1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "locking.h" 17 #include "tree-log.h" 18 #include "inode-map.h" 19 #include "volumes.h" 20 #include "dev-replace.h" 21 #include "qgroup.h" 22 23 #define BTRFS_ROOT_TRANS_TAG 0 24 25 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 26 [TRANS_STATE_RUNNING] = 0U, 27 [TRANS_STATE_BLOCKED] = __TRANS_START, 28 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 29 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 30 __TRANS_ATTACH | 31 __TRANS_JOIN), 32 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 33 __TRANS_ATTACH | 34 __TRANS_JOIN | 35 __TRANS_JOIN_NOLOCK), 36 [TRANS_STATE_COMPLETED] = (__TRANS_START | 37 __TRANS_ATTACH | 38 __TRANS_JOIN | 39 __TRANS_JOIN_NOLOCK), 40 }; 41 42 void btrfs_put_transaction(struct btrfs_transaction *transaction) 43 { 44 WARN_ON(refcount_read(&transaction->use_count) == 0); 45 if (refcount_dec_and_test(&transaction->use_count)) { 46 BUG_ON(!list_empty(&transaction->list)); 47 WARN_ON(!RB_EMPTY_ROOT( 48 &transaction->delayed_refs.href_root.rb_root)); 49 if (transaction->delayed_refs.pending_csums) 50 btrfs_err(transaction->fs_info, 51 "pending csums is %llu", 52 transaction->delayed_refs.pending_csums); 53 /* 54 * If any block groups are found in ->deleted_bgs then it's 55 * because the transaction was aborted and a commit did not 56 * happen (things failed before writing the new superblock 57 * and calling btrfs_finish_extent_commit()), so we can not 58 * discard the physical locations of the block groups. 59 */ 60 while (!list_empty(&transaction->deleted_bgs)) { 61 struct btrfs_block_group_cache *cache; 62 63 cache = list_first_entry(&transaction->deleted_bgs, 64 struct btrfs_block_group_cache, 65 bg_list); 66 list_del_init(&cache->bg_list); 67 btrfs_put_block_group_trimming(cache); 68 btrfs_put_block_group(cache); 69 } 70 WARN_ON(!list_empty(&transaction->dev_update_list)); 71 kfree(transaction); 72 } 73 } 74 75 static noinline void switch_commit_roots(struct btrfs_transaction *trans) 76 { 77 struct btrfs_fs_info *fs_info = trans->fs_info; 78 struct btrfs_root *root, *tmp; 79 80 down_write(&fs_info->commit_root_sem); 81 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 82 dirty_list) { 83 list_del_init(&root->dirty_list); 84 free_extent_buffer(root->commit_root); 85 root->commit_root = btrfs_root_node(root); 86 if (is_fstree(root->root_key.objectid)) 87 btrfs_unpin_free_ino(root); 88 extent_io_tree_release(&root->dirty_log_pages); 89 btrfs_qgroup_clean_swapped_blocks(root); 90 } 91 92 /* We can free old roots now. */ 93 spin_lock(&trans->dropped_roots_lock); 94 while (!list_empty(&trans->dropped_roots)) { 95 root = list_first_entry(&trans->dropped_roots, 96 struct btrfs_root, root_list); 97 list_del_init(&root->root_list); 98 spin_unlock(&trans->dropped_roots_lock); 99 btrfs_drop_and_free_fs_root(fs_info, root); 100 spin_lock(&trans->dropped_roots_lock); 101 } 102 spin_unlock(&trans->dropped_roots_lock); 103 up_write(&fs_info->commit_root_sem); 104 } 105 106 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 107 unsigned int type) 108 { 109 if (type & TRANS_EXTWRITERS) 110 atomic_inc(&trans->num_extwriters); 111 } 112 113 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 114 unsigned int type) 115 { 116 if (type & TRANS_EXTWRITERS) 117 atomic_dec(&trans->num_extwriters); 118 } 119 120 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 121 unsigned int type) 122 { 123 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 124 } 125 126 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 127 { 128 return atomic_read(&trans->num_extwriters); 129 } 130 131 /* 132 * either allocate a new transaction or hop into the existing one 133 */ 134 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 135 unsigned int type) 136 { 137 struct btrfs_transaction *cur_trans; 138 139 spin_lock(&fs_info->trans_lock); 140 loop: 141 /* The file system has been taken offline. No new transactions. */ 142 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 143 spin_unlock(&fs_info->trans_lock); 144 return -EROFS; 145 } 146 147 cur_trans = fs_info->running_transaction; 148 if (cur_trans) { 149 if (cur_trans->aborted) { 150 spin_unlock(&fs_info->trans_lock); 151 return cur_trans->aborted; 152 } 153 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 154 spin_unlock(&fs_info->trans_lock); 155 return -EBUSY; 156 } 157 refcount_inc(&cur_trans->use_count); 158 atomic_inc(&cur_trans->num_writers); 159 extwriter_counter_inc(cur_trans, type); 160 spin_unlock(&fs_info->trans_lock); 161 return 0; 162 } 163 spin_unlock(&fs_info->trans_lock); 164 165 /* 166 * If we are ATTACH, we just want to catch the current transaction, 167 * and commit it. If there is no transaction, just return ENOENT. 168 */ 169 if (type == TRANS_ATTACH) 170 return -ENOENT; 171 172 /* 173 * JOIN_NOLOCK only happens during the transaction commit, so 174 * it is impossible that ->running_transaction is NULL 175 */ 176 BUG_ON(type == TRANS_JOIN_NOLOCK); 177 178 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 179 if (!cur_trans) 180 return -ENOMEM; 181 182 spin_lock(&fs_info->trans_lock); 183 if (fs_info->running_transaction) { 184 /* 185 * someone started a transaction after we unlocked. Make sure 186 * to redo the checks above 187 */ 188 kfree(cur_trans); 189 goto loop; 190 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 191 spin_unlock(&fs_info->trans_lock); 192 kfree(cur_trans); 193 return -EROFS; 194 } 195 196 cur_trans->fs_info = fs_info; 197 atomic_set(&cur_trans->num_writers, 1); 198 extwriter_counter_init(cur_trans, type); 199 init_waitqueue_head(&cur_trans->writer_wait); 200 init_waitqueue_head(&cur_trans->commit_wait); 201 cur_trans->state = TRANS_STATE_RUNNING; 202 /* 203 * One for this trans handle, one so it will live on until we 204 * commit the transaction. 205 */ 206 refcount_set(&cur_trans->use_count, 2); 207 cur_trans->flags = 0; 208 cur_trans->start_time = ktime_get_seconds(); 209 210 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 211 212 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 213 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 214 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 215 216 /* 217 * although the tree mod log is per file system and not per transaction, 218 * the log must never go across transaction boundaries. 219 */ 220 smp_mb(); 221 if (!list_empty(&fs_info->tree_mod_seq_list)) 222 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 223 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 224 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 225 atomic64_set(&fs_info->tree_mod_seq, 0); 226 227 spin_lock_init(&cur_trans->delayed_refs.lock); 228 229 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 230 INIT_LIST_HEAD(&cur_trans->dev_update_list); 231 INIT_LIST_HEAD(&cur_trans->switch_commits); 232 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 233 INIT_LIST_HEAD(&cur_trans->io_bgs); 234 INIT_LIST_HEAD(&cur_trans->dropped_roots); 235 mutex_init(&cur_trans->cache_write_mutex); 236 spin_lock_init(&cur_trans->dirty_bgs_lock); 237 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 238 spin_lock_init(&cur_trans->dropped_roots_lock); 239 list_add_tail(&cur_trans->list, &fs_info->trans_list); 240 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 241 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode); 242 fs_info->generation++; 243 cur_trans->transid = fs_info->generation; 244 fs_info->running_transaction = cur_trans; 245 cur_trans->aborted = 0; 246 spin_unlock(&fs_info->trans_lock); 247 248 return 0; 249 } 250 251 /* 252 * this does all the record keeping required to make sure that a reference 253 * counted root is properly recorded in a given transaction. This is required 254 * to make sure the old root from before we joined the transaction is deleted 255 * when the transaction commits 256 */ 257 static int record_root_in_trans(struct btrfs_trans_handle *trans, 258 struct btrfs_root *root, 259 int force) 260 { 261 struct btrfs_fs_info *fs_info = root->fs_info; 262 263 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 264 root->last_trans < trans->transid) || force) { 265 WARN_ON(root == fs_info->extent_root); 266 WARN_ON(!force && root->commit_root != root->node); 267 268 /* 269 * see below for IN_TRANS_SETUP usage rules 270 * we have the reloc mutex held now, so there 271 * is only one writer in this function 272 */ 273 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 274 275 /* make sure readers find IN_TRANS_SETUP before 276 * they find our root->last_trans update 277 */ 278 smp_wmb(); 279 280 spin_lock(&fs_info->fs_roots_radix_lock); 281 if (root->last_trans == trans->transid && !force) { 282 spin_unlock(&fs_info->fs_roots_radix_lock); 283 return 0; 284 } 285 radix_tree_tag_set(&fs_info->fs_roots_radix, 286 (unsigned long)root->root_key.objectid, 287 BTRFS_ROOT_TRANS_TAG); 288 spin_unlock(&fs_info->fs_roots_radix_lock); 289 root->last_trans = trans->transid; 290 291 /* this is pretty tricky. We don't want to 292 * take the relocation lock in btrfs_record_root_in_trans 293 * unless we're really doing the first setup for this root in 294 * this transaction. 