xref: /openbmc/linux/fs/btrfs/transaction.c (revision a8fe58ce)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		if (transaction->delayed_refs.pending_csums)
68 			printk(KERN_ERR "pending csums is %llu\n",
69 			       transaction->delayed_refs.pending_csums);
70 		while (!list_empty(&transaction->pending_chunks)) {
71 			struct extent_map *em;
72 
73 			em = list_first_entry(&transaction->pending_chunks,
74 					      struct extent_map, list);
75 			list_del_init(&em->list);
76 			free_extent_map(em);
77 		}
78 		/*
79 		 * If any block groups are found in ->deleted_bgs then it's
80 		 * because the transaction was aborted and a commit did not
81 		 * happen (things failed before writing the new superblock
82 		 * and calling btrfs_finish_extent_commit()), so we can not
83 		 * discard the physical locations of the block groups.
84 		 */
85 		while (!list_empty(&transaction->deleted_bgs)) {
86 			struct btrfs_block_group_cache *cache;
87 
88 			cache = list_first_entry(&transaction->deleted_bgs,
89 						 struct btrfs_block_group_cache,
90 						 bg_list);
91 			list_del_init(&cache->bg_list);
92 			btrfs_put_block_group_trimming(cache);
93 			btrfs_put_block_group(cache);
94 		}
95 		kmem_cache_free(btrfs_transaction_cachep, transaction);
96 	}
97 }
98 
99 static void clear_btree_io_tree(struct extent_io_tree *tree)
100 {
101 	spin_lock(&tree->lock);
102 	/*
103 	 * Do a single barrier for the waitqueue_active check here, the state
104 	 * of the waitqueue should not change once clear_btree_io_tree is
105 	 * called.
106 	 */
107 	smp_mb();
108 	while (!RB_EMPTY_ROOT(&tree->state)) {
109 		struct rb_node *node;
110 		struct extent_state *state;
111 
112 		node = rb_first(&tree->state);
113 		state = rb_entry(node, struct extent_state, rb_node);
114 		rb_erase(&state->rb_node, &tree->state);
115 		RB_CLEAR_NODE(&state->rb_node);
116 		/*
117 		 * btree io trees aren't supposed to have tasks waiting for
118 		 * changes in the flags of extent states ever.
119 		 */
120 		ASSERT(!waitqueue_active(&state->wq));
121 		free_extent_state(state);
122 
123 		cond_resched_lock(&tree->lock);
124 	}
125 	spin_unlock(&tree->lock);
126 }
127 
128 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
129 					 struct btrfs_fs_info *fs_info)
130 {
131 	struct btrfs_root *root, *tmp;
132 
133 	down_write(&fs_info->commit_root_sem);
134 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
135 				 dirty_list) {
136 		list_del_init(&root->dirty_list);
137 		free_extent_buffer(root->commit_root);
138 		root->commit_root = btrfs_root_node(root);
139 		if (is_fstree(root->objectid))
140 			btrfs_unpin_free_ino(root);
141 		clear_btree_io_tree(&root->dirty_log_pages);
142 	}
143 
144 	/* We can free old roots now. */
145 	spin_lock(&trans->dropped_roots_lock);
146 	while (!list_empty(&trans->dropped_roots)) {
147 		root = list_first_entry(&trans->dropped_roots,
148 					struct btrfs_root, root_list);
149 		list_del_init(&root->root_list);
150 		spin_unlock(&trans->dropped_roots_lock);
151 		btrfs_drop_and_free_fs_root(fs_info, root);
152 		spin_lock(&trans->dropped_roots_lock);
153 	}
154 	spin_unlock(&trans->dropped_roots_lock);
155 	up_write(&fs_info->commit_root_sem);
156 }
157 
158 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
159 					 unsigned int type)
160 {
161 	if (type & TRANS_EXTWRITERS)
162 		atomic_inc(&trans->num_extwriters);
163 }
164 
165 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
166 					 unsigned int type)
167 {
168 	if (type & TRANS_EXTWRITERS)
169 		atomic_dec(&trans->num_extwriters);
170 }
171 
172 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
173 					  unsigned int type)
174 {
175 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
176 }
177 
178 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
179 {
180 	return atomic_read(&trans->num_extwriters);
181 }
182 
183 /*
184  * either allocate a new transaction or hop into the existing one
185  */
186 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
187 {
188 	struct btrfs_transaction *cur_trans;
189 	struct btrfs_fs_info *fs_info = root->fs_info;
190 
191 	spin_lock(&fs_info->trans_lock);
192 loop:
193 	/* The file system has been taken offline. No new transactions. */
194 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
195 		spin_unlock(&fs_info->trans_lock);
196 		return -EROFS;
197 	}
198 
199 	cur_trans = fs_info->running_transaction;
200 	if (cur_trans) {
201 		if (cur_trans->aborted) {
202 			spin_unlock(&fs_info->trans_lock);
203 			return cur_trans->aborted;
204 		}
205 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
206 			spin_unlock(&fs_info->trans_lock);
207 			return -EBUSY;
208 		}
209 		atomic_inc(&cur_trans->use_count);
210 		atomic_inc(&cur_trans->num_writers);
211 		extwriter_counter_inc(cur_trans, type);
212 		spin_unlock(&fs_info->trans_lock);
213 		return 0;
214 	}
215 	spin_unlock(&fs_info->trans_lock);
216 
217 	/*
218 	 * If we are ATTACH, we just want to catch the current transaction,
219 	 * and commit it. If there is no transaction, just return ENOENT.
220 	 */
221 	if (type == TRANS_ATTACH)
222 		return -ENOENT;
223 
224 	/*
225 	 * JOIN_NOLOCK only happens during the transaction commit, so
226 	 * it is impossible that ->running_transaction is NULL
227 	 */
228 	BUG_ON(type == TRANS_JOIN_NOLOCK);
229 
230 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
231 	if (!cur_trans)
232 		return -ENOMEM;
233 
234 	spin_lock(&fs_info->trans_lock);
235 	if (fs_info->running_transaction) {
236 		/*
237 		 * someone started a transaction after we unlocked.  Make sure
238 		 * to redo the checks above
239 		 */
240 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
241 		goto loop;
242 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
243 		spin_unlock(&fs_info->trans_lock);
244 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
245 		return -EROFS;
246 	}
247 
248 	atomic_set(&cur_trans->num_writers, 1);
249 	extwriter_counter_init(cur_trans, type);
250 	init_waitqueue_head(&cur_trans->writer_wait);
251 	init_waitqueue_head(&cur_trans->commit_wait);
252 	init_waitqueue_head(&cur_trans->pending_wait);
253 	cur_trans->state = TRANS_STATE_RUNNING;
254 	/*
255 	 * One for this trans handle, one so it will live on until we
256 	 * commit the transaction.
257 	 */
258 	atomic_set(&cur_trans->use_count, 2);
259 	atomic_set(&cur_trans->pending_ordered, 0);
260 	cur_trans->flags = 0;
261 	cur_trans->start_time = get_seconds();
262 
263 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
264 
265 	cur_trans->delayed_refs.href_root = RB_ROOT;
266 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
267 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
268 
269 	/*
270 	 * although the tree mod log is per file system and not per transaction,
271 	 * the log must never go across transaction boundaries.
272 	 */
273 	smp_mb();
274 	if (!list_empty(&fs_info->tree_mod_seq_list))
275 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
276 			"creating a fresh transaction\n");
277 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
278 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
279 			"creating a fresh transaction\n");
280 	atomic64_set(&fs_info->tree_mod_seq, 0);
281 
282 	spin_lock_init(&cur_trans->delayed_refs.lock);
283 
284 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 	INIT_LIST_HEAD(&cur_trans->switch_commits);
287 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 	INIT_LIST_HEAD(&cur_trans->io_bgs);
289 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 	mutex_init(&cur_trans->cache_write_mutex);
291 	cur_trans->num_dirty_bgs = 0;
292 	spin_lock_init(&cur_trans->dirty_bgs_lock);
293 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 	spin_lock_init(&cur_trans->dropped_roots_lock);
295 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 	extent_io_tree_init(&cur_trans->dirty_pages,
297 			     fs_info->btree_inode->i_mapping);
298 	fs_info->generation++;
299 	cur_trans->transid = fs_info->generation;
300 	fs_info->running_transaction = cur_trans;
301 	cur_trans->aborted = 0;
302 	spin_unlock(&fs_info->trans_lock);
303 
304 	return 0;
305 }
306 
307 /*
308  * this does all the record keeping required to make sure that a reference
309  * counted root is properly recorded in a given transaction.  This is required
310  * to make sure the old root from before we joined the transaction is deleted
311  * when the transaction commits
312  */
313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 			       struct btrfs_root *root)
315 {
316 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
317 	    root->last_trans < trans->transid) {
318 		WARN_ON(root == root->fs_info->extent_root);
319 		WARN_ON(root->commit_root != root->node);
320 
321 		/*
322 		 * see below for IN_TRANS_SETUP usage rules
323 		 * we have the reloc mutex held now, so there
324 		 * is only one writer in this function
325 		 */
326 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
327 
328 		/* make sure readers find IN_TRANS_SETUP before
329 		 * they find our root->last_trans update
330 		 */
331 		smp_wmb();
332 
333 		spin_lock(&root->fs_info->fs_roots_radix_lock);
334 		if (root->last_trans == trans->transid) {
335 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
336 			return 0;
337 		}
338 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
339 			   (unsigned long)root->root_key.objectid,
340 			   BTRFS_ROOT_TRANS_TAG);
341 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
342 		root->last_trans = trans->transid;
343 
344 		/* this is pretty tricky.  We don't want to
345 		 * take the relocation lock in btrfs_record_root_in_trans
346 		 * unless we're really doing the first setup for this root in
347 		 * this transaction.
