1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "misc.h" 14 #include "ctree.h" 15 #include "disk-io.h" 16 #include "transaction.h" 17 #include "locking.h" 18 #include "tree-log.h" 19 #include "volumes.h" 20 #include "dev-replace.h" 21 #include "qgroup.h" 22 #include "block-group.h" 23 #include "space-info.h" 24 #include "zoned.h" 25 26 #define BTRFS_ROOT_TRANS_TAG 0 27 28 /* 29 * Transaction states and transitions 30 * 31 * No running transaction (fs tree blocks are not modified) 32 * | 33 * | To next stage: 34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 35 * V 36 * Transaction N [[TRANS_STATE_RUNNING]] 37 * | 38 * | New trans handles can be attached to transaction N by calling all 39 * | start_transaction() variants. 40 * | 41 * | To next stage: 42 * | Call btrfs_commit_transaction() on any trans handle attached to 43 * | transaction N 44 * V 45 * Transaction N [[TRANS_STATE_COMMIT_START]] 46 * | 47 * | Will wait for previous running transaction to completely finish if there 48 * | is one 49 * | 50 * | Then one of the following happes: 51 * | - Wait for all other trans handle holders to release. 52 * | The btrfs_commit_transaction() caller will do the commit work. 53 * | - Wait for current transaction to be committed by others. 54 * | Other btrfs_commit_transaction() caller will do the commit work. 55 * | 56 * | At this stage, only btrfs_join_transaction*() variants can attach 57 * | to this running transaction. 58 * | All other variants will wait for current one to finish and attach to 59 * | transaction N+1. 60 * | 61 * | To next stage: 62 * | Caller is chosen to commit transaction N, and all other trans handle 63 * | haven been released. 64 * V 65 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 66 * | 67 * | The heavy lifting transaction work is started. 68 * | From running delayed refs (modifying extent tree) to creating pending 69 * | snapshots, running qgroups. 70 * | In short, modify supporting trees to reflect modifications of subvolume 71 * | trees. 72 * | 73 * | At this stage, all start_transaction() calls will wait for this 74 * | transaction to finish and attach to transaction N+1. 75 * | 76 * | To next stage: 77 * | Until all supporting trees are updated. 78 * V 79 * Transaction N [[TRANS_STATE_UNBLOCKED]] 80 * | Transaction N+1 81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 82 * | need to write them back to disk and update | 83 * | super blocks. | 84 * | | 85 * | At this stage, new transaction is allowed to | 86 * | start. | 87 * | All new start_transaction() calls will be | 88 * | attached to transid N+1. | 89 * | | 90 * | To next stage: | 91 * | Until all tree blocks are super blocks are | 92 * | written to block devices | 93 * V | 94 * Transaction N [[TRANS_STATE_COMPLETED]] V 95 * All tree blocks and super blocks are written. Transaction N+1 96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 97 * data structures will be cleaned up. | Life goes on 98 */ 99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 100 [TRANS_STATE_RUNNING] = 0U, 101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 103 __TRANS_ATTACH | 104 __TRANS_JOIN | 105 __TRANS_JOIN_NOSTART), 106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 107 __TRANS_ATTACH | 108 __TRANS_JOIN | 109 __TRANS_JOIN_NOLOCK | 110 __TRANS_JOIN_NOSTART), 111 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START | 112 __TRANS_ATTACH | 113 __TRANS_JOIN | 114 __TRANS_JOIN_NOLOCK | 115 __TRANS_JOIN_NOSTART), 116 [TRANS_STATE_COMPLETED] = (__TRANS_START | 117 __TRANS_ATTACH | 118 __TRANS_JOIN | 119 __TRANS_JOIN_NOLOCK | 120 __TRANS_JOIN_NOSTART), 121 }; 122 123 void btrfs_put_transaction(struct btrfs_transaction *transaction) 124 { 125 WARN_ON(refcount_read(&transaction->use_count) == 0); 126 if (refcount_dec_and_test(&transaction->use_count)) { 127 BUG_ON(!list_empty(&transaction->list)); 128 WARN_ON(!RB_EMPTY_ROOT( 129 &transaction->delayed_refs.href_root.rb_root)); 130 WARN_ON(!RB_EMPTY_ROOT( 131 &transaction->delayed_refs.dirty_extent_root)); 132 if (transaction->delayed_refs.pending_csums) 133 btrfs_err(transaction->fs_info, 134 "pending csums is %llu", 135 transaction->delayed_refs.pending_csums); 136 /* 137 * If any block groups are found in ->deleted_bgs then it's 138 * because the transaction was aborted and a commit did not 139 * happen (things failed before writing the new superblock 140 * and calling btrfs_finish_extent_commit()), so we can not 141 * discard the physical locations of the block groups. 142 */ 143 while (!list_empty(&transaction->deleted_bgs)) { 144 struct btrfs_block_group *cache; 145 146 cache = list_first_entry(&transaction->deleted_bgs, 147 struct btrfs_block_group, 148 bg_list); 149 list_del_init(&cache->bg_list); 150 btrfs_unfreeze_block_group(cache); 151 btrfs_put_block_group(cache); 152 } 153 WARN_ON(!list_empty(&transaction->dev_update_list)); 154 kfree(transaction); 155 } 156 } 157 158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 159 { 160 struct btrfs_transaction *cur_trans = trans->transaction; 161 struct btrfs_fs_info *fs_info = trans->fs_info; 162 struct btrfs_root *root, *tmp; 163 struct btrfs_caching_control *caching_ctl, *next; 164 165 down_write(&fs_info->commit_root_sem); 166 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 167 dirty_list) { 168 list_del_init(&root->dirty_list); 169 free_extent_buffer(root->commit_root); 170 root->commit_root = btrfs_root_node(root); 171 extent_io_tree_release(&root->dirty_log_pages); 172 btrfs_qgroup_clean_swapped_blocks(root); 173 } 174 175 /* We can free old roots now. */ 176 spin_lock(&cur_trans->dropped_roots_lock); 177 while (!list_empty(&cur_trans->dropped_roots)) { 178 root = list_first_entry(&cur_trans->dropped_roots, 179 struct btrfs_root, root_list); 180 list_del_init(&root->root_list); 181 spin_unlock(&cur_trans->dropped_roots_lock); 182 btrfs_free_log(trans, root); 183 btrfs_drop_and_free_fs_root(fs_info, root); 184 spin_lock(&cur_trans->dropped_roots_lock); 185 } 186 spin_unlock(&cur_trans->dropped_roots_lock); 187 188 /* 189 * We have to update the last_byte_to_unpin under the commit_root_sem, 190 * at the same time we swap out the commit roots. 191 * 192 * This is because we must have a real view of the last spot the caching 193 * kthreads were while caching. Consider the following views of the 194 * extent tree for a block group 195 * 196 * commit root 197 * +----+----+----+----+----+----+----+ 198 * |\\\\| |\\\\|\\\\| |\\\\|\\\\| 199 * +----+----+----+----+----+----+----+ 200 * 0 1 2 3 4 5 6 7 201 * 202 * new commit root 203 * +----+----+----+----+----+----+----+ 204 * | | | |\\\\| | |\\\\| 205 * +----+----+----+----+----+----+----+ 206 * 0 1 2 3 4 5 6 7 207 * 208 * If the cache_ctl->progress was at 3, then we are only allowed to 209 * unpin [0,1) and [2,3], because the caching thread has already 210 * processed those extents. We are not allowed to unpin [5,6), because 211 * the caching thread will re-start it's search from 3, and thus find 212 * the hole from [4,6) to add to the free space cache. 213 */ 214 spin_lock(&fs_info->block_group_cache_lock); 215 list_for_each_entry_safe(caching_ctl, next, 216 &fs_info->caching_block_groups, list) { 217 struct btrfs_block_group *cache = caching_ctl->block_group; 218 219 if (btrfs_block_group_done(cache)) { 220 cache->last_byte_to_unpin = (u64)-1; 221 list_del_init(&caching_ctl->list); 222 btrfs_put_caching_control(caching_ctl); 223 } else { 224 cache->last_byte_to_unpin = caching_ctl->progress; 225 } 226 } 227 spin_unlock(&fs_info->block_group_cache_lock); 228 up_write(&fs_info->commit_root_sem); 229 } 230 231 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 232 unsigned int type) 233 { 234 if (type & TRANS_EXTWRITERS) 235 atomic_inc(&trans->num_extwriters); 236 } 237 238 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 239 unsigned int type) 240 { 241 if (type & TRANS_EXTWRITERS) 242 atomic_dec(&trans->num_extwriters); 243 } 244 245 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 246 unsigned int type) 247 { 248 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 249 } 250 251 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 252 { 253 return atomic_read(&trans->num_extwriters); 254 } 255 256 /* 257 * To be called after doing the chunk btree updates right after allocating a new 258 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a 259 * chunk after all chunk btree updates and after finishing the second phase of 260 * chunk allocation (btrfs_create_pending_block_groups()) in case some block 261 * group had its chunk item insertion delayed to the second phase. 262 */ 263 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 264 { 265 struct btrfs_fs_info *fs_info = trans->fs_info; 266 267 if (!trans->chunk_bytes_reserved) 268 return; 269 270 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 271 trans->chunk_bytes_reserved, NULL); 272 trans->chunk_bytes_reserved = 0; 273 } 274 275 /* 276 * either allocate a new transaction or hop into the existing one 277 */ 278 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 279 unsigned int type) 280 { 281 struct btrfs_transaction *cur_trans; 282 283 spin_lock(&fs_info->trans_lock); 284 loop: 285 /* The file system has been taken offline. No new transactions. */ 286 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 287 spin_unlock(&fs_info->trans_lock); 288 return -EROFS; 289 } 290 291 cur_trans = fs_info->running_transaction; 292 if (cur_trans) { 293 if (TRANS_ABORTED(cur_trans)) { 294 spin_unlock(&fs_info->trans_lock); 295 return cur_trans->aborted; 296 } 297 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 298 spin_unlock(&fs_info->trans_lock); 299 return -EBUSY; 300 } 301 refcount_inc(&cur_trans->use_count); 302 atomic_inc(&cur_trans->num_writers); 303 extwriter_counter_inc(cur_trans, type); 304 spin_unlock(&fs_info->trans_lock); 305 return 0; 306 } 307 spin_unlock(&fs_info->trans_lock); 308 309 /* 310 * If we are ATTACH, we just want to catch the current transaction, 311 * and commit it. If there is no transaction, just return ENOENT. 