xref: /openbmc/linux/fs/btrfs/transaction.c (revision b34e08d5)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 
35 #define BTRFS_ROOT_TRANS_TAG 0
36 
37 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
38 	[TRANS_STATE_RUNNING]		= 0U,
39 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
40 					   __TRANS_START),
41 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
42 					   __TRANS_START |
43 					   __TRANS_ATTACH),
44 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
45 					   __TRANS_START |
46 					   __TRANS_ATTACH |
47 					   __TRANS_JOIN),
48 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
49 					   __TRANS_START |
50 					   __TRANS_ATTACH |
51 					   __TRANS_JOIN |
52 					   __TRANS_JOIN_NOLOCK),
53 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
54 					   __TRANS_START |
55 					   __TRANS_ATTACH |
56 					   __TRANS_JOIN |
57 					   __TRANS_JOIN_NOLOCK),
58 };
59 
60 void btrfs_put_transaction(struct btrfs_transaction *transaction)
61 {
62 	WARN_ON(atomic_read(&transaction->use_count) == 0);
63 	if (atomic_dec_and_test(&transaction->use_count)) {
64 		BUG_ON(!list_empty(&transaction->list));
65 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
66 		while (!list_empty(&transaction->pending_chunks)) {
67 			struct extent_map *em;
68 
69 			em = list_first_entry(&transaction->pending_chunks,
70 					      struct extent_map, list);
71 			list_del_init(&em->list);
72 			free_extent_map(em);
73 		}
74 		kmem_cache_free(btrfs_transaction_cachep, transaction);
75 	}
76 }
77 
78 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
79 					 struct btrfs_fs_info *fs_info)
80 {
81 	struct btrfs_root *root, *tmp;
82 
83 	down_write(&fs_info->commit_root_sem);
84 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
85 				 dirty_list) {
86 		list_del_init(&root->dirty_list);
87 		free_extent_buffer(root->commit_root);
88 		root->commit_root = btrfs_root_node(root);
89 		if (is_fstree(root->objectid))
90 			btrfs_unpin_free_ino(root);
91 	}
92 	up_write(&fs_info->commit_root_sem);
93 }
94 
95 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
96 					 unsigned int type)
97 {
98 	if (type & TRANS_EXTWRITERS)
99 		atomic_inc(&trans->num_extwriters);
100 }
101 
102 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
103 					 unsigned int type)
104 {
105 	if (type & TRANS_EXTWRITERS)
106 		atomic_dec(&trans->num_extwriters);
107 }
108 
109 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
110 					  unsigned int type)
111 {
112 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
113 }
114 
115 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
116 {
117 	return atomic_read(&trans->num_extwriters);
118 }
119 
120 /*
121  * either allocate a new transaction or hop into the existing one
122  */
123 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
124 {
125 	struct btrfs_transaction *cur_trans;
126 	struct btrfs_fs_info *fs_info = root->fs_info;
127 
128 	spin_lock(&fs_info->trans_lock);
129 loop:
130 	/* The file system has been taken offline. No new transactions. */
131 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
132 		spin_unlock(&fs_info->trans_lock);
133 		return -EROFS;
134 	}
135 
136 	cur_trans = fs_info->running_transaction;
137 	if (cur_trans) {
138 		if (cur_trans->aborted) {
139 			spin_unlock(&fs_info->trans_lock);
140 			return cur_trans->aborted;
141 		}
142 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
143 			spin_unlock(&fs_info->trans_lock);
144 			return -EBUSY;
145 		}
146 		atomic_inc(&cur_trans->use_count);
147 		atomic_inc(&cur_trans->num_writers);
148 		extwriter_counter_inc(cur_trans, type);
149 		spin_unlock(&fs_info->trans_lock);
150 		return 0;
151 	}
152 	spin_unlock(&fs_info->trans_lock);
153 
154 	/*
155 	 * If we are ATTACH, we just want to catch the current transaction,
156 	 * and commit it. If there is no transaction, just return ENOENT.
157 	 */
158 	if (type == TRANS_ATTACH)
159 		return -ENOENT;
160 
161 	/*
162 	 * JOIN_NOLOCK only happens during the transaction commit, so
163 	 * it is impossible that ->running_transaction is NULL
164 	 */
165 	BUG_ON(type == TRANS_JOIN_NOLOCK);
166 
167 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
168 	if (!cur_trans)
169 		return -ENOMEM;
170 
171 	spin_lock(&fs_info->trans_lock);
172 	if (fs_info->running_transaction) {
173 		/*
174 		 * someone started a transaction after we unlocked.  Make sure
175 		 * to redo the checks above
176 		 */
177 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
178 		goto loop;
179 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
180 		spin_unlock(&fs_info->trans_lock);
181 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
182 		return -EROFS;
183 	}
184 
185 	atomic_set(&cur_trans->num_writers, 1);
186 	extwriter_counter_init(cur_trans, type);
187 	init_waitqueue_head(&cur_trans->writer_wait);
188 	init_waitqueue_head(&cur_trans->commit_wait);
189 	cur_trans->state = TRANS_STATE_RUNNING;
190 	/*
191 	 * One for this trans handle, one so it will live on until we
192 	 * commit the transaction.
193 	 */
194 	atomic_set(&cur_trans->use_count, 2);
195 	cur_trans->start_time = get_seconds();
196 
197 	cur_trans->delayed_refs.href_root = RB_ROOT;
198 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
199 	cur_trans->delayed_refs.num_heads_ready = 0;
200 	cur_trans->delayed_refs.num_heads = 0;
201 	cur_trans->delayed_refs.flushing = 0;
202 	cur_trans->delayed_refs.run_delayed_start = 0;
203 
204 	/*
205 	 * although the tree mod log is per file system and not per transaction,
206 	 * the log must never go across transaction boundaries.
207 	 */
208 	smp_mb();
209 	if (!list_empty(&fs_info->tree_mod_seq_list))
210 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
211 			"creating a fresh transaction\n");
212 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
213 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
214 			"creating a fresh transaction\n");
215 	atomic64_set(&fs_info->tree_mod_seq, 0);
216 
217 	spin_lock_init(&cur_trans->delayed_refs.lock);
218 
219 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
220 	INIT_LIST_HEAD(&cur_trans->ordered_operations);
221 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
222 	INIT_LIST_HEAD(&cur_trans->switch_commits);
223 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
224 	extent_io_tree_init(&cur_trans->dirty_pages,
225 			     fs_info->btree_inode->i_mapping);
226 	fs_info->generation++;
227 	cur_trans->transid = fs_info->generation;
228 	fs_info->running_transaction = cur_trans;
229 	cur_trans->aborted = 0;
230 	spin_unlock(&fs_info->trans_lock);
231 
232 	return 0;
233 }
234 
235 /*
236  * this does all the record keeping required to make sure that a reference
237  * counted root is properly recorded in a given transaction.  This is required
238  * to make sure the old root from before we joined the transaction is deleted
239  * when the transaction commits
240  */
241 static int record_root_in_trans(struct btrfs_trans_handle *trans,
242 			       struct btrfs_root *root)
243 {
244 	if (root->ref_cows && root->last_trans < trans->transid) {
245 		WARN_ON(root == root->fs_info->extent_root);
246 		WARN_ON(root->commit_root != root->node);
247 
248 		/*
249 		 * see below for in_trans_setup usage rules
250 		 * we have the reloc mutex held now, so there
251 		 * is only one writer in this function
252 		 */
253 		root->in_trans_setup = 1;
254 
255 		/* make sure readers find in_trans_setup before
256 		 * they find our root->last_trans update
257 		 */
258 		smp_wmb();
259 
260 		spin_lock(&root->fs_info->fs_roots_radix_lock);
261 		if (root->last_trans == trans->transid) {
262 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
263 			return 0;
264 		}
265 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
266 			   (unsigned long)root->root_key.objectid,
267 			   BTRFS_ROOT_TRANS_TAG);
268 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
269 		root->last_trans = trans->transid;
270 
271 		/* this is pretty tricky.  We don't want to
272 		 * take the relocation lock in btrfs_record_root_in_trans
273 		 * unless we're really doing the first setup for this root in
274 		 * this transaction.
275 		 *
276 		 * Normally we'd use root->last_trans as a flag to decide
277 		 * if we want to take the expensive mutex.
