xref: /openbmc/linux/fs/btrfs/transaction.c (revision b58c6630)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "dev-replace.h"
22 #include "qgroup.h"
23 #include "block-group.h"
24 
25 #define BTRFS_ROOT_TRANS_TAG 0
26 
27 /*
28  * Transaction states and transitions
29  *
30  * No running transaction (fs tree blocks are not modified)
31  * |
32  * | To next stage:
33  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
34  * V
35  * Transaction N [[TRANS_STATE_RUNNING]]
36  * |
37  * | New trans handles can be attached to transaction N by calling all
38  * | start_transaction() variants.
39  * |
40  * | To next stage:
41  * |  Call btrfs_commit_transaction() on any trans handle attached to
42  * |  transaction N
43  * V
44  * Transaction N [[TRANS_STATE_COMMIT_START]]
45  * |
46  * | Will wait for previous running transaction to completely finish if there
47  * | is one
48  * |
49  * | Then one of the following happes:
50  * | - Wait for all other trans handle holders to release.
51  * |   The btrfs_commit_transaction() caller will do the commit work.
52  * | - Wait for current transaction to be committed by others.
53  * |   Other btrfs_commit_transaction() caller will do the commit work.
54  * |
55  * | At this stage, only btrfs_join_transaction*() variants can attach
56  * | to this running transaction.
57  * | All other variants will wait for current one to finish and attach to
58  * | transaction N+1.
59  * |
60  * | To next stage:
61  * |  Caller is chosen to commit transaction N, and all other trans handle
62  * |  haven been released.
63  * V
64  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
65  * |
66  * | The heavy lifting transaction work is started.
67  * | From running delayed refs (modifying extent tree) to creating pending
68  * | snapshots, running qgroups.
69  * | In short, modify supporting trees to reflect modifications of subvolume
70  * | trees.
71  * |
72  * | At this stage, all start_transaction() calls will wait for this
73  * | transaction to finish and attach to transaction N+1.
74  * |
75  * | To next stage:
76  * |  Until all supporting trees are updated.
77  * V
78  * Transaction N [[TRANS_STATE_UNBLOCKED]]
79  * |						    Transaction N+1
80  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
81  * | need to write them back to disk and update	    |
82  * | super blocks.				    |
83  * |						    |
84  * | At this stage, new transaction is allowed to   |
85  * | start.					    |
86  * | All new start_transaction() calls will be	    |
87  * | attached to transid N+1.			    |
88  * |						    |
89  * | To next stage:				    |
90  * |  Until all tree blocks are super blocks are    |
91  * |  written to block devices			    |
92  * V						    |
93  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
94  *   All tree blocks and super blocks are written.  Transaction N+1
95  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
96  *   data structures will be cleaned up.	    | Life goes on
97  */
98 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
99 	[TRANS_STATE_RUNNING]		= 0U,
100 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
101 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
102 					   __TRANS_ATTACH |
103 					   __TRANS_JOIN |
104 					   __TRANS_JOIN_NOSTART),
105 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
106 					   __TRANS_ATTACH |
107 					   __TRANS_JOIN |
108 					   __TRANS_JOIN_NOLOCK |
109 					   __TRANS_JOIN_NOSTART),
110 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
111 					   __TRANS_ATTACH |
112 					   __TRANS_JOIN |
113 					   __TRANS_JOIN_NOLOCK |
114 					   __TRANS_JOIN_NOSTART),
115 };
116 
117 void btrfs_put_transaction(struct btrfs_transaction *transaction)
118 {
119 	WARN_ON(refcount_read(&transaction->use_count) == 0);
120 	if (refcount_dec_and_test(&transaction->use_count)) {
121 		BUG_ON(!list_empty(&transaction->list));
122 		WARN_ON(!RB_EMPTY_ROOT(
123 				&transaction->delayed_refs.href_root.rb_root));
124 		WARN_ON(!RB_EMPTY_ROOT(
125 				&transaction->delayed_refs.dirty_extent_root));
126 		if (transaction->delayed_refs.pending_csums)
127 			btrfs_err(transaction->fs_info,
128 				  "pending csums is %llu",
129 				  transaction->delayed_refs.pending_csums);
130 		/*
131 		 * If any block groups are found in ->deleted_bgs then it's
132 		 * because the transaction was aborted and a commit did not
133 		 * happen (things failed before writing the new superblock
134 		 * and calling btrfs_finish_extent_commit()), so we can not
135 		 * discard the physical locations of the block groups.
136 		 */
137 		while (!list_empty(&transaction->deleted_bgs)) {
138 			struct btrfs_block_group *cache;
139 
140 			cache = list_first_entry(&transaction->deleted_bgs,
141 						 struct btrfs_block_group,
142 						 bg_list);
143 			list_del_init(&cache->bg_list);
144 			btrfs_put_block_group_trimming(cache);
145 			btrfs_put_block_group(cache);
146 		}
147 		WARN_ON(!list_empty(&transaction->dev_update_list));
148 		kfree(transaction);
149 	}
150 }
151 
152 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
153 {
154 	struct btrfs_transaction *cur_trans = trans->transaction;
155 	struct btrfs_fs_info *fs_info = trans->fs_info;
156 	struct btrfs_root *root, *tmp;
157 
158 	down_write(&fs_info->commit_root_sem);
159 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
160 				 dirty_list) {
161 		list_del_init(&root->dirty_list);
162 		free_extent_buffer(root->commit_root);
163 		root->commit_root = btrfs_root_node(root);
164 		if (is_fstree(root->root_key.objectid))
165 			btrfs_unpin_free_ino(root);
166 		extent_io_tree_release(&root->dirty_log_pages);
167 		btrfs_qgroup_clean_swapped_blocks(root);
168 	}
169 
170 	/* We can free old roots now. */
171 	spin_lock(&cur_trans->dropped_roots_lock);
172 	while (!list_empty(&cur_trans->dropped_roots)) {
173 		root = list_first_entry(&cur_trans->dropped_roots,
174 					struct btrfs_root, root_list);
175 		list_del_init(&root->root_list);
176 		spin_unlock(&cur_trans->dropped_roots_lock);
177 		btrfs_free_log(trans, root);
178 		btrfs_drop_and_free_fs_root(fs_info, root);
179 		spin_lock(&cur_trans->dropped_roots_lock);
180 	}
181 	spin_unlock(&cur_trans->dropped_roots_lock);
182 	up_write(&fs_info->commit_root_sem);
183 }
184 
185 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
186 					 unsigned int type)
187 {
188 	if (type & TRANS_EXTWRITERS)
189 		atomic_inc(&trans->num_extwriters);
190 }
191 
192 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
193 					 unsigned int type)
194 {
195 	if (type & TRANS_EXTWRITERS)
196 		atomic_dec(&trans->num_extwriters);
197 }
198 
199 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
200 					  unsigned int type)
201 {
202 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
203 }
204 
205 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
206 {
207 	return atomic_read(&trans->num_extwriters);
208 }
209 
210 /*
211  * To be called after all the new block groups attached to the transaction
212  * handle have been created (btrfs_create_pending_block_groups()).
213  */
214 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
215 {
216 	struct btrfs_fs_info *fs_info = trans->fs_info;
217 
218 	if (!trans->chunk_bytes_reserved)
219 		return;
220 
221 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
222 
223 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
224 				trans->chunk_bytes_reserved, NULL);
225 	trans->chunk_bytes_reserved = 0;
226 }
227 
228 /*
229  * either allocate a new transaction or hop into the existing one
230  */
231 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
232 				     unsigned int type)
233 {
234 	struct btrfs_transaction *cur_trans;
235 
236 	spin_lock(&fs_info->trans_lock);
237 loop:
238 	/* The file system has been taken offline. No new transactions. */
239 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
240 		spin_unlock(&fs_info->trans_lock);
241 		return -EROFS;
242 	}
243 
244 	cur_trans = fs_info->running_transaction;
245 	if (cur_trans) {
246 		if (TRANS_ABORTED(cur_trans)) {
247 			spin_unlock(&fs_info->trans_lock);
248 			return cur_trans->aborted;
249 		}
250 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
251 			spin_unlock(&fs_info->trans_lock);
252 			return -EBUSY;
253 		}
254 		refcount_inc(&cur_trans->use_count);
255 		atomic_inc(&cur_trans->num_writers);
256 		extwriter_counter_inc(cur_trans, type);
257 		spin_unlock(&fs_info->trans_lock);
258 		return 0;
259 	}
260 	spin_unlock(&fs_info->trans_lock);
261 
262 	/*
263 	 * If we are ATTACH, we just want to catch the current transaction,
264 	 * and commit it. If there is no transaction, just return ENOENT.
265 	 */
266 	if (type == TRANS_ATTACH)
267 		return -ENOENT;
268 
269 	/*
270 	 * JOIN_NOLOCK only happens during the transaction commit, so
271 	 * it is impossible that ->running_transaction is NULL
272 	 */
273 	BUG_ON(type == TRANS_JOIN_NOLOCK);
274 
275 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
276 	if (!cur_trans)
277 		return -ENOMEM;
278 
279 	spin_lock(&fs_info->trans_lock);
280 	if (fs_info->running_transaction) {
281 		/*
282 		 * someone started a transaction after we unlocked.  Make sure
283 		 * to redo the checks above
284 		 */
285 		kfree(cur_trans);
286 		goto loop;
287 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
288 		spin_unlock(&fs_info->trans_lock);
289 		kfree(cur_trans);
290 		return -EROFS;
291 	}
292 
293 	cur_trans->fs_info = fs_info;
294 	atomic_set(&cur_trans->num_writers, 1);
295 	extwriter_counter_init(cur_trans, type);
296 	init_waitqueue_head(&cur_trans->writer_wait);
297 	init_waitqueue_head(&cur_trans->commit_wait);
298 	cur_trans->state = TRANS_STATE_RUNNING;
299 	/*
300 	 * One for this trans handle, one so it will live on until we
301 	 * commit the transaction.
302 	 */
303 	refcount_set(&cur_trans->use_count, 2);
304 	cur_trans->flags = 0;
305 	cur_trans->start_time = ktime_get_seconds();
306 
307 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
308 
309 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
310 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
311 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
312 
313 	/*
314 	 * although the tree mod log is per file system and not per transaction,
315 	 * the log must never go across transaction boundaries.