312 */ 313 if (type == TRANS_ATTACH) 314 return -ENOENT; 315 316 /* 317 * JOIN_NOLOCK only happens during the transaction commit, so 318 * it is impossible that ->running_transaction is NULL 319 */ 320 BUG_ON(type == TRANS_JOIN_NOLOCK); 321 322 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 323 if (!cur_trans) 324 return -ENOMEM; 325 326 spin_lock(&fs_info->trans_lock); 327 if (fs_info->running_transaction) { 328 /* 329 * someone started a transaction after we unlocked. Make sure 330 * to redo the checks above 331 */ 332 kfree(cur_trans); 333 goto loop; 334 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 335 spin_unlock(&fs_info->trans_lock); 336 kfree(cur_trans); 337 return -EROFS; 338 } 339 340 cur_trans->fs_info = fs_info; 341 atomic_set(&cur_trans->pending_ordered, 0); 342 init_waitqueue_head(&cur_trans->pending_wait); 343 atomic_set(&cur_trans->num_writers, 1); 344 extwriter_counter_init(cur_trans, type); 345 init_waitqueue_head(&cur_trans->writer_wait); 346 init_waitqueue_head(&cur_trans->commit_wait); 347 cur_trans->state = TRANS_STATE_RUNNING; 348 /* 349 * One for this trans handle, one so it will live on until we 350 * commit the transaction. 351 */ 352 refcount_set(&cur_trans->use_count, 2); 353 cur_trans->flags = 0; 354 cur_trans->start_time = ktime_get_seconds(); 355 356 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 357 358 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 359 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 360 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 361 362 /* 363 * although the tree mod log is per file system and not per transaction, 364 * the log must never go across transaction boundaries. 365 */ 366 smp_mb(); 367 if (!list_empty(&fs_info->tree_mod_seq_list)) 368 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 369 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 370 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 371 atomic64_set(&fs_info->tree_mod_seq, 0); 372 373 spin_lock_init(&cur_trans->delayed_refs.lock); 374 375 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 376 INIT_LIST_HEAD(&cur_trans->dev_update_list); 377 INIT_LIST_HEAD(&cur_trans->switch_commits); 378 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 379 INIT_LIST_HEAD(&cur_trans->io_bgs); 380 INIT_LIST_HEAD(&cur_trans->dropped_roots); 381 mutex_init(&cur_trans->cache_write_mutex); 382 spin_lock_init(&cur_trans->dirty_bgs_lock); 383 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 384 spin_lock_init(&cur_trans->dropped_roots_lock); 385 INIT_LIST_HEAD(&cur_trans->releasing_ebs); 386 spin_lock_init(&cur_trans->releasing_ebs_lock); 387 list_add_tail(&cur_trans->list, &fs_info->trans_list); 388 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 389 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode); 390 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 391 IO_TREE_FS_PINNED_EXTENTS, NULL); 392 fs_info->generation++; 393 cur_trans->transid = fs_info->generation; 394 fs_info->running_transaction = cur_trans; 395 cur_trans->aborted = 0; 396 spin_unlock(&fs_info->trans_lock); 397 398 return 0; 399 } 400 401 /* 402 * This does all the record keeping required to make sure that a shareable root 403 * is properly recorded in a given transaction. This is required to make sure 404 * the old root from before we joined the transaction is deleted when the 405 * transaction commits. 406 */ 407 static int record_root_in_trans(struct btrfs_trans_handle *trans, 408 struct btrfs_root *root, 409 int force) 410 { 411 struct btrfs_fs_info *fs_info = root->fs_info; 412 int ret = 0; 413 414 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 415 root->last_trans < trans->transid) || force) { 416 WARN_ON(root == fs_info->extent_root); 417 WARN_ON(!force && root->commit_root != root->node); 418 419 /* 420 * see below for IN_TRANS_SETUP usage rules 421 * we have the reloc mutex held now, so there 422 * is only one writer in this function 423 */ 424 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 425 426 /* make sure readers find IN_TRANS_SETUP before 427 * they find our root->last_trans update 428 */ 429 smp_wmb(); 430 431 spin_lock(&fs_info->fs_roots_radix_lock); 432 if (root->last_trans == trans->transid && !force) { 433 spin_unlock(&fs_info->fs_roots_radix_lock); 434 return 0; 435 } 436 radix_tree_tag_set(&fs_info->fs_roots_radix, 437 (unsigned long)root->root_key.objectid, 438 BTRFS_ROOT_TRANS_TAG); 439 spin_unlock(&fs_info->fs_roots_radix_lock); 440 root->last_trans = trans->transid; 441 442 /* this is pretty tricky. We don't want to 443 * take the relocation lock in btrfs_record_root_in_trans 444 * unless we're really doing the first setup for this root in 445 * this transaction. 446 * 447 * Normally we'd use root->last_trans as a flag to decide 448 * if we want to take the expensive mutex. 449 * 450 * But, we have to set root->last_trans before we 451 * init the relocation root, otherwise, we trip over warnings 452 * in ctree.c. The solution used here is to flag ourselves 453 * with root IN_TRANS_SETUP. When this is 1, we're still 454 * fixing up the reloc trees and everyone must wait. 455 * 456 * When this is zero, they can trust root->last_trans and fly 457 * through btrfs_record_root_in_trans without having to take the 458 * lock. smp_wmb() makes sure that all the writes above are 459 * done before we pop in the zero below 460 */ 461 ret = btrfs_init_reloc_root(trans, root); 462 smp_mb__before_atomic(); 463 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 464 } 465 return ret; 466 } 467 468 469 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 470 struct btrfs_root *root) 471 { 472 struct btrfs_fs_info *fs_info = root->fs_info; 473 struct btrfs_transaction *cur_trans = trans->transaction; 474 475 /* Add ourselves to the transaction dropped list */ 476 spin_lock(&cur_trans->dropped_roots_lock); 477 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 478 spin_unlock(&cur_trans->dropped_roots_lock); 479 480 /* Make sure we don't try to update the root at commit time */ 481 spin_lock(&fs_info->fs_roots_radix_lock); 482 radix_tree_tag_clear(&fs_info->fs_roots_radix, 483 (unsigned long)root->root_key.objectid, 484 BTRFS_ROOT_TRANS_TAG); 485 spin_unlock(&fs_info->fs_roots_radix_lock); 486 } 487 488 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 489 struct btrfs_root *root) 490 { 491 struct btrfs_fs_info *fs_info = root->fs_info; 492 int ret; 493 494 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 495 return 0; 496 497 /* 498 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 499 * and barriers 500 */ 501 smp_rmb(); 502 if (root->last_trans == trans->transid && 503 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 504 return 0; 505 506 mutex_lock(&fs_info->reloc_mutex); 507 ret = record_root_in_trans(trans, root, 0); 508 mutex_unlock(&fs_info->reloc_mutex); 509 510 return ret; 511 } 512 513 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 514 { 515 return (trans->state >= TRANS_STATE_COMMIT_START && 516 trans->state < TRANS_STATE_UNBLOCKED && 517 !TRANS_ABORTED(trans)); 518 } 519 520 /* wait for commit against the current transaction to become unblocked 521 * when this is done, it is safe to start a new transaction, but the current 522 * transaction might not be fully on disk. 523 */ 524 static void wait_current_trans(struct btrfs_fs_info *fs_info) 525 { 526 struct btrfs_transaction *cur_trans; 527 528 spin_lock(&fs_info->trans_lock); 529 cur_trans = fs_info->running_transaction; 530 if (cur_trans && is_transaction_blocked(cur_trans)) { 531 refcount_inc(&cur_trans->use_count); 532 spin_unlock(&fs_info->trans_lock); 533 534 wait_event(fs_info->transaction_wait, 535 cur_trans->state >= TRANS_STATE_UNBLOCKED || 536 TRANS_ABORTED(cur_trans)); 537 btrfs_put_transaction(cur_trans); 538 } else { 539 spin_unlock(&fs_info->trans_lock); 540 } 541 } 542 543 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 544 { 545 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 546 return 0; 547 548 if (type == TRANS_START) 549 return 1; 550 551 return 0; 552 } 553 554 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 555 { 556 struct btrfs_fs_info *fs_info = root->fs_info; 557 558 if (!fs_info->reloc_ctl || 559 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 560 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 561 root->reloc_root) 562 return false; 563 564 return true; 565 } 566 567 static struct btrfs_trans_handle * 568 start_transaction(struct btrfs_root *root, unsigned int num_items, 569 unsigned int type, enum btrfs_reserve_flush_enum flush, 570 bool enforce_qgroups) 571 { 572 struct btrfs_fs_info *fs_info = root->fs_info; 573 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 574 struct btrfs_trans_handle *h; 575 struct btrfs_transaction *cur_trans; 576 u64 num_bytes = 0; 577 u64 qgroup_reserved = 0; 578 bool reloc_reserved = false; 579 bool do_chunk_alloc = false; 580 int ret; 581 582 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 583 return ERR_PTR(-EROFS); 584 585 if (current->journal_info) { 586 WARN_ON(type & TRANS_EXTWRITERS); 587 h = current->journal_info; 588 refcount_inc(&h->use_count); 589 WARN_ON(refcount_read(&h->use_count) > 2); 590 h->orig_rsv = h->block_rsv; 591 h->block_rsv = NULL; 592 goto got_it; 593 } 594 595 /* 596 * Do the reservation before we join the transaction so we can do all 597 * the appropriate flushing if need be. 598 */ 599 if (num_items && root != fs_info->chunk_root) { 600 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 601 u64 delayed_refs_bytes = 0; 602 603 qgroup_reserved = num_items * fs_info->nodesize; 604 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 605 enforce_qgroups); 606 if (ret) 607 return ERR_PTR(ret); 608 609 /* 610 * We want to reserve all the bytes we may need all at once, so 611 * we only do 1 enospc flushing cycle per transaction start. We 612 * accomplish this by simply assuming we'll do 2 x num_items 613 * worth of delayed refs updates in this trans handle, and 614 * refill that amount for whatever is missing in the reserve. 