278 		 *
279 		 * But, we have to set root->last_trans before we
280 		 * init the relocation root, otherwise, we trip over warnings
281 		 * in ctree.c.  The solution used here is to flag ourselves
282 		 * with root->in_trans_setup.  When this is 1, we're still
283 		 * fixing up the reloc trees and everyone must wait.
284 		 *
285 		 * When this is zero, they can trust root->last_trans and fly
286 		 * through btrfs_record_root_in_trans without having to take the
287 		 * lock.  smp_wmb() makes sure that all the writes above are
288 		 * done before we pop in the zero below
289 		 */
290 		btrfs_init_reloc_root(trans, root);
291 		smp_wmb();
292 		root->in_trans_setup = 0;
293 	}
294 	return 0;
295 }
296 
297 
298 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
299 			       struct btrfs_root *root)
300 {
301 	if (!root->ref_cows)
302 		return 0;
303 
304 	/*
305 	 * see record_root_in_trans for comments about in_trans_setup usage
306 	 * and barriers
307 	 */
308 	smp_rmb();
309 	if (root->last_trans == trans->transid &&
310 	    !root->in_trans_setup)
311 		return 0;
312 
313 	mutex_lock(&root->fs_info->reloc_mutex);
314 	record_root_in_trans(trans, root);
315 	mutex_unlock(&root->fs_info->reloc_mutex);
316 
317 	return 0;
318 }
319 
320 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
321 {
322 	return (trans->state >= TRANS_STATE_BLOCKED &&
323 		trans->state < TRANS_STATE_UNBLOCKED &&
324 		!trans->aborted);
325 }
326 
327 /* wait for commit against the current transaction to become unblocked
328  * when this is done, it is safe to start a new transaction, but the current
329  * transaction might not be fully on disk.
330  */
331 static void wait_current_trans(struct btrfs_root *root)
332 {
333 	struct btrfs_transaction *cur_trans;
334 
335 	spin_lock(&root->fs_info->trans_lock);
336 	cur_trans = root->fs_info->running_transaction;
337 	if (cur_trans && is_transaction_blocked(cur_trans)) {
338 		atomic_inc(&cur_trans->use_count);
339 		spin_unlock(&root->fs_info->trans_lock);
340 
341 		wait_event(root->fs_info->transaction_wait,
342 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
343 			   cur_trans->aborted);
344 		btrfs_put_transaction(cur_trans);
345 	} else {
346 		spin_unlock(&root->fs_info->trans_lock);
347 	}
348 }
349 
350 static int may_wait_transaction(struct btrfs_root *root, int type)
351 {
352 	if (root->fs_info->log_root_recovering)
353 		return 0;
354 
355 	if (type == TRANS_USERSPACE)
356 		return 1;
357 
358 	if (type == TRANS_START &&
359 	    !atomic_read(&root->fs_info->open_ioctl_trans))
360 		return 1;
361 
362 	return 0;
363 }
364 
365 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
366 {
367 	if (!root->fs_info->reloc_ctl ||
368 	    !root->ref_cows ||
369 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
370 	    root->reloc_root)
371 		return false;
372 
373 	return true;
374 }
375 
376 static struct btrfs_trans_handle *
377 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
378 		  enum btrfs_reserve_flush_enum flush)
379 {
380 	struct btrfs_trans_handle *h;
381 	struct btrfs_transaction *cur_trans;
382 	u64 num_bytes = 0;
383 	u64 qgroup_reserved = 0;
384 	bool reloc_reserved = false;
385 	int ret;
386 
387 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
388 		return ERR_PTR(-EROFS);
389 
390 	if (current->journal_info &&
391 	    current->journal_info != (void *)BTRFS_SEND_TRANS_STUB) {
392 		WARN_ON(type & TRANS_EXTWRITERS);
393 		h = current->journal_info;
394 		h->use_count++;
395 		WARN_ON(h->use_count > 2);
396 		h->orig_rsv = h->block_rsv;
397 		h->block_rsv = NULL;
398 		goto got_it;
399 	}
400 
401 	/*
402 	 * Do the reservation before we join the transaction so we can do all
403 	 * the appropriate flushing if need be.
404 	 */
405 	if (num_items > 0 && root != root->fs_info->chunk_root) {
406 		if (root->fs_info->quota_enabled &&
407 		    is_fstree(root->root_key.objectid)) {
408 			qgroup_reserved = num_items * root->leafsize;
409 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
410 			if (ret)
411 				return ERR_PTR(ret);
412 		}
413 
414 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
415 		/*
416 		 * Do the reservation for the relocation root creation
417 		 */
418 		if (unlikely(need_reserve_reloc_root(root))) {
419 			num_bytes += root->nodesize;
420 			reloc_reserved = true;
421 		}
422 
423 		ret = btrfs_block_rsv_add(root,
424 					  &root->fs_info->trans_block_rsv,
425 					  num_bytes, flush);
426 		if (ret)
427 			goto reserve_fail;
428 	}
429 again:
430 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
431 	if (!h) {
432 		ret = -ENOMEM;
433 		goto alloc_fail;
434 	}
435 
436 	/*
437 	 * If we are JOIN_NOLOCK we're already committing a transaction and
438 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
439 	 * because we're already holding a ref.  We need this because we could
440 	 * have raced in and did an fsync() on a file which can kick a commit
441 	 * and then we deadlock with somebody doing a freeze.
442 	 *
443 	 * If we are ATTACH, it means we just want to catch the current
444 	 * transaction and commit it, so we needn't do sb_start_intwrite().
445 	 */
446 	if (type & __TRANS_FREEZABLE)
447 		sb_start_intwrite(root->fs_info->sb);
448 
449 	if (may_wait_transaction(root, type))
450 		wait_current_trans(root);
451 
452 	do {
453 		ret = join_transaction(root, type);
454 		if (ret == -EBUSY) {
455 			wait_current_trans(root);
456 			if (unlikely(type == TRANS_ATTACH))
457 				ret = -ENOENT;
458 		}
459 	} while (ret == -EBUSY);
460 
461 	if (ret < 0) {
462 		/* We must get the transaction if we are JOIN_NOLOCK. */
463 		BUG_ON(type == TRANS_JOIN_NOLOCK);
464 		goto join_fail;
465 	}
466 
467 	cur_trans = root->fs_info->running_transaction;
468 
469 	h->transid = cur_trans->transid;
470 	h->transaction = cur_trans;
471 	h->blocks_used = 0;
472 	h->bytes_reserved = 0;
473 	h->root = root;
474 	h->delayed_ref_updates = 0;
475 	h->use_count = 1;
476 	h->adding_csums = 0;
477 	h->block_rsv = NULL;
478 	h->orig_rsv = NULL;
479 	h->aborted = 0;
480 	h->qgroup_reserved = 0;
481 	h->delayed_ref_elem.seq = 0;
482 	h->type = type;
483 	h->allocating_chunk = false;
484 	h->reloc_reserved = false;
485 	h->sync = false;
486 	INIT_LIST_HEAD(&h->qgroup_ref_list);
487 	INIT_LIST_HEAD(&h->new_bgs);
488 
489 	smp_mb();
490 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
491 	    may_wait_transaction(root, type)) {
492 		btrfs_commit_transaction(h, root);
493 		goto again;
494 	}
495 
496 	if (num_bytes) {
497 		trace_btrfs_space_reservation(root->fs_info, "transaction",
498 					      h->transid, num_bytes, 1);
499 		h->block_rsv = &root->fs_info->trans_block_rsv;
500 		h->bytes_reserved = num_bytes;
501 		h->reloc_reserved = reloc_reserved;
502 	}
503 	h->qgroup_reserved = qgroup_reserved;
504 
505 got_it:
506 	btrfs_record_root_in_trans(h, root);
507 
508 	if (!current->journal_info && type != TRANS_USERSPACE)
509 		current->journal_info = h;
510 	return h;
511 
512 join_fail:
513 	if (type & __TRANS_FREEZABLE)
514 		sb_end_intwrite(root->fs_info->sb);
515 	kmem_cache_free(btrfs_trans_handle_cachep, h);
516 alloc_fail:
517 	if (num_bytes)
518 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
519 					num_bytes);
520 reserve_fail:
521 	if (qgroup_reserved)
522 		btrfs_qgroup_free(root, qgroup_reserved);
523 	return ERR_PTR(ret);
524 }
525 
526 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
527 						   int num_items)
528 {
529 	return start_transaction(root, num_items, TRANS_START,
530 				 BTRFS_RESERVE_FLUSH_ALL);
531 }
532 
533 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
534 					struct btrfs_root *root, int num_items)
535 {
536 	return start_transaction(root, num_items, TRANS_START,
537 				 BTRFS_RESERVE_FLUSH_LIMIT);
538 }
539 
540 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
541 {
542 	return start_transaction(root, 0, TRANS_JOIN, 0);
543 }
544 
545 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
546 {
547 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
548 }
549 
550 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
551 {
552 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
553 }
554 
555 /*
556  * btrfs_attach_transaction() - catch the running transaction
557  *
558  * It is used when we want to commit the current the transaction, but
559  * don't want to start a new one.