295 * 296 * Normally we'd use root->last_trans as a flag to decide 297 * if we want to take the expensive mutex. 298 * 299 * But, we have to set root->last_trans before we 300 * init the relocation root, otherwise, we trip over warnings 301 * in ctree.c. The solution used here is to flag ourselves 302 * with root IN_TRANS_SETUP. When this is 1, we're still 303 * fixing up the reloc trees and everyone must wait. 304 * 305 * When this is zero, they can trust root->last_trans and fly 306 * through btrfs_record_root_in_trans without having to take the 307 * lock. smp_wmb() makes sure that all the writes above are 308 * done before we pop in the zero below 309 */ 310 btrfs_init_reloc_root(trans, root); 311 smp_mb__before_atomic(); 312 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 313 } 314 return 0; 315 } 316 317 318 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 319 struct btrfs_root *root) 320 { 321 struct btrfs_fs_info *fs_info = root->fs_info; 322 struct btrfs_transaction *cur_trans = trans->transaction; 323 324 /* Add ourselves to the transaction dropped list */ 325 spin_lock(&cur_trans->dropped_roots_lock); 326 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 327 spin_unlock(&cur_trans->dropped_roots_lock); 328 329 /* Make sure we don't try to update the root at commit time */ 330 spin_lock(&fs_info->fs_roots_radix_lock); 331 radix_tree_tag_clear(&fs_info->fs_roots_radix, 332 (unsigned long)root->root_key.objectid, 333 BTRFS_ROOT_TRANS_TAG); 334 spin_unlock(&fs_info->fs_roots_radix_lock); 335 } 336 337 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 338 struct btrfs_root *root) 339 { 340 struct btrfs_fs_info *fs_info = root->fs_info; 341 342 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 343 return 0; 344 345 /* 346 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 347 * and barriers 348 */ 349 smp_rmb(); 350 if (root->last_trans == trans->transid && 351 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 352 return 0; 353 354 mutex_lock(&fs_info->reloc_mutex); 355 record_root_in_trans(trans, root, 0); 356 mutex_unlock(&fs_info->reloc_mutex); 357 358 return 0; 359 } 360 361 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 362 { 363 return (trans->state >= TRANS_STATE_BLOCKED && 364 trans->state < TRANS_STATE_UNBLOCKED && 365 !trans->aborted); 366 } 367 368 /* wait for commit against the current transaction to become unblocked 369 * when this is done, it is safe to start a new transaction, but the current 370 * transaction might not be fully on disk. 371 */ 372 static void wait_current_trans(struct btrfs_fs_info *fs_info) 373 { 374 struct btrfs_transaction *cur_trans; 375 376 spin_lock(&fs_info->trans_lock); 377 cur_trans = fs_info->running_transaction; 378 if (cur_trans && is_transaction_blocked(cur_trans)) { 379 refcount_inc(&cur_trans->use_count); 380 spin_unlock(&fs_info->trans_lock); 381 382 wait_event(fs_info->transaction_wait, 383 cur_trans->state >= TRANS_STATE_UNBLOCKED || 384 cur_trans->aborted); 385 btrfs_put_transaction(cur_trans); 386 } else { 387 spin_unlock(&fs_info->trans_lock); 388 } 389 } 390 391 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 392 { 393 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 394 return 0; 395 396 if (type == TRANS_START) 397 return 1; 398 399 return 0; 400 } 401 402 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 403 { 404 struct btrfs_fs_info *fs_info = root->fs_info; 405 406 if (!fs_info->reloc_ctl || 407 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 408 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 409 root->reloc_root) 410 return false; 411 412 return true; 413 } 414 415 static struct btrfs_trans_handle * 416 start_transaction(struct btrfs_root *root, unsigned int num_items, 417 unsigned int type, enum btrfs_reserve_flush_enum flush, 418 bool enforce_qgroups) 419 { 420 struct btrfs_fs_info *fs_info = root->fs_info; 421 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 422 struct btrfs_trans_handle *h; 423 struct btrfs_transaction *cur_trans; 424 u64 num_bytes = 0; 425 u64 qgroup_reserved = 0; 426 bool reloc_reserved = false; 427 int ret; 428 429 /* Send isn't supposed to start transactions. */ 430 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 431 432 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 433 return ERR_PTR(-EROFS); 434 435 if (current->journal_info) { 436 WARN_ON(type & TRANS_EXTWRITERS); 437 h = current->journal_info; 438 refcount_inc(&h->use_count); 439 WARN_ON(refcount_read(&h->use_count) > 2); 440 h->orig_rsv = h->block_rsv; 441 h->block_rsv = NULL; 442 goto got_it; 443 } 444 445 /* 446 * Do the reservation before we join the transaction so we can do all 447 * the appropriate flushing if need be. 448 */ 449 if (num_items && root != fs_info->chunk_root) { 450 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 451 u64 delayed_refs_bytes = 0; 452 453 qgroup_reserved = num_items * fs_info->nodesize; 454 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 455 enforce_qgroups); 456 if (ret) 457 return ERR_PTR(ret); 458 459 /* 460 * We want to reserve all the bytes we may need all at once, so 461 * we only do 1 enospc flushing cycle per transaction start. We 462 * accomplish this by simply assuming we'll do 2 x num_items 463 * worth of delayed refs updates in this trans handle, and 464 * refill that amount for whatever is missing in the reserve. 465 */ 466 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); 467 if (delayed_refs_rsv->full == 0) { 468 delayed_refs_bytes = num_bytes; 469 num_bytes <<= 1; 470 } 471 472 /* 473 * Do the reservation for the relocation root creation 474 */ 475 if (need_reserve_reloc_root(root)) { 476 num_bytes += fs_info->nodesize; 477 reloc_reserved = true; 478 } 479 480 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush); 481 if (ret) 482 goto reserve_fail; 483 if (delayed_refs_bytes) { 484 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 485 delayed_refs_bytes); 486 num_bytes -= delayed_refs_bytes; 487 } 488 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 489 !delayed_refs_rsv->full) { 490 /* 491 * Some people call with btrfs_start_transaction(root, 0) 492 * because they can be throttled, but have some other mechanism 493 * for reserving space. We still want these guys to refill the 494 * delayed block_rsv so just add 1 items worth of reservation 495 * here. 496 */ 497 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 498 if (ret) 499 goto reserve_fail; 500 } 501 again: 502 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 503 if (!h) { 504 ret = -ENOMEM; 505 goto alloc_fail; 506 } 507 508 /* 509 * If we are JOIN_NOLOCK we're already committing a transaction and 510 * waiting on this guy, so we don't need to do the sb_start_intwrite 511 * because we're already holding a ref. We need this because we could 512 * have raced in and did an fsync() on a file which can kick a commit 513 * and then we deadlock with somebody doing a freeze. 514 * 515 * If we are ATTACH, it means we just want to catch the current 516 * transaction and commit it, so we needn't do sb_start_intwrite(). 517 */ 518 if (type & __TRANS_FREEZABLE) 519 sb_start_intwrite(fs_info->sb); 520 521 if (may_wait_transaction(fs_info, type)) 522 wait_current_trans(fs_info); 523 524 do { 525 ret = join_transaction(fs_info, type); 526 if (ret == -EBUSY) { 527 wait_current_trans(fs_info); 528 if (unlikely(type == TRANS_ATTACH)) 529 ret = -ENOENT; 530 } 531 } while (ret == -EBUSY); 532 533 if (ret < 0) 534 goto join_fail; 535 536 cur_trans = fs_info->running_transaction; 537 538 h->transid = cur_trans->transid; 539 h->transaction = cur_trans; 540 h->root = root; 541 refcount_set(&h->use_count, 1); 542 h->fs_info = root->fs_info; 543 544 h->type = type; 545 h->can_flush_pending_bgs = true; 546 INIT_LIST_HEAD(&h->new_bgs); 547 548 smp_mb(); 549 if (cur_trans->state >= TRANS_STATE_BLOCKED && 550 may_wait_transaction(fs_info, type)) { 551 current->journal_info = h; 552 btrfs_commit_transaction(h); 553 goto again; 554 } 555 556 if (num_bytes) { 557 trace_btrfs_space_reservation(fs_info, "transaction", 558 h->transid, num_bytes, 1); 559 h->block_rsv = &fs_info->trans_block_rsv; 560 h->bytes_reserved = num_bytes; 561 h->reloc_reserved = reloc_reserved; 562 } 563 564 got_it: 565 btrfs_record_root_in_trans(h, root); 566 567 if (!current->journal_info) 568 current->journal_info = h; 569 return h; 570 571 join_fail: 572 if (type & __TRANS_FREEZABLE) 573 sb_end_intwrite(fs_info->sb); 574 kmem_cache_free(btrfs_trans_handle_cachep, h); 575 alloc_fail: 576 if (num_bytes) 577 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 578 num_bytes); 579 reserve_fail: 580 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 581 return ERR_PTR(ret); 582 } 583 584 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 585 unsigned int num_items) 586 { 587 return start_transaction(root, num_items, TRANS_START, 588 BTRFS_RESERVE_FLUSH_ALL, true); 589 } 590 591 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 592 struct btrfs_root *root, 593 unsigned int num_items, 594 int min_factor) 595 { 596 struct btrfs_fs_info *fs_info = root->fs_info; 597 struct btrfs_trans_handle *trans; 598 u64 num_bytes; 599 int ret; 600 601 /* 602 * We have two callers: unlink and block group removal. The 603 * former should succeed even if we will temporarily exceed 604 * quota and the latter operates on the extent root so 605 * qgroup enforcement is ignored anyway. 