615 */ 616 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 617 if (flush == BTRFS_RESERVE_FLUSH_ALL && 618 delayed_refs_rsv->full == 0) { 619 delayed_refs_bytes = num_bytes; 620 num_bytes <<= 1; 621 } 622 623 /* 624 * Do the reservation for the relocation root creation 625 */ 626 if (need_reserve_reloc_root(root)) { 627 num_bytes += fs_info->nodesize; 628 reloc_reserved = true; 629 } 630 631 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush); 632 if (ret) 633 goto reserve_fail; 634 if (delayed_refs_bytes) { 635 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 636 delayed_refs_bytes); 637 num_bytes -= delayed_refs_bytes; 638 } 639 640 if (rsv->space_info->force_alloc) 641 do_chunk_alloc = true; 642 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 643 !delayed_refs_rsv->full) { 644 /* 645 * Some people call with btrfs_start_transaction(root, 0) 646 * because they can be throttled, but have some other mechanism 647 * for reserving space. We still want these guys to refill the 648 * delayed block_rsv so just add 1 items worth of reservation 649 * here. 650 */ 651 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 652 if (ret) 653 goto reserve_fail; 654 } 655 again: 656 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 657 if (!h) { 658 ret = -ENOMEM; 659 goto alloc_fail; 660 } 661 662 /* 663 * If we are JOIN_NOLOCK we're already committing a transaction and 664 * waiting on this guy, so we don't need to do the sb_start_intwrite 665 * because we're already holding a ref. We need this because we could 666 * have raced in and did an fsync() on a file which can kick a commit 667 * and then we deadlock with somebody doing a freeze. 668 * 669 * If we are ATTACH, it means we just want to catch the current 670 * transaction and commit it, so we needn't do sb_start_intwrite(). 671 */ 672 if (type & __TRANS_FREEZABLE) 673 sb_start_intwrite(fs_info->sb); 674 675 if (may_wait_transaction(fs_info, type)) 676 wait_current_trans(fs_info); 677 678 do { 679 ret = join_transaction(fs_info, type); 680 if (ret == -EBUSY) { 681 wait_current_trans(fs_info); 682 if (unlikely(type == TRANS_ATTACH || 683 type == TRANS_JOIN_NOSTART)) 684 ret = -ENOENT; 685 } 686 } while (ret == -EBUSY); 687 688 if (ret < 0) 689 goto join_fail; 690 691 cur_trans = fs_info->running_transaction; 692 693 h->transid = cur_trans->transid; 694 h->transaction = cur_trans; 695 h->root = root; 696 refcount_set(&h->use_count, 1); 697 h->fs_info = root->fs_info; 698 699 h->type = type; 700 INIT_LIST_HEAD(&h->new_bgs); 701 702 smp_mb(); 703 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 704 may_wait_transaction(fs_info, type)) { 705 current->journal_info = h; 706 btrfs_commit_transaction(h); 707 goto again; 708 } 709 710 if (num_bytes) { 711 trace_btrfs_space_reservation(fs_info, "transaction", 712 h->transid, num_bytes, 1); 713 h->block_rsv = &fs_info->trans_block_rsv; 714 h->bytes_reserved = num_bytes; 715 h->reloc_reserved = reloc_reserved; 716 } 717 718 got_it: 719 if (!current->journal_info) 720 current->journal_info = h; 721 722 /* 723 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 724 * ALLOC_FORCE the first run through, and then we won't allocate for 725 * anybody else who races in later. We don't care about the return 726 * value here. 727 */ 728 if (do_chunk_alloc && num_bytes) { 729 u64 flags = h->block_rsv->space_info->flags; 730 731 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 732 CHUNK_ALLOC_NO_FORCE); 733 } 734 735 /* 736 * btrfs_record_root_in_trans() needs to alloc new extents, and may 737 * call btrfs_join_transaction() while we're also starting a 738 * transaction. 739 * 740 * Thus it need to be called after current->journal_info initialized, 741 * or we can deadlock. 742 */ 743 ret = btrfs_record_root_in_trans(h, root); 744 if (ret) { 745 /* 746 * The transaction handle is fully initialized and linked with 747 * other structures so it needs to be ended in case of errors, 748 * not just freed. 749 */ 750 btrfs_end_transaction(h); 751 return ERR_PTR(ret); 752 } 753 754 return h; 755 756 join_fail: 757 if (type & __TRANS_FREEZABLE) 758 sb_end_intwrite(fs_info->sb); 759 kmem_cache_free(btrfs_trans_handle_cachep, h); 760 alloc_fail: 761 if (num_bytes) 762 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 763 num_bytes, NULL); 764 reserve_fail: 765 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 766 return ERR_PTR(ret); 767 } 768 769 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 770 unsigned int num_items) 771 { 772 return start_transaction(root, num_items, TRANS_START, 773 BTRFS_RESERVE_FLUSH_ALL, true); 774 } 775 776 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 777 struct btrfs_root *root, 778 unsigned int num_items) 779 { 780 return start_transaction(root, num_items, TRANS_START, 781 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 782 } 783 784 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 785 { 786 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 787 true); 788 } 789 790 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 791 { 792 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 793 BTRFS_RESERVE_NO_FLUSH, true); 794 } 795 796 /* 797 * Similar to regular join but it never starts a transaction when none is 798 * running or after waiting for the current one to finish. 799 */ 800 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 801 { 802 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 803 BTRFS_RESERVE_NO_FLUSH, true); 804 } 805 806 /* 807 * btrfs_attach_transaction() - catch the running transaction 808 * 809 * It is used when we want to commit the current the transaction, but 810 * don't want to start a new one. 811 * 812 * Note: If this function return -ENOENT, it just means there is no 813 * running transaction. But it is possible that the inactive transaction 814 * is still in the memory, not fully on disk. If you hope there is no 815 * inactive transaction in the fs when -ENOENT is returned, you should 816 * invoke 817 * btrfs_attach_transaction_barrier() 818 */ 819 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 820 { 821 return start_transaction(root, 0, TRANS_ATTACH, 822 BTRFS_RESERVE_NO_FLUSH, true); 823 } 824 825 /* 826 * btrfs_attach_transaction_barrier() - catch the running transaction 827 * 828 * It is similar to the above function, the difference is this one 829 * will wait for all the inactive transactions until they fully 830 * complete. 831 */ 832 struct btrfs_trans_handle * 833 btrfs_attach_transaction_barrier(struct btrfs_root *root) 834 { 835 struct btrfs_trans_handle *trans; 836 837 trans = start_transaction(root, 0, TRANS_ATTACH, 838 BTRFS_RESERVE_NO_FLUSH, true); 839 if (trans == ERR_PTR(-ENOENT)) 840 btrfs_wait_for_commit(root->fs_info, 0); 841 842 return trans; 843 } 844 845 /* Wait for a transaction commit to reach at least the given state. */ 846 static noinline void wait_for_commit(struct btrfs_transaction *commit, 847 const enum btrfs_trans_state min_state) 848 { 849 wait_event(commit->commit_wait, commit->state >= min_state); 850 } 851 852 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 853 { 854 struct btrfs_transaction *cur_trans = NULL, *t; 855 int ret = 0; 856 857 if (transid) { 858 if (transid <= fs_info->last_trans_committed) 859 goto out; 860 861 /* find specified transaction */ 862 spin_lock(&fs_info->trans_lock); 863 list_for_each_entry(t, &fs_info->trans_list, list) { 864 if (t->transid == transid) { 865 cur_trans = t; 866 refcount_inc(&cur_trans->use_count); 867 ret = 0; 868 break; 869 } 870 if (t->transid > transid) { 871 ret = 0; 872 break; 873 } 874 } 875 spin_unlock(&fs_info->trans_lock); 876 877 /* 878 * The specified transaction doesn't exist, or we 879 * raced with btrfs_commit_transaction 880 */ 881 if (!cur_trans) { 882 if (transid > fs_info->last_trans_committed) 883 ret = -EINVAL; 884 goto out; 885 } 886 } else { 887 /* find newest transaction that is committing | committed */ 888 spin_lock(&fs_info->trans_lock); 889 list_for_each_entry_reverse(t, &fs_info->trans_list, 890 list) { 891 if (t->state >= TRANS_STATE_COMMIT_START) { 892 if (t->state == TRANS_STATE_COMPLETED) 893 break; 894 cur_trans = t; 895 refcount_inc(&cur_trans->use_count); 896 break; 897 } 898 } 899 spin_unlock(&fs_info->trans_lock); 900 if (!cur_trans) 901 goto out; /* nothing committing|committed */ 902 } 903 904 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED); 905 btrfs_put_transaction(cur_trans); 906 out: 907 return ret; 908 } 909 910 void btrfs_throttle(struct btrfs_fs_info *fs_info) 911 { 912 wait_current_trans(fs_info); 913 } 914 915 static bool should_end_transaction(struct btrfs_trans_handle *trans) 916 { 917 struct btrfs_fs_info *fs_info = trans->fs_info; 918 919 if (btrfs_check_space_for_delayed_refs(fs_info)) 920 return true; 921 922 