560  *
561  * Note: If this function return -ENOENT, it just means there is no
562  * running transaction. But it is possible that the inactive transaction
563  * is still in the memory, not fully on disk. If you hope there is no
564  * inactive transaction in the fs when -ENOENT is returned, you should
565  * invoke
566  *     btrfs_attach_transaction_barrier()
567  */
568 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
569 {
570 	return start_transaction(root, 0, TRANS_ATTACH, 0);
571 }
572 
573 /*
574  * btrfs_attach_transaction_barrier() - catch the running transaction
575  *
576  * It is similar to the above function, the differentia is this one
577  * will wait for all the inactive transactions until they fully
578  * complete.
579  */
580 struct btrfs_trans_handle *
581 btrfs_attach_transaction_barrier(struct btrfs_root *root)
582 {
583 	struct btrfs_trans_handle *trans;
584 
585 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
586 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
587 		btrfs_wait_for_commit(root, 0);
588 
589 	return trans;
590 }
591 
592 /* wait for a transaction commit to be fully complete */
593 static noinline void wait_for_commit(struct btrfs_root *root,
594 				    struct btrfs_transaction *commit)
595 {
596 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
597 }
598 
599 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
600 {
601 	struct btrfs_transaction *cur_trans = NULL, *t;
602 	int ret = 0;
603 
604 	if (transid) {
605 		if (transid <= root->fs_info->last_trans_committed)
606 			goto out;
607 
608 		ret = -EINVAL;
609 		/* find specified transaction */
610 		spin_lock(&root->fs_info->trans_lock);
611 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
612 			if (t->transid == transid) {
613 				cur_trans = t;
614 				atomic_inc(&cur_trans->use_count);
615 				ret = 0;
616 				break;
617 			}
618 			if (t->transid > transid) {
619 				ret = 0;
620 				break;
621 			}
622 		}
623 		spin_unlock(&root->fs_info->trans_lock);
624 		/* The specified transaction doesn't exist */
625 		if (!cur_trans)
626 			goto out;
627 	} else {
628 		/* find newest transaction that is committing | committed */
629 		spin_lock(&root->fs_info->trans_lock);
630 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
631 					    list) {
632 			if (t->state >= TRANS_STATE_COMMIT_START) {
633 				if (t->state == TRANS_STATE_COMPLETED)
634 					break;
635 				cur_trans = t;
636 				atomic_inc(&cur_trans->use_count);
637 				break;
638 			}
639 		}
640 		spin_unlock(&root->fs_info->trans_lock);
641 		if (!cur_trans)
642 			goto out;  /* nothing committing|committed */
643 	}
644 
645 	wait_for_commit(root, cur_trans);
646 	btrfs_put_transaction(cur_trans);
647 out:
648 	return ret;
649 }
650 
651 void btrfs_throttle(struct btrfs_root *root)
652 {
653 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
654 		wait_current_trans(root);
655 }
656 
657 static int should_end_transaction(struct btrfs_trans_handle *trans,
658 				  struct btrfs_root *root)
659 {
660 	if (root->fs_info->global_block_rsv.space_info->full &&
661 	    btrfs_check_space_for_delayed_refs(trans, root))
662 		return 1;
663 
664 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
665 }
666 
667 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
668 				 struct btrfs_root *root)
669 {
670 	struct btrfs_transaction *cur_trans = trans->transaction;
671 	int updates;
672 	int err;
673 
674 	smp_mb();
675 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
676 	    cur_trans->delayed_refs.flushing)
677 		return 1;
678 
679 	updates = trans->delayed_ref_updates;
680 	trans->delayed_ref_updates = 0;
681 	if (updates) {
682 		err = btrfs_run_delayed_refs(trans, root, updates);
683 		if (err) /* Error code will also eval true */
684 			return err;
685 	}
686 
687 	return should_end_transaction(trans, root);
688 }
689 
690 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
691 			  struct btrfs_root *root, int throttle)
692 {
693 	struct btrfs_transaction *cur_trans = trans->transaction;
694 	struct btrfs_fs_info *info = root->fs_info;
695 	unsigned long cur = trans->delayed_ref_updates;
696 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
697 	int err = 0;
698 
699 	if (trans->use_count > 1) {
700 		trans->use_count--;
701 		trans->block_rsv = trans->orig_rsv;
702 		return 0;
703 	}
704 
705 	/*
706 	 * do the qgroup accounting as early as possible
707 	 */
708 	err = btrfs_delayed_refs_qgroup_accounting(trans, info);
709 
710 	btrfs_trans_release_metadata(trans, root);
711 	trans->block_rsv = NULL;
712 
713 	if (trans->qgroup_reserved) {
714 		/*
715 		 * the same root has to be passed here between start_transaction
716 		 * and end_transaction. Subvolume quota depends on this.
717 		 */
718 		btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
719 		trans->qgroup_reserved = 0;
720 	}
721 
722 	if (!list_empty(&trans->new_bgs))
723 		btrfs_create_pending_block_groups(trans, root);
724 
725 	trans->delayed_ref_updates = 0;
726 	if (!trans->sync && btrfs_should_throttle_delayed_refs(trans, root)) {
727 		cur = max_t(unsigned long, cur, 32);
728 		trans->delayed_ref_updates = 0;
729 		btrfs_run_delayed_refs(trans, root, cur);
730 	}
731 
732 	btrfs_trans_release_metadata(trans, root);
733 	trans->block_rsv = NULL;
734 
735 	if (!list_empty(&trans->new_bgs))
736 		btrfs_create_pending_block_groups(trans, root);
737 
738 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
739 	    should_end_transaction(trans, root) &&
740 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
741 		spin_lock(&info->trans_lock);
742 		if (cur_trans->state == TRANS_STATE_RUNNING)
743 			cur_trans->state = TRANS_STATE_BLOCKED;
744 		spin_unlock(&info->trans_lock);
745 	}
746 
747 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
748 		if (throttle)
749 			return btrfs_commit_transaction(trans, root);
750 		else
751 			wake_up_process(info->transaction_kthread);
752 	}
753 
754 	if (trans->type & __TRANS_FREEZABLE)
755 		sb_end_intwrite(root->fs_info->sb);
756 
757 	WARN_ON(cur_trans != info->running_transaction);
758 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
759 	atomic_dec(&cur_trans->num_writers);
760 	extwriter_counter_dec(cur_trans, trans->type);
761 
762 	smp_mb();
763 	if (waitqueue_active(&cur_trans->writer_wait))
764 		wake_up(&cur_trans->writer_wait);
765 	btrfs_put_transaction(cur_trans);
766 
767 	if (current->journal_info == trans)
768 		current->journal_info = NULL;
769 
770 	if (throttle)
771 		btrfs_run_delayed_iputs(root);
772 
773 	if (trans->aborted ||
774 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
775 		wake_up_process(info->transaction_kthread);
776 		err = -EIO;
777 	}
778 	assert_qgroups_uptodate(trans);
779 
780 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
781 	return err;
782 }
783 
784 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
785 			  struct btrfs_root *root)
786 {
787 	return __btrfs_end_transaction(trans, root, 0);
788 }
789 
790 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
791 				   struct btrfs_root *root)
792 {
793 	return __btrfs_end_transaction(trans, root, 1);
794 }
795 
796 /*
797  * when btree blocks are allocated, they have some corresponding bits set for
798  * them in one of two extent_io trees.  This is used to make sure all of
799  * those extents are sent to disk but does not wait on them
800  */
801 int btrfs_write_marked_extents(struct btrfs_root *root,
802 			       struct extent_io_tree *dirty_pages, int mark)
803 {
804 	int err = 0;
805 	int werr = 0;
806 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
807 	struct extent_state *cached_state = NULL;
808 	u64 start = 0;
809 	u64 end;
810 
811 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
812 				      mark, &cached_state)) {
813 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
