1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "misc.h" 14 #include "ctree.h" 15 #include "disk-io.h" 16 #include "transaction.h" 17 #include "locking.h" 18 #include "tree-log.h" 19 #include "volumes.h" 20 #include "dev-replace.h" 21 #include "qgroup.h" 22 #include "block-group.h" 23 #include "space-info.h" 24 #include "zoned.h" 25 26 #define BTRFS_ROOT_TRANS_TAG 0 27 28 /* 29 * Transaction states and transitions 30 * 31 * No running transaction (fs tree blocks are not modified) 32 * | 33 * | To next stage: 34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 35 * V 36 * Transaction N [[TRANS_STATE_RUNNING]] 37 * | 38 * | New trans handles can be attached to transaction N by calling all 39 * | start_transaction() variants. 40 * | 41 * | To next stage: 42 * | Call btrfs_commit_transaction() on any trans handle attached to 43 * | transaction N 44 * V 45 * Transaction N [[TRANS_STATE_COMMIT_START]] 46 * | 47 * | Will wait for previous running transaction to completely finish if there 48 * | is one 49 * | 50 * | Then one of the following happes: 51 * | - Wait for all other trans handle holders to release. 52 * | The btrfs_commit_transaction() caller will do the commit work. 53 * | - Wait for current transaction to be committed by others. 54 * | Other btrfs_commit_transaction() caller will do the commit work. 55 * | 56 * | At this stage, only btrfs_join_transaction*() variants can attach 57 * | to this running transaction. 58 * | All other variants will wait for current one to finish and attach to 59 * | transaction N+1. 60 * | 61 * | To next stage: 62 * | Caller is chosen to commit transaction N, and all other trans handle 63 * | haven been released. 64 * V 65 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 66 * | 67 * | The heavy lifting transaction work is started. 68 * | From running delayed refs (modifying extent tree) to creating pending 69 * | snapshots, running qgroups. 70 * | In short, modify supporting trees to reflect modifications of subvolume 71 * | trees. 72 * | 73 * | At this stage, all start_transaction() calls will wait for this 74 * | transaction to finish and attach to transaction N+1. 75 * | 76 * | To next stage: 77 * | Until all supporting trees are updated. 78 * V 79 * Transaction N [[TRANS_STATE_UNBLOCKED]] 80 * | Transaction N+1 81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 82 * | need to write them back to disk and update | 83 * | super blocks. | 84 * | | 85 * | At this stage, new transaction is allowed to | 86 * | start. | 87 * | All new start_transaction() calls will be | 88 * | attached to transid N+1. | 89 * | | 90 * | To next stage: | 91 * | Until all tree blocks are super blocks are | 92 * | written to block devices | 93 * V | 94 * Transaction N [[TRANS_STATE_COMPLETED]] V 95 * All tree blocks and super blocks are written. Transaction N+1 96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 97 * data structures will be cleaned up. | Life goes on 98 */ 99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 100 [TRANS_STATE_RUNNING] = 0U, 101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 103 __TRANS_ATTACH | 104 __TRANS_JOIN | 105 __TRANS_JOIN_NOSTART), 106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 107 __TRANS_ATTACH | 108 __TRANS_JOIN | 109 __TRANS_JOIN_NOLOCK | 110 __TRANS_JOIN_NOSTART), 111 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START | 112 __TRANS_ATTACH | 113 __TRANS_JOIN | 114 __TRANS_JOIN_NOLOCK | 115 __TRANS_JOIN_NOSTART), 116 [TRANS_STATE_COMPLETED] = (__TRANS_START | 117 __TRANS_ATTACH | 118 __TRANS_JOIN | 119 __TRANS_JOIN_NOLOCK | 120 __TRANS_JOIN_NOSTART), 121 }; 122 123 void btrfs_put_transaction(struct btrfs_transaction *transaction) 124 { 125 WARN_ON(refcount_read(&transaction->use_count) == 0); 126 if (refcount_dec_and_test(&transaction->use_count)) { 127 BUG_ON(!list_empty(&transaction->list)); 128 WARN_ON(!RB_EMPTY_ROOT( 129 &transaction->delayed_refs.href_root.rb_root)); 130 WARN_ON(!RB_EMPTY_ROOT( 131 &transaction->delayed_refs.dirty_extent_root)); 132 if (transaction->delayed_refs.pending_csums) 133 btrfs_err(transaction->fs_info, 134 "pending csums is %llu", 135 transaction->delayed_refs.pending_csums); 136 /* 137 * If any block groups are found in ->deleted_bgs then it's 138 * because the transaction was aborted and a commit did not 139 * happen (things failed before writing the new superblock 140 * and calling btrfs_finish_extent_commit()), so we can not 141 * discard the physical locations of the block groups. 142 */ 143 while (!list_empty(&transaction->deleted_bgs)) { 144 struct btrfs_block_group *cache; 145 146 cache = list_first_entry(&transaction->deleted_bgs, 147 struct btrfs_block_group, 148 bg_list); 149 list_del_init(&cache->bg_list); 150 btrfs_unfreeze_block_group(cache); 151 btrfs_put_block_group(cache); 152 } 153 WARN_ON(!list_empty(&transaction->dev_update_list)); 154 kfree(transaction); 155 } 156 } 157 158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 159 { 160 struct btrfs_transaction *cur_trans = trans->transaction; 161 struct btrfs_fs_info *fs_info = trans->fs_info; 162 struct btrfs_root *root, *tmp; 163 struct btrfs_caching_control *caching_ctl, *next; 164 165 down_write(&fs_info->commit_root_sem); 166 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 167 dirty_list) { 168 list_del_init(&root->dirty_list); 169 free_extent_buffer(root->commit_root); 170 root->commit_root = btrfs_root_node(root); 171 extent_io_tree_release(&root->dirty_log_pages); 172 btrfs_qgroup_clean_swapped_blocks(root); 173 } 174 175 /* We can free old roots now. */ 176 spin_lock(&cur_trans->dropped_roots_lock); 177 while (!list_empty(&cur_trans->dropped_roots)) { 178 root = list_first_entry(&cur_trans->dropped_roots, 179 struct btrfs_root, root_list); 180 list_del_init(&root->root_list); 181 spin_unlock(&cur_trans->dropped_roots_lock); 182 btrfs_free_log(trans, root); 183 btrfs_drop_and_free_fs_root(fs_info, root); 184 spin_lock(&cur_trans->dropped_roots_lock); 185 } 186 spin_unlock(&cur_trans->dropped_roots_lock); 187 188 /* 189 * We have to update the last_byte_to_unpin under the commit_root_sem, 190 * at the same time we swap out the commit roots. 191 * 192 * This is because we must have a real view of the last spot the caching 193 * kthreads were while caching. Consider the following views of the 194 * extent tree for a block group 195 * 196 * commit root 197 * +----+----+----+----+----+----+----+ 198 * |\\\\| |\\\\|\\\\| |\\\\|\\\\| 199 * +----+----+----+----+----+----+----+ 200 * 0 1 2 3 4 5 6 7 201 * 202 * new commit root 203 * +----+----+----+----+----+----+----+ 204 * | | | |\\\\| | |\\\\| 205 * +----+----+----+----+----+----+----+ 206 * 0 1 2 3 4 5 6 7 207 * 208 * If the cache_ctl->progress was at 3, then we are only allowed to 209 * unpin [0,1) and [2,3], because the caching thread has already 210 * processed those extents. We are not allowed to unpin [5,6), because 211 * the caching thread will re-start it's search from 3, and thus find 212 * the hole from [4,6) to add to the free space cache. 213 */ 214 spin_lock(&fs_info->block_group_cache_lock); 215 list_for_each_entry_safe(caching_ctl, next, 216 &fs_info->caching_block_groups, list) { 217 struct btrfs_block_group *cache = caching_ctl->block_group; 218 219 if (btrfs_block_group_done(cache)) { 220 cache->last_byte_to_unpin = (u64)-1; 221 list_del_init(&caching_ctl->list); 222 btrfs_put_caching_control(caching_ctl); 223 } else { 224 cache->last_byte_to_unpin = caching_ctl->progress; 225 } 226 } 227 spin_unlock(&fs_info->block_group_cache_lock); 228 up_write(&fs_info->commit_root_sem); 229 } 230 231 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 232 unsigned int type) 233 { 234 if (type & TRANS_EXTWRITERS) 235 atomic_inc(&trans->num_extwriters); 236 } 237 238 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 239 unsigned int type) 240 { 241 if (type & TRANS_EXTWRITERS) 242 atomic_dec(&trans->num_extwriters); 243 } 244 245 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 246 unsigned int type) 247 { 248 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 249 } 250 251 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 252 { 253 return atomic_read(&trans->num_extwriters); 254 } 255 256 /* 257 * To be called after all the new block groups attached to the transaction 258 * handle have been created (btrfs_create_pending_block_groups()). 259 */ 260 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 261 { 262 struct btrfs_fs_info *fs_info = trans->fs_info; 263 struct btrfs_transaction *cur_trans = trans->transaction; 264 265 if (!trans->chunk_bytes_reserved) 266 return; 267 268 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 269 270 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 271 trans->chunk_bytes_reserved, NULL); 272 atomic64_sub(trans->chunk_bytes_reserved, &cur_trans->chunk_bytes_reserved); 273 cond_wake_up(&cur_trans->chunk_reserve_wait); 274 trans->chunk_bytes_reserved = 0; 275 } 276 277 /* 278 * either allocate a new transaction or hop into the existing one 279 */ 280 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 281 unsigned int type) 282 { 283 struct btrfs_transaction *cur_trans; 284 285 spin_lock(&fs_info->trans_lock); 286 loop: 287 /* The file system has been taken offline. No new transactions. */ 288 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 289 spin_unlock(&fs_info->trans_lock); 290 return -EROFS; 291 } 292 293 cur_trans = fs_info->running_transaction; 294 if (cur_trans) { 295 if (TRANS_ABORTED(cur_trans)) { 296 spin_unlock(&fs_info->trans_lock); 297 return cur_trans->aborted; 298 } 299 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 300 spin_unlock(&fs_info->trans_lock); 301 return -EBUSY; 302 } 303 refcount_inc(&cur_trans->use_count); 304 atomic_inc(&cur_trans->num_writers); 305 extwriter_counter_inc(cur_trans, type); 306 spin_unlock(&fs_info->trans_lock); 307 return 0; 308 } 309 spin_unlock(&fs_info->trans_lock); 310 311 /* 312 * If we are ATTACH, we just want to catch the current transaction, 313 * and commit it. If there is no transaction, just return ENOENT. 