316 	 */
317 	smp_mb();
318 	if (!list_empty(&fs_info->tree_mod_seq_list))
319 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
320 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
321 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
322 	atomic64_set(&fs_info->tree_mod_seq, 0);
323 
324 	spin_lock_init(&cur_trans->delayed_refs.lock);
325 
326 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
327 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
328 	INIT_LIST_HEAD(&cur_trans->switch_commits);
329 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
330 	INIT_LIST_HEAD(&cur_trans->io_bgs);
331 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
332 	mutex_init(&cur_trans->cache_write_mutex);
333 	spin_lock_init(&cur_trans->dirty_bgs_lock);
334 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
335 	spin_lock_init(&cur_trans->dropped_roots_lock);
336 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
337 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
338 			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
339 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
340 			IO_TREE_FS_PINNED_EXTENTS, NULL);
341 	fs_info->generation++;
342 	cur_trans->transid = fs_info->generation;
343 	fs_info->running_transaction = cur_trans;
344 	cur_trans->aborted = 0;
345 	spin_unlock(&fs_info->trans_lock);
346 
347 	return 0;
348 }
349 
350 /*
351  * this does all the record keeping required to make sure that a reference
352  * counted root is properly recorded in a given transaction.  This is required
353  * to make sure the old root from before we joined the transaction is deleted
354  * when the transaction commits
355  */
356 static int record_root_in_trans(struct btrfs_trans_handle *trans,
357 			       struct btrfs_root *root,
358 			       int force)
359 {
360 	struct btrfs_fs_info *fs_info = root->fs_info;
361 
362 	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
363 	    root->last_trans < trans->transid) || force) {
364 		WARN_ON(root == fs_info->extent_root);
365 		WARN_ON(!force && root->commit_root != root->node);
366 
367 		/*
368 		 * see below for IN_TRANS_SETUP usage rules
369 		 * we have the reloc mutex held now, so there
370 		 * is only one writer in this function
371 		 */
372 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
373 
374 		/* make sure readers find IN_TRANS_SETUP before
375 		 * they find our root->last_trans update
376 		 */
377 		smp_wmb();
378 
379 		spin_lock(&fs_info->fs_roots_radix_lock);
380 		if (root->last_trans == trans->transid && !force) {
381 			spin_unlock(&fs_info->fs_roots_radix_lock);
382 			return 0;
383 		}
384 		radix_tree_tag_set(&fs_info->fs_roots_radix,
385 				   (unsigned long)root->root_key.objectid,
386 				   BTRFS_ROOT_TRANS_TAG);
387 		spin_unlock(&fs_info->fs_roots_radix_lock);
388 		root->last_trans = trans->transid;
389 
390 		/* this is pretty tricky.  We don't want to
391 		 * take the relocation lock in btrfs_record_root_in_trans
392 		 * unless we're really doing the first setup for this root in
393 		 * this transaction.
394 		 *
395 		 * Normally we'd use root->last_trans as a flag to decide
396 		 * if we want to take the expensive mutex.
397 		 *
398 		 * But, we have to set root->last_trans before we
399 		 * init the relocation root, otherwise, we trip over warnings
400 		 * in ctree.c.  The solution used here is to flag ourselves
401 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
402 		 * fixing up the reloc trees and everyone must wait.
403 		 *
404 		 * When this is zero, they can trust root->last_trans and fly
405 		 * through btrfs_record_root_in_trans without having to take the
406 		 * lock.  smp_wmb() makes sure that all the writes above are
407 		 * done before we pop in the zero below
408 		 */
409 		btrfs_init_reloc_root(trans, root);
410 		smp_mb__before_atomic();
411 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
412 	}
413 	return 0;
414 }
415 
416 
417 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
418 			    struct btrfs_root *root)
419 {
420 	struct btrfs_fs_info *fs_info = root->fs_info;
421 	struct btrfs_transaction *cur_trans = trans->transaction;
422 
423 	/* Add ourselves to the transaction dropped list */
424 	spin_lock(&cur_trans->dropped_roots_lock);
425 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
426 	spin_unlock(&cur_trans->dropped_roots_lock);
427 
428 	/* Make sure we don't try to update the root at commit time */
429 	spin_lock(&fs_info->fs_roots_radix_lock);
430 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
431 			     (unsigned long)root->root_key.objectid,
432 			     BTRFS_ROOT_TRANS_TAG);
433 	spin_unlock(&fs_info->fs_roots_radix_lock);
434 }
435 
436 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
437 			       struct btrfs_root *root)
438 {
439 	struct btrfs_fs_info *fs_info = root->fs_info;
440 
441 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
442 		return 0;
443 
444 	/*
445 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
446 	 * and barriers
447 	 */
448 	smp_rmb();
449 	if (root->last_trans == trans->transid &&
450 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
451 		return 0;
452 
453 	mutex_lock(&fs_info->reloc_mutex);
454 	record_root_in_trans(trans, root, 0);
455 	mutex_unlock(&fs_info->reloc_mutex);
456 
457 	return 0;
458 }
459 
460 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
461 {
462 	return (trans->state >= TRANS_STATE_COMMIT_START &&
463 		trans->state < TRANS_STATE_UNBLOCKED &&
464 		!TRANS_ABORTED(trans));
465 }
466 
467 /* wait for commit against the current transaction to become unblocked
468  * when this is done, it is safe to start a new transaction, but the current
469  * transaction might not be fully on disk.
470  */
471 static void wait_current_trans(struct btrfs_fs_info *fs_info)
472 {
473 	struct btrfs_transaction *cur_trans;
474 
475 	spin_lock(&fs_info->trans_lock);
476 	cur_trans = fs_info->running_transaction;
477 	if (cur_trans && is_transaction_blocked(cur_trans)) {
478 		refcount_inc(&cur_trans->use_count);
479 		spin_unlock(&fs_info->trans_lock);
480 
481 		wait_event(fs_info->transaction_wait,
482 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
483 			   TRANS_ABORTED(cur_trans));
484 		btrfs_put_transaction(cur_trans);
485 	} else {
486 		spin_unlock(&fs_info->trans_lock);
487 	}
488 }
489 
490 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
491 {
492 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
493 		return 0;
494 
495 	if (type == TRANS_START)
496 		return 1;
497 
498 	return 0;
499 }
500 
501 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
502 {
503 	struct btrfs_fs_info *fs_info = root->fs_info;
504 
505 	if (!fs_info->reloc_ctl ||
506 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
507 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
508 	    root->reloc_root)
509 		return false;
510 
511 	return true;
512 }
513 
514 static struct btrfs_trans_handle *
515 start_transaction(struct btrfs_root *root, unsigned int num_items,
516 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
517 		  bool enforce_qgroups)
518 {
519 	struct btrfs_fs_info *fs_info = root->fs_info;
520 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
521 	struct btrfs_trans_handle *h;
522 	struct btrfs_transaction *cur_trans;
523 	u64 num_bytes = 0;
524 	u64 qgroup_reserved = 0;
525 	bool reloc_reserved = false;
526 	int ret;
527 
528 	/* Send isn't supposed to start transactions. */
529 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
530 
531 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
532 		return ERR_PTR(-EROFS);
533 
534 	if (current->journal_info) {
535 		WARN_ON(type & TRANS_EXTWRITERS);
536 		h = current->journal_info;
537 		refcount_inc(&h->use_count);
538 		WARN_ON(refcount_read(&h->use_count) > 2);
539 		h->orig_rsv = h->block_rsv;
540 		h->block_rsv = NULL;
541 		goto got_it;
542 	}
543 
544 	/*
545 	 * Do the reservation before we join the transaction so we can do all
546 	 * the appropriate flushing if need be.
547 	 */
548 	if (num_items && root != fs_info->chunk_root) {
549 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
550 		u64 delayed_refs_bytes = 0;
551 
552 		qgroup_reserved = num_items * fs_info->nodesize;
553 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
554 				enforce_qgroups);
555 		if (ret)
556 			return ERR_PTR(ret);
557 
558 		/*
559 		 * We want to reserve all the bytes we may need all at once, so
560 		 * we only do 1 enospc flushing cycle per transaction start.  We
561 		 * accomplish this by simply assuming we'll do 2 x num_items
562 		 * worth of delayed refs updates in this trans handle, and
563 		 * refill that amount for whatever is missing in the reserve.
564 		 */
565 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
566 		if (delayed_refs_rsv->full == 0) {
567 			delayed_refs_bytes = num_bytes;
568 			num_bytes <<= 1;
569 		}
570 
571 		/*
572 		 * Do the reservation for the relocation root creation
573 		 */
574 		if (need_reserve_reloc_root(root)) {
575 			num_bytes += fs_info->nodesize;
576 			reloc_reserved = true;
577 		}
578 
579 		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
580 		if (ret)
581 			goto reserve_fail;
582 		if (delayed_refs_bytes) {
583 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
584 							  delayed_refs_bytes);
585 			num_bytes -= delayed_refs_bytes;
586 		}
587 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
588 		   !delayed_refs_rsv->full) {
589 		/*
590 		 * Some people call with btrfs_start_transaction(root, 0)
591 		 * because they can be throttled, but have some other mechanism
592 		 * for reserving space.  We still want these guys to refill the
593 		 * delayed block_rsv so just add 1 items worth of reservation
594 		 * here.
595 		 */
596 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
597 		if (ret)
598 			goto reserve_fail;
599 	}
600 again:
601 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
602 	if (!h) {
603 		ret = -ENOMEM;
604 		goto alloc_fail;
605 	}
606 
607 	/*
608 	 * If we are JOIN_NOLOCK we're already committing a transaction and
609 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
610 	 * because we're already holding a ref.  We need this because we could
611 	 * have raced in and did an fsync() on a file which can kick a commit
612 	 * and then we deadlock with somebody doing a freeze.
613 	 *
614 	 * If we are ATTACH, it means we just want to catch the current
615 	 * transaction and commit it, so we needn't do sb_start_intwrite().