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 923 } 924 925 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 926 { 927 struct btrfs_transaction *cur_trans = trans->transaction; 928 929 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 930 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags)) 931 return true; 932 933 return should_end_transaction(trans); 934 } 935 936 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 937 938 { 939 struct btrfs_fs_info *fs_info = trans->fs_info; 940 941 if (!trans->block_rsv) { 942 ASSERT(!trans->bytes_reserved); 943 return; 944 } 945 946 if (!trans->bytes_reserved) 947 return; 948 949 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 950 trace_btrfs_space_reservation(fs_info, "transaction", 951 trans->transid, trans->bytes_reserved, 0); 952 btrfs_block_rsv_release(fs_info, trans->block_rsv, 953 trans->bytes_reserved, NULL); 954 trans->bytes_reserved = 0; 955 } 956 957 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 958 int throttle) 959 { 960 struct btrfs_fs_info *info = trans->fs_info; 961 struct btrfs_transaction *cur_trans = trans->transaction; 962 int err = 0; 963 964 if (refcount_read(&trans->use_count) > 1) { 965 refcount_dec(&trans->use_count); 966 trans->block_rsv = trans->orig_rsv; 967 return 0; 968 } 969 970 btrfs_trans_release_metadata(trans); 971 trans->block_rsv = NULL; 972 973 btrfs_create_pending_block_groups(trans); 974 975 btrfs_trans_release_chunk_metadata(trans); 976 977 if (trans->type & __TRANS_FREEZABLE) 978 sb_end_intwrite(info->sb); 979 980 WARN_ON(cur_trans != info->running_transaction); 981 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 982 atomic_dec(&cur_trans->num_writers); 983 extwriter_counter_dec(cur_trans, trans->type); 984 985 cond_wake_up(&cur_trans->writer_wait); 986 btrfs_put_transaction(cur_trans); 987 988 if (current->journal_info == trans) 989 current->journal_info = NULL; 990 991 if (throttle) 992 btrfs_run_delayed_iputs(info); 993 994 if (TRANS_ABORTED(trans) || 995 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 996 wake_up_process(info->transaction_kthread); 997 if (TRANS_ABORTED(trans)) 998 err = trans->aborted; 999 else 1000 err = -EROFS; 1001 } 1002 1003 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1004 return err; 1005 } 1006 1007 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 1008 { 1009 return __btrfs_end_transaction(trans, 0); 1010 } 1011 1012 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1013 { 1014 return __btrfs_end_transaction(trans, 1); 1015 } 1016 1017 /* 1018 * when btree blocks are allocated, they have some corresponding bits set for 1019 * them in one of two extent_io trees. This is used to make sure all of 1020 * those extents are sent to disk but does not wait on them 1021 */ 1022 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1023 struct extent_io_tree *dirty_pages, int mark) 1024 { 1025 int err = 0; 1026 int werr = 0; 1027 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1028 struct extent_state *cached_state = NULL; 1029 u64 start = 0; 1030 u64 end; 1031 1032 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1033 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1034 mark, &cached_state)) { 1035 bool wait_writeback = false; 1036 1037 err = convert_extent_bit(dirty_pages, start, end, 1038 EXTENT_NEED_WAIT, 1039 mark, &cached_state); 1040 /* 1041 * convert_extent_bit can return -ENOMEM, which is most of the 1042 * time a temporary error. So when it happens, ignore the error 1043 * and wait for writeback of this range to finish - because we 1044 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1045 * to __btrfs_wait_marked_extents() would not know that 1046 * writeback for this range started and therefore wouldn't 1047 * wait for it to finish - we don't want to commit a 1048 * superblock that points to btree nodes/leafs for which 1049 * writeback hasn't finished yet (and without errors). 1050 * We cleanup any entries left in the io tree when committing 1051 * the transaction (through extent_io_tree_release()). 1052 */ 1053 if (err == -ENOMEM) { 1054 err = 0; 1055 wait_writeback = true; 1056 } 1057 if (!err) 1058 err = filemap_fdatawrite_range(mapping, start, end); 1059 if (err) 1060 werr = err; 1061 else if (wait_writeback) 1062 werr = filemap_fdatawait_range(mapping, start, end); 1063 free_extent_state(cached_state); 1064 cached_state = NULL; 1065 cond_resched(); 1066 start = end + 1; 1067 } 1068 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1069 return werr; 1070 } 1071 1072 /* 1073 * when btree blocks are allocated, they have some corresponding bits set for 1074 * them in one of two extent_io trees. This is used to make sure all of 1075 * those extents are on disk for transaction or log commit. We wait 1076 * on all the pages and clear them from the dirty pages state tree 1077 */ 1078 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1079 struct extent_io_tree *dirty_pages) 1080 { 1081 int err = 0; 1082 int werr = 0; 1083 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1084 struct extent_state *cached_state = NULL; 1085 u64 start = 0; 1086 u64 end; 1087 1088 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1089 EXTENT_NEED_WAIT, &cached_state)) { 1090 /* 1091 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1092 * When committing the transaction, we'll remove any entries 1093 * left in the io tree. For a log commit, we don't remove them 1094 * after committing the log because the tree can be accessed 1095 * concurrently - we do it only at transaction commit time when 1096 * it's safe to do it (through extent_io_tree_release()). 1097 */ 1098 err = clear_extent_bit(dirty_pages, start, end, 1099 EXTENT_NEED_WAIT, 0, 0, &cached_state); 1100 if (err == -ENOMEM) 1101 err = 0; 1102 if (!err) 1103 err = filemap_fdatawait_range(mapping, start, end); 1104 if (err) 1105 werr = err; 1106 free_extent_state(cached_state); 1107 cached_state = NULL; 1108 cond_resched(); 1109 start = end + 1; 1110 } 1111 if (err) 1112 werr = err; 1113 return werr; 1114 } 1115 1116 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1117 struct extent_io_tree *dirty_pages) 1118 { 1119 bool errors = false; 1120 int err; 1121 1122 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1123 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1124 errors = true; 1125 1126 if (errors && !err) 1127 err = -EIO; 1128 return err; 1129 } 1130 1131 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1132 { 1133 struct btrfs_fs_info *fs_info = log_root->fs_info; 1134 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1135 bool errors = false; 1136 int err; 1137 1138 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1139 1140 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1141 if ((mark & EXTENT_DIRTY) && 1142 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1143 errors = true; 1144 1145 if ((mark & EXTENT_NEW) && 1146 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1147 errors = true; 1148 1149 if (errors && !err) 1150 err = -EIO; 1151 return err; 1152 } 1153 1154 /* 1155 * When btree blocks are allocated the corresponding extents are marked dirty. 1156 * This function ensures such extents are persisted on disk for transaction or 1157 * log commit. 1158 * 1159 * @trans: transaction whose dirty pages we'd like to write 1160 */ 1161 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1162 { 1163 int ret; 1164 int ret2; 1165 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1166 struct btrfs_fs_info *fs_info = trans->fs_info; 1167 struct blk_plug plug; 1168 1169 blk_start_plug(&plug); 1170 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1171 blk_finish_plug(&plug); 1172 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1173 1174 extent_io_tree_release(&trans->transaction->dirty_pages); 1175 1176 if (ret) 1177 return ret; 1178 else if (ret2) 1179 return ret2; 1180 else 1181 return 0; 1182 } 1183 1184 /* 1185 * this is used to update the root pointer in the tree of tree roots. 1186 * 1187 * But, in the case of the extent allocation tree, updating the root 1188 * pointer may allocate blocks which may change the root of the extent 1189 * allocation tree. 1190 * 1191 * So, this loops and repeats and makes sure the cowonly root didn't 1192 * change while the root pointer was being updated in the metadata. 