfs_abort_transaction(trans, root, ret); 1184 goto fail; 1185 } 1186 1187 ret = btrfs_reloc_post_snapshot(trans, pending); 1188 if (ret) { 1189 btrfs_abort_transaction(trans, root, ret); 1190 goto fail; 1191 } 1192 1193 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1194 if (ret) { 1195 btrfs_abort_transaction(trans, root, ret); 1196 goto fail; 1197 } 1198 1199 ret = btrfs_insert_dir_item(trans, parent_root, 1200 dentry->d_name.name, dentry->d_name.len, 1201 parent_inode, &key, 1202 BTRFS_FT_DIR, index); 1203 /* We have check then name at the beginning, so it is impossible. */ 1204 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1205 if (ret) { 1206 btrfs_abort_transaction(trans, root, ret); 1207 goto fail; 1208 } 1209 1210 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1211 dentry->d_name.len * 2); 1212 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 1213 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1214 if (ret) 1215 btrfs_abort_transaction(trans, root, ret); 1216 fail: 1217 dput(parent); 1218 trans->block_rsv = rsv; 1219 no_free_objectid: 1220 kfree(new_root_item); 1221 root_item_alloc_fail: 1222 btrfs_free_path(path); 1223 path_alloc_fail: 1224 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1); 1225 return ret; 1226 } 1227 1228 /* 1229 * create all the snapshots we've scheduled for creation 1230 */ 1231 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1232 struct btrfs_fs_info *fs_info) 1233 { 1234 struct btrfs_pending_snapshot *pending; 1235 struct list_head *head = &trans->transaction->pending_snapshots; 1236 1237 list_for_each_entry(pending, head, list) 1238 create_pending_snapshot(trans, fs_info, pending); 1239 return 0; 1240 } 1241 1242 static void update_super_roots(struct btrfs_root *root) 1243 { 1244 struct btrfs_root_item *root_item; 1245 struct btrfs_super_block *super; 1246 1247 super = root->fs_info->super_copy; 1248 1249 root_item = &root->fs_info->chunk_root->root_item; 1250 super->chunk_root = root_item->bytenr; 1251 super->chunk_root_generation = root_item->generation; 1252 super->chunk_root_level = root_item->level; 1253 1254 root_item = &root->fs_info->tree_root->root_item; 1255 super->root = root_item->bytenr; 1256 super->generation = root_item->generation; 1257 super->root_level = root_item->level; 1258 if (btrfs_test_opt(root, SPACE_CACHE)) 1259 super->cache_generation = root_item->generation; 1260 } 1261 1262 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1263 { 1264 int ret = 0; 1265 spin_lock(&info->trans_lock); 1266 if (info->running_transaction) 1267 ret = info->running_transaction->in_commit; 1268 spin_unlock(&info->trans_lock); 1269 return ret; 1270 } 1271 1272 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1273 { 1274 int ret = 0; 1275 spin_lock(&info->trans_lock); 1276 if (info->running_transaction) 1277 ret = info->running_transaction->blocked; 1278 spin_unlock(&info->trans_lock); 1279 return ret; 1280 } 1281 1282 /* 1283 * wait for the current transaction commit to start and block subsequent 1284 * transaction joins 1285 */ 1286 static void wait_current_trans_commit_start(struct btrfs_root *root, 1287 struct btrfs_transaction *trans) 1288 { 1289 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit); 1290 } 1291 1292 /* 1293 * wait for the current transaction to start and then become unblocked. 1294 * caller holds ref. 1295 */ 1296 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1297 struct btrfs_transaction *trans) 1298 { 1299 wait_event(root->fs_info->transaction_wait, 1300 trans->commit_done || (trans->in_commit && !trans->blocked)); 1301 } 1302 1303 /* 1304 * commit transactions asynchronously. once btrfs_commit_transaction_async 1305 * returns, any subsequent transaction will not be allowed to join. 1306 */ 1307 struct btrfs_async_commit { 1308 struct btrfs_trans_handle *newtrans; 1309 struct btrfs_root *root; 1310 struct delayed_work work; 1311 }; 1312 1313 static void do_async_commit(struct work_struct *work) 1314 { 1315 struct btrfs_async_commit *ac = 1316 container_of(work, struct btrfs_async_commit, work.work); 1317 1318 /* 1319 * We've got freeze protection passed with the transaction. 