314 */ 315 if (type == TRANS_ATTACH) 316 return -ENOENT; 317 318 /* 319 * JOIN_NOLOCK only happens during the transaction commit, so 320 * it is impossible that ->running_transaction is NULL 321 */ 322 BUG_ON(type == TRANS_JOIN_NOLOCK); 323 324 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 325 if (!cur_trans) 326 return -ENOMEM; 327 328 spin_lock(&fs_info->trans_lock); 329 if (fs_info->running_transaction) { 330 /* 331 * someone started a transaction after we unlocked. Make sure 332 * to redo the checks above 333 */ 334 kfree(cur_trans); 335 goto loop; 336 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 337 spin_unlock(&fs_info->trans_lock); 338 kfree(cur_trans); 339 return -EROFS; 340 } 341 342 cur_trans->fs_info = fs_info; 343 atomic_set(&cur_trans->pending_ordered, 0); 344 init_waitqueue_head(&cur_trans->pending_wait); 345 atomic_set(&cur_trans->num_writers, 1); 346 extwriter_counter_init(cur_trans, type); 347 init_waitqueue_head(&cur_trans->writer_wait); 348 init_waitqueue_head(&cur_trans->commit_wait); 349 cur_trans->state = TRANS_STATE_RUNNING; 350 /* 351 * One for this trans handle, one so it will live on until we 352 * commit the transaction. 353 */ 354 refcount_set(&cur_trans->use_count, 2); 355 cur_trans->flags = 0; 356 cur_trans->start_time = ktime_get_seconds(); 357 358 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 359 360 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 361 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 362 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 363 364 /* 365 * although the tree mod log is per file system and not per transaction, 366 * the log must never go across transaction boundaries. 367 */ 368 smp_mb(); 369 if (!list_empty(&fs_info->tree_mod_seq_list)) 370 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 371 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 372 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 373 atomic64_set(&fs_info->tree_mod_seq, 0); 374 375 spin_lock_init(&cur_trans->delayed_refs.lock); 376 377 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 378 INIT_LIST_HEAD(&cur_trans->dev_update_list); 379 INIT_LIST_HEAD(&cur_trans->switch_commits); 380 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 381 INIT_LIST_HEAD(&cur_trans->io_bgs); 382 INIT_LIST_HEAD(&cur_trans->dropped_roots); 383 mutex_init(&cur_trans->cache_write_mutex); 384 spin_lock_init(&cur_trans->dirty_bgs_lock); 385 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 386 spin_lock_init(&cur_trans->dropped_roots_lock); 387 INIT_LIST_HEAD(&cur_trans->releasing_ebs); 388 spin_lock_init(&cur_trans->releasing_ebs_lock); 389 atomic64_set(&cur_trans->chunk_bytes_reserved, 0); 390 init_waitqueue_head(&cur_trans->chunk_reserve_wait); 391 list_add_tail(&cur_trans->list, &fs_info->trans_list); 392 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 393 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode); 394 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 395 IO_TREE_FS_PINNED_EXTENTS, NULL); 396 fs_info->generation++; 397 cur_trans->transid = fs_info->generation; 398 fs_info->running_transaction = cur_trans; 399 cur_trans->aborted = 0; 400 spin_unlock(&fs_info->trans_lock); 401 402 return 0; 403 } 404 405 /* 406 * This does all the record keeping required to make sure that a shareable root 407 * is properly recorded in a given transaction. This is required to make sure 408 * the old root from before we joined the transaction is deleted when the 409 * transaction commits. 410 */ 411 static int record_root_in_trans(struct btrfs_trans_handle *trans, 412 struct btrfs_root *root, 413 int force) 414 { 415 struct btrfs_fs_info *fs_info = root->fs_info; 416 int ret = 0; 417 418 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 419 root->last_trans < trans->transid) || force) { 420 WARN_ON(root == fs_info->extent_root); 421 WARN_ON(!force && root->commit_root != root->node); 422 423 /* 424 * see below for IN_TRANS_SETUP usage rules 425 * we have the reloc mutex held now, so there 426 * is only one writer in this function 427 */ 428 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 429 430 /* make sure readers find IN_TRANS_SETUP before 431 * they find our root->last_trans update 432 */ 433 smp_wmb(); 434 435 spin_lock(&fs_info->fs_roots_radix_lock); 436 if (root->last_trans == trans->transid && !force) { 437 spin_unlock(&fs_info->fs_roots_radix_lock); 438 return 0; 439 } 440 radix_tree_tag_set(&fs_info->fs_roots_radix, 441 (unsigned long)root->root_key.objectid, 442 BTRFS_ROOT_TRANS_TAG); 443 spin_unlock(&fs_info->fs_roots_radix_lock); 444 root->last_trans = trans->transid; 445 446 /* this is pretty tricky. We don't want to 447 * take the relocation lock in btrfs_record_root_in_trans 448 * unless we're really doing the first setup for this root in 449 * this transaction. 450 * 451 * Normally we'd use root->last_trans as a flag to decide 452 * if we want to take the expensive mutex. 453 * 454 * But, we have to set root->last_trans before we 455 * init the relocation root, otherwise, we trip over warnings 456 * in ctree.c. The solution used here is to flag ourselves 457 * with root IN_TRANS_SETUP. When this is 1, we're still 458 * fixing up the reloc trees and everyone must wait. 459 * 460 * When this is zero, they can trust root->last_trans and fly 461 * through btrfs_record_root_in_trans without having to take the 462 * lock. smp_wmb() makes sure that all the writes above are 463 * done before we pop in the zero below 464 */ 465 ret = btrfs_init_reloc_root(trans, root); 466 smp_mb__before_atomic(); 467 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 468 } 469 return ret; 470 } 471 472 473 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 474 struct btrfs_root *root) 475 { 476 struct btrfs_fs_info *fs_info = root->fs_info; 477 struct btrfs_transaction *cur_trans = trans->transaction; 478 479 /* Add ourselves to the transaction dropped list */ 480 spin_lock(&cur_trans->dropped_roots_lock); 481 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 482 spin_unlock(&cur_trans->dropped_roots_lock); 483 484 /* Make sure we don't try to update the root at commit time */ 485 spin_lock(&fs_info->fs_roots_radix_lock); 486 radix_tree_tag_clear(&fs_info->fs_roots_radix, 487 (unsigned long)root->root_key.objectid, 488 BTRFS_ROOT_TRANS_TAG); 489 spin_unlock(&fs_info->fs_roots_radix_lock); 490 } 491 492 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 493 struct btrfs_root *root) 494 { 495 struct btrfs_fs_info *fs_info = root->fs_info; 496 int ret; 497 498 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 499 return 0; 500 501 /* 502 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 503 * and barriers 504 */ 505 smp_rmb(); 506 if (root->last_trans == trans->transid && 507 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 508 return 0; 509 510 mutex_lock(&fs_info->reloc_mutex); 511 ret = record_root_in_trans(trans, root, 0); 512 mutex_unlock(&fs_info->reloc_mutex); 513 514 return ret; 515 } 516 517 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 518 { 519 return (trans->state >= TRANS_STATE_COMMIT_START && 520 trans->state < TRANS_STATE_UNBLOCKED && 521 !TRANS_ABORTED(trans)); 522 } 523 524 /* wait for commit against the current transaction to become unblocked 525 * when this is done, it is safe to start a new transaction, but the current 526 * transaction might not be fully on disk. 527 */ 528 static void wait_current_trans(struct btrfs_fs_info *fs_info) 529 { 530 struct btrfs_transaction *cur_trans; 531 532 spin_lock(&fs_info->trans_lock); 533 cur_trans = fs_info->running_transaction; 534 if (cur_trans && is_transaction_blocked(cur_trans)) { 535 refcount_inc(&cur_trans->use_count); 536 spin_unlock(&fs_info->trans_lock); 537 538 wait_event(fs_info->transaction_wait, 539 cur_trans->state >= TRANS_STATE_UNBLOCKED || 540 TRANS_ABORTED(cur_trans)); 541 btrfs_put_transaction(cur_trans); 542 } else { 543 spin_unlock(&fs_info->trans_lock); 544 } 545 } 546 547 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 548 { 549 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 550 return 0; 551 552 if (type == TRANS_START) 553 return 1; 554 555 return 0; 556 } 557 558 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 559 { 560 struct btrfs_fs_info *fs_info = root->fs_info; 561 562 if (!fs_info->reloc_ctl || 563 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 564 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 565 root->reloc_root) 566 return false; 567 568 return true; 569 } 570 571 static struct btrfs_trans_handle * 572 start_transaction(struct btrfs_root *root, unsigned int num_items, 573 unsigned int type, enum btrfs_reserve_flush_enum flush, 574 bool enforce_qgroups) 575 { 576 struct btrfs_fs_info *fs_info = root->fs_info; 577 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 578 struct btrfs_trans_handle *h; 579 struct btrfs_transaction *cur_trans; 580 u64 num_bytes = 0; 581 u64 qgroup_reserved = 0; 582 bool reloc_reserved = false; 583 bool do_chunk_alloc = false; 584 int ret; 585 586 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 587 return ERR_PTR(-EROFS); 588 589 if (current->journal_info) { 590 WARN_ON(type & TRANS_EXTWRITERS); 591 h = current->journal_info; 592 refcount_inc(&h->use_count); 593 WARN_ON(refcount_read(&h->use_count) > 2); 594 h->orig_rsv = h->block_rsv; 595 h->block_rsv = NULL; 596 goto got_it; 597 } 598 599 /* 600 * Do the reservation before we join the transaction so we can do all 601 * the appropriate flushing if need be. 602 */ 603 if (num_items && root != fs_info->chunk_root) { 604 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 605 u64 delayed_refs_bytes = 0; 606 607 qgroup_reserved = num_items * fs_info->nodesize; 608 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 609 enforce_qgroups); 610 if (ret) 611 return ERR_PTR(ret); 612 613 /* 614 * We want to reserve all the bytes we may need all at once, so 615 * we only do 1 enospc flushing cycle per transaction start. We 616 * accomplish this by simply assuming we'll do 2 x num_items 617 * worth of delayed refs updates in this trans handle, and 618 * refill that amount for whatever is missing in the reserve. 