1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/writeback.h> 11 #include <linux/pagemap.h> 12 #include <linux/blkdev.h> 13 #include <linux/uuid.h> 14 #include <linux/timekeeping.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "disk-io.h" 18 #include "transaction.h" 19 #include "locking.h" 20 #include "tree-log.h" 21 #include "volumes.h" 22 #include "dev-replace.h" 23 #include "qgroup.h" 24 #include "block-group.h" 25 #include "space-info.h" 26 #include "zoned.h" 27 #include "fs.h" 28 #include "accessors.h" 29 #include "extent-tree.h" 30 #include "root-tree.h" 31 #include "defrag.h" 32 #include "dir-item.h" 33 #include "uuid-tree.h" 34 #include "ioctl.h" 35 #include "relocation.h" 36 #include "scrub.h" 37 38 static struct kmem_cache *btrfs_trans_handle_cachep; 39 40 /* 41 * Transaction states and transitions 42 * 43 * No running transaction (fs tree blocks are not modified) 44 * | 45 * | To next stage: 46 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 47 * V 48 * Transaction N [[TRANS_STATE_RUNNING]] 49 * | 50 * | New trans handles can be attached to transaction N by calling all 51 * | start_transaction() variants. 52 * | 53 * | To next stage: 54 * | Call btrfs_commit_transaction() on any trans handle attached to 55 * | transaction N 56 * V 57 * Transaction N [[TRANS_STATE_COMMIT_PREP]] 58 * | 59 * | If there are simultaneous calls to btrfs_commit_transaction() one will win 60 * | the race and the rest will wait for the winner to commit the transaction. 61 * | 62 * | The winner will wait for previous running transaction to completely finish 63 * | if there is one. 64 * | 65 * Transaction N [[TRANS_STATE_COMMIT_START]] 66 * | 67 * | Then one of the following happens: 68 * | - Wait for all other trans handle holders to release. 69 * | The btrfs_commit_transaction() caller will do the commit work. 70 * | - Wait for current transaction to be committed by others. 71 * | Other btrfs_commit_transaction() caller will do the commit work. 72 * | 73 * | At this stage, only btrfs_join_transaction*() variants can attach 74 * | to this running transaction. 75 * | All other variants will wait for current one to finish and attach to 76 * | transaction N+1. 77 * | 78 * | To next stage: 79 * | Caller is chosen to commit transaction N, and all other trans handle 80 * | haven been released. 81 * V 82 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 83 * | 84 * | The heavy lifting transaction work is started. 85 * | From running delayed refs (modifying extent tree) to creating pending 86 * | snapshots, running qgroups. 87 * | In short, modify supporting trees to reflect modifications of subvolume 88 * | trees. 89 * | 90 * | At this stage, all start_transaction() calls will wait for this 91 * | transaction to finish and attach to transaction N+1. 92 * | 93 * | To next stage: 94 * | Until all supporting trees are updated. 95 * V 96 * Transaction N [[TRANS_STATE_UNBLOCKED]] 97 * | Transaction N+1 98 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 99 * | need to write them back to disk and update | 100 * | super blocks. | 101 * | | 102 * | At this stage, new transaction is allowed to | 103 * | start. | 104 * | All new start_transaction() calls will be | 105 * | attached to transid N+1. | 106 * | | 107 * | To next stage: | 108 * | Until all tree blocks are super blocks are | 109 * | written to block devices | 110 * V | 111 * Transaction N [[TRANS_STATE_COMPLETED]] V 112 * All tree blocks and super blocks are written. Transaction N+1 113 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 114 * data structures will be cleaned up. | Life goes on 115 */ 116 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 117 [TRANS_STATE_RUNNING] = 0U, 118 [TRANS_STATE_COMMIT_PREP] = 0U, 119 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 120 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 121 __TRANS_ATTACH | 122 __TRANS_JOIN | 123 __TRANS_JOIN_NOSTART), 124 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 125 __TRANS_ATTACH | 126 __TRANS_JOIN | 127 __TRANS_JOIN_NOLOCK | 128 __TRANS_JOIN_NOSTART), 129 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START | 130 __TRANS_ATTACH | 131 __TRANS_JOIN | 132 __TRANS_JOIN_NOLOCK | 133 __TRANS_JOIN_NOSTART), 134 [TRANS_STATE_COMPLETED] = (__TRANS_START | 135 __TRANS_ATTACH | 136 __TRANS_JOIN | 137 __TRANS_JOIN_NOLOCK | 138 __TRANS_JOIN_NOSTART), 139 }; 140 141 void btrfs_put_transaction(struct btrfs_transaction *transaction) 142 { 143 WARN_ON(refcount_read(&transaction->use_count) == 0); 144 if (refcount_dec_and_test(&transaction->use_count)) { 145 BUG_ON(!list_empty(&transaction->list)); 146 WARN_ON(!RB_EMPTY_ROOT( 147 &transaction->delayed_refs.href_root.rb_root)); 148 WARN_ON(!RB_EMPTY_ROOT( 149 &transaction->delayed_refs.dirty_extent_root)); 150 if (transaction->delayed_refs.pending_csums) 151 btrfs_err(transaction->fs_info, 152 "pending csums is %llu", 153 transaction->delayed_refs.pending_csums); 154 /* 155 * If any block groups are found in ->deleted_bgs then it's 156 * because the transaction was aborted and a commit did not 157 * happen (things failed before writing the new superblock 158 * and calling btrfs_finish_extent_commit()), so we can not 159 * discard the physical locations of the block groups. 160 */ 161 while (!list_empty(&transaction->deleted_bgs)) { 162 struct btrfs_block_group *cache; 163 164 cache = list_first_entry(&transaction->deleted_bgs, 165 struct btrfs_block_group, 166 bg_list); 167 list_del_init(&cache->bg_list); 168 btrfs_unfreeze_block_group(cache); 169 btrfs_put_block_group(cache); 170 } 171 WARN_ON(!list_empty(&transaction->dev_update_list)); 172 kfree(transaction); 173 } 174 } 175 176 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 177 { 178 struct btrfs_transaction *cur_trans = trans->transaction; 179 struct btrfs_fs_info *fs_info = trans->fs_info; 180 struct btrfs_root *root, *tmp; 181 182 /* 183 * At this point no one can be using this transaction to modify any tree 184 * and no one can start another transaction to modify any tree either. 185 */ 186 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING); 187 188 down_write(&fs_info->commit_root_sem); 189 190 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 191 fs_info->last_reloc_trans = trans->transid; 192 193 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 194 dirty_list) { 195 list_del_init(&root->dirty_list); 196 free_extent_buffer(root->commit_root); 197 root->commit_root = btrfs_root_node(root); 198 extent_io_tree_release(&root->dirty_log_pages); 199 btrfs_qgroup_clean_swapped_blocks(root); 200 } 201 202 /* We can free old roots now. */ 203 spin_lock(&cur_trans->dropped_roots_lock); 204 while (!list_empty(&cur_trans->dropped_roots)) { 205 root = list_first_entry(&cur_trans->dropped_roots, 206 struct btrfs_root, root_list); 207 list_del_init(&root->root_list); 208 spin_unlock(&cur_trans->dropped_roots_lock); 209 btrfs_free_log(trans, root); 210 btrfs_drop_and_free_fs_root(fs_info, root); 211 spin_lock(&cur_trans->dropped_roots_lock); 212 } 213 spin_unlock(&cur_trans->dropped_roots_lock); 214 215 up_write(&fs_info->commit_root_sem); 216 } 217 218 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 219 unsigned int type) 220 { 221 if (type & TRANS_EXTWRITERS) 222 atomic_inc(&trans->num_extwriters); 223 } 224 225 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 226 unsigned int type) 227 { 228 if (type & TRANS_EXTWRITERS) 229 atomic_dec(&trans->num_extwriters); 230 } 231 232 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 233 unsigned int type) 234 { 235 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 236 } 237 238 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 239 { 240 return atomic_read(&trans->num_extwriters); 241 } 242 243 /* 244 * To be called after doing the chunk btree updates right after allocating a new 245 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a 246 * chunk after all chunk btree updates and after finishing the second phase of 247 * chunk allocation (btrfs_create_pending_block_groups()) in case some block 248 * group had its chunk item insertion delayed to the second phase. 249 */ 250 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 251 { 252 struct btrfs_fs_info *fs_info = trans->fs_info; 253 254 if (!trans->chunk_bytes_reserved) 255 return; 256 257 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 258 trans->chunk_bytes_reserved, NULL); 259 trans->chunk_bytes_reserved = 0; 260 } 261 262 /* 263 * either allocate a new transaction or hop into the existing one 264 */ 265 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 266 unsigned int type) 267 { 268 struct btrfs_transaction *cur_trans; 269 270 spin_lock(&fs_info->trans_lock); 271 loop: 272 /* The file system has been taken offline. No new transactions. */ 273 if (BTRFS_FS_ERROR(fs_info)) { 274 spin_unlock(&fs_info->trans_lock); 275 return -EROFS; 276 } 277 278 cur_trans = fs_info->running_transaction; 279 if (cur_trans) { 280 if (TRANS_ABORTED(cur_trans)) { 281 spin_unlock(&fs_info->trans_lock); 282 return cur_trans->aborted; 283 } 284 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 285 spin_unlock(&fs_info->trans_lock); 286 return -EBUSY; 287 } 288 refcount_inc(&cur_trans->use_count); 289 atomic_inc(&cur_trans->num_writers); 290 extwriter_counter_inc(cur_trans, type); 291 spin_unlock(&fs_info->trans_lock); 292 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 293 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 294 return 0; 295 } 296 spin_unlock(&fs_info->trans_lock); 297 298 /* 299 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the 300 * current transaction, and commit it. If there is no transaction, just 301 * return ENOENT. 302 */ 303 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART) 304 return -ENOENT; 305 306 /* 307 * JOIN_NOLOCK only happens during the transaction commit, so 308 * it is impossible that ->running_transaction is NULL 309 */ 310 BUG_ON(type == TRANS_JOIN_NOLOCK); 311 312 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 313 if (!cur_trans) 314 return -ENOMEM; 315 316 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 317 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 318 319 spin_lock(&fs_info->trans_lock); 320 if (fs_info->running_transaction) { 321 /* 322 * someone started a transaction after we unlocked. Make sure 323 * to redo the checks above 324 */ 325 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 326 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 327 kfree(cur_trans); 328 goto loop; 329 } else if (BTRFS_FS_ERROR(fs_info)) { 330 spin_unlock(&fs_info->trans_lock); 331 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 332 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 333 kfree(cur_trans); 334 return -EROFS; 335 } 336 337 cur_trans->fs_info = fs_info; 338 atomic_set(&cur_trans->pending_ordered, 0); 339 init_waitqueue_head(&cur_trans->pending_wait); 340 atomic_set(&cur_trans->num_writers, 1); 341 extwriter_counter_init(cur_trans, type); 342 init_waitqueue_head(&cur_trans->writer_wait); 343 init_waitqueue_head(&cur_trans->commit_wait); 344 cur_trans->state = TRANS_STATE_RUNNING; 345 /* 346 * One for this trans handle, one so it will live on until we 347 * commit the transaction. 