1193 */ 1194 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1195 struct btrfs_root *root) 1196 { 1197 int ret; 1198 u64 old_root_bytenr; 1199 u64 old_root_used; 1200 struct btrfs_fs_info *fs_info = root->fs_info; 1201 struct btrfs_root *tree_root = fs_info->tree_root; 1202 1203 old_root_used = btrfs_root_used(&root->root_item); 1204 1205 while (1) { 1206 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1207 if (old_root_bytenr == root->node->start && 1208 old_root_used == btrfs_root_used(&root->root_item)) 1209 break; 1210 1211 btrfs_set_root_node(&root->root_item, root->node); 1212 ret = btrfs_update_root(trans, tree_root, 1213 &root->root_key, 1214 &root->root_item); 1215 if (ret) 1216 return ret; 1217 1218 old_root_used = btrfs_root_used(&root->root_item); 1219 } 1220 1221 return 0; 1222 } 1223 1224 /* 1225 * update all the cowonly tree roots on disk 1226 * 1227 * The error handling in this function may not be obvious. Any of the 1228 * failures will cause the file system to go offline. We still need 1229 * to clean up the delayed refs. 1230 */ 1231 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1232 { 1233 struct btrfs_fs_info *fs_info = trans->fs_info; 1234 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1235 struct list_head *io_bgs = &trans->transaction->io_bgs; 1236 struct list_head *next; 1237 struct extent_buffer *eb; 1238 int ret; 1239 1240 eb = btrfs_lock_root_node(fs_info->tree_root); 1241 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1242 0, &eb, BTRFS_NESTING_COW); 1243 btrfs_tree_unlock(eb); 1244 free_extent_buffer(eb); 1245 1246 if (ret) 1247 return ret; 1248 1249 ret = btrfs_run_dev_stats(trans); 1250 if (ret) 1251 return ret; 1252 ret = btrfs_run_dev_replace(trans); 1253 if (ret) 1254 return ret; 1255 ret = btrfs_run_qgroups(trans); 1256 if (ret) 1257 return ret; 1258 1259 ret = btrfs_setup_space_cache(trans); 1260 if (ret) 1261 return ret; 1262 1263 again: 1264 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1265 struct btrfs_root *root; 1266 next = fs_info->dirty_cowonly_roots.next; 1267 list_del_init(next); 1268 root = list_entry(next, struct btrfs_root, dirty_list); 1269 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1270 1271 if (root != fs_info->extent_root) 1272 list_add_tail(&root->dirty_list, 1273 &trans->transaction->switch_commits); 1274 ret = update_cowonly_root(trans, root); 1275 if (ret) 1276 return ret; 1277 } 1278 1279 /* Now flush any delayed refs generated by updating all of the roots */ 1280 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1281 if (ret) 1282 return ret; 1283 1284 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1285 ret = btrfs_write_dirty_block_groups(trans); 1286 if (ret) 1287 return ret; 1288 1289 /* 1290 * We're writing the dirty block groups, which could generate 1291 * delayed refs, which could generate more dirty block groups, 1292 * so we want to keep this flushing in this loop to make sure 1293 * everything gets run. 1294 */ 1295 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1296 if (ret) 1297 return ret; 1298 } 1299 1300 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1301 goto again; 1302 1303 list_add_tail(&fs_info->extent_root->dirty_list, 1304 &trans->transaction->switch_commits); 1305 1306 /* Update dev-replace pointer once everything is committed */ 1307 fs_info->dev_replace.committed_cursor_left = 1308 fs_info->dev_replace.cursor_left_last_write_of_item; 1309 1310 return 0; 1311 } 1312 1313 /* 1314 * dead roots are old snapshots that need to be deleted. This allocates 1315 * a dirty root struct and adds it into the list of dead roots that need to 1316 * be deleted 1317 */ 1318 void btrfs_add_dead_root(struct btrfs_root *root) 1319 { 1320 struct btrfs_fs_info *fs_info = root->fs_info; 1321 1322 spin_lock(&fs_info->trans_lock); 1323 if (list_empty(&root->root_list)) { 1324 btrfs_grab_root(root); 1325 list_add_tail(&root->root_list, &fs_info->dead_roots); 1326 } 1327 spin_unlock(&fs_info->trans_lock); 1328 } 1329 1330 /* 1331 * update all the cowonly tree roots on disk 1332 */ 1333 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1334 { 1335 struct btrfs_fs_info *fs_info = trans->fs_info; 1336 struct btrfs_root *gang[8]; 1337 int i; 1338 int ret; 1339 1340 spin_lock(&fs_info->fs_roots_radix_lock); 1341 while (1) { 1342 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1343 (void **)gang, 0, 1344 ARRAY_SIZE(gang), 1345 BTRFS_ROOT_TRANS_TAG); 1346 if (ret == 0) 1347 break; 1348 for (i = 0; i < ret; i++) { 1349 struct btrfs_root *root = gang[i]; 1350 int ret2; 1351 1352 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1353 (unsigned long)root->root_key.objectid, 1354 BTRFS_ROOT_TRANS_TAG); 1355 spin_unlock(&fs_info->fs_roots_radix_lock); 1356 1357 btrfs_free_log(trans, root); 1358 ret2 = btrfs_update_reloc_root(trans, root); 1359 if (ret2) 1360 return ret2; 1361 1362 /* see comments in should_cow_block() */ 1363 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1364 smp_mb__after_atomic(); 1365 1366 if (root->commit_root != root->node) { 1367 list_add_tail(&root->dirty_list, 1368 &trans->transaction->switch_commits); 1369 btrfs_set_root_node(&root->root_item, 1370 root->node); 1371 } 1372 1373 ret2 = btrfs_update_root(trans, fs_info->tree_root, 1374 &root->root_key, 1375 &root->root_item); 1376 if (ret2) 1377 return ret2; 1378 spin_lock(&fs_info->fs_roots_radix_lock); 1379 btrfs_qgroup_free_meta_all_pertrans(root); 1380 } 1381 } 1382 spin_unlock(&fs_info->fs_roots_radix_lock); 1383 return 0; 1384 } 1385 1386 /* 1387 * defrag a given btree. 1388 * Every leaf in the btree is read and defragged. 1389 */ 1390 int btrfs_defrag_root(struct btrfs_root *root) 1391 { 1392 struct btrfs_fs_info *info = root->fs_info; 1393 struct btrfs_trans_handle *trans; 1394 int ret; 1395 1396 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1397 return 0; 1398 1399 while (1) { 1400 trans = btrfs_start_transaction(root, 0); 1401 if (IS_ERR(trans)) { 1402 ret = PTR_ERR(trans); 1403 break; 1404 } 1405 1406 ret = btrfs_defrag_leaves(trans, root); 1407 1408 btrfs_end_transaction(trans); 1409 btrfs_btree_balance_dirty(info); 1410 cond_resched(); 1411 1412 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1413 break; 1414 1415 if (btrfs_defrag_cancelled(info)) { 1416 btrfs_debug(info, "defrag_root cancelled"); 1417 ret = -EAGAIN; 1418 break; 1419 } 1420 } 1421 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1422 return ret; 1423 } 1424 1425 /* 1426 * Do all special snapshot related qgroup dirty hack. 1427 * 1428 * Will do all needed qgroup inherit and dirty hack like switch commit 1429 * roots inside one transaction and write all btree into disk, to make 1430 * qgroup works. 1431 */ 1432 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1433 struct btrfs_root *src, 1434 struct btrfs_root *parent, 1435 struct btrfs_qgroup_inherit *inherit, 1436 u64 dst_objectid) 1437 { 1438 struct btrfs_fs_info *fs_info = src->fs_info; 1439 int ret; 1440 1441 /* 1442 * Save some performance in the case that qgroups are not 1443 * enabled. If this check races with the ioctl, rescan will 1444 * kick in anyway. 1445 */ 1446 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1447 return 0; 1448 1449 /* 1450 * Ensure dirty @src will be committed. Or, after coming 1451 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1452 * recorded root will never be updated again, causing an outdated root 1453 * item. 1454 */ 1455 ret = record_root_in_trans(trans, src, 1); 1456 if (ret) 1457 return ret; 1458 1459 /* 1460 * btrfs_qgroup_inherit relies on a consistent view of the usage for the 1461 * src root, so we must run the delayed refs here. 1462 * 1463 * However this isn't particularly fool proof, because there's no 1464 * synchronization keeping us from changing the tree after this point 1465 * before we do the qgroup_inherit, or even from making changes while 1466 * we're doing the qgroup_inherit. But that's a problem for the future, 1467 * for now flush the delayed refs to narrow the race window where the 1468 * qgroup counters could end up wrong. 1469 */ 1470 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1471 if (ret) { 1472 btrfs_abort_transaction(trans, ret); 1473 return ret; 1474 } 1475 1476 /* 1477 * We are going to commit transaction, see btrfs_commit_transaction() 1478 * comment for reason locking tree_log_mutex 1479 */ 1480 mutex_lock(&fs_info->tree_log_mutex); 1481 1482 ret = commit_fs_roots(trans); 1483 if (ret) 1484 goto out; 1485 ret = btrfs_qgroup_account_extents(trans); 1486 if (ret < 0) 1487 goto out; 1488 1489 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1490 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1491 inherit); 1492 if (ret < 0) 1493 goto out; 1494 1495 /* 1496 * Now we do a simplified commit transaction, which will: 1497 * 1) commit all subvolume and extent tree 1498 * To ensure all subvolume and extent tree have a valid 1499 * commit_root to accounting later insert_dir_item() 1500 * 2) write all btree blocks onto disk 1501 * This is to make sure later btree modification will be cowed 1502 * Or commit_root can be populated and cause wrong qgroup numbers 1503 * In this simplified commit, we don't really care about other trees 1504 * like chunk and root tree, as they won't affect qgroup. 1505 * And we don't write super to avoid half committed status. 1506 */ 1507 ret = commit_cowonly_roots(trans); 1508 if (ret) 1509 goto out; 1510 switch_commit_roots(trans); 1511 ret = btrfs_write_and_wait_transaction(trans); 1512 if (ret) 1513 btrfs_handle_fs_error(fs_info, ret, 1514 "Error while writing out transaction for qgroup"); 1515 1516 out: 1517 mutex_unlock(&fs_info->tree_log_mutex); 1518 1519 /* 1520 * Force parent root to be updated, as we recorded it before so its 1521 * last_trans == cur_transid. 1522 * Or it won't be committed again onto disk after later 1523 * insert_dir_item() 1524 */ 1525 if (!ret) 1526 ret = record_root_in_trans(trans, parent, 1); 1527 return ret; 1528 } 1529 1530 /* 1531 * new snapshots need to be created at a very specific time in the 1532 * transaction commit. This does the actual creation. 1533 * 1534 * Note: 1535 * If the error which may affect the commitment of the current transaction 1536 * happens, we should return the error number. If the error which just affect 1537 * the creation of the pending snapshots, just return 0. 1538 */ 1539 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1540 struct btrfs_pending_snapshot *pending) 1541 { 1542 1543 struct btrfs_fs_info *fs_info = trans->fs_info; 1544 struct btrfs_key key; 1545 struct btrfs_root_item *new_root_item; 1546 struct btrfs_root *tree_root = fs_info->tree_root; 1547 struct btrfs_root *root = pending->root; 1548 struct btrfs_root *parent_root; 1549 struct btrfs_block_rsv *rsv; 1550 struct inode *parent_inode; 1551 struct btrfs_path *path; 1552 struct btrfs_dir_item *dir_item; 1553 struct dentry *dentry; 1554 struct extent_buffer *tmp; 1555 struct extent_buffer *old; 1556 struct timespec64 cur_time; 1557 int ret = 0; 1558 u64 to_reserve = 0; 1559 u64 index = 0; 1560 u64 objectid; 1561 u64 root_flags; 1562 1563 ASSERT(pending->path); 1564 path = pending->path; 1565 1566 ASSERT(pending->root_item); 1567 new_root_item = pending->root_item; 1568 1569 pending->error = btrfs_get_free_objectid(tree_root, &objectid); 1570 if (pending->error) 1571 goto no_free_objectid; 1572 1573 /* 1574 * Make qgroup to skip current new snapshot's qgroupid, as it is 1575 * accounted by later btrfs_qgroup_inherit(). 