1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "misc.h" 14 #include "ctree.h" 15 #include "disk-io.h" 16 #include "transaction.h" 17 #include "locking.h" 18 #include "tree-log.h" 19 #include "inode-map.h" 20 #include "volumes.h" 21 #include "dev-replace.h" 22 #include "qgroup.h" 23 #include "block-group.h" 24 25 #define BTRFS_ROOT_TRANS_TAG 0 26 27 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 28 [TRANS_STATE_RUNNING] = 0U, 29 [TRANS_STATE_BLOCKED] = __TRANS_START, 30 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 31 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 32 __TRANS_ATTACH | 33 __TRANS_JOIN | 34 __TRANS_JOIN_NOSTART), 35 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 36 __TRANS_ATTACH | 37 __TRANS_JOIN | 38 __TRANS_JOIN_NOLOCK | 39 __TRANS_JOIN_NOSTART), 40 [TRANS_STATE_COMPLETED] = (__TRANS_START | 41 __TRANS_ATTACH | 42 __TRANS_JOIN | 43 __TRANS_JOIN_NOLOCK | 44 __TRANS_JOIN_NOSTART), 45 }; 46 47 void btrfs_put_transaction(struct btrfs_transaction *transaction) 48 { 49 WARN_ON(refcount_read(&transaction->use_count) == 0); 50 if (refcount_dec_and_test(&transaction->use_count)) { 51 BUG_ON(!list_empty(&transaction->list)); 52 WARN_ON(!RB_EMPTY_ROOT( 53 &transaction->delayed_refs.href_root.rb_root)); 54 if (transaction->delayed_refs.pending_csums) 55 btrfs_err(transaction->fs_info, 56 "pending csums is %llu", 57 transaction->delayed_refs.pending_csums); 58 /* 59 * If any block groups are found in ->deleted_bgs then it's 60 * because the transaction was aborted and a commit did not 61 * happen (things failed before writing the new superblock 62 * and calling btrfs_finish_extent_commit()), so we can not 63 * discard the physical locations of the block groups. 64 */ 65 while (!list_empty(&transaction->deleted_bgs)) { 66 struct btrfs_block_group_cache *cache; 67 68 cache = list_first_entry(&transaction->deleted_bgs, 69 struct btrfs_block_group_cache, 70 bg_list); 71 list_del_init(&cache->bg_list); 72 btrfs_put_block_group_trimming(cache); 73 btrfs_put_block_group(cache); 74 } 75 WARN_ON(!list_empty(&transaction->dev_update_list)); 76 kfree(transaction); 77 } 78 } 79 80 static noinline void switch_commit_roots(struct btrfs_transaction *trans) 81 { 82 struct btrfs_fs_info *fs_info = trans->fs_info; 83 struct btrfs_root *root, *tmp; 84 85 down_write(&fs_info->commit_root_sem); 86 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 87 dirty_list) { 88 list_del_init(&root->dirty_list); 89 free_extent_buffer(root->commit_root); 90 root->commit_root = btrfs_root_node(root); 91 if (is_fstree(root->root_key.objectid)) 92 btrfs_unpin_free_ino(root); 93 extent_io_tree_release(&root->dirty_log_pages); 94 btrfs_qgroup_clean_swapped_blocks(root); 95 } 96 97 /* We can free old roots now. */ 98 spin_lock(&trans->dropped_roots_lock); 99 while (!list_empty(&trans->dropped_roots)) { 100 root = list_first_entry(&trans->dropped_roots, 101 struct btrfs_root, root_list); 102 list_del_init(&root->root_list); 103 spin_unlock(&trans->dropped_roots_lock); 104 btrfs_drop_and_free_fs_root(fs_info, root); 105 spin_lock(&trans->dropped_roots_lock); 106 } 107 spin_unlock(&trans->dropped_roots_lock); 108 up_write(&fs_info->commit_root_sem); 109 } 110 111 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 112 unsigned int type) 113 { 114 if (type & TRANS_EXTWRITERS) 115 atomic_inc(&trans->num_extwriters); 116 } 117 118 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 119 unsigned int type) 120 { 121 if (type & TRANS_EXTWRITERS) 122 atomic_dec(&trans->num_extwriters); 123 } 124 125 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 126 unsigned int type) 127 { 128 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 129 } 130 131 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 132 { 133 return atomic_read(&trans->num_extwriters); 134 } 135 136 /* 137 * To be called after all the new block groups attached to the transaction 138 * handle have been created (btrfs_create_pending_block_groups()). 