1320 * Tell lockdep about it. 1321 */ 1322 if (ac->newtrans->type < TRANS_JOIN_NOLOCK) 1323 rwsem_acquire_read( 1324 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1325 0, 1, _THIS_IP_); 1326 1327 current->journal_info = ac->newtrans; 1328 1329 btrfs_commit_transaction(ac->newtrans, ac->root); 1330 kfree(ac); 1331 } 1332 1333 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1334 struct btrfs_root *root, 1335 int wait_for_unblock) 1336 { 1337 struct btrfs_async_commit *ac; 1338 struct btrfs_transaction *cur_trans; 1339 1340 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1341 if (!ac) 1342 return -ENOMEM; 1343 1344 INIT_DELAYED_WORK(&ac->work, do_async_commit); 1345 ac->root = root; 1346 ac->newtrans = btrfs_join_transaction(root); 1347 if (IS_ERR(ac->newtrans)) { 1348 int err = PTR_ERR(ac->newtrans); 1349 kfree(ac); 1350 return err; 1351 } 1352 1353 /* take transaction reference */ 1354 cur_trans = trans->transaction; 1355 atomic_inc(&cur_trans->use_count); 1356 1357 btrfs_end_transaction(trans, root); 1358 1359 /* 1360 * Tell lockdep we've released the freeze rwsem, since the 1361 * async commit thread will be the one to unlock it. 1362 */ 1363 if (trans->type < TRANS_JOIN_NOLOCK) 1364 rwsem_release( 1365 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1366 1, _THIS_IP_); 1367 1368 schedule_delayed_work(&ac->work, 0); 1369 1370 /* wait for transaction to start and unblock */ 1371 if (wait_for_unblock) 1372 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1373 else 1374 wait_current_trans_commit_start(root, cur_trans); 1375 1376 if (current->journal_info == trans) 1377 current->journal_info = NULL; 1378 1379 put_transaction(cur_trans); 1380 return 0; 1381 } 1382 1383 1384 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1385 struct btrfs_root *root, int err) 1386 { 1387 struct btrfs_transaction *cur_trans = trans->transaction; 1388 1389 WARN_ON(trans->use_count > 1); 1390 1391 btrfs_abort_transaction(trans, root, err); 1392 1393 spin_lock(&root->fs_info->trans_lock); 1394 list_del_init(&cur_trans->list); 1395 if (cur_trans == root->fs_info->running_transaction) { 1396 root->fs_info->running_transaction = NULL; 1397 root->fs_info->trans_no_join = 0; 1398 } 1399 spin_unlock(&root->fs_info->trans_lock); 1400 1401 btrfs_cleanup_one_transaction(trans->transaction, root); 1402 1403 put_transaction(cur_trans); 1404 put_transaction(cur_trans); 1405 1406 trace_btrfs_transaction_commit(root); 1407 1408 btrfs_scrub_continue(root); 1409 1410 if (current->journal_info == trans) 1411 current->journal_info = NULL; 1412 1413 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1414 } 1415 1416 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans, 1417 struct btrfs_root *root) 1418 { 1419 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT); 1420 int snap_pending = 0; 1421 int ret; 1422 1423 if (!flush_on_commit) { 1424 spin_lock(&root->fs_info->trans_lock); 1425 if (!list_empty(&trans->transaction->pending_snapshots)) 1426 snap_pending = 1; 1427 spin_unlock(&root->fs_info->trans_lock); 1428 } 1429 1430 if (flush_on_commit || snap_pending) { 1431 btrfs_start_delalloc_inodes(root, 1); 1432 btrfs_wait_ordered_extents(root, 1); 1433 } 1434 1435 ret = btrfs_run_delayed_items(trans, root); 1436 if (ret) 1437 return ret; 1438 1439 /* 1440 * running the delayed items may have added new refs. account 1441 * them now so that they hinder processing of more delayed refs 1442 * as little as possible. 