1576 */ 1577 btrfs_set_skip_qgroup(trans, objectid); 1578 1579 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1580 1581 if (to_reserve > 0) { 1582 pending->error = btrfs_block_rsv_add(root, 1583 &pending->block_rsv, 1584 to_reserve, 1585 BTRFS_RESERVE_NO_FLUSH); 1586 if (pending->error) 1587 goto clear_skip_qgroup; 1588 } 1589 1590 key.objectid = objectid; 1591 key.offset = (u64)-1; 1592 key.type = BTRFS_ROOT_ITEM_KEY; 1593 1594 rsv = trans->block_rsv; 1595 trans->block_rsv = &pending->block_rsv; 1596 trans->bytes_reserved = trans->block_rsv->reserved; 1597 trace_btrfs_space_reservation(fs_info, "transaction", 1598 trans->transid, 1599 trans->bytes_reserved, 1); 1600 dentry = pending->dentry; 1601 parent_inode = pending->dir; 1602 parent_root = BTRFS_I(parent_inode)->root; 1603 ret = record_root_in_trans(trans, parent_root, 0); 1604 if (ret) 1605 goto fail; 1606 cur_time = current_time(parent_inode); 1607 1608 /* 1609 * insert the directory item 1610 */ 1611 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1612 BUG_ON(ret); /* -ENOMEM */ 1613 1614 /* check if there is a file/dir which has the same name. */ 1615 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1616 btrfs_ino(BTRFS_I(parent_inode)), 1617 dentry->d_name.name, 1618 dentry->d_name.len, 0); 1619 if (dir_item != NULL && !IS_ERR(dir_item)) { 1620 pending->error = -EEXIST; 1621 goto dir_item_existed; 1622 } else if (IS_ERR(dir_item)) { 1623 ret = PTR_ERR(dir_item); 1624 btrfs_abort_transaction(trans, ret); 1625 goto fail; 1626 } 1627 btrfs_release_path(path); 1628 1629 /* 1630 * pull in the delayed directory update 1631 * and the delayed inode item 1632 * otherwise we corrupt the FS during 1633 * snapshot 1634 */ 1635 ret = btrfs_run_delayed_items(trans); 1636 if (ret) { /* Transaction aborted */ 1637 btrfs_abort_transaction(trans, ret); 1638 goto fail; 1639 } 1640 1641 ret = record_root_in_trans(trans, root, 0); 1642 if (ret) { 1643 btrfs_abort_transaction(trans, ret); 1644 goto fail; 1645 } 1646 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1647 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1648 btrfs_check_and_init_root_item(new_root_item); 1649 1650 root_flags = btrfs_root_flags(new_root_item); 1651 if (pending->readonly) 1652 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1653 else 1654 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1655 btrfs_set_root_flags(new_root_item, root_flags); 1656 1657 btrfs_set_root_generation_v2(new_root_item, 1658 trans->transid); 1659 generate_random_guid(new_root_item->uuid); 1660 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1661 BTRFS_UUID_SIZE); 1662 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1663 memset(new_root_item->received_uuid, 0, 1664 sizeof(new_root_item->received_uuid)); 1665 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1666 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1667 btrfs_set_root_stransid(new_root_item, 0); 1668 btrfs_set_root_rtransid(new_root_item, 0); 1669 } 1670 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1671 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1672 btrfs_set_root_otransid(new_root_item, trans->transid); 1673 1674 old = btrfs_lock_root_node(root); 1675 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1676 BTRFS_NESTING_COW); 1677 if (ret) { 1678 btrfs_tree_unlock(old); 1679 free_extent_buffer(old); 1680 btrfs_abort_transaction(trans, ret); 1681 goto fail; 1682 } 1683 1684 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1685 /* clean up in any case */ 1686 btrfs_tree_unlock(old); 1687 free_extent_buffer(old); 1688 if (ret) { 1689 btrfs_abort_transaction(trans, ret); 1690 goto fail; 1691 } 1692 /* see comments in should_cow_block() */ 1693 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1694 smp_wmb(); 1695 1696 btrfs_set_root_node(new_root_item, tmp); 1697 /* record when the snapshot was created in key.offset */ 1698 key.offset = trans->transid; 1699 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1700 btrfs_tree_unlock(tmp); 1701 free_extent_buffer(tmp); 1702 if (ret) { 1703 btrfs_abort_transaction(trans, ret); 1704 goto fail; 1705 } 1706 1707 /* 1708 * insert root back/forward references 1709 */ 1710 ret = btrfs_add_root_ref(trans, objectid, 1711 parent_root->root_key.objectid, 1712 btrfs_ino(BTRFS_I(parent_inode)), index, 1713 dentry->d_name.name, dentry->d_name.len); 1714 if (ret) { 1715 btrfs_abort_transaction(trans, ret); 1716 goto fail; 1717 } 1718 1719 key.offset = (u64)-1; 1720 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev); 1721 if (IS_ERR(pending->snap)) { 1722 ret = PTR_ERR(pending->snap); 1723 pending->snap = NULL; 1724 btrfs_abort_transaction(trans, ret); 1725 goto fail; 1726 } 1727 1728 ret = btrfs_reloc_post_snapshot(trans, pending); 1729 if (ret) { 1730 btrfs_abort_transaction(trans, ret); 1731 goto fail; 1732 } 1733 1734 /* 1735 * Do special qgroup accounting for snapshot, as we do some qgroup 1736 * snapshot hack to do fast snapshot. 1737 * To co-operate with that hack, we do hack again. 1738 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1739 */ 1740 ret = qgroup_account_snapshot(trans, root, parent_root, 1741 pending->inherit, objectid); 1742 if (ret < 0) 1743 goto fail; 1744 1745 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1746 dentry->d_name.len, BTRFS_I(parent_inode), 1747 &key, BTRFS_FT_DIR, index); 1748 /* We have check then name at the beginning, so it is impossible. */ 1749 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1750 if (ret) { 1751 btrfs_abort_transaction(trans, ret); 1752 goto fail; 1753 } 1754 1755 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1756 dentry->d_name.len * 2); 1757 parent_inode->i_mtime = parent_inode->i_ctime = 1758 current_time(parent_inode); 1759 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode)); 1760 if (ret) { 1761 btrfs_abort_transaction(trans, ret); 1762 goto fail; 1763 } 1764 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1765 BTRFS_UUID_KEY_SUBVOL, 1766 objectid); 1767 if (ret) { 1768 btrfs_abort_transaction(trans, ret); 1769 goto fail; 1770 } 1771 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1772 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1773 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1774 objectid); 1775 if (ret && ret != -EEXIST) { 1776 btrfs_abort_transaction(trans, ret); 1777 goto fail; 1778 } 1779 } 1780 1781 fail: 1782 pending->error = ret; 1783 dir_item_existed: 1784 trans->block_rsv = rsv; 1785 trans->bytes_reserved = 0; 1786 clear_skip_qgroup: 1787 btrfs_clear_skip_qgroup(trans); 1788 no_free_objectid: 1789 kfree(new_root_item); 1790 pending->root_item = NULL; 1791 btrfs_free_path(path); 1792 pending->path = NULL; 1793 1794 return ret; 1795 } 1796 1797 /* 1798 * create all the snapshots we've scheduled for creation 1799 */ 1800 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1801 { 1802 struct btrfs_pending_snapshot *pending, *next; 1803 struct list_head *head = &trans->transaction->pending_snapshots; 1804 int ret = 0; 1805 1806 list_for_each_entry_safe(pending, next, head, list) { 1807 list_del(&pending->list); 1808 ret = create_pending_snapshot(trans, pending); 1809 if (ret) 1810 break; 1811 } 1812 return ret; 1813 } 1814 1815 static void update_super_roots(struct btrfs_fs_info *fs_info) 1816 { 1817 struct btrfs_root_item *root_item; 1818 struct btrfs_super_block *super; 1819 1820 super = fs_info->super_copy; 1821 1822 root_item = &fs_info->chunk_root->root_item; 1823 super->chunk_root = root_item->bytenr; 1824 super->chunk_root_generation = root_item->generation; 1825 super->chunk_root_level = root_item->level; 1826 1827 root_item = &fs_info->tree_root->root_item; 1828 super->root = root_item->bytenr; 1829 super->generation = root_item->generation; 1830 super->root_level = root_item->level; 1831 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1832 super->cache_generation = root_item->generation; 1833 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags)) 1834 super->cache_generation = 0; 1835 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1836 super->uuid_tree_generation = root_item->generation; 1837 } 1838 1839 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1840 { 1841 struct btrfs_transaction *trans; 1842 int ret = 0; 1843 1844 spin_lock(&info->trans_lock); 1845 trans = info->running_transaction; 1846 if (trans) 1847 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1848 spin_unlock(&info->trans_lock); 1849 return ret; 1850 } 1851 1852 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1853 { 1854 struct btrfs_transaction *trans; 1855 int ret = 0; 1856 1857 spin_lock(&info->trans_lock); 1858 trans = info->running_transaction; 1859 if (trans) 1860 ret = is_transaction_blocked(trans); 1861 spin_unlock(&info->trans_lock); 1862 return ret; 1863 } 1864 1865 /* 1866 * commit transactions asynchronously. once btrfs_commit_transaction_async 1867 * returns, any subsequent transaction will not be allowed to join. 1868 */ 1869 struct btrfs_async_commit { 1870 struct btrfs_trans_handle *newtrans; 1871 struct work_struct work; 1872 }; 1873 1874 static void do_async_commit(struct work_struct *work) 1875 { 1876 struct btrfs_async_commit *ac = 1877 container_of(work, struct btrfs_async_commit, work); 1878 1879 /* 1880 * We've got freeze protection passed with the transaction. 