814 				   mark, &cached_state, GFP_NOFS);
815 		cached_state = NULL;
816 		err = filemap_fdatawrite_range(mapping, start, end);
817 		if (err)
818 			werr = err;
819 		cond_resched();
820 		start = end + 1;
821 	}
822 	if (err)
823 		werr = err;
824 	return werr;
825 }
826 
827 /*
828  * when btree blocks are allocated, they have some corresponding bits set for
829  * them in one of two extent_io trees.  This is used to make sure all of
830  * those extents are on disk for transaction or log commit.  We wait
831  * on all the pages and clear them from the dirty pages state tree
832  */
833 int btrfs_wait_marked_extents(struct btrfs_root *root,
834 			      struct extent_io_tree *dirty_pages, int mark)
835 {
836 	int err = 0;
837 	int werr = 0;
838 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
839 	struct extent_state *cached_state = NULL;
840 	u64 start = 0;
841 	u64 end;
842 
843 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
844 				      EXTENT_NEED_WAIT, &cached_state)) {
845 		clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
846 				 0, 0, &cached_state, GFP_NOFS);
847 		err = filemap_fdatawait_range(mapping, start, end);
848 		if (err)
849 			werr = err;
850 		cond_resched();
851 		start = end + 1;
852 	}
853 	if (err)
854 		werr = err;
855 	return werr;
856 }
857 
858 /*
859  * when btree blocks are allocated, they have some corresponding bits set for
860  * them in one of two extent_io trees.  This is used to make sure all of
861  * those extents are on disk for transaction or log commit
862  */
863 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
864 				struct extent_io_tree *dirty_pages, int mark)
865 {
866 	int ret;
867 	int ret2;
868 	struct blk_plug plug;
869 
870 	blk_start_plug(&plug);
871 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
872 	blk_finish_plug(&plug);
873 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
874 
875 	if (ret)
876 		return ret;
877 	if (ret2)
878 		return ret2;
879 	return 0;
880 }
881 
882 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
883 				     struct btrfs_root *root)
884 {
885 	if (!trans || !trans->transaction) {
886 		struct inode *btree_inode;
887 		btree_inode = root->fs_info->btree_inode;
888 		return filemap_write_and_wait(btree_inode->i_mapping);
889 	}
890 	return btrfs_write_and_wait_marked_extents(root,
891 					   &trans->transaction->dirty_pages,
892 					   EXTENT_DIRTY);
893 }
894 
895 /*
896  * this is used to update the root pointer in the tree of tree roots.
897  *
898  * But, in the case of the extent allocation tree, updating the root
899  * pointer may allocate blocks which may change the root of the extent
900  * allocation tree.
901  *
902  * So, this loops and repeats and makes sure the cowonly root didn't
903  * change while the root pointer was being updated in the metadata.
904  */
905 static int update_cowonly_root(struct btrfs_trans_handle *trans,
906 			       struct btrfs_root *root)
907 {
908 	int ret;
909 	u64 old_root_bytenr;
910 	u64 old_root_used;
911 	struct btrfs_root *tree_root = root->fs_info->tree_root;
912 
913 	old_root_used = btrfs_root_used(&root->root_item);
914 	btrfs_write_dirty_block_groups(trans, root);
915 
916 	while (1) {
917 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
918 		if (old_root_bytenr == root->node->start &&
919 		    old_root_used == btrfs_root_used(&root->root_item))
920 			break;
921 
922 		btrfs_set_root_node(&root->root_item, root->node);
923 		ret = btrfs_update_root(trans, tree_root,
924 					&root->root_key,
925 					&root->root_item);
926 		if (ret)
927 			return ret;
928 
929 		old_root_used = btrfs_root_used(&root->root_item);
930 		ret = btrfs_write_dirty_block_groups(trans, root);
931 		if (ret)
932 			return ret;
933 	}
934 
935 	return 0;
936 }
937 
938 /*
939  * update all the cowonly tree roots on disk
940  *
941  * The error handling in this function may not be obvious. Any of the
942  * failures will cause the file system to go offline. We still need
943  * to clean up the delayed refs.
944  */
945 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
946 					 struct btrfs_root *root)
947 {
948 	struct btrfs_fs_info *fs_info = root->fs_info;
949 	struct list_head *next;
950 	struct extent_buffer *eb;
951 	int ret;
952 
953 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
954 	if (ret)
955 		return ret;
956 
957 	eb = btrfs_lock_root_node(fs_info->tree_root);
958 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
959 			      0, &eb);
960 	btrfs_tree_unlock(eb);
961 	free_extent_buffer(eb);
962 
963 	if (ret)
964 		return ret;
965 
966 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
967 	if (ret)
968 		return ret;
969 
970 	ret = btrfs_run_dev_stats(trans, root->fs_info);
971 	if (ret)
972 		return ret;
973 	ret = btrfs_run_dev_replace(trans, root->fs_info);
974 	if (ret)
975 		return ret;
976 	ret = btrfs_run_qgroups(trans, root->fs_info);
977 	if (ret)
978 		return ret;
979 
980 	/* run_qgroups might have added some more refs */
981 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
982 	if (ret)
983 		return ret;
984 
985 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
986 		next = fs_info->dirty_cowonly_roots.next;
987 		list_del_init(next);
988 		root = list_entry(next, struct btrfs_root, dirty_list);
989 
990 		if (root != fs_info->extent_root)
991 			list_add_tail(&root->dirty_list,
992 				      &trans->transaction->switch_commits);
993 		ret = update_cowonly_root(trans, root);
994 		if (ret)
995 			return ret;
996 	}
997 
998 	list_add_tail(&fs_info->extent_root->dirty_list,
999 		      &trans->transaction->switch_commits);
1000 	btrfs_after_dev_replace_commit(fs_info);
1001 
1002 	return 0;
1003 }
1004 
1005 /*
1006  * dead roots are old snapshots that need to be deleted.  This allocates
1007  * a dirty root struct and adds it into the list of dead roots that need to
1008  * be deleted
1009  */
1010 void btrfs_add_dead_root(struct btrfs_root *root)
1011 {
1012 	spin_lock(&root->fs_info->trans_lock);
1013 	if (list_empty(&root->root_list))
1014 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1015 	spin_unlock(&root->fs_info->trans_lock);
1016 }
1017 
1018 /*
1019  * update all the cowonly tree roots on disk
1020  */
1021 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1022 				    struct btrfs_root *root)
1023 {
1024 	struct btrfs_root *gang[8];
1025 	struct btrfs_fs_info *fs_info = root->fs_info;
1026 	int i;
1027 	int ret;
1028 	int err = 0;
1029 
1030 	spin_lock(&fs_info->fs_roots_radix_lock);
1031 	while (1) {
1032 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1033 						 (void **)gang, 0,
1034 						 ARRAY_SIZE(gang),
1035 						 BTRFS_ROOT_TRANS_TAG);
1036 		if (ret == 0)
1037 			break;
1038 		for (i = 0; i < ret; i++) {
1039 			root = gang[i];
1040 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1041 					(unsigned long)root->root_key.objectid,
1042 					BTRFS_ROOT_TRANS_TAG);
1043 			spin_unlock(&fs_info->fs_roots_radix_lock);
1044 
1045 			btrfs_free_log(trans, root);
1046 			btrfs_update_reloc_root(trans, root);
1047 			btrfs_orphan_commit_root(trans, root);
1048 
1049 			btrfs_save_ino_cache(root, trans);
1050 
1051 			/* see comments in should_cow_block() */
1052 			root->force_cow = 0;
1053 			smp_wmb();
1054 
1055 			if (root->commit_root != root->node) {
1056 				list_add_tail(&root->dirty_list,
1057 					&trans->transaction->switch_commits);
1058 				btrfs_set_root_node(&root->root_item,
1059 						    root->node);
1060 			}
1061 
1062 			err = btrfs_update_root(trans, fs_info->tree_root,
1063 						&root->root_key,
1064 						&root->root_item);
1065 			spin_lock(&fs_info->fs_roots_radix_lock);
1066 			if (err)
1067 				break;
1068 		}
1069 	}
1070 	spin_unlock(&fs_info->fs_roots_radix_lock);
1071 	return err;
1072 }
1073 
1074 /*
1075  * defrag a given btree.