139 */ 140 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 141 { 142 struct btrfs_fs_info *fs_info = trans->fs_info; 143 144 if (!trans->chunk_bytes_reserved) 145 return; 146 147 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 148 149 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 150 trans->chunk_bytes_reserved); 151 trans->chunk_bytes_reserved = 0; 152 } 153 154 /* 155 * either allocate a new transaction or hop into the existing one 156 */ 157 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 158 unsigned int type) 159 { 160 struct btrfs_transaction *cur_trans; 161 162 spin_lock(&fs_info->trans_lock); 163 loop: 164 /* The file system has been taken offline. No new transactions. */ 165 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 166 spin_unlock(&fs_info->trans_lock); 167 return -EROFS; 168 } 169 170 cur_trans = fs_info->running_transaction; 171 if (cur_trans) { 172 if (cur_trans->aborted) { 173 spin_unlock(&fs_info->trans_lock); 174 return cur_trans->aborted; 175 } 176 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 177 spin_unlock(&fs_info->trans_lock); 178 return -EBUSY; 179 } 180 refcount_inc(&cur_trans->use_count); 181 atomic_inc(&cur_trans->num_writers); 182 extwriter_counter_inc(cur_trans, type); 183 spin_unlock(&fs_info->trans_lock); 184 return 0; 185 } 186 spin_unlock(&fs_info->trans_lock); 187 188 /* 189 * If we are ATTACH, we just want to catch the current transaction, 190 * and commit it. If there is no transaction, just return ENOENT. 191 */ 192 if (type == TRANS_ATTACH) 193 return -ENOENT; 194 195 /* 196 * JOIN_NOLOCK only happens during the transaction commit, so 197 * it is impossible that ->running_transaction is NULL 198 */ 199 BUG_ON(type == TRANS_JOIN_NOLOCK); 200 201 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 202 if (!cur_trans) 203 return -ENOMEM; 204 205 spin_lock(&fs_info->trans_lock); 206 if (fs_info->running_transaction) { 207 /* 208 * someone started a transaction after we unlocked. Make sure 209 * to redo the checks above 210 */ 211 kfree(cur_trans); 212 goto loop; 213 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 214 spin_unlock(&fs_info->trans_lock); 215 kfree(cur_trans); 216 return -EROFS; 217 } 218 219 cur_trans->fs_info = fs_info; 220 atomic_set(&cur_trans->num_writers, 1); 221 extwriter_counter_init(cur_trans, type); 222 init_waitqueue_head(&cur_trans->writer_wait); 223 init_waitqueue_head(&cur_trans->commit_wait); 224 cur_trans->state = TRANS_STATE_RUNNING; 225 /* 226 * One for this trans handle, one so it will live on until we 227 * commit the transaction. 228 */ 229 refcount_set(&cur_trans->use_count, 2); 230 cur_trans->flags = 0; 231 cur_trans->start_time = ktime_get_seconds(); 232 233 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 234 235 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 236 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 237 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 238 239 /* 240 * although the tree mod log is per file system and not per transaction, 241 * the log must never go across transaction boundaries. 242 */ 243 smp_mb(); 244 if (!list_empty(&fs_info->tree_mod_seq_list)) 245 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 246 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 247 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 248 atomic64_set(&fs_info->tree_mod_seq, 0); 249 250 spin_lock_init(&cur_trans->delayed_refs.lock); 251 252 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 253 INIT_LIST_HEAD(&cur_trans->dev_update_list); 254 INIT_LIST_HEAD(&cur_trans->switch_commits); 255 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 256 INIT_LIST_HEAD(&cur_trans->io_bgs); 257 INIT_LIST_HEAD(&cur_trans->dropped_roots); 258 mutex_init(&cur_trans->cache_write_mutex); 259 spin_lock_init(&cur_trans->dirty_bgs_lock); 260 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 261 spin_lock_init(&cur_trans->dropped_roots_lock); 262 list_add_tail(&cur_trans->list, &fs_info->trans_list); 263 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 264 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode); 265 fs_info->generation++; 266 cur_trans->transid = fs_info->generation; 267 fs_info->running_transaction = cur_trans; 268 cur_trans->aborted = 0; 269 spin_unlock(&fs_info->trans_lock); 270 271 return 0; 272 } 273 274 /* 275 * this does all the record keeping required to make sure that a reference 276 * counted root is properly recorded in a given transaction. This is required 277 * to make sure the old root from before we joined the transaction is deleted 278 * when the transaction commits 279 */ 280 static int record_root_in_trans(struct btrfs_trans_handle *trans, 281 struct btrfs_root *root, 282 int force) 283 { 284 struct btrfs_fs_info *fs_info = root->fs_info; 285 286 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 287 root->last_trans < trans->transid) || force) { 288 WARN_ON(root == fs_info->extent_root); 289 WARN_ON(!force && root->commit_root != root->node); 290 291 /* 292 * see below for IN_TRANS_SETUP usage rules 293 * we have the reloc mutex held now, so there 294 * is only one writer in this function 295 */ 296 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 297 298 /* make sure readers find IN_TRANS_SETUP before 299 * they find our root->last_trans update 300 */ 301 smp_wmb(); 302 303 spin_lock(&fs_info->fs_roots_radix_lock); 304 if (root->last_trans == trans->transid && !force) { 305 spin_unlock(&fs_info->fs_roots_radix_lock); 306 return 0; 307 } 308 radix_tree_tag_set(&fs_info->fs_roots_radix, 309 (unsigned long)root->root_key.objectid, 310 BTRFS_ROOT_TRANS_TAG); 311 spin_unlock(&fs_info->fs_roots_radix_lock); 312 root->last_trans = trans->transid; 313 314 /* this is pretty tricky. We don't want to 315 * take the relocation lock in btrfs_record_root_in_trans 316 * unless we're really doing the first setup for this root in 317 * this transaction. 318 * 319 * Normally we'd use root->last_trans as a flag to decide 320 * if we want to take the expensive mutex. 321 * 322 * But, we have to set root->last_trans before we 323 * init the relocation root, otherwise, we trip over warnings 324 * in ctree.c. The solution used here is to flag ourselves 325 * with root IN_TRANS_SETUP. When this is 1, we're still 326 * fixing up the reloc trees and everyone must wait. 327 * 328 * When this is zero, they can trust root->last_trans and fly 329 * through btrfs_record_root_in_trans without having to take the 330 * lock. smp_wmb() makes sure that all the writes above are 331 * done before we pop in the zero below 332 */ 333 btrfs_init_reloc_root(trans, root); 334 smp_mb__before_atomic(); 335 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 336 } 337 return 0; 338 } 339 340 341 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 342 struct btrfs_root *root) 343 { 344 struct btrfs_fs_info *fs_info = root->fs_info; 345 struct btrfs_transaction *cur_trans = trans->transaction; 346 347 /* Add ourselves to the transaction dropped list */ 348 spin_lock(&cur_trans->dropped_roots_lock); 349 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 350 spin_unlock(&cur_trans->dropped_roots_lock); 351 352 /* Make sure we don't try to update the root at commit time */ 353 spin_lock(&fs_info->fs_roots_radix_lock); 354 radix_tree_tag_clear(&fs_info->fs_roots_radix, 355 (unsigned long)root->root_key.objectid, 356 BTRFS_ROOT_TRANS_TAG); 357 spin_unlock(&fs_info->fs_roots_radix_lock); 358 } 359 360 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 361 struct btrfs_root *root) 362 { 363 struct btrfs_fs_info *fs_info = root->fs_info; 364 365 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 366 return 0; 367 368 /* 369 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 370 * and barriers 371 */ 372 smp_rmb(); 373 if (root->last_trans == trans->transid && 374 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 375 return 0; 376 377 mutex_lock(&fs_info->reloc_mutex); 378 record_root_in_trans(trans, root, 0); 379 mutex_unlock(&fs_info->reloc_mutex); 380 381 return 0; 382 } 383 384 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 385 { 386 return (trans->state >= TRANS_STATE_BLOCKED && 387 trans->state < TRANS_STATE_UNBLOCKED && 388 !trans->aborted); 389 } 390 391 /* wait for commit against the current transaction to become unblocked 392 * when this is done, it is safe to start a new transaction, but the current 393 * transaction might not be fully on disk. 394 */ 395 static void wait_current_trans(struct btrfs_fs_info *fs_info) 396 { 397 struct btrfs_transaction *cur_trans; 398 399 spin_lock(&fs_info->trans_lock); 400 cur_trans = fs_info->running_transaction; 401 if (cur_trans && is_transaction_blocked(cur_trans)) { 402 refcount_inc(&cur_trans->use_count); 403 spin_unlock(&fs_info->trans_lock); 404 405 wait_event(fs_info->transaction_wait, 406 cur_trans->state >= TRANS_STATE_UNBLOCKED || 407 cur_trans->aborted); 408 btrfs_put_transaction(cur_trans); 409 } else { 410 spin_unlock(&fs_info->trans_lock); 411 } 412 } 413 414 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 415 { 416 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 417 return 0; 418 419 if (type == TRANS_START) 420 return 1; 421 422 return 0; 423 } 424 425 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 426 { 427 struct btrfs_fs_info *fs_info = root->fs_info; 428 429 if (!fs_info->reloc_ctl || 430 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 431 