606 */ 607 trans = start_transaction(root, num_items, TRANS_START, 608 BTRFS_RESERVE_FLUSH_ALL, false); 609 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 610 return trans; 611 612 trans = btrfs_start_transaction(root, 0); 613 if (IS_ERR(trans)) 614 return trans; 615 616 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); 617 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv, 618 num_bytes, min_factor); 619 if (ret) { 620 btrfs_end_transaction(trans); 621 return ERR_PTR(ret); 622 } 623 624 trans->block_rsv = &fs_info->trans_block_rsv; 625 trans->bytes_reserved = num_bytes; 626 trace_btrfs_space_reservation(fs_info, "transaction", 627 trans->transid, num_bytes, 1); 628 629 return trans; 630 } 631 632 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 633 { 634 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 635 true); 636 } 637 638 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 639 { 640 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 641 BTRFS_RESERVE_NO_FLUSH, true); 642 } 643 644 /* 645 * btrfs_attach_transaction() - catch the running transaction 646 * 647 * It is used when we want to commit the current the transaction, but 648 * don't want to start a new one. 649 * 650 * Note: If this function return -ENOENT, it just means there is no 651 * running transaction. But it is possible that the inactive transaction 652 * is still in the memory, not fully on disk. If you hope there is no 653 * inactive transaction in the fs when -ENOENT is returned, you should 654 * invoke 655 * btrfs_attach_transaction_barrier() 656 */ 657 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 658 { 659 return start_transaction(root, 0, TRANS_ATTACH, 660 BTRFS_RESERVE_NO_FLUSH, true); 661 } 662 663 /* 664 * btrfs_attach_transaction_barrier() - catch the running transaction 665 * 666 * It is similar to the above function, the difference is this one 667 * will wait for all the inactive transactions until they fully 668 * complete. 669 */ 670 struct btrfs_trans_handle * 671 btrfs_attach_transaction_barrier(struct btrfs_root *root) 672 { 673 struct btrfs_trans_handle *trans; 674 675 trans = start_transaction(root, 0, TRANS_ATTACH, 676 BTRFS_RESERVE_NO_FLUSH, true); 677 if (trans == ERR_PTR(-ENOENT)) 678 btrfs_wait_for_commit(root->fs_info, 0); 679 680 return trans; 681 } 682 683 /* wait for a transaction commit to be fully complete */ 684 static noinline void wait_for_commit(struct btrfs_transaction *commit) 685 { 686 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 687 } 688 689 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 690 { 691 struct btrfs_transaction *cur_trans = NULL, *t; 692 int ret = 0; 693 694 if (transid) { 695 if (transid <= fs_info->last_trans_committed) 696 goto out; 697 698 /* find specified transaction */ 699 spin_lock(&fs_info->trans_lock); 700 list_for_each_entry(t, &fs_info->trans_list, list) { 701 if (t->transid == transid) { 702 cur_trans = t; 703 refcount_inc(&cur_trans->use_count); 704 ret = 0; 705 break; 706 } 707 if (t->transid > transid) { 708 ret = 0; 709 break; 710 } 711 } 712 spin_unlock(&fs_info->trans_lock); 713 714 /* 715 * The specified transaction doesn't exist, or we 716 * raced with btrfs_commit_transaction 717 */ 718 if (!cur_trans) { 719 if (transid > fs_info->last_trans_committed) 720 ret = -EINVAL; 721 goto out; 722 } 723 } else { 724 /* find newest transaction that is committing | committed */ 725 spin_lock(&fs_info->trans_lock); 726 list_for_each_entry_reverse(t, &fs_info->trans_list, 727 list) { 728 if (t->state >= TRANS_STATE_COMMIT_START) { 729 if (t->state == TRANS_STATE_COMPLETED) 730 break; 731 cur_trans = t; 732 refcount_inc(&cur_trans->use_count); 733 break; 734 } 735 } 736 spin_unlock(&fs_info->trans_lock); 737 if (!cur_trans) 738 goto out; /* nothing committing|committed */ 739 } 740 741 wait_for_commit(cur_trans); 742 btrfs_put_transaction(cur_trans); 743 out: 744 return ret; 745 } 746 747 void btrfs_throttle(struct btrfs_fs_info *fs_info) 748 { 749 wait_current_trans(fs_info); 750 } 751 752 static int should_end_transaction(struct btrfs_trans_handle *trans) 753 { 754 struct btrfs_fs_info *fs_info = trans->fs_info; 755 756 if (btrfs_check_space_for_delayed_refs(fs_info)) 757 return 1; 758 759 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 760 } 761 762 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 763 { 764 struct btrfs_transaction *cur_trans = trans->transaction; 765 766 smp_mb(); 767 if (cur_trans->state >= TRANS_STATE_BLOCKED || 768 cur_trans->delayed_refs.flushing) 769 return 1; 770 771 return should_end_transaction(trans); 772 } 773 774 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 775 776 { 777 struct btrfs_fs_info *fs_info = trans->fs_info; 778 779 if (!trans->block_rsv) { 780 ASSERT(!trans->bytes_reserved); 781 return; 782 } 783 784 if (!trans->bytes_reserved) 785 return; 786 787 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 788 trace_btrfs_space_reservation(fs_info, "transaction", 789 trans->transid, trans->bytes_reserved, 0); 790 btrfs_block_rsv_release(fs_info, trans->block_rsv, 791 trans->bytes_reserved); 792 trans->bytes_reserved = 0; 793 } 794 795 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 796 int throttle) 797 { 798 struct btrfs_fs_info *info = trans->fs_info; 799 struct btrfs_transaction *cur_trans = trans->transaction; 800 int lock = (trans->type != TRANS_JOIN_NOLOCK); 801 int err = 0; 802 803 if (refcount_read(&trans->use_count) > 1) { 804 refcount_dec(&trans->use_count); 805 trans->block_rsv = trans->orig_rsv; 806 return 0; 807 } 808 809 btrfs_trans_release_metadata(trans); 810 trans->block_rsv = NULL; 811 812 btrfs_create_pending_block_groups(trans); 813 814 btrfs_trans_release_chunk_metadata(trans); 815 816 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 817 if (throttle) 818 return btrfs_commit_transaction(trans); 819 else 820 wake_up_process(info->transaction_kthread); 821 } 822 823 if (trans->type & __TRANS_FREEZABLE) 824 sb_end_intwrite(info->sb); 825 826 WARN_ON(cur_trans != info->running_transaction); 827 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 828 atomic_dec(&cur_trans->num_writers); 829 extwriter_counter_dec(cur_trans, trans->type); 830 831 cond_wake_up(&cur_trans->writer_wait); 832 btrfs_put_transaction(cur_trans); 833 834 if (current->journal_info == trans) 835 current->journal_info = NULL; 836 837 if (throttle) 838 btrfs_run_delayed_iputs(info); 839 840 if (trans->aborted || 841 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 842 wake_up_process(info->transaction_kthread); 843 err = -EIO; 844 } 845 846 kmem_cache_free(btrfs_trans_handle_cachep, trans); 847 return err; 848 } 849 850 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 851 { 852 return __btrfs_end_transaction(trans, 0); 853 } 854 855 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 856 { 857 return __btrfs_end_transaction(trans, 1); 858 } 859 860 /* 861 * when btree blocks are allocated, they have some corresponding bits set for 862 * them in one of two extent_io trees. This is used to make sure all of 863 * those extents are sent to disk but does not wait on them 864 */ 865 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 866 struct extent_io_tree *dirty_pages, int mark) 867 { 868 int err = 0; 869 int werr = 0; 870 struct address_space *mapping = fs_info->btree_inode->i_mapping; 871 struct extent_state *cached_state = NULL; 872 u64 start = 0; 873 u64 end; 874 875 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 876 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 877 mark, &cached_state)) { 878 bool wait_writeback = false; 879 880 err = convert_extent_bit(dirty_pages, start, end, 881 EXTENT_NEED_WAIT, 882 mark, &cached_state); 883 /* 884 * convert_extent_bit can return -ENOMEM, which is most of the 885 * time a temporary error. So when it happens, ignore the error 886 * and wait for writeback of this range to finish - because we 887 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 888 * to __btrfs_wait_marked_extents() would not know that 889 * writeback for this range started and therefore wouldn't 890 * wait for it to finish - we don't want to commit a 891 * superblock that points to btree nodes/leafs for which 892 * writeback hasn't finished yet (and without errors). 