619 */ 620 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 621 if (flush == BTRFS_RESERVE_FLUSH_ALL && 622 delayed_refs_rsv->full == 0) { 623 delayed_refs_bytes = num_bytes; 624 num_bytes <<= 1; 625 } 626 627 /* 628 * Do the reservation for the relocation root creation 629 */ 630 if (need_reserve_reloc_root(root)) { 631 num_bytes += fs_info->nodesize; 632 reloc_reserved = true; 633 } 634 635 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush); 636 if (ret) 637 goto reserve_fail; 638 if (delayed_refs_bytes) { 639 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 640 delayed_refs_bytes); 641 num_bytes -= delayed_refs_bytes; 642 } 643 644 if (rsv->space_info->force_alloc) 645 do_chunk_alloc = true; 646 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 647 !delayed_refs_rsv->full) { 648 /* 649 * Some people call with btrfs_start_transaction(root, 0) 650 * because they can be throttled, but have some other mechanism 651 * for reserving space. We still want these guys to refill the 652 * delayed block_rsv so just add 1 items worth of reservation 653 * here. 654 */ 655 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 656 if (ret) 657 goto reserve_fail; 658 } 659 again: 660 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 661 if (!h) { 662 ret = -ENOMEM; 663 goto alloc_fail; 664 } 665 666 /* 667 * If we are JOIN_NOLOCK we're already committing a transaction and 668 * waiting on this guy, so we don't need to do the sb_start_intwrite 669 * because we're already holding a ref. We need this because we could 670 * have raced in and did an fsync() on a file which can kick a commit 671 * and then we deadlock with somebody doing a freeze. 672 * 673 * If we are ATTACH, it means we just want to catch the current 674 * transaction and commit it, so we needn't do sb_start_intwrite(). 675 */ 676 if (type & __TRANS_FREEZABLE) 677 sb_start_intwrite(fs_info->sb); 678 679 if (may_wait_transaction(fs_info, type)) 680 wait_current_trans(fs_info); 681 682 do { 683 ret = join_transaction(fs_info, type); 684 if (ret == -EBUSY) { 685 wait_current_trans(fs_info); 686 if (unlikely(type == TRANS_ATTACH || 687 type == TRANS_JOIN_NOSTART)) 688 ret = -ENOENT; 689 } 690 } while (ret == -EBUSY); 691 692 if (ret < 0) 693 goto join_fail; 694 695 cur_trans = fs_info->running_transaction; 696 697 h->transid = cur_trans->transid; 698 h->transaction = cur_trans; 699 h->root = root; 700 refcount_set(&h->use_count, 1); 701 h->fs_info = root->fs_info; 702 703 h->type = type; 704 h->can_flush_pending_bgs = true; 705 INIT_LIST_HEAD(&h->new_bgs); 706 707 smp_mb(); 708 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 709 may_wait_transaction(fs_info, type)) { 710 current->journal_info = h; 711 btrfs_commit_transaction(h); 712 goto again; 713 } 714 715 if (num_bytes) { 716 trace_btrfs_space_reservation(fs_info, "transaction", 717 h->transid, num_bytes, 1); 718 h->block_rsv = &fs_info->trans_block_rsv; 719 h->bytes_reserved = num_bytes; 720 h->reloc_reserved = reloc_reserved; 721 } 722 723 got_it: 724 if (!current->journal_info) 725 current->journal_info = h; 726 727 /* 728 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 729 * ALLOC_FORCE the first run through, and then we won't allocate for 730 * anybody else who races in later. We don't care about the return 731 * value here. 732 */ 733 if (do_chunk_alloc && num_bytes) { 734 u64 flags = h->block_rsv->space_info->flags; 735 736 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 737 CHUNK_ALLOC_NO_FORCE); 738 } 739 740 /* 741 * btrfs_record_root_in_trans() needs to alloc new extents, and may 742 * call btrfs_join_transaction() while we're also starting a 743 * transaction. 744 * 745 * Thus it need to be called after current->journal_info initialized, 746 * or we can deadlock. 747 */ 748 ret = btrfs_record_root_in_trans(h, root); 749 if (ret) { 750 /* 751 * The transaction handle is fully initialized and linked with 752 * other structures so it needs to be ended in case of errors, 753 * not just freed. 754 */ 755 btrfs_end_transaction(h); 756 return ERR_PTR(ret); 757 } 758 759 return h; 760 761 join_fail: 762 if (type & __TRANS_FREEZABLE) 763 sb_end_intwrite(fs_info->sb); 764 kmem_cache_free(btrfs_trans_handle_cachep, h); 765 alloc_fail: 766 if (num_bytes) 767 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 768 num_bytes, NULL); 769 reserve_fail: 770 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 771 return ERR_PTR(ret); 772 } 773 774 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 775 unsigned int num_items) 776 { 777 return start_transaction(root, num_items, TRANS_START, 778 BTRFS_RESERVE_FLUSH_ALL, true); 779 } 780 781 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 782 struct btrfs_root *root, 783 unsigned int num_items) 784 { 785 return start_transaction(root, num_items, TRANS_START, 786 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 787 } 788 789 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 790 { 791 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 792 true); 793 } 794 795 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 796 { 797 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 798 BTRFS_RESERVE_NO_FLUSH, true); 799 } 800 801 /* 802 * Similar to regular join but it never starts a transaction when none is 803 * running or after waiting for the current one to finish. 804 */ 805 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 806 { 807 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 808 BTRFS_RESERVE_NO_FLUSH, true); 809 } 810 811 /* 812 * btrfs_attach_transaction() - catch the running transaction 813 * 814 * It is used when we want to commit the current the transaction, but 815 * don't want to start a new one. 816 * 817 * Note: If this function return -ENOENT, it just means there is no 818 * running transaction. But it is possible that the inactive transaction 819 * is still in the memory, not fully on disk. If you hope there is no 820 * inactive transaction in the fs when -ENOENT is returned, you should 821 * invoke 822 * btrfs_attach_transaction_barrier() 823 */ 824 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 825 { 826 return start_transaction(root, 0, TRANS_ATTACH, 827 BTRFS_RESERVE_NO_FLUSH, true); 828 } 829 830 /* 831 * btrfs_attach_transaction_barrier() - catch the running transaction 832 * 833 * It is similar to the above function, the difference is this one 834 * will wait for all the inactive transactions until they fully 835 * complete. 836 */ 837 struct btrfs_trans_handle * 838 btrfs_attach_transaction_barrier(struct btrfs_root *root) 839 { 840 struct btrfs_trans_handle *trans; 841 842 trans = start_transaction(root, 0, TRANS_ATTACH, 843 BTRFS_RESERVE_NO_FLUSH, true); 844 if (trans == ERR_PTR(-ENOENT)) 845 btrfs_wait_for_commit(root->fs_info, 0); 846 847 return trans; 848 } 849 850 /* Wait for a transaction commit to reach at least the given state. */ 851 static noinline void wait_for_commit(struct btrfs_transaction *commit, 852 const enum btrfs_trans_state min_state) 853 { 854 wait_event(commit->commit_wait, commit->state >= min_state); 855 } 856 857 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 858 { 859 struct btrfs_transaction *cur_trans = NULL, *t; 860 int ret = 0; 861 862 if (transid) { 863 if (transid <= fs_info->last_trans_committed) 864 goto out; 865 866 /* find specified transaction */ 867 spin_lock(&fs_info->trans_lock); 868 list_for_each_entry(t, &fs_info->trans_list, list) { 869 if (t->transid == transid) { 870 cur_trans = t; 871 refcount_inc(&cur_trans->use_count); 872 ret = 0; 873 break; 874 } 875 if (t->transid > transid) { 876 ret = 0; 877 break; 878 } 879 } 880 spin_unlock(&fs_info->trans_lock); 881 882 /* 883 * The specified transaction doesn't exist, or we 884 * raced with btrfs_commit_transaction 885 */ 886 if (!cur_trans) { 887 if (transid > fs_info->last_trans_committed) 888 ret = -EINVAL; 889 goto out; 890 } 891 } else { 892 /* find newest transaction that is committing | committed */ 893 spin_lock(&fs_info->trans_lock); 894 list_for_each_entry_reverse(t, &fs_info->trans_list, 895 list) { 896 if (t->state >= TRANS_STATE_COMMIT_START) { 897 if (t->state == TRANS_STATE_COMPLETED) 898 break; 899 cur_trans = t; 900 refcount_inc(&cur_trans->use_count); 901 break; 902 } 903 } 904 spin_unlock(&fs_info->trans_lock); 905 if (!cur_trans) 906 goto out; /* nothing committing|committed */ 907 } 908 909 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED); 910 btrfs_put_transaction(cur_trans); 911 out: 912 return ret; 913 } 914 915 void btrfs_throttle(struct btrfs_fs_info *fs_info) 916 { 917 wait_current_trans(fs_info); 918 } 919 920 static bool should_end_transaction(struct btrfs_trans_handle *trans) 921 { 922 struct btrfs_fs_info *fs_info = trans->fs_info; 923 924 if (btrfs_check_space_for_delayed_refs(fs_info)) 925 return true; 926 927 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 928 } 929 930 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 931 { 932 struct btrfs_transaction *cur_trans = trans->transaction; 933 934 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 935 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags)) 936 return true; 937 938 return should_end_transaction(trans); 939 } 940 941 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 942 943 { 944 struct btrfs_fs_info *fs_info = trans->fs_info; 945 946 if (!trans->block_rsv) { 947 ASSERT(!trans->bytes_reserved); 948 return; 949 } 950 951 if (!trans->bytes_reserved) 952 return; 953 954 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 955 trace_btrfs_space_reservation(fs_info, "transaction", 956 trans->transid, trans->bytes_reserved, 0); 957 btrfs_block_rsv_release(fs_info, trans->block_rsv, 958 trans->bytes_reserved, NULL); 959 trans->bytes_reserved = 0; 960 } 961 962 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 963 int throttle) 964 { 965 struct btrfs_fs_info *info = trans->fs_info; 966 struct btrfs_transaction *cur_trans = trans->transaction; 967 int err = 0; 968 969 if (refcount_read(&trans->use_count) > 1) { 970 refcount_dec(&trans->use_count); 971 trans->block_rsv = trans->orig_rsv; 972 return 0; 973 } 974 975 btrfs_trans_release_metadata(trans); 976 trans->block_rsv = NULL; 977 978 btrfs_create_pending_block_groups(trans); 979 980 btrfs_trans_release_chunk_metadata(trans); 981 982 if (trans->type & __TRANS_FREEZABLE) 983 sb_end_intwrite(info->sb); 984 985 WARN_ON(cur_trans != info->running_transaction); 986 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 987 atomic_dec(&cur_trans->num_writers); 988 extwriter_counter_dec(cur_trans, trans->type); 989 990 cond_wake_up(&cur_trans->writer_wait); 991 btrfs_put_transaction(cur_trans); 992 993 if (current->journal_info == trans) 994 current->journal_info = NULL; 995 996 if (throttle) 997 btrfs_run_delayed_iputs(info); 998 999 if (TRANS_ABORTED(trans) || 1000 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 1001 wake_up_process(info->transaction_kthread); 1002 if (TRANS_ABORTED(trans)) 1003 err = trans->aborted; 1004 else 1005 err = -EROFS; 1006 } 1007 1008 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1009 return err; 1010 } 1011 1012 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 1013 { 1014 return __btrfs_end_transaction(trans, 0); 1015 } 1016 1017 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1018 { 1019 return __btrfs_end_transaction(trans, 1); 1020 } 1021 1022 /* 1023 * when btree blocks are allocated, they have some corresponding bits set for 1024 * them in one of two extent_io trees. This is used to make sure all of 1025 * those extents are sent to disk but does not wait on them 1026 */ 1027 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1028 struct extent_io_tree *dirty_pages, int mark) 1029 { 1030 int err = 0; 1031 int werr = 0; 1032 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1033 struct extent_state *cached_state = NULL; 1034 u64 start = 0; 1035 u64 end; 1036 1037 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1038 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1039 mark, &cached_state)) { 1040 bool wait_writeback = false; 1041 1042 err = convert_extent_bit(dirty_pages, start, end, 1043 EXTENT_NEED_WAIT, 1044 mark, &cached_state); 1045 /* 1046 * convert_extent_bit can return -ENOMEM, which is most of the 1047 * time a temporary error. So when it happens, ignore the error 1048 * and wait for writeback of this range to finish - because we 1049 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1050 * to __btrfs_wait_marked_extents() would not know that 1051 * writeback for this range started and therefore wouldn't 1052 * wait for it to finish - we don't want to commit a 1053 * superblock that points to btree nodes/leafs for which 1054 * writeback hasn't finished yet (and without errors). 1055 * We cleanup any entries left in the io tree when committing 1056 * the transaction (through extent_io_tree_release()). 1057 */ 1058 if (err == -ENOMEM) { 1059 err = 0; 1060 wait_writeback = true; 1061 } 1062 if (!err) 1063 err = filemap_fdatawrite_range(mapping, start, end); 1064 if (err) 1065 werr = err; 1066 else if (wait_writeback) 1067 werr = filemap_fdatawait_range(mapping, start, end); 1068 free_extent_state(cached_state); 1069 cached_state = NULL; 1070 cond_resched(); 1071 start = end + 1; 1072 } 1073 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1074 return werr; 1075 } 1076 1077 /* 1078 * when btree blocks are allocated, they have some corresponding bits set for 1079 * them in one of two extent_io trees. This is used to make sure all of 1080 * those extents are on disk for transaction or log commit. We wait 1081 * on all the pages and clear them from the dirty pages state tree 1082 */ 1083 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1084 struct extent_io_tree *dirty_pages) 1085 { 1086 int err = 0; 1087 int werr = 0; 1088 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1089 struct extent_state *cached_state = NULL; 1090 u64 start = 0; 1091 u64 end; 1092 1093 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1094 EXTENT_NEED_WAIT, &cached_state)) { 1095 /* 1096 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1097 * When committing the transaction, we'll remove any entries 1098 * left in the io tree. For a log commit, we don't remove them 1099 * after committing the log because the tree can be accessed 1100 * concurrently - we do it only at transaction commit time when 1101 * it's safe to do it (through extent_io_tree_release()). 1102 */ 1103 err = clear_extent_bit(dirty_pages, start, end, 1104 EXTENT_NEED_WAIT, 0, 0, &cached_state); 1105 if (err == -ENOMEM) 1106 err = 0; 1107 if (!err) 1108 err = filemap_fdatawait_range(mapping, start, end); 1109 if (err) 1110 werr = err; 1111 free_extent_state(cached_state); 1112 cached_state = NULL; 1113 cond_resched(); 1114 start = end + 1; 1115 } 1116 if (err) 1117 werr = err; 1118 return werr; 1119 } 1120 1121 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1122 struct extent_io_tree *dirty_pages) 1123 { 1124 bool errors = false; 1125 int err; 1126 1127 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1128 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1129 errors = true; 1130 1131 if (errors && !err) 1132 err = -EIO; 1133 return err; 1134 } 1135 1136 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1137 { 1138 struct btrfs_fs_info *fs_info = log_root->fs_info; 1139 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1140 bool errors = false; 1141 int err; 1142 1143 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1144 1145 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1146 if ((mark & EXTENT_DIRTY) && 1147 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1148 errors = true; 1149 1150 if ((mark & EXTENT_NEW) && 1151 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1152 errors = true; 1153 1154 if (errors && !err) 1155 err = -EIO; 1156 return err; 1157 } 1158 1159 /* 1160 * When btree blocks are allocated the corresponding extents are marked dirty. 1161 * This function ensures such extents are persisted on disk for transaction or 1162 * log commit. 1163 * 1164 * @trans: transaction whose dirty pages we'd like to write 1165 */ 1166 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1167 { 1168 int ret; 1169 int ret2; 1170 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1171 struct btrfs_fs_info *fs_info = trans->fs_info; 1172 struct blk_plug plug; 1173 1174 blk_start_plug(&plug); 1175 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1176 blk_finish_plug(&plug); 1177 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1178 1179 extent_io_tree_release(&trans->transaction->dirty_pages); 1180 1181 if (ret) 1182 return ret; 1183 else if (ret2) 1184 return ret2; 1185 else 1186 return 0; 1187 } 1188 1189 /* 1190 * this is used to update the root pointer in the tree of tree roots. 1191 * 1192 * But, in the case of the extent allocation tree, updating the root 1193 * pointer may allocate blocks which may change the root of the extent 1194 * allocation tree. 1195 * 1196 * So, this loops and repeats and makes sure the cowonly root didn't 1197 * change while the root pointer was being updated in the metadata. 