1443 */ 1444 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 1445 1446 /* 1447 * rename don't use btrfs_join_transaction, so, once we 1448 * set the transaction to blocked above, we aren't going 1449 * to get any new ordered operations. We can safely run 1450 * it here and no for sure that nothing new will be added 1451 * to the list 1452 */ 1453 btrfs_run_ordered_operations(root, 1); 1454 1455 return 0; 1456 } 1457 1458 /* 1459 * btrfs_transaction state sequence: 1460 * in_commit = 0, blocked = 0 (initial) 1461 * in_commit = 1, blocked = 1 1462 * blocked = 0 1463 * commit_done = 1 1464 */ 1465 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1466 struct btrfs_root *root) 1467 { 1468 unsigned long joined = 0; 1469 struct btrfs_transaction *cur_trans = trans->transaction; 1470 struct btrfs_transaction *prev_trans = NULL; 1471 DEFINE_WAIT(wait); 1472 int ret; 1473 int should_grow = 0; 1474 unsigned long now = get_seconds(); 1475 1476 ret = btrfs_run_ordered_operations(root, 0); 1477 if (ret) { 1478 btrfs_abort_transaction(trans, root, ret); 1479 goto cleanup_transaction; 1480 } 1481 1482 /* Stop the commit early if ->aborted is set */ 1483 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1484 ret = cur_trans->aborted; 1485 goto cleanup_transaction; 1486 } 1487 1488 /* make a pass through all the delayed refs we have so far 1489 * any runnings procs may add more while we are here 1490 */ 1491 ret = btrfs_run_delayed_refs(trans, root, 0); 1492 if (ret) 1493 goto cleanup_transaction; 1494 1495 btrfs_trans_release_metadata(trans, root); 1496 trans->block_rsv = NULL; 1497 1498 cur_trans = trans->transaction; 1499 1500 /* 1501 * set the flushing flag so procs in this transaction have to 1502 * start sending their work down. 1503 */ 1504 cur_trans->delayed_refs.flushing = 1; 1505 1506 if (!list_empty(&trans->new_bgs)) 1507 btrfs_create_pending_block_groups(trans, root); 1508 1509 ret = btrfs_run_delayed_refs(trans, root, 0); 1510 if (ret) 1511 goto cleanup_transaction; 1512 1513 spin_lock(&cur_trans->commit_lock); 1514 if (cur_trans->in_commit) { 1515 spin_unlock(&cur_trans->commit_lock); 1516 atomic_inc(&cur_trans->use_count); 1517 ret = btrfs_end_transaction(trans, root); 1518 1519 wait_for_commit(root, cur_trans); 1520 1521 put_transaction(cur_trans); 1522 1523 return ret; 1524 } 1525 1526 trans->transaction->in_commit = 1; 1527 trans->transaction->blocked = 1; 1528 spin_unlock(&cur_trans->commit_lock); 1529 wake_up(&root->fs_info->transaction_blocked_wait); 1530 1531 spin_lock(&root->fs_info->trans_lock); 1532 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1533 prev_trans = list_entry(cur_trans->list.prev, 1534 struct btrfs_transaction, list); 1535 if (!prev_trans->commit_done) { 1536 atomic_inc(&prev_trans->use_count); 1537 spin_unlock(&root->fs_info->trans_lock); 1538 1539 wait_for_commit(root, prev_trans); 1540 1541 put_transaction(prev_trans); 1542 } else { 1543 spin_unlock(&root->fs_info->trans_lock); 1544 } 1545 } else { 1546 spin_unlock(&root->fs_info->trans_lock); 1547 } 1548 1549 if (!btrfs_test_opt(root, SSD) && 1550 (now < cur_trans->start_time || now - cur_trans->start_time < 1)) 1551 should_grow = 1; 1552 1553 do { 1554 joined = cur_trans->num_joined; 1555 1556 WARN_ON(cur_trans != trans->transaction); 1557 1558 ret = btrfs_flush_all_pending_stuffs(trans, root); 1559 if (ret) 1560 goto cleanup_transaction; 1561 1562 prepare_to_wait(&cur_trans->writer_wait, &wait, 1563 TASK_UNINTERRUPTIBLE); 1564 1565 if (atomic_read(&cur_trans->num_writers) > 1) 1566 schedule_timeout(MAX_SCHEDULE_TIMEOUT); 1567 else if (should_grow) 1568 schedule_timeout(1); 1569 1570 finish_wait(&cur_trans->writer_wait, &wait); 1571 } while (atomic_read(&cur_trans->num_writers) > 1 || 1572 (should_grow && cur_trans->num_joined != joined)); 1573 1574 ret = btrfs_flush_all_pending_stuffs(trans, root); 1575 if (ret) 1576 goto cleanup_transaction; 1577 1578 /* 1579 * Ok now we need to make sure to block out any other joins while we 1580 * commit the transaction. We could have started a join before setting 1581 * no_join so make sure to wait for num_writers to == 1 again. 