616 	 */
617 	if (type & __TRANS_FREEZABLE)
618 		sb_start_intwrite(fs_info->sb);
619 
620 	if (may_wait_transaction(fs_info, type))
621 		wait_current_trans(fs_info);
622 
623 	do {
624 		ret = join_transaction(fs_info, type);
625 		if (ret == -EBUSY) {
626 			wait_current_trans(fs_info);
627 			if (unlikely(type == TRANS_ATTACH ||
628 				     type == TRANS_JOIN_NOSTART))
629 				ret = -ENOENT;
630 		}
631 	} while (ret == -EBUSY);
632 
633 	if (ret < 0)
634 		goto join_fail;
635 
636 	cur_trans = fs_info->running_transaction;
637 
638 	h->transid = cur_trans->transid;
639 	h->transaction = cur_trans;
640 	h->root = root;
641 	refcount_set(&h->use_count, 1);
642 	h->fs_info = root->fs_info;
643 
644 	h->type = type;
645 	h->can_flush_pending_bgs = true;
646 	INIT_LIST_HEAD(&h->new_bgs);
647 
648 	smp_mb();
649 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
650 	    may_wait_transaction(fs_info, type)) {
651 		current->journal_info = h;
652 		btrfs_commit_transaction(h);
653 		goto again;
654 	}
655 
656 	if (num_bytes) {
657 		trace_btrfs_space_reservation(fs_info, "transaction",
658 					      h->transid, num_bytes, 1);
659 		h->block_rsv = &fs_info->trans_block_rsv;
660 		h->bytes_reserved = num_bytes;
661 		h->reloc_reserved = reloc_reserved;
662 	}
663 
664 got_it:
665 	btrfs_record_root_in_trans(h, root);
666 
667 	if (!current->journal_info)
668 		current->journal_info = h;
669 	return h;
670 
671 join_fail:
672 	if (type & __TRANS_FREEZABLE)
673 		sb_end_intwrite(fs_info->sb);
674 	kmem_cache_free(btrfs_trans_handle_cachep, h);
675 alloc_fail:
676 	if (num_bytes)
677 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
678 					num_bytes, NULL);
679 reserve_fail:
680 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
681 	return ERR_PTR(ret);
682 }
683 
684 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
685 						   unsigned int num_items)
686 {
687 	return start_transaction(root, num_items, TRANS_START,
688 				 BTRFS_RESERVE_FLUSH_ALL, true);
689 }
690 
691 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
692 					struct btrfs_root *root,
693 					unsigned int num_items,
694 					int min_factor)
695 {
696 	struct btrfs_fs_info *fs_info = root->fs_info;
697 	struct btrfs_trans_handle *trans;
698 	u64 num_bytes;
699 	int ret;
700 
701 	/*
702 	 * We have two callers: unlink and block group removal.  The
703 	 * former should succeed even if we will temporarily exceed
704 	 * quota and the latter operates on the extent root so
705 	 * qgroup enforcement is ignored anyway.
706 	 */
707 	trans = start_transaction(root, num_items, TRANS_START,
708 				  BTRFS_RESERVE_FLUSH_ALL, false);
709 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
710 		return trans;
711 
712 	trans = btrfs_start_transaction(root, 0);
713 	if (IS_ERR(trans))
714 		return trans;
715 
716 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
717 	ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
718 				       num_bytes, min_factor);
719 	if (ret) {
720 		btrfs_end_transaction(trans);
721 		return ERR_PTR(ret);
722 	}
723 
724 	trans->block_rsv = &fs_info->trans_block_rsv;
725 	trans->bytes_reserved = num_bytes;
726 	trace_btrfs_space_reservation(fs_info, "transaction",
727 				      trans->transid, num_bytes, 1);
728 
729 	return trans;
730 }
731 
732 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
733 {
734 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
735 				 true);
736 }
737 
738 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
739 {
740 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
741 				 BTRFS_RESERVE_NO_FLUSH, true);
742 }
743 
744 /*
745  * Similar to regular join but it never starts a transaction when none is
746  * running or after waiting for the current one to finish.
747  */
748 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
749 {
750 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
751 				 BTRFS_RESERVE_NO_FLUSH, true);
752 }
753 
754 /*
755  * btrfs_attach_transaction() - catch the running transaction
756  *
757  * It is used when we want to commit the current the transaction, but
758  * don't want to start a new one.
759  *
760  * Note: If this function return -ENOENT, it just means there is no
761  * running transaction. But it is possible that the inactive transaction
762  * is still in the memory, not fully on disk. If you hope there is no
763  * inactive transaction in the fs when -ENOENT is returned, you should
764  * invoke
765  *     btrfs_attach_transaction_barrier()
766  */
767 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
768 {
769 	return start_transaction(root, 0, TRANS_ATTACH,
770 				 BTRFS_RESERVE_NO_FLUSH, true);
771 }
772 
773 /*
774  * btrfs_attach_transaction_barrier() - catch the running transaction
775  *
776  * It is similar to the above function, the difference is this one
777  * will wait for all the inactive transactions until they fully
778  * complete.
779  */
780 struct btrfs_trans_handle *
781 btrfs_attach_transaction_barrier(struct btrfs_root *root)
782 {
783 	struct btrfs_trans_handle *trans;
784 
785 	trans = start_transaction(root, 0, TRANS_ATTACH,
786 				  BTRFS_RESERVE_NO_FLUSH, true);
787 	if (trans == ERR_PTR(-ENOENT))
788 		btrfs_wait_for_commit(root->fs_info, 0);
789 
790 	return trans;
791 }
792 
793 /* wait for a transaction commit to be fully complete */
794 static noinline void wait_for_commit(struct btrfs_transaction *commit)
795 {
796 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
797 }
798 
799 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
800 {
801 	struct btrfs_transaction *cur_trans = NULL, *t;
802 	int ret = 0;
803 
804 	if (transid) {
805 		if (transid <= fs_info->last_trans_committed)
806 			goto out;
807 
808 		/* find specified transaction */
809 		spin_lock(&fs_info->trans_lock);
810 		list_for_each_entry(t, &fs_info->trans_list, list) {
811 			if (t->transid == transid) {
812 				cur_trans = t;
813 				refcount_inc(&cur_trans->use_count);
814 				ret = 0;
815 				break;
816 			}
817 			if (t->transid > transid) {
818 				ret = 0;
819 				break;
820 			}
821 		}
822 		spin_unlock(&fs_info->trans_lock);
823 
824 		/*
825 		 * The specified transaction doesn't exist, or we
826 		 * raced with btrfs_commit_transaction
827 		 */
828 		if (!cur_trans) {
829 			if (transid > fs_info->last_trans_committed)
830 				ret = -EINVAL;
831 			goto out;
832 		}
833 	} else {
834 		/* find newest transaction that is committing | committed */
835 		spin_lock(&fs_info->trans_lock);
836 		list_for_each_entry_reverse(t, &fs_info->trans_list,
837 					    list) {
838 			if (t->state >= TRANS_STATE_COMMIT_START) {
839 				if (t->state == TRANS_STATE_COMPLETED)
840 					break;
841 				cur_trans = t;
842 				refcount_inc(&cur_trans->use_count);
843 				break;
844 			}
845 		}
846 		spin_unlock(&fs_info->trans_lock);
847 		if (!cur_trans)
848 			goto out;  /* nothing committing|committed */
849 	}
850 
851 	wait_for_commit(cur_trans);
852 	btrfs_put_transaction(cur_trans);
853 out:
854 	return ret;
855 }
856 
857 void btrfs_throttle(struct btrfs_fs_info *fs_info)
858 {
859 	wait_current_trans(fs_info);
860 }
861 
862 static int should_end_transaction(struct btrfs_trans_handle *trans)
863 {
864 	struct btrfs_fs_info *fs_info = trans->fs_info;
865 
866 	if (btrfs_check_space_for_delayed_refs(fs_info))
867 		return 1;
868 
869 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
870 }
871 
872 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
873 {
874 	struct btrfs_transaction *cur_trans = trans->transaction;
875 
876 	smp_mb();
877 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
878 	    cur_trans->delayed_refs.flushing)
879 		return 1;
880 
881 	return should_end_transaction(trans);
882 }
883 
884 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
885 
886 {
887 	struct btrfs_fs_info *fs_info = trans->fs_info;
888 
889 	if (!trans->block_rsv) {
890 		ASSERT(!trans->bytes_reserved);
891 		return;
892 	}
893 
894 	if (!trans->bytes_reserved)
895 		return;
896 
897 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
898 	trace_btrfs_space_reservation(fs_info, "transaction",
899 				      trans->transid, trans->bytes_reserved, 0);
900 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
901 				trans->bytes_reserved, NULL);
902 	trans->bytes_reserved = 0;
903 }
904 
905 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
906 				   int throttle)
907 {
908 	struct btrfs_fs_info *info = trans->fs_info;
909 	struct btrfs_transaction *cur_trans = trans->transaction;
910 	int err = 0;
911 
912 	if (refcount_read(&trans->use_count) > 1) {
913 		refcount_dec(&trans->use_count);
914 		trans->block_rsv = trans->orig_rsv;
915 		return 0;
916 	}
917 
918 	btrfs_trans_release_metadata(trans);
919 	trans->block_rsv = NULL;
920 
921 	btrfs_create_pending_block_groups(trans);
922 
923 	btrfs_trans_release_chunk_metadata(trans);
924 
925 	if (trans->type & __TRANS_FREEZABLE)
926 		sb_end_intwrite(info->sb);
927 
928 	WARN_ON(cur_trans != info->running_transaction);
929 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
930 	atomic_dec(&cur_trans->num_writers);
931 	extwriter_counter_dec(cur_trans, trans->type);
932 
933 	cond_wake_up(&cur_trans->writer_wait);
934 	btrfs_put_transaction(cur_trans);
935 
936 	if (current->journal_info == trans)
937 		current->journal_info = NULL;
938 
939 	if (throttle)
940 		btrfs_run_delayed_iputs(info);
941 
942 	if (TRANS_ABORTED(trans) ||
943 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
944 		wake_up_process(info->transaction_kthread);
945 		err = -EIO;
946 	}
947 
948 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
949 	return err;
950 }
951 
952 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
953 {
954 	return __btrfs_end_transaction(trans, 0);
955 }
956 
957 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
958 {
959 	return __btrfs_end_transaction(trans, 1);
960 }
961 
962 /*
963  * when btree blocks are allocated, they have some corresponding bits set for
964  * them in one of two extent_io trees.  This is used to make sure all of
965  * those extents are sent to disk but does not wait on them
966  */
967 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
968 			       struct extent_io_tree *dirty_pages, int mark)
969 {
970 	int err = 0;
971 	int werr = 0;
972 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
973 	struct extent_state *cached_state = NULL;
974 	u64 start = 0;
975 	u64 end;
976 
977 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
978 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
979 				      mark, &cached_state)) {
980 		bool wait_writeback = false;
981 
982 		err = convert_extent_bit(dirty_pages, start, end,
983 					 EXTENT_NEED_WAIT,
984 					 mark, &cached_state);
985 		/*
986 		 * convert_extent_bit can return -ENOMEM, which is most of the
987 		 * time a temporary error. So when it happens, ignore the error
988 		 * and wait for writeback of this range to finish - because we
989 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
990 		 * to __btrfs_wait_marked_extents() would not know that
991 		 * writeback for this range started and therefore wouldn't
992 		 * wait for it to finish - we don't want to commit a
993 		 * superblock that points to btree nodes/leafs for which
994 		 * writeback hasn't finished yet (and without errors).