1076  * Every leaf in the btree is read and defragged.
1077  */
1078 int btrfs_defrag_root(struct btrfs_root *root)
1079 {
1080 	struct btrfs_fs_info *info = root->fs_info;
1081 	struct btrfs_trans_handle *trans;
1082 	int ret;
1083 
1084 	if (xchg(&root->defrag_running, 1))
1085 		return 0;
1086 
1087 	while (1) {
1088 		trans = btrfs_start_transaction(root, 0);
1089 		if (IS_ERR(trans))
1090 			return PTR_ERR(trans);
1091 
1092 		ret = btrfs_defrag_leaves(trans, root);
1093 
1094 		btrfs_end_transaction(trans, root);
1095 		btrfs_btree_balance_dirty(info->tree_root);
1096 		cond_resched();
1097 
1098 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1099 			break;
1100 
1101 		if (btrfs_defrag_cancelled(root->fs_info)) {
1102 			pr_debug("BTRFS: defrag_root cancelled\n");
1103 			ret = -EAGAIN;
1104 			break;
1105 		}
1106 	}
1107 	root->defrag_running = 0;
1108 	return ret;
1109 }
1110 
1111 /*
1112  * new snapshots need to be created at a very specific time in the
1113  * transaction commit.  This does the actual creation.
1114  *
1115  * Note:
1116  * If the error which may affect the commitment of the current transaction
1117  * happens, we should return the error number. If the error which just affect
1118  * the creation of the pending snapshots, just return 0.
1119  */
1120 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1121 				   struct btrfs_fs_info *fs_info,
1122 				   struct btrfs_pending_snapshot *pending)
1123 {
1124 	struct btrfs_key key;
1125 	struct btrfs_root_item *new_root_item;
1126 	struct btrfs_root *tree_root = fs_info->tree_root;
1127 	struct btrfs_root *root = pending->root;
1128 	struct btrfs_root *parent_root;
1129 	struct btrfs_block_rsv *rsv;
1130 	struct inode *parent_inode;
1131 	struct btrfs_path *path;
1132 	struct btrfs_dir_item *dir_item;
1133 	struct dentry *dentry;
1134 	struct extent_buffer *tmp;
1135 	struct extent_buffer *old;
1136 	struct timespec cur_time = CURRENT_TIME;
1137 	int ret = 0;
1138 	u64 to_reserve = 0;
1139 	u64 index = 0;
1140 	u64 objectid;
1141 	u64 root_flags;
1142 	uuid_le new_uuid;
1143 
1144 	path = btrfs_alloc_path();
1145 	if (!path) {
1146 		pending->error = -ENOMEM;
1147 		return 0;
1148 	}
1149 
1150 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1151 	if (!new_root_item) {
1152 		pending->error = -ENOMEM;
1153 		goto root_item_alloc_fail;
1154 	}
1155 
1156 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1157 	if (pending->error)
1158 		goto no_free_objectid;
1159 
1160 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1161 
1162 	if (to_reserve > 0) {
1163 		pending->error = btrfs_block_rsv_add(root,
1164 						     &pending->block_rsv,
1165 						     to_reserve,
1166 						     BTRFS_RESERVE_NO_FLUSH);
1167 		if (pending->error)
1168 			goto no_free_objectid;
1169 	}
1170 
1171 	pending->error = btrfs_qgroup_inherit(trans, fs_info,
1172 					      root->root_key.objectid,
1173 					      objectid, pending->inherit);
1174 	if (pending->error)
1175 		goto no_free_objectid;
1176 
1177 	key.objectid = objectid;
1178 	key.offset = (u64)-1;
1179 	key.type = BTRFS_ROOT_ITEM_KEY;
1180 
1181 	rsv = trans->block_rsv;
1182 	trans->block_rsv = &pending->block_rsv;
1183 	trans->bytes_reserved = trans->block_rsv->reserved;
1184 
1185 	dentry = pending->dentry;
1186 	parent_inode = pending->dir;
1187 	parent_root = BTRFS_I(parent_inode)->root;
1188 	record_root_in_trans(trans, parent_root);
1189 
1190 	/*
1191 	 * insert the directory item
1192 	 */
1193 	ret = btrfs_set_inode_index(parent_inode, &index);
1194 	BUG_ON(ret); /* -ENOMEM */
1195 
1196 	/* check if there is a file/dir which has the same name. */
1197 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1198 					 btrfs_ino(parent_inode),
1199 					 dentry->d_name.name,
1200 					 dentry->d_name.len, 0);
1201 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1202 		pending->error = -EEXIST;
1203 		goto dir_item_existed;
1204 	} else if (IS_ERR(dir_item)) {
1205 		ret = PTR_ERR(dir_item);
1206 		btrfs_abort_transaction(trans, root, ret);
1207 		goto fail;
1208 	}
1209 	btrfs_release_path(path);
1210 
1211 	/*
1212 	 * pull in the delayed directory update
1213 	 * and the delayed inode item
1214 	 * otherwise we corrupt the FS during
1215 	 * snapshot
1216 	 */
1217 	ret = btrfs_run_delayed_items(trans, root);
1218 	if (ret) {	/* Transaction aborted */
1219 		btrfs_abort_transaction(trans, root, ret);
1220 		goto fail;
1221 	}
1222 
1223 	record_root_in_trans(trans, root);
1224 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1225 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1226 	btrfs_check_and_init_root_item(new_root_item);
1227 
1228 	root_flags = btrfs_root_flags(new_root_item);
1229 	if (pending->readonly)
1230 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1231 	else
1232 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1233 	btrfs_set_root_flags(new_root_item, root_flags);
1234 
1235 	btrfs_set_root_generation_v2(new_root_item,
1236 			trans->transid);
1237 	uuid_le_gen(&new_uuid);
1238 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1239 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1240 			BTRFS_UUID_SIZE);
1241 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1242 		memset(new_root_item->received_uuid, 0,
1243 		       sizeof(new_root_item->received_uuid));
1244 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1245 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1246 		btrfs_set_root_stransid(new_root_item, 0);
1247 		btrfs_set_root_rtransid(new_root_item, 0);
1248 	}
1249 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1250 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1251 	btrfs_set_root_otransid(new_root_item, trans->transid);
1252 
1253 	old = btrfs_lock_root_node(root);
1254 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1255 	if (ret) {
1256 		btrfs_tree_unlock(old);
1257 		free_extent_buffer(old);
1258 		btrfs_abort_transaction(trans, root, ret);
1259 		goto fail;
1260 	}
1261 
1262 	btrfs_set_lock_blocking(old);
1263 
1264 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1265 	/* clean up in any case */
1266 	btrfs_tree_unlock(old);
1267 	free_extent_buffer(old);
1268 	if (ret) {
1269 		btrfs_abort_transaction(trans, root, ret);
1270 		goto fail;
1271 	}
1272 
1273 	/* see comments in should_cow_block() */
1274 	root->force_cow = 1;
1275 	smp_wmb();
1276 
1277 	btrfs_set_root_node(new_root_item, tmp);
1278 	/* record when the snapshot was created in key.offset */
1279 	key.offset = trans->transid;
1280 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1281 	btrfs_tree_unlock(tmp);
1282 	free_extent_buffer(tmp);
1283 	if (ret) {
1284 		btrfs_abort_transaction(trans, root, ret);
1285 		goto fail;
1286 	}
1287 
1288 	/*
1289 	 * insert root back/forward references
1290 	 */
1291 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1292 				 parent_root->root_key.objectid,
1293 				 btrfs_ino(parent_inode), index,
1294 				 dentry->d_name.name, dentry->d_name.len);
1295 	if (ret) {
1296 		btrfs_abort_transaction(trans, root, ret);
1297 		goto fail;
1298 	}
1299 
1300 	key.offset = (u64)-1;
1301 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1302 	if (IS_ERR(pending->snap)) {
1303 		ret = PTR_ERR(pending->snap);
1304 		btrfs_abort_transaction(trans, root, ret);
1305 		goto fail;
1306 	}
1307 
1308 	ret = btrfs_reloc_post_snapshot(trans, pending);
1309 	if (ret) {
1310 		btrfs_abort_transaction(trans, root, ret);
1311 		goto fail;