348 		 *
349 		 * Normally we'd use root->last_trans as a flag to decide
350 		 * if we want to take the expensive mutex.
351 		 *
352 		 * But, we have to set root->last_trans before we
353 		 * init the relocation root, otherwise, we trip over warnings
354 		 * in ctree.c.  The solution used here is to flag ourselves
355 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
356 		 * fixing up the reloc trees and everyone must wait.
357 		 *
358 		 * When this is zero, they can trust root->last_trans and fly
359 		 * through btrfs_record_root_in_trans without having to take the
360 		 * lock.  smp_wmb() makes sure that all the writes above are
361 		 * done before we pop in the zero below
362 		 */
363 		btrfs_init_reloc_root(trans, root);
364 		smp_mb__before_atomic();
365 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
366 	}
367 	return 0;
368 }
369 
370 
371 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
372 			    struct btrfs_root *root)
373 {
374 	struct btrfs_transaction *cur_trans = trans->transaction;
375 
376 	/* Add ourselves to the transaction dropped list */
377 	spin_lock(&cur_trans->dropped_roots_lock);
378 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
379 	spin_unlock(&cur_trans->dropped_roots_lock);
380 
381 	/* Make sure we don't try to update the root at commit time */
382 	spin_lock(&root->fs_info->fs_roots_radix_lock);
383 	radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
384 			     (unsigned long)root->root_key.objectid,
385 			     BTRFS_ROOT_TRANS_TAG);
386 	spin_unlock(&root->fs_info->fs_roots_radix_lock);
387 }
388 
389 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
390 			       struct btrfs_root *root)
391 {
392 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
393 		return 0;
394 
395 	/*
396 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
397 	 * and barriers
398 	 */
399 	smp_rmb();
400 	if (root->last_trans == trans->transid &&
401 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
402 		return 0;
403 
404 	mutex_lock(&root->fs_info->reloc_mutex);
405 	record_root_in_trans(trans, root);
406 	mutex_unlock(&root->fs_info->reloc_mutex);
407 
408 	return 0;
409 }
410 
411 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
412 {
413 	return (trans->state >= TRANS_STATE_BLOCKED &&
414 		trans->state < TRANS_STATE_UNBLOCKED &&
415 		!trans->aborted);
416 }
417 
418 /* wait for commit against the current transaction to become unblocked
419  * when this is done, it is safe to start a new transaction, but the current
420  * transaction might not be fully on disk.
421  */
422 static void wait_current_trans(struct btrfs_root *root)
423 {
424 	struct btrfs_transaction *cur_trans;
425 
426 	spin_lock(&root->fs_info->trans_lock);
427 	cur_trans = root->fs_info->running_transaction;
428 	if (cur_trans && is_transaction_blocked(cur_trans)) {
429 		atomic_inc(&cur_trans->use_count);
430 		spin_unlock(&root->fs_info->trans_lock);
431 
432 		wait_event(root->fs_info->transaction_wait,
433 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
434 			   cur_trans->aborted);
435 		btrfs_put_transaction(cur_trans);
436 	} else {
437 		spin_unlock(&root->fs_info->trans_lock);
438 	}
439 }
440 
441 static int may_wait_transaction(struct btrfs_root *root, int type)
442 {
443 	if (root->fs_info->log_root_recovering)
444 		return 0;
445 
446 	if (type == TRANS_USERSPACE)
447 		return 1;
448 
449 	if (type == TRANS_START &&
450 	    !atomic_read(&root->fs_info->open_ioctl_trans))
451 		return 1;
452 
453 	return 0;
454 }
455 
456 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
457 {
458 	if (!root->fs_info->reloc_ctl ||
459 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
460 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
461 	    root->reloc_root)
462 		return false;
463 
464 	return true;
465 }
466 
467 static struct btrfs_trans_handle *
468 start_transaction(struct btrfs_root *root, unsigned int num_items,
469 		  unsigned int type, enum btrfs_reserve_flush_enum flush)
470 {
471 	struct btrfs_trans_handle *h;
472 	struct btrfs_transaction *cur_trans;
473 	u64 num_bytes = 0;
474 	u64 qgroup_reserved = 0;
475 	bool reloc_reserved = false;
476 	int ret;
477 
478 	/* Send isn't supposed to start transactions. */
479 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
480 
481 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
482 		return ERR_PTR(-EROFS);
483 
484 	if (current->journal_info) {
485 		WARN_ON(type & TRANS_EXTWRITERS);
486 		h = current->journal_info;
487 		h->use_count++;
488 		WARN_ON(h->use_count > 2);
489 		h->orig_rsv = h->block_rsv;
490 		h->block_rsv = NULL;
491 		goto got_it;
492 	}
493 
494 	/*
495 	 * Do the reservation before we join the transaction so we can do all
496 	 * the appropriate flushing if need be.
497 	 */
498 	if (num_items > 0 && root != root->fs_info->chunk_root) {
499 		qgroup_reserved = num_items * root->nodesize;
500 		ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
501 		if (ret)
502 			return ERR_PTR(ret);
503 
504 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
505 		/*
506 		 * Do the reservation for the relocation root creation
507 		 */
508 		if (need_reserve_reloc_root(root)) {
509 			num_bytes += root->nodesize;
510 			reloc_reserved = true;
511 		}
512 
513 		ret = btrfs_block_rsv_add(root,
514 					  &root->fs_info->trans_block_rsv,
515 					  num_bytes, flush);
516 		if (ret)
517 			goto reserve_fail;
518 	}
519 again:
520 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
521 	if (!h) {
522 		ret = -ENOMEM;
523 		goto alloc_fail;
524 	}
525 
526 	/*
527 	 * If we are JOIN_NOLOCK we're already committing a transaction and
528 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
529 	 * because we're already holding a ref.  We need this because we could
530 	 * have raced in and did an fsync() on a file which can kick a commit
531 	 * and then we deadlock with somebody doing a freeze.
532 	 *
533 	 * If we are ATTACH, it means we just want to catch the current
534 	 * transaction and commit it, so we needn't do sb_start_intwrite().
535 	 */
536 	if (type & __TRANS_FREEZABLE)
537 		sb_start_intwrite(root->fs_info->sb);
538 
539 	if (may_wait_transaction(root, type))
540 		wait_current_trans(root);
541 
542 	do {
543 		ret = join_transaction(root, type);
544 		if (ret == -EBUSY) {
545 			wait_current_trans(root);
546 			if (unlikely(type == TRANS_ATTACH))
547 				ret = -ENOENT;
548 		}
549 	} while (ret == -EBUSY);
550 
551 	if (ret < 0) {
552 		/* We must get the transaction if we are JOIN_NOLOCK. */
553 		BUG_ON(type == TRANS_JOIN_NOLOCK);
554 		goto join_fail;
555 	}
556 
557 	cur_trans = root->fs_info->running_transaction;
558 
559 	h->transid = cur_trans->transid;
560 	h->transaction = cur_trans;
561 	h->root = root;
562 	h->use_count = 1;
563 
564 	h->type = type;
565 	h->can_flush_pending_bgs = true;
566 	INIT_LIST_HEAD(&h->qgroup_ref_list);
567 	INIT_LIST_HEAD(&h->new_bgs);
568 
569 	smp_mb();
570 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
571 	    may_wait_transaction(root, type)) {
572 		current->journal_info = h;
573 		btrfs_commit_transaction(h, root);
574 		goto again;
575 	}
576 
577 	if (num_bytes) {
578 		trace_btrfs_space_reservation(root->fs_info, "transaction",
579 					      h->transid, num_bytes, 1);
580 		h->block_rsv = &root->fs_info->trans_block_rsv;
581 		h->bytes_reserved = num_bytes;
582 		h->reloc_reserved = reloc_reserved;
583 	}
584 
585 got_it:
586 	btrfs_record_root_in_trans(h, root);
587 
588 	if (!current->journal_info && type != TRANS_USERSPACE)
589 		current->journal_info = h;
590 	return h;
591 
592 join_fail:
593 	if (type & __TRANS_FREEZABLE)
594 		sb_end_intwrite(root->fs_info->sb);
595 	kmem_cache_free(btrfs_trans_handle_cachep, h);
596 alloc_fail:
597 	if (num_bytes)
598 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
599 					num_bytes);
600 reserve_fail:
601 	btrfs_qgroup_free_meta(root, qgroup_reserved);
602 	return ERR_PTR(ret);
603 }
604 
605 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
606 						   unsigned int num_items)
607 {
608 	return start_transaction(root, num_items, TRANS_START,
609 				 BTRFS_RESERVE_FLUSH_ALL);
610 }
611 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
612 					struct btrfs_root *root,
613 					unsigned int num_items,
614 					int min_factor)
615 {
616 	struct btrfs_trans_handle *trans;
617 	u64 num_bytes;
618 	int ret;
619 
620 	trans = btrfs_start_transaction(root, num_items);
621 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
622 		return trans;
623 
624 	trans = btrfs_start_transaction(root, 0);
625 	if (IS_ERR(trans))
626 		return trans;
627 
628 	num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
629 	ret = btrfs_cond_migrate_bytes(root->fs_info,
630 				       &root->fs_info->trans_block_rsv,
631 				       num_bytes,
632 				       min_factor);
633 	if (ret) {
634 		btrfs_end_transaction(trans, root);
635 		return ERR_PTR(ret);
636 	}
637 
638 	trans->block_rsv = &root->fs_info->trans_block_rsv;
639 	trans->bytes_reserved = num_bytes;
640 
641 	return trans;
642 }
643 
644 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
645 					struct btrfs_root *root,
646 					unsigned int num_items)
647 {
648 	return start_transaction(root, num_items, TRANS_START,
649 				 BTRFS_RESERVE_FLUSH_LIMIT);
650 }
651 
652 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
653 {
654 	return start_transaction(root, 0, TRANS_JOIN,
655 				 BTRFS_RESERVE_NO_FLUSH);
656 }
657 
658 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
659 {
660 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
661 				 BTRFS_RESERVE_NO_FLUSH);
662 }
663 
664 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
665 {
666 	return start_transaction(root, 0, TRANS_USERSPACE,
667 				 BTRFS_RESERVE_NO_FLUSH);
668 }
669 
670 /*
671  * btrfs_attach_transaction() - catch the running transaction
672  *
673  * It is used when we want to commit the current the transaction, but
674  * don't want to start a new one.