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 432 root->reloc_root) 433 return false; 434 435 return true; 436 } 437 438 static struct btrfs_trans_handle * 439 start_transaction(struct btrfs_root *root, unsigned int num_items, 440 unsigned int type, enum btrfs_reserve_flush_enum flush, 441 bool enforce_qgroups) 442 { 443 struct btrfs_fs_info *fs_info = root->fs_info; 444 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 445 struct btrfs_trans_handle *h; 446 struct btrfs_transaction *cur_trans; 447 u64 num_bytes = 0; 448 u64 qgroup_reserved = 0; 449 bool reloc_reserved = false; 450 int ret; 451 452 /* Send isn't supposed to start transactions. */ 453 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 454 455 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 456 return ERR_PTR(-EROFS); 457 458 if (current->journal_info) { 459 WARN_ON(type & TRANS_EXTWRITERS); 460 h = current->journal_info; 461 refcount_inc(&h->use_count); 462 WARN_ON(refcount_read(&h->use_count) > 2); 463 h->orig_rsv = h->block_rsv; 464 h->block_rsv = NULL; 465 goto got_it; 466 } 467 468 /* 469 * Do the reservation before we join the transaction so we can do all 470 * the appropriate flushing if need be. 471 */ 472 if (num_items && root != fs_info->chunk_root) { 473 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 474 u64 delayed_refs_bytes = 0; 475 476 qgroup_reserved = num_items * fs_info->nodesize; 477 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 478 enforce_qgroups); 479 if (ret) 480 return ERR_PTR(ret); 481 482 /* 483 * We want to reserve all the bytes we may need all at once, so 484 * we only do 1 enospc flushing cycle per transaction start. We 485 * accomplish this by simply assuming we'll do 2 x num_items 486 * worth of delayed refs updates in this trans handle, and 487 * refill that amount for whatever is missing in the reserve. 488 */ 489 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 490 if (delayed_refs_rsv->full == 0) { 491 delayed_refs_bytes = num_bytes; 492 num_bytes <<= 1; 493 } 494 495 /* 496 * Do the reservation for the relocation root creation 497 */ 498 if (need_reserve_reloc_root(root)) { 499 num_bytes += fs_info->nodesize; 500 reloc_reserved = true; 501 } 502 503 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush); 504 if (ret) 505 goto reserve_fail; 506 if (delayed_refs_bytes) { 507 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 508 delayed_refs_bytes); 509 num_bytes -= delayed_refs_bytes; 510 } 511 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 512 !delayed_refs_rsv->full) { 513 /* 514 * Some people call with btrfs_start_transaction(root, 0) 515 * because they can be throttled, but have some other mechanism 516 * for reserving space. We still want these guys to refill the 517 * delayed block_rsv so just add 1 items worth of reservation 518 * here. 519 */ 520 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 521 if (ret) 522 goto reserve_fail; 523 } 524 again: 525 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 526 if (!h) { 527 ret = -ENOMEM; 528 goto alloc_fail; 529 } 530 531 /* 532 * If we are JOIN_NOLOCK we're already committing a transaction and 533 * waiting on this guy, so we don't need to do the sb_start_intwrite 534 * because we're already holding a ref. We need this because we could 535 * have raced in and did an fsync() on a file which can kick a commit 536 * and then we deadlock with somebody doing a freeze. 537 * 538 * If we are ATTACH, it means we just want to catch the current 539 * transaction and commit it, so we needn't do sb_start_intwrite(). 540 */ 541 if (type & __TRANS_FREEZABLE) 542 sb_start_intwrite(fs_info->sb); 543 544 if (may_wait_transaction(fs_info, type)) 545 wait_current_trans(fs_info); 546 547 do { 548 ret = join_transaction(fs_info, type); 549 if (ret == -EBUSY) { 550 wait_current_trans(fs_info); 551 if (unlikely(type == TRANS_ATTACH || 552 type == TRANS_JOIN_NOSTART)) 553 ret = -ENOENT; 554 } 555 } while (ret == -EBUSY); 556 557 if (ret < 0) 558 goto join_fail; 559 560 cur_trans = fs_info->running_transaction; 561 562 h->transid = cur_trans->transid; 563 h->transaction = cur_trans; 564 h->root = root; 565 refcount_set(&h->use_count, 1); 566 h->fs_info = root->fs_info; 567 568 h->type = type; 569 h->can_flush_pending_bgs = true; 570 INIT_LIST_HEAD(&h->new_bgs); 571 572 smp_mb(); 573 if (cur_trans->state >= TRANS_STATE_BLOCKED && 574 may_wait_transaction(fs_info, type)) { 575 current->journal_info = h; 576 btrfs_commit_transaction(h); 