348 */ 349 refcount_set(&cur_trans->use_count, 2); 350 cur_trans->flags = 0; 351 cur_trans->start_time = ktime_get_seconds(); 352 353 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 354 355 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 356 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 357 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 358 359 /* 360 * although the tree mod log is per file system and not per transaction, 361 * the log must never go across transaction boundaries. 362 */ 363 smp_mb(); 364 if (!list_empty(&fs_info->tree_mod_seq_list)) 365 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 366 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 367 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 368 atomic64_set(&fs_info->tree_mod_seq, 0); 369 370 spin_lock_init(&cur_trans->delayed_refs.lock); 371 372 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 373 INIT_LIST_HEAD(&cur_trans->dev_update_list); 374 INIT_LIST_HEAD(&cur_trans->switch_commits); 375 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 376 INIT_LIST_HEAD(&cur_trans->io_bgs); 377 INIT_LIST_HEAD(&cur_trans->dropped_roots); 378 mutex_init(&cur_trans->cache_write_mutex); 379 spin_lock_init(&cur_trans->dirty_bgs_lock); 380 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 381 spin_lock_init(&cur_trans->dropped_roots_lock); 382 list_add_tail(&cur_trans->list, &fs_info->trans_list); 383 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 384 IO_TREE_TRANS_DIRTY_PAGES); 385 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 386 IO_TREE_FS_PINNED_EXTENTS); 387 fs_info->generation++; 388 cur_trans->transid = fs_info->generation; 389 fs_info->running_transaction = cur_trans; 390 cur_trans->aborted = 0; 391 spin_unlock(&fs_info->trans_lock); 392 393 return 0; 394 } 395 396 /* 397 * This does all the record keeping required to make sure that a shareable root 398 * is properly recorded in a given transaction. This is required to make sure 399 * the old root from before we joined the transaction is deleted when the 400 * transaction commits. 401 */ 402 static int record_root_in_trans(struct btrfs_trans_handle *trans, 403 struct btrfs_root *root, 404 int force) 405 { 406 struct btrfs_fs_info *fs_info = root->fs_info; 407 int ret = 0; 408 409 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 410 root->last_trans < trans->transid) || force) { 411 WARN_ON(!force && root->commit_root != root->node); 412 413 /* 414 * see below for IN_TRANS_SETUP usage rules 415 * we have the reloc mutex held now, so there 416 * is only one writer in this function 417 */ 418 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 419 420 /* make sure readers find IN_TRANS_SETUP before 421 * they find our root->last_trans update 422 */ 423 smp_wmb(); 424 425 spin_lock(&fs_info->fs_roots_radix_lock); 426 if (root->last_trans == trans->transid && !force) { 427 spin_unlock(&fs_info->fs_roots_radix_lock); 428 return 0; 429 } 430 radix_tree_tag_set(&fs_info->fs_roots_radix, 431 (unsigned long)root->root_key.objectid, 432 BTRFS_ROOT_TRANS_TAG); 433 spin_unlock(&fs_info->fs_roots_radix_lock); 434 root->last_trans = trans->transid; 435 436 /* this is pretty tricky. We don't want to 437 * take the relocation lock in btrfs_record_root_in_trans 438 * unless we're really doing the first setup for this root in 439 * this transaction. 440 * 441 * Normally we'd use root->last_trans as a flag to decide 442 * if we want to take the expensive mutex. 443 * 444 * But, we have to set root->last_trans before we 445 * init the relocation root, otherwise, we trip over warnings 446 * in ctree.c. The solution used here is to flag ourselves 447 * with root IN_TRANS_SETUP. When this is 1, we're still 448 * fixing up the reloc trees and everyone must wait. 449 * 450 * When this is zero, they can trust root->last_trans and fly 451 * through btrfs_record_root_in_trans without having to take the 452 * lock. smp_wmb() makes sure that all the writes above are 453 * done before we pop in the zero below 454 */ 455 ret = btrfs_init_reloc_root(trans, root); 456 smp_mb__before_atomic(); 457 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 458 } 459 return ret; 460 } 461 462 463 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 464 struct btrfs_root *root) 465 { 466 struct btrfs_fs_info *fs_info = root->fs_info; 467 struct btrfs_transaction *cur_trans = trans->transaction; 468 469 /* Add ourselves to the transaction dropped list */ 470 spin_lock(&cur_trans->dropped_roots_lock); 471 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 472 spin_unlock(&cur_trans->dropped_roots_lock); 473 474 /* Make sure we don't try to update the root at commit time */ 475 spin_lock(&fs_info->fs_roots_radix_lock); 476 radix_tree_tag_clear(&fs_info->fs_roots_radix, 477 (unsigned long)root->root_key.objectid, 478 BTRFS_ROOT_TRANS_TAG); 479 spin_unlock(&fs_info->fs_roots_radix_lock); 480 } 481 482 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 483 struct btrfs_root *root) 484 { 485 struct btrfs_fs_info *fs_info = root->fs_info; 486 int ret; 487 488 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 489 return 0; 490 491 /* 492 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 493 * and barriers 494 */ 495 smp_rmb(); 496 if (root->last_trans == trans->transid && 497 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 498 return 0; 499 500 mutex_lock(&fs_info->reloc_mutex); 501 ret = record_root_in_trans(trans, root, 0); 502 mutex_unlock(&fs_info->reloc_mutex); 503 504 return ret; 505 } 506 507 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 508 { 509 return (trans->state >= TRANS_STATE_COMMIT_START && 510 trans->state < TRANS_STATE_UNBLOCKED && 511 !TRANS_ABORTED(trans)); 512 } 513 514 /* wait for commit against the current transaction to become unblocked 515 * when this is done, it is safe to start a new transaction, but the current 516 * transaction might not be fully on disk. 517 */ 518 static void wait_current_trans(struct btrfs_fs_info *fs_info) 519 { 520 struct btrfs_transaction *cur_trans; 521 522 spin_lock(&fs_info->trans_lock); 523 cur_trans = fs_info->running_transaction; 524 if (cur_trans && is_transaction_blocked(cur_trans)) { 525 refcount_inc(&cur_trans->use_count); 526 spin_unlock(&fs_info->trans_lock); 527 528 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 529 wait_event(fs_info->transaction_wait, 530 cur_trans->state >= TRANS_STATE_UNBLOCKED || 531 TRANS_ABORTED(cur_trans)); 532 btrfs_put_transaction(cur_trans); 533 } else { 534 spin_unlock(&fs_info->trans_lock); 535 } 536 } 537 538 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 539 { 540 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 541 return 0; 542 543 if (type == TRANS_START) 544 return 1; 545 546 return 0; 547 } 548 549 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 550 { 551 struct btrfs_fs_info *fs_info = root->fs_info; 552 553 if (!fs_info->reloc_ctl || 554 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 555 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 556 root->reloc_root) 557 return false; 558 559 return true; 560 } 561 562 static struct btrfs_trans_handle * 563 start_transaction(struct btrfs_root *root, unsigned int num_items, 564 unsigned int type, enum btrfs_reserve_flush_enum flush, 565 bool enforce_qgroups) 566 { 567 struct btrfs_fs_info *fs_info = root->fs_info; 568 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 569 struct btrfs_trans_handle *h; 570 struct btrfs_transaction *cur_trans; 571 u64 num_bytes = 0; 572 u64 qgroup_reserved = 0; 573 bool reloc_reserved = false; 574 bool do_chunk_alloc = false; 575 int ret; 576 577 if (BTRFS_FS_ERROR(fs_info)) 578 return ERR_PTR(-EROFS); 579 580 if (current->journal_info) { 581 WARN_ON(type & TRANS_EXTWRITERS); 582 h = current->journal_info; 583 refcount_inc(&h->use_count); 584 WARN_ON(refcount_read(&h->use_count) > 2); 585 h->orig_rsv = h->block_rsv; 586 h->block_rsv = NULL; 587 goto got_it; 588 } 589 590 /* 591 * Do the reservation before we join the transaction so we can do all 592 * the appropriate flushing if need be. 593 */ 594 if (num_items && root != fs_info->chunk_root) { 595 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 596 u64 delayed_refs_bytes = 0; 597 598 qgroup_reserved = num_items * fs_info->nodesize; 599 /* 600 * Use prealloc for now, as there might be a currently running 601 * transaction that could free this reserved space prematurely 602 * by committing. 603 */ 604 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved, 605 enforce_qgroups, false); 606 if (ret) 607 return ERR_PTR(ret); 608 609 /* 610 * We want to reserve all the bytes we may need all at once, so 611 * we only do 1 enospc flushing cycle per transaction start. We 612 * accomplish this by simply assuming we'll do num_items worth 613 * of delayed refs updates in this trans handle, and refill that 614 * amount for whatever is missing in the reserve. 615 */ 616 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 617 if (flush == BTRFS_RESERVE_FLUSH_ALL && 618 !btrfs_block_rsv_full(delayed_refs_rsv)) { 619 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, 620 num_items); 621 num_bytes += delayed_refs_bytes; 622 } 623 624 /* 625 * Do the reservation for the relocation root creation 626 */ 627 if (need_reserve_reloc_root(root)) { 628 num_bytes += fs_info->nodesize; 629 reloc_reserved = true; 630 } 631 632 ret = btrfs_reserve_metadata_bytes(fs_info, rsv, num_bytes, flush); 633 if (ret) 634 goto reserve_fail; 635 if (delayed_refs_bytes) { 636 btrfs_migrate_to_delayed_refs_rsv(fs_info, delayed_refs_bytes); 637 num_bytes -= delayed_refs_bytes; 638 } 639 btrfs_block_rsv_add_bytes(rsv, num_bytes, true); 640 641 if (rsv->space_info->force_alloc) 642 do_chunk_alloc = true; 643 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 644 !btrfs_block_rsv_full(delayed_refs_rsv)) { 645 /* 646 * Some people call with btrfs_start_transaction(root, 0) 647 * because they can be throttled, but have some other mechanism 648 * for reserving space. We still want these guys to refill the 649 * delayed block_rsv so just add 1 items worth of reservation 650 * here. 651 */ 652 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 653 if (ret) 654 goto reserve_fail; 655 } 656 again: 657 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 658 if (!h) { 659 ret = -ENOMEM; 660 goto alloc_fail; 661 } 662 663 /* 664 * If we are JOIN_NOLOCK we're already committing a transaction and 665 * waiting on this guy, so we don't need to do the sb_start_intwrite 666 * because we're already holding a ref. We need this because we could 667 * have raced in and did an fsync() on a file which can kick a commit 668 * and then we deadlock with somebody doing a freeze. 