xref: /openbmc/linux/fs/btrfs/transaction.c (revision b6bec26c)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 
35 #define BTRFS_ROOT_TRANS_TAG 0
36 
37 void put_transaction(struct btrfs_transaction *transaction)
38 {
39 	WARN_ON(atomic_read(&transaction->use_count) == 0);
40 	if (atomic_dec_and_test(&transaction->use_count)) {
41 		BUG_ON(!list_empty(&transaction->list));
42 		WARN_ON(transaction->delayed_refs.root.rb_node);
43 		memset(transaction, 0, sizeof(*transaction));
44 		kmem_cache_free(btrfs_transaction_cachep, transaction);
45 	}
46 }
47 
48 static noinline void switch_commit_root(struct btrfs_root *root)
49 {
50 	free_extent_buffer(root->commit_root);
51 	root->commit_root = btrfs_root_node(root);
52 }
53 
54 /*
55  * either allocate a new transaction or hop into the existing one
56  */
57 static noinline int join_transaction(struct btrfs_root *root, int type)
58 {
59 	struct btrfs_transaction *cur_trans;
60 	struct btrfs_fs_info *fs_info = root->fs_info;
61 
62 	spin_lock(&fs_info->trans_lock);
63 loop:
64 	/* The file system has been taken offline. No new transactions. */
65 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
66 		spin_unlock(&fs_info->trans_lock);
67 		return -EROFS;
68 	}
69 
70 	if (fs_info->trans_no_join) {
71 		/*
72 		 * If we are JOIN_NOLOCK we're already committing a current
73 		 * transaction, we just need a handle to deal with something
74 		 * when committing the transaction, such as inode cache and
75 		 * space cache. It is a special case.
76 		 */
77 		if (type != TRANS_JOIN_NOLOCK) {
78 			spin_unlock(&fs_info->trans_lock);
79 			return -EBUSY;
80 		}
81 	}
82 
83 	cur_trans = fs_info->running_transaction;
84 	if (cur_trans) {
85 		if (cur_trans->aborted) {
86 			spin_unlock(&fs_info->trans_lock);
87 			return cur_trans->aborted;
88 		}
89 		atomic_inc(&cur_trans->use_count);
90 		atomic_inc(&cur_trans->num_writers);
91 		cur_trans->num_joined++;
92 		spin_unlock(&fs_info->trans_lock);
93 		return 0;
94 	}
95 	spin_unlock(&fs_info->trans_lock);
96 
97 	/*
98 	 * If we are ATTACH, we just want to catch the current transaction,
99 	 * and commit it. If there is no transaction, just return ENOENT.
100 	 */
101 	if (type == TRANS_ATTACH)
102 		return -ENOENT;
103 
104 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
105 	if (!cur_trans)
106 		return -ENOMEM;
107 
108 	spin_lock(&fs_info->trans_lock);
109 	if (fs_info->running_transaction) {
110 		/*
111 		 * someone started a transaction after we unlocked.  Make sure
112 		 * to redo the trans_no_join checks above
113 		 */
114 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
115 		cur_trans = fs_info->running_transaction;
116 		goto loop;
117 	} else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
118 		spin_unlock(&fs_info->trans_lock);
119 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
120 		return -EROFS;
121 	}
122 
123 	atomic_set(&cur_trans->num_writers, 1);
124 	cur_trans->num_joined = 0;
125 	init_waitqueue_head(&cur_trans->writer_wait);
126 	init_waitqueue_head(&cur_trans->commit_wait);
127 	cur_trans->in_commit = 0;
128 	cur_trans->blocked = 0;
129 	/*
130 	 * One for this trans handle, one so it will live on until we
131 	 * commit the transaction.
132 	 */
133 	atomic_set(&cur_trans->use_count, 2);
134 	cur_trans->commit_done = 0;
135 	cur_trans->start_time = get_seconds();
136 
137 	cur_trans->delayed_refs.root = RB_ROOT;
138 	cur_trans->delayed_refs.num_entries = 0;
139 	cur_trans->delayed_refs.num_heads_ready = 0;
140 	cur_trans->delayed_refs.num_heads = 0;
141 	cur_trans->delayed_refs.flushing = 0;
142 	cur_trans->delayed_refs.run_delayed_start = 0;
143 
144 	/*
145 	 * although the tree mod log is per file system and not per transaction,
146 	 * the log must never go across transaction boundaries.
147 	 */
148 	smp_mb();
149 	if (!list_empty(&fs_info->tree_mod_seq_list))
150 		WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
151 			"creating a fresh transaction\n");
152 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
153 		WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
154 			"creating a fresh transaction\n");
155 	atomic_set(&fs_info->tree_mod_seq, 0);
156 
157 	spin_lock_init(&cur_trans->commit_lock);
158 	spin_lock_init(&cur_trans->delayed_refs.lock);
159 
160 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
161 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
162 	extent_io_tree_init(&cur_trans->dirty_pages,
163 			     fs_info->btree_inode->i_mapping);
164 	fs_info->generation++;
165 	cur_trans->transid = fs_info->generation;
166 	fs_info->running_transaction = cur_trans;
167 	cur_trans->aborted = 0;
168 	spin_unlock(&fs_info->trans_lock);
169 
170 	return 0;
171 }
172 
173 /*
174  * this does all the record keeping required to make sure that a reference
175  * counted root is properly recorded in a given transaction.  This is required
176  * to make sure the old root from before we joined the transaction is deleted
177  * when the transaction commits
178  */
179 static int record_root_in_trans(struct btrfs_trans_handle *trans,
180 			       struct btrfs_root *root)
181 {
182 	if (root->ref_cows && root->last_trans < trans->transid) {
183 		WARN_ON(root == root->fs_info->extent_root);
184 		WARN_ON(root->commit_root != root->node);
185 
186 		/*
187 		 * see below for in_trans_setup usage rules
188 		 * we have the reloc mutex held now, so there
189 		 * is only one writer in this function
190 		 */
191 		root->in_trans_setup = 1;
192 
193 		/* make sure readers find in_trans_setup before
194 		 * they find our root->last_trans update
195 		 */
196 		smp_wmb();
197 
198 		spin_lock(&root->fs_info->fs_roots_radix_lock);
199 		if (root->last_trans == trans->transid) {
200 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
201 			return 0;
202 		}
203 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
204 			   (unsigned long)root->root_key.objectid,
205 			   BTRFS_ROOT_TRANS_TAG);
206 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
207 		root->last_trans = trans->transid;
208 
209 		/* this is pretty tricky.  We don't want to
210 		 * take the relocation lock in btrfs_record_root_in_trans
211 		 * unless we're really doing the first setup for this root in
212 		 * this transaction.
213 		 *
214 		 * Normally we'd use root->last_trans as a flag to decide
215 		 * if we want to take the expensive mutex.
216 		 *
217 		 * But, we have to set root->last_trans before we
218 		 * init the relocation root, otherwise, we trip over warnings
219 		 * in ctree.c.  The solution used here is to flag ourselves
220 		 * with root->in_trans_setup.  When this is 1, we're still
221 		 * fixing up the reloc trees and everyone must wait.