577 goto again; 578 } 579 580 if (num_bytes) { 581 trace_btrfs_space_reservation(fs_info, "transaction", 582 h->transid, num_bytes, 1); 583 h->block_rsv = &fs_info->trans_block_rsv; 584 h->bytes_reserved = num_bytes; 585 h->reloc_reserved = reloc_reserved; 586 } 587 588 got_it: 589 btrfs_record_root_in_trans(h, root); 590 591 if (!current->journal_info) 592 current->journal_info = h; 593 return h; 594 595 join_fail: 596 if (type & __TRANS_FREEZABLE) 597 sb_end_intwrite(fs_info->sb); 598 kmem_cache_free(btrfs_trans_handle_cachep, h); 599 alloc_fail: 600 if (num_bytes) 601 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 602 num_bytes); 603 reserve_fail: 604 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 605 return ERR_PTR(ret); 606 } 607 608 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 609 unsigned int num_items) 610 { 611 return start_transaction(root, num_items, TRANS_START, 612 BTRFS_RESERVE_FLUSH_ALL, true); 613 } 614 615 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 616 struct btrfs_root *root, 617 unsigned int num_items, 618 int min_factor) 619 { 620 struct btrfs_fs_info *fs_info = root->fs_info; 621 struct btrfs_trans_handle *trans; 622 u64 num_bytes; 623 int ret; 624 625 /* 626 * We have two callers: unlink and block group removal. The 627 * former should succeed even if we will temporarily exceed 628 * quota and the latter operates on the extent root so 629 * qgroup enforcement is ignored anyway. 630 */ 631 trans = start_transaction(root, num_items, TRANS_START, 632 BTRFS_RESERVE_FLUSH_ALL, false); 633 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 634 return trans; 635 636 trans = btrfs_start_transaction(root, 0); 637 if (IS_ERR(trans)) 638 return trans; 639 640 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 641 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv, 642 num_bytes, min_factor); 643 if (ret) { 644 btrfs_end_transaction(trans); 645 return ERR_PTR(ret); 646 } 647 648 trans->block_rsv = &fs_info->trans_block_rsv; 649 trans->bytes_reserved = num_bytes; 650 trace_btrfs_space_reservation(fs_info, "transaction", 651 trans->transid, num_bytes, 1); 652 653 return trans; 654 } 655 656 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 657 { 658 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 659 true); 660 } 661 662 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 663 { 664 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 665 BTRFS_RESERVE_NO_FLUSH, true); 666 } 667 668 /* 669 * Similar to regular join but it never starts a transaction when none is 670 * running or after waiting for the current one to finish. 671 */ 672 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 673 { 674 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 675 BTRFS_RESERVE_NO_FLUSH, true); 676 } 677 678 /* 679 * btrfs_attach_transaction() - catch the running transaction 680 * 681 * It is used when we want to commit the current the transaction, but 682 * don't want to start a new one. 683 * 684 * Note: If this function return -ENOENT, it just means there is no 685 * running transaction. But it is possible that the inactive transaction 686 * is still in the memory, not fully on disk. If you hope there is no 687 * inactive transaction in the fs when -ENOENT is returned, you should 688 * invoke 689 * btrfs_attach_transaction_barrier() 690 */ 691 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 692 { 693 return start_transaction(root, 0, TRANS_ATTACH, 694 BTRFS_RESERVE_NO_FLUSH, true); 695 } 696 697 /* 698 * btrfs_attach_transaction_barrier() - catch the running transaction 699 * 700 * It is similar to the above function, the difference is this one 701 * will wait for all the inactive transactions until they fully 702 * complete. 703 */ 704 struct btrfs_trans_handle * 705 btrfs_attach_transaction_barrier(struct btrfs_root *root) 706 { 707 struct btrfs_trans_handle *trans; 708 709 trans = start_transaction(root, 0, TRANS_ATTACH, 710 BTRFS_RESERVE_NO_FLUSH, true); 711 if (trans == ERR_PTR(-ENOENT)) 712 btrfs_wait_for_commit(root->fs_info, 0); 713 714 return trans; 715 } 716 717 /* wait for a transaction commit to be fully complete */ 718 static noinline void wait_for_commit(struct btrfs_transaction *commit) 719 { 720 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 721 } 722 723 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 724 { 725 struct btrfs_transaction *cur_trans = NULL, *t; 726 int ret = 0; 727 728 if (transid) { 729 if (transid <= fs_info->last_trans_committed) 730 goto out; 731 732 /* find specified transaction */ 733 spin_lock(&fs_info->trans_lock); 734 list_for_each_entry(t, &fs_info->trans_list, list) { 735 if (t->transid == transid) { 736 cur_trans = t; 737 refcount_inc(&cur_trans->use_count); 738 ret = 0; 739 break; 740 } 741 if (t->transid > transid) { 742 ret = 0; 743 break; 744 } 745 } 746 spin_unlock(&fs_info->trans_lock); 747 748 /* 749 * The specified transaction doesn't exist, or we 750 * raced with btrfs_commit_transaction 751 */ 752 if (!cur_trans) { 753 if (transid > fs_info->last_trans_committed) 754 ret = -EINVAL; 755 goto out; 756 } 757 } else { 758 /* find newest transaction that is committing | committed */ 759 spin_lock(&fs_info->trans_lock); 760 list_for_each_entry_reverse(t, &fs_info->trans_list, 761 list) { 762 if (t->state >= TRANS_STATE_COMMIT_START) { 763 if (t->state == TRANS_STATE_COMPLETED) 764 break; 765 cur_trans = t; 766 refcount_inc(&cur_trans->use_count); 767 break; 768 } 769 } 770 spin_unlock(&fs_info->trans_lock); 771 if (!cur_trans) 772 goto out; /* nothing committing|committed */ 773 } 774 775 wait_for_commit(cur_trans); 776 btrfs_put_transaction(cur_trans); 777 out: 778 return ret; 779 } 780 781 void btrfs_throttle(struct btrfs_fs_info *fs_info) 782 { 783 wait_current_trans(fs_info); 784 } 785 786 static int should_end_transaction(struct btrfs_trans_handle *trans) 787 { 788 struct btrfs_fs_info *fs_info = trans->fs_info; 789 790 if (btrfs_check_space_for_delayed_refs(fs_info)) 791 return 1; 792 793 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 794 } 795 796 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 797 { 798 struct btrfs_transaction *cur_trans = trans->transaction; 799 800 smp_mb(); 801 if (cur_trans->state >= TRANS_STATE_BLOCKED || 802 cur_trans->delayed_refs.flushing) 803 return 1; 804 805 return should_end_transaction(trans); 806 } 807 808 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 809 810 { 811 struct btrfs_fs_info *fs_info = trans->fs_info; 812 813 if (!trans->block_rsv) { 814 ASSERT(!trans->bytes_reserved); 815 return; 816 } 817 818 if (!trans->bytes_reserved) 819 return; 820 821 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 822 trace_btrfs_space_reservation(fs_info, "transaction", 823 trans->transid, trans->bytes_reserved, 0); 824 btrfs_block_rsv_release(fs_info, trans->block_rsv, 825 trans->bytes_reserved); 826 trans->bytes_reserved = 0; 827 } 828 829 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 830 int throttle) 831 { 832 struct btrfs_fs_info *info = trans->fs_info; 833 struct btrfs_transaction *cur_trans = trans->transaction; 834 int lock = (trans->type != TRANS_JOIN_NOLOCK); 835 int err = 0; 836 837 if (refcount_read(&trans->use_count) > 1) { 838 refcount_dec(&trans->use_count); 839 trans->block_rsv = trans->orig_rsv; 840 return 0; 841 } 842 843 btrfs_trans_release_metadata(trans); 844 trans->block_rsv = NULL; 845 846 btrfs_create_pending_block_groups(trans); 847 848 btrfs_trans_release_chunk_metadata(trans); 849 850 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 851 if (throttle) 852 return btrfs_commit_transaction(trans); 853 else 854 wake_up_process(info->transaction_kthread); 855 } 856 857 if (trans->type & __TRANS_FREEZABLE) 858 sb_end_intwrite(info->sb); 859 860 WARN_ON(cur_trans != info->running_transaction); 861 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 862 atomic_dec(&cur_trans->num_writers); 863 extwriter_counter_dec(cur_trans, trans->type); 864 865 cond_wake_up(&cur_trans->writer_wait); 866 btrfs_put_transaction(cur_trans); 867 868 if (current->journal_info == trans) 869 current->journal_info = NULL; 870 871 if (throttle) 872 btrfs_run_delayed_iputs(info); 873 874 if (trans->aborted || 875 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 876 wake_up_process(info->transaction_kthread); 877 err = -EIO; 878 } 879 880 kmem_cache_free(btrfs_trans_handle_cachep, trans); 881 return err; 882 } 883 884 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 885 { 886 return __btrfs_end_transaction(trans, 0); 887 } 888 889 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 890 { 891 return __btrfs_end_transaction(trans, 1); 892 } 893 894 /* 895 * when btree blocks are allocated, they have some corresponding bits set for 896 * them in one of two extent_io trees. This is used to make sure all of 897 * those extents are sent to disk but does not wait on them 898 */ 899 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 