995 		 * We cleanup any entries left in the io tree when committing
996 		 * the transaction (through extent_io_tree_release()).
997 		 */
998 		if (err == -ENOMEM) {
999 			err = 0;
1000 			wait_writeback = true;
1001 		}
1002 		if (!err)
1003 			err = filemap_fdatawrite_range(mapping, start, end);
1004 		if (err)
1005 			werr = err;
1006 		else if (wait_writeback)
1007 			werr = filemap_fdatawait_range(mapping, start, end);
1008 		free_extent_state(cached_state);
1009 		cached_state = NULL;
1010 		cond_resched();
1011 		start = end + 1;
1012 	}
1013 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1014 	return werr;
1015 }
1016 
1017 /*
1018  * when btree blocks are allocated, they have some corresponding bits set for
1019  * them in one of two extent_io trees.  This is used to make sure all of
1020  * those extents are on disk for transaction or log commit.  We wait
1021  * on all the pages and clear them from the dirty pages state tree
1022  */
1023 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1024 				       struct extent_io_tree *dirty_pages)
1025 {
1026 	int err = 0;
1027 	int werr = 0;
1028 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1029 	struct extent_state *cached_state = NULL;
1030 	u64 start = 0;
1031 	u64 end;
1032 
1033 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1034 				      EXTENT_NEED_WAIT, &cached_state)) {
1035 		/*
1036 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1037 		 * When committing the transaction, we'll remove any entries
1038 		 * left in the io tree. For a log commit, we don't remove them
1039 		 * after committing the log because the tree can be accessed
1040 		 * concurrently - we do it only at transaction commit time when
1041 		 * it's safe to do it (through extent_io_tree_release()).
1042 		 */
1043 		err = clear_extent_bit(dirty_pages, start, end,
1044 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1045 		if (err == -ENOMEM)
1046 			err = 0;
1047 		if (!err)
1048 			err = filemap_fdatawait_range(mapping, start, end);
1049 		if (err)
1050 			werr = err;
1051 		free_extent_state(cached_state);
1052 		cached_state = NULL;
1053 		cond_resched();
1054 		start = end + 1;
1055 	}
1056 	if (err)
1057 		werr = err;
1058 	return werr;
1059 }
1060 
1061 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1062 		       struct extent_io_tree *dirty_pages)
1063 {
1064 	bool errors = false;
1065 	int err;
1066 
1067 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1068 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1069 		errors = true;
1070 
1071 	if (errors && !err)
1072 		err = -EIO;
1073 	return err;
1074 }
1075 
1076 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1077 {
1078 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1079 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1080 	bool errors = false;
1081 	int err;
1082 
1083 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1084 
1085 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1086 	if ((mark & EXTENT_DIRTY) &&
1087 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1088 		errors = true;
1089 
1090 	if ((mark & EXTENT_NEW) &&
1091 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1092 		errors = true;
1093 
1094 	if (errors && !err)
1095 		err = -EIO;
1096 	return err;
1097 }
1098 
1099 /*
1100  * When btree blocks are allocated the corresponding extents are marked dirty.
1101  * This function ensures such extents are persisted on disk for transaction or
1102  * log commit.
1103  *
1104  * @trans: transaction whose dirty pages we'd like to write
1105  */
1106 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1107 {
1108 	int ret;
1109 	int ret2;
1110 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1111 	struct btrfs_fs_info *fs_info = trans->fs_info;
1112 	struct blk_plug plug;
1113 
1114 	blk_start_plug(&plug);
1115 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1116 	blk_finish_plug(&plug);
1117 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1118 
1119 	extent_io_tree_release(&trans->transaction->dirty_pages);
1120 
1121 	if (ret)
1122 		return ret;
1123 	else if (ret2)
1124 		return ret2;
1125 	else
1126 		return 0;
1127 }
1128 
1129 /*
1130  * this is used to update the root pointer in the tree of tree roots.
1131  *
1132  * But, in the case of the extent allocation tree, updating the root
1133  * pointer may allocate blocks which may change the root of the extent
1134  * allocation tree.
1135  *
1136  * So, this loops and repeats and makes sure the cowonly root didn't
1137  * change while the root pointer was being updated in the metadata.
1138  */
1139 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1140 			       struct btrfs_root *root)
1141 {
1142 	int ret;
1143 	u64 old_root_bytenr;
1144 	u64 old_root_used;
1145 	struct btrfs_fs_info *fs_info = root->fs_info;
1146 	struct btrfs_root *tree_root = fs_info->tree_root;
1147 
1148 	old_root_used = btrfs_root_used(&root->root_item);
1149 
1150 	while (1) {
1151 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1152 		if (old_root_bytenr == root->node->start &&
1153 		    old_root_used == btrfs_root_used(&root->root_item))
1154 			break;
1155 
1156 		btrfs_set_root_node(&root->root_item, root->node);
1157 		ret = btrfs_update_root(trans, tree_root,
1158 					&root->root_key,
1159 					&root->root_item);
1160 		if (ret)
1161 			return ret;
1162 
1163 		old_root_used = btrfs_root_used(&root->root_item);
1164 	}
1165 
1166 	return 0;
1167 }
1168 
1169 /*
1170  * update all the cowonly tree roots on disk
1171  *
1172  * The error handling in this function may not be obvious. Any of the
1173  * failures will cause the file system to go offline. We still need
1174  * to clean up the delayed refs.
1175  */
1176 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1177 {
1178 	struct btrfs_fs_info *fs_info = trans->fs_info;
1179 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1180 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1181 	struct list_head *next;
1182 	struct extent_buffer *eb;
1183 	int ret;
1184 
1185 	eb = btrfs_lock_root_node(fs_info->tree_root);
1186 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1187 			      0, &eb);
1188 	btrfs_tree_unlock(eb);
1189 	free_extent_buffer(eb);
1190 
1191 	if (ret)
1192 		return ret;
1193 
1194 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1195 	if (ret)
1196 		return ret;
1197 
1198 	ret = btrfs_run_dev_stats(trans);
1199 	if (ret)
1200 		return ret;
1201 	ret = btrfs_run_dev_replace(trans);
1202 	if (ret)
1203 		return ret;
1204 	ret = btrfs_run_qgroups(trans);
1205 	if (ret)
1206 		return ret;
1207 
1208 	ret = btrfs_setup_space_cache(trans);
1209 	if (ret)
1210 		return ret;
1211 
1212 	/* run_qgroups might have added some more refs */
1213 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1214 	if (ret)
1215 		return ret;
1216 again:
1217 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1218 		struct btrfs_root *root;
1219 		next = fs_info->dirty_cowonly_roots.next;
1220 		list_del_init(next);
1221 		root = list_entry(next, struct btrfs_root, dirty_list);
1222 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1223 
1224 		if (root != fs_info->extent_root)
1225 			list_add_tail(&root->dirty_list,
1226 				      &trans->transaction->switch_commits);
1227 		ret = update_cowonly_root(trans, root);
1228 		if (ret)
1229 			return ret;
1230 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1231 		if (ret)
1232 			return ret;
1233 	}
1234 
1235 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1236 		ret = btrfs_write_dirty_block_groups(trans);
1237 		if (ret)
1238 			return ret;
1239 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1240 		if (ret)
1241 			return ret;
1242 	}
1243 
1244 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1245 		goto again;
1246 
1247 	list_add_tail(&fs_info->extent_root->dirty_list,
1248 		      &trans->transaction->switch_commits);
1249 
1250 	/* Update dev-replace pointer once everything is committed */
1251 	fs_info->dev_replace.committed_cursor_left =
1252 		fs_info->dev_replace.cursor_left_last_write_of_item;
1253 
1254 	return 0;
1255 }
1256 
1257 /*
1258  * dead roots are old snapshots that need to be deleted.  This allocates
1259  * a dirty root struct and adds it into the list of dead roots that need to
1260  * be deleted
1261  */
1262 void btrfs_add_dead_root(struct btrfs_root *root)
1263 {
1264 	struct btrfs_fs_info *fs_info = root->fs_info;
1265 
1266 	spin_lock(&fs_info->trans_lock);
1267 	if (list_empty(&root->root_list)) {
1268 		btrfs_grab_root(root);
1269 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1270 	}
1271 	spin_unlock(&fs_info->trans_lock);
1272 }
1273 
1274 /*
1275  * update all the cowonly tree roots on disk
1276  */
1277 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1278 {
1279 	struct btrfs_fs_info *fs_info = trans->fs_info;
1280 	struct btrfs_root *gang[8];
1281 	int i;
1282 	int ret;
1283 	int err = 0;
1284 
1285 	spin_lock(&fs_info->fs_roots_radix_lock);
1286 	while (1) {
1287 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1288 						 (void **)gang, 0,
1289 						 ARRAY_SIZE(gang),
1290 						 BTRFS_ROOT_TRANS_TAG);
1291 		if (ret == 0)
1292 			break;
1293 		for (i = 0; i < ret; i++) {
1294 			struct btrfs_root *root = gang[i];
1295 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1296 					(unsigned long)root->root_key.objectid,
1297 					BTRFS_ROOT_TRANS_TAG);
1298 			spin_unlock(&fs_info->fs_roots_radix_lock);
1299 
1300 			btrfs_free_log(trans, root);
1301 			btrfs_update_reloc_root(trans, root);
1302 
1303 			btrfs_save_ino_cache(root, trans);
1304 
1305 			/* see comments in should_cow_block() */
1306 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1307 			smp_mb__after_atomic();
1308 
1309 			if (root->commit_root != root->node) {
1310 				list_add_tail(&root->dirty_list,
1311 					&trans->transaction->switch_commits);
1312 				btrfs_set_root_node(&root->root_item,
1313 						    root->node);
1314 			}
1315 
1316 			err = btrfs_update_root(trans, fs_info->tree_root,
1317 						&root->root_key,
1318 						&root->root_item);
1319 			spin_lock(&fs_info->fs_roots_radix_lock);
1320 			if (err)
1321 				break;
1322 			btrfs_qgroup_free_meta_all_pertrans(root);
1323 		}
1324 	}
1325 	spin_unlock(&fs_info->fs_roots_radix_lock);
1326 	return err;
1327 }
1328 
1329 /*
1330  * defrag a given btree.