893 * We cleanup any entries left in the io tree when committing 894 * the transaction (through extent_io_tree_release()). 895 */ 896 if (err == -ENOMEM) { 897 err = 0; 898 wait_writeback = true; 899 } 900 if (!err) 901 err = filemap_fdatawrite_range(mapping, start, end); 902 if (err) 903 werr = err; 904 else if (wait_writeback) 905 werr = filemap_fdatawait_range(mapping, start, end); 906 free_extent_state(cached_state); 907 cached_state = NULL; 908 cond_resched(); 909 start = end + 1; 910 } 911 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 912 return werr; 913 } 914 915 /* 916 * when btree blocks are allocated, they have some corresponding bits set for 917 * them in one of two extent_io trees. This is used to make sure all of 918 * those extents are on disk for transaction or log commit. We wait 919 * on all the pages and clear them from the dirty pages state tree 920 */ 921 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 922 struct extent_io_tree *dirty_pages) 923 { 924 int err = 0; 925 int werr = 0; 926 struct address_space *mapping = fs_info->btree_inode->i_mapping; 927 struct extent_state *cached_state = NULL; 928 u64 start = 0; 929 u64 end; 930 931 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 932 EXTENT_NEED_WAIT, &cached_state)) { 933 /* 934 * Ignore -ENOMEM errors returned by clear_extent_bit(). 935 * When committing the transaction, we'll remove any entries 936 * left in the io tree. For a log commit, we don't remove them 937 * after committing the log because the tree can be accessed 938 * concurrently - we do it only at transaction commit time when 939 * it's safe to do it (through extent_io_tree_release()). 940 */ 941 err = clear_extent_bit(dirty_pages, start, end, 942 EXTENT_NEED_WAIT, 0, 0, &cached_state); 943 if (err == -ENOMEM) 944 err = 0; 945 if (!err) 946 err = filemap_fdatawait_range(mapping, start, end); 947 if (err) 948 werr = err; 949 free_extent_state(cached_state); 950 cached_state = NULL; 951 cond_resched(); 952 start = end + 1; 953 } 954 if (err) 955 werr = err; 956 return werr; 957 } 958 959 int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 960 struct extent_io_tree *dirty_pages) 961 { 962 bool errors = false; 963 int err; 964 965 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 966 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 967 errors = true; 968 969 if (errors && !err) 970 err = -EIO; 971 return err; 972 } 973 974 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 975 { 976 struct btrfs_fs_info *fs_info = log_root->fs_info; 977 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 978 bool errors = false; 979 int err; 980 981 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 982 983 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 984 if ((mark & EXTENT_DIRTY) && 985 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 986 errors = true; 987 988 if ((mark & EXTENT_NEW) && 989 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 990 errors = true; 991 992 if (errors && !err) 993 err = -EIO; 994 return err; 995 } 996 997 /* 998 * When btree blocks are allocated the corresponding extents are marked dirty. 999 * This function ensures such extents are persisted on disk for transaction or 1000 * log commit. 1001 * 1002 * @trans: transaction whose dirty pages we'd like to write 1003 */ 1004 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1005 { 1006 int ret; 1007 int ret2; 1008 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1009 struct btrfs_fs_info *fs_info = trans->fs_info; 1010 struct blk_plug plug; 1011 1012 blk_start_plug(&plug); 1013 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1014 blk_finish_plug(&plug); 1015 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1016 1017 extent_io_tree_release(&trans->transaction->dirty_pages); 1018 1019 if (ret) 1020 return ret; 1021 else if (ret2) 1022 return ret2; 1023 else 1024 return 0; 1025 } 1026 1027 /* 1028 * this is used to update the root pointer in the tree of tree roots. 1029 * 1030 * But, in the case of the extent allocation tree, updating the root 1031 * pointer may allocate blocks which may change the root of the extent 1032 * allocation tree. 1033 * 1034 * So, this loops and repeats and makes sure the cowonly root didn't 1035 * change while the root pointer was being updated in the metadata. 1036 */ 1037 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1038 struct btrfs_root *root) 1039 { 1040 int ret; 1041 u64 old_root_bytenr; 1042 u64 old_root_used; 1043 struct btrfs_fs_info *fs_info = root->fs_info; 1044 struct btrfs_root *tree_root = fs_info->tree_root; 1045 1046 old_root_used = btrfs_root_used(&root->root_item); 1047 1048 while (1) { 1049 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1050 if (old_root_bytenr == root->node->start && 1051 old_root_used == btrfs_root_used(&root->root_item)) 1052 break; 1053 1054 btrfs_set_root_node(&root->root_item, root->node); 1055 ret = btrfs_update_root(trans, tree_root, 1056 &root->root_key, 1057 &root->root_item); 1058 if (ret) 1059 return ret; 1060 1061 old_root_used = btrfs_root_used(&root->root_item); 1062 } 1063 1064 return 0; 1065 } 1066 1067 /* 1068 * update all the cowonly tree roots on disk 1069 * 1070 * The error handling in this function may not be obvious. Any of the 1071 * failures will cause the file system to go offline. We still need 1072 * to clean up the delayed refs. 1073 */ 1074 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1075 { 1076 struct btrfs_fs_info *fs_info = trans->fs_info; 1077 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1078 struct list_head *io_bgs = &trans->transaction->io_bgs; 1079 struct list_head *next; 1080 struct extent_buffer *eb; 1081 int ret; 1082 1083 eb = btrfs_lock_root_node(fs_info->tree_root); 1084 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1085 0, &eb); 1086 btrfs_tree_unlock(eb); 1087 free_extent_buffer(eb); 1088 1089 if (ret) 1090 return ret; 1091 1092 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1093 if (ret) 1094 return ret; 1095 1096 ret = btrfs_run_dev_stats(trans); 1097 if (ret) 1098 return ret; 1099 ret = btrfs_run_dev_replace(trans); 1100 if (ret) 1101 return ret; 1102 ret = btrfs_run_qgroups(trans); 1103 if (ret) 1104 return ret; 1105 1106 ret = btrfs_setup_space_cache(trans); 1107 if (ret) 1108 return ret; 1109 1110 /* run_qgroups might have added some more refs */ 1111 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1112 if (ret) 1113 return ret; 1114 again: 1115 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1116 struct btrfs_root *root; 1117 next = fs_info->dirty_cowonly_roots.next; 1118 list_del_init(next); 1119 root = list_entry(next, struct btrfs_root, dirty_list); 1120 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1121 1122 if (root != fs_info->extent_root) 1123 list_add_tail(&root->dirty_list, 1124 &trans->transaction->switch_commits); 1125 ret = update_cowonly_root(trans, root); 1126 if (ret) 1127 return ret; 1128 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1129 if (ret) 1130 return ret; 1131 } 1132 1133 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1134 ret = btrfs_write_dirty_block_groups(trans); 1135 if (ret) 1136 return ret; 1137 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1138 if (ret) 1139 return ret; 1140 } 1141 1142 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1143 goto again; 1144 1145 list_add_tail(&fs_info->extent_root->dirty_list, 1146 &trans->transaction->switch_commits); 1147 1148 /* Update dev-replace pointer once everything is committed */ 1149 fs_info->dev_replace.committed_cursor_left = 1150 fs_info->dev_replace.cursor_left_last_write_of_item; 1151 1152 return 0; 1153 } 1154 1155 /* 1156 * dead roots are old snapshots that need to be deleted. This allocates 1157 * a dirty root struct and adds it into the list of dead roots that need to 1158 * be deleted 1159 */ 1160 void btrfs_add_dead_root(struct btrfs_root *root) 1161 { 1162 struct btrfs_fs_info *fs_info = root->fs_info; 1163 1164 spin_lock(&fs_info->trans_lock); 1165 if (list_empty(&root->root_list)) 1166 list_add_tail(&root->root_list, &fs_info->dead_roots); 1167 spin_unlock(&fs_info->trans_lock); 1168 } 1169 1170 /* 1171 * update all the cowonly tree roots on disk 1172 */ 1173 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1174 { 1175 struct btrfs_fs_info *fs_info = trans->fs_info; 1176 struct btrfs_root *gang[8]; 1177 int i; 1178 int ret; 1179 int err = 0; 1180 1181 spin_lock(&fs_info->fs_roots_radix_lock); 1182 while (1) { 1183 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1184 (void **)gang, 0, 1185 ARRAY_SIZE(gang), 1186 BTRFS_ROOT_TRANS_TAG); 1187 if (ret == 0) 1188 break; 1189 for (i = 0; i < ret; i++) { 1190 struct btrfs_root *root = gang[i]; 1191 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1192 (unsigned long)root->root_key.objectid, 1193 BTRFS_ROOT_TRANS_TAG); 1194 spin_unlock(&fs_info->fs_roots_radix_lock); 1195 1196 btrfs_free_log(trans, root); 1197 btrfs_update_reloc_root(trans, root); 1198 1199 btrfs_save_ino_cache(root, trans); 1200 1201 /* see comments in should_cow_block() */ 1202 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1203 smp_mb__after_atomic(); 1204 1205 if (root->commit_root != root->node) { 1206 list_add_tail(&root->dirty_list, 1207 &trans->transaction->switch_commits); 1208 btrfs_set_root_node(&root->root_item, 1209 root->node); 1210 } 1211 1212 err = btrfs_update_root(trans, fs_info->tree_root, 1213 &root->root_key, 1214 &root->root_item); 1215 spin_lock(&fs_info->fs_roots_radix_lock); 1216 if (err) 1217 break; 1218 btrfs_qgroup_free_meta_all_pertrans(root); 1219 } 1220 } 1221 spin_unlock(&fs_info->fs_roots_radix_lock); 1222 return err; 1223 } 1224 1225 /* 1226 * defrag a given btree. 