1198 */ 1199 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1200 struct btrfs_root *root) 1201 { 1202 int ret; 1203 u64 old_root_bytenr; 1204 u64 old_root_used; 1205 struct btrfs_fs_info *fs_info = root->fs_info; 1206 struct btrfs_root *tree_root = fs_info->tree_root; 1207 1208 old_root_used = btrfs_root_used(&root->root_item); 1209 1210 while (1) { 1211 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1212 if (old_root_bytenr == root->node->start && 1213 old_root_used == btrfs_root_used(&root->root_item)) 1214 break; 1215 1216 btrfs_set_root_node(&root->root_item, root->node); 1217 ret = btrfs_update_root(trans, tree_root, 1218 &root->root_key, 1219 &root->root_item); 1220 if (ret) 1221 return ret; 1222 1223 old_root_used = btrfs_root_used(&root->root_item); 1224 } 1225 1226 return 0; 1227 } 1228 1229 /* 1230 * update all the cowonly tree roots on disk 1231 * 1232 * The error handling in this function may not be obvious. Any of the 1233 * failures will cause the file system to go offline. We still need 1234 * to clean up the delayed refs. 1235 */ 1236 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1237 { 1238 struct btrfs_fs_info *fs_info = trans->fs_info; 1239 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1240 struct list_head *io_bgs = &trans->transaction->io_bgs; 1241 struct list_head *next; 1242 struct extent_buffer *eb; 1243 int ret; 1244 1245 eb = btrfs_lock_root_node(fs_info->tree_root); 1246 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1247 0, &eb, BTRFS_NESTING_COW); 1248 btrfs_tree_unlock(eb); 1249 free_extent_buffer(eb); 1250 1251 if (ret) 1252 return ret; 1253 1254 ret = btrfs_run_dev_stats(trans); 1255 if (ret) 1256 return ret; 1257 ret = btrfs_run_dev_replace(trans); 1258 if (ret) 1259 return ret; 1260 ret = btrfs_run_qgroups(trans); 1261 if (ret) 1262 return ret; 1263 1264 ret = btrfs_setup_space_cache(trans); 1265 if (ret) 1266 return ret; 1267 1268 again: 1269 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1270 struct btrfs_root *root; 1271 next = fs_info->dirty_cowonly_roots.next; 1272 list_del_init(next); 1273 root = list_entry(next, struct btrfs_root, dirty_list); 1274 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1275 1276 if (root != fs_info->extent_root) 1277 list_add_tail(&root->dirty_list, 1278 &trans->transaction->switch_commits); 1279 ret = update_cowonly_root(trans, root); 1280 if (ret) 1281 return ret; 1282 } 1283 1284 /* Now flush any delayed refs generated by updating all of the roots */ 1285 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1286 if (ret) 1287 return ret; 1288 1289 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1290 ret = btrfs_write_dirty_block_groups(trans); 1291 if (ret) 1292 return ret; 1293 1294 /* 1295 * We're writing the dirty block groups, which could generate 1296 * delayed refs, which could generate more dirty block groups, 1297 * so we want to keep this flushing in this loop to make sure 1298 * everything gets run. 1299 */ 1300 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1301 if (ret) 1302 return ret; 1303 } 1304 1305 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1306 goto again; 1307 1308 list_add_tail(&fs_info->extent_root->dirty_list, 1309 &trans->transaction->switch_commits); 1310 1311 /* Update dev-replace pointer once everything is committed */ 1312 fs_info->dev_replace.committed_cursor_left = 1313 fs_info->dev_replace.cursor_left_last_write_of_item; 1314 1315 return 0; 1316 } 1317 1318 /* 1319 * dead roots are old snapshots that need to be deleted. This allocates 1320 * a dirty root struct and adds it into the list of dead roots that need to 1321 * be deleted 1322 */ 1323 void btrfs_add_dead_root(struct btrfs_root *root) 1324 { 1325 struct btrfs_fs_info *fs_info = root->fs_info; 1326 1327 spin_lock(&fs_info->trans_lock); 1328 if (list_empty(&root->root_list)) { 1329 btrfs_grab_root(root); 1330 list_add_tail(&root->root_list, &fs_info->dead_roots); 1331 } 1332 spin_unlock(&fs_info->trans_lock); 1333 } 1334 1335 /* 1336 * update all the cowonly tree roots on disk 1337 */ 1338 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1339 { 1340 struct btrfs_fs_info *fs_info = trans->fs_info; 1341 struct btrfs_root *gang[8]; 1342 int i; 1343 int ret; 1344 1345 spin_lock(&fs_info->fs_roots_radix_lock); 1346 while (1) { 1347 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1348 (void **)gang, 0, 1349 ARRAY_SIZE(gang), 1350 BTRFS_ROOT_TRANS_TAG); 1351 if (ret == 0) 1352 break; 1353 for (i = 0; i < ret; i++) { 1354 struct btrfs_root *root = gang[i]; 1355 int ret2; 1356 1357 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1358 (unsigned long)root->root_key.objectid, 1359 BTRFS_ROOT_TRANS_TAG); 1360 spin_unlock(&fs_info->fs_roots_radix_lock); 1361 1362 btrfs_free_log(trans, root); 1363 ret2 = btrfs_update_reloc_root(trans, root); 1364 if (ret2) 1365 return ret2; 1366 1367 /* see comments in should_cow_block() */ 1368 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1369 smp_mb__after_atomic(); 1370 1371 if (root->commit_root != root->node) { 1372 list_add_tail(&root->dirty_list, 1373 &trans->transaction->switch_commits); 1374 btrfs_set_root_node(&root->root_item, 1375 root->node); 1376 } 1377 1378 ret2 = btrfs_update_root(trans, fs_info->tree_root, 1379 &root->root_key, 1380 &root->root_item); 1381 if (ret2) 1382 return ret2; 1383 spin_lock(&fs_info->fs_roots_radix_lock); 1384 btrfs_qgroup_free_meta_all_pertrans(root); 1385 } 1386 } 1387 spin_unlock(&fs_info->fs_roots_radix_lock); 1388 return 0; 1389 } 1390 1391 /* 1392 * defrag a given btree. 1393 * Every leaf in the btree is read and defragged. 1394 */ 1395 int btrfs_defrag_root(struct btrfs_root *root) 1396 { 1397 struct btrfs_fs_info *info = root->fs_info; 1398 struct btrfs_trans_handle *trans; 1399 int ret; 1400 1401 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1402 return 0; 1403 1404 while (1) { 1405 trans = btrfs_start_transaction(root, 0); 1406 if (IS_ERR(trans)) { 1407 ret = PTR_ERR(trans); 1408 break; 1409 } 1410 1411 ret = btrfs_defrag_leaves(trans, root); 1412 1413 btrfs_end_transaction(trans); 1414 btrfs_btree_balance_dirty(info); 1415 cond_resched(); 1416 1417 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1418 break; 1419 1420 if (btrfs_defrag_cancelled(info)) { 1421 btrfs_debug(info, "defrag_root cancelled"); 1422 ret = -EAGAIN; 1423 break; 1424 } 1425 } 1426 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1427 return ret; 1428 } 1429 1430 /* 1431 * Do all special snapshot related qgroup dirty hack. 1432 * 1433 * Will do all needed qgroup inherit and dirty hack like switch commit 1434 * roots inside one transaction and write all btree into disk, to make 1435 * qgroup works. 1436 */ 1437 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1438 struct btrfs_root *src, 1439 struct btrfs_root *parent, 1440 struct btrfs_qgroup_inherit *inherit, 1441 u64 dst_objectid) 1442 { 1443 struct btrfs_fs_info *fs_info = src->fs_info; 1444 int ret; 1445 1446 /* 1447 * Save some performance in the case that qgroups are not 1448 * enabled. If this check races with the ioctl, rescan will 1449 * kick in anyway. 1450 */ 1451 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1452 return 0; 1453 1454 /* 1455 * Ensure dirty @src will be committed. Or, after coming 1456 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1457 * recorded root will never be updated again, causing an outdated root 1458 * item. 1459 */ 1460 ret = record_root_in_trans(trans, src, 1); 1461 if (ret) 1462 return ret; 1463 1464 /* 1465 * btrfs_qgroup_inherit relies on a consistent view of the usage for the 1466 * src root, so we must run the delayed refs here. 1467 * 1468 * However this isn't particularly fool proof, because there's no 1469 * synchronization keeping us from changing the tree after this point 1470 * before we do the qgroup_inherit, or even from making changes while 1471 * we're doing the qgroup_inherit. But that's a problem for the future, 1472 * for now flush the delayed refs to narrow the race window where the 1473 * qgroup counters could end up wrong. 1474 */ 1475 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1476 if (ret) { 1477 btrfs_abort_transaction(trans, ret); 1478 return ret; 1479 } 1480 1481 /* 1482 * We are going to commit transaction, see btrfs_commit_transaction() 1483 * comment for reason locking tree_log_mutex 1484 */ 1485 mutex_lock(&fs_info->tree_log_mutex); 1486 1487 ret = commit_fs_roots(trans); 1488 if (ret) 1489 goto out; 1490 ret = btrfs_qgroup_account_extents(trans); 1491 if (ret < 0) 1492 goto out; 1493 1494 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1495 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1496 inherit); 1497 if (ret < 0) 1498 goto out; 1499 1500 /* 1501 * Now we do a simplified commit transaction, which will: 1502 * 1) commit all subvolume and extent tree 1503 * To ensure all subvolume and extent tree have a valid 1504 * commit_root to accounting later insert_dir_item() 1505 * 2) write all btree blocks onto disk 1506 * This is to make sure later btree modification will be cowed 1507 * Or commit_root can be populated and cause wrong qgroup numbers 1508 * In this simplified commit, we don't really care about other trees 1509 * like chunk and root tree, as they won't affect qgroup. 1510 * And we don't write super to avoid half committed status. 1511 */ 1512 ret = commit_cowonly_roots(trans); 1513 if (ret) 1514 goto out; 1515 switch_commit_roots(trans); 1516 ret = btrfs_write_and_wait_transaction(trans); 1517 if (ret) 1518 btrfs_handle_fs_error(fs_info, ret, 1519 "Error while writing out transaction for qgroup"); 1520 1521 out: 1522 mutex_unlock(&fs_info->tree_log_mutex); 1523 1524 /* 1525 * Force parent root to be updated, as we recorded it before so its 1526 * last_trans == cur_transid. 1527 * Or it won't be committed again onto disk after later 1528 * insert_dir_item() 1529 */ 1530 if (!ret) 1531 ret = record_root_in_trans(trans, parent, 1); 1532 return ret; 1533 } 1534 1535 /* 1536 * new snapshots need to be created at a very specific time in the 1537 * transaction commit. This does the actual creation. 1538 * 1539 * Note: 1540 * If the error which may affect the commitment of the current transaction 1541 * happens, we should return the error number. If the error which just affect 1542 * the creation of the pending snapshots, just return 0. 