1331  * Every leaf in the btree is read and defragged.
1332  */
1333 int btrfs_defrag_root(struct btrfs_root *root)
1334 {
1335 	struct btrfs_fs_info *info = root->fs_info;
1336 	struct btrfs_trans_handle *trans;
1337 	int ret;
1338 
1339 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1340 		return 0;
1341 
1342 	while (1) {
1343 		trans = btrfs_start_transaction(root, 0);
1344 		if (IS_ERR(trans))
1345 			return PTR_ERR(trans);
1346 
1347 		ret = btrfs_defrag_leaves(trans, root);
1348 
1349 		btrfs_end_transaction(trans);
1350 		btrfs_btree_balance_dirty(info);
1351 		cond_resched();
1352 
1353 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1354 			break;
1355 
1356 		if (btrfs_defrag_cancelled(info)) {
1357 			btrfs_debug(info, "defrag_root cancelled");
1358 			ret = -EAGAIN;
1359 			break;
1360 		}
1361 	}
1362 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1363 	return ret;
1364 }
1365 
1366 /*
1367  * Do all special snapshot related qgroup dirty hack.
1368  *
1369  * Will do all needed qgroup inherit and dirty hack like switch commit
1370  * roots inside one transaction and write all btree into disk, to make
1371  * qgroup works.
1372  */
1373 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1374 				   struct btrfs_root *src,
1375 				   struct btrfs_root *parent,
1376 				   struct btrfs_qgroup_inherit *inherit,
1377 				   u64 dst_objectid)
1378 {
1379 	struct btrfs_fs_info *fs_info = src->fs_info;
1380 	int ret;
1381 
1382 	/*
1383 	 * Save some performance in the case that qgroups are not
1384 	 * enabled. If this check races with the ioctl, rescan will
1385 	 * kick in anyway.
1386 	 */
1387 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1388 		return 0;
1389 
1390 	/*
1391 	 * Ensure dirty @src will be committed.  Or, after coming
1392 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1393 	 * recorded root will never be updated again, causing an outdated root
1394 	 * item.
1395 	 */
1396 	record_root_in_trans(trans, src, 1);
1397 
1398 	/*
1399 	 * We are going to commit transaction, see btrfs_commit_transaction()
1400 	 * comment for reason locking tree_log_mutex
1401 	 */
1402 	mutex_lock(&fs_info->tree_log_mutex);
1403 
1404 	ret = commit_fs_roots(trans);
1405 	if (ret)
1406 		goto out;
1407 	ret = btrfs_qgroup_account_extents(trans);
1408 	if (ret < 0)
1409 		goto out;
1410 
1411 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1412 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1413 				   inherit);
1414 	if (ret < 0)
1415 		goto out;
1416 
1417 	/*
1418 	 * Now we do a simplified commit transaction, which will:
1419 	 * 1) commit all subvolume and extent tree
1420 	 *    To ensure all subvolume and extent tree have a valid
1421 	 *    commit_root to accounting later insert_dir_item()
1422 	 * 2) write all btree blocks onto disk
1423 	 *    This is to make sure later btree modification will be cowed
1424 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1425 	 * In this simplified commit, we don't really care about other trees
1426 	 * like chunk and root tree, as they won't affect qgroup.
1427 	 * And we don't write super to avoid half committed status.
1428 	 */
1429 	ret = commit_cowonly_roots(trans);
1430 	if (ret)
1431 		goto out;
1432 	switch_commit_roots(trans);
1433 	ret = btrfs_write_and_wait_transaction(trans);
1434 	if (ret)
1435 		btrfs_handle_fs_error(fs_info, ret,
1436 			"Error while writing out transaction for qgroup");
1437 
1438 out:
1439 	mutex_unlock(&fs_info->tree_log_mutex);
1440 
1441 	/*
1442 	 * Force parent root to be updated, as we recorded it before so its
1443 	 * last_trans == cur_transid.
1444 	 * Or it won't be committed again onto disk after later
1445 	 * insert_dir_item()
1446 	 */
1447 	if (!ret)
1448 		record_root_in_trans(trans, parent, 1);
1449 	return ret;
1450 }
1451 
1452 /*
1453  * new snapshots need to be created at a very specific time in the
1454  * transaction commit.  This does the actual creation.
1455  *
1456  * Note:
1457  * If the error which may affect the commitment of the current transaction
1458  * happens, we should return the error number. If the error which just affect
1459  * the creation of the pending snapshots, just return 0.
1460  */
1461 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1462 				   struct btrfs_pending_snapshot *pending)
1463 {
1464 
1465 	struct btrfs_fs_info *fs_info = trans->fs_info;
1466 	struct btrfs_key key;
1467 	struct btrfs_root_item *new_root_item;
1468 	struct btrfs_root *tree_root = fs_info->tree_root;
1469 	struct btrfs_root *root = pending->root;
1470 	struct btrfs_root *parent_root;
1471 	struct btrfs_block_rsv *rsv;
1472 	struct inode *parent_inode;
1473 	struct btrfs_path *path;
1474 	struct btrfs_dir_item *dir_item;
1475 	struct dentry *dentry;
1476 	struct extent_buffer *tmp;
1477 	struct extent_buffer *old;
1478 	struct timespec64 cur_time;
1479 	int ret = 0;
1480 	u64 to_reserve = 0;
1481 	u64 index = 0;
1482 	u64 objectid;
1483 	u64 root_flags;
1484 
1485 	ASSERT(pending->path);
1486 	path = pending->path;
1487 
1488 	ASSERT(pending->root_item);
1489 	new_root_item = pending->root_item;
1490 
1491 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1492 	if (pending->error)
1493 		goto no_free_objectid;
1494 
1495 	/*
1496 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1497 	 * accounted by later btrfs_qgroup_inherit().
1498 	 */
1499 	btrfs_set_skip_qgroup(trans, objectid);
1500 
1501 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1502 
1503 	if (to_reserve > 0) {
1504 		pending->error = btrfs_block_rsv_add(root,
1505 						     &pending->block_rsv,
1506 						     to_reserve,
1507 						     BTRFS_RESERVE_NO_FLUSH);
1508 		if (pending->error)
1509 			goto clear_skip_qgroup;
1510 	}
1511 
1512 	key.objectid = objectid;
1513 	key.offset = (u64)-1;
1514 	key.type = BTRFS_ROOT_ITEM_KEY;
1515 
1516 	rsv = trans->block_rsv;
1517 	trans->block_rsv = &pending->block_rsv;
1518 	trans->bytes_reserved = trans->block_rsv->reserved;
1519 	trace_btrfs_space_reservation(fs_info, "transaction",
1520 				      trans->transid,
1521 				      trans->bytes_reserved, 1);
1522 	dentry = pending->dentry;
1523 	parent_inode = pending->dir;
1524 	parent_root = BTRFS_I(parent_inode)->root;
1525 	record_root_in_trans(trans, parent_root, 0);
1526 
1527 	cur_time = current_time(parent_inode);
1528 
1529 	/*
1530 	 * insert the directory item
1531 	 */
1532 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1533 	BUG_ON(ret); /* -ENOMEM */
1534 
1535 	/* check if there is a file/dir which has the same name. */
1536 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1537 					 btrfs_ino(BTRFS_I(parent_inode)),
1538 					 dentry->d_name.name,
1539 					 dentry->d_name.len, 0);
1540 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1541 		pending->error = -EEXIST;
1542 		goto dir_item_existed;
1543 	} else if (IS_ERR(dir_item)) {
1544 		ret = PTR_ERR(dir_item);
1545 		btrfs_abort_transaction(trans, ret);
1546 		goto fail;
1547 	}
1548 	btrfs_release_path(path);
1549 
1550 	/*
1551 	 * pull in the delayed directory update
1552 	 * and the delayed inode item
1553 	 * otherwise we corrupt the FS during
1554 	 * snapshot
1555 	 */
1556 	ret = btrfs_run_delayed_items(trans);
1557 	if (ret) {	/* Transaction aborted */
1558 		btrfs_abort_transaction(trans, ret);
1559 		goto fail;
1560 	}
1561 
1562 	record_root_in_trans(trans, root, 0);
1563 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1564 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1565 	btrfs_check_and_init_root_item(new_root_item);
1566 
1567 	root_flags = btrfs_root_flags(new_root_item);
1568 	if (pending->readonly)
1569 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1570 	else
1571 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1572 	btrfs_set_root_flags(new_root_item, root_flags);
1573 
1574 	btrfs_set_root_generation_v2(new_root_item,
1575 			trans->transid);
1576 	generate_random_guid(new_root_item->uuid);
1577 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1578 			BTRFS_UUID_SIZE);
1579 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1580 		memset(new_root_item->received_uuid, 0,
1581 		       sizeof(new_root_item->received_uuid));
1582 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1583 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1584 		btrfs_set_root_stransid(new_root_item, 0);
1585 		btrfs_set_root_rtransid(new_root_item, 0);
1586 	}
1587 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1588 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1589 	btrfs_set_root_otransid(new_root_item, trans->transid);
1590 
1591 	old = btrfs_lock_root_node(root);
1592 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1593 	if (ret) {
1594 		btrfs_tree_unlock(old);
1595 		free_extent_buffer(old);
1596 		btrfs_abort_transaction(trans, ret);
1597 		goto fail;
1598 	}
1599 
1600 	btrfs_set_lock_blocking_write(old);
1601 
1602 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1603 	/* clean up in any case */
1604 	btrfs_tree_unlock(old);
1605 	free_extent_buffer(old);
1606 	if (ret) {
1607 		btrfs_abort_transaction(trans, ret);
1608 		goto fail;
1609 	}
1610 	/* see comments in should_cow_block() */
1611 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1612 	smp_wmb();
1613 
1614 	btrfs_set_root_node(new_root_item, tmp);
1615 	/* record when the snapshot was created in key.offset */
1616 	key.offset = trans->transid;
1617 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1618 	btrfs_tree_unlock(tmp);
1619 	free_extent_buffer(tmp);
1620 	if (ret) {
1621 		btrfs_abort_transaction(trans, ret);
1622 		goto fail;
1623 	}
1624 
1625 	/*
1626 	 * insert root back/forward references
1627 	 */
1628 	ret = btrfs_add_root_ref(trans, objectid,
1629 				 parent_root->root_key.objectid,
1630 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1631 				 dentry->d_name.name, dentry->d_name.len);
1632 	if (ret) {
1633 		btrfs_abort_transaction(trans, ret);
1634 		goto fail;
1635 	}
1636 
1637 	key.offset = (u64)-1;
1638 	pending->snap = btrfs_get_fs_root(fs_info, &key, true);
1639 	if (IS_ERR(pending->snap)) {
1640 		ret = PTR_ERR(pending->snap);
1641 		btrfs_abort_transaction(trans, ret);
1642 		goto fail;
1643 	}
1644 
1645 	ret = btrfs_reloc_post_snapshot(trans, pending);
1646 	if (ret) {
1647 		btrfs_abort_transaction(trans, ret);
1648 		goto fail;
1649 	}
1650 
1651 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1652 	if (ret) {
1653 		btrfs_abort_transaction(trans, ret);
1654 		goto fail;
1655 	}
1656 
1657 	/*
1658 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1659 	 * snapshot hack to do fast snapshot.