669 * 670 * If we are ATTACH, it means we just want to catch the current 671 * transaction and commit it, so we needn't do sb_start_intwrite(). 672 */ 673 if (type & __TRANS_FREEZABLE) 674 sb_start_intwrite(fs_info->sb); 675 676 if (may_wait_transaction(fs_info, type)) 677 wait_current_trans(fs_info); 678 679 do { 680 ret = join_transaction(fs_info, type); 681 if (ret == -EBUSY) { 682 wait_current_trans(fs_info); 683 if (unlikely(type == TRANS_ATTACH || 684 type == TRANS_JOIN_NOSTART)) 685 ret = -ENOENT; 686 } 687 } while (ret == -EBUSY); 688 689 if (ret < 0) 690 goto join_fail; 691 692 cur_trans = fs_info->running_transaction; 693 694 h->transid = cur_trans->transid; 695 h->transaction = cur_trans; 696 refcount_set(&h->use_count, 1); 697 h->fs_info = root->fs_info; 698 699 h->type = type; 700 INIT_LIST_HEAD(&h->new_bgs); 701 702 smp_mb(); 703 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 704 may_wait_transaction(fs_info, type)) { 705 current->journal_info = h; 706 btrfs_commit_transaction(h); 707 goto again; 708 } 709 710 if (num_bytes) { 711 trace_btrfs_space_reservation(fs_info, "transaction", 712 h->transid, num_bytes, 1); 713 h->block_rsv = &fs_info->trans_block_rsv; 714 h->bytes_reserved = num_bytes; 715 h->reloc_reserved = reloc_reserved; 716 } 717 718 got_it: 719 if (!current->journal_info) 720 current->journal_info = h; 721 722 /* 723 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 724 * ALLOC_FORCE the first run through, and then we won't allocate for 725 * anybody else who races in later. We don't care about the return 726 * value here. 727 */ 728 if (do_chunk_alloc && num_bytes) { 729 u64 flags = h->block_rsv->space_info->flags; 730 731 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 732 CHUNK_ALLOC_NO_FORCE); 733 } 734 735 /* 736 * btrfs_record_root_in_trans() needs to alloc new extents, and may 737 * call btrfs_join_transaction() while we're also starting a 738 * transaction. 739 * 740 * Thus it need to be called after current->journal_info initialized, 741 * or we can deadlock. 742 */ 743 ret = btrfs_record_root_in_trans(h, root); 744 if (ret) { 745 /* 746 * The transaction handle is fully initialized and linked with 747 * other structures so it needs to be ended in case of errors, 748 * not just freed. 749 */ 750 btrfs_end_transaction(h); 751 goto reserve_fail; 752 } 753 /* 754 * Now that we have found a transaction to be a part of, convert the 755 * qgroup reservation from prealloc to pertrans. A different transaction 756 * can't race in and free our pertrans out from under us. 757 */ 758 if (qgroup_reserved) 759 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 760 761 return h; 762 763 join_fail: 764 if (type & __TRANS_FREEZABLE) 765 sb_end_intwrite(fs_info->sb); 766 kmem_cache_free(btrfs_trans_handle_cachep, h); 767 alloc_fail: 768 if (num_bytes) 769 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 770 num_bytes, NULL); 771 reserve_fail: 772 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 773 return ERR_PTR(ret); 774 } 775 776 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 777 unsigned int num_items) 778 { 779 return start_transaction(root, num_items, TRANS_START, 780 BTRFS_RESERVE_FLUSH_ALL, true); 781 } 782 783 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 784 struct btrfs_root *root, 785 unsigned int num_items) 786 { 787 return start_transaction(root, num_items, TRANS_START, 788 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 789 } 790 791 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 792 { 793 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 794 true); 795 } 796 797 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 798 { 799 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 800 BTRFS_RESERVE_NO_FLUSH, true); 801 } 802 803 /* 804 * Similar to regular join but it never starts a transaction when none is 805 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED. 806 * This is similar to btrfs_attach_transaction() but it allows the join to 807 * happen if the transaction commit already started but it's not yet in the 808 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING). 809 */ 810 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 811 { 812 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 813 BTRFS_RESERVE_NO_FLUSH, true); 814 } 815 816 /* 817 * btrfs_attach_transaction() - catch the running transaction 818 * 819 * It is used when we want to commit the current the transaction, but 820 * don't want to start a new one. 821 * 822 * Note: If this function return -ENOENT, it just means there is no 823 * running transaction. But it is possible that the inactive transaction 824 * is still in the memory, not fully on disk. If you hope there is no 825 * inactive transaction in the fs when -ENOENT is returned, you should 826 * invoke 827 * btrfs_attach_transaction_barrier() 828 */ 829 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 830 { 831 return start_transaction(root, 0, TRANS_ATTACH, 832 BTRFS_RESERVE_NO_FLUSH, true); 833 } 834 835 /* 836 * btrfs_attach_transaction_barrier() - catch the running transaction 837 * 838 * It is similar to the above function, the difference is this one 839 * will wait for all the inactive transactions until they fully 840 * complete. 841 */ 842 struct btrfs_trans_handle * 843 btrfs_attach_transaction_barrier(struct btrfs_root *root) 844 { 845 struct btrfs_trans_handle *trans; 846 847 trans = start_transaction(root, 0, TRANS_ATTACH, 848 BTRFS_RESERVE_NO_FLUSH, true); 849 if (trans == ERR_PTR(-ENOENT)) { 850 int ret; 851 852 ret = btrfs_wait_for_commit(root->fs_info, 0); 853 if (ret) 854 return ERR_PTR(ret); 855 } 856 857 return trans; 858 } 859 860 /* Wait for a transaction commit to reach at least the given state. */ 861 static noinline void wait_for_commit(struct btrfs_transaction *commit, 862 const enum btrfs_trans_state min_state) 863 { 864 struct btrfs_fs_info *fs_info = commit->fs_info; 865 u64 transid = commit->transid; 866 bool put = false; 867 868 /* 869 * At the moment this function is called with min_state either being 870 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED. 871 */ 872 if (min_state == TRANS_STATE_COMPLETED) 873 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 874 else 875 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 876 877 while (1) { 878 wait_event(commit->commit_wait, commit->state >= min_state); 879 if (put) 880 btrfs_put_transaction(commit); 881 882 if (min_state < TRANS_STATE_COMPLETED) 883 break; 884 885 /* 886 * A transaction isn't really completed until all of the 887 * previous transactions are completed, but with fsync we can 888 * end up with SUPER_COMMITTED transactions before a COMPLETED 889 * transaction. Wait for those. 890 */ 891 892 spin_lock(&fs_info->trans_lock); 893 commit = list_first_entry_or_null(&fs_info->trans_list, 894 struct btrfs_transaction, 895 list); 896 if (!commit || commit->transid > transid) { 897 spin_unlock(&fs_info->trans_lock); 898 break; 899 } 900 refcount_inc(&commit->use_count); 901 put = true; 902 spin_unlock(&fs_info->trans_lock); 903 } 904 } 905 906 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 907 { 908 struct btrfs_transaction *cur_trans = NULL, *t; 909 int ret = 0; 910 911 if (transid) { 912 if (transid <= fs_info->last_trans_committed) 913 goto out; 914 915 /* find specified transaction */ 916 spin_lock(&fs_info->trans_lock); 917 list_for_each_entry(t, &fs_info->trans_list, list) { 918 if (t->transid == transid) { 919 cur_trans = t; 920 refcount_inc(&cur_trans->use_count); 921 ret = 0; 922 break; 923 } 924 if (t->transid > transid) { 925 ret = 0; 926 break; 927 } 928 } 929 spin_unlock(&fs_info->trans_lock); 930 931 /* 932 * The specified transaction doesn't exist, or we 933 * raced with btrfs_commit_transaction 934 */ 935 if (!cur_trans) { 936 if (transid > fs_info->last_trans_committed) 937 ret = -EINVAL; 938 goto out; 939 } 940 } else { 941 /* find newest transaction that is committing | committed */ 942 spin_lock(&fs_info->trans_lock); 943 list_for_each_entry_reverse(t, &fs_info->trans_list, 944 list) { 945 if (t->state >= TRANS_STATE_COMMIT_START) { 946 if (t->state == TRANS_STATE_COMPLETED) 947 break; 948 cur_trans = t; 949 refcount_inc(&cur_trans->use_count); 950 break; 951 } 952 } 953 spin_unlock(&fs_info->trans_lock); 954 if (!cur_trans) 955 goto out; /* nothing committing|committed */ 956 } 957 958 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED); 959 ret = cur_trans->aborted; 960 btrfs_put_transaction(cur_trans); 961 out: 962 return ret; 963 } 964 965 void btrfs_throttle(struct btrfs_fs_info *fs_info) 966 { 967 wait_current_trans(fs_info); 968 } 969 970 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 971 { 972 struct btrfs_transaction *cur_trans = trans->transaction; 973 974 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 975 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags)) 976 return true; 977 978 if (btrfs_check_space_for_delayed_refs(trans->fs_info)) 979 return true; 980 981 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50); 982 } 983 984 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 985 986 { 987 struct btrfs_fs_info *fs_info = trans->fs_info; 988 989 if (!trans->block_rsv) { 990 ASSERT(!trans->bytes_reserved); 991 return; 992 } 993 994 if (!trans->bytes_reserved) 995 return; 996 997 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 998 trace_btrfs_space_reservation(fs_info, "transaction", 999 trans->transid, trans->bytes_reserved, 0); 1000 btrfs_block_rsv_release(fs_info, trans->block_rsv, 1001 trans->bytes_reserved, NULL); 1002 trans->bytes_reserved = 0; 1003 } 1004 1005 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 1006 int throttle) 1007 { 1008 struct btrfs_fs_info *info = trans->fs_info; 1009 struct btrfs_transaction *cur_trans = trans->transaction; 1010 int err = 0; 1011 1012 if (refcount_read(&trans->use_count) > 1) { 1013 refcount_dec(&trans->use_count); 1014 trans->block_rsv = trans->orig_rsv; 1015 return 0; 1016 } 1017 1018 btrfs_trans_release_metadata(trans); 1019 trans->block_rsv = NULL; 1020 1021 btrfs_create_pending_block_groups(trans); 1022 1023 btrfs_trans_release_chunk_metadata(trans); 1024 1025 if (trans->type & __TRANS_FREEZABLE) 1026 sb_end_intwrite(info->sb); 1027 1028 WARN_ON(cur_trans != info->running_transaction); 1029 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 1030 atomic_dec(&cur_trans->num_writers); 1031 extwriter_counter_dec(cur_trans, trans->type); 1032 1033 cond_wake_up(&cur_trans->writer_wait); 1034 1035 btrfs_lockdep_release(info, btrfs_trans_num_extwriters); 1036 btrfs_lockdep_release(info, btrfs_trans_num_writers); 1037 1038 btrfs_put_transaction(cur_trans); 1039 1040 if (current->journal_info == trans) 1041 current->journal_info = NULL; 1042 1043 if (throttle) 1044 btrfs_run_delayed_iputs(info); 1045 1046 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) { 1047 wake_up_process(info->transaction_kthread); 1048 if (TRANS_ABORTED(trans)) 1049 err = trans->aborted; 1050 else 1051 err = -EROFS; 1052 } 1053 1054 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1055 return err; 1056 } 1057 1058 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 1059 { 1060 return __btrfs_end_transaction(trans, 0); 1061 } 1062 1063 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1064 { 1065 return __btrfs_end_transaction(trans, 1); 1066 } 1067 1068 /* 1069 * when btree blocks are allocated, they have some corresponding bits set for 1070 * them in one of two extent_io trees. This is used to make sure all of 1071 * those extents are sent to disk but does not wait on them 1072 */ 1073 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1074 struct extent_io_tree *dirty_pages, int mark) 1075 { 1076 int err = 0; 1077 int werr = 0; 1078 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1079 struct extent_state *cached_state = NULL; 1080 u64 start = 0; 1081 u64 end; 1082 1083 while (find_first_extent_bit(dirty_pages, start, &start, &end, 1084 mark, &cached_state)) { 1085 bool wait_writeback = false; 1086 1087 err = convert_extent_bit(dirty_pages, start, end, 1088 EXTENT_NEED_WAIT, 1089 mark, &cached_state); 1090 /* 1091 * convert_extent_bit can return -ENOMEM, which is most of the 1092 * time a temporary error. So when it happens, ignore the error 1093 * and wait for writeback of this range to finish - because we 1094 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1095 * to __btrfs_wait_marked_extents() would not know that 1096 * writeback for this range started and therefore wouldn't 1097 * wait for it to finish - we don't want to commit a 1098 * superblock that points to btree nodes/leafs for which 1099 * writeback hasn't finished yet (and without errors). 1100 * We cleanup any entries left in the io tree when committing 1101 * the transaction (through extent_io_tree_release()). 1102 */ 1103 if (err == -ENOMEM) { 1104 err = 0; 1105 wait_writeback = true; 1106 } 1107 if (!err) 1108 err = filemap_fdatawrite_range(mapping, start, end); 1109 if (err) 1110 werr = err; 1111 else if (wait_writeback) 1112 werr = filemap_fdatawait_range(mapping, start, end); 1113 free_extent_state(cached_state); 1114 cached_state = NULL; 1115 cond_resched(); 1116 start = end + 1; 1117 } 1118 return werr; 1119 } 1120 1121 /* 1122 * when btree blocks are allocated, they have some corresponding bits set for 1123 * them in one of two extent_io trees. This is used to make sure all of 1124 * those extents are on disk for transaction or log commit. We wait 1125 * on all the pages and clear them from the dirty pages state tree 1126 */ 1127 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1128 struct extent_io_tree *dirty_pages) 1129 { 1130 int err = 0; 1131 int werr = 0; 1132 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1133 struct extent_state *cached_state = NULL; 1134 u64 start = 0; 1135 u64 end; 1136 1137 while (find_first_extent_bit(dirty_pages, start, &start, &end, 1138 EXTENT_NEED_WAIT, &cached_state)) { 1139 /* 1140 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1141 * When committing the transaction, we'll remove any entries 1142 * left in the io tree. For a log commit, we don't remove them 1143 * after committing the log because the tree can be accessed 1144 * concurrently - we do it only at transaction commit time when 1145 * it's safe to do it (through extent_io_tree_release()). 1146 */ 1147 err = clear_extent_bit(dirty_pages, start, end, 1148 EXTENT_NEED_WAIT, &cached_state); 1149 if (err == -ENOMEM) 1150 err = 0; 1151 if (!err) 1152 err = filemap_fdatawait_range(mapping, start, end); 1153 if (err) 1154 werr = err; 1155 free_extent_state(cached_state); 1156 cached_state = NULL; 1157 cond_resched(); 1158 start = end + 1; 1159 } 1160 if (err) 1161 werr = err; 1162 return werr; 1163 } 1164 1165 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1166 struct extent_io_tree *dirty_pages) 1167 { 1168 bool errors = false; 1169 int err; 1170 1171 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1172 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1173 errors = true; 1174 1175 if (errors && !err) 1176 err = -EIO; 1177 return err; 1178 } 1179 1180 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1181 { 1182 struct btrfs_fs_info *fs_info = log_root->fs_info; 1183 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1184 bool errors = false; 1185 int err; 1186 1187 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1188 1189 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1190 if ((mark & EXTENT_DIRTY) && 1191 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1192 errors = true; 1193 1194 if ((mark & EXTENT_NEW) && 1195 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1196 errors = true; 1197 1198 if (errors && !err) 1199 err = -EIO; 1200 return err; 1201 } 1202 1203 /* 1204 * When btree blocks are allocated the corresponding extents are marked dirty. 1205 * This function ensures such extents are persisted on disk for transaction or 1206 * log commit. 1207 * 1208 * @trans: transaction whose dirty pages we'd like to write 1209 */ 1210 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1211 { 1212 int ret; 1213 int ret2; 1214 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1215 struct btrfs_fs_info *fs_info = trans->fs_info; 1216 struct blk_plug plug; 1217 1218 blk_start_plug(&plug); 1219 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1220 blk_finish_plug(&plug); 1221 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1222 1223 extent_io_tree_release(&trans->transaction->dirty_pages); 1224 1225 if (ret) 1226 return ret; 1227 else if (ret2) 1228 return ret2; 1229 else 1230 return 0; 1231 } 1232 1233 /* 1234 * this is used to update the root pointer in the tree of tree roots. 1235 * 1236 * But, in the case of the extent allocation tree, updating the root 1237 * pointer may allocate blocks which may change the root of the extent 1238 * allocation tree. 1239 * 1240 * So, this loops and repeats and makes sure the cowonly root didn't 1241 * change while the root pointer was being updated in the metadata. 1242 */ 1243 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1244 struct btrfs_root *root) 1245 { 1246 int ret; 1247 u64 old_root_bytenr; 1248 u64 old_root_used; 1249 struct btrfs_fs_info *fs_info = root->fs_info; 1250 struct btrfs_root *tree_root = fs_info->tree_root; 1251 1252 old_root_used = btrfs_root_used(&root->root_item); 1253 1254 while (1) { 1255 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1256 if (old_root_bytenr == root->node->start && 1257 old_root_used == btrfs_root_used(&root->root_item)) 1258 break; 1259 1260 btrfs_set_root_node(&root->root_item, root->node); 1261 ret = btrfs_update_root(trans, tree_root, 1262 &root->root_key, 1263 &root->root_item); 1264 if (ret) 1265 return ret; 1266 1267 old_root_used = btrfs_root_used(&root->root_item); 1268 } 1269 1270 return 0; 1271 } 1272 1273 /* 1274 * update all the cowonly tree roots on disk 1275 * 1276 * The error handling in this function may not be obvious. Any of the 1277 * failures will cause the file system to go offline. We still need 1278 * to clean up the delayed refs. 1279 */ 1280 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1281 { 1282 struct btrfs_fs_info *fs_info = trans->fs_info; 1283 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1284 struct list_head *io_bgs = &trans->transaction->io_bgs; 1285 struct list_head *next; 1286 struct extent_buffer *eb; 1287 int ret; 1288 1289 /* 1290 * At this point no one can be using this transaction to modify any tree 1291 * and no one can start another transaction to modify any tree either. 1292 */ 1293 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1294 1295 eb = btrfs_lock_root_node(fs_info->tree_root); 1296 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1297 0, &eb, BTRFS_NESTING_COW); 1298 btrfs_tree_unlock(eb); 1299 free_extent_buffer(eb); 1300 1301 if (ret) 1302 return ret; 1303 1304 ret = btrfs_run_dev_stats(trans); 1305 if (ret) 1306 return ret; 1307 ret = btrfs_run_dev_replace(trans); 1308 if (ret) 1309 return ret; 1310 ret = btrfs_run_qgroups(trans); 1311 if (ret) 1312 return ret; 1313 1314 ret = btrfs_setup_space_cache(trans); 1315 if (ret) 1316 return ret; 1317 1318 again: 1319 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1320 struct btrfs_root *root; 1321 next = fs_info->dirty_cowonly_roots.next; 1322 list_del_init(next); 1323 root = list_entry(next, struct btrfs_root, dirty_list); 1324 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1325 1326 list_add_tail(&root->dirty_list, 1327 &trans->transaction->switch_commits); 1328 ret = update_cowonly_root(trans, root); 1329 if (ret) 1330 return ret; 1331 } 1332 1333 /* Now flush any delayed refs generated by updating all of the roots */ 1334 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1335 if (ret) 1336 return ret; 1337 1338 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1339 ret = btrfs_write_dirty_block_groups(trans); 1340 if (ret) 1341 return ret; 1342 1343 /* 1344 * We're writing the dirty block groups, which could generate 1345 * delayed refs, which could generate more dirty block groups, 1346 * so we want to keep this flushing in this loop to make sure 1347 * everything gets run. 1348 */ 1349 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1350 if (ret) 1351 return ret; 1352 } 1353 1354 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1355 goto again; 1356 1357 /* Update dev-replace pointer once everything is committed */ 1358 fs_info->dev_replace.committed_cursor_left = 1359 fs_info->dev_replace.cursor_left_last_write_of_item; 1360 1361 return 0; 1362 } 1363 1364 /* 1365 * If we had a pending drop we need to see if there are any others left in our 1366 * dead roots list, and if not clear our bit and wake any waiters. 