1881 * Tell lockdep about it. 1882 */ 1883 if (ac->newtrans->type & __TRANS_FREEZABLE) 1884 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1885 1886 current->journal_info = ac->newtrans; 1887 1888 btrfs_commit_transaction(ac->newtrans); 1889 kfree(ac); 1890 } 1891 1892 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans) 1893 { 1894 struct btrfs_fs_info *fs_info = trans->fs_info; 1895 struct btrfs_async_commit *ac; 1896 struct btrfs_transaction *cur_trans; 1897 1898 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1899 if (!ac) 1900 return -ENOMEM; 1901 1902 INIT_WORK(&ac->work, do_async_commit); 1903 ac->newtrans = btrfs_join_transaction(trans->root); 1904 if (IS_ERR(ac->newtrans)) { 1905 int err = PTR_ERR(ac->newtrans); 1906 kfree(ac); 1907 return err; 1908 } 1909 1910 /* take transaction reference */ 1911 cur_trans = trans->transaction; 1912 refcount_inc(&cur_trans->use_count); 1913 1914 btrfs_end_transaction(trans); 1915 1916 /* 1917 * Tell lockdep we've released the freeze rwsem, since the 1918 * async commit thread will be the one to unlock it. 1919 */ 1920 if (ac->newtrans->type & __TRANS_FREEZABLE) 1921 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1922 1923 schedule_work(&ac->work); 1924 /* 1925 * Wait for the current transaction commit to start and block 1926 * subsequent transaction joins 1927 */ 1928 wait_event(fs_info->transaction_blocked_wait, 1929 cur_trans->state >= TRANS_STATE_COMMIT_START || 1930 TRANS_ABORTED(cur_trans)); 1931 if (current->journal_info == trans) 1932 current->journal_info = NULL; 1933 1934 btrfs_put_transaction(cur_trans); 1935 return 0; 1936 } 1937 1938 1939 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1940 { 1941 struct btrfs_fs_info *fs_info = trans->fs_info; 1942 struct btrfs_transaction *cur_trans = trans->transaction; 1943 1944 WARN_ON(refcount_read(&trans->use_count) > 1); 1945 1946 btrfs_abort_transaction(trans, err); 1947 1948 spin_lock(&fs_info->trans_lock); 1949 1950 /* 1951 * If the transaction is removed from the list, it means this 1952 * transaction has been committed successfully, so it is impossible 1953 * to call the cleanup function. 1954 */ 1955 BUG_ON(list_empty(&cur_trans->list)); 1956 1957 if (cur_trans == fs_info->running_transaction) { 1958 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1959 spin_unlock(&fs_info->trans_lock); 1960 wait_event(cur_trans->writer_wait, 1961 atomic_read(&cur_trans->num_writers) == 1); 1962 1963 spin_lock(&fs_info->trans_lock); 1964 } 1965 1966 /* 1967 * Now that we know no one else is still using the transaction we can 1968 * remove the transaction from the list of transactions. This avoids 1969 * the transaction kthread from cleaning up the transaction while some 1970 * other task is still using it, which could result in a use-after-free 1971 * on things like log trees, as it forces the transaction kthread to 1972 * wait for this transaction to be cleaned up by us. 1973 */ 1974 list_del_init(&cur_trans->list); 1975 1976 spin_unlock(&fs_info->trans_lock); 1977 1978 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1979 1980 spin_lock(&fs_info->trans_lock); 1981 if (cur_trans == fs_info->running_transaction) 1982 fs_info->running_transaction = NULL; 1983 spin_unlock(&fs_info->trans_lock); 1984 1985 if (trans->type & __TRANS_FREEZABLE) 1986 sb_end_intwrite(fs_info->sb); 1987 btrfs_put_transaction(cur_trans); 1988 btrfs_put_transaction(cur_trans); 1989 1990 trace_btrfs_transaction_commit(trans->root); 1991 1992 if (current->journal_info == trans) 1993 current->journal_info = NULL; 1994 btrfs_scrub_cancel(fs_info); 1995 1996 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1997 } 1998 1999 /* 2000 * Release reserved delayed ref space of all pending block groups of the 2001 * transaction and remove them from the list 2002 */ 2003 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 2004 { 2005 struct btrfs_fs_info *fs_info = trans->fs_info; 2006 struct btrfs_block_group *block_group, *tmp; 2007 2008 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 2009 btrfs_delayed_refs_rsv_release(fs_info, 1); 2010 list_del_init(&block_group->bg_list); 2011 } 2012 } 2013 2014 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 2015 { 2016 /* 2017 * We use writeback_inodes_sb here because if we used 2018 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2019 * Currently are holding the fs freeze lock, if we do an async flush 2020 * we'll do btrfs_join_transaction() and deadlock because we need to 2021 * wait for the fs freeze lock. Using the direct flushing we benefit 2022 * from already being in a transaction and our join_transaction doesn't 2023 * have to re-take the fs freeze lock. 2024 */ 2025 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2026 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2027 return 0; 2028 } 2029 2030 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 2031 { 2032 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2033 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 2034 } 2035 2036 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2037 { 2038 struct btrfs_fs_info *fs_info = trans->fs_info; 2039 struct btrfs_transaction *cur_trans = trans->transaction; 2040 struct btrfs_transaction *prev_trans = NULL; 2041 int ret; 2042 2043 ASSERT(refcount_read(&trans->use_count) == 1); 2044 2045 /* Stop the commit early if ->aborted is set */ 2046 if (TRANS_ABORTED(cur_trans)) { 2047 ret = cur_trans->aborted; 2048 btrfs_end_transaction(trans); 2049 return ret; 2050 } 2051 2052 btrfs_trans_release_metadata(trans); 2053 trans->block_rsv = NULL; 2054 2055 /* 2056 * We only want one transaction commit doing the flushing so we do not 2057 * waste a bunch of time on lock contention on the extent root node. 2058 */ 2059 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING, 2060 &cur_trans->delayed_refs.flags)) { 2061 /* 2062 * Make a pass through all the delayed refs we have so far. 2063 * Any running threads may add more while we are here. 2064 */ 2065 ret = btrfs_run_delayed_refs(trans, 0); 2066 if (ret) { 2067 btrfs_end_transaction(trans); 2068 return ret; 2069 } 2070 } 2071 2072 btrfs_create_pending_block_groups(trans); 2073 2074 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2075 int run_it = 0; 2076 2077 /* this mutex is also taken before trying to set 2078 * block groups readonly. We need to make sure 2079 * that nobody has set a block group readonly 2080 * after a extents from that block group have been 2081 * allocated for cache files. btrfs_set_block_group_ro 2082 * will wait for the transaction to commit if it 2083 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2084 * 2085 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2086 * only one process starts all the block group IO. It wouldn't 2087 * hurt to have more than one go through, but there's no 2088 * real advantage to it either. 2089 */ 2090 mutex_lock(&fs_info->ro_block_group_mutex); 2091 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2092 &cur_trans->flags)) 2093 run_it = 1; 2094 mutex_unlock(&fs_info->ro_block_group_mutex); 2095 2096 if (run_it) { 2097 ret = btrfs_start_dirty_block_groups(trans); 2098 if (ret) { 2099 btrfs_end_transaction(trans); 2100 return ret; 2101 } 2102 } 2103 } 2104 2105 spin_lock(&fs_info->trans_lock); 2106 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2107 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2108 2109 spin_unlock(&fs_info->trans_lock); 2110 refcount_inc(&cur_trans->use_count); 2111 2112 if (trans->in_fsync) 2113 want_state = TRANS_STATE_SUPER_COMMITTED; 2114 ret = btrfs_end_transaction(trans); 2115 wait_for_commit(cur_trans, want_state); 2116 2117 if (TRANS_ABORTED(cur_trans)) 2118 ret = cur_trans->aborted; 2119 2120 btrfs_put_transaction(cur_trans); 2121 2122 return ret; 2123 } 2124 2125 cur_trans->state = TRANS_STATE_COMMIT_START; 2126 wake_up(&fs_info->transaction_blocked_wait); 2127 2128 if (cur_trans->list.prev != &fs_info->trans_list) { 2129 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2130 2131 if (trans->in_fsync) 2132 want_state = TRANS_STATE_SUPER_COMMITTED; 2133 2134 prev_trans = list_entry(cur_trans->list.prev, 2135 struct btrfs_transaction, list); 2136 if (prev_trans->state < want_state) { 2137 refcount_inc(&prev_trans->use_count); 2138 spin_unlock(&fs_info->trans_lock); 2139 2140 wait_for_commit(prev_trans, want_state); 2141 2142 ret = READ_ONCE(prev_trans->aborted); 2143 2144 btrfs_put_transaction(prev_trans); 2145 if (ret) 2146 goto cleanup_transaction; 2147 } else { 2148 spin_unlock(&fs_info->trans_lock); 2149 } 2150 } else { 2151 spin_unlock(&fs_info->trans_lock); 2152 /* 2153 * The previous transaction was aborted and was already removed 2154 * from the list of transactions at fs_info->trans_list. So we 2155 * abort to prevent writing a new superblock that reflects a 2156 * corrupt state (pointing to trees with unwritten nodes/leafs). 2157 */ 2158 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) { 2159 ret = -EROFS; 2160 goto cleanup_transaction; 2161 } 2162 } 2163 2164 extwriter_counter_dec(cur_trans, trans->type); 2165 2166 ret = btrfs_start_delalloc_flush(fs_info); 2167 if (ret) 2168 goto cleanup_transaction; 2169 2170 ret = btrfs_run_delayed_items(trans); 2171 if (ret) 2172 goto cleanup_transaction; 2173 2174 wait_event(cur_trans->writer_wait, 2175 extwriter_counter_read(cur_trans) == 0); 2176 2177 /* some pending stuffs might be added after the previous flush. */ 2178 ret = btrfs_run_delayed_items(trans); 2179 if (ret) 2180 goto cleanup_transaction; 2181 2182 btrfs_wait_delalloc_flush(fs_info); 2183 2184 /* 2185 * Wait for all ordered extents started by a fast fsync that joined this 2186 * transaction. Otherwise if this transaction commits before the ordered 2187 * extents complete we lose logged data after a power failure. 