1660 	 * To co-operate with that hack, we do hack again.
1661 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1662 	 */
1663 	ret = qgroup_account_snapshot(trans, root, parent_root,
1664 				      pending->inherit, objectid);
1665 	if (ret < 0)
1666 		goto fail;
1667 
1668 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1669 				    dentry->d_name.len, BTRFS_I(parent_inode),
1670 				    &key, BTRFS_FT_DIR, index);
1671 	/* We have check then name at the beginning, so it is impossible. */
1672 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1673 	if (ret) {
1674 		btrfs_abort_transaction(trans, ret);
1675 		goto fail;
1676 	}
1677 
1678 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1679 					 dentry->d_name.len * 2);
1680 	parent_inode->i_mtime = parent_inode->i_ctime =
1681 		current_time(parent_inode);
1682 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1683 	if (ret) {
1684 		btrfs_abort_transaction(trans, ret);
1685 		goto fail;
1686 	}
1687 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1688 				  BTRFS_UUID_KEY_SUBVOL,
1689 				  objectid);
1690 	if (ret) {
1691 		btrfs_abort_transaction(trans, ret);
1692 		goto fail;
1693 	}
1694 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1695 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1696 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1697 					  objectid);
1698 		if (ret && ret != -EEXIST) {
1699 			btrfs_abort_transaction(trans, ret);
1700 			goto fail;
1701 		}
1702 	}
1703 
1704 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1705 	if (ret) {
1706 		btrfs_abort_transaction(trans, ret);
1707 		goto fail;
1708 	}
1709 
1710 fail:
1711 	pending->error = ret;
1712 dir_item_existed:
1713 	trans->block_rsv = rsv;
1714 	trans->bytes_reserved = 0;
1715 clear_skip_qgroup:
1716 	btrfs_clear_skip_qgroup(trans);
1717 no_free_objectid:
1718 	kfree(new_root_item);
1719 	pending->root_item = NULL;
1720 	btrfs_free_path(path);
1721 	pending->path = NULL;
1722 
1723 	return ret;
1724 }
1725 
1726 /*
1727  * create all the snapshots we've scheduled for creation
1728  */
1729 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1730 {
1731 	struct btrfs_pending_snapshot *pending, *next;
1732 	struct list_head *head = &trans->transaction->pending_snapshots;
1733 	int ret = 0;
1734 
1735 	list_for_each_entry_safe(pending, next, head, list) {
1736 		list_del(&pending->list);
1737 		ret = create_pending_snapshot(trans, pending);
1738 		if (ret)
1739 			break;
1740 	}
1741 	return ret;
1742 }
1743 
1744 static void update_super_roots(struct btrfs_fs_info *fs_info)
1745 {
1746 	struct btrfs_root_item *root_item;
1747 	struct btrfs_super_block *super;
1748 
1749 	super = fs_info->super_copy;
1750 
1751 	root_item = &fs_info->chunk_root->root_item;
1752 	super->chunk_root = root_item->bytenr;
1753 	super->chunk_root_generation = root_item->generation;
1754 	super->chunk_root_level = root_item->level;
1755 
1756 	root_item = &fs_info->tree_root->root_item;
1757 	super->root = root_item->bytenr;
1758 	super->generation = root_item->generation;
1759 	super->root_level = root_item->level;
1760 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1761 		super->cache_generation = root_item->generation;
1762 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1763 		super->uuid_tree_generation = root_item->generation;
1764 }
1765 
1766 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1767 {
1768 	struct btrfs_transaction *trans;
1769 	int ret = 0;
1770 
1771 	spin_lock(&info->trans_lock);
1772 	trans = info->running_transaction;
1773 	if (trans)
1774 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1775 	spin_unlock(&info->trans_lock);
1776 	return ret;
1777 }
1778 
1779 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1780 {
1781 	struct btrfs_transaction *trans;
1782 	int ret = 0;
1783 
1784 	spin_lock(&info->trans_lock);
1785 	trans = info->running_transaction;
1786 	if (trans)
1787 		ret = is_transaction_blocked(trans);
1788 	spin_unlock(&info->trans_lock);
1789 	return ret;
1790 }
1791 
1792 /*
1793  * wait for the current transaction commit to start and block subsequent
1794  * transaction joins
1795  */
1796 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1797 					    struct btrfs_transaction *trans)
1798 {
1799 	wait_event(fs_info->transaction_blocked_wait,
1800 		   trans->state >= TRANS_STATE_COMMIT_START ||
1801 		   TRANS_ABORTED(trans));
1802 }
1803 
1804 /*
1805  * wait for the current transaction to start and then become unblocked.
1806  * caller holds ref.
1807  */
1808 static void wait_current_trans_commit_start_and_unblock(
1809 					struct btrfs_fs_info *fs_info,
1810 					struct btrfs_transaction *trans)
1811 {
1812 	wait_event(fs_info->transaction_wait,
1813 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1814 		   TRANS_ABORTED(trans));
1815 }
1816 
1817 /*
1818  * commit transactions asynchronously. once btrfs_commit_transaction_async
1819  * returns, any subsequent transaction will not be allowed to join.
1820  */
1821 struct btrfs_async_commit {
1822 	struct btrfs_trans_handle *newtrans;
1823 	struct work_struct work;
1824 };
1825 
1826 static void do_async_commit(struct work_struct *work)
1827 {
1828 	struct btrfs_async_commit *ac =
1829 		container_of(work, struct btrfs_async_commit, work);
1830 
1831 	/*
1832 	 * We've got freeze protection passed with the transaction.
1833 	 * Tell lockdep about it.
1834 	 */
1835 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1836 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1837 
1838 	current->journal_info = ac->newtrans;
1839 
1840 	btrfs_commit_transaction(ac->newtrans);
1841 	kfree(ac);
1842 }
1843 
1844 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1845 				   int wait_for_unblock)
1846 {
1847 	struct btrfs_fs_info *fs_info = trans->fs_info;
1848 	struct btrfs_async_commit *ac;
1849 	struct btrfs_transaction *cur_trans;
1850 
1851 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1852 	if (!ac)
1853 		return -ENOMEM;
1854 
1855 	INIT_WORK(&ac->work, do_async_commit);
1856 	ac->newtrans = btrfs_join_transaction(trans->root);
1857 	if (IS_ERR(ac->newtrans)) {
1858 		int err = PTR_ERR(ac->newtrans);
1859 		kfree(ac);
1860 		return err;
1861 	}
1862 
1863 	/* take transaction reference */
1864 	cur_trans = trans->transaction;
1865 	refcount_inc(&cur_trans->use_count);
1866 
1867 	btrfs_end_transaction(trans);
1868 
1869 	/*
1870 	 * Tell lockdep we've released the freeze rwsem, since the
1871 	 * async commit thread will be the one to unlock it.
1872 	 */
1873 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1874 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1875 
1876 	schedule_work(&ac->work);
1877 
1878 	/* wait for transaction to start and unblock */
1879 	if (wait_for_unblock)
1880 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1881 	else
1882 		wait_current_trans_commit_start(fs_info, cur_trans);
1883 
1884 	if (current->journal_info == trans)
1885 		current->journal_info = NULL;
1886 
1887 	btrfs_put_transaction(cur_trans);
1888 	return 0;
1889 }
1890 
1891 
1892 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1893 {
1894 	struct btrfs_fs_info *fs_info = trans->fs_info;
1895 	struct btrfs_transaction *cur_trans = trans->transaction;
1896 
1897 	WARN_ON(refcount_read(&trans->use_count) > 1);
1898 
1899 	btrfs_abort_transaction(trans, err);
1900 
1901 	spin_lock(&fs_info->trans_lock);
1902 
1903 	/*
1904 	 * If the transaction is removed from the list, it means this
1905 	 * transaction has been committed successfully, so it is impossible
1906 	 * to call the cleanup function.