1312 	}
1313 
1314 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1315 	if (ret) {
1316 		btrfs_abort_transaction(trans, root, ret);
1317 		goto fail;
1318 	}
1319 
1320 	ret = btrfs_insert_dir_item(trans, parent_root,
1321 				    dentry->d_name.name, dentry->d_name.len,
1322 				    parent_inode, &key,
1323 				    BTRFS_FT_DIR, index);
1324 	/* We have check then name at the beginning, so it is impossible. */
1325 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1326 	if (ret) {
1327 		btrfs_abort_transaction(trans, root, ret);
1328 		goto fail;
1329 	}
1330 
1331 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1332 					 dentry->d_name.len * 2);
1333 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1334 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1335 	if (ret) {
1336 		btrfs_abort_transaction(trans, root, ret);
1337 		goto fail;
1338 	}
1339 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1340 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1341 	if (ret) {
1342 		btrfs_abort_transaction(trans, root, ret);
1343 		goto fail;
1344 	}
1345 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1346 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1347 					  new_root_item->received_uuid,
1348 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1349 					  objectid);
1350 		if (ret && ret != -EEXIST) {
1351 			btrfs_abort_transaction(trans, root, ret);
1352 			goto fail;
1353 		}
1354 	}
1355 fail:
1356 	pending->error = ret;
1357 dir_item_existed:
1358 	trans->block_rsv = rsv;
1359 	trans->bytes_reserved = 0;
1360 no_free_objectid:
1361 	kfree(new_root_item);
1362 root_item_alloc_fail:
1363 	btrfs_free_path(path);
1364 	return ret;
1365 }
1366 
1367 /*
1368  * create all the snapshots we've scheduled for creation
1369  */
1370 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1371 					     struct btrfs_fs_info *fs_info)
1372 {
1373 	struct btrfs_pending_snapshot *pending, *next;
1374 	struct list_head *head = &trans->transaction->pending_snapshots;
1375 	int ret = 0;
1376 
1377 	list_for_each_entry_safe(pending, next, head, list) {
1378 		list_del(&pending->list);
1379 		ret = create_pending_snapshot(trans, fs_info, pending);
1380 		if (ret)
1381 			break;
1382 	}
1383 	return ret;
1384 }
1385 
1386 static void update_super_roots(struct btrfs_root *root)
1387 {
1388 	struct btrfs_root_item *root_item;
1389 	struct btrfs_super_block *super;
1390 
1391 	super = root->fs_info->super_copy;
1392 
1393 	root_item = &root->fs_info->chunk_root->root_item;
1394 	super->chunk_root = root_item->bytenr;
1395 	super->chunk_root_generation = root_item->generation;
1396 	super->chunk_root_level = root_item->level;
1397 
1398 	root_item = &root->fs_info->tree_root->root_item;
1399 	super->root = root_item->bytenr;
1400 	super->generation = root_item->generation;
1401 	super->root_level = root_item->level;
1402 	if (btrfs_test_opt(root, SPACE_CACHE))
1403 		super->cache_generation = root_item->generation;
1404 	if (root->fs_info->update_uuid_tree_gen)
1405 		super->uuid_tree_generation = root_item->generation;
1406 }
1407 
1408 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1409 {
1410 	struct btrfs_transaction *trans;
1411 	int ret = 0;
1412 
1413 	spin_lock(&info->trans_lock);
1414 	trans = info->running_transaction;
1415 	if (trans)
1416 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1417 	spin_unlock(&info->trans_lock);
1418 	return ret;
1419 }
1420 
1421 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1422 {
1423 	struct btrfs_transaction *trans;
1424 	int ret = 0;
1425 
1426 	spin_lock(&info->trans_lock);
1427 	trans = info->running_transaction;
1428 	if (trans)
1429 		ret = is_transaction_blocked(trans);
1430 	spin_unlock(&info->trans_lock);
1431 	return ret;
1432 }
1433 
1434 /*
1435  * wait for the current transaction commit to start and block subsequent
1436  * transaction joins
1437  */
1438 static void wait_current_trans_commit_start(struct btrfs_root *root,
1439 					    struct btrfs_transaction *trans)
1440 {
1441 	wait_event(root->fs_info->transaction_blocked_wait,
1442 		   trans->state >= TRANS_STATE_COMMIT_START ||
1443 		   trans->aborted);
1444 }
1445 
1446 /*
1447  * wait for the current transaction to start and then become unblocked.
1448  * caller holds ref.
1449  */
1450 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1451 					 struct btrfs_transaction *trans)
1452 {
1453 	wait_event(root->fs_info->transaction_wait,
1454 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1455 		   trans->aborted);
1456 }
1457 
1458 /*
1459  * commit transactions asynchronously. once btrfs_commit_transaction_async
1460  * returns, any subsequent transaction will not be allowed to join.
1461  */
1462 struct btrfs_async_commit {
1463 	struct btrfs_trans_handle *newtrans;
1464 	struct btrfs_root *root;
1465 	struct work_struct work;
1466 };
1467 
1468 static void do_async_commit(struct work_struct *work)
1469 {
1470 	struct btrfs_async_commit *ac =
1471 		container_of(work, struct btrfs_async_commit, work);
1472 
1473 	/*
1474 	 * We've got freeze protection passed with the transaction.
1475 	 * Tell lockdep about it.
1476 	 */
1477 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1478 		rwsem_acquire_read(
1479 		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1480 		     0, 1, _THIS_IP_);
1481 
1482 	current->journal_info = ac->newtrans;
1483 
1484 	btrfs_commit_transaction(ac->newtrans, ac->root);
1485 	kfree(ac);
1486 }
1487 
1488 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1489 				   struct btrfs_root *root,
1490 				   int wait_for_unblock)
1491 {
1492 	struct btrfs_async_commit *ac;
1493 	struct btrfs_transaction *cur_trans;
1494 
1495 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1496 	if (!ac)
1497 		return -ENOMEM;
1498 
1499 	INIT_WORK(&ac->work, do_async_commit);
1500 	ac->root = root;
1501 	ac->newtrans = btrfs_join_transaction(root);
1502 	if (IS_ERR(ac->newtrans)) {
1503 		int err = PTR_ERR(ac->newtrans);
1504 		kfree(ac);
1505 		return err;
1506 	}
1507 
1508 	/* take transaction reference */
1509 	cur_trans = trans->transaction;
1510 	atomic_inc(&cur_trans->use_count);
1511 
1512 	btrfs_end_transaction(trans, root);
1513 
1514 	/*
1515 	 * Tell lockdep we've released the freeze rwsem, since the
1516 	 * async commit thread will be the one to unlock it.
1517 	 */
1518 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1519 		rwsem_release(
1520 			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1521 			1, _THIS_IP_);
1522 
1523 	schedule_work(&ac->work);
1524 
1525 	/* wait for transaction to start and unblock */
1526 	if (wait_for_unblock)
1527 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1528 	else
1529 		wait_current_trans_commit_start(root, cur_trans);
1530 
1531 	if (current->journal_info == trans)
1532 		current->journal_info = NULL;
1533 
1534 	btrfs_put_transaction(cur_trans);
1535 	return 0;
1536 }
1537 
1538 
1539 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1540 				struct btrfs_root *root, int err)
1541 {
1542 	struct btrfs_transaction *cur_trans = trans->transaction;
1543 	DEFINE_WAIT(wait);
1544 
1545 	WARN_ON(trans->use_count > 1);
1546 
1547 	btrfs_abort_transaction(trans, root, err);
1548 
1549 	spin_lock(&root->fs_info->trans_lock);
1550 
1551 	/*
1552 	 * If the transaction is removed from the list, it means this
1553 	 * transaction has been committed successfully, so it is impossible
1554 	 * to call the cleanup function.
