1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/writeback.h> 11 #include <linux/pagemap.h> 12 #include <linux/blkdev.h> 13 #include <linux/uuid.h> 14 #include <linux/timekeeping.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "disk-io.h" 18 #include "transaction.h" 19 #include "locking.h" 20 #include "tree-log.h" 21 #include "volumes.h" 22 #include "dev-replace.h" 23 #include "qgroup.h" 24 #include "block-group.h" 25 #include "space-info.h" 26 #include "zoned.h" 27 #include "fs.h" 28 #include "accessors.h" 29 #include "extent-tree.h" 30 #include "root-tree.h" 31 #include "defrag.h" 32 #include "dir-item.h" 33 #include "uuid-tree.h" 34 #include "ioctl.h" 35 #include "relocation.h" 36 #include "scrub.h" 37 38 static struct kmem_cache *btrfs_trans_handle_cachep; 39 40 /* 41 * Transaction states and transitions 42 * 43 * No running transaction (fs tree blocks are not modified) 44 * | 45 * | To next stage: 46 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 47 * V 48 * Transaction N [[TRANS_STATE_RUNNING]] 49 * | 50 * | New trans handles can be attached to transaction N by calling all 51 * | start_transaction() variants. 52 * | 53 * | To next stage: 54 * | Call btrfs_commit_transaction() on any trans handle attached to 55 * | transaction N 56 * V 57 * Transaction N [[TRANS_STATE_COMMIT_PREP]] 58 * | 59 * | If there are simultaneous calls to btrfs_commit_transaction() one will win 60 * | the race and the rest will wait for the winner to commit the transaction. 61 * | 62 * | The winner will wait for previous running transaction to completely finish 63 * | if there is one. 64 * | 65 * Transaction N [[TRANS_STATE_COMMIT_START]] 66 * | 67 * | Then one of the following happens: 68 * | - Wait for all other trans handle holders to release. 69 * | The btrfs_commit_transaction() caller will do the commit work. 70 * | - Wait for current transaction to be committed by others. 71 * | Other btrfs_commit_transaction() caller will do the commit work. 72 * | 73 * | At this stage, only btrfs_join_transaction*() variants can attach 74 * | to this running transaction. 75 * | All other variants will wait for current one to finish and attach to 76 * | transaction N+1. 77 * | 78 * | To next stage: 79 * | Caller is chosen to commit transaction N, and all other trans handle 80 * | haven been released. 81 * V 82 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 83 * | 84 * | The heavy lifting transaction work is started. 85 * | From running delayed refs (modifying extent tree) to creating pending 86 * | snapshots, running qgroups. 87 * | In short, modify supporting trees to reflect modifications of subvolume 88 * | trees. 89 * | 90 * | At this stage, all start_transaction() calls will wait for this 91 * | transaction to finish and attach to transaction N+1. 92 * | 93 * | To next stage: 94 * | Until all supporting trees are updated. 95 * V 96 * Transaction N [[TRANS_STATE_UNBLOCKED]] 97 * | Transaction N+1 98 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 99 * | need to write them back to disk and update | 100 * | super blocks. | 101 * | | 102 * | At this stage, new transaction is allowed to | 103 * | start. | 104 * | All new start_transaction() calls will be | 105 * | attached to transid N+1. | 106 * | | 107 * | To next stage: | 108 * | Until all tree blocks are super blocks are | 109 * | written to block devices | 110 * V | 111 * Transaction N [[TRANS_STATE_COMPLETED]] V 112 * All tree blocks and super blocks are written. Transaction N+1 113 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 114 * data structures will be cleaned up. | Life goes on 115 */ 116 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 117 [TRANS_STATE_RUNNING] = 0U, 118 [TRANS_STATE_COMMIT_PREP] = 0U, 119 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 120 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 121 __TRANS_ATTACH | 122 __TRANS_JOIN | 123 __TRANS_JOIN_NOSTART), 124 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 125 __TRANS_ATTACH | 126 __TRANS_JOIN | 127 __TRANS_JOIN_NOLOCK | 128 __TRANS_JOIN_NOSTART), 129 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START | 130 __TRANS_ATTACH | 131 __TRANS_JOIN | 132 __TRANS_JOIN_NOLOCK | 133 __TRANS_JOIN_NOSTART), 134 [TRANS_STATE_COMPLETED] = (__TRANS_START | 135 __TRANS_ATTACH | 136 __TRANS_JOIN | 137 __TRANS_JOIN_NOLOCK | 138 __TRANS_JOIN_NOSTART), 139 }; 140 141 void btrfs_put_transaction(struct btrfs_transaction *transaction) 142 { 143 WARN_ON(refcount_read(&transaction->use_count) == 0); 144 if (refcount_dec_and_test(&transaction->use_count)) { 145 BUG_ON(!list_empty(&transaction->list)); 146 WARN_ON(!RB_EMPTY_ROOT( 147 &transaction->delayed_refs.href_root.rb_root)); 148 WARN_ON(!RB_EMPTY_ROOT( 149 &transaction->delayed_refs.dirty_extent_root)); 150 if (transaction->delayed_refs.pending_csums) 151 btrfs_err(transaction->fs_info, 152 "pending csums is %llu", 153 transaction->delayed_refs.pending_csums); 154 /* 155 * If any block groups are found in ->deleted_bgs then it's 156 * because the transaction was aborted and a commit did not 157 * happen (things failed before writing the new superblock 158 * and calling btrfs_finish_extent_commit()), so we can not 159 * discard the physical locations of the block groups. 160 */ 161 while (!list_empty(&transaction->deleted_bgs)) { 162 struct btrfs_block_group *cache; 163 164 cache = list_first_entry(&transaction->deleted_bgs, 165 struct btrfs_block_group, 166 bg_list); 167 list_del_init(&cache->bg_list); 168 btrfs_unfreeze_block_group(cache); 169 btrfs_put_block_group(cache); 170 } 171 WARN_ON(!list_empty(&transaction->dev_update_list)); 172 kfree(transaction); 173 } 174 } 175 176 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 177 { 178 struct btrfs_transaction *cur_trans = trans->transaction; 179 struct btrfs_fs_info *fs_info = trans->fs_info; 180 struct btrfs_root *root, *tmp; 181 182 /* 183 * At this point no one can be using this transaction to modify any tree 184 * and no one can start another transaction to modify any tree either. 185 */ 186 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING); 187 188 down_write(&fs_info->commit_root_sem); 189 190 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 191 fs_info->last_reloc_trans = trans->transid; 192 193 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 194 dirty_list) { 195 list_del_init(&root->dirty_list); 196 free_extent_buffer(root->commit_root); 197 root->commit_root = btrfs_root_node(root); 198 extent_io_tree_release(&root->dirty_log_pages); 199 btrfs_qgroup_clean_swapped_blocks(root); 200 } 201 202 /* We can free old roots now. */ 203 spin_lock(&cur_trans->dropped_roots_lock); 204 while (!list_empty(&cur_trans->dropped_roots)) { 205 root = list_first_entry(&cur_trans->dropped_roots, 206 struct btrfs_root, root_list); 207 list_del_init(&root->root_list); 208 spin_unlock(&cur_trans->dropped_roots_lock); 209 btrfs_free_log(trans, root); 210 btrfs_drop_and_free_fs_root(fs_info, root); 211 spin_lock(&cur_trans->dropped_roots_lock); 212 } 213 spin_unlock(&cur_trans->dropped_roots_lock); 214 215 up_write(&fs_info->commit_root_sem); 216 } 217 218 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 219 unsigned int type) 220 { 221 if (type & TRANS_EXTWRITERS) 222 atomic_inc(&trans->num_extwriters); 223 } 224 225 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 226 unsigned int type) 227 { 228 if (type & TRANS_EXTWRITERS) 229 atomic_dec(&trans->num_extwriters); 230 } 231 232 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 233 unsigned int type) 234 { 235 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 236 } 237 238 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 239 { 240 return atomic_read(&trans->num_extwriters); 241 } 242 243 /* 244 * To be called after doing the chunk btree updates right after allocating a new 245 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a 246 * chunk after all chunk btree updates and after finishing the second phase of 247 * chunk allocation (btrfs_create_pending_block_groups()) in case some block 248 * group had its chunk item insertion delayed to the second phase. 249 */ 250 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 251 { 252 struct btrfs_fs_info *fs_info = trans->fs_info; 253 254 if (!trans->chunk_bytes_reserved) 255 return; 256 257 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 258 trans->chunk_bytes_reserved, NULL); 259 trans->chunk_bytes_reserved = 0; 260 } 261 262 /* 263 * either allocate a new transaction or hop into the existing one 264 */ 265 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 266 unsigned int type) 267 { 268 struct btrfs_transaction *cur_trans; 269 270 spin_lock(&fs_info->trans_lock); 271 loop: 272 /* The file system has been taken offline. No new transactions. */ 273 if (BTRFS_FS_ERROR(fs_info)) { 274 spin_unlock(&fs_info->trans_lock); 275 return -EROFS; 276 } 277 278 cur_trans = fs_info->running_transaction; 279 if (cur_trans) { 280 if (TRANS_ABORTED(cur_trans)) { 281 spin_unlock(&fs_info->trans_lock); 282 return cur_trans->aborted; 283 } 284 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 285 spin_unlock(&fs_info->trans_lock); 286 return -EBUSY; 287 } 288 refcount_inc(&cur_trans->use_count); 289 atomic_inc(&cur_trans->num_writers); 290 extwriter_counter_inc(cur_trans, type); 291 spin_unlock(&fs_info->trans_lock); 292 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 293 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 294 return 0; 295 } 296 spin_unlock(&fs_info->trans_lock); 297 298 /* 299 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the 300 * current transaction, and commit it. If there is no transaction, just 301 * return ENOENT. 302 */ 303 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART) 304 return -ENOENT; 305 306 /* 307 * JOIN_NOLOCK only happens during the transaction commit, so 308 * it is impossible that ->running_transaction is NULL 309 */ 310 BUG_ON(type == TRANS_JOIN_NOLOCK); 311 312 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 313 if (!cur_trans) 314 return -ENOMEM; 315 316 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 317 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 318 319 spin_lock(&fs_info->trans_lock); 320 if (fs_info->running_transaction) { 321 /* 322 * someone started a transaction after we unlocked. Make sure 323 * to redo the checks above 324 */ 325 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 326 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 327 kfree(cur_trans); 328 goto loop; 329 } else if (BTRFS_FS_ERROR(fs_info)) { 330 spin_unlock(&fs_info->trans_lock); 331 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 332 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 333 kfree(cur_trans); 334 return -EROFS; 335 } 336 337 cur_trans->fs_info = fs_info; 338 atomic_set(&cur_trans->pending_ordered, 0); 339 init_waitqueue_head(&cur_trans->pending_wait); 340 atomic_set(&cur_trans->num_writers, 1); 341 extwriter_counter_init(cur_trans, type); 342 init_waitqueue_head(&cur_trans->writer_wait); 343 init_waitqueue_head(&cur_trans->commit_wait); 344 cur_trans->state = TRANS_STATE_RUNNING; 345 /* 346 * One for this trans handle, one so it will live on until we 347 * commit the transaction. 