675  *
676  * Note: If this function return -ENOENT, it just means there is no
677  * running transaction. But it is possible that the inactive transaction
678  * is still in the memory, not fully on disk. If you hope there is no
679  * inactive transaction in the fs when -ENOENT is returned, you should
680  * invoke
681  *     btrfs_attach_transaction_barrier()
682  */
683 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
684 {
685 	return start_transaction(root, 0, TRANS_ATTACH,
686 				 BTRFS_RESERVE_NO_FLUSH);
687 }
688 
689 /*
690  * btrfs_attach_transaction_barrier() - catch the running transaction
691  *
692  * It is similar to the above function, the differentia is this one
693  * will wait for all the inactive transactions until they fully
694  * complete.
695  */
696 struct btrfs_trans_handle *
697 btrfs_attach_transaction_barrier(struct btrfs_root *root)
698 {
699 	struct btrfs_trans_handle *trans;
700 
701 	trans = start_transaction(root, 0, TRANS_ATTACH,
702 				  BTRFS_RESERVE_NO_FLUSH);
703 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
704 		btrfs_wait_for_commit(root, 0);
705 
706 	return trans;
707 }
708 
709 /* wait for a transaction commit to be fully complete */
710 static noinline void wait_for_commit(struct btrfs_root *root,
711 				    struct btrfs_transaction *commit)
712 {
713 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
714 }
715 
716 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
717 {
718 	struct btrfs_transaction *cur_trans = NULL, *t;
719 	int ret = 0;
720 
721 	if (transid) {
722 		if (transid <= root->fs_info->last_trans_committed)
723 			goto out;
724 
725 		/* find specified transaction */
726 		spin_lock(&root->fs_info->trans_lock);
727 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
728 			if (t->transid == transid) {
729 				cur_trans = t;
730 				atomic_inc(&cur_trans->use_count);
731 				ret = 0;
732 				break;
733 			}
734 			if (t->transid > transid) {
735 				ret = 0;
736 				break;
737 			}
738 		}
739 		spin_unlock(&root->fs_info->trans_lock);
740 
741 		/*
742 		 * The specified transaction doesn't exist, or we
743 		 * raced with btrfs_commit_transaction
744 		 */
745 		if (!cur_trans) {
746 			if (transid > root->fs_info->last_trans_committed)
747 				ret = -EINVAL;
748 			goto out;
749 		}
750 	} else {
751 		/* find newest transaction that is committing | committed */
752 		spin_lock(&root->fs_info->trans_lock);
753 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
754 					    list) {
755 			if (t->state >= TRANS_STATE_COMMIT_START) {
756 				if (t->state == TRANS_STATE_COMPLETED)
757 					break;
758 				cur_trans = t;
759 				atomic_inc(&cur_trans->use_count);
760 				break;
761 			}
762 		}
763 		spin_unlock(&root->fs_info->trans_lock);
764 		if (!cur_trans)
765 			goto out;  /* nothing committing|committed */
766 	}
767 
768 	wait_for_commit(root, cur_trans);
769 	btrfs_put_transaction(cur_trans);
770 out:
771 	return ret;
772 }
773 
774 void btrfs_throttle(struct btrfs_root *root)
775 {
776 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
777 		wait_current_trans(root);
778 }
779 
780 static int should_end_transaction(struct btrfs_trans_handle *trans,
781 				  struct btrfs_root *root)
782 {
783 	if (root->fs_info->global_block_rsv.space_info->full &&
784 	    btrfs_check_space_for_delayed_refs(trans, root))
785 		return 1;
786 
787 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
788 }
789 
790 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
791 				 struct btrfs_root *root)
792 {
793 	struct btrfs_transaction *cur_trans = trans->transaction;
794 	int updates;
795 	int err;
796 
797 	smp_mb();
798 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
799 	    cur_trans->delayed_refs.flushing)
800 		return 1;
801 
802 	updates = trans->delayed_ref_updates;
803 	trans->delayed_ref_updates = 0;
804 	if (updates) {
805 		err = btrfs_run_delayed_refs(trans, root, updates * 2);
806 		if (err) /* Error code will also eval true */
807 			return err;
808 	}
809 
810 	return should_end_transaction(trans, root);
811 }
812 
813 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
814 			  struct btrfs_root *root, int throttle)
815 {
816 	struct btrfs_transaction *cur_trans = trans->transaction;
817 	struct btrfs_fs_info *info = root->fs_info;
818 	unsigned long cur = trans->delayed_ref_updates;
819 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
820 	int err = 0;
821 	int must_run_delayed_refs = 0;
822 
823 	if (trans->use_count > 1) {
824 		trans->use_count--;
825 		trans->block_rsv = trans->orig_rsv;
826 		return 0;
827 	}
828 
829 	btrfs_trans_release_metadata(trans, root);
830 	trans->block_rsv = NULL;
831 
832 	if (!list_empty(&trans->new_bgs))
833 		btrfs_create_pending_block_groups(trans, root);
834 
835 	trans->delayed_ref_updates = 0;
836 	if (!trans->sync) {
837 		must_run_delayed_refs =
838 			btrfs_should_throttle_delayed_refs(trans, root);
839 		cur = max_t(unsigned long, cur, 32);
840 
841 		/*
842 		 * don't make the caller wait if they are from a NOLOCK
843 		 * or ATTACH transaction, it will deadlock with commit
844 		 */
845 		if (must_run_delayed_refs == 1 &&
846 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
847 			must_run_delayed_refs = 2;
848 	}
849 
850 	btrfs_trans_release_metadata(trans, root);
851 	trans->block_rsv = NULL;
852 
853 	if (!list_empty(&trans->new_bgs))
854 		btrfs_create_pending_block_groups(trans, root);
855 
856 	btrfs_trans_release_chunk_metadata(trans);
857 
858 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
859 	    should_end_transaction(trans, root) &&
860 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
861 		spin_lock(&info->trans_lock);
862 		if (cur_trans->state == TRANS_STATE_RUNNING)
863 			cur_trans->state = TRANS_STATE_BLOCKED;
864 		spin_unlock(&info->trans_lock);
865 	}
866 
867 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
868 		if (throttle)
869 			return btrfs_commit_transaction(trans, root);
870 		else
871 			wake_up_process(info->transaction_kthread);
872 	}
873 
874 	if (trans->type & __TRANS_FREEZABLE)
875 		sb_end_intwrite(root->fs_info->sb);
876 
877 	WARN_ON(cur_trans != info->running_transaction);
878 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
879 	atomic_dec(&cur_trans->num_writers);
880 	extwriter_counter_dec(cur_trans, trans->type);
881 
882 	/*
883 	 * Make sure counter is updated before we wake up waiters.