1555 	 */
1556 	BUG_ON(list_empty(&cur_trans->list));
1557 
1558 	list_del_init(&cur_trans->list);
1559 	if (cur_trans == root->fs_info->running_transaction) {
1560 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1561 		spin_unlock(&root->fs_info->trans_lock);
1562 		wait_event(cur_trans->writer_wait,
1563 			   atomic_read(&cur_trans->num_writers) == 1);
1564 
1565 		spin_lock(&root->fs_info->trans_lock);
1566 	}
1567 	spin_unlock(&root->fs_info->trans_lock);
1568 
1569 	btrfs_cleanup_one_transaction(trans->transaction, root);
1570 
1571 	spin_lock(&root->fs_info->trans_lock);
1572 	if (cur_trans == root->fs_info->running_transaction)
1573 		root->fs_info->running_transaction = NULL;
1574 	spin_unlock(&root->fs_info->trans_lock);
1575 
1576 	if (trans->type & __TRANS_FREEZABLE)
1577 		sb_end_intwrite(root->fs_info->sb);
1578 	btrfs_put_transaction(cur_trans);
1579 	btrfs_put_transaction(cur_trans);
1580 
1581 	trace_btrfs_transaction_commit(root);
1582 
1583 	if (current->journal_info == trans)
1584 		current->journal_info = NULL;
1585 	btrfs_scrub_cancel(root->fs_info);
1586 
1587 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1588 }
1589 
1590 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1591 					  struct btrfs_root *root)
1592 {
1593 	int ret;
1594 
1595 	ret = btrfs_run_delayed_items(trans, root);
1596 	/*
1597 	 * running the delayed items may have added new refs. account
1598 	 * them now so that they hinder processing of more delayed refs
1599 	 * as little as possible.
1600 	 */
1601 	if (ret) {
1602 		btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1603 		return ret;
1604 	}
1605 
1606 	ret = btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1607 	if (ret)
1608 		return ret;
1609 
1610 	/*
1611 	 * rename don't use btrfs_join_transaction, so, once we
1612 	 * set the transaction to blocked above, we aren't going
1613 	 * to get any new ordered operations.  We can safely run
1614 	 * it here and no for sure that nothing new will be added
1615 	 * to the list
1616 	 */
1617 	ret = btrfs_run_ordered_operations(trans, root, 1);
1618 
1619 	return ret;
1620 }
1621 
1622 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1623 {
1624 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1625 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1626 	return 0;
1627 }
1628 
1629 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1630 {
1631 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1632 		btrfs_wait_ordered_roots(fs_info, -1);
1633 }
1634 
1635 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1636 			     struct btrfs_root *root)
1637 {
1638 	struct btrfs_transaction *cur_trans = trans->transaction;
1639 	struct btrfs_transaction *prev_trans = NULL;
1640 	int ret;
1641 
1642 	ret = btrfs_run_ordered_operations(trans, root, 0);
1643 	if (ret) {
1644 		btrfs_abort_transaction(trans, root, ret);
1645 		btrfs_end_transaction(trans, root);
1646 		return ret;
1647 	}
1648 
1649 	/* Stop the commit early if ->aborted is set */
1650 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1651 		ret = cur_trans->aborted;
1652 		btrfs_end_transaction(trans, root);
1653 		return ret;
1654 	}
1655 
1656 	/* make a pass through all the delayed refs we have so far
1657 	 * any runnings procs may add more while we are here
1658 	 */
1659 	ret = btrfs_run_delayed_refs(trans, root, 0);
1660 	if (ret) {
1661 		btrfs_end_transaction(trans, root);
1662 		return ret;
1663 	}
1664 
1665 	btrfs_trans_release_metadata(trans, root);
1666 	trans->block_rsv = NULL;
1667 	if (trans->qgroup_reserved) {
1668 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1669 		trans->qgroup_reserved = 0;
1670 	}
1671 
1672 	cur_trans = trans->transaction;
1673 
1674 	/*
1675 	 * set the flushing flag so procs in this transaction have to
1676 	 * start sending their work down.
1677 	 */
1678 	cur_trans->delayed_refs.flushing = 1;
1679 	smp_wmb();
1680 
1681 	if (!list_empty(&trans->new_bgs))
1682 		btrfs_create_pending_block_groups(trans, root);
1683 
1684 	ret = btrfs_run_delayed_refs(trans, root, 0);
1685 	if (ret) {
1686 		btrfs_end_transaction(trans, root);
1687 		return ret;
1688 	}
1689 
1690 	spin_lock(&root->fs_info->trans_lock);
1691 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1692 		spin_unlock(&root->fs_info->trans_lock);
1693 		atomic_inc(&cur_trans->use_count);
1694 		ret = btrfs_end_transaction(trans, root);
1695 
1696 		wait_for_commit(root, cur_trans);
1697 
1698 		btrfs_put_transaction(cur_trans);
1699 
1700 		return ret;
1701 	}
1702 
1703 	cur_trans->state = TRANS_STATE_COMMIT_START;
1704 	wake_up(&root->fs_info->transaction_blocked_wait);
1705 
1706 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1707 		prev_trans = list_entry(cur_trans->list.prev,
1708 					struct btrfs_transaction, list);
1709 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1710 			atomic_inc(&prev_trans->use_count);
1711 			spin_unlock(&root->fs_info->trans_lock);
1712 
1713 			wait_for_commit(root, prev_trans);
1714 
1715 			btrfs_put_transaction(prev_trans);
1716 		} else {
1717 			spin_unlock(&root->fs_info->trans_lock);
1718 		}
1719 	} else {
1720 		spin_unlock(&root->fs_info->trans_lock);
1721 	}
1722 
1723 	extwriter_counter_dec(cur_trans, trans->type);
1724 
1725 	ret = btrfs_start_delalloc_flush(root->fs_info);
1726 	if (ret)
1727 		goto cleanup_transaction;
1728 
1729 	ret = btrfs_flush_all_pending_stuffs(trans, root);
1730 	if (ret)
1731 		goto cleanup_transaction;
1732 
1733 	wait_event(cur_trans->writer_wait,
1734 		   extwriter_counter_read(cur_trans) == 0);
1735 
1736 	/* some pending stuffs might be added after the previous flush. */
1737 	ret = btrfs_flush_all_pending_stuffs(trans, root);
1738 	if (ret)
1739 		goto cleanup_transaction;
1740 
1741 	btrfs_wait_delalloc_flush(root->fs_info);
1742 
1743 	btrfs_scrub_pause(root);
1744 	/*
1745 	 * Ok now we need to make sure to block out any other joins while we
1746 	 * commit the transaction.  We could have started a join before setting
1747 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1748 	 */
1749 	spin_lock(&root->fs_info->trans_lock);
1750 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1751 	spin_unlock(&root->fs_info->trans_lock);
1752 	wait_event(cur_trans->writer_wait,
1753 		   atomic_read(&cur_trans->num_writers) == 1);
1754 
1755 	/* ->aborted might be set after the previous check, so check it */
1756 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1757 		ret = cur_trans->aborted;
1758 		goto scrub_continue;
1759 	}
1760 	/*
1761 	 * the reloc mutex makes sure that we stop
1762 	 * the balancing code from coming in and moving
1763 	 * extents around in the middle of the commit
1764 	 */
1765 	mutex_lock(&root->fs_info->reloc_mutex);
1766 
1767 	/*
1768 	 * We needn't worry about the delayed items because we will
1769 	 * deal with them in create_pending_snapshot(), which is the
1770 	 * core function of the snapshot creation.
1771 	 */
1772 	ret = create_pending_snapshots(trans, root->fs_info);
1773 	if (ret) {
1774 		mutex_unlock(&root->fs_info->reloc_mutex);
1775 		goto scrub_continue;
1776 	}
1777 
1778 	/*
1779 	 * We insert the dir indexes of the snapshots and update the inode
1780 	 * of the snapshots' parents after the snapshot creation, so there
1781 	 * are some delayed items which are not dealt with. Now deal with
1782 	 * them.
1783 	 *
1784 	 * We needn't worry that this operation will corrupt the snapshots,
1785 	 * because all the tree which are snapshoted will be forced to COW
1786 	 * the nodes and leaves.