348 */ 349 refcount_set(&cur_trans->use_count, 2); 350 cur_trans->flags = 0; 351 cur_trans->start_time = ktime_get_seconds(); 352 353 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 354 355 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 356 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 357 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 358 359 /* 360 * although the tree mod log is per file system and not per transaction, 361 * the log must never go across transaction boundaries. 362 */ 363 smp_mb(); 364 if (!list_empty(&fs_info->tree_mod_seq_list)) 365 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 366 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 367 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 368 atomic64_set(&fs_info->tree_mod_seq, 0); 369 370 spin_lock_init(&cur_trans->delayed_refs.lock); 371 372 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 373 INIT_LIST_HEAD(&cur_trans->dev_update_list); 374 INIT_LIST_HEAD(&cur_trans->switch_commits); 375 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 376 INIT_LIST_HEAD(&cur_trans->io_bgs); 377 INIT_LIST_HEAD(&cur_trans->dropped_roots); 378 mutex_init(&cur_trans->cache_write_mutex); 379 spin_lock_init(&cur_trans->dirty_bgs_lock); 380 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 381 spin_lock_init(&cur_trans->dropped_roots_lock); 382 list_add_tail(&cur_trans->list, &fs_info->trans_list); 383 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 384 IO_TREE_TRANS_DIRTY_PAGES); 385 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 386 IO_TREE_FS_PINNED_EXTENTS); 387 fs_info->generation++; 388 cur_trans->transid = fs_info->generation; 389 fs_info->running_transaction = cur_trans; 390 cur_trans->aborted = 0; 391 spin_unlock(&fs_info->trans_lock); 392 393 return 0; 394 } 395 396 /* 397 * This does all the record keeping required to make sure that a shareable root 398 * is properly recorded in a given transaction. This is required to make sure 399 * the old root from before we joined the transaction is deleted when the 400 * transaction commits. 401 */ 402 static int record_root_in_trans(struct btrfs_trans_handle *trans, 403 struct btrfs_root *root, 404 int force) 405 { 406 struct btrfs_fs_info *fs_info = root->fs_info; 407 int ret = 0; 408 409 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 410 root->last_trans < trans->transid) || force) { 411 WARN_ON(!force && root->commit_root != root->node); 412 413 /* 414 * see below for IN_TRANS_SETUP usage rules 415 * we have the reloc mutex held now, so there 416 * is only one writer in this function 417 */ 418 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 419 420 /* make sure readers find IN_TRANS_SETUP before 421 * they find our root->last_trans update 422 */ 423 smp_wmb(); 424 425 spin_lock(&fs_info->fs_roots_radix_lock); 426 if (root->last_trans == trans->transid && !force) { 427 spin_unlock(&fs_info->fs_roots_radix_lock); 428 return 0; 429 } 430 radix_tree_tag_set(&fs_info->fs_roots_radix, 431 (unsigned long)root->root_key.objectid, 432 BTRFS_ROOT_TRANS_TAG); 433 spin_unlock(&fs_info->fs_roots_radix_lock); 434 root->last_trans = trans->transid; 435 436 /* this is pretty tricky. We don't want to 437 * take the relocation lock in btrfs_record_root_in_trans 438 * unless we're really doing the first setup for this root in 439 * this transaction. 440 * 441 * Normally we'd use root->last_trans as a flag to decide 442 * if we want to take the expensive mutex. 443 * 444 * But, we have to set root->last_trans before we 445 * init the relocation root, otherwise, we trip over warnings 446 * in ctree.c. The solution used here is to flag ourselves 447 * with root IN_TRANS_SETUP. When this is 1, we're still 448 * fixing up the reloc trees and everyone must wait. 449 * 450 * When this is zero, they can trust root->last_trans and fly 451 * through btrfs_record_root_in_trans without having to take the 452 * lock. smp_wmb() makes sure that all the writes above are 453 * done before we pop in the zero below 454 */ 455 ret = btrfs_init_reloc_root(trans, root); 456 smp_mb__before_atomic(); 457 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 458 } 459 return ret; 460 } 461 462 463 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 464 struct btrfs_root *root) 465 { 466 struct btrfs_fs_info *fs_info = root->fs_info; 467 struct btrfs_transaction *cur_trans = trans->transaction; 468 469 /* Add ourselves to the transaction dropped list */ 470 spin_lock(&cur_trans->dropped_roots_lock); 471 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 472 spin_unlock(&cur_trans->dropped_roots_lock); 473 474 /* Make sure we don't try to update the root at commit time */ 475 spin_lock(&fs_info->fs_roots_radix_lock); 476 radix_tree_tag_clear(&fs_info->fs_roots_radix, 477 (unsigned long)root->root_key.objectid, 478 BTRFS_ROOT_TRANS_TAG); 479 spin_unlock(&fs_info->fs_roots_radix_lock); 480 } 481 482 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 483 struct btrfs_root *root) 484 { 485 struct btrfs_fs_info *fs_info = root->fs_info; 486 int ret; 487 488 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 489 return 0; 490 491 /* 492 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 493 * and barriers 494 */ 495 smp_rmb(); 496 if (root->last_trans == trans->transid && 497 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 498 return 0; 499 500 mutex_lock(&fs_info->reloc_mutex); 501 ret = record_root_in_trans(trans, root, 0); 502 mutex_unlock(&fs_info->reloc_mutex); 503 504 return ret; 505 } 506 507 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 508 { 509 return (trans->state >= TRANS_STATE_COMMIT_START && 510 trans->state < TRANS_STATE_UNBLOCKED && 511 !TRANS_ABORTED(trans)); 512 } 513 514 /* wait for commit against the current transaction to become unblocked 515 * when this is done, it is safe to start a new transaction, but the current 516 * transaction might not be fully on disk. 517 */ 518 static void wait_current_trans(struct btrfs_fs_info *fs_info) 519 { 520 struct btrfs_transaction *cur_trans; 521 522 spin_lock(&fs_info->trans_lock); 523 cur_trans = fs_info->running_transaction; 524 if (cur_trans && is_transaction_blocked(cur_trans)) { 525 refcount_inc(&cur_trans->use_count); 526 spin_unlock(&fs_info->trans_lock); 527 528 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 529 wait_event(fs_info->transaction_wait, 530 cur_trans->state >= TRANS_STATE_UNBLOCKED || 531 TRANS_ABORTED(cur_trans)); 532 btrfs_put_transaction(cur_trans); 533 } else { 534 spin_unlock(&fs_info->trans_lock); 535 } 536 } 537 538 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 539 { 540 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 541 return 0; 542 543 if (type == TRANS_START) 544 return 1; 545 546 return 0; 547 } 548 549 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 550 { 551 struct btrfs_fs_info *fs_info = root->fs_info; 552 553 if (!fs_info->reloc_ctl || 554 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 555 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 556 root->reloc_root) 557 return false; 558 559 return true; 560 } 561 562 static struct btrfs_trans_handle * 563 start_transaction(struct btrfs_root *root, unsigned int num_items, 564 unsigned int type, enum btrfs_reserve_flush_enum flush, 565 bool enforce_qgroups) 566 { 567 struct btrfs_fs_info *fs_info = root->fs_info; 568 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 569 struct btrfs_trans_handle *h; 570 struct btrfs_transaction *cur_trans; 571 u64 num_bytes = 0; 572 u64 qgroup_reserved = 0; 573 bool reloc_reserved = false; 574 bool do_chunk_alloc = false; 575 int ret; 576 577 if (BTRFS_FS_ERROR(fs_info)) 578 return ERR_PTR(-EROFS); 579 580 if (current->journal_info) { 581 WARN_ON(type & TRANS_EXTWRITERS); 582 h = current->journal_info; 583 refcount_inc(&h->use_count); 584 WARN_ON(refcount_read(&h->use_count) > 2); 585 h->orig_rsv = h->block_rsv; 586 h->block_rsv = NULL; 587 goto got_it; 588 } 589 590 /* 591 * Do the reservation before we join the transaction so we can do all 592 * the appropriate flushing if need be. 593 */ 594 if (num_items && root != fs_info->chunk_root) { 595 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 596 u64 delayed_refs_bytes = 0; 597 598 qgroup_reserved = num_items * fs_info->nodesize; 599 /* 600 * Use prealloc for now, as there might be a currently running 601 * transaction that could free this reserved space prematurely 602 * by committing. 603 */ 604 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved, 605 enforce_qgroups, false); 606 if (ret) 607 return ERR_PTR(ret); 608 609 /* 610 * We want to reserve all the bytes we may need all at once, so 611 * we only do 1 enospc flushing cycle per transaction start. We 612 * accomplish this by simply assuming we'll do num_items worth 613 * of delayed refs updates in this trans handle, and refill that 614 * amount for whatever is missing in the reserve. 615 */ 616 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 617 if (flush == BTRFS_RESERVE_FLUSH_ALL && 618 !btrfs_block_rsv_full(delayed_refs_rsv)) { 619 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, 620 num_items); 621 num_bytes += delayed_refs_bytes; 622 } 623 624 /* 625 * Do the reservation for the relocation root creation 626 */ 627 if (need_reserve_reloc_root(root)) { 628 num_bytes += fs_info->nodesize; 629 reloc_reserved = true; 630 } 631 632 ret = btrfs_reserve_metadata_bytes(fs_info, rsv, num_bytes, flush); 633 if (ret) 634 goto reserve_fail; 635 if (delayed_refs_bytes) { 636 btrfs_migrate_to_delayed_refs_rsv(fs_info, delayed_refs_bytes); 637 num_bytes -= delayed_refs_bytes; 638 } 639 btrfs_block_rsv_add_bytes(rsv, num_bytes, true); 640 641 if (rsv->space_info->force_alloc) 642 do_chunk_alloc = true; 643 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 644 !btrfs_block_rsv_full(delayed_refs_rsv)) { 645 /* 646 * Some people call with btrfs_start_transaction(root, 0) 647 * because they can be throttled, but have some other mechanism 648 * for reserving space. We still want these guys to refill the 649 * delayed block_rsv so just add 1 items worth of reservation 650 * here. 651 */ 652 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 653 if (ret) 654 goto reserve_fail; 655 } 656 again: 657 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 658 if (!h) { 659 ret = -ENOMEM; 660 goto alloc_fail; 661 } 662 663 /* 664 * If we are JOIN_NOLOCK we're already committing a transaction and 665 * waiting on this guy, so we don't need to do the sb_start_intwrite 666 * because we're already holding a ref. We need this because we could 667 * have raced in and did an fsync() on a file which can kick a commit 668 * and then we deadlock with somebody doing a freeze. 