222 		 *
223 		 * When this is zero, they can trust root->last_trans and fly
224 		 * through btrfs_record_root_in_trans without having to take the
225 		 * lock.  smp_wmb() makes sure that all the writes above are
226 		 * done before we pop in the zero below
227 		 */
228 		btrfs_init_reloc_root(trans, root);
229 		smp_wmb();
230 		root->in_trans_setup = 0;
231 	}
232 	return 0;
233 }
234 
235 
236 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
237 			       struct btrfs_root *root)
238 {
239 	if (!root->ref_cows)
240 		return 0;
241 
242 	/*
243 	 * see record_root_in_trans for comments about in_trans_setup usage
244 	 * and barriers
245 	 */
246 	smp_rmb();
247 	if (root->last_trans == trans->transid &&
248 	    !root->in_trans_setup)
249 		return 0;
250 
251 	mutex_lock(&root->fs_info->reloc_mutex);
252 	record_root_in_trans(trans, root);
253 	mutex_unlock(&root->fs_info->reloc_mutex);
254 
255 	return 0;
256 }
257 
258 /* wait for commit against the current transaction to become unblocked
259  * when this is done, it is safe to start a new transaction, but the current
260  * transaction might not be fully on disk.
261  */
262 static void wait_current_trans(struct btrfs_root *root)
263 {
264 	struct btrfs_transaction *cur_trans;
265 
266 	spin_lock(&root->fs_info->trans_lock);
267 	cur_trans = root->fs_info->running_transaction;
268 	if (cur_trans && cur_trans->blocked) {
269 		atomic_inc(&cur_trans->use_count);
270 		spin_unlock(&root->fs_info->trans_lock);
271 
272 		wait_event(root->fs_info->transaction_wait,
273 			   !cur_trans->blocked);
274 		put_transaction(cur_trans);
275 	} else {
276 		spin_unlock(&root->fs_info->trans_lock);
277 	}
278 }
279 
280 static int may_wait_transaction(struct btrfs_root *root, int type)
281 {
282 	if (root->fs_info->log_root_recovering)
283 		return 0;
284 
285 	if (type == TRANS_USERSPACE)
286 		return 1;
287 
288 	if (type == TRANS_START &&
289 	    !atomic_read(&root->fs_info->open_ioctl_trans))
290 		return 1;
291 
292 	return 0;
293 }
294 
295 static struct btrfs_trans_handle *
296 start_transaction(struct btrfs_root *root, u64 num_items, int type,
297 		  enum btrfs_reserve_flush_enum flush)
298 {
299 	struct btrfs_trans_handle *h;
300 	struct btrfs_transaction *cur_trans;
301 	u64 num_bytes = 0;
302 	int ret;
303 	u64 qgroup_reserved = 0;
304 
305 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
306 		return ERR_PTR(-EROFS);
307 
308 	if (current->journal_info) {
309 		WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
310 		h = current->journal_info;
311 		h->use_count++;
312 		WARN_ON(h->use_count > 2);
313 		h->orig_rsv = h->block_rsv;
314 		h->block_rsv = NULL;
315 		goto got_it;
316 	}
317 
318 	/*
319 	 * Do the reservation before we join the transaction so we can do all
320 	 * the appropriate flushing if need be.
321 	 */
322 	if (num_items > 0 && root != root->fs_info->chunk_root) {
323 		if (root->fs_info->quota_enabled &&
324 		    is_fstree(root->root_key.objectid)) {
325 			qgroup_reserved = num_items * root->leafsize;
326 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
327 			if (ret)
328 				return ERR_PTR(ret);
329 		}
330 
331 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
332 		ret = btrfs_block_rsv_add(root,
333 					  &root->fs_info->trans_block_rsv,
334 					  num_bytes, flush);
335 		if (ret)
336 			goto reserve_fail;
337 	}
338 again:
339 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
340 	if (!h) {
341 		ret = -ENOMEM;
342 		goto alloc_fail;
343 	}
344 
345 	/*
346 	 * If we are JOIN_NOLOCK we're already committing a transaction and
347 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
348 	 * because we're already holding a ref.  We need this because we could
349 	 * have raced in and did an fsync() on a file which can kick a commit
350 	 * and then we deadlock with somebody doing a freeze.
351 	 *
352 	 * If we are ATTACH, it means we just want to catch the current
353 	 * transaction and commit it, so we needn't do sb_start_intwrite().
354 	 */
355 	if (type < TRANS_JOIN_NOLOCK)
356 		sb_start_intwrite(root->fs_info->sb);
357 
358 	if (may_wait_transaction(root, type))
359 		wait_current_trans(root);
360 
361 	do {
362 		ret = join_transaction(root, type);
363 		if (ret == -EBUSY)
364 			wait_current_trans(root);
365 	} while (ret == -EBUSY);
366 
367 	if (ret < 0) {
368 		/* We must get the transaction if we are JOIN_NOLOCK. */
369 		BUG_ON(type == TRANS_JOIN_NOLOCK);
370 		goto join_fail;
371 	}
372 
373 	cur_trans = root->fs_info->running_transaction;
374 
375 	h->transid = cur_trans->transid;
376 	h->transaction = cur_trans;
377 	h->blocks_used = 0;
378 	h->bytes_reserved = 0;
379 	h->root = root;
380 	h->delayed_ref_updates = 0;
381 	h->use_count = 1;
382 	h->adding_csums = 0;
383 	h->block_rsv = NULL;
384 	h->orig_rsv = NULL;
385 	h->aborted = 0;
386 	h->qgroup_reserved = qgroup_reserved;
387 	h->delayed_ref_elem.seq = 0;
388 	h->type = type;
389 	INIT_LIST_HEAD(&h->qgroup_ref_list);
390 	INIT_LIST_HEAD(&h->new_bgs);
391 
392 	smp_mb();
393 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
394 		btrfs_commit_transaction(h, root);
395 		goto again;
396 	}
397 
398 	if (num_bytes) {
399 		trace_btrfs_space_reservation(root->fs_info, "transaction",
400 					      h->transid, num_bytes, 1);
401 		h->block_rsv = &root->fs_info->trans_block_rsv;
402 		h->bytes_reserved = num_bytes;
403 	}
404 
405 got_it:
406 	btrfs_record_root_in_trans(h, root);
407 
408 	if (!current->journal_info && type != TRANS_USERSPACE)
409 		current->journal_info = h;
410 	return h;
411 
412 join_fail:
413 	if (type < TRANS_JOIN_NOLOCK)
414 		sb_end_intwrite(root->fs_info->sb);
415 	kmem_cache_free(btrfs_trans_handle_cachep, h);
416 alloc_fail:
417 	if (num_bytes)
418 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
419 					num_bytes);
420 reserve_fail:
421 	if (qgroup_reserved)
422 		btrfs_qgroup_free(root, qgroup_reserved);
423 	return ERR_PTR(ret);
424 }
425 
426 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
427 						   int num_items)
428 {
429 	return start_transaction(root, num_items, TRANS_START,
430 				 BTRFS_RESERVE_FLUSH_ALL);
431 }
432 
433 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
434 					struct btrfs_root *root, int num_items)
435 {
436 	return start_transaction(root, num_items, TRANS_START,
437 				 BTRFS_RESERVE_FLUSH_LIMIT);
438 }
439 
440 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
441 {
442 	return start_transaction(root, 0, TRANS_JOIN, 0);
443 }
444 
445 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
446 {
447 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
448 }
449 
450 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
451 {
452 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
453 }
454 
455 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
456 {
457 	return start_transaction(root, 0, TRANS_ATTACH, 0);
458 }
459 
460 /* wait for a transaction commit to be fully complete */
461 static noinline void wait_for_commit(struct btrfs_root *root,
462 				    struct btrfs_transaction *commit)
463 {
464 	wait_event(commit->commit_wait, commit->commit_done);
465 }
466 
467 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
468 {
469 	struct btrfs_transaction *cur_trans = NULL, *t;
470 	int ret = 0;
471 
472 	if (transid) {
473 		if (transid <= root->fs_info->last_trans_committed)
474 			goto out;
475 
476 		ret = -EINVAL;
477 		/* find specified transaction */
478 		spin_lock(&root->fs_info->trans_lock);
479 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
480 			if (t->transid == transid) {
481 				cur_trans = t;
482 				atomic_inc(&cur_trans->use_count);
483 				ret = 0;
484 				break;
485 			}
486 			if (t->transid > transid) {
487 				ret = 0;
488 				break;
489 			}
490 		}
491 		spin_unlock(&root->fs_info->trans_lock);
492 		/* The specified transaction doesn't exist */
493 		if (!cur_trans)
494 			goto out;
495 	} else {
496 		/* find newest transaction that is committing | committed */
497 		spin_lock(&root->fs_info->trans_lock);
498 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