884 	 */
885 	smp_mb();
886 	if (waitqueue_active(&cur_trans->writer_wait))
887 		wake_up(&cur_trans->writer_wait);
888 	btrfs_put_transaction(cur_trans);
889 
890 	if (current->journal_info == trans)
891 		current->journal_info = NULL;
892 
893 	if (throttle)
894 		btrfs_run_delayed_iputs(root);
895 
896 	if (trans->aborted ||
897 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
898 		wake_up_process(info->transaction_kthread);
899 		err = -EIO;
900 	}
901 	assert_qgroups_uptodate(trans);
902 
903 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
904 	if (must_run_delayed_refs) {
905 		btrfs_async_run_delayed_refs(root, cur,
906 					     must_run_delayed_refs == 1);
907 	}
908 	return err;
909 }
910 
911 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
912 			  struct btrfs_root *root)
913 {
914 	return __btrfs_end_transaction(trans, root, 0);
915 }
916 
917 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
918 				   struct btrfs_root *root)
919 {
920 	return __btrfs_end_transaction(trans, root, 1);
921 }
922 
923 /*
924  * when btree blocks are allocated, they have some corresponding bits set for
925  * them in one of two extent_io trees.  This is used to make sure all of
926  * those extents are sent to disk but does not wait on them
927  */
928 int btrfs_write_marked_extents(struct btrfs_root *root,
929 			       struct extent_io_tree *dirty_pages, int mark)
930 {
931 	int err = 0;
932 	int werr = 0;
933 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
934 	struct extent_state *cached_state = NULL;
935 	u64 start = 0;
936 	u64 end;
937 
938 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
939 				      mark, &cached_state)) {
940 		bool wait_writeback = false;
941 
942 		err = convert_extent_bit(dirty_pages, start, end,
943 					 EXTENT_NEED_WAIT,
944 					 mark, &cached_state, GFP_NOFS);
945 		/*
946 		 * convert_extent_bit can return -ENOMEM, which is most of the
947 		 * time a temporary error. So when it happens, ignore the error
948 		 * and wait for writeback of this range to finish - because we
949 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
950 		 * to btrfs_wait_marked_extents() would not know that writeback
951 		 * for this range started and therefore wouldn't wait for it to
952 		 * finish - we don't want to commit a superblock that points to
953 		 * btree nodes/leafs for which writeback hasn't finished yet
954 		 * (and without errors).
955 		 * We cleanup any entries left in the io tree when committing
956 		 * the transaction (through clear_btree_io_tree()).
957 		 */
958 		if (err == -ENOMEM) {
959 			err = 0;
960 			wait_writeback = true;
961 		}
962 		if (!err)
963 			err = filemap_fdatawrite_range(mapping, start, end);
964 		if (err)
965 			werr = err;
966 		else if (wait_writeback)
967 			werr = filemap_fdatawait_range(mapping, start, end);
968 		free_extent_state(cached_state);
969 		cached_state = NULL;
970 		cond_resched();
971 		start = end + 1;
972 	}
973 	return werr;
974 }
975 
976 /*
977  * when btree blocks are allocated, they have some corresponding bits set for
978  * them in one of two extent_io trees.  This is used to make sure all of
979  * those extents are on disk for transaction or log commit.  We wait
980  * on all the pages and clear them from the dirty pages state tree
981  */
982 int btrfs_wait_marked_extents(struct btrfs_root *root,
983 			      struct extent_io_tree *dirty_pages, int mark)
984 {
985 	int err = 0;
986 	int werr = 0;
987 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
988 	struct extent_state *cached_state = NULL;
989 	u64 start = 0;
990 	u64 end;
991 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
992 	bool errors = false;
993 
994 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
995 				      EXTENT_NEED_WAIT, &cached_state)) {
996 		/*
997 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
998 		 * When committing the transaction, we'll remove any entries
999 		 * left in the io tree. For a log commit, we don't remove them
1000 		 * after committing the log because the tree can be accessed
1001 		 * concurrently - we do it only at transaction commit time when
1002 		 * it's safe to do it (through clear_btree_io_tree()).
1003 		 */
1004 		err = clear_extent_bit(dirty_pages, start, end,
1005 				       EXTENT_NEED_WAIT,
1006 				       0, 0, &cached_state, GFP_NOFS);
1007 		if (err == -ENOMEM)
1008 			err = 0;
1009 		if (!err)
1010 			err = filemap_fdatawait_range(mapping, start, end);
1011 		if (err)
1012 			werr = err;
1013 		free_extent_state(cached_state);
1014 		cached_state = NULL;
1015 		cond_resched();
1016 		start = end + 1;
1017 	}
1018 	if (err)
1019 		werr = err;
1020 
1021 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1022 		if ((mark & EXTENT_DIRTY) &&
1023 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
1024 				       &btree_ino->runtime_flags))
1025 			errors = true;
1026 
1027 		if ((mark & EXTENT_NEW) &&
1028 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1029 				       &btree_ino->runtime_flags))
1030 			errors = true;
1031 	} else {
1032 		if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1033 				       &btree_ino->runtime_flags))
1034 			errors = true;
1035 	}
1036 
1037 	if (errors && !werr)
1038 		werr = -EIO;
1039 
1040 	return werr;
1041 }
1042 
1043 /*
1044  * when btree blocks are allocated, they have some corresponding bits set for
1045  * them in one of two extent_io trees.  This is used to make sure all of
1046  * those extents are on disk for transaction or log commit
1047  */
1048 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1049 				struct extent_io_tree *dirty_pages, int mark)
1050 {
1051 	int ret;
1052 	int ret2;
1053 	struct blk_plug plug;
1054 
1055 	blk_start_plug(&plug);
1056 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1057 	blk_finish_plug(&plug);
1058 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1059 
1060 	if (ret)
1061 		return ret;
1062 	if (ret2)
1063 		return ret2;
1064 	return 0;
1065 }
1066 
1067 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1068 				     struct btrfs_root *root)
1069 {
1070 	int ret;
1071 
1072 	ret = btrfs_write_and_wait_marked_extents(root,
1073 					   &trans->transaction->dirty_pages,
1074 					   EXTENT_DIRTY);
1075 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1076 
1077 	return ret;
1078 }
1079 
1080 /*
1081  * this is used to update the root pointer in the tree of tree roots.
1082  *
1083  * But, in the case of the extent allocation tree, updating the root
1084  * pointer may allocate blocks which may change the root of the extent
1085  * allocation tree.
1086  *
1087  * So, this loops and repeats and makes sure the cowonly root didn't
1088  * change while the root pointer was being updated in the metadata.
1089  */
1090 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1091 			       struct btrfs_root *root)
1092 {
1093 	int ret;
1094 	u64 old_root_bytenr;
1095 	u64 old_root_used;
1096 	struct btrfs_root *tree_root = root->fs_info->tree_root;
1097 
1098 	old_root_used = btrfs_root_used(&root->root_item);
1099 
1100 	while (1) {
1101 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1102 		if (old_root_bytenr == root->node->start &&
1103 		    old_root_used == btrfs_root_used(&root->root_item))
1104 			break;
1105 
1106 		btrfs_set_root_node(&root->root_item, root->node);
1107 		ret = btrfs_update_root(trans, tree_root,
1108 					&root->root_key,
1109 					&root->root_item);
1110 		if (ret)
1111 			return ret;
1112 
1113 		old_root_used = btrfs_root_used(&root->root_item);
1114 	}
1115 
1116 	return 0;
1117 }
1118 
1119 /*
1120  * update all the cowonly tree roots on disk
1121  *
1122  * The error handling in this function may not be obvious. Any of the
1123  * failures will cause the file system to go offline. We still need
1124  * to clean up the delayed refs.