669 * 670 * If we are ATTACH, it means we just want to catch the current 671 * transaction and commit it, so we needn't do sb_start_intwrite(). 672 */ 673 if (type & __TRANS_FREEZABLE) 674 sb_start_intwrite(fs_info->sb); 675 676 if (may_wait_transaction(fs_info, type)) 677 wait_current_trans(fs_info); 678 679 do { 680 ret = join_transaction(fs_info, type); 681 if (ret == -EBUSY) { 682 wait_current_trans(fs_info); 683 if (unlikely(type == TRANS_ATTACH || 684 type == TRANS_JOIN_NOSTART)) 685 ret = -ENOENT; 686 } 687 } while (ret == -EBUSY); 688 689 if (ret < 0) 690 goto join_fail; 691 692 cur_trans = fs_info->running_transaction; 693 694 h->transid = cur_trans->transid; 695 h->transaction = cur_trans; 696 refcount_set(&h->use_count, 1); 697 h->fs_info = root->fs_info; 698 699 h->type = type; 700 INIT_LIST_HEAD(&h->new_bgs); 701 702 smp_mb(); 703 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 704 may_wait_transaction(fs_info, type)) { 705 current->journal_info = h; 706 btrfs_commit_transaction(h); 707 goto again; 708 } 709 710 if (num_bytes) { 711 trace_btrfs_space_reservation(fs_info, "transaction", 712 h->transid, num_bytes, 1); 713 h->block_rsv = &fs_info->trans_block_rsv; 714 h->bytes_reserved = num_bytes; 715 h->reloc_reserved = reloc_reserved; 716 } 717 718 /* 719 * Now that we have found a transaction to be a part of, convert the 720 * qgroup reservation from prealloc to pertrans. A different transaction 721 * can't race in and free our pertrans out from under us. 722 */ 723 if (qgroup_reserved) 724 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 725 726 got_it: 727 if (!current->journal_info) 728 current->journal_info = h; 729 730 /* 731 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 732 * ALLOC_FORCE the first run through, and then we won't allocate for 733 * anybody else who races in later. We don't care about the return 734 * value here. 735 */ 736 if (do_chunk_alloc && num_bytes) { 737 u64 flags = h->block_rsv->space_info->flags; 738 739 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 740 CHUNK_ALLOC_NO_FORCE); 741 } 742 743 /* 744 * btrfs_record_root_in_trans() needs to alloc new extents, and may 745 * call btrfs_join_transaction() while we're also starting a 746 * transaction. 747 * 748 * Thus it need to be called after current->journal_info initialized, 749 * or we can deadlock. 750 */ 751 ret = btrfs_record_root_in_trans(h, root); 752 if (ret) { 753 /* 754 * The transaction handle is fully initialized and linked with 755 * other structures so it needs to be ended in case of errors, 756 * not just freed. 757 */ 758 btrfs_end_transaction(h); 759 return ERR_PTR(ret); 760 } 761 762 return h; 763 764 join_fail: 765 if (type & __TRANS_FREEZABLE) 766 sb_end_intwrite(fs_info->sb); 767 kmem_cache_free(btrfs_trans_handle_cachep, h); 768 alloc_fail: 769 if (num_bytes) 770 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 771 num_bytes, NULL); 772 reserve_fail: 773 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 774 return ERR_PTR(ret); 775 } 776 777 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 778 unsigned int num_items) 779 { 780 return start_transaction(root, num_items, TRANS_START, 781 BTRFS_RESERVE_FLUSH_ALL, true); 782 } 783 784 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 785 struct btrfs_root *root, 786 unsigned int num_items) 787 { 788 return start_transaction(root, num_items, TRANS_START, 789 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 790 } 791 792 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 793 { 794 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 795 true); 796 } 797 798 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 799 { 800 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 801 BTRFS_RESERVE_NO_FLUSH, true); 802 } 803 804 /* 805 * Similar to regular join but it never starts a transaction when none is 806 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED. 807 * This is similar to btrfs_attach_transaction() but it allows the join to 808 * happen if the transaction commit already started but it's not yet in the 809 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING). 810 */ 811 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 812 { 813 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 814 BTRFS_RESERVE_NO_FLUSH, true); 815 } 816 817 /* 818 * btrfs_attach_transaction() - catch the running transaction 819 * 820 * It is used when we want to commit the current the transaction, but 821 * don't want to start a new one. 822 * 823 * Note: If this function return -ENOENT, it just means there is no 824 * running transaction. But it is possible that the inactive transaction 825 * is still in the memory, not fully on disk. If you hope there is no 826 * inactive transaction in the fs when -ENOENT is returned, you should 827 * invoke 828 * btrfs_attach_transaction_barrier() 829 */ 830 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 831 { 832 return start_transaction(root, 0, TRANS_ATTACH, 833 BTRFS_RESERVE_NO_FLUSH, true); 834 } 835 836 /* 837 * btrfs_attach_transaction_barrier() - catch the running transaction 838 * 839 * It is similar to the above function, the difference is this one 840 * will wait for all the inactive transactions until they fully 841 * complete. 842 */ 843 struct btrfs_trans_handle * 844 btrfs_attach_transaction_barrier(struct btrfs_root *root) 845 { 846 struct btrfs_trans_handle *trans; 847 848 trans = start_transaction(root, 0, TRANS_ATTACH, 849 BTRFS_RESERVE_NO_FLUSH, true); 850 if (trans == ERR_PTR(-ENOENT)) { 851 int ret; 852 853 ret = btrfs_wait_for_commit(root->fs_info, 0); 854 if (ret) 855 return ERR_PTR(ret); 856 } 857 858 return trans; 859 } 860 861 /* Wait for a transaction commit to reach at least the given state. */ 862 static noinline void wait_for_commit(struct btrfs_transaction *commit, 863 const enum btrfs_trans_state min_state) 864 { 865 struct btrfs_fs_info *fs_info = commit->fs_info; 866 u64 transid = commit->transid; 867 bool put = false; 868 869 /* 870 * At the moment this function is called with min_state either being 871 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED. 872 */ 873 if (min_state == TRANS_STATE_COMPLETED) 874 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 875 else 876 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 877 878 while (1) { 879 wait_event(commit->commit_wait, commit->state >= min_state); 880 if (put) 881 btrfs_put_transaction(commit); 882 883 if (min_state < TRANS_STATE_COMPLETED) 884 break; 885 886 /* 887 * A transaction isn't really completed until all of the 888 * previous transactions are completed, but with fsync we can 889 * end up with SUPER_COMMITTED transactions before a COMPLETED 890 * transaction. Wait for those. 891 */ 892 893 spin_lock(&fs_info->trans_lock); 894 commit = list_first_entry_or_null(&fs_info->trans_list, 895 struct btrfs_transaction, 896 list); 897 if (!commit || commit->transid > transid) { 898 spin_unlock(&fs_info->trans_lock); 899 break; 900 } 901 refcount_inc(&commit->use_count); 902 put = true; 903 spin_unlock(&fs_info->trans_lock); 904 } 905 } 906 907 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 908 { 909 struct btrfs_transaction *cur_trans = NULL, *t; 910 int ret = 0; 911 912 if (transid) { 913 if (transid <= fs_info->last_trans_committed) 914 goto out; 915 916 /* find specified transaction */ 917 spin_lock(&fs_info->trans_lock); 918 list_for_each_entry(t, &fs_info->trans_list, list) { 919 if (t->transid == transid) { 920 cur_trans = t; 921 refcount_inc(&cur_trans->use_count); 922 ret = 0; 923 break; 924 } 925 if (t->transid > transid) { 926 ret = 0; 927 break; 928 } 929 } 930 spin_unlock(&fs_info->trans_lock); 931 932 /* 933 * The specified transaction doesn't exist, or we 934 * raced with btrfs_commit_transaction 935 */ 936 if (!cur_trans) { 937 if (transid > fs_info->last_trans_committed) 938 ret = -EINVAL; 939 goto out; 940 } 941 } else { 942 /* find newest transaction that is committing | committed */ 943 spin_lock(&fs_info->trans_lock); 944 list_for_each_entry_reverse(t, &fs_info->trans_list, 945 list) { 946 if (t->state >= TRANS_STATE_COMMIT_START) { 947 if (t->state == TRANS_STATE_COMPLETED) 948 break; 949 cur_trans = t; 950 refcount_inc(&cur_trans->use_count); 951 break; 952 } 953 } 954 spin_unlock(&fs_info->trans_lock); 955 if (!cur_trans) 956 goto out; /* nothing committing|committed */ 957 } 958 959 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED); 960 ret = cur_trans->aborted; 961 btrfs_put_transaction(cur_trans); 962 out: 963 return ret; 964 } 965 966 void btrfs_throttle(struct btrfs_fs_info *fs_info) 967 { 968 wait_current_trans(fs_info); 969 } 970 971 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 972 { 973 struct btrfs_transaction *cur_trans = trans->transaction; 974 975 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 976 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags)) 977 return true; 978 979 if (btrfs_check_space_for_delayed_refs(trans->fs_info)) 980 return true; 981 982 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50); 983 } 984 985 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 986 987 { 988 struct btrfs_fs_info *fs_info = trans->fs_info; 989 990 if (!trans->block_rsv) { 991 ASSERT(!trans->bytes_reserved); 992 return; 993 } 994 995 if (!trans->bytes_reserved) 996 return; 997 998 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 999 trace_btrfs_space_reservation(fs_info, "transaction", 1000 trans->transid, trans->bytes_reserved, 0); 1001 btrfs_block_rsv_release(fs_info, trans->block_rsv, 1002 trans->bytes_reserved, NULL); 1003 trans->bytes_reserved = 0; 1004 } 1005 1006 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 1007 int throttle) 1008 { 1009 struct btrfs_fs_info *info = trans->fs_info; 1010 struct btrfs_transaction *cur_trans = trans->transaction; 1011 int err = 0; 1012 1013 if (refcount_read(&trans->use_count) > 1) { 1014 refcount_dec(&trans->use_count); 1015 trans->block_rsv = trans->orig_rsv; 1016 return 0; 1017 } 1018 1019 btrfs_trans_release_metadata(trans); 1020 trans->block_rsv = NULL; 1021 1022 btrfs_create_pending_block_groups(trans); 1023 1024 btrfs_trans_release_chunk_metadata(trans); 1025 1026 if (trans->type & __TRANS_FREEZABLE) 1027 sb_end_intwrite(info->sb); 1028 1029 WARN_ON(cur_trans != info->running_transaction); 1030 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 1031 atomic_dec(&cur_trans->num_writers); 1032 extwriter_counter_dec(cur_trans, trans->type); 1033 1034 cond_wake_up(&cur_trans->writer_wait); 1035 1036 btrfs_lockdep_release(info, btrfs_trans_num_extwriters); 1037 btrfs_lockdep_release(info, btrfs_trans_num_writers); 1038 1039 btrfs_put_transaction(cur_trans); 1040 1041 if (current->journal_info == trans) 1042 current->journal_info = NULL; 1043 1044 if (throttle) 1045 btrfs_run_delayed_iputs(info); 1046 1047 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) { 1048 wake_up_process(info->transaction_kthread); 1049 if (TRANS_ABORTED(trans)) 1050 err = trans->aborted; 1051 else 1052 err = -EROFS; 1053 } 1054 1055 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1056 return err; 1057 } 1058 1059 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 1060 { 1061 return __btrfs_end_transaction(trans, 0); 1062 } 1063 1064 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1065 { 1066 return __btrfs_end_transaction(trans, 1); 1067 } 1068 1069 /* 1070 * when btree blocks are allocated, they have some corresponding bits set for 1071 * them in one of two extent_io trees. This is used to make sure all of 1072 * those extents are sent to disk but does not wait on them 1073 */ 1074 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1075 struct extent_io_tree *dirty_pages, int mark) 1076 { 1077 int err = 0; 1078 int werr = 0; 1079 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1080 struct extent_state *cached_state = NULL; 1081 u64 start = 0; 1082 u64 end; 1083 1084 while (find_first_extent_bit(dirty_pages, start, &start, &end, 1085 mark, &cached_state)) { 1086 bool wait_writeback = false; 1087 1088 err = convert_extent_bit(dirty_pages, start, end, 1089 EXTENT_NEED_WAIT, 1090 mark, &cached_state); 1091 /* 1092 * convert_extent_bit can return -ENOMEM, which is most of the 1093 * time a temporary error. So when it happens, ignore the error 1094 * and wait for writeback of this range to finish - because we 1095 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1096 * to __btrfs_wait_marked_extents() would not know that 1097 * writeback for this range started and therefore wouldn't 1098 * wait for it to finish - we don't want to commit a 1099 * superblock that points to btree nodes/leafs for which 1100 * writeback hasn't finished yet (and without errors). 1101 * We cleanup any entries left in the io tree when committing 1102 * the transaction (through extent_io_tree_release()). 1103 */ 1104 if (err == -ENOMEM) { 1105 err = 0; 1106 wait_writeback = true; 1107 } 1108 if (!err) 1109 err = filemap_fdatawrite_range(mapping, start, end); 1110 if (err) 1111 werr = err; 1112 else if (wait_writeback) 1113 werr = filemap_fdatawait_range(mapping, start, end); 1114 free_extent_state(cached_state); 1115 cached_state = NULL; 1116 cond_resched(); 1117 start = end + 1; 1118 } 1119 return werr; 1120 } 1121 1122 /* 1123 * when btree blocks are allocated, they have some corresponding bits set for 1124 * them in one of two extent_io trees. This is used to make sure all of 1125 * those extents are on disk for transaction or log commit. We wait 1126 * on all the pages and clear them from the dirty pages state tree 1127 */ 1128 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1129 struct extent_io_tree *dirty_pages) 1130 { 1131 int err = 0; 1132 int werr = 0; 1133 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1134 struct extent_state *cached_state = NULL; 1135 u64 start = 0; 1136 u64 end; 1137 1138 while (find_first_extent_bit(dirty_pages, start, &start, &end, 1139 EXTENT_NEED_WAIT, &cached_state)) { 1140 /* 1141 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1142 * When committing the transaction, we'll remove any entries 1143 * left in the io tree. For a log commit, we don't remove them 1144 * after committing the log because the tree can be accessed 1145 * concurrently - we do it only at transaction commit time when 1146 * it's safe to do it (through extent_io_tree_release()). 1147 */ 1148 err = clear_extent_bit(dirty_pages, start, end, 1149 EXTENT_NEED_WAIT, &cached_state); 1150 if (err == -ENOMEM) 1151 err = 0; 1152 if (!err) 1153 err = filemap_fdatawait_range(mapping, start, end); 1154 if (err) 1155 werr = err; 1156 free_extent_state(cached_state); 1157 cached_state = NULL; 1158 cond_resched(); 1159 start = end + 1; 1160 } 1161 if (err) 1162 werr = err; 1163 return werr; 1164 } 1165 1166 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1167 struct extent_io_tree *dirty_pages) 1168 { 1169 bool errors = false; 1170 int err; 1171 1172 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1173 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1174 errors = true; 1175 1176 if (errors && !err) 1177 err = -EIO; 1178 return err; 1179 } 1180 1181 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1182 { 1183 struct btrfs_fs_info *fs_info = log_root->fs_info; 1184 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1185 bool errors = false; 1186 int err; 1187 1188 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1189 1190 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1191 if ((mark & EXTENT_DIRTY) && 1192 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1193 errors = true; 1194 1195 if ((mark & EXTENT_NEW) && 1196 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1197 errors = true; 1198 1199 if (errors && !err) 1200 err = -EIO; 1201 return err; 1202 } 1203 1204 /* 1205 * When btree blocks are allocated the corresponding extents are marked dirty. 1206 * This function ensures such extents are persisted on disk for transaction or 1207 * log commit. 1208 * 1209 * @trans: transaction whose dirty pages we'd like to write 1210 */ 1211 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1212 { 1213 int ret; 1214 int ret2; 1215 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1216 struct btrfs_fs_info *fs_info = trans->fs_info; 1217 struct blk_plug plug; 1218 1219 blk_start_plug(&plug); 1220 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1221 blk_finish_plug(&plug); 1222 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1223 1224 extent_io_tree_release(&trans->transaction->dirty_pages); 1225 1226 if (ret) 1227 return ret; 1228 else if (ret2) 1229 return ret2; 1230 else 1231 return 0; 1232 } 1233 1234 /* 1235 * this is used to update the root pointer in the tree of tree roots. 1236 * 1237 * But, in the case of the extent allocation tree, updating the root 1238 * pointer may allocate blocks which may change the root of the extent 1239 * allocation tree. 1240 * 1241 * So, this loops and repeats and makes sure the cowonly root didn't 1242 * change while the root pointer was being updated in the metadata. 1243 */ 1244 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1245 struct btrfs_root *root) 1246 { 1247 int ret; 1248 u64 old_root_bytenr; 1249 u64 old_root_used; 1250 struct btrfs_fs_info *fs_info = root->fs_info; 1251 struct btrfs_root *tree_root = fs_info->tree_root; 1252 1253 old_root_used = btrfs_root_used(&root->root_item); 1254 1255 while (1) { 1256 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1257 if (old_root_bytenr == root->node->start && 1258 old_root_used == btrfs_root_used(&root->root_item)) 1259 break; 1260 1261 btrfs_set_root_node(&root->root_item, root->node); 1262 ret = btrfs_update_root(trans, tree_root, 1263 &root->root_key, 1264 &root->root_item); 1265 if (ret) 1266 return ret; 1267 1268 old_root_used = btrfs_root_used(&root->root_item); 1269 } 1270 1271 return 0; 1272 } 1273 1274 /* 1275 * update all the cowonly tree roots on disk 1276 * 1277 * The error handling in this function may not be obvious. Any of the 1278 * failures will cause the file system to go offline. We still need 1279 * to clean up the delayed refs. 1280 */ 1281 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1282 { 1283 struct btrfs_fs_info *fs_info = trans->fs_info; 1284 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1285 struct list_head *io_bgs = &trans->transaction->io_bgs; 1286 struct list_head *next; 1287 struct extent_buffer *eb; 1288 int ret; 1289 1290 /* 1291 * At this point no one can be using this transaction to modify any tree 1292 * and no one can start another transaction to modify any tree either. 1293 */ 1294 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1295 1296 eb = btrfs_lock_root_node(fs_info->tree_root); 1297 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1298 0, &eb, BTRFS_NESTING_COW); 1299 btrfs_tree_unlock(eb); 1300 free_extent_buffer(eb); 1301 1302 if (ret) 1303 return ret; 1304 1305 ret = btrfs_run_dev_stats(trans); 1306 if (ret) 1307 return ret; 1308 ret = btrfs_run_dev_replace(trans); 1309 if (ret) 1310 return ret; 1311 ret = btrfs_run_qgroups(trans); 1312 if (ret) 1313 return ret; 1314 1315 ret = btrfs_setup_space_cache(trans); 1316 if (ret) 1317 return ret; 1318 1319 again: 1320 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1321 struct btrfs_root *root; 1322 next = fs_info->dirty_cowonly_roots.next; 1323 list_del_init(next); 1324 root = list_entry(next, struct btrfs_root, dirty_list); 1325 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1326 1327 list_add_tail(&root->dirty_list, 1328 &trans->transaction->switch_commits); 1329 ret = update_cowonly_root(trans, root); 1330 if (ret) 1331 return ret; 1332 } 1333 1334 /* Now flush any delayed refs generated by updating all of the roots */ 1335 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1336 if (ret) 1337 return ret; 1338 1339 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1340 ret = btrfs_write_dirty_block_groups(trans); 1341 if (ret) 1342 return ret; 1343 1344 /* 1345 * We're writing the dirty block groups, which could generate 1346 * delayed refs, which could generate more dirty block groups, 1347 * so we want to keep this flushing in this loop to make sure 1348 * everything gets run. 1349 */ 1350 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1351 if (ret) 1352 return ret; 1353 } 1354 1355 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1356 goto again; 1357 1358 /* Update dev-replace pointer once everything is committed */ 1359 fs_info->dev_replace.committed_cursor_left = 1360 fs_info->dev_replace.cursor_left_last_write_of_item; 1361 1362 return 0; 1363 } 1364 1365 /* 1366 * If we had a pending drop we need to see if there are any others left in our 1367 * dead roots list, and if not clear our bit and wake any waiters. 