499 					    list) {
500 			if (t->in_commit) {
501 				if (t->commit_done)
502 					break;
503 				cur_trans = t;
504 				atomic_inc(&cur_trans->use_count);
505 				break;
506 			}
507 		}
508 		spin_unlock(&root->fs_info->trans_lock);
509 		if (!cur_trans)
510 			goto out;  /* nothing committing|committed */
511 	}
512 
513 	wait_for_commit(root, cur_trans);
514 	put_transaction(cur_trans);
515 out:
516 	return ret;
517 }
518 
519 void btrfs_throttle(struct btrfs_root *root)
520 {
521 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
522 		wait_current_trans(root);
523 }
524 
525 static int should_end_transaction(struct btrfs_trans_handle *trans,
526 				  struct btrfs_root *root)
527 {
528 	int ret;
529 
530 	ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
531 	return ret ? 1 : 0;
532 }
533 
534 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
535 				 struct btrfs_root *root)
536 {
537 	struct btrfs_transaction *cur_trans = trans->transaction;
538 	int updates;
539 	int err;
540 
541 	smp_mb();
542 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
543 		return 1;
544 
545 	updates = trans->delayed_ref_updates;
546 	trans->delayed_ref_updates = 0;
547 	if (updates) {
548 		err = btrfs_run_delayed_refs(trans, root, updates);
549 		if (err) /* Error code will also eval true */
550 			return err;
551 	}
552 
553 	return should_end_transaction(trans, root);
554 }
555 
556 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
557 			  struct btrfs_root *root, int throttle)
558 {
559 	struct btrfs_transaction *cur_trans = trans->transaction;
560 	struct btrfs_fs_info *info = root->fs_info;
561 	int count = 0;
562 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
563 	int err = 0;
564 
565 	if (--trans->use_count) {
566 		trans->block_rsv = trans->orig_rsv;
567 		return 0;
568 	}
569 
570 	/*
571 	 * do the qgroup accounting as early as possible
572 	 */
573 	err = btrfs_delayed_refs_qgroup_accounting(trans, info);
574 
575 	btrfs_trans_release_metadata(trans, root);
576 	trans->block_rsv = NULL;
577 	/*
578 	 * the same root has to be passed to start_transaction and
579 	 * end_transaction. Subvolume quota depends on this.
580 	 */
581 	WARN_ON(trans->root != root);
582 
583 	if (trans->qgroup_reserved) {
584 		btrfs_qgroup_free(root, trans->qgroup_reserved);
585 		trans->qgroup_reserved = 0;
586 	}
587 
588 	if (!list_empty(&trans->new_bgs))
589 		btrfs_create_pending_block_groups(trans, root);
590 
591 	while (count < 2) {
592 		unsigned long cur = trans->delayed_ref_updates;
593 		trans->delayed_ref_updates = 0;
594 		if (cur &&
595 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
596 			trans->delayed_ref_updates = 0;
597 			btrfs_run_delayed_refs(trans, root, cur);
598 		} else {
599 			break;
600 		}
601 		count++;
602 	}
603 	btrfs_trans_release_metadata(trans, root);
604 	trans->block_rsv = NULL;
605 
606 	if (!list_empty(&trans->new_bgs))
607 		btrfs_create_pending_block_groups(trans, root);
608 
609 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
610 	    should_end_transaction(trans, root)) {
611 		trans->transaction->blocked = 1;
612 		smp_wmb();
613 	}
614 
615 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
616 		if (throttle) {
617 			/*
618 			 * We may race with somebody else here so end up having
619 			 * to call end_transaction on ourselves again, so inc
620 			 * our use_count.
621 			 */
622 			trans->use_count++;
623 			return btrfs_commit_transaction(trans, root);
624 		} else {
625 			wake_up_process(info->transaction_kthread);
626 		}
627 	}
628 
629 	if (trans->type < TRANS_JOIN_NOLOCK)
630 		sb_end_intwrite(root->fs_info->sb);
631 
632 	WARN_ON(cur_trans != info->running_transaction);
633 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
634 	atomic_dec(&cur_trans->num_writers);
635 
636 	smp_mb();
637 	if (waitqueue_active(&cur_trans->writer_wait))
638 		wake_up(&cur_trans->writer_wait);
639 	put_transaction(cur_trans);
640 
641 	if (current->journal_info == trans)
642 		current->journal_info = NULL;
643 
644 	if (throttle)
645 		btrfs_run_delayed_iputs(root);
646 
647 	if (trans->aborted ||
648 	    root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
649 		err = -EIO;
650 	}
651 	assert_qgroups_uptodate(trans);
652 
653 	memset(trans, 0, sizeof(*trans));
654 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
655 	return err;
656 }
657 
658 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
659 			  struct btrfs_root *root)
660 {
661 	int ret;
662 
663 	ret = __btrfs_end_transaction(trans, root, 0);
664 	if (ret)
665 		return ret;
666 	return 0;
667 }
668 
669 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
670 				   struct btrfs_root *root)
671 {
672 	int ret;
673 
674 	ret = __btrfs_end_transaction(trans, root, 1);
675 	if (ret)
676 		return ret;
677 	return 0;
678 }
679 
680 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
681 				struct btrfs_root *root)
682 {
683 	return __btrfs_end_transaction(trans, root, 1);
684 }
685 
686 /*
687  * when btree blocks are allocated, they have some corresponding bits set for
688  * them in one of two extent_io trees.  This is used to make sure all of
689  * those extents are sent to disk but does not wait on them
690  */
691 int btrfs_write_marked_extents(struct btrfs_root *root,
692 			       struct extent_io_tree *dirty_pages, int mark)
693 {
694 	int err = 0;
695 	int werr = 0;
696 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
697 	struct extent_state *cached_state = NULL;
698 	u64 start = 0;
699 	u64 end;
700 
701 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
702 				      mark, &cached_state)) {
703 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
704 				   mark, &cached_state, GFP_NOFS);
705 		cached_state = NULL;
706 		err = filemap_fdatawrite_range(mapping, start, end);
707 		if (err)
708 			werr = err;
709 		cond_resched();
710 		start = end + 1;
711 	}
712 	if (err)
713 		werr = err;
714 	return werr;
715 }
716 
717 /*
718  * when btree blocks are allocated, they have some corresponding bits set for
719  * them in one of two extent_io trees.  This is used to make sure all of
720  * those extents are on disk for transaction or log commit.  We wait
721  * on all the pages and clear them from the dirty pages state tree
722  */
723 int btrfs_wait_marked_extents(struct btrfs_root *root,
724 			      struct extent_io_tree *dirty_pages, int mark)
725 {
726 	int err = 0;
727 	int werr = 0;
728 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
729 	struct extent_state *cached_state = NULL;
730 	u64 start = 0;
731 	u64 end;
732 
733 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
734 				      EXTENT_NEED_WAIT, &cached_state)) {
735 		clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
736 				 0, 0, &cached_state, GFP_NOFS);
737 		err = filemap_fdatawait_range(mapping, start, end);
738 		if (err)
739 			werr = err;
740 		cond_resched();
741 		start = end + 1;
742 	}
743 	if (err)
744 		werr = err;
745 	return werr;
746 }
747 
748 /*
749  * when btree blocks are allocated, they have some corresponding bits set for
750  * them in one of two extent_io trees.  This is used to make sure all of
751  * those extents are on disk for transaction or log commit
752  */
753 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
754 				struct extent_io_tree *dirty_pages, int mark)
755 {
756 	int ret;
757 	int ret2;
758 
759 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
760 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
761 
762 	if (ret)
763 		return ret;
764 	if (ret2)
765 		return ret2;
766 	return 0;
767 }
768 
769 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
770 				     struct btrfs_root *root)
771 {
772 	if (!trans || !trans->transaction) {
773 		struct inode *btree_inode;
774 		btree_inode = root->fs_info->btree_inode;
775 		return filemap_write_and_wait(btree_inode->i_mapping);
776 	}
777 	return btrfs_write_and_wait_marked_extents(root,
778 					   &trans->transaction->dirty_pages,
779 					   EXTENT_DIRTY);
780 }
781 
782 /*
783  * this is used to update the root pointer in the tree of tree roots.