1367 */ 1368 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1369 { 1370 /* 1371 * We put the drop in progress roots at the front of the list, so if the 1372 * first entry doesn't have UNFINISHED_DROP set we can wake everybody 1373 * up. 1374 */ 1375 spin_lock(&fs_info->trans_lock); 1376 if (!list_empty(&fs_info->dead_roots)) { 1377 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots, 1378 struct btrfs_root, 1379 root_list); 1380 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) { 1381 spin_unlock(&fs_info->trans_lock); 1382 return; 1383 } 1384 } 1385 spin_unlock(&fs_info->trans_lock); 1386 1387 btrfs_wake_unfinished_drop(fs_info); 1388 } 1389 1390 /* 1391 * dead roots are old snapshots that need to be deleted. This allocates 1392 * a dirty root struct and adds it into the list of dead roots that need to 1393 * be deleted 1394 */ 1395 void btrfs_add_dead_root(struct btrfs_root *root) 1396 { 1397 struct btrfs_fs_info *fs_info = root->fs_info; 1398 1399 spin_lock(&fs_info->trans_lock); 1400 if (list_empty(&root->root_list)) { 1401 btrfs_grab_root(root); 1402 1403 /* We want to process the partially complete drops first. */ 1404 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) 1405 list_add(&root->root_list, &fs_info->dead_roots); 1406 else 1407 list_add_tail(&root->root_list, &fs_info->dead_roots); 1408 } 1409 spin_unlock(&fs_info->trans_lock); 1410 } 1411 1412 /* 1413 * Update each subvolume root and its relocation root, if it exists, in the tree 1414 * of tree roots. Also free log roots if they exist. 1415 */ 1416 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1417 { 1418 struct btrfs_fs_info *fs_info = trans->fs_info; 1419 struct btrfs_root *gang[8]; 1420 int i; 1421 int ret; 1422 1423 /* 1424 * At this point no one can be using this transaction to modify any tree 1425 * and no one can start another transaction to modify any tree either. 1426 */ 1427 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1428 1429 spin_lock(&fs_info->fs_roots_radix_lock); 1430 while (1) { 1431 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1432 (void **)gang, 0, 1433 ARRAY_SIZE(gang), 1434 BTRFS_ROOT_TRANS_TAG); 1435 if (ret == 0) 1436 break; 1437 for (i = 0; i < ret; i++) { 1438 struct btrfs_root *root = gang[i]; 1439 int ret2; 1440 1441 /* 1442 * At this point we can neither have tasks logging inodes 1443 * from a root nor trying to commit a log tree. 1444 */ 1445 ASSERT(atomic_read(&root->log_writers) == 0); 1446 ASSERT(atomic_read(&root->log_commit[0]) == 0); 1447 ASSERT(atomic_read(&root->log_commit[1]) == 0); 1448 1449 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1450 (unsigned long)root->root_key.objectid, 1451 BTRFS_ROOT_TRANS_TAG); 1452 btrfs_qgroup_free_meta_all_pertrans(root); 1453 spin_unlock(&fs_info->fs_roots_radix_lock); 1454 1455 btrfs_free_log(trans, root); 1456 ret2 = btrfs_update_reloc_root(trans, root); 1457 if (ret2) 1458 return ret2; 1459 1460 /* see comments in should_cow_block() */ 1461 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1462 smp_mb__after_atomic(); 1463 1464 if (root->commit_root != root->node) { 1465 list_add_tail(&root->dirty_list, 1466 &trans->transaction->switch_commits); 1467 btrfs_set_root_node(&root->root_item, 1468 root->node); 1469 } 1470 1471 ret2 = btrfs_update_root(trans, fs_info->tree_root, 1472 &root->root_key, 1473 &root->root_item); 1474 if (ret2) 1475 return ret2; 1476 spin_lock(&fs_info->fs_roots_radix_lock); 1477 } 1478 } 1479 spin_unlock(&fs_info->fs_roots_radix_lock); 1480 return 0; 1481 } 1482 1483 /* 1484 * defrag a given btree. 1485 * Every leaf in the btree is read and defragged. 1486 */ 1487 int btrfs_defrag_root(struct btrfs_root *root) 1488 { 1489 struct btrfs_fs_info *info = root->fs_info; 1490 struct btrfs_trans_handle *trans; 1491 int ret; 1492 1493 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1494 return 0; 1495 1496 while (1) { 1497 trans = btrfs_start_transaction(root, 0); 1498 if (IS_ERR(trans)) { 1499 ret = PTR_ERR(trans); 1500 break; 1501 } 1502 1503 ret = btrfs_defrag_leaves(trans, root); 1504 1505 btrfs_end_transaction(trans); 1506 btrfs_btree_balance_dirty(info); 1507 cond_resched(); 1508 1509 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1510 break; 1511 1512 if (btrfs_defrag_cancelled(info)) { 1513 btrfs_debug(info, "defrag_root cancelled"); 1514 ret = -EAGAIN; 1515 break; 1516 } 1517 } 1518 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1519 return ret; 1520 } 1521 1522 /* 1523 * Do all special snapshot related qgroup dirty hack. 1524 * 1525 * Will do all needed qgroup inherit and dirty hack like switch commit 1526 * roots inside one transaction and write all btree into disk, to make 1527 * qgroup works. 1528 */ 1529 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1530 struct btrfs_root *src, 1531 struct btrfs_root *parent, 1532 struct btrfs_qgroup_inherit *inherit, 1533 u64 dst_objectid) 1534 { 1535 struct btrfs_fs_info *fs_info = src->fs_info; 1536 int ret; 1537 1538 /* 1539 * Save some performance in the case that qgroups are not 1540 * enabled. If this check races with the ioctl, rescan will 1541 * kick in anyway. 1542 */ 1543 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1544 return 0; 1545 1546 /* 1547 * Ensure dirty @src will be committed. Or, after coming 1548 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1549 * recorded root will never be updated again, causing an outdated root 1550 * item. 1551 */ 1552 ret = record_root_in_trans(trans, src, 1); 1553 if (ret) 1554 return ret; 1555 1556 /* 1557 * btrfs_qgroup_inherit relies on a consistent view of the usage for the 1558 * src root, so we must run the delayed refs here. 1559 * 1560 * However this isn't particularly fool proof, because there's no 1561 * synchronization keeping us from changing the tree after this point 1562 * before we do the qgroup_inherit, or even from making changes while 1563 * we're doing the qgroup_inherit. But that's a problem for the future, 1564 * for now flush the delayed refs to narrow the race window where the 1565 * qgroup counters could end up wrong. 1566 */ 1567 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1568 if (ret) { 1569 btrfs_abort_transaction(trans, ret); 1570 return ret; 1571 } 1572 1573 ret = commit_fs_roots(trans); 1574 if (ret) 1575 goto out; 1576 ret = btrfs_qgroup_account_extents(trans); 1577 if (ret < 0) 1578 goto out; 1579 1580 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1581 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1582 inherit); 1583 if (ret < 0) 1584 goto out; 1585 1586 /* 1587 * Now we do a simplified commit transaction, which will: 1588 * 1) commit all subvolume and extent tree 1589 * To ensure all subvolume and extent tree have a valid 1590 * commit_root to accounting later insert_dir_item() 1591 * 2) write all btree blocks onto disk 1592 * This is to make sure later btree modification will be cowed 1593 * Or commit_root can be populated and cause wrong qgroup numbers 1594 * In this simplified commit, we don't really care about other trees 1595 * like chunk and root tree, as they won't affect qgroup. 1596 * And we don't write super to avoid half committed status. 1597 */ 1598 ret = commit_cowonly_roots(trans); 1599 if (ret) 1600 goto out; 1601 switch_commit_roots(trans); 1602 ret = btrfs_write_and_wait_transaction(trans); 1603 if (ret) 1604 btrfs_handle_fs_error(fs_info, ret, 1605 "Error while writing out transaction for qgroup"); 1606 1607 out: 1608 /* 1609 * Force parent root to be updated, as we recorded it before so its 1610 * last_trans == cur_transid. 1611 * Or it won't be committed again onto disk after later 1612 * insert_dir_item() 1613 */ 1614 if (!ret) 1615 ret = record_root_in_trans(trans, parent, 1); 1616 return ret; 1617 } 1618 1619 /* 1620 * new snapshots need to be created at a very specific time in the 1621 * transaction commit. This does the actual creation. 1622 * 1623 * Note: 1624 * If the error which may affect the commitment of the current transaction 1625 * happens, we should return the error number. If the error which just affect 1626 * the creation of the pending snapshots, just return 0. 1627 */ 1628 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1629 struct btrfs_pending_snapshot *pending) 1630 { 1631 1632 struct btrfs_fs_info *fs_info = trans->fs_info; 1633 struct btrfs_key key; 1634 struct btrfs_root_item *new_root_item; 1635 struct btrfs_root *tree_root = fs_info->tree_root; 1636 struct btrfs_root *root = pending->root; 1637 struct btrfs_root *parent_root; 1638 struct btrfs_block_rsv *rsv; 1639 struct inode *parent_inode = pending->dir; 1640 struct btrfs_path *path; 1641 struct btrfs_dir_item *dir_item; 1642 struct extent_buffer *tmp; 1643 struct extent_buffer *old; 1644 struct timespec64 cur_time; 1645 int ret = 0; 1646 u64 to_reserve = 0; 1647 u64 index = 0; 1648 u64 objectid; 1649 u64 root_flags; 1650 unsigned int nofs_flags; 1651 struct fscrypt_name fname; 1652 1653 ASSERT(pending->path); 1654 path = pending->path; 1655 1656 ASSERT(pending->root_item); 1657 new_root_item = pending->root_item; 1658 1659 /* 1660 * We're inside a transaction and must make sure that any potential 1661 * allocations with GFP_KERNEL in fscrypt won't recurse back to 1662 * filesystem. 1663 */ 1664 nofs_flags = memalloc_nofs_save(); 1665 pending->error = fscrypt_setup_filename(parent_inode, 1666 &pending->dentry->d_name, 0, 1667 &fname); 1668 memalloc_nofs_restore(nofs_flags); 1669 if (pending->error) 1670 goto free_pending; 1671 1672 pending->error = btrfs_get_free_objectid(tree_root, &objectid); 1673 if (pending->error) 1674 goto free_fname; 1675 1676 /* 1677 * Make qgroup to skip current new snapshot's qgroupid, as it is 1678 * accounted by later btrfs_qgroup_inherit(). 