1368 */ 1369 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1370 { 1371 /* 1372 * We put the drop in progress roots at the front of the list, so if the 1373 * first entry doesn't have UNFINISHED_DROP set we can wake everybody 1374 * up. 1375 */ 1376 spin_lock(&fs_info->trans_lock); 1377 if (!list_empty(&fs_info->dead_roots)) { 1378 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots, 1379 struct btrfs_root, 1380 root_list); 1381 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) { 1382 spin_unlock(&fs_info->trans_lock); 1383 return; 1384 } 1385 } 1386 spin_unlock(&fs_info->trans_lock); 1387 1388 btrfs_wake_unfinished_drop(fs_info); 1389 } 1390 1391 /* 1392 * dead roots are old snapshots that need to be deleted. This allocates 1393 * a dirty root struct and adds it into the list of dead roots that need to 1394 * be deleted 1395 */ 1396 void btrfs_add_dead_root(struct btrfs_root *root) 1397 { 1398 struct btrfs_fs_info *fs_info = root->fs_info; 1399 1400 spin_lock(&fs_info->trans_lock); 1401 if (list_empty(&root->root_list)) { 1402 btrfs_grab_root(root); 1403 1404 /* We want to process the partially complete drops first. */ 1405 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) 1406 list_add(&root->root_list, &fs_info->dead_roots); 1407 else 1408 list_add_tail(&root->root_list, &fs_info->dead_roots); 1409 } 1410 spin_unlock(&fs_info->trans_lock); 1411 } 1412 1413 /* 1414 * Update each subvolume root and its relocation root, if it exists, in the tree 1415 * of tree roots. Also free log roots if they exist. 1416 */ 1417 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1418 { 1419 struct btrfs_fs_info *fs_info = trans->fs_info; 1420 struct btrfs_root *gang[8]; 1421 int i; 1422 int ret; 1423 1424 /* 1425 * At this point no one can be using this transaction to modify any tree 1426 * and no one can start another transaction to modify any tree either. 1427 */ 1428 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1429 1430 spin_lock(&fs_info->fs_roots_radix_lock); 1431 while (1) { 1432 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1433 (void **)gang, 0, 1434 ARRAY_SIZE(gang), 1435 BTRFS_ROOT_TRANS_TAG); 1436 if (ret == 0) 1437 break; 1438 for (i = 0; i < ret; i++) { 1439 struct btrfs_root *root = gang[i]; 1440 int ret2; 1441 1442 /* 1443 * At this point we can neither have tasks logging inodes 1444 * from a root nor trying to commit a log tree. 1445 */ 1446 ASSERT(atomic_read(&root->log_writers) == 0); 1447 ASSERT(atomic_read(&root->log_commit[0]) == 0); 1448 ASSERT(atomic_read(&root->log_commit[1]) == 0); 1449 1450 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1451 (unsigned long)root->root_key.objectid, 1452 BTRFS_ROOT_TRANS_TAG); 1453 spin_unlock(&fs_info->fs_roots_radix_lock); 1454 1455 btrfs_free_log(trans, root); 1456 ret2 = btrfs_update_reloc_root(trans, root); 1457 if (ret2) 1458 return ret2; 1459 1460 /* see comments in should_cow_block() */ 1461 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1462 smp_mb__after_atomic(); 1463 1464 if (root->commit_root != root->node) { 1465 list_add_tail(&root->dirty_list, 1466 &trans->transaction->switch_commits); 1467 btrfs_set_root_node(&root->root_item, 1468 root->node); 1469 } 1470 1471 ret2 = btrfs_update_root(trans, fs_info->tree_root, 1472 &root->root_key, 1473 &root->root_item); 1474 if (ret2) 1475 return ret2; 1476 spin_lock(&fs_info->fs_roots_radix_lock); 1477 btrfs_qgroup_free_meta_all_pertrans(root); 1478 } 1479 } 1480 spin_unlock(&fs_info->fs_roots_radix_lock); 1481 return 0; 1482 } 1483 1484 /* 1485 * defrag a given btree. 1486 * Every leaf in the btree is read and defragged. 1487 */ 1488 int btrfs_defrag_root(struct btrfs_root *root) 1489 { 1490 struct btrfs_fs_info *info = root->fs_info; 1491 struct btrfs_trans_handle *trans; 1492 int ret; 1493 1494 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1495 return 0; 1496 1497 while (1) { 1498 trans = btrfs_start_transaction(root, 0); 1499 if (IS_ERR(trans)) { 1500 ret = PTR_ERR(trans); 1501 break; 1502 } 1503 1504 ret = btrfs_defrag_leaves(trans, root); 1505 1506 btrfs_end_transaction(trans); 1507 btrfs_btree_balance_dirty(info); 1508 cond_resched(); 1509 1510 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1511 break; 1512 1513 if (btrfs_defrag_cancelled(info)) { 1514 btrfs_debug(info, "defrag_root cancelled"); 1515 ret = -EAGAIN; 1516 break; 1517 } 1518 } 1519 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1520 return ret; 1521 } 1522 1523 /* 1524 * Do all special snapshot related qgroup dirty hack. 1525 * 1526 * Will do all needed qgroup inherit and dirty hack like switch commit 1527 * roots inside one transaction and write all btree into disk, to make 1528 * qgroup works. 1529 */ 1530 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1531 struct btrfs_root *src, 1532 struct btrfs_root *parent, 1533 struct btrfs_qgroup_inherit *inherit, 1534 u64 dst_objectid) 1535 { 1536 struct btrfs_fs_info *fs_info = src->fs_info; 1537 int ret; 1538 1539 /* 1540 * Save some performance in the case that qgroups are not 1541 * enabled. If this check races with the ioctl, rescan will 1542 * kick in anyway. 1543 */ 1544 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1545 return 0; 1546 1547 /* 1548 * Ensure dirty @src will be committed. Or, after coming 1549 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1550 * recorded root will never be updated again, causing an outdated root 1551 * item. 1552 */ 1553 ret = record_root_in_trans(trans, src, 1); 1554 if (ret) 1555 return ret; 1556 1557 /* 1558 * btrfs_qgroup_inherit relies on a consistent view of the usage for the 1559 * src root, so we must run the delayed refs here. 1560 * 1561 * However this isn't particularly fool proof, because there's no 1562 * synchronization keeping us from changing the tree after this point 1563 * before we do the qgroup_inherit, or even from making changes while 1564 * we're doing the qgroup_inherit. But that's a problem for the future, 1565 * for now flush the delayed refs to narrow the race window where the 1566 * qgroup counters could end up wrong. 1567 */ 1568 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1569 if (ret) { 1570 btrfs_abort_transaction(trans, ret); 1571 return ret; 1572 } 1573 1574 ret = commit_fs_roots(trans); 1575 if (ret) 1576 goto out; 1577 ret = btrfs_qgroup_account_extents(trans); 1578 if (ret < 0) 1579 goto out; 1580 1581 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1582 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1583 inherit); 1584 if (ret < 0) 1585 goto out; 1586 1587 /* 1588 * Now we do a simplified commit transaction, which will: 1589 * 1) commit all subvolume and extent tree 1590 * To ensure all subvolume and extent tree have a valid 1591 * commit_root to accounting later insert_dir_item() 1592 * 2) write all btree blocks onto disk 1593 * This is to make sure later btree modification will be cowed 1594 * Or commit_root can be populated and cause wrong qgroup numbers 1595 * In this simplified commit, we don't really care about other trees 1596 * like chunk and root tree, as they won't affect qgroup. 1597 * And we don't write super to avoid half committed status. 1598 */ 1599 ret = commit_cowonly_roots(trans); 1600 if (ret) 1601 goto out; 1602 switch_commit_roots(trans); 1603 ret = btrfs_write_and_wait_transaction(trans); 1604 if (ret) 1605 btrfs_handle_fs_error(fs_info, ret, 1606 "Error while writing out transaction for qgroup"); 1607 1608 out: 1609 /* 1610 * Force parent root to be updated, as we recorded it before so its 1611 * last_trans == cur_transid. 1612 * Or it won't be committed again onto disk after later 1613 * insert_dir_item() 1614 */ 1615 if (!ret) 1616 ret = record_root_in_trans(trans, parent, 1); 1617 return ret; 1618 } 1619 1620 /* 1621 * new snapshots need to be created at a very specific time in the 1622 * transaction commit. This does the actual creation. 1623 * 1624 * Note: 1625 * If the error which may affect the commitment of the current transaction 1626 * happens, we should return the error number. If the error which just affect 1627 * the creation of the pending snapshots, just return 0. 1628 */ 1629 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1630 struct btrfs_pending_snapshot *pending) 1631 { 1632 1633 struct btrfs_fs_info *fs_info = trans->fs_info; 1634 struct btrfs_key key; 1635 struct btrfs_root_item *new_root_item; 1636 struct btrfs_root *tree_root = fs_info->tree_root; 1637 struct btrfs_root *root = pending->root; 1638 struct btrfs_root *parent_root; 1639 struct btrfs_block_rsv *rsv; 1640 struct inode *parent_inode = pending->dir; 1641 struct btrfs_path *path; 1642 struct btrfs_dir_item *dir_item; 1643 struct extent_buffer *tmp; 1644 struct extent_buffer *old; 1645 struct timespec64 cur_time; 1646 int ret = 0; 1647 u64 to_reserve = 0; 1648 u64 index = 0; 1649 u64 objectid; 1650 u64 root_flags; 1651 unsigned int nofs_flags; 1652 struct fscrypt_name fname; 1653 1654 ASSERT(pending->path); 1655 path = pending->path; 1656 1657 ASSERT(pending->root_item); 1658 new_root_item = pending->root_item; 1659 1660 /* 1661 * We're inside a transaction and must make sure that any potential 1662 * allocations with GFP_KERNEL in fscrypt won't recurse back to 1663 * filesystem. 1664 */ 1665 nofs_flags = memalloc_nofs_save(); 1666 pending->error = fscrypt_setup_filename(parent_inode, 1667 &pending->dentry->d_name, 0, 1668 &fname); 1669 memalloc_nofs_restore(nofs_flags); 1670 if (pending->error) 1671 goto free_pending; 1672 1673 pending->error = btrfs_get_free_objectid(tree_root, &objectid); 1674 if (pending->error) 1675 goto free_fname; 1676 1677 /* 1678 * Make qgroup to skip current new snapshot's qgroupid, as it is 1679 * accounted by later btrfs_qgroup_inherit(). 