1227 * Every leaf in the btree is read and defragged. 1228 */ 1229 int btrfs_defrag_root(struct btrfs_root *root) 1230 { 1231 struct btrfs_fs_info *info = root->fs_info; 1232 struct btrfs_trans_handle *trans; 1233 int ret; 1234 1235 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1236 return 0; 1237 1238 while (1) { 1239 trans = btrfs_start_transaction(root, 0); 1240 if (IS_ERR(trans)) 1241 return PTR_ERR(trans); 1242 1243 ret = btrfs_defrag_leaves(trans, root); 1244 1245 btrfs_end_transaction(trans); 1246 btrfs_btree_balance_dirty(info); 1247 cond_resched(); 1248 1249 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1250 break; 1251 1252 if (btrfs_defrag_cancelled(info)) { 1253 btrfs_debug(info, "defrag_root cancelled"); 1254 ret = -EAGAIN; 1255 break; 1256 } 1257 } 1258 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1259 return ret; 1260 } 1261 1262 /* 1263 * Do all special snapshot related qgroup dirty hack. 1264 * 1265 * Will do all needed qgroup inherit and dirty hack like switch commit 1266 * roots inside one transaction and write all btree into disk, to make 1267 * qgroup works. 1268 */ 1269 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1270 struct btrfs_root *src, 1271 struct btrfs_root *parent, 1272 struct btrfs_qgroup_inherit *inherit, 1273 u64 dst_objectid) 1274 { 1275 struct btrfs_fs_info *fs_info = src->fs_info; 1276 int ret; 1277 1278 /* 1279 * Save some performance in the case that qgroups are not 1280 * enabled. If this check races with the ioctl, rescan will 1281 * kick in anyway. 1282 */ 1283 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1284 return 0; 1285 1286 /* 1287 * Ensure dirty @src will be committed. Or, after coming 1288 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1289 * recorded root will never be updated again, causing an outdated root 1290 * item. 1291 */ 1292 record_root_in_trans(trans, src, 1); 1293 1294 /* 1295 * We are going to commit transaction, see btrfs_commit_transaction() 1296 * comment for reason locking tree_log_mutex 1297 */ 1298 mutex_lock(&fs_info->tree_log_mutex); 1299 1300 ret = commit_fs_roots(trans); 1301 if (ret) 1302 goto out; 1303 ret = btrfs_qgroup_account_extents(trans); 1304 if (ret < 0) 1305 goto out; 1306 1307 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1308 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1309 inherit); 1310 if (ret < 0) 1311 goto out; 1312 1313 /* 1314 * Now we do a simplified commit transaction, which will: 1315 * 1) commit all subvolume and extent tree 1316 * To ensure all subvolume and extent tree have a valid 1317 * commit_root to accounting later insert_dir_item() 1318 * 2) write all btree blocks onto disk 1319 * This is to make sure later btree modification will be cowed 1320 * Or commit_root can be populated and cause wrong qgroup numbers 1321 * In this simplified commit, we don't really care about other trees 1322 * like chunk and root tree, as they won't affect qgroup. 1323 * And we don't write super to avoid half committed status. 1324 */ 1325 ret = commit_cowonly_roots(trans); 1326 if (ret) 1327 goto out; 1328 switch_commit_roots(trans->transaction); 1329 ret = btrfs_write_and_wait_transaction(trans); 1330 if (ret) 1331 btrfs_handle_fs_error(fs_info, ret, 1332 "Error while writing out transaction for qgroup"); 1333 1334 out: 1335 mutex_unlock(&fs_info->tree_log_mutex); 1336 1337 /* 1338 * Force parent root to be updated, as we recorded it before so its 1339 * last_trans == cur_transid. 1340 * Or it won't be committed again onto disk after later 1341 * insert_dir_item() 1342 */ 1343 if (!ret) 1344 record_root_in_trans(trans, parent, 1); 1345 return ret; 1346 } 1347 1348 /* 1349 * new snapshots need to be created at a very specific time in the 1350 * transaction commit. This does the actual creation. 1351 * 1352 * Note: 1353 * If the error which may affect the commitment of the current transaction 1354 * happens, we should return the error number. If the error which just affect 1355 * the creation of the pending snapshots, just return 0. 1356 */ 1357 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1358 struct btrfs_pending_snapshot *pending) 1359 { 1360 1361 struct btrfs_fs_info *fs_info = trans->fs_info; 1362 struct btrfs_key key; 1363 struct btrfs_root_item *new_root_item; 1364 struct btrfs_root *tree_root = fs_info->tree_root; 1365 struct btrfs_root *root = pending->root; 1366 struct btrfs_root *parent_root; 1367 struct btrfs_block_rsv *rsv; 1368 struct inode *parent_inode; 1369 struct btrfs_path *path; 1370 struct btrfs_dir_item *dir_item; 1371 struct dentry *dentry; 1372 struct extent_buffer *tmp; 1373 struct extent_buffer *old; 1374 struct timespec64 cur_time; 1375 int ret = 0; 1376 u64 to_reserve = 0; 1377 u64 index = 0; 1378 u64 objectid; 1379 u64 root_flags; 1380 uuid_le new_uuid; 1381 1382 ASSERT(pending->path); 1383 path = pending->path; 1384 1385 ASSERT(pending->root_item); 1386 new_root_item = pending->root_item; 1387 1388 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1389 if (pending->error) 1390 goto no_free_objectid; 1391 1392 /* 1393 * Make qgroup to skip current new snapshot's qgroupid, as it is 1394 * accounted by later btrfs_qgroup_inherit(). 1395 */ 1396 btrfs_set_skip_qgroup(trans, objectid); 1397 1398 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1399 1400 if (to_reserve > 0) { 1401 pending->error = btrfs_block_rsv_add(root, 1402 &pending->block_rsv, 1403 to_reserve, 1404 BTRFS_RESERVE_NO_FLUSH); 1405 if (pending->error) 1406 goto clear_skip_qgroup; 1407 } 1408 1409 key.objectid = objectid; 1410 key.offset = (u64)-1; 1411 key.type = BTRFS_ROOT_ITEM_KEY; 1412 1413 rsv = trans->block_rsv; 1414 trans->block_rsv = &pending->block_rsv; 1415 trans->bytes_reserved = trans->block_rsv->reserved; 1416 trace_btrfs_space_reservation(fs_info, "transaction", 1417 trans->transid, 1418 trans->bytes_reserved, 1); 1419 dentry = pending->dentry; 1420 parent_inode = pending->dir; 1421 parent_root = BTRFS_I(parent_inode)->root; 1422 record_root_in_trans(trans, parent_root, 0); 1423 1424 cur_time = current_time(parent_inode); 1425 1426 /* 1427 * insert the directory item 1428 */ 1429 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1430 BUG_ON(ret); /* -ENOMEM */ 1431 1432 /* check if there is a file/dir which has the same name. */ 1433 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1434 btrfs_ino(BTRFS_I(parent_inode)), 1435 dentry->d_name.name, 1436 dentry->d_name.len, 0); 1437 if (dir_item != NULL && !IS_ERR(dir_item)) { 1438 pending->error = -EEXIST; 1439 goto dir_item_existed; 1440 } else if (IS_ERR(dir_item)) { 1441 ret = PTR_ERR(dir_item); 1442 btrfs_abort_transaction(trans, ret); 1443 goto fail; 1444 } 1445 btrfs_release_path(path); 1446 1447 /* 1448 * pull in the delayed directory update 1449 * and the delayed inode item 1450 * otherwise we corrupt the FS during 1451 * snapshot 1452 */ 1453 ret = btrfs_run_delayed_items(trans); 1454 if (ret) { /* Transaction aborted */ 1455 btrfs_abort_transaction(trans, ret); 1456 goto fail; 1457 } 1458 1459 record_root_in_trans(trans, root, 0); 1460 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1461 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1462 btrfs_check_and_init_root_item(new_root_item); 1463 1464 root_flags = btrfs_root_flags(new_root_item); 1465 if (pending->readonly) 1466 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1467 else 1468 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1469 btrfs_set_root_flags(new_root_item, root_flags); 1470 1471 btrfs_set_root_generation_v2(new_root_item, 1472 trans->transid); 1473 uuid_le_gen(&new_uuid); 1474 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1475 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1476 BTRFS_UUID_SIZE); 1477 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1478 memset(new_root_item->received_uuid, 0, 1479 sizeof(new_root_item->received_uuid)); 1480 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1481 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1482 btrfs_set_root_stransid(new_root_item, 0); 1483 btrfs_set_root_rtransid(new_root_item, 