1125  */
1126 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1127 					 struct btrfs_root *root)
1128 {
1129 	struct btrfs_fs_info *fs_info = root->fs_info;
1130 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1131 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1132 	struct list_head *next;
1133 	struct extent_buffer *eb;
1134 	int ret;
1135 
1136 	eb = btrfs_lock_root_node(fs_info->tree_root);
1137 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1138 			      0, &eb);
1139 	btrfs_tree_unlock(eb);
1140 	free_extent_buffer(eb);
1141 
1142 	if (ret)
1143 		return ret;
1144 
1145 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1146 	if (ret)
1147 		return ret;
1148 
1149 	ret = btrfs_run_dev_stats(trans, root->fs_info);
1150 	if (ret)
1151 		return ret;
1152 	ret = btrfs_run_dev_replace(trans, root->fs_info);
1153 	if (ret)
1154 		return ret;
1155 	ret = btrfs_run_qgroups(trans, root->fs_info);
1156 	if (ret)
1157 		return ret;
1158 
1159 	ret = btrfs_setup_space_cache(trans, root);
1160 	if (ret)
1161 		return ret;
1162 
1163 	/* run_qgroups might have added some more refs */
1164 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1165 	if (ret)
1166 		return ret;
1167 again:
1168 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1169 		next = fs_info->dirty_cowonly_roots.next;
1170 		list_del_init(next);
1171 		root = list_entry(next, struct btrfs_root, dirty_list);
1172 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1173 
1174 		if (root != fs_info->extent_root)
1175 			list_add_tail(&root->dirty_list,
1176 				      &trans->transaction->switch_commits);
1177 		ret = update_cowonly_root(trans, root);
1178 		if (ret)
1179 			return ret;
1180 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1181 		if (ret)
1182 			return ret;
1183 	}
1184 
1185 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1186 		ret = btrfs_write_dirty_block_groups(trans, root);
1187 		if (ret)
1188 			return ret;
1189 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1190 		if (ret)
1191 			return ret;
1192 	}
1193 
1194 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1195 		goto again;
1196 
1197 	list_add_tail(&fs_info->extent_root->dirty_list,
1198 		      &trans->transaction->switch_commits);
1199 	btrfs_after_dev_replace_commit(fs_info);
1200 
1201 	return 0;
1202 }
1203 
1204 /*
1205  * dead roots are old snapshots that need to be deleted.  This allocates
1206  * a dirty root struct and adds it into the list of dead roots that need to
1207  * be deleted
1208  */
1209 void btrfs_add_dead_root(struct btrfs_root *root)
1210 {
1211 	spin_lock(&root->fs_info->trans_lock);
1212 	if (list_empty(&root->root_list))
1213 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1214 	spin_unlock(&root->fs_info->trans_lock);
1215 }
1216 
1217 /*
1218  * update all the cowonly tree roots on disk
1219  */
1220 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1221 				    struct btrfs_root *root)
1222 {
1223 	struct btrfs_root *gang[8];
1224 	struct btrfs_fs_info *fs_info = root->fs_info;
1225 	int i;
1226 	int ret;
1227 	int err = 0;
1228 
1229 	spin_lock(&fs_info->fs_roots_radix_lock);
1230 	while (1) {
1231 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1232 						 (void **)gang, 0,
1233 						 ARRAY_SIZE(gang),
1234 						 BTRFS_ROOT_TRANS_TAG);
1235 		if (ret == 0)
1236 			break;
1237 		for (i = 0; i < ret; i++) {
1238 			root = gang[i];
1239 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1240 					(unsigned long)root->root_key.objectid,
1241 					BTRFS_ROOT_TRANS_TAG);
1242 			spin_unlock(&fs_info->fs_roots_radix_lock);
1243 
1244 			btrfs_free_log(trans, root);
1245 			btrfs_update_reloc_root(trans, root);
1246 			btrfs_orphan_commit_root(trans, root);
1247 
1248 			btrfs_save_ino_cache(root, trans);
1249 
1250 			/* see comments in should_cow_block() */
1251 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1252 			smp_mb__after_atomic();
1253 
1254 			if (root->commit_root != root->node) {
1255 				list_add_tail(&root->dirty_list,
1256 					&trans->transaction->switch_commits);
1257 				btrfs_set_root_node(&root->root_item,
1258 						    root->node);
1259 			}
1260 
1261 			err = btrfs_update_root(trans, fs_info->tree_root,
1262 						&root->root_key,
1263 						&root->root_item);
1264 			spin_lock(&fs_info->fs_roots_radix_lock);
1265 			if (err)
1266 				break;
1267 			btrfs_qgroup_free_meta_all(root);
1268 		}
1269 	}
1270 	spin_unlock(&fs_info->fs_roots_radix_lock);
1271 	return err;
1272 }
1273 
1274 /*
1275  * defrag a given btree.
1276  * Every leaf in the btree is read and defragged.
1277  */
1278 int btrfs_defrag_root(struct btrfs_root *root)
1279 {
1280 	struct btrfs_fs_info *info = root->fs_info;
1281 	struct btrfs_trans_handle *trans;
1282 	int ret;
1283 
1284 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1285 		return 0;
1286 
1287 	while (1) {
1288 		trans = btrfs_start_transaction(root, 0);
1289 		if (IS_ERR(trans))
1290 			return PTR_ERR(trans);
1291 
1292 		ret = btrfs_defrag_leaves(trans, root);
1293 
1294 		btrfs_end_transaction(trans, root);
1295 		btrfs_btree_balance_dirty(info->tree_root);
1296 		cond_resched();
1297 
1298 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1299 			break;
1300 
1301 		if (btrfs_defrag_cancelled(root->fs_info)) {
1302 			pr_debug("BTRFS: defrag_root cancelled\n");
1303 			ret = -EAGAIN;
1304 			break;
1305 		}
1306 	}
1307 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1308 	return ret;
1309 }
1310 
1311 /*
1312  * new snapshots need to be created at a very specific time in the
1313  * transaction commit.  This does the actual creation.
1314  *
1315  * Note:
1316  * If the error which may affect the commitment of the current transaction
1317  * happens, we should return the error number. If the error which just affect
1318  * the creation of the pending snapshots, just return 0.
1319  */
1320 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1321 				   struct btrfs_fs_info *fs_info,
1322 				   struct btrfs_pending_snapshot *pending)
1323 {
1324 	struct btrfs_key key;
1325 	struct btrfs_root_item *new_root_item;
1326 	struct btrfs_root *tree_root = fs_info->tree_root;
1327 	struct btrfs_root *root = pending->root;
1328 	struct btrfs_root *parent_root;
1329 	struct btrfs_block_rsv *rsv;
1330 	struct inode *parent_inode;
1331 	struct btrfs_path *path;
1332 	struct btrfs_dir_item *dir_item;
1333 	struct dentry *dentry;
1334 	struct extent_buffer *tmp;
1335 	struct extent_buffer *old;
1336 	struct timespec cur_time = CURRENT_TIME;
1337 	int ret = 0;
1338 	u64 to_reserve = 0;
1339 	u64 index = 0;
1340 	u64 objectid;
1341 	u64 root_flags;
1342 	uuid_le new_uuid;
1343 
1344 	ASSERT(pending->path);
1345 	path = pending->path;
1346 
1347 	ASSERT(pending->root_item);
1348 	new_root_item = pending->root_item;
1349 
1350 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1351 	if (pending->error)
1352 		goto no_free_objectid;
1353 
1354 	/*
1355 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1356 	 * accounted by later btrfs_qgroup_inherit().
1357 	 */
1358 	btrfs_set_skip_qgroup(trans, objectid);
1359 
1360 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1361 
1362 	if (to_reserve > 0) {
1363 		pending->error = btrfs_block_rsv_add(root,
1364 						     &pending->block_rsv,
1365 						     to_reserve,
1366 						     BTRFS_RESERVE_NO_FLUSH);
1367 		if (pending->error)
1368 			goto clear_skip_qgroup;
1369 	}
1370 
1371 	key.objectid = objectid;
1372 	key.offset = (u64)-1;
1373 	key.type = BTRFS_ROOT_ITEM_KEY;
1374 
1375 	rsv = trans->block_rsv;
1376 	trans->block_rsv = &pending->block_rsv;
1377 	trans->bytes_reserved = trans->block_rsv->reserved;
1378 
1379 	dentry = pending->dentry;
1380 	parent_inode = pending->dir;
1381 	parent_root = BTRFS_I(parent_inode)->root;
1382 	record_root_in_trans(trans, parent_root);
1383 
1384 	/*
1385 	 * insert the directory item
1386 	 */
1387 	ret = btrfs_set_inode_index(parent_inode, &index);
1388 	BUG_ON(ret); /* -ENOMEM */
1389 
1390 	/* check if there is a file/dir which has the same name. */
1391 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1392 					 btrfs_ino(parent_inode),
1393 					 dentry->d_name.name,
1394 					 dentry->d_name.len, 0);
1395 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1396 		pending->error = -EEXIST;
1397 		goto dir_item_existed;
1398 	} else if (IS_ERR(dir_item)) {
1399 		ret = PTR_ERR(dir_item);
1400 		btrfs_abort_transaction(trans, root, ret);
1401 		goto fail;
1402 	}
1403 	btrfs_release_path(path);
1404 
1405 	/*
1406 	 * pull in the delayed directory update
1407 	 * and the delayed inode item
1408 	 * otherwise we corrupt the FS during
1409 	 * snapshot
1410 	 */
1411 	ret = btrfs_run_delayed_items(trans, root);
1412 	if (ret) {	/* Transaction aborted */
1413 		btrfs_abort_transaction(trans, root, ret);
1414 		goto fail;
1415 	}
1416 
1417 	record_root_in_trans(trans, root);
1418 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1419 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1420 	btrfs_check_and_init_root_item(new_root_item);
1421 
1422 	root_flags = btrfs_root_flags(new_root_item);
1423 	if (pending->readonly)
1424 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1425 	else
1426 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1427 	btrfs_set_root_flags(new_root_item, root_flags);
1428 
1429 	btrfs_set_root_generation_v2(new_root_item,
1430 			trans->transid);
1431 	uuid_le_gen(&new_uuid);
1432 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1433 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1434 			BTRFS_UUID_SIZE);
1435 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1436 		memset(new_root_item->received_uuid, 0,
1437 		       sizeof(new_root_item->received_uuid));
1438 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1439 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1440 		btrfs_set_root_stransid(new_root_item, 0);
1441 		btrfs_set_root_rtransid(new_root_item, 0);
1442 	}