1680 */ 1681 btrfs_set_skip_qgroup(trans, objectid); 1682 1683 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1684 1685 if (to_reserve > 0) { 1686 pending->error = btrfs_block_rsv_add(fs_info, 1687 &pending->block_rsv, 1688 to_reserve, 1689 BTRFS_RESERVE_NO_FLUSH); 1690 if (pending->error) 1691 goto clear_skip_qgroup; 1692 } 1693 1694 key.objectid = objectid; 1695 key.offset = (u64)-1; 1696 key.type = BTRFS_ROOT_ITEM_KEY; 1697 1698 rsv = trans->block_rsv; 1699 trans->block_rsv = &pending->block_rsv; 1700 trans->bytes_reserved = trans->block_rsv->reserved; 1701 trace_btrfs_space_reservation(fs_info, "transaction", 1702 trans->transid, 1703 trans->bytes_reserved, 1); 1704 parent_root = BTRFS_I(parent_inode)->root; 1705 ret = record_root_in_trans(trans, parent_root, 0); 1706 if (ret) 1707 goto fail; 1708 cur_time = current_time(parent_inode); 1709 1710 /* 1711 * insert the directory item 1712 */ 1713 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1714 if (ret) { 1715 btrfs_abort_transaction(trans, ret); 1716 goto fail; 1717 } 1718 1719 /* check if there is a file/dir which has the same name. */ 1720 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1721 btrfs_ino(BTRFS_I(parent_inode)), 1722 &fname.disk_name, 0); 1723 if (dir_item != NULL && !IS_ERR(dir_item)) { 1724 pending->error = -EEXIST; 1725 goto dir_item_existed; 1726 } else if (IS_ERR(dir_item)) { 1727 ret = PTR_ERR(dir_item); 1728 btrfs_abort_transaction(trans, ret); 1729 goto fail; 1730 } 1731 btrfs_release_path(path); 1732 1733 /* 1734 * pull in the delayed directory update 1735 * and the delayed inode item 1736 * otherwise we corrupt the FS during 1737 * snapshot 1738 */ 1739 ret = btrfs_run_delayed_items(trans); 1740 if (ret) { /* Transaction aborted */ 1741 btrfs_abort_transaction(trans, ret); 1742 goto fail; 1743 } 1744 1745 ret = record_root_in_trans(trans, root, 0); 1746 if (ret) { 1747 btrfs_abort_transaction(trans, ret); 1748 goto fail; 1749 } 1750 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1751 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1752 btrfs_check_and_init_root_item(new_root_item); 1753 1754 root_flags = btrfs_root_flags(new_root_item); 1755 if (pending->readonly) 1756 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1757 else 1758 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1759 btrfs_set_root_flags(new_root_item, root_flags); 1760 1761 btrfs_set_root_generation_v2(new_root_item, 1762 trans->transid); 1763 generate_random_guid(new_root_item->uuid); 1764 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1765 BTRFS_UUID_SIZE); 1766 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1767 memset(new_root_item->received_uuid, 0, 1768 sizeof(new_root_item->received_uuid)); 1769 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1770 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1771 btrfs_set_root_stransid(new_root_item, 0); 1772 btrfs_set_root_rtransid(new_root_item, 0); 1773 } 1774 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1775 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1776 btrfs_set_root_otransid(new_root_item, trans->transid); 1777 1778 old = btrfs_lock_root_node(root); 1779 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1780 BTRFS_NESTING_COW); 1781 if (ret) { 1782 btrfs_tree_unlock(old); 1783 free_extent_buffer(old); 1784 btrfs_abort_transaction(trans, ret); 1785 goto fail; 1786 } 1787 1788 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1789 /* clean up in any case */ 1790 btrfs_tree_unlock(old); 1791 free_extent_buffer(old); 1792 if (ret) { 1793 btrfs_abort_transaction(trans, ret); 1794 goto fail; 1795 } 1796 /* see comments in should_cow_block() */ 1797 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1798 smp_wmb(); 1799 1800 btrfs_set_root_node(new_root_item, tmp); 1801 /* record when the snapshot was created in key.offset */ 1802 key.offset = trans->transid; 1803 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1804 btrfs_tree_unlock(tmp); 1805 free_extent_buffer(tmp); 1806 if (ret) { 1807 btrfs_abort_transaction(trans, ret); 1808 goto fail; 1809 } 1810 1811 /* 1812 * insert root back/forward references 1813 */ 1814 ret = btrfs_add_root_ref(trans, objectid, 1815 parent_root->root_key.objectid, 1816 btrfs_ino(BTRFS_I(parent_inode)), index, 1817 &fname.disk_name); 1818 if (ret) { 1819 btrfs_abort_transaction(trans, ret); 1820 goto fail; 1821 } 1822 1823 key.offset = (u64)-1; 1824 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev); 1825 if (IS_ERR(pending->snap)) { 1826 ret = PTR_ERR(pending->snap); 1827 pending->snap = NULL; 1828 btrfs_abort_transaction(trans, ret); 1829 goto fail; 1830 } 1831 1832 ret = btrfs_reloc_post_snapshot(trans, pending); 1833 if (ret) { 1834 btrfs_abort_transaction(trans, ret); 1835 goto fail; 1836 } 1837 1838 /* 1839 * Do special qgroup accounting for snapshot, as we do some qgroup 1840 * snapshot hack to do fast snapshot. 1841 * To co-operate with that hack, we do hack again. 1842 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1843 */ 1844 ret = qgroup_account_snapshot(trans, root, parent_root, 1845 pending->inherit, objectid); 1846 if (ret < 0) 1847 goto fail; 1848 1849 ret = btrfs_insert_dir_item(trans, &fname.disk_name, 1850 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR, 1851 index); 1852 /* We have check then name at the beginning, so it is impossible. */ 1853 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1854 if (ret) { 1855 btrfs_abort_transaction(trans, ret); 1856 goto fail; 1857 } 1858 1859 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1860 fname.disk_name.len * 2); 1861 parent_inode->i_mtime = inode_set_ctime_current(parent_inode); 1862 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode)); 1863 if (ret) { 1864 btrfs_abort_transaction(trans, ret); 1865 goto fail; 1866 } 1867 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1868 BTRFS_UUID_KEY_SUBVOL, 1869 objectid); 1870 if (ret) { 1871 btrfs_abort_transaction(trans, ret); 1872 goto fail; 1873 } 1874 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1875 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1876 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1877 objectid); 1878 if (ret && ret != -EEXIST) { 1879 btrfs_abort_transaction(trans, ret); 1880 goto fail; 1881 } 1882 } 1883 1884 fail: 1885 pending->error = ret; 1886 dir_item_existed: 1887 trans->block_rsv = rsv; 1888 trans->bytes_reserved = 0; 1889 clear_skip_qgroup: 1890 btrfs_clear_skip_qgroup(trans); 1891 free_fname: 1892 fscrypt_free_filename(&fname); 1893 free_pending: 1894 kfree(new_root_item); 1895 pending->root_item = NULL; 1896 btrfs_free_path(path); 1897 pending->path = NULL; 1898 1899 return ret; 1900 } 1901 1902 /* 1903 * create all the snapshots we've scheduled for creation 1904 */ 1905 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1906 { 1907 struct btrfs_pending_snapshot *pending, *next; 1908 struct list_head *head = &trans->transaction->pending_snapshots; 1909 int ret = 0; 1910 1911 list_for_each_entry_safe(pending, next, head, list) { 1912 list_del(&pending->list); 1913 ret = create_pending_snapshot(trans, pending); 1914 if (ret) 1915 break; 1916 } 1917 return ret; 1918 } 1919 1920 static void update_super_roots(struct btrfs_fs_info *fs_info) 1921 { 1922 struct btrfs_root_item *root_item; 1923 struct btrfs_super_block *super; 1924 1925 super = fs_info->super_copy; 1926 1927 root_item = &fs_info->chunk_root->root_item; 1928 super->chunk_root = root_item->bytenr; 1929 super->chunk_root_generation = root_item->generation; 1930 super->chunk_root_level = root_item->level; 1931 1932 root_item = &fs_info->tree_root->root_item; 1933 super->root = root_item->bytenr; 1934 super->generation = root_item->generation; 1935 super->root_level = root_item->level; 1936 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1937 super->cache_generation = root_item->generation; 1938 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags)) 1939 super->cache_generation = 0; 1940 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1941 super->uuid_tree_generation = root_item->generation; 1942 } 1943 1944 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1945 { 1946 struct btrfs_transaction *trans; 1947 int ret = 0; 1948 1949 spin_lock(&info->trans_lock); 1950 trans = info->running_transaction; 1951 if (trans) 1952 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1953 spin_unlock(&info->trans_lock); 1954 return ret; 1955 } 1956 1957 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1958 { 1959 struct btrfs_transaction *trans; 1960 int ret = 0; 1961 1962 spin_lock(&info->trans_lock); 1963 trans = info->running_transaction; 1964 if (trans) 1965 ret = is_transaction_blocked(trans); 1966 spin_unlock(&info->trans_lock); 1967 return ret; 1968 } 1969 1970 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans) 1971 { 1972 struct btrfs_fs_info *fs_info = trans->fs_info; 1973 struct btrfs_transaction *cur_trans; 1974 1975 /* Kick the transaction kthread. */ 1976 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 1977 wake_up_process(fs_info->transaction_kthread); 1978 1979 /* take transaction reference */ 1980 cur_trans = trans->transaction; 1981 refcount_inc(&cur_trans->use_count); 1982 1983 btrfs_end_transaction(trans); 1984 1985 /* 1986 * Wait for the current transaction commit to start and block 1987 * subsequent transaction joins 1988 */ 1989 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 1990 wait_event(fs_info->transaction_blocked_wait, 1991 cur_trans->state >= TRANS_STATE_COMMIT_START || 1992 TRANS_ABORTED(cur_trans)); 1993 btrfs_put_transaction(cur_trans); 1994 } 1995 1996 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1997 { 1998 struct btrfs_fs_info *fs_info = trans->fs_info; 1999 struct btrfs_transaction *cur_trans = trans->transaction; 2000 2001 WARN_ON(refcount_read(&trans->use_count) > 1); 2002 2003 btrfs_abort_transaction(trans, err); 2004 2005 spin_lock(&fs_info->trans_lock); 2006 2007 /* 2008 * If the transaction is removed from the list, it means this 2009 * transaction has been committed successfully, so it is impossible 2010 * to call the cleanup function. 2011 */ 2012 BUG_ON(list_empty(&cur_trans->list)); 2013 2014 if (cur_trans == fs_info->running_transaction) { 2015 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2016 spin_unlock(&fs_info->trans_lock); 2017 2018 /* 2019 * The thread has already released the lockdep map as reader 2020 * already in btrfs_commit_transaction(). 