784  *
785  * But, in the case of the extent allocation tree, updating the root
786  * pointer may allocate blocks which may change the root of the extent
787  * allocation tree.
788  *
789  * So, this loops and repeats and makes sure the cowonly root didn't
790  * change while the root pointer was being updated in the metadata.
791  */
792 static int update_cowonly_root(struct btrfs_trans_handle *trans,
793 			       struct btrfs_root *root)
794 {
795 	int ret;
796 	u64 old_root_bytenr;
797 	u64 old_root_used;
798 	struct btrfs_root *tree_root = root->fs_info->tree_root;
799 
800 	old_root_used = btrfs_root_used(&root->root_item);
801 	btrfs_write_dirty_block_groups(trans, root);
802 
803 	while (1) {
804 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
805 		if (old_root_bytenr == root->node->start &&
806 		    old_root_used == btrfs_root_used(&root->root_item))
807 			break;
808 
809 		btrfs_set_root_node(&root->root_item, root->node);
810 		ret = btrfs_update_root(trans, tree_root,
811 					&root->root_key,
812 					&root->root_item);
813 		if (ret)
814 			return ret;
815 
816 		old_root_used = btrfs_root_used(&root->root_item);
817 		ret = btrfs_write_dirty_block_groups(trans, root);
818 		if (ret)
819 			return ret;
820 	}
821 
822 	if (root != root->fs_info->extent_root)
823 		switch_commit_root(root);
824 
825 	return 0;
826 }
827 
828 /*
829  * update all the cowonly tree roots on disk
830  *
831  * The error handling in this function may not be obvious. Any of the
832  * failures will cause the file system to go offline. We still need
833  * to clean up the delayed refs.
834  */
835 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
836 					 struct btrfs_root *root)
837 {
838 	struct btrfs_fs_info *fs_info = root->fs_info;
839 	struct list_head *next;
840 	struct extent_buffer *eb;
841 	int ret;
842 
843 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
844 	if (ret)
845 		return ret;
846 
847 	eb = btrfs_lock_root_node(fs_info->tree_root);
848 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
849 			      0, &eb);
850 	btrfs_tree_unlock(eb);
851 	free_extent_buffer(eb);
852 
853 	if (ret)
854 		return ret;
855 
856 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
857 	if (ret)
858 		return ret;
859 
860 	ret = btrfs_run_dev_stats(trans, root->fs_info);
861 	WARN_ON(ret);
862 	ret = btrfs_run_dev_replace(trans, root->fs_info);
863 	WARN_ON(ret);
864 
865 	ret = btrfs_run_qgroups(trans, root->fs_info);
866 	BUG_ON(ret);
867 
868 	/* run_qgroups might have added some more refs */
869 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
870 	BUG_ON(ret);
871 
872 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
873 		next = fs_info->dirty_cowonly_roots.next;
874 		list_del_init(next);
875 		root = list_entry(next, struct btrfs_root, dirty_list);
876 
877 		ret = update_cowonly_root(trans, root);
878 		if (ret)
879 			return ret;
880 	}
881 
882 	down_write(&fs_info->extent_commit_sem);
883 	switch_commit_root(fs_info->extent_root);
884 	up_write(&fs_info->extent_commit_sem);
885 
886 	btrfs_after_dev_replace_commit(fs_info);
887 
888 	return 0;
889 }
890 
891 /*
892  * dead roots are old snapshots that need to be deleted.  This allocates
893  * a dirty root struct and adds it into the list of dead roots that need to
894  * be deleted
895  */
896 int btrfs_add_dead_root(struct btrfs_root *root)
897 {
898 	spin_lock(&root->fs_info->trans_lock);
899 	list_add(&root->root_list, &root->fs_info->dead_roots);
900 	spin_unlock(&root->fs_info->trans_lock);
901 	return 0;
902 }
903 
904 /*
905  * update all the cowonly tree roots on disk
906  */
907 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
908 				    struct btrfs_root *root)
909 {
910 	struct btrfs_root *gang[8];
911 	struct btrfs_fs_info *fs_info = root->fs_info;
912 	int i;
913 	int ret;
914 	int err = 0;
915 
916 	spin_lock(&fs_info->fs_roots_radix_lock);
917 	while (1) {
918 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
919 						 (void **)gang, 0,
920 						 ARRAY_SIZE(gang),
921 						 BTRFS_ROOT_TRANS_TAG);
922 		if (ret == 0)
923 			break;
924 		for (i = 0; i < ret; i++) {
925 			root = gang[i];
926 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
927 					(unsigned long)root->root_key.objectid,
928 					BTRFS_ROOT_TRANS_TAG);
929 			spin_unlock(&fs_info->fs_roots_radix_lock);
930 
931 			btrfs_free_log(trans, root);
932 			btrfs_update_reloc_root(trans, root);
933 			btrfs_orphan_commit_root(trans, root);
934 
935 			btrfs_save_ino_cache(root, trans);
936 
937 			/* see comments in should_cow_block() */
938 			root->force_cow = 0;
939 			smp_wmb();
940 
941 			if (root->commit_root != root->node) {
942 				mutex_lock(&root->fs_commit_mutex);
943 				switch_commit_root(root);
944 				btrfs_unpin_free_ino(root);
945 				mutex_unlock(&root->fs_commit_mutex);
946 
947 				btrfs_set_root_node(&root->root_item,
948 						    root->node);
949 			}
950 
951 			err = btrfs_update_root(trans, fs_info->tree_root,
952 						&root->root_key,
953 						&root->root_item);
954 			spin_lock(&fs_info->fs_roots_radix_lock);
955 			if (err)
956 				break;
957 		}
958 	}
959 	spin_unlock(&fs_info->fs_roots_radix_lock);
960 	return err;
961 }
962 
963 /*
964  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
965  * otherwise every leaf in the btree is read and defragged.