1679 */ 1680 btrfs_set_skip_qgroup(trans, objectid); 1681 1682 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1683 1684 if (to_reserve > 0) { 1685 pending->error = btrfs_block_rsv_add(fs_info, 1686 &pending->block_rsv, 1687 to_reserve, 1688 BTRFS_RESERVE_NO_FLUSH); 1689 if (pending->error) 1690 goto clear_skip_qgroup; 1691 } 1692 1693 key.objectid = objectid; 1694 key.offset = (u64)-1; 1695 key.type = BTRFS_ROOT_ITEM_KEY; 1696 1697 rsv = trans->block_rsv; 1698 trans->block_rsv = &pending->block_rsv; 1699 trans->bytes_reserved = trans->block_rsv->reserved; 1700 trace_btrfs_space_reservation(fs_info, "transaction", 1701 trans->transid, 1702 trans->bytes_reserved, 1); 1703 parent_root = BTRFS_I(parent_inode)->root; 1704 ret = record_root_in_trans(trans, parent_root, 0); 1705 if (ret) 1706 goto fail; 1707 cur_time = current_time(parent_inode); 1708 1709 /* 1710 * insert the directory item 1711 */ 1712 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1713 if (ret) { 1714 btrfs_abort_transaction(trans, ret); 1715 goto fail; 1716 } 1717 1718 /* check if there is a file/dir which has the same name. */ 1719 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1720 btrfs_ino(BTRFS_I(parent_inode)), 1721 &fname.disk_name, 0); 1722 if (dir_item != NULL && !IS_ERR(dir_item)) { 1723 pending->error = -EEXIST; 1724 goto dir_item_existed; 1725 } else if (IS_ERR(dir_item)) { 1726 ret = PTR_ERR(dir_item); 1727 btrfs_abort_transaction(trans, ret); 1728 goto fail; 1729 } 1730 btrfs_release_path(path); 1731 1732 /* 1733 * pull in the delayed directory update 1734 * and the delayed inode item 1735 * otherwise we corrupt the FS during 1736 * snapshot 1737 */ 1738 ret = btrfs_run_delayed_items(trans); 1739 if (ret) { /* Transaction aborted */ 1740 btrfs_abort_transaction(trans, ret); 1741 goto fail; 1742 } 1743 1744 ret = record_root_in_trans(trans, root, 0); 1745 if (ret) { 1746 btrfs_abort_transaction(trans, ret); 1747 goto fail; 1748 } 1749 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1750 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1751 btrfs_check_and_init_root_item(new_root_item); 1752 1753 root_flags = btrfs_root_flags(new_root_item); 1754 if (pending->readonly) 1755 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1756 else 1757 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1758 btrfs_set_root_flags(new_root_item, root_flags); 1759 1760 btrfs_set_root_generation_v2(new_root_item, 1761 trans->transid); 1762 generate_random_guid(new_root_item->uuid); 1763 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1764 BTRFS_UUID_SIZE); 1765 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1766 memset(new_root_item->received_uuid, 0, 1767 sizeof(new_root_item->received_uuid)); 1768 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1769 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1770 btrfs_set_root_stransid(new_root_item, 0); 1771 btrfs_set_root_rtransid(new_root_item, 0); 1772 } 1773 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1774 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1775 btrfs_set_root_otransid(new_root_item, trans->transid); 1776 1777 old = btrfs_lock_root_node(root); 1778 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1779 BTRFS_NESTING_COW); 1780 if (ret) { 1781 btrfs_tree_unlock(old); 1782 free_extent_buffer(old); 1783 btrfs_abort_transaction(trans, ret); 1784 goto fail; 1785 } 1786 1787 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1788 /* clean up in any case */ 1789 btrfs_tree_unlock(old); 1790 free_extent_buffer(old); 1791 if (ret) { 1792 btrfs_abort_transaction(trans, ret); 1793 goto fail; 1794 } 1795 /* see comments in should_cow_block() */ 1796 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1797 smp_wmb(); 1798 1799 btrfs_set_root_node(new_root_item, tmp); 1800 /* record when the snapshot was created in key.offset */ 1801 key.offset = trans->transid; 1802 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1803 btrfs_tree_unlock(tmp); 1804 free_extent_buffer(tmp); 1805 if (ret) { 1806 btrfs_abort_transaction(trans, ret); 1807 goto fail; 1808 } 1809 1810 /* 1811 * insert root back/forward references 1812 */ 1813 ret = btrfs_add_root_ref(trans, objectid, 1814 parent_root->root_key.objectid, 1815 btrfs_ino(BTRFS_I(parent_inode)), index, 1816 &fname.disk_name); 1817 if (ret) { 1818 btrfs_abort_transaction(trans, ret); 1819 goto fail; 1820 } 1821 1822 key.offset = (u64)-1; 1823 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev); 1824 if (IS_ERR(pending->snap)) { 1825 ret = PTR_ERR(pending->snap); 1826 pending->snap = NULL; 1827 btrfs_abort_transaction(trans, ret); 1828 goto fail; 1829 } 1830 1831 ret = btrfs_reloc_post_snapshot(trans, pending); 1832 if (ret) { 1833 btrfs_abort_transaction(trans, ret); 1834 goto fail; 1835 } 1836 1837 /* 1838 * Do special qgroup accounting for snapshot, as we do some qgroup 1839 * snapshot hack to do fast snapshot. 1840 * To co-operate with that hack, we do hack again. 1841 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1842 */ 1843 ret = qgroup_account_snapshot(trans, root, parent_root, 1844 pending->inherit, objectid); 1845 if (ret < 0) 1846 goto fail; 1847 1848 ret = btrfs_insert_dir_item(trans, &fname.disk_name, 1849 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR, 1850 index); 1851 /* We have check then name at the beginning, so it is impossible. */ 1852 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1853 if (ret) { 1854 btrfs_abort_transaction(trans, ret); 1855 goto fail; 1856 } 1857 1858 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1859 fname.disk_name.len * 2); 1860 parent_inode->i_mtime = inode_set_ctime_current(parent_inode); 1861 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode)); 1862 if (ret) { 1863 btrfs_abort_transaction(trans, ret); 1864 goto fail; 1865 } 1866 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1867 BTRFS_UUID_KEY_SUBVOL, 1868 objectid); 1869 if (ret) { 1870 btrfs_abort_transaction(trans, ret); 1871 goto fail; 1872 } 1873 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1874 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1875 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1876 objectid); 1877 if (ret && ret != -EEXIST) { 1878 btrfs_abort_transaction(trans, ret); 1879 goto fail; 1880 } 1881 } 1882 1883 fail: 1884 pending->error = ret; 1885 dir_item_existed: 1886 trans->block_rsv = rsv; 1887 trans->bytes_reserved = 0; 1888 clear_skip_qgroup: 1889 btrfs_clear_skip_qgroup(trans); 1890 free_fname: 1891 fscrypt_free_filename(&fname); 1892 free_pending: 1893 kfree(new_root_item); 1894 pending->root_item = NULL; 1895 btrfs_free_path(path); 1896 pending->path = NULL; 1897 1898 return ret; 1899 } 1900 1901 /* 1902 * create all the snapshots we've scheduled for creation 1903 */ 1904 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1905 { 1906 struct btrfs_pending_snapshot *pending, *next; 1907 struct list_head *head = &trans->transaction->pending_snapshots; 1908 int ret = 0; 1909 1910 list_for_each_entry_safe(pending, next, head, list) { 1911 list_del(&pending->list); 1912 ret = create_pending_snapshot(trans, pending); 1913 if (ret) 1914 break; 1915 } 1916 return ret; 1917 } 1918 1919 static void update_super_roots(struct btrfs_fs_info *fs_info) 1920 { 1921 struct btrfs_root_item *root_item; 1922 struct btrfs_super_block *super; 1923 1924 super = fs_info->super_copy; 1925 1926 root_item = &fs_info->chunk_root->root_item; 1927 super->chunk_root = root_item->bytenr; 1928 super->chunk_root_generation = root_item->generation; 1929 super->chunk_root_level = root_item->level; 1930 1931 root_item = &fs_info->tree_root->root_item; 1932 super->root = root_item->bytenr; 1933 super->generation = root_item->generation; 1934 super->root_level = root_item->level; 1935 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1936 super->cache_generation = root_item->generation; 1937 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags)) 1938 super->cache_generation = 0; 1939 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1940 super->uuid_tree_generation = root_item->generation; 1941 } 1942 1943 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1944 { 1945 struct btrfs_transaction *trans; 1946 int ret = 0; 1947 1948 spin_lock(&info->trans_lock); 1949 trans = info->running_transaction; 1950 if (trans) 1951 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1952 spin_unlock(&info->trans_lock); 1953 return ret; 1954 } 1955 1956 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1957 { 1958 struct btrfs_transaction *trans; 1959 int ret = 0; 1960 1961 spin_lock(&info->trans_lock); 1962 trans = info->running_transaction; 1963 if (trans) 1964 ret = is_transaction_blocked(trans); 1965 spin_unlock(&info->trans_lock); 1966 return ret; 1967 } 1968 1969 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans) 1970 { 1971 struct btrfs_fs_info *fs_info = trans->fs_info; 1972 struct btrfs_transaction *cur_trans; 1973 1974 /* Kick the transaction kthread. */ 1975 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 1976 wake_up_process(fs_info->transaction_kthread); 1977 1978 /* take transaction reference */ 1979 cur_trans = trans->transaction; 1980 refcount_inc(&cur_trans->use_count); 1981 1982 btrfs_end_transaction(trans); 1983 1984 /* 1985 * Wait for the current transaction commit to start and block 1986 * subsequent transaction joins 1987 */ 1988 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 1989 wait_event(fs_info->transaction_blocked_wait, 1990 cur_trans->state >= TRANS_STATE_COMMIT_START || 1991 TRANS_ABORTED(cur_trans)); 1992 btrfs_put_transaction(cur_trans); 1993 } 1994 1995 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1996 { 1997 struct btrfs_fs_info *fs_info = trans->fs_info; 1998 struct btrfs_transaction *cur_trans = trans->transaction; 1999 2000 WARN_ON(refcount_read(&trans->use_count) > 1); 2001 2002 btrfs_abort_transaction(trans, err); 2003 2004 spin_lock(&fs_info->trans_lock); 2005 2006 /* 2007 * If the transaction is removed from the list, it means this 2008 * transaction has been committed successfully, so it is impossible 2009 * to call the cleanup function. 2010 */ 2011 BUG_ON(list_empty(&cur_trans->list)); 2012 2013 if (cur_trans == fs_info->running_transaction) { 2014 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2015 spin_unlock(&fs_info->trans_lock); 2016 2017 /* 2018 * The thread has already released the lockdep map as reader 2019 * already in btrfs_commit_transaction(). 