2021 */ 2022 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2023 wait_event(cur_trans->writer_wait, 2024 atomic_read(&cur_trans->num_writers) == 1); 2025 2026 spin_lock(&fs_info->trans_lock); 2027 } 2028 2029 /* 2030 * Now that we know no one else is still using the transaction we can 2031 * remove the transaction from the list of transactions. This avoids 2032 * the transaction kthread from cleaning up the transaction while some 2033 * other task is still using it, which could result in a use-after-free 2034 * on things like log trees, as it forces the transaction kthread to 2035 * wait for this transaction to be cleaned up by us. 2036 */ 2037 list_del_init(&cur_trans->list); 2038 2039 spin_unlock(&fs_info->trans_lock); 2040 2041 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 2042 2043 spin_lock(&fs_info->trans_lock); 2044 if (cur_trans == fs_info->running_transaction) 2045 fs_info->running_transaction = NULL; 2046 spin_unlock(&fs_info->trans_lock); 2047 2048 if (trans->type & __TRANS_FREEZABLE) 2049 sb_end_intwrite(fs_info->sb); 2050 btrfs_put_transaction(cur_trans); 2051 btrfs_put_transaction(cur_trans); 2052 2053 trace_btrfs_transaction_commit(fs_info); 2054 2055 if (current->journal_info == trans) 2056 current->journal_info = NULL; 2057 2058 /* 2059 * If relocation is running, we can't cancel scrub because that will 2060 * result in a deadlock. Before relocating a block group, relocation 2061 * pauses scrub, then starts and commits a transaction before unpausing 2062 * scrub. If the transaction commit is being done by the relocation 2063 * task or triggered by another task and the relocation task is waiting 2064 * for the commit, and we end up here due to an error in the commit 2065 * path, then calling btrfs_scrub_cancel() will deadlock, as we are 2066 * asking for scrub to stop while having it asked to be paused higher 2067 * above in relocation code. 2068 */ 2069 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 2070 btrfs_scrub_cancel(fs_info); 2071 2072 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2073 } 2074 2075 /* 2076 * Release reserved delayed ref space of all pending block groups of the 2077 * transaction and remove them from the list 2078 */ 2079 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 2080 { 2081 struct btrfs_fs_info *fs_info = trans->fs_info; 2082 struct btrfs_block_group *block_group, *tmp; 2083 2084 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 2085 btrfs_delayed_refs_rsv_release(fs_info, 1); 2086 list_del_init(&block_group->bg_list); 2087 } 2088 } 2089 2090 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 2091 { 2092 /* 2093 * We use try_to_writeback_inodes_sb() here because if we used 2094 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2095 * Currently are holding the fs freeze lock, if we do an async flush 2096 * we'll do btrfs_join_transaction() and deadlock because we need to 2097 * wait for the fs freeze lock. Using the direct flushing we benefit 2098 * from already being in a transaction and our join_transaction doesn't 2099 * have to re-take the fs freeze lock. 2100 * 2101 * Note that try_to_writeback_inodes_sb() will only trigger writeback 2102 * if it can read lock sb->s_umount. It will always be able to lock it, 2103 * except when the filesystem is being unmounted or being frozen, but in 2104 * those cases sync_filesystem() is called, which results in calling 2105 * writeback_inodes_sb() while holding a write lock on sb->s_umount. 2106 * Note that we don't call writeback_inodes_sb() directly, because it 2107 * will emit a warning if sb->s_umount is not locked. 2108 */ 2109 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2110 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2111 return 0; 2112 } 2113 2114 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 2115 { 2116 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2117 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 2118 } 2119 2120 /* 2121 * Add a pending snapshot associated with the given transaction handle to the 2122 * respective handle. This must be called after the transaction commit started 2123 * and while holding fs_info->trans_lock. 2124 * This serves to guarantee a caller of btrfs_commit_transaction() that it can 2125 * safely free the pending snapshot pointer in case btrfs_commit_transaction() 2126 * returns an error. 2127 */ 2128 static void add_pending_snapshot(struct btrfs_trans_handle *trans) 2129 { 2130 struct btrfs_transaction *cur_trans = trans->transaction; 2131 2132 if (!trans->pending_snapshot) 2133 return; 2134 2135 lockdep_assert_held(&trans->fs_info->trans_lock); 2136 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP); 2137 2138 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots); 2139 } 2140 2141 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval) 2142 { 2143 fs_info->commit_stats.commit_count++; 2144 fs_info->commit_stats.last_commit_dur = interval; 2145 fs_info->commit_stats.max_commit_dur = 2146 max_t(u64, fs_info->commit_stats.max_commit_dur, interval); 2147 fs_info->commit_stats.total_commit_dur += interval; 2148 } 2149 2150 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2151 { 2152 struct btrfs_fs_info *fs_info = trans->fs_info; 2153 struct btrfs_transaction *cur_trans = trans->transaction; 2154 struct btrfs_transaction *prev_trans = NULL; 2155 int ret; 2156 ktime_t start_time; 2157 ktime_t interval; 2158 2159 ASSERT(refcount_read(&trans->use_count) == 1); 2160 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2161 2162 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags); 2163 2164 /* Stop the commit early if ->aborted is set */ 2165 if (TRANS_ABORTED(cur_trans)) { 2166 ret = cur_trans->aborted; 2167 goto lockdep_trans_commit_start_release; 2168 } 2169 2170 btrfs_trans_release_metadata(trans); 2171 trans->block_rsv = NULL; 2172 2173 /* 2174 * We only want one transaction commit doing the flushing so we do not 2175 * waste a bunch of time on lock contention on the extent root node. 2176 */ 2177 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING, 2178 &cur_trans->delayed_refs.flags)) { 2179 /* 2180 * Make a pass through all the delayed refs we have so far. 2181 * Any running threads may add more while we are here. 2182 */ 2183 ret = btrfs_run_delayed_refs(trans, 0); 2184 if (ret) 2185 goto lockdep_trans_commit_start_release; 2186 } 2187 2188 btrfs_create_pending_block_groups(trans); 2189 2190 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2191 int run_it = 0; 2192 2193 /* this mutex is also taken before trying to set 2194 * block groups readonly. We need to make sure 2195 * that nobody has set a block group readonly 2196 * after a extents from that block group have been 2197 * allocated for cache files. btrfs_set_block_group_ro 2198 * will wait for the transaction to commit if it 2199 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2200 * 2201 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2202 * only one process starts all the block group IO. It wouldn't 2203 * hurt to have more than one go through, but there's no 2204 * real advantage to it either. 2205 */ 2206 mutex_lock(&fs_info->ro_block_group_mutex); 2207 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2208 &cur_trans->flags)) 2209 run_it = 1; 2210 mutex_unlock(&fs_info->ro_block_group_mutex); 2211 2212 if (run_it) { 2213 ret = btrfs_start_dirty_block_groups(trans); 2214 if (ret) 2215 goto lockdep_trans_commit_start_release; 2216 } 2217 } 2218 2219 spin_lock(&fs_info->trans_lock); 2220 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) { 2221 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2222 2223 add_pending_snapshot(trans); 2224 2225 spin_unlock(&fs_info->trans_lock); 2226 refcount_inc(&cur_trans->use_count); 2227 2228 if (trans->in_fsync) 2229 want_state = TRANS_STATE_SUPER_COMMITTED; 2230 2231 btrfs_trans_state_lockdep_release(fs_info, 2232 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2233 ret = btrfs_end_transaction(trans); 2234 wait_for_commit(cur_trans, want_state); 2235 2236 if (TRANS_ABORTED(cur_trans)) 2237 ret = cur_trans->aborted; 2238 2239 btrfs_put_transaction(cur_trans); 2240 2241 return ret; 2242 } 2243 2244 cur_trans->state = TRANS_STATE_COMMIT_PREP; 2245 wake_up(&fs_info->transaction_blocked_wait); 2246 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2247 2248 if (cur_trans->list.prev != &fs_info->trans_list) { 2249 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2250 2251 if (trans->in_fsync) 2252 want_state = TRANS_STATE_SUPER_COMMITTED; 2253 2254 prev_trans = list_entry(cur_trans->list.prev, 2255 struct btrfs_transaction, list); 2256 if (prev_trans->state < want_state) { 2257 refcount_inc(&prev_trans->use_count); 2258 spin_unlock(&fs_info->trans_lock); 2259 2260 wait_for_commit(prev_trans, want_state); 2261 2262 ret = READ_ONCE(prev_trans->aborted); 2263 2264 btrfs_put_transaction(prev_trans); 2265 if (ret) 2266 goto lockdep_release; 2267 spin_lock(&fs_info->trans_lock); 2268 } 2269 } else { 2270 /* 2271 * The previous transaction was aborted and was already removed 2272 * from the list of transactions at fs_info->trans_list. So we 2273 * abort to prevent writing a new superblock that reflects a 2274 * corrupt state (pointing to trees with unwritten nodes/leafs). 2275 */ 2276 if (BTRFS_FS_ERROR(fs_info)) { 2277 spin_unlock(&fs_info->trans_lock); 2278 ret = -EROFS; 2279 goto lockdep_release; 2280 } 2281 } 2282 2283 cur_trans->state = TRANS_STATE_COMMIT_START; 2284 wake_up(&fs_info->transaction_blocked_wait); 2285 spin_unlock(&fs_info->trans_lock); 2286 2287 /* 2288 * Get the time spent on the work done by the commit thread and not 2289 * the time spent waiting on a previous commit 2290 */ 2291 start_time = ktime_get_ns(); 2292 2293 extwriter_counter_dec(cur_trans, trans->type); 2294 2295 ret = btrfs_start_delalloc_flush(fs_info); 2296 if (ret) 2297 goto lockdep_release; 2298 2299 ret = btrfs_run_delayed_items(trans); 2300 if (ret) 2301 goto lockdep_release; 2302 2303 /* 2304 * The thread has started/joined the transaction thus it holds the 2305 * lockdep map as a reader. It has to release it before acquiring the 2306 * lockdep map as a writer. 2307 */ 2308 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2309 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters); 2310 wait_event(cur_trans->writer_wait, 2311 extwriter_counter_read(cur_trans) == 0); 2312 2313 /* some pending stuffs might be added after the previous flush. */ 2314 ret = btrfs_run_delayed_items(trans); 2315 if (ret) { 2316 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2317 goto cleanup_transaction; 2318 } 2319 2320 btrfs_wait_delalloc_flush(fs_info); 2321 2322 /* 2323 * Wait for all ordered extents started by a fast fsync that joined this 2324 * transaction. Otherwise if this transaction commits before the ordered 2325 * extents complete we lose logged data after a power failure. 2326 */ 2327 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered); 2328 wait_event(cur_trans->pending_wait, 2329 atomic_read(&cur_trans->pending_ordered) == 0); 2330 2331 btrfs_scrub_pause(fs_info); 2332 /* 2333 * Ok now we need to make sure to block out any other joins while we 2334 * commit the transaction. We could have started a join before setting 2335 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2336 */ 2337 spin_lock(&fs_info->trans_lock); 2338 add_pending_snapshot(trans); 2339 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2340 spin_unlock(&fs_info->trans_lock); 2341 2342 /* 2343 * The thread has started/joined the transaction thus it holds the 2344 * lockdep map as a reader. It has to release it before acquiring the 2345 * lockdep map as a writer. 