1907 	 */
1908 	BUG_ON(list_empty(&cur_trans->list));
1909 
1910 	list_del_init(&cur_trans->list);
1911 	if (cur_trans == fs_info->running_transaction) {
1912 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1913 		spin_unlock(&fs_info->trans_lock);
1914 		wait_event(cur_trans->writer_wait,
1915 			   atomic_read(&cur_trans->num_writers) == 1);
1916 
1917 		spin_lock(&fs_info->trans_lock);
1918 	}
1919 	spin_unlock(&fs_info->trans_lock);
1920 
1921 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1922 
1923 	spin_lock(&fs_info->trans_lock);
1924 	if (cur_trans == fs_info->running_transaction)
1925 		fs_info->running_transaction = NULL;
1926 	spin_unlock(&fs_info->trans_lock);
1927 
1928 	if (trans->type & __TRANS_FREEZABLE)
1929 		sb_end_intwrite(fs_info->sb);
1930 	btrfs_put_transaction(cur_trans);
1931 	btrfs_put_transaction(cur_trans);
1932 
1933 	trace_btrfs_transaction_commit(trans->root);
1934 
1935 	if (current->journal_info == trans)
1936 		current->journal_info = NULL;
1937 	btrfs_scrub_cancel(fs_info);
1938 
1939 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1940 }
1941 
1942 /*
1943  * Release reserved delayed ref space of all pending block groups of the
1944  * transaction and remove them from the list
1945  */
1946 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1947 {
1948        struct btrfs_fs_info *fs_info = trans->fs_info;
1949        struct btrfs_block_group *block_group, *tmp;
1950 
1951        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1952                btrfs_delayed_refs_rsv_release(fs_info, 1);
1953                list_del_init(&block_group->bg_list);
1954        }
1955 }
1956 
1957 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1958 {
1959 	struct btrfs_fs_info *fs_info = trans->fs_info;
1960 
1961 	/*
1962 	 * We use writeback_inodes_sb here because if we used
1963 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1964 	 * Currently are holding the fs freeze lock, if we do an async flush
1965 	 * we'll do btrfs_join_transaction() and deadlock because we need to
1966 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
1967 	 * from already being in a transaction and our join_transaction doesn't
1968 	 * have to re-take the fs freeze lock.
1969 	 */
1970 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1971 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1972 	} else {
1973 		struct btrfs_pending_snapshot *pending;
1974 		struct list_head *head = &trans->transaction->pending_snapshots;
1975 
1976 		/*
1977 		 * Flush dellaloc for any root that is going to be snapshotted.
1978 		 * This is done to avoid a corrupted version of files, in the
1979 		 * snapshots, that had both buffered and direct IO writes (even
1980 		 * if they were done sequentially) due to an unordered update of
1981 		 * the inode's size on disk.
1982 		 */
1983 		list_for_each_entry(pending, head, list) {
1984 			int ret;
1985 
1986 			ret = btrfs_start_delalloc_snapshot(pending->root);
1987 			if (ret)
1988 				return ret;
1989 		}
1990 	}
1991 	return 0;
1992 }
1993 
1994 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1995 {
1996 	struct btrfs_fs_info *fs_info = trans->fs_info;
1997 
1998 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1999 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2000 	} else {
2001 		struct btrfs_pending_snapshot *pending;
2002 		struct list_head *head = &trans->transaction->pending_snapshots;
2003 
2004 		/*
2005 		 * Wait for any dellaloc that we started previously for the roots
2006 		 * that are going to be snapshotted. This is to avoid a corrupted
2007 		 * version of files in the snapshots that had both buffered and
2008 		 * direct IO writes (even if they were done sequentially).
2009 		 */
2010 		list_for_each_entry(pending, head, list)
2011 			btrfs_wait_ordered_extents(pending->root,
2012 						   U64_MAX, 0, U64_MAX);
2013 	}
2014 }
2015 
2016 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2017 {
2018 	struct btrfs_fs_info *fs_info = trans->fs_info;
2019 	struct btrfs_transaction *cur_trans = trans->transaction;
2020 	struct btrfs_transaction *prev_trans = NULL;
2021 	int ret;
2022 
2023 	ASSERT(refcount_read(&trans->use_count) == 1);
2024 
2025 	/*
2026 	 * Some places just start a transaction to commit it.  We need to make
2027 	 * sure that if this commit fails that the abort code actually marks the
2028 	 * transaction as failed, so set trans->dirty to make the abort code do
2029 	 * the right thing.
2030 	 */
2031 	trans->dirty = true;
2032 
2033 	/* Stop the commit early if ->aborted is set */
2034 	if (TRANS_ABORTED(cur_trans)) {
2035 		ret = cur_trans->aborted;
2036 		btrfs_end_transaction(trans);
2037 		return ret;
2038 	}
2039 
2040 	btrfs_trans_release_metadata(trans);
2041 	trans->block_rsv = NULL;
2042 
2043 	/* make a pass through all the delayed refs we have so far
2044 	 * any runnings procs may add more while we are here
2045 	 */
2046 	ret = btrfs_run_delayed_refs(trans, 0);
2047 	if (ret) {
2048 		btrfs_end_transaction(trans);
2049 		return ret;
2050 	}
2051 
2052 	cur_trans = trans->transaction;
2053 
2054 	/*
2055 	 * set the flushing flag so procs in this transaction have to
2056 	 * start sending their work down.
2057 	 */
2058 	cur_trans->delayed_refs.flushing = 1;
2059 	smp_wmb();
2060 
2061 	btrfs_create_pending_block_groups(trans);
2062 
2063 	ret = btrfs_run_delayed_refs(trans, 0);
2064 	if (ret) {
2065 		btrfs_end_transaction(trans);
2066 		return ret;
2067 	}
2068 
2069 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2070 		int run_it = 0;
2071 
2072 		/* this mutex is also taken before trying to set
2073 		 * block groups readonly.  We need to make sure
2074 		 * that nobody has set a block group readonly
2075 		 * after a extents from that block group have been
2076 		 * allocated for cache files.  btrfs_set_block_group_ro
2077 		 * will wait for the transaction to commit if it
2078 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2079 		 *
2080 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2081 		 * only one process starts all the block group IO.  It wouldn't
2082 		 * hurt to have more than one go through, but there's no
2083 		 * real advantage to it either.
2084 		 */
2085 		mutex_lock(&fs_info->ro_block_group_mutex);
2086 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2087 				      &cur_trans->flags))
2088 			run_it = 1;
2089 		mutex_unlock(&fs_info->ro_block_group_mutex);
2090 
2091 		if (run_it) {
2092 			ret = btrfs_start_dirty_block_groups(trans);
2093 			if (ret) {
2094 				btrfs_end_transaction(trans);
2095 				return ret;
2096 			}
2097 		}
2098 	}
2099 
2100 	spin_lock(&fs_info->trans_lock);
2101 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2102 		spin_unlock(&fs_info->trans_lock);
2103 		refcount_inc(&cur_trans->use_count);
2104 		ret = btrfs_end_transaction(trans);
2105 
2106 		wait_for_commit(cur_trans);
2107 
2108 		if (TRANS_ABORTED(cur_trans))
2109 			ret = cur_trans->aborted;
2110 
2111 		btrfs_put_transaction(cur_trans);
2112 
2113 		return ret;
2114 	}
2115 
2116 	cur_trans->state = TRANS_STATE_COMMIT_START;
2117 	wake_up(&fs_info->transaction_blocked_wait);
2118 
2119 	if (cur_trans->list.prev != &fs_info->trans_list) {
2120 		prev_trans = list_entry(cur_trans->list.prev,
2121 					struct btrfs_transaction, list);
2122 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2123 			refcount_inc(&prev_trans->use_count);
2124 			spin_unlock(&fs_info->trans_lock);
2125 
2126 			wait_for_commit(prev_trans);
2127 			ret = READ_ONCE(prev_trans->aborted);
2128 
2129 			btrfs_put_transaction(prev_trans);
2130 			if (ret)
2131 				goto cleanup_transaction;
2132 		} else {
2133 			spin_unlock(&fs_info->trans_lock);
2134 		}
2135 	} else {
2136 		spin_unlock(&fs_info->trans_lock);
2137 		/*
2138 		 * The previous transaction was aborted and was already removed
2139 		 * from the list of transactions at fs_info->trans_list. So we
2140 		 * abort to prevent writing a new superblock that reflects a
2141 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2142 		 */
2143 		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2144 			ret = -EROFS;
2145 			goto cleanup_transaction;
2146 		}
2147 	}
2148 
2149 	extwriter_counter_dec(cur_trans, trans->type);
2150 
2151 	ret = btrfs_start_delalloc_flush(trans);
2152 	if (ret)
2153 		goto cleanup_transaction;
2154 
2155 	ret = btrfs_run_delayed_items(trans);
2156 	if (ret)
2157 		goto cleanup_transaction;
2158 
2159 	wait_event(cur_trans->writer_wait,
2160 		   extwriter_counter_read(cur_trans) == 0);
2161 
2162 	/* some pending stuffs might be added after the previous flush. */
2163 	ret = btrfs_run_delayed_items(trans);
2164 	if (ret)
2165 		goto cleanup_transaction;
2166 
2167 	btrfs_wait_delalloc_flush(trans);
2168 
2169 	btrfs_scrub_pause(fs_info);
2170 	/*
2171 	 * Ok now we need to make sure to block out any other joins while we
2172 	 * commit the transaction.  We could have started a join before setting
2173 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2174 	 */
2175 	spin_lock(&fs_info->trans_lock);
2176 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2177 	spin_unlock(&fs_info->trans_lock);
2178 	wait_event(cur_trans->writer_wait,
2179 		   atomic_read(&cur_trans->num_writers) == 1);
2180 
2181 	if (TRANS_ABORTED(cur_trans)) {
2182 		ret = cur_trans->aborted;
2183 		goto scrub_continue;
2184 	}
2185 	/*
2186 	 * the reloc mutex makes sure that we stop
2187 	 * the balancing code from coming in and moving
2188 	 * extents around in the middle of the commit
2189 	 */
2190 	mutex_lock(&fs_info->reloc_mutex);
2191 
2192 	/*
2193 	 * We needn't worry about the delayed items because we will
2194 	 * deal with them in create_pending_snapshot(), which is the
2195 	 * core function of the snapshot creation.