2020 */ 2021 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2022 wait_event(cur_trans->writer_wait, 2023 atomic_read(&cur_trans->num_writers) == 1); 2024 2025 spin_lock(&fs_info->trans_lock); 2026 } 2027 2028 /* 2029 * Now that we know no one else is still using the transaction we can 2030 * remove the transaction from the list of transactions. This avoids 2031 * the transaction kthread from cleaning up the transaction while some 2032 * other task is still using it, which could result in a use-after-free 2033 * on things like log trees, as it forces the transaction kthread to 2034 * wait for this transaction to be cleaned up by us. 2035 */ 2036 list_del_init(&cur_trans->list); 2037 2038 spin_unlock(&fs_info->trans_lock); 2039 2040 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 2041 2042 spin_lock(&fs_info->trans_lock); 2043 if (cur_trans == fs_info->running_transaction) 2044 fs_info->running_transaction = NULL; 2045 spin_unlock(&fs_info->trans_lock); 2046 2047 if (trans->type & __TRANS_FREEZABLE) 2048 sb_end_intwrite(fs_info->sb); 2049 btrfs_put_transaction(cur_trans); 2050 btrfs_put_transaction(cur_trans); 2051 2052 trace_btrfs_transaction_commit(fs_info); 2053 2054 if (current->journal_info == trans) 2055 current->journal_info = NULL; 2056 2057 /* 2058 * If relocation is running, we can't cancel scrub because that will 2059 * result in a deadlock. Before relocating a block group, relocation 2060 * pauses scrub, then starts and commits a transaction before unpausing 2061 * scrub. If the transaction commit is being done by the relocation 2062 * task or triggered by another task and the relocation task is waiting 2063 * for the commit, and we end up here due to an error in the commit 2064 * path, then calling btrfs_scrub_cancel() will deadlock, as we are 2065 * asking for scrub to stop while having it asked to be paused higher 2066 * above in relocation code. 2067 */ 2068 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 2069 btrfs_scrub_cancel(fs_info); 2070 2071 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2072 } 2073 2074 /* 2075 * Release reserved delayed ref space of all pending block groups of the 2076 * transaction and remove them from the list 2077 */ 2078 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 2079 { 2080 struct btrfs_fs_info *fs_info = trans->fs_info; 2081 struct btrfs_block_group *block_group, *tmp; 2082 2083 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 2084 btrfs_delayed_refs_rsv_release(fs_info, 1); 2085 list_del_init(&block_group->bg_list); 2086 } 2087 } 2088 2089 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 2090 { 2091 /* 2092 * We use try_to_writeback_inodes_sb() here because if we used 2093 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2094 * Currently are holding the fs freeze lock, if we do an async flush 2095 * we'll do btrfs_join_transaction() and deadlock because we need to 2096 * wait for the fs freeze lock. Using the direct flushing we benefit 2097 * from already being in a transaction and our join_transaction doesn't 2098 * have to re-take the fs freeze lock. 2099 * 2100 * Note that try_to_writeback_inodes_sb() will only trigger writeback 2101 * if it can read lock sb->s_umount. It will always be able to lock it, 2102 * except when the filesystem is being unmounted or being frozen, but in 2103 * those cases sync_filesystem() is called, which results in calling 2104 * writeback_inodes_sb() while holding a write lock on sb->s_umount. 2105 * Note that we don't call writeback_inodes_sb() directly, because it 2106 * will emit a warning if sb->s_umount is not locked. 2107 */ 2108 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2109 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2110 return 0; 2111 } 2112 2113 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 2114 { 2115 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2116 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 2117 } 2118 2119 /* 2120 * Add a pending snapshot associated with the given transaction handle to the 2121 * respective handle. This must be called after the transaction commit started 2122 * and while holding fs_info->trans_lock. 2123 * This serves to guarantee a caller of btrfs_commit_transaction() that it can 2124 * safely free the pending snapshot pointer in case btrfs_commit_transaction() 2125 * returns an error. 2126 */ 2127 static void add_pending_snapshot(struct btrfs_trans_handle *trans) 2128 { 2129 struct btrfs_transaction *cur_trans = trans->transaction; 2130 2131 if (!trans->pending_snapshot) 2132 return; 2133 2134 lockdep_assert_held(&trans->fs_info->trans_lock); 2135 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP); 2136 2137 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots); 2138 } 2139 2140 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval) 2141 { 2142 fs_info->commit_stats.commit_count++; 2143 fs_info->commit_stats.last_commit_dur = interval; 2144 fs_info->commit_stats.max_commit_dur = 2145 max_t(u64, fs_info->commit_stats.max_commit_dur, interval); 2146 fs_info->commit_stats.total_commit_dur += interval; 2147 } 2148 2149 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2150 { 2151 struct btrfs_fs_info *fs_info = trans->fs_info; 2152 struct btrfs_transaction *cur_trans = trans->transaction; 2153 struct btrfs_transaction *prev_trans = NULL; 2154 int ret; 2155 ktime_t start_time; 2156 ktime_t interval; 2157 2158 ASSERT(refcount_read(&trans->use_count) == 1); 2159 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2160 2161 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags); 2162 2163 /* Stop the commit early if ->aborted is set */ 2164 if (TRANS_ABORTED(cur_trans)) { 2165 ret = cur_trans->aborted; 2166 goto lockdep_trans_commit_start_release; 2167 } 2168 2169 btrfs_trans_release_metadata(trans); 2170 trans->block_rsv = NULL; 2171 2172 /* 2173 * We only want one transaction commit doing the flushing so we do not 2174 * waste a bunch of time on lock contention on the extent root node. 2175 */ 2176 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING, 2177 &cur_trans->delayed_refs.flags)) { 2178 /* 2179 * Make a pass through all the delayed refs we have so far. 2180 * Any running threads may add more while we are here. 2181 */ 2182 ret = btrfs_run_delayed_refs(trans, 0); 2183 if (ret) 2184 goto lockdep_trans_commit_start_release; 2185 } 2186 2187 btrfs_create_pending_block_groups(trans); 2188 2189 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2190 int run_it = 0; 2191 2192 /* this mutex is also taken before trying to set 2193 * block groups readonly. We need to make sure 2194 * that nobody has set a block group readonly 2195 * after a extents from that block group have been 2196 * allocated for cache files. btrfs_set_block_group_ro 2197 * will wait for the transaction to commit if it 2198 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2199 * 2200 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2201 * only one process starts all the block group IO. It wouldn't 2202 * hurt to have more than one go through, but there's no 2203 * real advantage to it either. 2204 */ 2205 mutex_lock(&fs_info->ro_block_group_mutex); 2206 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2207 &cur_trans->flags)) 2208 run_it = 1; 2209 mutex_unlock(&fs_info->ro_block_group_mutex); 2210 2211 if (run_it) { 2212 ret = btrfs_start_dirty_block_groups(trans); 2213 if (ret) 2214 goto lockdep_trans_commit_start_release; 2215 } 2216 } 2217 2218 spin_lock(&fs_info->trans_lock); 2219 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) { 2220 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2221 2222 add_pending_snapshot(trans); 2223 2224 spin_unlock(&fs_info->trans_lock); 2225 refcount_inc(&cur_trans->use_count); 2226 2227 if (trans->in_fsync) 2228 want_state = TRANS_STATE_SUPER_COMMITTED; 2229 2230 btrfs_trans_state_lockdep_release(fs_info, 2231 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2232 ret = btrfs_end_transaction(trans); 2233 wait_for_commit(cur_trans, want_state); 2234 2235 if (TRANS_ABORTED(cur_trans)) 2236 ret = cur_trans->aborted; 2237 2238 btrfs_put_transaction(cur_trans); 2239 2240 return ret; 2241 } 2242 2243 cur_trans->state = TRANS_STATE_COMMIT_PREP; 2244 wake_up(&fs_info->transaction_blocked_wait); 2245 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2246 2247 if (cur_trans->list.prev != &fs_info->trans_list) { 2248 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2249 2250 if (trans->in_fsync) 2251 want_state = TRANS_STATE_SUPER_COMMITTED; 2252 2253 prev_trans = list_entry(cur_trans->list.prev, 2254 struct btrfs_transaction, list); 2255 if (prev_trans->state < want_state) { 2256 refcount_inc(&prev_trans->use_count); 2257 spin_unlock(&fs_info->trans_lock); 2258 2259 wait_for_commit(prev_trans, want_state); 2260 2261 ret = READ_ONCE(prev_trans->aborted); 2262 2263 btrfs_put_transaction(prev_trans); 2264 if (ret) 2265 goto lockdep_release; 2266 spin_lock(&fs_info->trans_lock); 2267 } 2268 } else { 2269 /* 2270 * The previous transaction was aborted and was already removed 2271 * from the list of transactions at fs_info->trans_list. So we 2272 * abort to prevent writing a new superblock that reflects a 2273 * corrupt state (pointing to trees with unwritten nodes/leafs). 2274 */ 2275 if (BTRFS_FS_ERROR(fs_info)) { 2276 spin_unlock(&fs_info->trans_lock); 2277 ret = -EROFS; 2278 goto lockdep_release; 2279 } 2280 } 2281 2282 cur_trans->state = TRANS_STATE_COMMIT_START; 2283 wake_up(&fs_info->transaction_blocked_wait); 2284 spin_unlock(&fs_info->trans_lock); 2285 2286 /* 2287 * Get the time spent on the work done by the commit thread and not 2288 * the time spent waiting on a previous commit 2289 */ 2290 start_time = ktime_get_ns(); 2291 2292 extwriter_counter_dec(cur_trans, trans->type); 2293 2294 ret = btrfs_start_delalloc_flush(fs_info); 2295 if (ret) 2296 goto lockdep_release; 2297 2298 ret = btrfs_run_delayed_items(trans); 2299 if (ret) 2300 goto lockdep_release; 2301 2302 /* 2303 * The thread has started/joined the transaction thus it holds the 2304 * lockdep map as a reader. It has to release it before acquiring the 2305 * lockdep map as a writer. 2306 */ 2307 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2308 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters); 2309 wait_event(cur_trans->writer_wait, 2310 extwriter_counter_read(cur_trans) == 0); 2311 2312 /* some pending stuffs might be added after the previous flush. */ 2313 ret = btrfs_run_delayed_items(trans); 2314 if (ret) { 2315 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2316 goto cleanup_transaction; 2317 } 2318 2319 btrfs_wait_delalloc_flush(fs_info); 2320 2321 /* 2322 * Wait for all ordered extents started by a fast fsync that joined this 2323 * transaction. Otherwise if this transaction commits before the ordered 2324 * extents complete we lose logged data after a power failure. 2325 */ 2326 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered); 2327 wait_event(cur_trans->pending_wait, 2328 atomic_read(&cur_trans->pending_ordered) == 0); 2329 2330 btrfs_scrub_pause(fs_info); 2331 /* 2332 * Ok now we need to make sure to block out any other joins while we 2333 * commit the transaction. We could have started a join before setting 2334 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2335 */ 2336 spin_lock(&fs_info->trans_lock); 2337 add_pending_snapshot(trans); 2338 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2339 spin_unlock(&fs_info->trans_lock); 2340 2341 /* 2342 * The thread has started/joined the transaction thus it holds the 2343 * lockdep map as a reader. It has to release it before acquiring the 2344 * lockdep map as a writer. 