1582 */ 1583 spin_lock(&root->fs_info->trans_lock); 1584 root->fs_info->trans_no_join = 1; 1585 spin_unlock(&root->fs_info->trans_lock); 1586 wait_event(cur_trans->writer_wait, 1587 atomic_read(&cur_trans->num_writers) == 1); 1588 1589 /* ->aborted might be set after the previous check, so check it */ 1590 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1591 ret = cur_trans->aborted; 1592 goto cleanup_transaction; 1593 } 1594 /* 1595 * the reloc mutex makes sure that we stop 1596 * the balancing code from coming in and moving 1597 * extents around in the middle of the commit 1598 */ 1599 mutex_lock(&root->fs_info->reloc_mutex); 1600 1601 /* 1602 * We needn't worry about the delayed items because we will 1603 * deal with them in create_pending_snapshot(), which is the 1604 * core function of the snapshot creation. 1605 */ 1606 ret = create_pending_snapshots(trans, root->fs_info); 1607 if (ret) { 1608 mutex_unlock(&root->fs_info->reloc_mutex); 1609 goto cleanup_transaction; 1610 } 1611 1612 /* 1613 * We insert the dir indexes of the snapshots and update the inode 1614 * of the snapshots' parents after the snapshot creation, so there 1615 * are some delayed items which are not dealt with. Now deal with 1616 * them. 1617 * 1618 * We needn't worry that this operation will corrupt the snapshots, 1619 * because all the tree which are snapshoted will be forced to COW 1620 * the nodes and leaves. 1621 */ 1622 ret = btrfs_run_delayed_items(trans, root); 1623 if (ret) { 1624 mutex_unlock(&root->fs_info->reloc_mutex); 1625 goto cleanup_transaction; 1626 } 1627 1628 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1629 if (ret) { 1630 mutex_unlock(&root->fs_info->reloc_mutex); 1631 goto cleanup_transaction; 1632 } 1633 1634 /* 1635 * make sure none of the code above managed to slip in a 1636 * delayed item 1637 */ 1638 btrfs_assert_delayed_root_empty(root); 1639 1640 WARN_ON(cur_trans != trans->transaction); 1641 1642 btrfs_scrub_pause(root); 1643 /* btrfs_commit_tree_roots is responsible for getting the 1644 * various roots consistent with each other. Every pointer 1645 * in the tree of tree roots has to point to the most up to date 1646 * root for every subvolume and other tree. So, we have to keep 1647 * the tree logging code from jumping in and changing any 1648 * of the trees. 1649 * 1650 * At this point in the commit, there can't be any tree-log 1651 * writers, but a little lower down we drop the trans mutex 1652 * and let new people in. By holding the tree_log_mutex 1653 * from now until after the super is written, we avoid races 1654 * with the tree-log code. 1655 */ 1656 mutex_lock(&root->fs_info->tree_log_mutex); 1657 1658 ret = commit_fs_roots(trans, root); 1659 if (ret) { 1660 mutex_unlock(&root->fs_info->tree_log_mutex); 1661 mutex_unlock(&root->fs_info->reloc_mutex); 1662 goto cleanup_transaction; 1663 } 1664 1665 /* commit_fs_roots gets rid of all the tree log roots, it is now 1666 * safe to free the root of tree log roots 1667 */ 1668 btrfs_free_log_root_tree(trans, root->fs_info); 1669 1670 ret = commit_cowonly_roots(trans, root); 1671 if (ret) { 1672 mutex_unlock(&root->fs_info->tree_log_mutex); 1673 mutex_unlock(&root->fs_info->reloc_mutex); 1674 goto cleanup_transaction; 1675 } 1676 1677 /* 1678 * The tasks which save the space cache and inode cache may also 1679 * update ->aborted, check it. 1680 */ 1681 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1682 ret = cur_trans->aborted; 1683 