2188 */ 2189 wait_event(cur_trans->pending_wait, 2190 atomic_read(&cur_trans->pending_ordered) == 0); 2191 2192 btrfs_scrub_pause(fs_info); 2193 /* 2194 * Ok now we need to make sure to block out any other joins while we 2195 * commit the transaction. We could have started a join before setting 2196 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2197 */ 2198 spin_lock(&fs_info->trans_lock); 2199 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2200 spin_unlock(&fs_info->trans_lock); 2201 wait_event(cur_trans->writer_wait, 2202 atomic_read(&cur_trans->num_writers) == 1); 2203 2204 if (TRANS_ABORTED(cur_trans)) { 2205 ret = cur_trans->aborted; 2206 goto scrub_continue; 2207 } 2208 /* 2209 * the reloc mutex makes sure that we stop 2210 * the balancing code from coming in and moving 2211 * extents around in the middle of the commit 2212 */ 2213 mutex_lock(&fs_info->reloc_mutex); 2214 2215 /* 2216 * We needn't worry about the delayed items because we will 2217 * deal with them in create_pending_snapshot(), which is the 2218 * core function of the snapshot creation. 2219 */ 2220 ret = create_pending_snapshots(trans); 2221 if (ret) 2222 goto unlock_reloc; 2223 2224 /* 2225 * We insert the dir indexes of the snapshots and update the inode 2226 * of the snapshots' parents after the snapshot creation, so there 2227 * are some delayed items which are not dealt with. Now deal with 2228 * them. 2229 * 2230 * We needn't worry that this operation will corrupt the snapshots, 2231 * because all the tree which are snapshoted will be forced to COW 2232 * the nodes and leaves. 2233 */ 2234 ret = btrfs_run_delayed_items(trans); 2235 if (ret) 2236 goto unlock_reloc; 2237 2238 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2239 if (ret) 2240 goto unlock_reloc; 2241 2242 /* 2243 * make sure none of the code above managed to slip in a 2244 * delayed item 2245 */ 2246 btrfs_assert_delayed_root_empty(fs_info); 2247 2248 WARN_ON(cur_trans != trans->transaction); 2249 2250 /* btrfs_commit_tree_roots is responsible for getting the 2251 * various roots consistent with each other. Every pointer 2252 * in the tree of tree roots has to point to the most up to date 2253 * root for every subvolume and other tree. So, we have to keep 2254 * the tree logging code from jumping in and changing any 2255 * of the trees. 2256 * 2257 * At this point in the commit, there can't be any tree-log 2258 * writers, but a little lower down we drop the trans mutex 2259 * and let new people in. By holding the tree_log_mutex 2260 * from now until after the super is written, we avoid races 2261 * with the tree-log code. 2262 */ 2263 mutex_lock(&fs_info->tree_log_mutex); 2264 2265 ret = commit_fs_roots(trans); 2266 if (ret) 2267 goto unlock_tree_log; 2268 2269 /* 2270 * Since the transaction is done, we can apply the pending changes 2271 * before the next transaction. 2272 */ 2273 btrfs_apply_pending_changes(fs_info); 2274 2275 /* commit_fs_roots gets rid of all the tree log roots, it is now 2276 * safe to free the root of tree log roots 2277 */ 2278 btrfs_free_log_root_tree(trans, fs_info); 2279 2280 /* 2281 * Since fs roots are all committed, we can get a quite accurate 2282 * new_roots. So let's do quota accounting. 2283 */ 2284 ret = btrfs_qgroup_account_extents(trans); 2285 if (ret < 0) 2286 goto unlock_tree_log; 2287 2288 ret = commit_cowonly_roots(trans); 2289 if (ret) 2290 goto unlock_tree_log; 2291 2292 /* 2293 * The tasks which save the space cache and inode cache may also 2294 * update ->aborted, check it. 2295 */ 2296 if (TRANS_ABORTED(cur_trans)) { 2297 ret = cur_trans->aborted; 2298 goto unlock_tree_log; 2299 } 2300 2301 cur_trans = fs_info->running_transaction; 2302 2303 btrfs_set_root_node(&fs_info->tree_root->root_item, 2304 fs_info->tree_root->node); 2305 list_add_tail(&fs_info->tree_root->dirty_list, 2306 &cur_trans->switch_commits); 2307 2308 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2309 fs_info->chunk_root->node); 2310 list_add_tail(&fs_info->chunk_root->dirty_list, 2311 &cur_trans->switch_commits); 2312 2313 switch_commit_roots(trans); 2314 2315 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2316 ASSERT(list_empty(&cur_trans->io_bgs)); 2317 update_super_roots(fs_info); 2318 2319 btrfs_set_super_log_root(fs_info->super_copy, 0); 2320 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2321 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2322 sizeof(*fs_info->super_copy)); 2323 2324 btrfs_commit_device_sizes(cur_trans); 2325 2326 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2327 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2328 2329 btrfs_trans_release_chunk_metadata(trans); 2330 2331 spin_lock(&fs_info->trans_lock); 2332 cur_trans->state = TRANS_STATE_UNBLOCKED; 2333 fs_info->running_transaction = NULL; 2334 spin_unlock(&fs_info->trans_lock); 2335 mutex_unlock(&fs_info->reloc_mutex); 2336 2337 wake_up(&fs_info->transaction_wait); 2338 2339 ret = btrfs_write_and_wait_transaction(trans); 2340 if (ret) { 2341 btrfs_handle_fs_error(fs_info, ret, 2342 "Error while writing out transaction"); 2343 /* 2344 * reloc_mutex has been unlocked, tree_log_mutex is still held 2345 * but we can't jump to unlock_tree_log causing double unlock 2346 */ 2347 mutex_unlock(&fs_info->tree_log_mutex); 2348 goto scrub_continue; 2349 } 2350 2351 /* 2352 * At this point, we should have written all the tree blocks allocated 2353 * in this transaction. So it's now safe to free the redirtyied extent 2354 * buffers. 2355 */ 2356 btrfs_free_redirty_list(cur_trans); 2357 2358 ret = write_all_supers(fs_info, 0); 2359 /* 2360 * the super is written, we can safely allow the tree-loggers 2361 * to go about their business 2362 */ 2363 mutex_unlock(&fs_info->tree_log_mutex); 2364 if (ret) 2365 goto scrub_continue; 2366 2367 /* 2368 * We needn't acquire the lock here because there is no other task 2369 * which can change it. 2370 */ 2371 cur_trans->state = TRANS_STATE_SUPER_COMMITTED; 2372 wake_up(&cur_trans->commit_wait); 2373 2374 btrfs_finish_extent_commit(trans); 2375 2376 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2377 btrfs_clear_space_info_full(fs_info); 2378 2379 fs_info->last_trans_committed = cur_trans->transid; 2380 /* 2381 * We needn't acquire the lock here because there is no other task 2382 * which can change it. 2383 */ 2384 cur_trans->state = TRANS_STATE_COMPLETED; 2385 wake_up(&cur_trans->commit_wait); 2386 2387 spin_lock(&fs_info->trans_lock); 2388 list_del_init(&cur_trans->list); 2389 spin_unlock(&fs_info->trans_lock); 2390 2391 btrfs_put_transaction(cur_trans); 2392 btrfs_put_transaction(cur_trans); 2393 2394 if (trans->type & __TRANS_FREEZABLE) 2395 sb_end_intwrite(fs_info->sb); 2396 2397 trace_btrfs_transaction_commit(trans->root); 2398 2399 btrfs_scrub_continue(fs_info); 2400 2401 if (current->journal_info == trans) 2402 current->journal_info = NULL; 2403 2404 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2405 2406 return ret; 2407 2408 unlock_tree_log: 2409 mutex_unlock(&fs_info->tree_log_mutex); 2410 unlock_reloc: 2411 mutex_unlock(&fs_info->reloc_mutex); 2412 scrub_continue: 2413 btrfs_scrub_continue(fs_info); 2414 cleanup_transaction: 2415 btrfs_trans_release_metadata(trans); 2416 btrfs_cleanup_pending_block_groups(trans); 2417 btrfs_trans_release_chunk_metadata(trans); 2418 trans->block_rsv = NULL; 2419 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2420 if (current->journal_info == trans) 2421 current->journal_info = NULL; 2422 cleanup_transaction(trans, ret); 2423 2424 return ret; 2425 } 2426 2427 /* 2428 * return < 0 if error 2429 * 0 if there are no more dead_roots at the time of call 2430 * 1 there are more to be processed, call me again 2431 * 2432 * The return value indicates there are certainly more snapshots to delete, but 2433 * if there comes a new one during processing, it may return 0. We don't mind, 2434 * because btrfs_commit_super will poke cleaner thread and it will process it a 2435 * few seconds later. 2436 */ 2437 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2438 { 2439 int ret; 2440 struct btrfs_fs_info *fs_info = root->fs_info; 2441 2442 spin_lock(&fs_info->trans_lock); 2443 if (list_empty(&fs_info->dead_roots)) { 2444 spin_unlock(&fs_info->trans_lock); 2445 return 0; 2446 } 2447 root = list_first_entry(&fs_info->dead_roots, 2448 struct btrfs_root, root_list); 2449 list_del_init(&root->root_list); 2450 spin_unlock(&fs_info->trans_lock); 2451 2452 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2453 2454 btrfs_kill_all_delayed_nodes(root); 2455 2456 if (btrfs_header_backref_rev(root->node) < 2457 BTRFS_MIXED_BACKREF_REV) 2458 ret = btrfs_drop_snapshot(root, 0, 0); 2459 else 2460 ret = btrfs_drop_snapshot(root, 1, 0); 2461 2462 btrfs_put_root(root); 2463 return (ret < 0) ? 0 : 1; 2464 } 2465 2466 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2467 { 2468 unsigned long prev; 2469 unsigned long bit; 2470 2471 prev = xchg(&fs_info->pending_changes, 0); 2472 if (!prev) 2473 return; 2474 2475 bit = 1 << BTRFS_PENDING_COMMIT; 2476 if (prev & bit) 2477 btrfs_debug(fs_info, "pending commit done"); 2478 prev &= ~bit; 2479 2480 if (prev) 2481 btrfs_warn(fs_info, 2482 "unknown pending changes left 0x%lx, ignoring", prev); 2483 } 2484