2346 */ 2347 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2348 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2349 wait_event(cur_trans->writer_wait, 2350 atomic_read(&cur_trans->num_writers) == 1); 2351 2352 /* 2353 * Make lockdep happy by acquiring the state locks after 2354 * btrfs_trans_num_writers is released. If we acquired the state locks 2355 * before releasing the btrfs_trans_num_writers lock then lockdep would 2356 * complain because we did not follow the reverse order unlocking rule. 2357 */ 2358 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2359 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2360 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2361 2362 /* 2363 * We've started the commit, clear the flag in case we were triggered to 2364 * do an async commit but somebody else started before the transaction 2365 * kthread could do the work. 2366 */ 2367 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 2368 2369 if (TRANS_ABORTED(cur_trans)) { 2370 ret = cur_trans->aborted; 2371 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2372 goto scrub_continue; 2373 } 2374 /* 2375 * the reloc mutex makes sure that we stop 2376 * the balancing code from coming in and moving 2377 * extents around in the middle of the commit 2378 */ 2379 mutex_lock(&fs_info->reloc_mutex); 2380 2381 /* 2382 * We needn't worry about the delayed items because we will 2383 * deal with them in create_pending_snapshot(), which is the 2384 * core function of the snapshot creation. 2385 */ 2386 ret = create_pending_snapshots(trans); 2387 if (ret) 2388 goto unlock_reloc; 2389 2390 /* 2391 * We insert the dir indexes of the snapshots and update the inode 2392 * of the snapshots' parents after the snapshot creation, so there 2393 * are some delayed items which are not dealt with. Now deal with 2394 * them. 2395 * 2396 * We needn't worry that this operation will corrupt the snapshots, 2397 * because all the tree which are snapshoted will be forced to COW 2398 * the nodes and leaves. 2399 */ 2400 ret = btrfs_run_delayed_items(trans); 2401 if (ret) 2402 goto unlock_reloc; 2403 2404 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2405 if (ret) 2406 goto unlock_reloc; 2407 2408 /* 2409 * make sure none of the code above managed to slip in a 2410 * delayed item 2411 */ 2412 btrfs_assert_delayed_root_empty(fs_info); 2413 2414 WARN_ON(cur_trans != trans->transaction); 2415 2416 ret = commit_fs_roots(trans); 2417 if (ret) 2418 goto unlock_reloc; 2419 2420 /* commit_fs_roots gets rid of all the tree log roots, it is now 2421 * safe to free the root of tree log roots 2422 */ 2423 btrfs_free_log_root_tree(trans, fs_info); 2424 2425 /* 2426 * Since fs roots are all committed, we can get a quite accurate 2427 * new_roots. So let's do quota accounting. 2428 */ 2429 ret = btrfs_qgroup_account_extents(trans); 2430 if (ret < 0) 2431 goto unlock_reloc; 2432 2433 ret = commit_cowonly_roots(trans); 2434 if (ret) 2435 goto unlock_reloc; 2436 2437 /* 2438 * The tasks which save the space cache and inode cache may also 2439 * update ->aborted, check it. 2440 */ 2441 if (TRANS_ABORTED(cur_trans)) { 2442 ret = cur_trans->aborted; 2443 goto unlock_reloc; 2444 } 2445 2446 cur_trans = fs_info->running_transaction; 2447 2448 btrfs_set_root_node(&fs_info->tree_root->root_item, 2449 fs_info->tree_root->node); 2450 list_add_tail(&fs_info->tree_root->dirty_list, 2451 &cur_trans->switch_commits); 2452 2453 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2454 fs_info->chunk_root->node); 2455 list_add_tail(&fs_info->chunk_root->dirty_list, 2456 &cur_trans->switch_commits); 2457 2458 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2459 btrfs_set_root_node(&fs_info->block_group_root->root_item, 2460 fs_info->block_group_root->node); 2461 list_add_tail(&fs_info->block_group_root->dirty_list, 2462 &cur_trans->switch_commits); 2463 } 2464 2465 switch_commit_roots(trans); 2466 2467 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2468 ASSERT(list_empty(&cur_trans->io_bgs)); 2469 update_super_roots(fs_info); 2470 2471 btrfs_set_super_log_root(fs_info->super_copy, 0); 2472 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2473 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2474 sizeof(*fs_info->super_copy)); 2475 2476 btrfs_commit_device_sizes(cur_trans); 2477 2478 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2479 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2480 2481 btrfs_trans_release_chunk_metadata(trans); 2482 2483 /* 2484 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and 2485 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to 2486 * make sure that before we commit our superblock, no other task can 2487 * start a new transaction and commit a log tree before we commit our 2488 * superblock. Anyone trying to commit a log tree locks this mutex before 2489 * writing its superblock. 2490 */ 2491 mutex_lock(&fs_info->tree_log_mutex); 2492 2493 spin_lock(&fs_info->trans_lock); 2494 cur_trans->state = TRANS_STATE_UNBLOCKED; 2495 fs_info->running_transaction = NULL; 2496 spin_unlock(&fs_info->trans_lock); 2497 mutex_unlock(&fs_info->reloc_mutex); 2498 2499 wake_up(&fs_info->transaction_wait); 2500 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2501 2502 /* If we have features changed, wake up the cleaner to update sysfs. */ 2503 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) && 2504 fs_info->cleaner_kthread) 2505 wake_up_process(fs_info->cleaner_kthread); 2506 2507 ret = btrfs_write_and_wait_transaction(trans); 2508 if (ret) { 2509 btrfs_handle_fs_error(fs_info, ret, 2510 "Error while writing out transaction"); 2511 mutex_unlock(&fs_info->tree_log_mutex); 2512 goto scrub_continue; 2513 } 2514 2515 ret = write_all_supers(fs_info, 0); 2516 /* 2517 * the super is written, we can safely allow the tree-loggers 2518 * to go about their business 2519 */ 2520 mutex_unlock(&fs_info->tree_log_mutex); 2521 if (ret) 2522 goto scrub_continue; 2523 2524 /* 2525 * We needn't acquire the lock here because there is no other task 2526 * which can change it. 2527 */ 2528 cur_trans->state = TRANS_STATE_SUPER_COMMITTED; 2529 wake_up(&cur_trans->commit_wait); 2530 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2531 2532 btrfs_finish_extent_commit(trans); 2533 2534 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2535 btrfs_clear_space_info_full(fs_info); 2536 2537 fs_info->last_trans_committed = cur_trans->transid; 2538 /* 2539 * We needn't acquire the lock here because there is no other task 2540 * which can change it. 2541 */ 2542 cur_trans->state = TRANS_STATE_COMPLETED; 2543 wake_up(&cur_trans->commit_wait); 2544 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2545 2546 spin_lock(&fs_info->trans_lock); 2547 list_del_init(&cur_trans->list); 2548 spin_unlock(&fs_info->trans_lock); 2549 2550 btrfs_put_transaction(cur_trans); 2551 btrfs_put_transaction(cur_trans); 2552 2553 if (trans->type & __TRANS_FREEZABLE) 2554 sb_end_intwrite(fs_info->sb); 2555 2556 trace_btrfs_transaction_commit(fs_info); 2557 2558 interval = ktime_get_ns() - start_time; 2559 2560 btrfs_scrub_continue(fs_info); 2561 2562 if (current->journal_info == trans) 2563 current->journal_info = NULL; 2564 2565 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2566 2567 update_commit_stats(fs_info, interval); 2568 2569 return ret; 2570 2571 unlock_reloc: 2572 mutex_unlock(&fs_info->reloc_mutex); 2573 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2574 scrub_continue: 2575 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2576 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2577 btrfs_scrub_continue(fs_info); 2578 cleanup_transaction: 2579 btrfs_trans_release_metadata(trans); 2580 btrfs_cleanup_pending_block_groups(trans); 2581 btrfs_trans_release_chunk_metadata(trans); 2582 trans->block_rsv = NULL; 2583 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2584 if (current->journal_info == trans) 2585 current->journal_info = NULL; 2586 cleanup_transaction(trans, ret); 2587 2588 return ret; 2589 2590 lockdep_release: 2591 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2592 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2593 goto cleanup_transaction; 2594 2595 lockdep_trans_commit_start_release: 2596 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2597 btrfs_end_transaction(trans); 2598 return ret; 2599 } 2600 2601 /* 2602 * return < 0 if error 2603 * 0 if there are no more dead_roots at the time of call 2604 * 1 there are more to be processed, call me again 2605 * 2606 * The return value indicates there are certainly more snapshots to delete, but 2607 * if there comes a new one during processing, it may return 0. We don't mind, 2608 * because btrfs_commit_super will poke cleaner thread and it will process it a 2609 * few seconds later. 2610 */ 2611 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info) 2612 { 2613 struct btrfs_root *root; 2614 int ret; 2615 2616 spin_lock(&fs_info->trans_lock); 2617 if (list_empty(&fs_info->dead_roots)) { 2618 spin_unlock(&fs_info->trans_lock); 2619 return 0; 2620 } 2621 root = list_first_entry(&fs_info->dead_roots, 2622 struct btrfs_root, root_list); 2623 list_del_init(&root->root_list); 2624 spin_unlock(&fs_info->trans_lock); 2625 2626 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2627 2628 btrfs_kill_all_delayed_nodes(root); 2629 2630 if (btrfs_header_backref_rev(root->node) < 2631 BTRFS_MIXED_BACKREF_REV) 2632 ret = btrfs_drop_snapshot(root, 0, 0); 2633 else 2634 ret = btrfs_drop_snapshot(root, 1, 0); 2635 2636 btrfs_put_root(root); 2637 return (ret < 0) ? 0 : 1; 2638 } 2639 2640 /* 2641 * We only mark the transaction aborted and then set the file system read-only. 2642 * This will prevent new transactions from starting or trying to join this 2643 * one. 2644 * 2645 * This means that error recovery at the call site is limited to freeing 2646 * any local memory allocations and passing the error code up without 2647 * further cleanup. The transaction should complete as it normally would 2648 * in the call path but will return -EIO. 2649 * 2650 * We'll complete the cleanup in btrfs_end_transaction and 2651 * btrfs_commit_transaction. 2652 */ 2653 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 2654 const char *function, 2655 unsigned int line, int errno, bool first_hit) 2656 { 2657 struct btrfs_fs_info *fs_info = trans->fs_info; 2658 2659 WRITE_ONCE(trans->aborted, errno); 2660 WRITE_ONCE(trans->transaction->aborted, errno); 2661 if (first_hit && errno == -ENOSPC) 2662 btrfs_dump_space_info_for_trans_abort(fs_info); 2663 /* Wake up anybody who may be waiting on this transaction */ 2664 wake_up(&fs_info->transaction_wait); 2665 wake_up(&fs_info->transaction_blocked_wait); 2666 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 2667 } 2668 2669 int __init btrfs_transaction_init(void) 2670 { 2671 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 2672 sizeof(struct btrfs_trans_handle), 0, 2673 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 2674 if (!btrfs_trans_handle_cachep) 2675 return -ENOMEM; 2676 return 0; 2677 } 2678 2679 void __cold btrfs_transaction_exit(void) 2680 { 2681 kmem_cache_destroy(btrfs_trans_handle_cachep); 2682 } 2683