0); 1484 } 1485 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1486 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1487 btrfs_set_root_otransid(new_root_item, trans->transid); 1488 1489 old = btrfs_lock_root_node(root); 1490 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1491 if (ret) { 1492 btrfs_tree_unlock(old); 1493 free_extent_buffer(old); 1494 btrfs_abort_transaction(trans, ret); 1495 goto fail; 1496 } 1497 1498 btrfs_set_lock_blocking_write(old); 1499 1500 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1501 /* clean up in any case */ 1502 btrfs_tree_unlock(old); 1503 free_extent_buffer(old); 1504 if (ret) { 1505 btrfs_abort_transaction(trans, ret); 1506 goto fail; 1507 } 1508 /* see comments in should_cow_block() */ 1509 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1510 smp_wmb(); 1511 1512 btrfs_set_root_node(new_root_item, tmp); 1513 /* record when the snapshot was created in key.offset */ 1514 key.offset = trans->transid; 1515 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1516 btrfs_tree_unlock(tmp); 1517 free_extent_buffer(tmp); 1518 if (ret) { 1519 btrfs_abort_transaction(trans, ret); 1520 goto fail; 1521 } 1522 1523 /* 1524 * insert root back/forward references 1525 */ 1526 ret = btrfs_add_root_ref(trans, objectid, 1527 parent_root->root_key.objectid, 1528 btrfs_ino(BTRFS_I(parent_inode)), index, 1529 dentry->d_name.name, dentry->d_name.len); 1530 if (ret) { 1531 btrfs_abort_transaction(trans, ret); 1532 goto fail; 1533 } 1534 1535 key.offset = (u64)-1; 1536 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key); 1537 if (IS_ERR(pending->snap)) { 1538 ret = PTR_ERR(pending->snap); 1539 btrfs_abort_transaction(trans, ret); 1540 goto fail; 1541 } 1542 1543 ret = btrfs_reloc_post_snapshot(trans, pending); 1544 if (ret) { 1545 btrfs_abort_transaction(trans, ret); 1546 goto fail; 1547 } 1548 1549 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1550 if (ret) { 1551 btrfs_abort_transaction(trans, ret); 1552 goto fail; 1553 } 1554 1555 /* 1556 * Do special qgroup accounting for snapshot, as we do some qgroup 1557 * snapshot hack to do fast snapshot. 1558 * To co-operate with that hack, we do hack again. 1559 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1560 */ 1561 ret = qgroup_account_snapshot(trans, root, parent_root, 1562 pending->inherit, objectid); 1563 if (ret < 0) 1564 goto fail; 1565 1566 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1567 dentry->d_name.len, BTRFS_I(parent_inode), 1568 &key, BTRFS_FT_DIR, index); 1569 /* We have check then name at the beginning, so it is impossible. */ 1570 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1571 if (ret) { 1572 btrfs_abort_transaction(trans, ret); 1573 goto fail; 1574 } 1575 1576 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1577 dentry->d_name.len * 2); 1578 parent_inode->i_mtime = parent_inode->i_ctime = 1579 current_time(parent_inode); 1580 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1581 if (ret) { 1582 btrfs_abort_transaction(trans, ret); 1583 goto fail; 1584 } 1585 ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL, 1586 objectid); 1587 if (ret) { 1588 btrfs_abort_transaction(trans, ret); 1589 goto fail; 1590 } 1591 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1592 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1593 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1594 objectid); 1595 if (ret && ret != -EEXIST) { 1596 btrfs_abort_transaction(trans, ret); 1597 goto fail; 1598 } 1599 } 1600 1601 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1602 if (ret) { 1603 btrfs_abort_transaction(trans, ret); 1604 goto fail; 1605 } 1606 1607 fail: 1608 pending->error = ret; 1609 dir_item_existed: 1610 trans->block_rsv = rsv; 1611 trans->bytes_reserved = 0; 1612 clear_skip_qgroup: 1613 btrfs_clear_skip_qgroup(trans); 1614 no_free_objectid: 1615 kfree(new_root_item); 1616 pending->root_item = NULL; 1617 btrfs_free_path(path); 1618 pending->path = NULL; 1619 1620 return ret; 1621 } 1622 1623 /* 1624 * create all the snapshots we've scheduled for creation 1625 */ 1626 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1627 { 1628 struct btrfs_pending_snapshot *pending, *next; 1629 struct list_head *head = &trans->transaction->pending_snapshots; 1630 int ret = 0; 1631 1632 list_for_each_entry_safe(pending, next, head, list) { 1633 list_del(&pending->list); 1634 ret = create_pending_snapshot(trans, pending); 1635 if (ret) 1636 break; 1637 } 1638 return ret; 1639 } 1640 1641 static void update_super_roots(struct btrfs_fs_info *fs_info) 1642 { 1643 struct btrfs_root_item *root_item; 1644 struct btrfs_super_block *super; 1645 1646 super = fs_info->super_copy; 1647 1648 root_item = &fs_info->chunk_root->root_item; 1649 super->chunk_root = root_item->bytenr; 1650 super->chunk_root_generation = root_item->generation; 1651 super->chunk_root_level = root_item->level; 1652 1653 root_item = &fs_info->tree_root->root_item; 1654 super->root = root_item->bytenr; 1655 super->generation = root_item->generation; 1656 super->root_level = root_item->level; 1657 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1658 super->cache_generation = root_item->generation; 1659 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1660 super->uuid_tree_generation = root_item->generation; 1661 } 1662 1663 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1664 { 1665 struct btrfs_transaction *trans; 1666 int ret = 0; 1667 1668 spin_lock(&info->trans_lock); 1669 trans = info->running_transaction; 1670 if (trans) 1671 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1672 spin_unlock(&info->trans_lock); 1673 return ret; 1674 } 1675 1676 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1677 { 1678 struct btrfs_transaction *trans; 1679 int ret = 0; 1680 1681 spin_lock(&info->trans_lock); 1682 trans = info->running_transaction; 1683 if (trans) 1684 ret = is_transaction_blocked(trans); 1685 spin_unlock(&info->trans_lock); 1686 return ret; 1687 } 1688 1689 /* 1690 * wait for the current transaction commit to start and block subsequent 1691 * transaction joins 1692 */ 1693 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, 1694 struct btrfs_transaction *trans) 1695 { 1696 wait_event(fs_info->transaction_blocked_wait, 1697 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted); 1698 } 1699 1700 /* 1701 * wait for the current transaction to start and then become unblocked. 1702 * caller holds ref. 1703 */ 1704 static void wait_current_trans_commit_start_and_unblock( 1705 struct btrfs_fs_info *fs_info, 1706 struct btrfs_transaction *trans) 1707 { 1708 wait_event(fs_info->transaction_wait, 1709 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted); 1710 } 1711 1712 /* 1713 * commit transactions asynchronously. once btrfs_commit_transaction_async 1714 * returns, any subsequent transaction will not be allowed to join. 1715 */ 1716 struct btrfs_async_commit { 1717 struct btrfs_trans_handle *newtrans; 1718 struct work_struct work; 1719 }; 1720 1721 static void do_async_commit(struct work_struct *work) 1722 { 1723 struct btrfs_async_commit *ac = 1724 container_of(work, struct btrfs_async_commit, work); 1725 1726 /* 1727 * We've got freeze protection passed with the transaction. 1728 * Tell lockdep about it. 1729 */ 1730 if (ac->newtrans->type & __TRANS_FREEZABLE) 1731 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1732 1733 current->journal_info = ac->newtrans; 1734 1735 btrfs_commit_transaction(ac->newtrans); 1736 kfree(ac); 1737 } 1738 1739 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1740 int wait_for_unblock) 1741 { 1742 struct btrfs_fs_info *fs_info = trans->fs_info; 1743 struct btrfs_async_commit *ac; 1744 struct btrfs_transaction *cur_trans; 1745 1746 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1747 if (!ac) 1748 return -ENOMEM; 1749 1750 INIT_WORK(&ac->work, do_async_commit); 1751 ac->newtrans = btrfs_join_transaction(trans->root); 1752 if (IS_ERR(ac->newtrans)) { 1753 int err = PTR_ERR(ac->newtrans); 1754 kfree(ac); 1755 return err; 1756 } 1757 1758 /* take transaction reference */ 1759 cur_trans = trans->transaction; 1760 refcount_inc(&cur_trans->use_count); 1761 1762 btrfs_end_transaction(trans); 1763 1764 /* 1765 * Tell lockdep we've released the freeze rwsem, since the 1766 * async commit thread will be the one to unlock it. 1767 */ 1768 if (ac->newtrans->type & __TRANS_FREEZABLE) 1769 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1770 1771 schedule_work(&ac->work); 1772 1773 /* wait for transaction to start and unblock */ 1774 if (wait_for_unblock) 1775 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); 1776 else 1777 wait_current_trans_commit_start(fs_info, cur_trans); 1778 1779 if (current->journal_info == trans) 1780 current->journal_info = NULL; 1781 1782 btrfs_put_transaction(cur_trans); 1783 return 0; 1784 } 1785 1786 1787 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1788 { 1789 struct btrfs_fs_info *fs_info = trans->fs_info; 1790 struct btrfs_transaction *cur_trans = trans->transaction; 1791 1792 WARN_ON(refcount_read(&trans->use_count) > 1); 1793 1794 btrfs_abort_transaction(trans, err); 1795 1796 spin_lock(&fs_info->trans_lock); 1797 1798 /* 1799 * If the transaction is removed from the list, it means this 1800 * transaction has been committed successfully, so it is impossible 1801 * to call the cleanup function. 