1443 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1444 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1445 	btrfs_set_root_otransid(new_root_item, trans->transid);
1446 
1447 	old = btrfs_lock_root_node(root);
1448 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1449 	if (ret) {
1450 		btrfs_tree_unlock(old);
1451 		free_extent_buffer(old);
1452 		btrfs_abort_transaction(trans, root, ret);
1453 		goto fail;
1454 	}
1455 
1456 	btrfs_set_lock_blocking(old);
1457 
1458 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1459 	/* clean up in any case */
1460 	btrfs_tree_unlock(old);
1461 	free_extent_buffer(old);
1462 	if (ret) {
1463 		btrfs_abort_transaction(trans, root, ret);
1464 		goto fail;
1465 	}
1466 	/* see comments in should_cow_block() */
1467 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1468 	smp_wmb();
1469 
1470 	btrfs_set_root_node(new_root_item, tmp);
1471 	/* record when the snapshot was created in key.offset */
1472 	key.offset = trans->transid;
1473 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1474 	btrfs_tree_unlock(tmp);
1475 	free_extent_buffer(tmp);
1476 	if (ret) {
1477 		btrfs_abort_transaction(trans, root, ret);
1478 		goto fail;
1479 	}
1480 
1481 	/*
1482 	 * insert root back/forward references
1483 	 */
1484 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1485 				 parent_root->root_key.objectid,
1486 				 btrfs_ino(parent_inode), index,
1487 				 dentry->d_name.name, dentry->d_name.len);
1488 	if (ret) {
1489 		btrfs_abort_transaction(trans, root, ret);
1490 		goto fail;
1491 	}
1492 
1493 	key.offset = (u64)-1;
1494 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1495 	if (IS_ERR(pending->snap)) {
1496 		ret = PTR_ERR(pending->snap);
1497 		btrfs_abort_transaction(trans, root, ret);
1498 		goto fail;
1499 	}
1500 
1501 	ret = btrfs_reloc_post_snapshot(trans, pending);
1502 	if (ret) {
1503 		btrfs_abort_transaction(trans, root, ret);
1504 		goto fail;
1505 	}
1506 
1507 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1508 	if (ret) {
1509 		btrfs_abort_transaction(trans, root, ret);
1510 		goto fail;
1511 	}
1512 
1513 	ret = btrfs_insert_dir_item(trans, parent_root,
1514 				    dentry->d_name.name, dentry->d_name.len,
1515 				    parent_inode, &key,
1516 				    BTRFS_FT_DIR, index);
1517 	/* We have check then name at the beginning, so it is impossible. */
1518 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1519 	if (ret) {
1520 		btrfs_abort_transaction(trans, root, ret);
1521 		goto fail;
1522 	}
1523 
1524 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1525 					 dentry->d_name.len * 2);
1526 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1527 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1528 	if (ret) {
1529 		btrfs_abort_transaction(trans, root, ret);
1530 		goto fail;
1531 	}
1532 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1533 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1534 	if (ret) {
1535 		btrfs_abort_transaction(trans, root, ret);
1536 		goto fail;
1537 	}
1538 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1539 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1540 					  new_root_item->received_uuid,
1541 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1542 					  objectid);
1543 		if (ret && ret != -EEXIST) {
1544 			btrfs_abort_transaction(trans, root, ret);
1545 			goto fail;
1546 		}
1547 	}
1548 
1549 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1550 	if (ret) {
1551 		btrfs_abort_transaction(trans, root, ret);
1552 		goto fail;
1553 	}
1554 
1555 	/*
1556 	 * account qgroup counters before qgroup_inherit()
1557 	 */
1558 	ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1559 	if (ret)
1560 		goto fail;
1561 	ret = btrfs_qgroup_account_extents(trans, fs_info);
1562 	if (ret)
1563 		goto fail;
1564 	ret = btrfs_qgroup_inherit(trans, fs_info,
1565 				   root->root_key.objectid,
1566 				   objectid, pending->inherit);
1567 	if (ret) {
1568 		btrfs_abort_transaction(trans, root, ret);
1569 		goto fail;
1570 	}
1571 
1572 fail:
1573 	pending->error = ret;
1574 dir_item_existed:
1575 	trans->block_rsv = rsv;
1576 	trans->bytes_reserved = 0;
1577 clear_skip_qgroup:
1578 	btrfs_clear_skip_qgroup(trans);
1579 no_free_objectid:
1580 	kfree(new_root_item);
1581 	pending->root_item = NULL;
1582 	btrfs_free_path(path);
1583 	pending->path = NULL;
1584 
1585 	return ret;
1586 }
1587 
1588 /*
1589  * create all the snapshots we've scheduled for creation
1590  */
1591 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1592 					     struct btrfs_fs_info *fs_info)
1593 {
1594 	struct btrfs_pending_snapshot *pending, *next;
1595 	struct list_head *head = &trans->transaction->pending_snapshots;
1596 	int ret = 0;
1597 
1598 	list_for_each_entry_safe(pending, next, head, list) {
1599 		list_del(&pending->list);
1600 		ret = create_pending_snapshot(trans, fs_info, pending);
1601 		if (ret)
1602 			break;
1603 	}
1604 	return ret;
1605 }
1606 
1607 static void update_super_roots(struct btrfs_root *root)
1608 {
1609 	struct btrfs_root_item *root_item;
1610 	struct btrfs_super_block *super;
1611 
1612 	super = root->fs_info->super_copy;
1613 
1614 	root_item = &root->fs_info->chunk_root->root_item;
1615 	super->chunk_root = root_item->bytenr;
1616 	super->chunk_root_generation = root_item->generation;
1617 	super->chunk_root_level = root_item->level;
1618 
1619 	root_item = &root->fs_info->tree_root->root_item;
1620 	super->root = root_item->bytenr;
1621 	super->generation = root_item->generation;
1622 	super->root_level = root_item->level;
1623 	if (btrfs_test_opt(root, SPACE_CACHE))
1624 		super->cache_generation = root_item->generation;
1625 	if (root->fs_info->update_uuid_tree_gen)
1626 		super->uuid_tree_generation = root_item->generation;
1627 }
1628 
1629 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1630 {
1631 	struct btrfs_transaction *trans;
1632 	int ret = 0;
1633 
1634 	spin_lock(&info->trans_lock);
1635 	trans = info->running_transaction;
1636 	if (trans)
1637 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1638 	spin_unlock(&info->trans_lock);
1639 	return ret;
1640 }
1641 
1642 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1643 {
1644 	struct btrfs_transaction *trans;
1645 	int ret = 0;
1646 
1647 	spin_lock(&info->trans_lock);
1648 	trans = info->running_transaction;
1649 	if (trans)
1650 		ret = is_transaction_blocked(trans);
1651 	spin_unlock(&info->trans_lock);
1652 	return ret;
1653 }
1654 
1655 /*
1656  * wait for the current transaction commit to start and block subsequent
1657  * transaction joins
1658  */
1659 static void wait_current_trans_commit_start(struct btrfs_root *root,
1660 					    struct btrfs_transaction *trans)
1661 {
1662 	wait_event(root->fs_info->transaction_blocked_wait,
1663 		   trans->state >= TRANS_STATE_COMMIT_START ||
1664 		   trans->aborted);
1665 }
1666 
1667 /*
1668  * wait for the current transaction to start and then become unblocked.
1669  * caller holds ref.
1670  */
1671 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1672 					 struct btrfs_transaction *trans)
1673 {
1674 	wait_event(root->fs_info->transaction_wait,
1675 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1676 		   trans->aborted);
1677 }
1678 
1679 /*
1680  * commit transactions asynchronously. once btrfs_commit_transaction_async
1681  * returns, any subsequent transaction will not be allowed to join.
1682  */
1683 struct btrfs_async_commit {
1684 	struct btrfs_trans_handle *newtrans;
1685 	struct btrfs_root *root;
1686 	struct work_struct work;
1687 };
1688 
1689 static void do_async_commit(struct work_struct *work)
1690 {
1691 	struct btrfs_async_commit *ac =
1692 		container_of(work, struct btrfs_async_commit, work);
1693 
1694 	/*
1695 	 * We've got freeze protection passed with the transaction.
1696 	 * Tell lockdep about it.
1697 	 */
1698 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1699 		__sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1700 
1701 	current->journal_info = ac->newtrans;
1702 
1703 	btrfs_commit_transaction(ac->newtrans, ac->root);
1704 	kfree(ac);
1705 }
1706 
1707 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1708 				   struct btrfs_root *root,
1709 				   int wait_for_unblock)
1710 {
1711 	struct btrfs_async_commit *ac;
1712 	struct btrfs_transaction *cur_trans;
1713 
1714 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1715 	if (!ac)
1716 		return -ENOMEM;
1717 
1718 	INIT_WORK(&ac->work, do_async_commit);
1719 	ac->root = root;
1720 	ac->newtrans = btrfs_join_transaction(root);
1721 	if (IS_ERR(ac->newtrans)) {
1722 		int err = PTR_ERR(ac->newtrans);
1723 		kfree(ac);
1724 		return err;
1725 	}
1726 
1727 	/* take transaction reference */
1728 	cur_trans = trans->transaction;
1729 	atomic_inc(&cur_trans->use_count);
1730 
1731 	btrfs_end_transaction(trans, root);
1732 
1733 	/*
1734 	 * Tell lockdep we've released the freeze rwsem, since the
1735 	 * async commit thread will be the one to unlock it.
1736 	 */
1737 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1738 		__sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1739 
1740 	schedule_work(&ac->work);
1741 
1742 	/* wait for transaction to start and unblock */
1743 	if (wait_for_unblock)
1744 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1745 	else
1746 		wait_current_trans_commit_start(root, cur_trans);
1747 
1748 	if (current->journal_info == trans)
1749 		current->journal_info = NULL;
1750 
1751 	btrfs_put_transaction(cur_trans);
1752 	return 0;
1753 }
1754 
1755 
1756 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1757 				struct btrfs_root *root, int err)
1758 {
1759 	struct btrfs_transaction *cur_trans = trans->transaction;
1760 	DEFINE_WAIT(wait);
1761 
1762 	WARN_ON(trans->use_count > 1);
1763 
1764 	btrfs_abort_transaction(trans, root, err);
1765 
1766 	spin_lock(&root->fs_info->trans_lock);
1767 
1768 	/*
1769 	 * If the transaction is removed from the list, it means this
1770 	 * transaction has been committed successfully, so it is impossible
1771 	 * to call the cleanup function.