1543 */ 1544 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1545 struct btrfs_pending_snapshot *pending) 1546 { 1547 1548 struct btrfs_fs_info *fs_info = trans->fs_info; 1549 struct btrfs_key key; 1550 struct btrfs_root_item *new_root_item; 1551 struct btrfs_root *tree_root = fs_info->tree_root; 1552 struct btrfs_root *root = pending->root; 1553 struct btrfs_root *parent_root; 1554 struct btrfs_block_rsv *rsv; 1555 struct inode *parent_inode; 1556 struct btrfs_path *path; 1557 struct btrfs_dir_item *dir_item; 1558 struct dentry *dentry; 1559 struct extent_buffer *tmp; 1560 struct extent_buffer *old; 1561 struct timespec64 cur_time; 1562 int ret = 0; 1563 u64 to_reserve = 0; 1564 u64 index = 0; 1565 u64 objectid; 1566 u64 root_flags; 1567 1568 ASSERT(pending->path); 1569 path = pending->path; 1570 1571 ASSERT(pending->root_item); 1572 new_root_item = pending->root_item; 1573 1574 pending->error = btrfs_get_free_objectid(tree_root, &objectid); 1575 if (pending->error) 1576 goto no_free_objectid; 1577 1578 /* 1579 * Make qgroup to skip current new snapshot's qgroupid, as it is 1580 * accounted by later btrfs_qgroup_inherit(). 1581 */ 1582 btrfs_set_skip_qgroup(trans, objectid); 1583 1584 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1585 1586 if (to_reserve > 0) { 1587 pending->error = btrfs_block_rsv_add(root, 1588 &pending->block_rsv, 1589 to_reserve, 1590 BTRFS_RESERVE_NO_FLUSH); 1591 if (pending->error) 1592 goto clear_skip_qgroup; 1593 } 1594 1595 key.objectid = objectid; 1596 key.offset = (u64)-1; 1597 key.type = BTRFS_ROOT_ITEM_KEY; 1598 1599 rsv = trans->block_rsv; 1600 trans->block_rsv = &pending->block_rsv; 1601 trans->bytes_reserved = trans->block_rsv->reserved; 1602 trace_btrfs_space_reservation(fs_info, "transaction", 1603 trans->transid, 1604 trans->bytes_reserved, 1); 1605 dentry = pending->dentry; 1606 parent_inode = pending->dir; 1607 parent_root = BTRFS_I(parent_inode)->root; 1608 ret = record_root_in_trans(trans, parent_root, 0); 1609 if (ret) 1610 goto fail; 1611 cur_time = current_time(parent_inode); 1612 1613 /* 1614 * insert the directory item 1615 */ 1616 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1617 BUG_ON(ret); /* -ENOMEM */ 1618 1619 /* check if there is a file/dir which has the same name. */ 1620 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1621 btrfs_ino(BTRFS_I(parent_inode)), 1622 dentry->d_name.name, 1623 dentry->d_name.len, 0); 1624 if (dir_item != NULL && !IS_ERR(dir_item)) { 1625 pending->error = -EEXIST; 1626 goto dir_item_existed; 1627 } else if (IS_ERR(dir_item)) { 1628 ret = PTR_ERR(dir_item); 1629 btrfs_abort_transaction(trans, ret); 1630 goto fail; 1631 } 1632 btrfs_release_path(path); 1633 1634 /* 1635 * pull in the delayed directory update 1636 * and the delayed inode item 1637 * otherwise we corrupt the FS during 1638 * snapshot 1639 */ 1640 ret = btrfs_run_delayed_items(trans); 1641 if (ret) { /* Transaction aborted */ 1642 btrfs_abort_transaction(trans, ret); 1643 goto fail; 1644 } 1645 1646 ret = record_root_in_trans(trans, root, 0); 1647 if (ret) { 1648 btrfs_abort_transaction(trans, ret); 1649 goto fail; 1650 } 1651 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1652 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1653 btrfs_check_and_init_root_item(new_root_item); 1654 1655 root_flags = btrfs_root_flags(new_root_item); 1656 if (pending->readonly) 1657 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1658 else 1659 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1660 btrfs_set_root_flags(new_root_item, root_flags); 1661 1662 btrfs_set_root_generation_v2(new_root_item, 1663 trans->transid); 1664 generate_random_guid(new_root_item->uuid); 1665 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1666 BTRFS_UUID_SIZE); 1667 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1668 memset(new_root_item->received_uuid, 0, 1669 sizeof(new_root_item->received_uuid)); 1670 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1671 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1672 btrfs_set_root_stransid(new_root_item, 0); 1673 btrfs_set_root_rtransid(new_root_item, 0); 1674 } 1675 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1676 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1677 btrfs_set_root_otransid(new_root_item, trans->transid); 1678 1679 old = btrfs_lock_root_node(root); 1680 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1681 BTRFS_NESTING_COW); 1682 if (ret) { 1683 btrfs_tree_unlock(old); 1684 free_extent_buffer(old); 1685 btrfs_abort_transaction(trans, ret); 1686 goto fail; 1687 } 1688 1689 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1690 /* clean up in any case */ 1691 btrfs_tree_unlock(old); 1692 free_extent_buffer(old); 1693 if (ret) { 1694 btrfs_abort_transaction(trans, ret); 1695 goto fail; 1696 } 1697 /* see comments in should_cow_block() */ 1698 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1699 smp_wmb(); 1700 1701 btrfs_set_root_node(new_root_item, tmp); 1702 /* record when the snapshot was created in key.offset */ 1703 key.offset = trans->transid; 1704 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1705 btrfs_tree_unlock(tmp); 1706 free_extent_buffer(tmp); 1707 if (ret) { 1708 btrfs_abort_transaction(trans, ret); 1709 goto fail; 1710 } 1711 1712 /* 1713 * insert root back/forward references 1714 */ 1715 ret = btrfs_add_root_ref(trans, objectid, 1716 parent_root->root_key.objectid, 1717 btrfs_ino(BTRFS_I(parent_inode)), index, 1718 dentry->d_name.name, dentry->d_name.len); 1719 if (ret) { 1720 btrfs_abort_transaction(trans, ret); 1721 goto fail; 1722 } 1723 1724 key.offset = (u64)-1; 1725 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev); 1726 if (IS_ERR(pending->snap)) { 1727 ret = PTR_ERR(pending->snap); 1728 pending->snap = NULL; 1729 btrfs_abort_transaction(trans, ret); 1730 goto fail; 1731 } 1732 1733 ret = btrfs_reloc_post_snapshot(trans, pending); 1734 if (ret) { 1735 btrfs_abort_transaction(trans, ret); 1736 goto fail; 1737 } 1738 1739 /* 1740 * Do special qgroup accounting for snapshot, as we do some qgroup 1741 * snapshot hack to do fast snapshot. 1742 * To co-operate with that hack, we do hack again. 1743 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1744 */ 1745 ret = qgroup_account_snapshot(trans, root, parent_root, 1746 pending->inherit, objectid); 1747 if (ret < 0) 1748 goto fail; 1749 1750 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1751 dentry->d_name.len, BTRFS_I(parent_inode), 1752 &key, BTRFS_FT_DIR, index); 1753 /* We have check then name at the beginning, so it is impossible. */ 1754 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1755 if (ret) { 1756 btrfs_abort_transaction(trans, ret); 1757 goto fail; 1758 } 1759 1760 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1761 dentry->d_name.len * 2); 1762 parent_inode->i_mtime = parent_inode->i_ctime = 1763 current_time(parent_inode); 1764 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode)); 1765 if (ret) { 1766 btrfs_abort_transaction(trans, ret); 1767 goto fail; 1768 } 1769 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1770 BTRFS_UUID_KEY_SUBVOL, 1771 objectid); 1772 if (ret) { 1773 btrfs_abort_transaction(trans, ret); 1774 goto fail; 1775 } 1776 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1777 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1778 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1779 objectid); 1780 if (ret && ret != -EEXIST) { 1781 btrfs_abort_transaction(trans, ret); 1782 goto fail; 1783 } 1784 } 1785 1786 fail: 1787 pending->error = ret; 1788 dir_item_existed: 1789 trans->block_rsv = rsv; 1790 trans->bytes_reserved = 0; 1791 clear_skip_qgroup: 1792 btrfs_clear_skip_qgroup(trans); 1793 no_free_objectid: 1794 kfree(new_root_item); 1795 pending->root_item = NULL; 1796 btrfs_free_path(path); 1797 pending->path = NULL; 1798 1799 return ret; 1800 } 1801 1802 /* 1803 * create all the snapshots we've scheduled for creation 1804 */ 1805 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1806 { 1807 struct btrfs_pending_snapshot *pending, *next; 1808 struct list_head *head = &trans->transaction->pending_snapshots; 1809 int ret = 0; 1810 1811 list_for_each_entry_safe(pending, next, head, list) { 1812 list_del(&pending->list); 1813 ret = create_pending_snapshot(trans, pending); 1814 if (ret) 1815 break; 1816 } 1817 return ret; 1818 } 1819 1820 static void update_super_roots(struct btrfs_fs_info *fs_info) 1821 { 1822 struct btrfs_root_item *root_item; 1823 struct btrfs_super_block *super; 1824 1825 super = fs_info->super_copy; 1826 1827 root_item = &fs_info->chunk_root->root_item; 1828 super->chunk_root = root_item->bytenr; 1829 super->chunk_root_generation = root_item->generation; 1830 super->chunk_root_level = root_item->level; 1831 1832 root_item = &fs_info->tree_root->root_item; 1833 super->root = root_item->bytenr; 1834 super->generation = root_item->generation; 1835 super->root_level = root_item->level; 1836 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1837 super->cache_generation = root_item->generation; 1838 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags)) 1839 super->cache_generation = 0; 1840 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1841 super->uuid_tree_generation = root_item->generation; 1842 } 1843 1844 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1845 { 1846 struct btrfs_transaction *trans; 1847 int ret = 0; 1848 1849 spin_lock(&info->trans_lock); 1850 trans = info->running_transaction; 1851 if (trans) 1852 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1853 spin_unlock(&info->trans_lock); 1854 return ret; 1855 } 1856 1857 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1858 { 1859 struct btrfs_transaction *trans; 1860 int ret = 0; 1861 1862 spin_lock(&info->trans_lock); 1863 trans = info->running_transaction; 1864 if (trans) 1865 ret = is_transaction_blocked(trans); 1866 spin_unlock(&info->trans_lock); 1867 return ret; 1868 } 1869 1870 /* 1871 * commit transactions asynchronously. once btrfs_commit_transaction_async 1872 * returns, any subsequent transaction will not be allowed to join. 1873 */ 1874 struct btrfs_async_commit { 1875 struct btrfs_trans_handle *newtrans; 1876 struct work_struct work; 1877 }; 1878 1879 static void do_async_commit(struct work_struct *work) 1880 { 1881 struct btrfs_async_commit *ac = 1882 container_of(work, struct btrfs_async_commit, work); 1883 1884 /* 1885 * We've got freeze protection passed with the transaction. 