966  */
967 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
968 {
969 	struct btrfs_fs_info *info = root->fs_info;
970 	struct btrfs_trans_handle *trans;
971 	int ret;
972 
973 	if (xchg(&root->defrag_running, 1))
974 		return 0;
975 
976 	while (1) {
977 		trans = btrfs_start_transaction(root, 0);
978 		if (IS_ERR(trans))
979 			return PTR_ERR(trans);
980 
981 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
982 
983 		btrfs_end_transaction(trans, root);
984 		btrfs_btree_balance_dirty(info->tree_root);
985 		cond_resched();
986 
987 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
988 			break;
989 	}
990 	root->defrag_running = 0;
991 	return ret;
992 }
993 
994 /*
995  * new snapshots need to be created at a very specific time in the
996  * transaction commit.  This does the actual creation
997  */
998 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
999 				   struct btrfs_fs_info *fs_info,
1000 				   struct btrfs_pending_snapshot *pending)
1001 {
1002 	struct btrfs_key key;
1003 	struct btrfs_root_item *new_root_item;
1004 	struct btrfs_root *tree_root = fs_info->tree_root;
1005 	struct btrfs_root *root = pending->root;
1006 	struct btrfs_root *parent_root;
1007 	struct btrfs_block_rsv *rsv;
1008 	struct inode *parent_inode;
1009 	struct btrfs_path *path;
1010 	struct btrfs_dir_item *dir_item;
1011 	struct dentry *parent;
1012 	struct dentry *dentry;
1013 	struct extent_buffer *tmp;
1014 	struct extent_buffer *old;
1015 	struct timespec cur_time = CURRENT_TIME;
1016 	int ret;
1017 	u64 to_reserve = 0;
1018 	u64 index = 0;
1019 	u64 objectid;
1020 	u64 root_flags;
1021 	uuid_le new_uuid;
1022 
1023 	path = btrfs_alloc_path();
1024 	if (!path) {
1025 		ret = pending->error = -ENOMEM;
1026 		goto path_alloc_fail;
1027 	}
1028 
1029 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1030 	if (!new_root_item) {
1031 		ret = pending->error = -ENOMEM;
1032 		goto root_item_alloc_fail;
1033 	}
1034 
1035 	ret = btrfs_find_free_objectid(tree_root, &objectid);
1036 	if (ret) {
1037 		pending->error = ret;
1038 		goto no_free_objectid;
1039 	}
1040 
1041 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1042 
1043 	if (to_reserve > 0) {
1044 		ret = btrfs_block_rsv_add(root, &pending->block_rsv,
1045 					  to_reserve,
1046 					  BTRFS_RESERVE_NO_FLUSH);
1047 		if (ret) {
1048 			pending->error = ret;
1049 			goto no_free_objectid;
1050 		}
1051 	}
1052 
1053 	ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
1054 				   objectid, pending->inherit);
1055 	if (ret) {
1056 		pending->error = ret;
1057 		goto no_free_objectid;
1058 	}
1059 
1060 	key.objectid = objectid;
1061 	key.offset = (u64)-1;
1062 	key.type = BTRFS_ROOT_ITEM_KEY;
1063 
1064 	rsv = trans->block_rsv;
1065 	trans->block_rsv = &pending->block_rsv;
1066 
1067 	dentry = pending->dentry;
1068 	parent = dget_parent(dentry);
1069 	parent_inode = parent->d_inode;
1070 	parent_root = BTRFS_I(parent_inode)->root;
1071 	record_root_in_trans(trans, parent_root);
1072 
1073 	/*
1074 	 * insert the directory item
1075 	 */
1076 	ret = btrfs_set_inode_index(parent_inode, &index);
1077 	BUG_ON(ret); /* -ENOMEM */
1078 
1079 	/* check if there is a file/dir which has the same name. */
1080 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1081 					 btrfs_ino(parent_inode),
1082 					 dentry->d_name.name,
1083 					 dentry->d_name.len, 0);
1084 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1085 		pending->error = -EEXIST;
1086 		goto fail;
1087 	} else if (IS_ERR(dir_item)) {
1088 		ret = PTR_ERR(dir_item);
1089 		btrfs_abort_transaction(trans, root, ret);
1090 		goto fail;
1091 	}
1092 	btrfs_release_path(path);
1093 
1094 	/*
1095 	 * pull in the delayed directory update
1096 	 * and the delayed inode item
1097 	 * otherwise we corrupt the FS during
1098 	 * snapshot
1099 	 */
1100 	ret = btrfs_run_delayed_items(trans, root);
1101 	if (ret) {	/* Transaction aborted */
1102 		btrfs_abort_transaction(trans, root, ret);
1103 		goto fail;
1104 	}
1105 
1106 	record_root_in_trans(trans, root);
1107 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1108 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1109 	btrfs_check_and_init_root_item(new_root_item);
1110 
1111 	root_flags = btrfs_root_flags(new_root_item);
1112 	if (pending->readonly)
1113 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1114 	else
1115 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1116 	btrfs_set_root_flags(new_root_item, root_flags);
1117 
1118 	btrfs_set_root_generation_v2(new_root_item,
1119 			trans->transid);
1120 	uuid_le_gen(&new_uuid);
1121 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1122 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1123 			BTRFS_UUID_SIZE);
1124 	new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1125 	new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1126 	btrfs_set_root_otransid(new_root_item, trans->transid);
1127 	memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1128 	memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1129 	btrfs_set_root_stransid(new_root_item, 0);
1130 	btrfs_set_root_rtransid(new_root_item, 0);
1131 
1132 	old = btrfs_lock_root_node(root);
1133 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1134 	if (ret) {
1135 		btrfs_tree_unlock(old);
1136 		free_extent_buffer(old);
1137 		btrfs_abort_transaction(trans, root, ret);
1138 		goto fail;
1139 	}
1140 
1141 	btrfs_set_lock_blocking(old);
1142 
1143 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1144 	/* clean up in any case */
1145 	btrfs_tree_unlock(old);
1146 	free_extent_buffer(old);
1147 	if (ret) {
1148 		btrfs_abort_transaction(trans, root, ret);
1149 		goto fail;
1150 	}
1151 
1152 	/* see comments in should_cow_block() */
1153 	root->force_cow = 1;
1154 	smp_wmb();
1155 
1156 	btrfs_set_root_node(new_root_item, tmp);
1157 	/* record when the snapshot was created in key.offset */
1158 	key.offset = trans->transid;
1159 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1160 	btrfs_tree_unlock(tmp);
1161 	free_extent_buffer(tmp);
1162 	if (ret) {
1163 		btrfs_abort_transaction(trans, root, ret);
1164 		goto fail;
1165 	}
1166 
1167 	/*
1168 	 * insert root back/forward references
1169 	 */
1170 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1171 				 parent_root->root_key.objectid,
1172 				 btrfs_ino(parent_inode), index,
1173 				 dentry->d_name.name, dentry->d_name.len);
1174 	if (ret) {
1175 		btrfs_abort_transaction(trans, root, ret);
1176 		goto fail;
1177 	}
1178 
1179 	key.offset = (u64)-1;
1180 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1181 	if (IS_ERR(pending->snap)) {
1182 		ret = PTR_ERR(pending->snap);
1183 		btrfs_abort_transaction(trans, root, ret);
1184 		goto fail;
1185 	}
1186 
1187 	ret = btrfs_reloc_post_snapshot(trans, pending);
1188 	if (ret) {
1189 		btrfs_abort_transaction(trans, root, ret);
1190 		goto fail;
1191 	}
1192 
1193 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1194 	if (ret) {
1195 		btrfs_abort_transaction(trans, root, ret);
1196 		goto fail;
1197 	}
1198 
1199 	ret = btrfs_insert_dir_item(trans, parent_root,
1200 				    dentry->d_name.name, dentry->d_name.len,
1201 				    parent_inode, &key,
1202 				    BTRFS_FT_DIR, index);
1203 	/* We have check then name at the beginning, so it is impossible. */