mutex_unlock(&root->fs_info->tree_log_mutex); 1684 mutex_unlock(&root->fs_info->reloc_mutex); 1685 goto cleanup_transaction; 1686 } 1687 1688 btrfs_prepare_extent_commit(trans, root); 1689 1690 cur_trans = root->fs_info->running_transaction; 1691 1692 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 1693 root->fs_info->tree_root->node); 1694 switch_commit_root(root->fs_info->tree_root); 1695 1696 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 1697 root->fs_info->chunk_root->node); 1698 switch_commit_root(root->fs_info->chunk_root); 1699 1700 assert_qgroups_uptodate(trans); 1701 update_super_roots(root); 1702 1703 if (!root->fs_info->log_root_recovering) { 1704 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 1705 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 1706 } 1707 1708 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 1709 sizeof(*root->fs_info->super_copy)); 1710 1711 trans->transaction->blocked = 0; 1712 spin_lock(&root->fs_info->trans_lock); 1713 root->fs_info->running_transaction = NULL; 1714 root->fs_info->trans_no_join = 0; 1715 spin_unlock(&root->fs_info->trans_lock); 1716 mutex_unlock(&root->fs_info->reloc_mutex); 1717 1718 wake_up(&root->fs_info->transaction_wait); 1719 1720 ret = btrfs_write_and_wait_transaction(trans, root); 1721 if (ret) { 1722 btrfs_error(root->fs_info, ret, 1723 "Error while writing out transaction."); 1724 mutex_unlock(&root->fs_info->tree_log_mutex); 1725 goto cleanup_transaction; 1726 } 1727 1728 ret = write_ctree_super(trans, root, 0); 1729 if (ret) { 1730 mutex_unlock(&root->fs_info->tree_log_mutex); 1731 goto cleanup_transaction; 1732 } 1733 1734 /* 1735 * the super is written, we can safely allow the tree-loggers 1736 * to go about their business 1737 */ 1738 mutex_unlock(&root->fs_info->tree_log_mutex); 1739 1740 btrfs_finish_extent_commit(trans, root); 1741 1742 cur_trans->commit_done = 1; 1743 1744 root->fs_info->last_trans_committed = cur_trans->transid; 1745 1746 wake_up(&cur_trans->commit_wait); 1747 1748 spin_lock(&root->fs_info->trans_lock); 1749 list_del_init(&cur_trans->list); 1750 spin_unlock(&root->fs_info->trans_lock); 1751 1752 put_transaction(cur_trans); 1753 put_transaction(cur_trans); 1754 1755 if (trans->type < TRANS_JOIN_NOLOCK) 1756 sb_end_intwrite(root->fs_info->sb); 1757 1758 trace_btrfs_transaction_commit(root); 1759 1760 btrfs_scrub_continue(root); 1761 1762 if (current->journal_info == trans) 1763 current->journal_info = NULL; 1764 1765 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1766 1767 if (current != root->fs_info->transaction_kthread) 1768 btrfs_run_delayed_iputs(root); 1769 1770 return ret; 1771 1772 cleanup_transaction: 1773 btrfs_trans_release_metadata(trans, root); 1774 trans->block_rsv = NULL; 1775 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n"); 1776 // WARN_ON(1); 1777 if (current->journal_info == trans) 1778 current->journal_info = NULL; 1779 cleanup_transaction(trans, root, ret); 1780 1781 return ret; 1782 } 1783 1784 /* 1785 * interface function to delete all the snapshots we have scheduled for deletion 1786 */ 1787 int btrfs_clean_old_snapshots(struct btrfs_root *root) 1788 { 1789 LIST_HEAD(list); 1790 struct btrfs_fs_info *fs_info = root->fs_info; 1791 1792 spin_lock(&fs_info->trans_lock); 1793 list_splice_init(&fs_info->dead_roots, &list); 1794 spin_unlock(&fs_info->trans_lock); 1795 1796 while (!list_empty(&list)) { 1797 int ret; 1798 1799 root = list_entry(list.next, struct btrfs_root, root_list); 1800 list_del(&root->root_list); 1801 1802 btrfs_kill_all_delayed_nodes(root); 1803 1804 if (btrfs_header_backref_rev(root->node) < 1805 BTRFS_MIXED_BACKREF_REV) 1806 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 1807 else 1808 ret =btrfs_drop_snapshot(root, NULL, 1, 0); 1809 BUG_ON(ret < 0); 1810 } 1811 return 0; 1812 } 1813