900 struct extent_io_tree *dirty_pages, int mark) 901 { 902 int err = 0; 903 int werr = 0; 904 struct address_space *mapping = fs_info->btree_inode->i_mapping; 905 struct extent_state *cached_state = NULL; 906 u64 start = 0; 907 u64 end; 908 909 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 910 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 911 mark, &cached_state)) { 912 bool wait_writeback = false; 913 914 err = convert_extent_bit(dirty_pages, start, end, 915 EXTENT_NEED_WAIT, 916 mark, &cached_state); 917 /* 918 * convert_extent_bit can return -ENOMEM, which is most of the 919 * time a temporary error. So when it happens, ignore the error 920 * and wait for writeback of this range to finish - because we 921 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 922 * to __btrfs_wait_marked_extents() would not know that 923 * writeback for this range started and therefore wouldn't 924 * wait for it to finish - we don't want to commit a 925 * superblock that points to btree nodes/leafs for which 926 * writeback hasn't finished yet (and without errors). 927 * We cleanup any entries left in the io tree when committing 928 * the transaction (through extent_io_tree_release()). 929 */ 930 if (err == -ENOMEM) { 931 err = 0; 932 wait_writeback = true; 933 } 934 if (!err) 935 err = filemap_fdatawrite_range(mapping, start, end); 936 if (err) 937 werr = err; 938 else if (wait_writeback) 939 werr = filemap_fdatawait_range(mapping, start, end); 940 free_extent_state(cached_state); 941 cached_state = NULL; 942 cond_resched(); 943 start = end + 1; 944 } 945 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 946 return werr; 947 } 948 949 /* 950 * when btree blocks are allocated, they have some corresponding bits set for 951 * them in one of two extent_io trees. This is used to make sure all of 952 * those extents are on disk for transaction or log commit. We wait 953 * on all the pages and clear them from the dirty pages state tree 954 */ 955 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 956 struct extent_io_tree *dirty_pages) 957 { 958 int err = 0; 959 int werr = 0; 960 struct address_space *mapping = fs_info->btree_inode->i_mapping; 961 struct extent_state *cached_state = NULL; 962 u64 start = 0; 963 u64 end; 964 965 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 966 EXTENT_NEED_WAIT, &cached_state)) { 967 /* 968 * Ignore -ENOMEM errors returned by clear_extent_bit(). 969 * When committing the transaction, we'll remove any entries 970 * left in the io tree. For a log commit, we don't remove them 971 * after committing the log because the tree can be accessed 972 * concurrently - we do it only at transaction commit time when 973 * it's safe to do it (through extent_io_tree_release()). 974 */ 975 err = clear_extent_bit(dirty_pages, start, end, 976 EXTENT_NEED_WAIT, 0, 0, &cached_state); 977 if (err == -ENOMEM) 978 err = 0; 979 if (!err) 980 err = filemap_fdatawait_range(mapping, start, end); 981 if (err) 982 werr = err; 983 free_extent_state(cached_state); 984 cached_state = NULL; 985 cond_resched(); 986 start = end + 1; 987 } 988 if (err) 989 werr = err; 990 return werr; 991 } 992 993 int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 994 struct extent_io_tree *dirty_pages) 995 { 996 bool errors = false; 997 int err; 998 999 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1000 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1001 errors = true; 1002 1003 if (errors && !err) 1004 err = -EIO; 1005 return err; 1006 } 1007 1008 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1009 { 1010 struct btrfs_fs_info *fs_info = log_root->fs_info; 1011 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1012 bool errors = false; 1013 int err; 1014 1015 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1016 1017 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1018 if ((mark & EXTENT_DIRTY) && 1019 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1020 errors = true; 1021 1022 if ((mark & EXTENT_NEW) && 1023 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1024 errors = true; 1025 1026 if (errors && !err) 1027 err = -EIO; 1028 return err; 1029 } 1030 1031 /* 1032 * When btree blocks are allocated the corresponding extents are marked dirty. 1033 * This function ensures such extents are persisted on disk for transaction or 1034 * log commit. 