1802 */ 1803 BUG_ON(list_empty(&cur_trans->list)); 1804 1805 list_del_init(&cur_trans->list); 1806 if (cur_trans == fs_info->running_transaction) { 1807 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1808 spin_unlock(&fs_info->trans_lock); 1809 wait_event(cur_trans->writer_wait, 1810 atomic_read(&cur_trans->num_writers) == 1); 1811 1812 spin_lock(&fs_info->trans_lock); 1813 } 1814 spin_unlock(&fs_info->trans_lock); 1815 1816 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1817 1818 spin_lock(&fs_info->trans_lock); 1819 if (cur_trans == fs_info->running_transaction) 1820 fs_info->running_transaction = NULL; 1821 spin_unlock(&fs_info->trans_lock); 1822 1823 if (trans->type & __TRANS_FREEZABLE) 1824 sb_end_intwrite(fs_info->sb); 1825 btrfs_put_transaction(cur_trans); 1826 btrfs_put_transaction(cur_trans); 1827 1828 trace_btrfs_transaction_commit(trans->root); 1829 1830 if (current->journal_info == trans) 1831 current->journal_info = NULL; 1832 btrfs_scrub_cancel(fs_info); 1833 1834 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1835 } 1836 1837 /* 1838 * Release reserved delayed ref space of all pending block groups of the 1839 * transaction and remove them from the list 1840 */ 1841 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 1842 { 1843 struct btrfs_fs_info *fs_info = trans->fs_info; 1844 struct btrfs_block_group_cache *block_group, *tmp; 1845 1846 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 1847 btrfs_delayed_refs_rsv_release(fs_info, 1); 1848 list_del_init(&block_group->bg_list); 1849 } 1850 } 1851 1852 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans) 1853 { 1854 struct btrfs_fs_info *fs_info = trans->fs_info; 1855 1856 /* 1857 * We use writeback_inodes_sb here because if we used 1858 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 1859 * Currently are holding the fs freeze lock, if we do an async flush 1860 * we'll do btrfs_join_transaction() and deadlock because we need to 1861 * wait for the fs freeze lock. Using the direct flushing we benefit 1862 * from already being in a transaction and our join_transaction doesn't 1863 * have to re-take the fs freeze lock. 1864 */ 1865 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) { 1866 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 1867 } else { 1868 struct btrfs_pending_snapshot *pending; 1869 struct list_head *head = &trans->transaction->pending_snapshots; 1870 1871 /* 1872 * Flush dellaloc for any root that is going to be snapshotted. 1873 * This is done to avoid a corrupted version of files, in the 1874 * snapshots, that had both buffered and direct IO writes (even 1875 * if they were done sequentially) due to an unordered update of 1876 * the inode's size on disk. 1877 */ 1878 list_for_each_entry(pending, head, list) { 1879 int ret; 1880 1881 ret = btrfs_start_delalloc_snapshot(pending->root); 1882 if (ret) 1883 return ret; 1884 } 1885 } 1886 return 0; 1887 } 1888 1889 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans) 1890 { 1891 struct btrfs_fs_info *fs_info = trans->fs_info; 1892 1893 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) { 1894 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1895 } else { 1896 struct btrfs_pending_snapshot *pending; 1897 struct list_head *head = &trans->transaction->pending_snapshots; 1898 1899 /* 1900 * Wait for any dellaloc that we started previously for the roots 1901 * that are going to be snapshotted. This is to avoid a corrupted 1902 * version of files in the snapshots that had both buffered and 1903 * direct IO writes (even if they were done sequentially). 1904 */ 1905 list_for_each_entry(pending, head, list) 1906 btrfs_wait_ordered_extents(pending->root, 1907 U64_MAX, 0, U64_MAX); 1908 } 1909 } 1910 1911 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 1912 { 1913 struct btrfs_fs_info *fs_info = trans->fs_info; 1914 struct btrfs_transaction *cur_trans = trans->transaction; 1915 struct btrfs_transaction *prev_trans = NULL; 1916 int ret; 1917 1918 /* Stop the commit early if ->aborted is set */ 1919 if (unlikely(READ_ONCE(cur_trans->aborted))) { 1920 ret = cur_trans->aborted; 1921 btrfs_end_transaction(trans); 1922 return ret; 1923 } 1924 1925 btrfs_trans_release_metadata(trans); 1926 trans->block_rsv = NULL; 1927 1928 /* make a pass through all the delayed refs we have so far 1929 * any runnings procs may add more while we are here 1930 */ 1931 ret = btrfs_run_delayed_refs(trans, 0); 1932 if (ret) { 1933 btrfs_end_transaction(trans); 1934 return ret; 1935 } 1936 1937 cur_trans = trans->transaction; 1938 1939 /* 1940 * set the flushing flag so procs in this transaction have to 1941 * start sending their work down. 1942 */ 1943 cur_trans->delayed_refs.flushing = 1; 1944 smp_wmb(); 1945 1946 btrfs_create_pending_block_groups(trans); 1947 1948 ret = btrfs_run_delayed_refs(trans, 0); 1949 if (ret) { 1950 btrfs_end_transaction(trans); 1951 return ret; 1952 } 1953 1954 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 1955 int run_it = 0; 1956 1957 /* this mutex is also taken before trying to set 1958 * block groups readonly. We need to make sure 1959 * that nobody has set a block group readonly 1960 * after a extents from that block group have been 1961 * allocated for cache files. btrfs_set_block_group_ro 1962 * will wait for the transaction to commit if it 1963 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 1964 * 1965 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 1966 * only one process starts all the block group IO. It wouldn't 1967 * hurt to have more than one go through, but there's no 1968 * real advantage to it either. 1969 */ 1970 mutex_lock(&fs_info->ro_block_group_mutex); 1971 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 1972 &cur_trans->flags)) 1973 run_it = 1; 1974 mutex_unlock(&fs_info->ro_block_group_mutex); 1975 1976 if (run_it) { 1977 ret = btrfs_start_dirty_block_groups(trans); 1978 if (ret) { 1979 btrfs_end_transaction(trans); 1980 return ret; 1981 } 1982 } 1983 } 1984 1985 spin_lock(&fs_info->trans_lock); 1986 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 1987 spin_unlock(&fs_info->trans_lock); 1988 refcount_inc(&cur_trans->use_count); 1989 ret = btrfs_end_transaction(trans); 1990 1991 wait_for_commit(cur_trans); 1992 1993 if (unlikely(cur_trans->aborted)) 1994 ret = cur_trans->aborted; 1995 1996 btrfs_put_transaction(cur_trans); 1997 1998 return ret; 1999 } 2000 2001 cur_trans->state = TRANS_STATE_COMMIT_START; 2002 wake_up(&fs_info->transaction_blocked_wait); 2003 2004 if (cur_trans->list.prev != &fs_info->trans_list) { 2005 prev_trans = list_entry(cur_trans->list.prev, 2006 struct btrfs_transaction, list); 2007 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2008 refcount_inc(&prev_trans->use_count); 2009 spin_unlock(&fs_info->trans_lock); 2010 2011 wait_for_commit(prev_trans); 2012 ret = prev_trans->aborted; 2013 2014 btrfs_put_transaction(prev_trans); 2015 if (ret) 2016 goto cleanup_transaction; 2017 } else { 2018 spin_unlock(&fs_info->trans_lock); 2019 } 2020 } else { 2021 spin_unlock(&fs_info->trans_lock); 2022 } 2023 2024 extwriter_counter_dec(cur_trans, trans->type); 2025 2026 ret = btrfs_start_delalloc_flush(trans); 2027 if (ret) 2028 goto cleanup_transaction; 2029 2030 ret = btrfs_run_delayed_items(trans); 2031 if (ret) 2032 goto cleanup_transaction; 2033 2034 wait_event(cur_trans->writer_wait, 2035 extwriter_counter_read(cur_trans) == 0); 2036 2037 /* some pending stuffs might be added after the previous flush. */ 2038 ret = btrfs_run_delayed_items(trans); 2039 if (ret) 2040 goto cleanup_transaction; 2041 2042 btrfs_wait_delalloc_flush(trans); 2043 2044 btrfs_scrub_pause(fs_info); 2045 /* 2046 * Ok now we need to make sure to block out any other joins while we 2047 * commit the transaction. We could have started a join before setting 2048 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2049 */ 2050 spin_lock(&fs_info->trans_lock); 2051 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2052 spin_unlock(&fs_info->trans_lock); 2053 wait_event(cur_trans->writer_wait, 2054 atomic_read(&cur_trans->num_writers) == 1); 2055 2056 /* ->aborted might be set after the previous check, so check it */ 2057 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2058 ret = cur_trans->aborted; 2059 goto scrub_continue; 2060 } 2061 /* 2062 * the reloc mutex makes sure that we stop 2063 * the balancing code from coming in and moving 2064 * extents around in the middle of the commit 2065 */ 2066 mutex_lock(&fs_info->reloc_mutex); 2067 2068 /* 2069 * We needn't worry about the delayed items because we will 2070 * deal with them in create_pending_snapshot(), which is the 2071 * core function of the snapshot creation. 