1886 * Tell lockdep about it. 1887 */ 1888 if (ac->newtrans->type & __TRANS_FREEZABLE) 1889 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1890 1891 current->journal_info = ac->newtrans; 1892 1893 btrfs_commit_transaction(ac->newtrans); 1894 kfree(ac); 1895 } 1896 1897 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans) 1898 { 1899 struct btrfs_fs_info *fs_info = trans->fs_info; 1900 struct btrfs_async_commit *ac; 1901 struct btrfs_transaction *cur_trans; 1902 1903 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1904 if (!ac) 1905 return -ENOMEM; 1906 1907 INIT_WORK(&ac->work, do_async_commit); 1908 ac->newtrans = btrfs_join_transaction(trans->root); 1909 if (IS_ERR(ac->newtrans)) { 1910 int err = PTR_ERR(ac->newtrans); 1911 kfree(ac); 1912 return err; 1913 } 1914 1915 /* take transaction reference */ 1916 cur_trans = trans->transaction; 1917 refcount_inc(&cur_trans->use_count); 1918 1919 btrfs_end_transaction(trans); 1920 1921 /* 1922 * Tell lockdep we've released the freeze rwsem, since the 1923 * async commit thread will be the one to unlock it. 1924 */ 1925 if (ac->newtrans->type & __TRANS_FREEZABLE) 1926 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1927 1928 schedule_work(&ac->work); 1929 /* 1930 * Wait for the current transaction commit to start and block 1931 * subsequent transaction joins 1932 */ 1933 wait_event(fs_info->transaction_blocked_wait, 1934 cur_trans->state >= TRANS_STATE_COMMIT_START || 1935 TRANS_ABORTED(cur_trans)); 1936 if (current->journal_info == trans) 1937 current->journal_info = NULL; 1938 1939 btrfs_put_transaction(cur_trans); 1940 return 0; 1941 } 1942 1943 1944 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1945 { 1946 struct btrfs_fs_info *fs_info = trans->fs_info; 1947 struct btrfs_transaction *cur_trans = trans->transaction; 1948 1949 WARN_ON(refcount_read(&trans->use_count) > 1); 1950 1951 btrfs_abort_transaction(trans, err); 1952 1953 spin_lock(&fs_info->trans_lock); 1954 1955 /* 1956 * If the transaction is removed from the list, it means this 1957 * transaction has been committed successfully, so it is impossible 1958 * to call the cleanup function. 1959 */ 1960 BUG_ON(list_empty(&cur_trans->list)); 1961 1962 if (cur_trans == fs_info->running_transaction) { 1963 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1964 spin_unlock(&fs_info->trans_lock); 1965 wait_event(cur_trans->writer_wait, 1966 atomic_read(&cur_trans->num_writers) == 1); 1967 1968 spin_lock(&fs_info->trans_lock); 1969 } 1970 1971 /* 1972 * Now that we know no one else is still using the transaction we can 1973 * remove the transaction from the list of transactions. This avoids 1974 * the transaction kthread from cleaning up the transaction while some 1975 * other task is still using it, which could result in a use-after-free 1976 * on things like log trees, as it forces the transaction kthread to 1977 * wait for this transaction to be cleaned up by us. 1978 */ 1979 list_del_init(&cur_trans->list); 1980 1981 spin_unlock(&fs_info->trans_lock); 1982 1983 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1984 1985 spin_lock(&fs_info->trans_lock); 1986 if (cur_trans == fs_info->running_transaction) 1987 fs_info->running_transaction = NULL; 1988 spin_unlock(&fs_info->trans_lock); 1989 1990 if (trans->type & __TRANS_FREEZABLE) 1991 sb_end_intwrite(fs_info->sb); 1992 btrfs_put_transaction(cur_trans); 1993 btrfs_put_transaction(cur_trans); 1994 1995 trace_btrfs_transaction_commit(trans->root); 1996 1997 if (current->journal_info == trans) 1998 current->journal_info = NULL; 1999 btrfs_scrub_cancel(fs_info); 2000 2001 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2002 } 2003 2004 /* 2005 * Release reserved delayed ref space of all pending block groups of the 2006 * transaction and remove them from the list 2007 */ 2008 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 2009 { 2010 struct btrfs_fs_info *fs_info = trans->fs_info; 2011 struct btrfs_block_group *block_group, *tmp; 2012 2013 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 2014 btrfs_delayed_refs_rsv_release(fs_info, 1); 2015 list_del_init(&block_group->bg_list); 2016 } 2017 } 2018 2019 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 2020 { 2021 /* 2022 * We use writeback_inodes_sb here because if we used 2023 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2024 * Currently are holding the fs freeze lock, if we do an async flush 2025 * we'll do btrfs_join_transaction() and deadlock because we need to 2026 * wait for the fs freeze lock. Using the direct flushing we benefit 2027 * from already being in a transaction and our join_transaction doesn't 2028 * have to re-take the fs freeze lock. 2029 */ 2030 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2031 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2032 return 0; 2033 } 2034 2035 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 2036 { 2037 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2038 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 2039 } 2040 2041 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2042 { 2043 struct btrfs_fs_info *fs_info = trans->fs_info; 2044 struct btrfs_transaction *cur_trans = trans->transaction; 2045 struct btrfs_transaction *prev_trans = NULL; 2046 int ret; 2047 2048 ASSERT(refcount_read(&trans->use_count) == 1); 2049 2050 /* Stop the commit early if ->aborted is set */ 2051 if (TRANS_ABORTED(cur_trans)) { 2052 ret = cur_trans->aborted; 2053 btrfs_end_transaction(trans); 2054 return ret; 2055 } 2056 2057 btrfs_trans_release_metadata(trans); 2058 trans->block_rsv = NULL; 2059 2060 /* 2061 * We only want one transaction commit doing the flushing so we do not 2062 * waste a bunch of time on lock contention on the extent root node. 2063 */ 2064 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING, 2065 &cur_trans->delayed_refs.flags)) { 2066 /* 2067 * Make a pass through all the delayed refs we have so far. 2068 * Any running threads may add more while we are here. 2069 */ 2070 ret = btrfs_run_delayed_refs(trans, 0); 2071 if (ret) { 2072 btrfs_end_transaction(trans); 2073 return ret; 2074 } 2075 } 2076 2077 btrfs_create_pending_block_groups(trans); 2078 2079 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2080 int run_it = 0; 2081 2082 /* this mutex is also taken before trying to set 2083 * block groups readonly. We need to make sure 2084 * that nobody has set a block group readonly 2085 * after a extents from that block group have been 2086 * allocated for cache files. btrfs_set_block_group_ro 2087 * will wait for the transaction to commit if it 2088 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2089 * 2090 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2091 * only one process starts all the block group IO. It wouldn't 2092 * hurt to have more than one go through, but there's no 2093 * real advantage to it either. 2094 */ 2095 mutex_lock(&fs_info->ro_block_group_mutex); 2096 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2097 &cur_trans->flags)) 2098 run_it = 1; 2099 mutex_unlock(&fs_info->ro_block_group_mutex); 2100 2101 if (run_it) { 2102 ret = btrfs_start_dirty_block_groups(trans); 2103 if (ret) { 2104 btrfs_end_transaction(trans); 2105 return ret; 2106 } 2107 } 2108 } 2109 2110 spin_lock(&fs_info->trans_lock); 2111 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2112 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2113 2114 spin_unlock(&fs_info->trans_lock); 2115 refcount_inc(&cur_trans->use_count); 2116 2117 if (trans->in_fsync) 2118 want_state = TRANS_STATE_SUPER_COMMITTED; 2119 ret = btrfs_end_transaction(trans); 2120 wait_for_commit(cur_trans, want_state); 2121 2122 if (TRANS_ABORTED(cur_trans)) 2123 ret = cur_trans->aborted; 2124 2125 btrfs_put_transaction(cur_trans); 2126 2127 return ret; 2128 } 2129 2130 cur_trans->state = TRANS_STATE_COMMIT_START; 2131 wake_up(&fs_info->transaction_blocked_wait); 2132 2133 if (cur_trans->list.prev != &fs_info->trans_list) { 2134 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2135 2136 if (trans->in_fsync) 2137 want_state = TRANS_STATE_SUPER_COMMITTED; 2138 2139 prev_trans = list_entry(cur_trans->list.prev, 2140 struct btrfs_transaction, list); 2141 if (prev_trans->state < want_state) { 2142 refcount_inc(&prev_trans->use_count); 2143 spin_unlock(&fs_info->trans_lock); 2144 2145 wait_for_commit(prev_trans, want_state); 2146 2147 ret = READ_ONCE(prev_trans->aborted); 2148 2149 btrfs_put_transaction(prev_trans); 2150 if (ret) 2151 goto cleanup_transaction; 2152 } else { 2153 spin_unlock(&fs_info->trans_lock); 2154 } 2155 } else { 2156 spin_unlock(&fs_info->trans_lock); 2157 /* 2158 * The previous transaction was aborted and was already removed 2159 * from the list of transactions at fs_info->trans_list. So we 2160 * abort to prevent writing a new superblock that reflects a 2161 * corrupt state (pointing to trees with unwritten nodes/leafs). 2162 */ 2163 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) { 2164 ret = -EROFS; 2165 goto cleanup_transaction; 2166 } 2167 } 2168 2169 extwriter_counter_dec(cur_trans, trans->type); 2170 2171 ret = btrfs_start_delalloc_flush(fs_info); 2172 if (ret) 2173 goto cleanup_transaction; 2174 2175 ret = btrfs_run_delayed_items(trans); 2176 if (ret) 2177 goto cleanup_transaction; 2178 2179 wait_event(cur_trans->writer_wait, 2180 extwriter_counter_read(cur_trans) == 0); 2181 2182 /* some pending stuffs might be added after the previous flush. */ 2183 ret = btrfs_run_delayed_items(trans); 2184 if (ret) 2185 goto cleanup_transaction; 2186 2187 btrfs_wait_delalloc_flush(fs_info); 2188 2189 /* 2190 * Wait for all ordered extents started by a fast fsync that joined this 2191 * transaction. Otherwise if this transaction commits before the ordered 2192 * extents complete we lose logged data after a power failure. 