1772 	 */
1773 	BUG_ON(list_empty(&cur_trans->list));
1774 
1775 	list_del_init(&cur_trans->list);
1776 	if (cur_trans == root->fs_info->running_transaction) {
1777 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1778 		spin_unlock(&root->fs_info->trans_lock);
1779 		wait_event(cur_trans->writer_wait,
1780 			   atomic_read(&cur_trans->num_writers) == 1);
1781 
1782 		spin_lock(&root->fs_info->trans_lock);
1783 	}
1784 	spin_unlock(&root->fs_info->trans_lock);
1785 
1786 	btrfs_cleanup_one_transaction(trans->transaction, root);
1787 
1788 	spin_lock(&root->fs_info->trans_lock);
1789 	if (cur_trans == root->fs_info->running_transaction)
1790 		root->fs_info->running_transaction = NULL;
1791 	spin_unlock(&root->fs_info->trans_lock);
1792 
1793 	if (trans->type & __TRANS_FREEZABLE)
1794 		sb_end_intwrite(root->fs_info->sb);
1795 	btrfs_put_transaction(cur_trans);
1796 	btrfs_put_transaction(cur_trans);
1797 
1798 	trace_btrfs_transaction_commit(root);
1799 
1800 	if (current->journal_info == trans)
1801 		current->journal_info = NULL;
1802 	btrfs_scrub_cancel(root->fs_info);
1803 
1804 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1805 }
1806 
1807 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1808 {
1809 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1810 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1811 	return 0;
1812 }
1813 
1814 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1815 {
1816 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1817 		btrfs_wait_ordered_roots(fs_info, -1);
1818 }
1819 
1820 static inline void
1821 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1822 {
1823 	wait_event(cur_trans->pending_wait,
1824 		   atomic_read(&cur_trans->pending_ordered) == 0);
1825 }
1826 
1827 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1828 			     struct btrfs_root *root)
1829 {
1830 	struct btrfs_transaction *cur_trans = trans->transaction;
1831 	struct btrfs_transaction *prev_trans = NULL;
1832 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1833 	int ret;
1834 
1835 	/* Stop the commit early if ->aborted is set */
1836 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1837 		ret = cur_trans->aborted;
1838 		btrfs_end_transaction(trans, root);
1839 		return ret;
1840 	}
1841 
1842 	/* make a pass through all the delayed refs we have so far
1843 	 * any runnings procs may add more while we are here
1844 	 */
1845 	ret = btrfs_run_delayed_refs(trans, root, 0);
1846 	if (ret) {
1847 		btrfs_end_transaction(trans, root);
1848 		return ret;
1849 	}
1850 
1851 	btrfs_trans_release_metadata(trans, root);
1852 	trans->block_rsv = NULL;
1853 
1854 	cur_trans = trans->transaction;
1855 
1856 	/*
1857 	 * set the flushing flag so procs in this transaction have to
1858 	 * start sending their work down.
1859 	 */
1860 	cur_trans->delayed_refs.flushing = 1;
1861 	smp_wmb();
1862 
1863 	if (!list_empty(&trans->new_bgs))
1864 		btrfs_create_pending_block_groups(trans, root);
1865 
1866 	ret = btrfs_run_delayed_refs(trans, root, 0);
1867 	if (ret) {
1868 		btrfs_end_transaction(trans, root);
1869 		return ret;
1870 	}
1871 
1872 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1873 		int run_it = 0;
1874 
1875 		/* this mutex is also taken before trying to set
1876 		 * block groups readonly.  We need to make sure
1877 		 * that nobody has set a block group readonly
1878 		 * after a extents from that block group have been
1879 		 * allocated for cache files.  btrfs_set_block_group_ro
1880 		 * will wait for the transaction to commit if it
1881 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1882 		 *
1883 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1884 		 * only one process starts all the block group IO.  It wouldn't
1885 		 * hurt to have more than one go through, but there's no
1886 		 * real advantage to it either.
1887 		 */
1888 		mutex_lock(&root->fs_info->ro_block_group_mutex);
1889 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1890 				      &cur_trans->flags))
1891 			run_it = 1;
1892 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
1893 
1894 		if (run_it)
1895 			ret = btrfs_start_dirty_block_groups(trans, root);
1896 	}
1897 	if (ret) {
1898 		btrfs_end_transaction(trans, root);
1899 		return ret;
1900 	}
1901 
1902 	spin_lock(&root->fs_info->trans_lock);
1903 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1904 		spin_unlock(&root->fs_info->trans_lock);
1905 		atomic_inc(&cur_trans->use_count);
1906 		ret = btrfs_end_transaction(trans, root);
1907 
1908 		wait_for_commit(root, cur_trans);
1909 
1910 		if (unlikely(cur_trans->aborted))
1911 			ret = cur_trans->aborted;
1912 
1913 		btrfs_put_transaction(cur_trans);
1914 
1915 		return ret;
1916 	}
1917 
1918 	cur_trans->state = TRANS_STATE_COMMIT_START;
1919 	wake_up(&root->fs_info->transaction_blocked_wait);
1920 
1921 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1922 		prev_trans = list_entry(cur_trans->list.prev,
1923 					struct btrfs_transaction, list);
1924 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1925 			atomic_inc(&prev_trans->use_count);
1926 			spin_unlock(&root->fs_info->trans_lock);
1927 
1928 			wait_for_commit(root, prev_trans);
1929 			ret = prev_trans->aborted;
1930 
1931 			btrfs_put_transaction(prev_trans);
1932 			if (ret)
1933 				goto cleanup_transaction;
1934 		} else {
1935 			spin_unlock(&root->fs_info->trans_lock);
1936 		}
1937 	} else {
1938 		spin_unlock(&root->fs_info->trans_lock);
1939 	}
1940 
1941 	extwriter_counter_dec(cur_trans, trans->type);
1942 
1943 	ret = btrfs_start_delalloc_flush(root->fs_info);
1944 	if (ret)
1945 		goto cleanup_transaction;
1946 
1947 	ret = btrfs_run_delayed_items(trans, root);
1948 	if (ret)
1949 		goto cleanup_transaction;
1950 
1951 	wait_event(cur_trans->writer_wait,
1952 		   extwriter_counter_read(cur_trans) == 0);
1953 
1954 	/* some pending stuffs might be added after the previous flush. */
1955 	ret = btrfs_run_delayed_items(trans, root);
1956 	if (ret)
1957 		goto cleanup_transaction;
1958 
1959 	btrfs_wait_delalloc_flush(root->fs_info);
1960 
1961 	btrfs_wait_pending_ordered(cur_trans);
1962 
1963 	btrfs_scrub_pause(root);
1964 	/*
1965 	 * Ok now we need to make sure to block out any other joins while we
1966 	 * commit the transaction.  We could have started a join before setting
1967 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1968 	 */
1969 	spin_lock(&root->fs_info->trans_lock);
1970 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1971 	spin_unlock(&root->fs_info->trans_lock);
1972 	wait_event(cur_trans->writer_wait,
1973 		   atomic_read(&cur_trans->num_writers) == 1);
1974 
1975 	/* ->aborted might be set after the previous check, so check it */
1976 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1977 		ret = cur_trans->aborted;
1978 		goto scrub_continue;
1979 	}
1980 	/*
1981 	 * the reloc mutex makes sure that we stop
1982 	 * the balancing code from coming in and moving
1983 	 * extents around in the middle of the commit
1984 	 */
1985 	mutex_lock(&root->fs_info->reloc_mutex);
1986 
1987 	/*
1988 	 * We needn't worry about the delayed items because we will
1989 	 * deal with them in create_pending_snapshot(), which is the
1990 	 * core function of the snapshot creation.
1991 	 */
1992 	ret = create_pending_snapshots(trans, root->fs_info);
1993 	if (ret) {
1994 		mutex_unlock(&root->fs_info->reloc_mutex);
1995 		goto scrub_continue;
1996 	}
1997 
1998 	/*
1999 	 * We insert the dir indexes of the snapshots and update the inode
2000 	 * of the snapshots' parents after the snapshot creation, so there
2001 	 * are some delayed items which are not dealt with. Now deal with
2002 	 * them.
2003 	 *
2004 	 * We needn't worry that this operation will corrupt the snapshots,
2005 	 * because all the tree which are snapshoted will be forced to COW
2006 	 * the nodes and leaves.