2196 	 */
2197 	ret = create_pending_snapshots(trans);
2198 	if (ret)
2199 		goto unlock_reloc;
2200 
2201 	/*
2202 	 * We insert the dir indexes of the snapshots and update the inode
2203 	 * of the snapshots' parents after the snapshot creation, so there
2204 	 * are some delayed items which are not dealt with. Now deal with
2205 	 * them.
2206 	 *
2207 	 * We needn't worry that this operation will corrupt the snapshots,
2208 	 * because all the tree which are snapshoted will be forced to COW
2209 	 * the nodes and leaves.
2210 	 */
2211 	ret = btrfs_run_delayed_items(trans);
2212 	if (ret)
2213 		goto unlock_reloc;
2214 
2215 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2216 	if (ret)
2217 		goto unlock_reloc;
2218 
2219 	/*
2220 	 * make sure none of the code above managed to slip in a
2221 	 * delayed item
2222 	 */
2223 	btrfs_assert_delayed_root_empty(fs_info);
2224 
2225 	WARN_ON(cur_trans != trans->transaction);
2226 
2227 	/* btrfs_commit_tree_roots is responsible for getting the
2228 	 * various roots consistent with each other.  Every pointer
2229 	 * in the tree of tree roots has to point to the most up to date
2230 	 * root for every subvolume and other tree.  So, we have to keep
2231 	 * the tree logging code from jumping in and changing any
2232 	 * of the trees.
2233 	 *
2234 	 * At this point in the commit, there can't be any tree-log
2235 	 * writers, but a little lower down we drop the trans mutex
2236 	 * and let new people in.  By holding the tree_log_mutex
2237 	 * from now until after the super is written, we avoid races
2238 	 * with the tree-log code.
2239 	 */
2240 	mutex_lock(&fs_info->tree_log_mutex);
2241 
2242 	ret = commit_fs_roots(trans);
2243 	if (ret)
2244 		goto unlock_tree_log;
2245 
2246 	/*
2247 	 * Since the transaction is done, we can apply the pending changes
2248 	 * before the next transaction.
2249 	 */
2250 	btrfs_apply_pending_changes(fs_info);
2251 
2252 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2253 	 * safe to free the root of tree log roots
2254 	 */
2255 	btrfs_free_log_root_tree(trans, fs_info);
2256 
2257 	/*
2258 	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2259 	 * new delayed refs. Must handle them or qgroup can be wrong.
2260 	 */
2261 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2262 	if (ret)
2263 		goto unlock_tree_log;
2264 
2265 	/*
2266 	 * Since fs roots are all committed, we can get a quite accurate
2267 	 * new_roots. So let's do quota accounting.
2268 	 */
2269 	ret = btrfs_qgroup_account_extents(trans);
2270 	if (ret < 0)
2271 		goto unlock_tree_log;
2272 
2273 	ret = commit_cowonly_roots(trans);
2274 	if (ret)
2275 		goto unlock_tree_log;
2276 
2277 	/*
2278 	 * The tasks which save the space cache and inode cache may also
2279 	 * update ->aborted, check it.
2280 	 */
2281 	if (TRANS_ABORTED(cur_trans)) {
2282 		ret = cur_trans->aborted;
2283 		goto unlock_tree_log;
2284 	}
2285 
2286 	btrfs_prepare_extent_commit(fs_info);
2287 
2288 	cur_trans = fs_info->running_transaction;
2289 
2290 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2291 			    fs_info->tree_root->node);
2292 	list_add_tail(&fs_info->tree_root->dirty_list,
2293 		      &cur_trans->switch_commits);
2294 
2295 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2296 			    fs_info->chunk_root->node);
2297 	list_add_tail(&fs_info->chunk_root->dirty_list,
2298 		      &cur_trans->switch_commits);
2299 
2300 	switch_commit_roots(trans);
2301 
2302 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2303 	ASSERT(list_empty(&cur_trans->io_bgs));
2304 	update_super_roots(fs_info);
2305 
2306 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2307 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2308 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2309 	       sizeof(*fs_info->super_copy));
2310 
2311 	btrfs_commit_device_sizes(cur_trans);
2312 
2313 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2314 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2315 
2316 	btrfs_trans_release_chunk_metadata(trans);
2317 
2318 	spin_lock(&fs_info->trans_lock);
2319 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2320 	fs_info->running_transaction = NULL;
2321 	spin_unlock(&fs_info->trans_lock);
2322 	mutex_unlock(&fs_info->reloc_mutex);
2323 
2324 	wake_up(&fs_info->transaction_wait);
2325 
2326 	ret = btrfs_write_and_wait_transaction(trans);
2327 	if (ret) {
2328 		btrfs_handle_fs_error(fs_info, ret,
2329 				      "Error while writing out transaction");
2330 		/*
2331 		 * reloc_mutex has been unlocked, tree_log_mutex is still held
2332 		 * but we can't jump to unlock_tree_log causing double unlock
2333 		 */
2334 		mutex_unlock(&fs_info->tree_log_mutex);
2335 		goto scrub_continue;
2336 	}
2337 
2338 	ret = write_all_supers(fs_info, 0);
2339 	/*
2340 	 * the super is written, we can safely allow the tree-loggers
2341 	 * to go about their business
2342 	 */
2343 	mutex_unlock(&fs_info->tree_log_mutex);
2344 	if (ret)
2345 		goto scrub_continue;
2346 
2347 	btrfs_finish_extent_commit(trans);
2348 
2349 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2350 		btrfs_clear_space_info_full(fs_info);
2351 
2352 	fs_info->last_trans_committed = cur_trans->transid;
2353 	/*
2354 	 * We needn't acquire the lock here because there is no other task
2355 	 * which can change it.
2356 	 */
2357 	cur_trans->state = TRANS_STATE_COMPLETED;
2358 	wake_up(&cur_trans->commit_wait);
2359 	clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2360 
2361 	spin_lock(&fs_info->trans_lock);
2362 	list_del_init(&cur_trans->list);
2363 	spin_unlock(&fs_info->trans_lock);
2364 
2365 	btrfs_put_transaction(cur_trans);
2366 	btrfs_put_transaction(cur_trans);
2367 
2368 	if (trans->type & __TRANS_FREEZABLE)
2369 		sb_end_intwrite(fs_info->sb);
2370 
2371 	trace_btrfs_transaction_commit(trans->root);
2372 
2373 	btrfs_scrub_continue(fs_info);
2374 
2375 	if (current->journal_info == trans)
2376 		current->journal_info = NULL;
2377 
2378 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2379 
2380 	return ret;
2381 
2382 unlock_tree_log:
2383 	mutex_unlock(&fs_info->tree_log_mutex);
2384 unlock_reloc:
2385 	mutex_unlock(&fs_info->reloc_mutex);
2386 scrub_continue:
2387 	btrfs_scrub_continue(fs_info);
2388 cleanup_transaction:
2389 	btrfs_trans_release_metadata(trans);
2390 	btrfs_cleanup_pending_block_groups(trans);
2391 	btrfs_trans_release_chunk_metadata(trans);
2392 	trans->block_rsv = NULL;
2393 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2394 	if (current->journal_info == trans)
2395 		current->journal_info = NULL;
2396 	cleanup_transaction(trans, ret);
2397 
2398 	return ret;
2399 }
2400 
2401 /*
2402  * return < 0 if error
2403  * 0 if there are no more dead_roots at the time of call
2404  * 1 there are more to be processed, call me again
2405  *
2406  * The return value indicates there are certainly more snapshots to delete, but
2407  * if there comes a new one during processing, it may return 0. We don't mind,
2408  * because btrfs_commit_super will poke cleaner thread and it will process it a
2409  * few seconds later.
2410  */
2411 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2412 {
2413 	int ret;
2414 	struct btrfs_fs_info *fs_info = root->fs_info;
2415 
2416 	spin_lock(&fs_info->trans_lock);
2417 	if (list_empty(&fs_info->dead_roots)) {
2418 		spin_unlock(&fs_info->trans_lock);
2419 		return 0;
2420 	}
2421 	root = list_first_entry(&fs_info->dead_roots,
2422 			struct btrfs_root, root_list);
2423 	list_del_init(&root->root_list);
2424 	spin_unlock(&fs_info->trans_lock);
2425 
2426 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2427 
2428 	btrfs_kill_all_delayed_nodes(root);
2429 	if (root->ino_cache_inode) {
2430 		iput(root->ino_cache_inode);
2431 		root->ino_cache_inode = NULL;
2432 	}
2433 
2434 	if (btrfs_header_backref_rev(root->node) <
2435 			BTRFS_MIXED_BACKREF_REV)
2436 		ret = btrfs_drop_snapshot(root, 0, 0);
2437 	else
2438 		ret = btrfs_drop_snapshot(root, 1, 0);
2439 
2440 	btrfs_put_root(root);
2441 	return (ret < 0) ? 0 : 1;
2442 }
2443 
2444 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2445 {
2446 	unsigned long prev;
2447 	unsigned long bit;
2448 
2449 	prev = xchg(&fs_info->pending_changes, 0);
2450 	if (!prev)
2451 		return;
2452 
2453 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2454 	if (prev & bit)
2455 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2456 	prev &= ~bit;
2457 
2458 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2459 	if (prev & bit)
2460 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2461 	prev &= ~bit;
2462 
2463 	bit = 1 << BTRFS_PENDING_COMMIT;
2464 	if (prev & bit)
2465 		btrfs_debug(fs_info, "pending commit done");
2466 	prev &= ~bit;
2467 
2468 	if (prev)
2469 		btrfs_warn(fs_info,
2470 			"unknown pending changes left 0x%lx, ignoring", prev);
2471 }
2472