2193 */ 2194 wait_event(cur_trans->pending_wait, 2195 atomic_read(&cur_trans->pending_ordered) == 0); 2196 2197 btrfs_scrub_pause(fs_info); 2198 /* 2199 * Ok now we need to make sure to block out any other joins while we 2200 * commit the transaction. We could have started a join before setting 2201 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2202 */ 2203 spin_lock(&fs_info->trans_lock); 2204 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2205 spin_unlock(&fs_info->trans_lock); 2206 wait_event(cur_trans->writer_wait, 2207 atomic_read(&cur_trans->num_writers) == 1); 2208 2209 if (TRANS_ABORTED(cur_trans)) { 2210 ret = cur_trans->aborted; 2211 goto scrub_continue; 2212 } 2213 /* 2214 * the reloc mutex makes sure that we stop 2215 * the balancing code from coming in and moving 2216 * extents around in the middle of the commit 2217 */ 2218 mutex_lock(&fs_info->reloc_mutex); 2219 2220 /* 2221 * We needn't worry about the delayed items because we will 2222 * deal with them in create_pending_snapshot(), which is the 2223 * core function of the snapshot creation. 2224 */ 2225 ret = create_pending_snapshots(trans); 2226 if (ret) 2227 goto unlock_reloc; 2228 2229 /* 2230 * We insert the dir indexes of the snapshots and update the inode 2231 * of the snapshots' parents after the snapshot creation, so there 2232 * are some delayed items which are not dealt with. Now deal with 2233 * them. 2234 * 2235 * We needn't worry that this operation will corrupt the snapshots, 2236 * because all the tree which are snapshoted will be forced to COW 2237 * the nodes and leaves. 2238 */ 2239 ret = btrfs_run_delayed_items(trans); 2240 if (ret) 2241 goto unlock_reloc; 2242 2243 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2244 if (ret) 2245 goto unlock_reloc; 2246 2247 /* 2248 * make sure none of the code above managed to slip in a 2249 * delayed item 2250 */ 2251 btrfs_assert_delayed_root_empty(fs_info); 2252 2253 WARN_ON(cur_trans != trans->transaction); 2254 2255 /* btrfs_commit_tree_roots is responsible for getting the 2256 * various roots consistent with each other. Every pointer 2257 * in the tree of tree roots has to point to the most up to date 2258 * root for every subvolume and other tree. So, we have to keep 2259 * the tree logging code from jumping in and changing any 2260 * of the trees. 2261 * 2262 * At this point in the commit, there can't be any tree-log 2263 * writers, but a little lower down we drop the trans mutex 2264 * and let new people in. By holding the tree_log_mutex 2265 * from now until after the super is written, we avoid races 2266 * with the tree-log code. 2267 */ 2268 mutex_lock(&fs_info->tree_log_mutex); 2269 2270 ret = commit_fs_roots(trans); 2271 if (ret) 2272 goto unlock_tree_log; 2273 2274 /* 2275 * Since the transaction is done, we can apply the pending changes 2276 * before the next transaction. 2277 */ 2278 btrfs_apply_pending_changes(fs_info); 2279 2280 /* commit_fs_roots gets rid of all the tree log roots, it is now 2281 * safe to free the root of tree log roots 2282 */ 2283 btrfs_free_log_root_tree(trans, fs_info); 2284 2285 /* 2286 * Since fs roots are all committed, we can get a quite accurate 2287 * new_roots. So let's do quota accounting. 2288 */ 2289 ret = btrfs_qgroup_account_extents(trans); 2290 if (ret < 0) 2291 goto unlock_tree_log; 2292 2293 ret = commit_cowonly_roots(trans); 2294 if (ret) 2295 goto unlock_tree_log; 2296 2297 /* 2298 * The tasks which save the space cache and inode cache may also 2299 * update ->aborted, check it. 2300 */ 2301 if (TRANS_ABORTED(cur_trans)) { 2302 ret = cur_trans->aborted; 2303 goto unlock_tree_log; 2304 } 2305 2306 cur_trans = fs_info->running_transaction; 2307 2308 btrfs_set_root_node(&fs_info->tree_root->root_item, 2309 fs_info->tree_root->node); 2310 list_add_tail(&fs_info->tree_root->dirty_list, 2311 &cur_trans->switch_commits); 2312 2313 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2314 fs_info->chunk_root->node); 2315 list_add_tail(&fs_info->chunk_root->dirty_list, 2316 &cur_trans->switch_commits); 2317 2318 switch_commit_roots(trans); 2319 2320 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2321 ASSERT(list_empty(&cur_trans->io_bgs)); 2322 update_super_roots(fs_info); 2323 2324 btrfs_set_super_log_root(fs_info->super_copy, 0); 2325 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2326 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2327 sizeof(*fs_info->super_copy)); 2328 2329 btrfs_commit_device_sizes(cur_trans); 2330 2331 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2332 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2333 2334 btrfs_trans_release_chunk_metadata(trans); 2335 2336 spin_lock(&fs_info->trans_lock); 2337 cur_trans->state = TRANS_STATE_UNBLOCKED; 2338 fs_info->running_transaction = NULL; 2339 spin_unlock(&fs_info->trans_lock); 2340 mutex_unlock(&fs_info->reloc_mutex); 2341 2342 wake_up(&fs_info->transaction_wait); 2343 2344 ret = btrfs_write_and_wait_transaction(trans); 2345 if (ret) { 2346 btrfs_handle_fs_error(fs_info, ret, 2347 "Error while writing out transaction"); 2348 /* 2349 * reloc_mutex has been unlocked, tree_log_mutex is still held 2350 * but we can't jump to unlock_tree_log causing double unlock 2351 */ 2352 mutex_unlock(&fs_info->tree_log_mutex); 2353 goto scrub_continue; 2354 } 2355 2356 /* 2357 * At this point, we should have written all the tree blocks allocated 2358 * in this transaction. So it's now safe to free the redirtyied extent 2359 * buffers. 2360 */ 2361 btrfs_free_redirty_list(cur_trans); 2362 2363 ret = write_all_supers(fs_info, 0); 2364 /* 2365 * the super is written, we can safely allow the tree-loggers 2366 * to go about their business 2367 */ 2368 mutex_unlock(&fs_info->tree_log_mutex); 2369 if (ret) 2370 goto scrub_continue; 2371 2372 /* 2373 * We needn't acquire the lock here because there is no other task 2374 * which can change it. 2375 */ 2376 cur_trans->state = TRANS_STATE_SUPER_COMMITTED; 2377 wake_up(&cur_trans->commit_wait); 2378 2379 btrfs_finish_extent_commit(trans); 2380 2381 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2382 btrfs_clear_space_info_full(fs_info); 2383 2384 fs_info->last_trans_committed = cur_trans->transid; 2385 /* 2386 * We needn't acquire the lock here because there is no other task 2387 * which can change it. 2388 */ 2389 cur_trans->state = TRANS_STATE_COMPLETED; 2390 wake_up(&cur_trans->commit_wait); 2391 2392 spin_lock(&fs_info->trans_lock); 2393 list_del_init(&cur_trans->list); 2394 spin_unlock(&fs_info->trans_lock); 2395 2396 btrfs_put_transaction(cur_trans); 2397 btrfs_put_transaction(cur_trans); 2398 2399 if (trans->type & __TRANS_FREEZABLE) 2400 sb_end_intwrite(fs_info->sb); 2401 2402 trace_btrfs_transaction_commit(trans->root); 2403 2404 btrfs_scrub_continue(fs_info); 2405 2406 if (current->journal_info == trans) 2407 current->journal_info = NULL; 2408 2409 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2410 2411 return ret; 2412 2413 unlock_tree_log: 2414 mutex_unlock(&fs_info->tree_log_mutex); 2415 unlock_reloc: 2416 mutex_unlock(&fs_info->reloc_mutex); 2417 scrub_continue: 2418 btrfs_scrub_continue(fs_info); 2419 cleanup_transaction: 2420 btrfs_trans_release_metadata(trans); 2421 btrfs_cleanup_pending_block_groups(trans); 2422 btrfs_trans_release_chunk_metadata(trans); 2423 trans->block_rsv = NULL; 2424 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2425 if (current->journal_info == trans) 2426 current->journal_info = NULL; 2427 cleanup_transaction(trans, ret); 2428 2429 return ret; 2430 } 2431 2432 /* 2433 * return < 0 if error 2434 * 0 if there are no more dead_roots at the time of call 2435 * 1 there are more to be processed, call me again 2436 * 2437 * The return value indicates there are certainly more snapshots to delete, but 2438 * if there comes a new one during processing, it may return 0. We don't mind, 2439 * because btrfs_commit_super will poke cleaner thread and it will process it a 2440 * few seconds later. 2441 */ 2442 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2443 { 2444 int ret; 2445 struct btrfs_fs_info *fs_info = root->fs_info; 2446 2447 spin_lock(&fs_info->trans_lock); 2448 if (list_empty(&fs_info->dead_roots)) { 2449 spin_unlock(&fs_info->trans_lock); 2450 return 0; 2451 } 2452 root = list_first_entry(&fs_info->dead_roots, 2453 struct btrfs_root, root_list); 2454 list_del_init(&root->root_list); 2455 spin_unlock(&fs_info->trans_lock); 2456 2457 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2458 2459 btrfs_kill_all_delayed_nodes(root); 2460 2461 if (btrfs_header_backref_rev(root->node) < 2462 BTRFS_MIXED_BACKREF_REV) 2463 ret = btrfs_drop_snapshot(root, 0, 0); 2464 else 2465 ret = btrfs_drop_snapshot(root, 1, 0); 2466 2467 btrfs_put_root(root); 2468 return (ret < 0) ? 0 : 1; 2469 } 2470 2471 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2472 { 2473 unsigned long prev; 2474 unsigned long bit; 2475 2476 prev = xchg(&fs_info->pending_changes, 0); 2477 if (!prev) 2478 return; 2479 2480 bit = 1 << BTRFS_PENDING_COMMIT; 2481 if (prev & bit) 2482 btrfs_debug(fs_info, "pending commit done"); 2483 prev &= ~bit; 2484 2485 if (prev) 2486 btrfs_warn(fs_info, 2487 "unknown pending changes left 0x%lx, ignoring", prev); 2488 } 2489