1204 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1205 	if (ret) {
1206 		btrfs_abort_transaction(trans, root, ret);
1207 		goto fail;
1208 	}
1209 
1210 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1211 					 dentry->d_name.len * 2);
1212 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1213 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1214 	if (ret)
1215 		btrfs_abort_transaction(trans, root, ret);
1216 fail:
1217 	dput(parent);
1218 	trans->block_rsv = rsv;
1219 no_free_objectid:
1220 	kfree(new_root_item);
1221 root_item_alloc_fail:
1222 	btrfs_free_path(path);
1223 path_alloc_fail:
1224 	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1225 	return ret;
1226 }
1227 
1228 /*
1229  * create all the snapshots we've scheduled for creation
1230  */
1231 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1232 					     struct btrfs_fs_info *fs_info)
1233 {
1234 	struct btrfs_pending_snapshot *pending;
1235 	struct list_head *head = &trans->transaction->pending_snapshots;
1236 
1237 	list_for_each_entry(pending, head, list)
1238 		create_pending_snapshot(trans, fs_info, pending);
1239 	return 0;
1240 }
1241 
1242 static void update_super_roots(struct btrfs_root *root)
1243 {
1244 	struct btrfs_root_item *root_item;
1245 	struct btrfs_super_block *super;
1246 
1247 	super = root->fs_info->super_copy;
1248 
1249 	root_item = &root->fs_info->chunk_root->root_item;
1250 	super->chunk_root = root_item->bytenr;
1251 	super->chunk_root_generation = root_item->generation;
1252 	super->chunk_root_level = root_item->level;
1253 
1254 	root_item = &root->fs_info->tree_root->root_item;
1255 	super->root = root_item->bytenr;
1256 	super->generation = root_item->generation;
1257 	super->root_level = root_item->level;
1258 	if (btrfs_test_opt(root, SPACE_CACHE))
1259 		super->cache_generation = root_item->generation;
1260 }
1261 
1262 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1263 {
1264 	int ret = 0;
1265 	spin_lock(&info->trans_lock);
1266 	if (info->running_transaction)
1267 		ret = info->running_transaction->in_commit;
1268 	spin_unlock(&info->trans_lock);
1269 	return ret;
1270 }
1271 
1272 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1273 {
1274 	int ret = 0;
1275 	spin_lock(&info->trans_lock);
1276 	if (info->running_transaction)
1277 		ret = info->running_transaction->blocked;
1278 	spin_unlock(&info->trans_lock);
1279 	return ret;
1280 }
1281 
1282 /*
1283  * wait for the current transaction commit to start and block subsequent
1284  * transaction joins
1285  */
1286 static void wait_current_trans_commit_start(struct btrfs_root *root,
1287 					    struct btrfs_transaction *trans)
1288 {
1289 	wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1290 }
1291 
1292 /*
1293  * wait for the current transaction to start and then become unblocked.
1294  * caller holds ref.
1295  */
1296 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1297 					 struct btrfs_transaction *trans)
1298 {
1299 	wait_event(root->fs_info->transaction_wait,
1300 		   trans->commit_done || (trans->in_commit && !trans->blocked));
1301 }
1302 
1303 /*
1304  * commit transactions asynchronously. once btrfs_commit_transaction_async
1305  * returns, any subsequent transaction will not be allowed to join.
1306  */
1307 struct btrfs_async_commit {
1308 	struct btrfs_trans_handle *newtrans;
1309 	struct btrfs_root *root;
1310 	struct delayed_work work;
1311 };
1312 
1313 static void do_async_commit(struct work_struct *work)
1314 {
1315 	struct btrfs_async_commit *ac =
1316 		container_of(work, struct btrfs_async_commit, work.work);
1317 
1318 	/*
1319 	 * We've got freeze protection passed with the transaction.
1320 	 * Tell lockdep about it.
1321 	 */
1322 	if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1323 		rwsem_acquire_read(
1324 		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1325 		     0, 1, _THIS_IP_);
1326 
1327 	current->journal_info = ac->newtrans;
1328 
1329 	btrfs_commit_transaction(ac->newtrans, ac->root);
1330 	kfree(ac);
1331 }
1332 
1333 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1334 				   struct btrfs_root *root,
1335 				   int wait_for_unblock)
1336 {
1337 	struct btrfs_async_commit *ac;
1338 	struct btrfs_transaction *cur_trans;
1339 
1340 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1341 	if (!ac)
1342 		return -ENOMEM;
1343 
1344 	INIT_DELAYED_WORK(&ac->work, do_async_commit);
1345 	ac->root = root;
1346 	ac->newtrans = btrfs_join_transaction(root);
1347 	if (IS_ERR(ac->newtrans)) {
1348 		int err = PTR_ERR(ac->newtrans);
1349 		kfree(ac);
1350 		return err;
1351 	}
1352 
1353 	/* take transaction reference */
1354 	cur_trans = trans->transaction;
1355 	atomic_inc(&cur_trans->use_count);
1356 
1357 	btrfs_end_transaction(trans, root);
1358 
1359 	/*
1360 	 * Tell lockdep we've released the freeze rwsem, since the
1361 	 * async commit thread will be the one to unlock it.
1362 	 */
1363 	if (trans->type < TRANS_JOIN_NOLOCK)
1364 		rwsem_release(
1365 			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1366 			1, _THIS_IP_);
1367 
1368 	schedule_delayed_work(&ac->work, 0);
1369 
1370 	/* wait for transaction to start and unblock */
1371 	if (wait_for_unblock)
1372 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1373 	else
1374 		wait_current_trans_commit_start(root, cur_trans);
1375 
1376 	if (current->journal_info == trans)
1377 		current->journal_info = NULL;
1378 
1379 	put_transaction(cur_trans);
1380 	return 0;
1381 }
1382 
1383 
1384 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1385 				struct btrfs_root *root, int err)
1386 {
1387 	struct btrfs_transaction *cur_trans = trans->transaction;
1388 
1389 	WARN_ON(trans->use_count > 1);
1390 
1391 	btrfs_abort_transaction(trans, root, err);
1392 
1393 	spin_lock(&root->fs_info->trans_lock);
1394 	list_del_init(&cur_trans->list);
1395 	if (cur_trans == root->fs_info->running_transaction) {
1396 		root->fs_info->running_transaction = NULL;
1397 		root->fs_info->trans_no_join = 0;
1398 	}
1399 	spin_unlock(&root->fs_info->trans_lock);
1400 
1401 	btrfs_cleanup_one_transaction(trans->transaction, root);
1402 
1403 	put_transaction(cur_trans);
1404 	put_transaction(cur_trans);
1405 
1406 	trace_btrfs_transaction_commit(root);
1407 
1408 	btrfs_scrub_continue(root);
1409 
1410 	if (current->journal_info == trans)
1411 		current->journal_info = NULL;
1412 
1413 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1414 }
1415 
1416 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1417 					  struct btrfs_root *root)
1418 {
1419 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1420 	int snap_pending = 0;
1421 	int ret;
1422 
1423 	if (!flush_on_commit) {
1424 		spin_lock(&root->fs_info->trans_lock);
1425 		if (!list_empty(&trans->transaction->pending_snapshots))
1426 			snap_pending = 1;
1427 		spin_unlock(&root->fs_info->trans_lock);
1428 	}
1429 
1430 	if (flush_on_commit || snap_pending) {
1431 		btrfs_start_delalloc_inodes(root, 1);
1432 		btrfs_wait_ordered_extents(root, 1);
1433 	}
1434 
1435 	ret = btrfs_run_delayed_items(trans, root);
1436 	if (ret)
1437 		return ret;
1438 
1439 	/*
1440 	 * running the delayed items may have added new refs. account
1441 	 * them now so that they hinder processing of more delayed refs
1442 	 * as little as possible.