1787 	 */
1788 	ret = btrfs_run_delayed_items(trans, root);
1789 	if (ret) {
1790 		mutex_unlock(&root->fs_info->reloc_mutex);
1791 		goto scrub_continue;
1792 	}
1793 
1794 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1795 	if (ret) {
1796 		mutex_unlock(&root->fs_info->reloc_mutex);
1797 		goto scrub_continue;
1798 	}
1799 
1800 	/*
1801 	 * make sure none of the code above managed to slip in a
1802 	 * delayed item
1803 	 */
1804 	btrfs_assert_delayed_root_empty(root);
1805 
1806 	WARN_ON(cur_trans != trans->transaction);
1807 
1808 	/* btrfs_commit_tree_roots is responsible for getting the
1809 	 * various roots consistent with each other.  Every pointer
1810 	 * in the tree of tree roots has to point to the most up to date
1811 	 * root for every subvolume and other tree.  So, we have to keep
1812 	 * the tree logging code from jumping in and changing any
1813 	 * of the trees.
1814 	 *
1815 	 * At this point in the commit, there can't be any tree-log
1816 	 * writers, but a little lower down we drop the trans mutex
1817 	 * and let new people in.  By holding the tree_log_mutex
1818 	 * from now until after the super is written, we avoid races
1819 	 * with the tree-log code.
1820 	 */
1821 	mutex_lock(&root->fs_info->tree_log_mutex);
1822 
1823 	ret = commit_fs_roots(trans, root);
1824 	if (ret) {
1825 		mutex_unlock(&root->fs_info->tree_log_mutex);
1826 		mutex_unlock(&root->fs_info->reloc_mutex);
1827 		goto scrub_continue;
1828 	}
1829 
1830 	/*
1831 	 * Since the transaction is done, we should set the inode map cache flag
1832 	 * before any other comming transaction.
1833 	 */
1834 	if (btrfs_test_opt(root, CHANGE_INODE_CACHE))
1835 		btrfs_set_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1836 	else
1837 		btrfs_clear_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1838 
1839 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1840 	 * safe to free the root of tree log roots
1841 	 */
1842 	btrfs_free_log_root_tree(trans, root->fs_info);
1843 
1844 	ret = commit_cowonly_roots(trans, root);
1845 	if (ret) {
1846 		mutex_unlock(&root->fs_info->tree_log_mutex);
1847 		mutex_unlock(&root->fs_info->reloc_mutex);
1848 		goto scrub_continue;
1849 	}
1850 
1851 	/*
1852 	 * The tasks which save the space cache and inode cache may also
1853 	 * update ->aborted, check it.
1854 	 */
1855 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1856 		ret = cur_trans->aborted;
1857 		mutex_unlock(&root->fs_info->tree_log_mutex);
1858 		mutex_unlock(&root->fs_info->reloc_mutex);
1859 		goto scrub_continue;
1860 	}
1861 
1862 	btrfs_prepare_extent_commit(trans, root);
1863 
1864 	cur_trans = root->fs_info->running_transaction;
1865 
1866 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1867 			    root->fs_info->tree_root->node);
1868 	list_add_tail(&root->fs_info->tree_root->dirty_list,
1869 		      &cur_trans->switch_commits);
1870 
1871 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1872 			    root->fs_info->chunk_root->node);
1873 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
1874 		      &cur_trans->switch_commits);
1875 
1876 	switch_commit_roots(cur_trans, root->fs_info);
1877 
1878 	assert_qgroups_uptodate(trans);
1879 	update_super_roots(root);
1880 
1881 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1882 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1883 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1884 	       sizeof(*root->fs_info->super_copy));
1885 
1886 	spin_lock(&root->fs_info->trans_lock);
1887 	cur_trans->state = TRANS_STATE_UNBLOCKED;
1888 	root->fs_info->running_transaction = NULL;
1889 	spin_unlock(&root->fs_info->trans_lock);
1890 	mutex_unlock(&root->fs_info->reloc_mutex);
1891 
1892 	wake_up(&root->fs_info->transaction_wait);
1893 
1894 	ret = btrfs_write_and_wait_transaction(trans, root);
1895 	if (ret) {
1896 		btrfs_error(root->fs_info, ret,
1897 			    "Error while writing out transaction");
1898 		mutex_unlock(&root->fs_info->tree_log_mutex);
1899 		goto scrub_continue;
1900 	}
1901 
1902 	ret = write_ctree_super(trans, root, 0);
1903 	if (ret) {
1904 		mutex_unlock(&root->fs_info->tree_log_mutex);
1905 		goto scrub_continue;
1906 	}
1907 
1908 	/*
1909 	 * the super is written, we can safely allow the tree-loggers
1910 	 * to go about their business
1911 	 */
1912 	mutex_unlock(&root->fs_info->tree_log_mutex);
1913 
1914 	btrfs_finish_extent_commit(trans, root);
1915 
1916 	root->fs_info->last_trans_committed = cur_trans->transid;
1917 	/*
1918 	 * We needn't acquire the lock here because there is no other task
1919 	 * which can change it.
1920 	 */
1921 	cur_trans->state = TRANS_STATE_COMPLETED;
1922 	wake_up(&cur_trans->commit_wait);
1923 
1924 	spin_lock(&root->fs_info->trans_lock);
1925 	list_del_init(&cur_trans->list);
1926 	spin_unlock(&root->fs_info->trans_lock);
1927 
1928 	btrfs_put_transaction(cur_trans);
1929 	btrfs_put_transaction(cur_trans);
1930 
1931 	if (trans->type & __TRANS_FREEZABLE)
1932 		sb_end_intwrite(root->fs_info->sb);
1933 
1934 	trace_btrfs_transaction_commit(root);
1935 
1936 	btrfs_scrub_continue(root);
1937 
1938 	if (current->journal_info == trans)
1939 		current->journal_info = NULL;
1940 
1941 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1942 
1943 	if (current != root->fs_info->transaction_kthread)
1944 		btrfs_run_delayed_iputs(root);
1945 
1946 	return ret;
1947 
1948 scrub_continue:
1949 	btrfs_scrub_continue(root);
1950 cleanup_transaction:
1951 	btrfs_trans_release_metadata(trans, root);
1952 	trans->block_rsv = NULL;
1953 	if (trans->qgroup_reserved) {
1954 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1955 		trans->qgroup_reserved = 0;
1956 	}
1957 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1958 	if (current->journal_info == trans)
1959 		current->journal_info = NULL;
1960 	cleanup_transaction(trans, root, ret);
1961 
1962 	return ret;
1963 }
1964 
1965 /*
1966  * return < 0 if error
1967  * 0 if there are no more dead_roots at the time of call
1968  * 1 there are more to be processed, call me again
1969  *
1970  * The return value indicates there are certainly more snapshots to delete, but
1971  * if there comes a new one during processing, it may return 0. We don't mind,
1972  * because btrfs_commit_super will poke cleaner thread and it will process it a
1973  * few seconds later.
1974  */
1975 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1976 {
1977 	int ret;
1978 	struct btrfs_fs_info *fs_info = root->fs_info;
1979 
1980 	spin_lock(&fs_info->trans_lock);
1981 	if (list_empty(&fs_info->dead_roots)) {
1982 		spin_unlock(&fs_info->trans_lock);
1983 		return 0;
1984 	}
1985 	root = list_first_entry(&fs_info->dead_roots,
1986 			struct btrfs_root, root_list);
1987 	/*
1988 	 * Make sure root is not involved in send,
1989 	 * if we fail with first root, we return
1990 	 * directly rather than continue.
1991 	 */
1992 	spin_lock(&root->root_item_lock);
1993 	if (root->send_in_progress) {
1994 		spin_unlock(&fs_info->trans_lock);
1995 		spin_unlock(&root->root_item_lock);
1996 		return 0;
1997 	}
1998 	spin_unlock(&root->root_item_lock);
1999 
2000 	list_del_init(&root->root_list);
2001 	spin_unlock(&fs_info->trans_lock);
2002 
2003 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2004 
2005 	btrfs_kill_all_delayed_nodes(root);
2006 
2007 	if (btrfs_header_backref_rev(root->node) <
2008 			BTRFS_MIXED_BACKREF_REV)
2009 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2010 	else
2011 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2012 	/*
2013 	 * If we encounter a transaction abort during snapshot cleaning, we
2014 	 * don't want to crash here
2015 	 */
2016 	return (ret < 0) ? 0 : 1;
2017 }
2018