2007 	 */
2008 	ret = btrfs_run_delayed_items(trans, root);
2009 	if (ret) {
2010 		mutex_unlock(&root->fs_info->reloc_mutex);
2011 		goto scrub_continue;
2012 	}
2013 
2014 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2015 	if (ret) {
2016 		mutex_unlock(&root->fs_info->reloc_mutex);
2017 		goto scrub_continue;
2018 	}
2019 
2020 	/* Reocrd old roots for later qgroup accounting */
2021 	ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2022 	if (ret) {
2023 		mutex_unlock(&root->fs_info->reloc_mutex);
2024 		goto scrub_continue;
2025 	}
2026 
2027 	/*
2028 	 * make sure none of the code above managed to slip in a
2029 	 * delayed item
2030 	 */
2031 	btrfs_assert_delayed_root_empty(root);
2032 
2033 	WARN_ON(cur_trans != trans->transaction);
2034 
2035 	/* btrfs_commit_tree_roots is responsible for getting the
2036 	 * various roots consistent with each other.  Every pointer
2037 	 * in the tree of tree roots has to point to the most up to date
2038 	 * root for every subvolume and other tree.  So, we have to keep
2039 	 * the tree logging code from jumping in and changing any
2040 	 * of the trees.
2041 	 *
2042 	 * At this point in the commit, there can't be any tree-log
2043 	 * writers, but a little lower down we drop the trans mutex
2044 	 * and let new people in.  By holding the tree_log_mutex
2045 	 * from now until after the super is written, we avoid races
2046 	 * with the tree-log code.
2047 	 */
2048 	mutex_lock(&root->fs_info->tree_log_mutex);
2049 
2050 	ret = commit_fs_roots(trans, root);
2051 	if (ret) {
2052 		mutex_unlock(&root->fs_info->tree_log_mutex);
2053 		mutex_unlock(&root->fs_info->reloc_mutex);
2054 		goto scrub_continue;
2055 	}
2056 
2057 	/*
2058 	 * Since the transaction is done, we can apply the pending changes
2059 	 * before the next transaction.
2060 	 */
2061 	btrfs_apply_pending_changes(root->fs_info);
2062 
2063 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2064 	 * safe to free the root of tree log roots
2065 	 */
2066 	btrfs_free_log_root_tree(trans, root->fs_info);
2067 
2068 	/*
2069 	 * Since fs roots are all committed, we can get a quite accurate
2070 	 * new_roots. So let's do quota accounting.
2071 	 */
2072 	ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2073 	if (ret < 0) {
2074 		mutex_unlock(&root->fs_info->tree_log_mutex);
2075 		mutex_unlock(&root->fs_info->reloc_mutex);
2076 		goto scrub_continue;
2077 	}
2078 
2079 	ret = commit_cowonly_roots(trans, root);
2080 	if (ret) {
2081 		mutex_unlock(&root->fs_info->tree_log_mutex);
2082 		mutex_unlock(&root->fs_info->reloc_mutex);
2083 		goto scrub_continue;
2084 	}
2085 
2086 	/*
2087 	 * The tasks which save the space cache and inode cache may also
2088 	 * update ->aborted, check it.
2089 	 */
2090 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2091 		ret = cur_trans->aborted;
2092 		mutex_unlock(&root->fs_info->tree_log_mutex);
2093 		mutex_unlock(&root->fs_info->reloc_mutex);
2094 		goto scrub_continue;
2095 	}
2096 
2097 	btrfs_prepare_extent_commit(trans, root);
2098 
2099 	cur_trans = root->fs_info->running_transaction;
2100 
2101 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2102 			    root->fs_info->tree_root->node);
2103 	list_add_tail(&root->fs_info->tree_root->dirty_list,
2104 		      &cur_trans->switch_commits);
2105 
2106 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2107 			    root->fs_info->chunk_root->node);
2108 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
2109 		      &cur_trans->switch_commits);
2110 
2111 	switch_commit_roots(cur_trans, root->fs_info);
2112 
2113 	assert_qgroups_uptodate(trans);
2114 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2115 	ASSERT(list_empty(&cur_trans->io_bgs));
2116 	update_super_roots(root);
2117 
2118 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2119 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2120 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2121 	       sizeof(*root->fs_info->super_copy));
2122 
2123 	btrfs_update_commit_device_size(root->fs_info);
2124 	btrfs_update_commit_device_bytes_used(root, cur_trans);
2125 
2126 	clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2127 	clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2128 
2129 	btrfs_trans_release_chunk_metadata(trans);
2130 
2131 	spin_lock(&root->fs_info->trans_lock);
2132 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2133 	root->fs_info->running_transaction = NULL;
2134 	spin_unlock(&root->fs_info->trans_lock);
2135 	mutex_unlock(&root->fs_info->reloc_mutex);
2136 
2137 	wake_up(&root->fs_info->transaction_wait);
2138 
2139 	ret = btrfs_write_and_wait_transaction(trans, root);
2140 	if (ret) {
2141 		btrfs_std_error(root->fs_info, ret,
2142 			    "Error while writing out transaction");
2143 		mutex_unlock(&root->fs_info->tree_log_mutex);
2144 		goto scrub_continue;
2145 	}
2146 
2147 	ret = write_ctree_super(trans, root, 0);
2148 	if (ret) {
2149 		mutex_unlock(&root->fs_info->tree_log_mutex);
2150 		goto scrub_continue;
2151 	}
2152 
2153 	/*
2154 	 * the super is written, we can safely allow the tree-loggers
2155 	 * to go about their business
2156 	 */
2157 	mutex_unlock(&root->fs_info->tree_log_mutex);
2158 
2159 	btrfs_finish_extent_commit(trans, root);
2160 
2161 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2162 		btrfs_clear_space_info_full(root->fs_info);
2163 
2164 	root->fs_info->last_trans_committed = cur_trans->transid;
2165 	/*
2166 	 * We needn't acquire the lock here because there is no other task
2167 	 * which can change it.
2168 	 */
2169 	cur_trans->state = TRANS_STATE_COMPLETED;
2170 	wake_up(&cur_trans->commit_wait);
2171 
2172 	spin_lock(&root->fs_info->trans_lock);
2173 	list_del_init(&cur_trans->list);
2174 	spin_unlock(&root->fs_info->trans_lock);
2175 
2176 	btrfs_put_transaction(cur_trans);
2177 	btrfs_put_transaction(cur_trans);
2178 
2179 	if (trans->type & __TRANS_FREEZABLE)
2180 		sb_end_intwrite(root->fs_info->sb);
2181 
2182 	trace_btrfs_transaction_commit(root);
2183 
2184 	btrfs_scrub_continue(root);
2185 
2186 	if (current->journal_info == trans)
2187 		current->journal_info = NULL;
2188 
2189 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2190 
2191 	if (current != root->fs_info->transaction_kthread &&
2192 	    current != root->fs_info->cleaner_kthread)
2193 		btrfs_run_delayed_iputs(root);
2194 
2195 	return ret;
2196 
2197 scrub_continue:
2198 	btrfs_scrub_continue(root);
2199 cleanup_transaction:
2200 	btrfs_trans_release_metadata(trans, root);
2201 	btrfs_trans_release_chunk_metadata(trans);
2202 	trans->block_rsv = NULL;
2203 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2204 	if (current->journal_info == trans)
2205 		current->journal_info = NULL;
2206 	cleanup_transaction(trans, root, ret);
2207 
2208 	return ret;
2209 }
2210 
2211 /*
2212  * return < 0 if error
2213  * 0 if there are no more dead_roots at the time of call
2214  * 1 there are more to be processed, call me again
2215  *
2216  * The return value indicates there are certainly more snapshots to delete, but
2217  * if there comes a new one during processing, it may return 0. We don't mind,
2218  * because btrfs_commit_super will poke cleaner thread and it will process it a
2219  * few seconds later.
2220  */
2221 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2222 {
2223 	int ret;
2224 	struct btrfs_fs_info *fs_info = root->fs_info;
2225 
2226 	spin_lock(&fs_info->trans_lock);
2227 	if (list_empty(&fs_info->dead_roots)) {
2228 		spin_unlock(&fs_info->trans_lock);
2229 		return 0;
2230 	}
2231 	root = list_first_entry(&fs_info->dead_roots,
2232 			struct btrfs_root, root_list);
2233 	list_del_init(&root->root_list);
2234 	spin_unlock(&fs_info->trans_lock);
2235 
2236 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2237 
2238 	btrfs_kill_all_delayed_nodes(root);
2239 
2240 	if (btrfs_header_backref_rev(root->node) <
2241 			BTRFS_MIXED_BACKREF_REV)
2242 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2243 	else
2244 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2245 
2246 	return (ret < 0) ? 0 : 1;
2247 }
2248 
2249 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2250 {
2251 	unsigned long prev;
2252 	unsigned long bit;
2253 
2254 	prev = xchg(&fs_info->pending_changes, 0);
2255 	if (!prev)
2256 		return;
2257 
2258 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2259 	if (prev & bit)
2260 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2261 	prev &= ~bit;
2262 
2263 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2264 	if (prev & bit)
2265 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2266 	prev &= ~bit;
2267 
2268 	bit = 1 << BTRFS_PENDING_COMMIT;
2269 	if (prev & bit)
2270 		btrfs_debug(fs_info, "pending commit done");
2271 	prev &= ~bit;
2272 
2273 	if (prev)
2274 		btrfs_warn(fs_info,
2275 			"unknown pending changes left 0x%lx, ignoring", prev);
2276 }
2277