1443 	 */
1444 	btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1445 
1446 	/*
1447 	 * rename don't use btrfs_join_transaction, so, once we
1448 	 * set the transaction to blocked above, we aren't going
1449 	 * to get any new ordered operations.  We can safely run
1450 	 * it here and no for sure that nothing new will be added
1451 	 * to the list
1452 	 */
1453 	btrfs_run_ordered_operations(root, 1);
1454 
1455 	return 0;
1456 }
1457 
1458 /*
1459  * btrfs_transaction state sequence:
1460  *    in_commit = 0, blocked = 0  (initial)
1461  *    in_commit = 1, blocked = 1
1462  *    blocked = 0
1463  *    commit_done = 1
1464  */
1465 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1466 			     struct btrfs_root *root)
1467 {
1468 	unsigned long joined = 0;
1469 	struct btrfs_transaction *cur_trans = trans->transaction;
1470 	struct btrfs_transaction *prev_trans = NULL;
1471 	DEFINE_WAIT(wait);
1472 	int ret;
1473 	int should_grow = 0;
1474 	unsigned long now = get_seconds();
1475 
1476 	ret = btrfs_run_ordered_operations(root, 0);
1477 	if (ret) {
1478 		btrfs_abort_transaction(trans, root, ret);
1479 		goto cleanup_transaction;
1480 	}
1481 
1482 	/* Stop the commit early if ->aborted is set */
1483 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1484 		ret = cur_trans->aborted;
1485 		goto cleanup_transaction;
1486 	}
1487 
1488 	/* make a pass through all the delayed refs we have so far
1489 	 * any runnings procs may add more while we are here
1490 	 */
1491 	ret = btrfs_run_delayed_refs(trans, root, 0);
1492 	if (ret)
1493 		goto cleanup_transaction;
1494 
1495 	btrfs_trans_release_metadata(trans, root);
1496 	trans->block_rsv = NULL;
1497 
1498 	cur_trans = trans->transaction;
1499 
1500 	/*
1501 	 * set the flushing flag so procs in this transaction have to
1502 	 * start sending their work down.
1503 	 */
1504 	cur_trans->delayed_refs.flushing = 1;
1505 
1506 	if (!list_empty(&trans->new_bgs))
1507 		btrfs_create_pending_block_groups(trans, root);
1508 
1509 	ret = btrfs_run_delayed_refs(trans, root, 0);
1510 	if (ret)
1511 		goto cleanup_transaction;
1512 
1513 	spin_lock(&cur_trans->commit_lock);
1514 	if (cur_trans->in_commit) {
1515 		spin_unlock(&cur_trans->commit_lock);
1516 		atomic_inc(&cur_trans->use_count);
1517 		ret = btrfs_end_transaction(trans, root);
1518 
1519 		wait_for_commit(root, cur_trans);
1520 
1521 		put_transaction(cur_trans);
1522 
1523 		return ret;
1524 	}
1525 
1526 	trans->transaction->in_commit = 1;
1527 	trans->transaction->blocked = 1;
1528 	spin_unlock(&cur_trans->commit_lock);
1529 	wake_up(&root->fs_info->transaction_blocked_wait);
1530 
1531 	spin_lock(&root->fs_info->trans_lock);
1532 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1533 		prev_trans = list_entry(cur_trans->list.prev,
1534 					struct btrfs_transaction, list);
1535 		if (!prev_trans->commit_done) {
1536 			atomic_inc(&prev_trans->use_count);
1537 			spin_unlock(&root->fs_info->trans_lock);
1538 
1539 			wait_for_commit(root, prev_trans);
1540 
1541 			put_transaction(prev_trans);
1542 		} else {
1543 			spin_unlock(&root->fs_info->trans_lock);
1544 		}
1545 	} else {
1546 		spin_unlock(&root->fs_info->trans_lock);
1547 	}
1548 
1549 	if (!btrfs_test_opt(root, SSD) &&
1550 	    (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1551 		should_grow = 1;
1552 
1553 	do {
1554 		joined = cur_trans->num_joined;
1555 
1556 		WARN_ON(cur_trans != trans->transaction);
1557 
1558 		ret = btrfs_flush_all_pending_stuffs(trans, root);
1559 		if (ret)
1560 			goto cleanup_transaction;
1561 
1562 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1563 				TASK_UNINTERRUPTIBLE);
1564 
1565 		if (atomic_read(&cur_trans->num_writers) > 1)
1566 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1567 		else if (should_grow)
1568 			schedule_timeout(1);
1569 
1570 		finish_wait(&cur_trans->writer_wait, &wait);
1571 	} while (atomic_read(&cur_trans->num_writers) > 1 ||
1572 		 (should_grow && cur_trans->num_joined != joined));
1573 
1574 	ret = btrfs_flush_all_pending_stuffs(trans, root);
1575 	if (ret)
1576 		goto cleanup_transaction;
1577 
1578 	/*
1579 	 * Ok now we need to make sure to block out any other joins while we
1580 	 * commit the transaction.  We could have started a join before setting
1581 	 * no_join so make sure to wait for num_writers to == 1 again.
1582 	 */
1583 	spin_lock(&root->fs_info->trans_lock);
1584 	root->fs_info->trans_no_join = 1;
1585 	spin_unlock(&root->fs_info->trans_lock);
1586 	wait_event(cur_trans->writer_wait,
1587 		   atomic_read(&cur_trans->num_writers) == 1);
1588 
1589 	/* ->aborted might be set after the previous check, so check it */
1590 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1591 		ret = cur_trans->aborted;
1592 		goto cleanup_transaction;
1593 	}
1594 	/*
1595 	 * the reloc mutex makes sure that we stop
1596 	 * the balancing code from coming in and moving
1597 	 * extents around in the middle of the commit
1598 	 */
1599 	mutex_lock(&root->fs_info->reloc_mutex);
1600 
1601 	/*
1602 	 * We needn't worry about the delayed items because we will
1603 	 * deal with them in create_pending_snapshot(), which is the
1604 	 * core function of the snapshot creation.