2345 */ 2346 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2347 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2348 wait_event(cur_trans->writer_wait, 2349 atomic_read(&cur_trans->num_writers) == 1); 2350 2351 /* 2352 * Make lockdep happy by acquiring the state locks after 2353 * btrfs_trans_num_writers is released. If we acquired the state locks 2354 * before releasing the btrfs_trans_num_writers lock then lockdep would 2355 * complain because we did not follow the reverse order unlocking rule. 2356 */ 2357 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2358 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2359 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2360 2361 /* 2362 * We've started the commit, clear the flag in case we were triggered to 2363 * do an async commit but somebody else started before the transaction 2364 * kthread could do the work. 2365 */ 2366 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 2367 2368 if (TRANS_ABORTED(cur_trans)) { 2369 ret = cur_trans->aborted; 2370 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2371 goto scrub_continue; 2372 } 2373 /* 2374 * the reloc mutex makes sure that we stop 2375 * the balancing code from coming in and moving 2376 * extents around in the middle of the commit 2377 */ 2378 mutex_lock(&fs_info->reloc_mutex); 2379 2380 /* 2381 * We needn't worry about the delayed items because we will 2382 * deal with them in create_pending_snapshot(), which is the 2383 * core function of the snapshot creation. 2384 */ 2385 ret = create_pending_snapshots(trans); 2386 if (ret) 2387 goto unlock_reloc; 2388 2389 /* 2390 * We insert the dir indexes of the snapshots and update the inode 2391 * of the snapshots' parents after the snapshot creation, so there 2392 * are some delayed items which are not dealt with. Now deal with 2393 * them. 2394 * 2395 * We needn't worry that this operation will corrupt the snapshots, 2396 * because all the tree which are snapshoted will be forced to COW 2397 * the nodes and leaves. 2398 */ 2399 ret = btrfs_run_delayed_items(trans); 2400 if (ret) 2401 goto unlock_reloc; 2402 2403 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2404 if (ret) 2405 goto unlock_reloc; 2406 2407 /* 2408 * make sure none of the code above managed to slip in a 2409 * delayed item 2410 */ 2411 btrfs_assert_delayed_root_empty(fs_info); 2412 2413 WARN_ON(cur_trans != trans->transaction); 2414 2415 ret = commit_fs_roots(trans); 2416 if (ret) 2417 goto unlock_reloc; 2418 2419 /* commit_fs_roots gets rid of all the tree log roots, it is now 2420 * safe to free the root of tree log roots 2421 */ 2422 btrfs_free_log_root_tree(trans, fs_info); 2423 2424 /* 2425 * Since fs roots are all committed, we can get a quite accurate 2426 * new_roots. So let's do quota accounting. 2427 */ 2428 ret = btrfs_qgroup_account_extents(trans); 2429 if (ret < 0) 2430 goto unlock_reloc; 2431 2432 ret = commit_cowonly_roots(trans); 2433 if (ret) 2434 goto unlock_reloc; 2435 2436 /* 2437 * The tasks which save the space cache and inode cache may also 2438 * update ->aborted, check it. 2439 */ 2440 if (TRANS_ABORTED(cur_trans)) { 2441 ret = cur_trans->aborted; 2442 goto unlock_reloc; 2443 } 2444 2445 cur_trans = fs_info->running_transaction; 2446 2447 btrfs_set_root_node(&fs_info->tree_root->root_item, 2448 fs_info->tree_root->node); 2449 list_add_tail(&fs_info->tree_root->dirty_list, 2450 &cur_trans->switch_commits); 2451 2452 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2453 fs_info->chunk_root->node); 2454 list_add_tail(&fs_info->chunk_root->dirty_list, 2455 &cur_trans->switch_commits); 2456 2457 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2458 btrfs_set_root_node(&fs_info->block_group_root->root_item, 2459 fs_info->block_group_root->node); 2460 list_add_tail(&fs_info->block_group_root->dirty_list, 2461 &cur_trans->switch_commits); 2462 } 2463 2464 switch_commit_roots(trans); 2465 2466 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2467 ASSERT(list_empty(&cur_trans->io_bgs)); 2468 update_super_roots(fs_info); 2469 2470 btrfs_set_super_log_root(fs_info->super_copy, 0); 2471 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2472 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2473 sizeof(*fs_info->super_copy)); 2474 2475 btrfs_commit_device_sizes(cur_trans); 2476 2477 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2478 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2479 2480 btrfs_trans_release_chunk_metadata(trans); 2481 2482 /* 2483 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and 2484 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to 2485 * make sure that before we commit our superblock, no other task can 2486 * start a new transaction and commit a log tree before we commit our 2487 * superblock. Anyone trying to commit a log tree locks this mutex before 2488 * writing its superblock. 2489 */ 2490 mutex_lock(&fs_info->tree_log_mutex); 2491 2492 spin_lock(&fs_info->trans_lock); 2493 cur_trans->state = TRANS_STATE_UNBLOCKED; 2494 fs_info->running_transaction = NULL; 2495 spin_unlock(&fs_info->trans_lock); 2496 mutex_unlock(&fs_info->reloc_mutex); 2497 2498 wake_up(&fs_info->transaction_wait); 2499 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2500 2501 /* If we have features changed, wake up the cleaner to update sysfs. */ 2502 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) && 2503 fs_info->cleaner_kthread) 2504 wake_up_process(fs_info->cleaner_kthread); 2505 2506 ret = btrfs_write_and_wait_transaction(trans); 2507 if (ret) { 2508 btrfs_handle_fs_error(fs_info, ret, 2509 "Error while writing out transaction"); 2510 mutex_unlock(&fs_info->tree_log_mutex); 2511 goto scrub_continue; 2512 } 2513 2514 ret = write_all_supers(fs_info, 0); 2515 /* 2516 * the super is written, we can safely allow the tree-loggers 2517 * to go about their business 2518 */ 2519 mutex_unlock(&fs_info->tree_log_mutex); 2520 if (ret) 2521 goto scrub_continue; 2522 2523 /* 2524 * We needn't acquire the lock here because there is no other task 2525 * which can change it. 2526 */ 2527 cur_trans->state = TRANS_STATE_SUPER_COMMITTED; 2528 wake_up(&cur_trans->commit_wait); 2529 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2530 2531 btrfs_finish_extent_commit(trans); 2532 2533 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2534 btrfs_clear_space_info_full(fs_info); 2535 2536 fs_info->last_trans_committed = cur_trans->transid; 2537 /* 2538 * We needn't acquire the lock here because there is no other task 2539 * which can change it. 2540 */ 2541 cur_trans->state = TRANS_STATE_COMPLETED; 2542 wake_up(&cur_trans->commit_wait); 2543 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2544 2545 spin_lock(&fs_info->trans_lock); 2546 list_del_init(&cur_trans->list); 2547 spin_unlock(&fs_info->trans_lock); 2548 2549 btrfs_put_transaction(cur_trans); 2550 btrfs_put_transaction(cur_trans); 2551 2552 if (trans->type & __TRANS_FREEZABLE) 2553 sb_end_intwrite(fs_info->sb); 2554 2555 trace_btrfs_transaction_commit(fs_info); 2556 2557 interval = ktime_get_ns() - start_time; 2558 2559 btrfs_scrub_continue(fs_info); 2560 2561 if (current->journal_info == trans) 2562 current->journal_info = NULL; 2563 2564 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2565 2566 update_commit_stats(fs_info, interval); 2567 2568 return ret; 2569 2570 unlock_reloc: 2571 mutex_unlock(&fs_info->reloc_mutex); 2572 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2573 scrub_continue: 2574 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2575 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2576 btrfs_scrub_continue(fs_info); 2577 cleanup_transaction: 2578 btrfs_trans_release_metadata(trans); 2579 btrfs_cleanup_pending_block_groups(trans); 2580 btrfs_trans_release_chunk_metadata(trans); 2581 trans->block_rsv = NULL; 2582 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2583 if (current->journal_info == trans) 2584 current->journal_info = NULL; 2585 cleanup_transaction(trans, ret); 2586 2587 return ret; 2588 2589 lockdep_release: 2590 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2591 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2592 goto cleanup_transaction; 2593 2594 lockdep_trans_commit_start_release: 2595 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2596 btrfs_end_transaction(trans); 2597 return ret; 2598 } 2599 2600 /* 2601 * return < 0 if error 2602 * 0 if there are no more dead_roots at the time of call 2603 * 1 there are more to be processed, call me again 2604 * 2605 * The return value indicates there are certainly more snapshots to delete, but 2606 * if there comes a new one during processing, it may return 0. We don't mind, 2607 * because btrfs_commit_super will poke cleaner thread and it will process it a 2608 * few seconds later. 2609 */ 2610 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info) 2611 { 2612 struct btrfs_root *root; 2613 int ret; 2614 2615 spin_lock(&fs_info->trans_lock); 2616 if (list_empty(&fs_info->dead_roots)) { 2617 spin_unlock(&fs_info->trans_lock); 2618 return 0; 2619 } 2620 root = list_first_entry(&fs_info->dead_roots, 2621 struct btrfs_root, root_list); 2622 list_del_init(&root->root_list); 2623 spin_unlock(&fs_info->trans_lock); 2624 2625 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2626 2627 btrfs_kill_all_delayed_nodes(root); 2628 2629 if (btrfs_header_backref_rev(root->node) < 2630 BTRFS_MIXED_BACKREF_REV) 2631 ret = btrfs_drop_snapshot(root, 0, 0); 2632 else 2633 ret = btrfs_drop_snapshot(root, 1, 0); 2634 2635 btrfs_put_root(root); 2636 return (ret < 0) ? 0 : 1; 2637 } 2638 2639 /* 2640 * We only mark the transaction aborted and then set the file system read-only. 2641 * This will prevent new transactions from starting or trying to join this 2642 * one. 2643 * 2644 * This means that error recovery at the call site is limited to freeing 2645 * any local memory allocations and passing the error code up without 2646 * further cleanup. The transaction should complete as it normally would 2647 * in the call path but will return -EIO. 2648 * 2649 * We'll complete the cleanup in btrfs_end_transaction and 2650 * btrfs_commit_transaction. 2651 */ 2652 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 2653 const char *function, 2654 unsigned int line, int errno, bool first_hit) 2655 { 2656 struct btrfs_fs_info *fs_info = trans->fs_info; 2657 2658 WRITE_ONCE(trans->aborted, errno); 2659 WRITE_ONCE(trans->transaction->aborted, errno); 2660 if (first_hit && errno == -ENOSPC) 2661 btrfs_dump_space_info_for_trans_abort(fs_info); 2662 /* Wake up anybody who may be waiting on this transaction */ 2663 wake_up(&fs_info->transaction_wait); 2664 wake_up(&fs_info->transaction_blocked_wait); 2665 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 2666 } 2667 2668 int __init btrfs_transaction_init(void) 2669 { 2670 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 2671 sizeof(struct btrfs_trans_handle), 0, 2672 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 2673 if (!btrfs_trans_handle_cachep) 2674 return -ENOMEM; 2675 return 0; 2676 } 2677 2678 void __cold btrfs_transaction_exit(void) 2679 { 2680 kmem_cache_destroy(btrfs_trans_handle_cachep); 2681 } 2682