2072 */ 2073 ret = create_pending_snapshots(trans); 2074 if (ret) { 2075 mutex_unlock(&fs_info->reloc_mutex); 2076 goto scrub_continue; 2077 } 2078 2079 /* 2080 * We insert the dir indexes of the snapshots and update the inode 2081 * of the snapshots' parents after the snapshot creation, so there 2082 * are some delayed items which are not dealt with. Now deal with 2083 * them. 2084 * 2085 * We needn't worry that this operation will corrupt the snapshots, 2086 * because all the tree which are snapshoted will be forced to COW 2087 * the nodes and leaves. 2088 */ 2089 ret = btrfs_run_delayed_items(trans); 2090 if (ret) { 2091 mutex_unlock(&fs_info->reloc_mutex); 2092 goto scrub_continue; 2093 } 2094 2095 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2096 if (ret) { 2097 mutex_unlock(&fs_info->reloc_mutex); 2098 goto scrub_continue; 2099 } 2100 2101 /* 2102 * make sure none of the code above managed to slip in a 2103 * delayed item 2104 */ 2105 btrfs_assert_delayed_root_empty(fs_info); 2106 2107 WARN_ON(cur_trans != trans->transaction); 2108 2109 /* btrfs_commit_tree_roots is responsible for getting the 2110 * various roots consistent with each other. Every pointer 2111 * in the tree of tree roots has to point to the most up to date 2112 * root for every subvolume and other tree. So, we have to keep 2113 * the tree logging code from jumping in and changing any 2114 * of the trees. 2115 * 2116 * At this point in the commit, there can't be any tree-log 2117 * writers, but a little lower down we drop the trans mutex 2118 * and let new people in. By holding the tree_log_mutex 2119 * from now until after the super is written, we avoid races 2120 * with the tree-log code. 2121 */ 2122 mutex_lock(&fs_info->tree_log_mutex); 2123 2124 ret = commit_fs_roots(trans); 2125 if (ret) { 2126 mutex_unlock(&fs_info->tree_log_mutex); 2127 mutex_unlock(&fs_info->reloc_mutex); 2128 goto scrub_continue; 2129 } 2130 2131 /* 2132 * Since the transaction is done, we can apply the pending changes 2133 * before the next transaction. 2134 */ 2135 btrfs_apply_pending_changes(fs_info); 2136 2137 /* commit_fs_roots gets rid of all the tree log roots, it is now 2138 * safe to free the root of tree log roots 2139 */ 2140 btrfs_free_log_root_tree(trans, fs_info); 2141 2142 /* 2143 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates 2144 * new delayed refs. Must handle them or qgroup can be wrong. 2145 */ 2146 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2147 if (ret) { 2148 mutex_unlock(&fs_info->tree_log_mutex); 2149 mutex_unlock(&fs_info->reloc_mutex); 2150 goto scrub_continue; 2151 } 2152 2153 /* 2154 * Since fs roots are all committed, we can get a quite accurate 2155 * new_roots. So let's do quota accounting. 2156 */ 2157 ret = btrfs_qgroup_account_extents(trans); 2158 if (ret < 0) { 2159 mutex_unlock(&fs_info->tree_log_mutex); 2160 mutex_unlock(&fs_info->reloc_mutex); 2161 goto scrub_continue; 2162 } 2163 2164 ret = commit_cowonly_roots(trans); 2165 if (ret) { 2166 mutex_unlock(&fs_info->tree_log_mutex); 2167 mutex_unlock(&fs_info->reloc_mutex); 2168 goto scrub_continue; 2169 } 2170 2171 /* 2172 * The tasks which save the space cache and inode cache may also 2173 * update ->aborted, check it. 2174 */ 2175 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2176 ret = cur_trans->aborted; 2177 mutex_unlock(&fs_info->tree_log_mutex); 2178 mutex_unlock(&fs_info->reloc_mutex); 2179 goto scrub_continue; 2180 } 2181 2182 btrfs_prepare_extent_commit(fs_info); 2183 2184 cur_trans = fs_info->running_transaction; 2185 2186 btrfs_set_root_node(&fs_info->tree_root->root_item, 2187 fs_info->tree_root->node); 2188 list_add_tail(&fs_info->tree_root->dirty_list, 2189 &cur_trans->switch_commits); 2190 2191 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2192 fs_info->chunk_root->node); 2193 list_add_tail(&fs_info->chunk_root->dirty_list, 2194 &cur_trans->switch_commits); 2195 2196 switch_commit_roots(cur_trans); 2197 2198 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2199 ASSERT(list_empty(&cur_trans->io_bgs)); 2200 update_super_roots(fs_info); 2201 2202 btrfs_set_super_log_root(fs_info->super_copy, 0); 2203 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2204 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2205 sizeof(*fs_info->super_copy)); 2206 2207 btrfs_commit_device_sizes(cur_trans); 2208 2209 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2210 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2211 2212 btrfs_trans_release_chunk_metadata(trans); 2213 2214 spin_lock(&fs_info->trans_lock); 2215 cur_trans->state = TRANS_STATE_UNBLOCKED; 2216 fs_info->running_transaction = NULL; 2217 spin_unlock(&fs_info->trans_lock); 2218 mutex_unlock(&fs_info->reloc_mutex); 2219 2220 wake_up(&fs_info->transaction_wait); 2221 2222 ret = btrfs_write_and_wait_transaction(trans); 2223 if (ret) { 2224 btrfs_handle_fs_error(fs_info, ret, 2225 "Error while writing out transaction"); 2226 mutex_unlock(&fs_info->tree_log_mutex); 2227 goto scrub_continue; 2228 } 2229 2230 ret = write_all_supers(fs_info, 0); 2231 /* 2232 * the super is written, we can safely allow the tree-loggers 2233 * to go about their business 2234 */ 2235 mutex_unlock(&fs_info->tree_log_mutex); 2236 if (ret) 2237 goto scrub_continue; 2238 2239 btrfs_finish_extent_commit(trans); 2240 2241 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2242 btrfs_clear_space_info_full(fs_info); 2243 2244 fs_info->last_trans_committed = cur_trans->transid; 2245 /* 2246 * We needn't acquire the lock here because there is no other task 2247 * which can change it. 2248 */ 2249 cur_trans->state = TRANS_STATE_COMPLETED; 2250 wake_up(&cur_trans->commit_wait); 2251 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags); 2252 2253 spin_lock(&fs_info->trans_lock); 2254 list_del_init(&cur_trans->list); 2255 spin_unlock(&fs_info->trans_lock); 2256 2257 btrfs_put_transaction(cur_trans); 2258 btrfs_put_transaction(cur_trans); 2259 2260 if (trans->type & __TRANS_FREEZABLE) 2261 sb_end_intwrite(fs_info->sb); 2262 2263 trace_btrfs_transaction_commit(trans->root); 2264 2265 btrfs_scrub_continue(fs_info); 2266 2267 if (current->journal_info == trans) 2268 current->journal_info = NULL; 2269 2270 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2271 2272 return ret; 2273 2274 scrub_continue: 2275 btrfs_scrub_continue(fs_info); 2276 cleanup_transaction: 2277 btrfs_trans_release_metadata(trans); 2278 btrfs_cleanup_pending_block_groups(trans); 2279 btrfs_trans_release_chunk_metadata(trans); 2280 trans->block_rsv = NULL; 2281 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2282 if (current->journal_info == trans) 2283 current->journal_info = NULL; 2284 cleanup_transaction(trans, ret); 2285 2286 return ret; 2287 } 2288 2289 /* 2290 * return < 0 if error 2291 * 0 if there are no more dead_roots at the time of call 2292 * 1 there are more to be processed, call me again 2293 * 2294 * The return value indicates there are certainly more snapshots to delete, but 2295 * if there comes a new one during processing, it may return 0. We don't mind, 2296 * because btrfs_commit_super will poke cleaner thread and it will process it a 2297 * few seconds later. 2298 */ 2299 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2300 { 2301 int ret; 2302 struct btrfs_fs_info *fs_info = root->fs_info; 2303 2304 spin_lock(&fs_info->trans_lock); 2305 if (list_empty(&fs_info->dead_roots)) { 2306 spin_unlock(&fs_info->trans_lock); 2307 return 0; 2308 } 2309 root = list_first_entry(&fs_info->dead_roots, 2310 struct btrfs_root, root_list); 2311 list_del_init(&root->root_list); 2312 spin_unlock(&fs_info->trans_lock); 2313 2314 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2315 2316 btrfs_kill_all_delayed_nodes(root); 2317 2318 if (btrfs_header_backref_rev(root->node) < 2319 BTRFS_MIXED_BACKREF_REV) 2320 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2321 else 2322 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2323 2324 return (ret < 0) ? 0 : 1; 2325 } 2326 2327 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2328 { 2329 unsigned long prev; 2330 unsigned long bit; 2331 2332 prev = xchg(&fs_info->pending_changes, 0); 2333 if (!prev) 2334 return; 2335 2336 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2337 if (prev & bit) 2338 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2339 prev &= ~bit; 2340 2341 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2342 if (prev & bit) 2343 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2344 prev &= ~bit; 2345 2346 bit = 1 << BTRFS_PENDING_COMMIT; 2347 if (prev & bit) 2348 btrfs_debug(fs_info, "pending commit done"); 2349 prev &= ~bit; 2350 2351 if (prev) 2352 btrfs_warn(fs_info, 2353 "unknown pending changes left 0x%lx, ignoring", prev); 2354 } 2355