1605 	 */
1606 	ret = create_pending_snapshots(trans, root->fs_info);
1607 	if (ret) {
1608 		mutex_unlock(&root->fs_info->reloc_mutex);
1609 		goto cleanup_transaction;
1610 	}
1611 
1612 	/*
1613 	 * We insert the dir indexes of the snapshots and update the inode
1614 	 * of the snapshots' parents after the snapshot creation, so there
1615 	 * are some delayed items which are not dealt with. Now deal with
1616 	 * them.
1617 	 *
1618 	 * We needn't worry that this operation will corrupt the snapshots,
1619 	 * because all the tree which are snapshoted will be forced to COW
1620 	 * the nodes and leaves.
1621 	 */
1622 	ret = btrfs_run_delayed_items(trans, root);
1623 	if (ret) {
1624 		mutex_unlock(&root->fs_info->reloc_mutex);
1625 		goto cleanup_transaction;
1626 	}
1627 
1628 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1629 	if (ret) {
1630 		mutex_unlock(&root->fs_info->reloc_mutex);
1631 		goto cleanup_transaction;
1632 	}
1633 
1634 	/*
1635 	 * make sure none of the code above managed to slip in a
1636 	 * delayed item
1637 	 */
1638 	btrfs_assert_delayed_root_empty(root);
1639 
1640 	WARN_ON(cur_trans != trans->transaction);
1641 
1642 	btrfs_scrub_pause(root);
1643 	/* btrfs_commit_tree_roots is responsible for getting the
1644 	 * various roots consistent with each other.  Every pointer
1645 	 * in the tree of tree roots has to point to the most up to date
1646 	 * root for every subvolume and other tree.  So, we have to keep
1647 	 * the tree logging code from jumping in and changing any
1648 	 * of the trees.
1649 	 *
1650 	 * At this point in the commit, there can't be any tree-log
1651 	 * writers, but a little lower down we drop the trans mutex
1652 	 * and let new people in.  By holding the tree_log_mutex
1653 	 * from now until after the super is written, we avoid races
1654 	 * with the tree-log code.
1655 	 */
1656 	mutex_lock(&root->fs_info->tree_log_mutex);
1657 
1658 	ret = commit_fs_roots(trans, root);
1659 	if (ret) {
1660 		mutex_unlock(&root->fs_info->tree_log_mutex);
1661 		mutex_unlock(&root->fs_info->reloc_mutex);
1662 		goto cleanup_transaction;
1663 	}
1664 
1665 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1666 	 * safe to free the root of tree log roots
1667 	 */
1668 	btrfs_free_log_root_tree(trans, root->fs_info);
1669 
1670 	ret = commit_cowonly_roots(trans, root);
1671 	if (ret) {
1672 		mutex_unlock(&root->fs_info->tree_log_mutex);
1673 		mutex_unlock(&root->fs_info->reloc_mutex);
1674 		goto cleanup_transaction;
1675 	}
1676 
1677 	/*
1678 	 * The tasks which save the space cache and inode cache may also
1679 	 * update ->aborted, check it.
1680 	 */
1681 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1682 		ret = cur_trans->aborted;
1683 		mutex_unlock(&root->fs_info->tree_log_mutex);
1684 		mutex_unlock(&root->fs_info->reloc_mutex);
1685 		goto cleanup_transaction;
1686 	}
1687 
1688 	btrfs_prepare_extent_commit(trans, root);
1689 
1690 	cur_trans = root->fs_info->running_transaction;
1691 
1692 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1693 			    root->fs_info->tree_root->node);
1694 	switch_commit_root(root->fs_info->tree_root);
1695 
1696 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1697 			    root->fs_info->chunk_root->node);
1698 	switch_commit_root(root->fs_info->chunk_root);
1699 
1700 	assert_qgroups_uptodate(trans);
1701 	update_super_roots(root);
1702 
1703 	if (!root->fs_info->log_root_recovering) {
1704 		btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1705 		btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1706 	}
1707 
1708 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1709 	       sizeof(*root->fs_info->super_copy));
1710 
1711 	trans->transaction->blocked = 0;
1712 	spin_lock(&root->fs_info->trans_lock);
1713 	root->fs_info->running_transaction = NULL;
1714 	root->fs_info->trans_no_join = 0;
1715 	spin_unlock(&root->fs_info->trans_lock);
1716 	mutex_unlock(&root->fs_info->reloc_mutex);
1717 
1718 	wake_up(&root->fs_info->transaction_wait);
1719 
1720 	ret = btrfs_write_and_wait_transaction(trans, root);
1721 	if (ret) {
1722 		btrfs_error(root->fs_info, ret,
1723 			    "Error while writing out transaction.");
1724 		mutex_unlock(&root->fs_info->tree_log_mutex);
1725 		goto cleanup_transaction;
1726 	}
1727 
1728 	ret = write_ctree_super(trans, root, 0);
1729 	if (ret) {
1730 		mutex_unlock(&root->fs_info->tree_log_mutex);
1731 		goto cleanup_transaction;
1732 	}
1733 
1734 	/*
1735 	 * the super is written, we can safely allow the tree-loggers
1736 	 * to go about their business
1737 	 */
1738 	mutex_unlock(&root->fs_info->tree_log_mutex);
1739 
1740 	btrfs_finish_extent_commit(trans, root);
1741 
1742 	cur_trans->commit_done = 1;
1743 
1744 	root->fs_info->last_trans_committed = cur_trans->transid;
1745 
1746 	wake_up(&cur_trans->commit_wait);
1747 
1748 	spin_lock(&root->fs_info->trans_lock);
1749 	list_del_init(&cur_trans->list);
1750 	spin_unlock(&root->fs_info->trans_lock);
1751 
1752 	put_transaction(cur_trans);
1753 	put_transaction(cur_trans);
1754 
1755 	if (trans->type < TRANS_JOIN_NOLOCK)
1756 		sb_end_intwrite(root->fs_info->sb);
1757 
1758 	trace_btrfs_transaction_commit(root);
1759 
1760 	btrfs_scrub_continue(root);
1761 
1762 	if (current->journal_info == trans)
1763 		current->journal_info = NULL;
1764 
1765 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1766 
1767 	if (current != root->fs_info->transaction_kthread)
1768 		btrfs_run_delayed_iputs(root);
1769 
1770 	return ret;
1771 
1772 cleanup_transaction:
1773 	btrfs_trans_release_metadata(trans, root);
1774 	trans->block_rsv = NULL;
1775 	btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1776 //	WARN_ON(1);
1777 	if (current->journal_info == trans)
1778 		current->journal_info = NULL;
1779 	cleanup_transaction(trans, root, ret);
1780 
1781 	return ret;
1782 }
1783 
1784 /*
1785  * interface function to delete all the snapshots we have scheduled for deletion
1786  */
1787 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1788 {
1789 	LIST_HEAD(list);
1790 	struct btrfs_fs_info *fs_info = root->fs_info;
1791 
1792 	spin_lock(&fs_info->trans_lock);
1793 	list_splice_init(&fs_info->dead_roots, &list);
1794 	spin_unlock(&fs_info->trans_lock);
1795 
1796 	while (!list_empty(&list)) {
1797 		int ret;
1798 
1799 		root = list_entry(list.next, struct btrfs_root, root_list);
1800 		list_del(&root->root_list);
1801 
1802 		btrfs_kill_all_delayed_nodes(root);
1803 
1804 		if (btrfs_header_backref_rev(root->node) <
1805 		    BTRFS_MIXED_BACKREF_REV)
1806 			ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1807 		else
1808 			ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1809 		BUG_ON(ret < 0);
1810 	}
1811 	return 0;
1812 }
1813