1035 * 1036 * @trans: transaction whose dirty pages we'd like to write 1037 */ 1038 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1039 { 1040 int ret; 1041 int ret2; 1042 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1043 struct btrfs_fs_info *fs_info = trans->fs_info; 1044 struct blk_plug plug; 1045 1046 blk_start_plug(&plug); 1047 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1048 blk_finish_plug(&plug); 1049 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1050 1051 extent_io_tree_release(&trans->transaction->dirty_pages); 1052 1053 if (ret) 1054 return ret; 1055 else if (ret2) 1056 return ret2; 1057 else 1058 return 0; 1059 } 1060 1061 /* 1062 * this is used to update the root pointer in the tree of tree roots. 1063 * 1064 * But, in the case of the extent allocation tree, updating the root 1065 * pointer may allocate blocks which may change the root of the extent 1066 * allocation tree. 1067 * 1068 * So, this loops and repeats and makes sure the cowonly root didn't 1069 * change while the root pointer was being updated in the metadata. 1070 */ 1071 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1072 struct btrfs_root *root) 1073 { 1074 int ret; 1075 u64 old_root_bytenr; 1076 u64 old_root_used; 1077 struct btrfs_fs_info *fs_info = root->fs_info; 1078 struct btrfs_root *tree_root = fs_info->tree_root; 1079 1080 old_root_used = btrfs_root_used(&root->root_item); 1081 1082 while (1) { 1083 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1084 if (old_root_bytenr == root->node->start && 1085 old_root_used == btrfs_root_used(&root->root_item)) 1086 break; 1087 1088 btrfs_set_root_node(&root->root_item, root->node); 1089 ret = btrfs_update_root(trans, tree_root, 1090 &root->root_key, 1091 &root->root_item); 1092 if (ret) 1093 return ret; 1094 1095 old_root_used = btrfs_root_used(&root->root_item); 1096 } 1097 1098 return 0; 1099 } 1100 1101 /* 1102 * update all the cowonly tree roots on disk 1103 * 1104 * The error handling in this function may not be obvious. Any of the 1105 * failures will cause the file system to go offline. We still need 1106 * to clean up the delayed refs. 1107 */ 1108 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1109 { 1110 struct btrfs_fs_info *fs_info = trans->fs_info; 1111 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1112 struct list_head *io_bgs = &trans->transaction->io_bgs; 1113 struct list_head *next; 1114 struct extent_buffer *eb; 1115 int ret; 1116 1117 eb = btrfs_lock_root_node(fs_info->tree_root); 1118 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1119 0, &eb); 1120 btrfs_tree_unlock(eb); 1121 free_extent_buffer(eb); 1122 1123 if (ret) 1124 return ret; 1125 1126 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1127 if (ret) 1128 return ret; 1129 1130 ret = btrfs_run_dev_stats(trans); 1131 if (ret) 1132 return ret; 1133 ret = btrfs_run_dev_replace(trans); 1134 if (ret) 1135 return ret; 1136 ret = btrfs_run_qgroups(trans); 1137 if (ret) 1138 return ret; 1139 1140 ret = btrfs_setup_space_cache(trans); 1141 if (ret) 1142 return ret; 1143 1144 /* run_qgroups might have added some more refs */ 1145 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1146 if (ret) 1147 return ret; 1148 again: 1149 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1150 struct btrfs_root *root; 1151 next = fs_info->dirty_cowonly_roots.next; 1152 list_del_init(next); 1153 root = list_entry(next, struct btrfs_root, dirty_list); 1154 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1155 1156 if (root != fs_info->extent_root) 1157 list_add_tail(&root->dirty_list, 1158 &trans->transaction->switch_commits); 1159 ret = update_cowonly_root(trans, root); 1160 if (ret) 1161 return ret; 1162 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1163 if (ret) 1164 return ret; 1165 } 1166 1167 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1168 ret = btrfs_write_dirty_block_groups(trans); 1169 if (ret) 1170 return ret; 1171 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1172 if (ret) 1173 return ret; 1174 } 1175 1176 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1177 goto again; 1178 1179 list_add_tail(&fs_info->extent_root->dirty_list, 1180 &trans->transaction->switch_commits); 1181 1182 /* Update dev-replace pointer once everything is committed */ 1183 fs_info->dev_replace.committed_cursor_left = 1184 fs_info->dev_replace.cursor_left_last_write_of_item; 1185 1186 return 0; 1187 } 1188 1189 /* 1190 * dead roots are old snapshots that need to be deleted. This allocates 1191 * a dirty root struct and adds it into the list of dead roots that need to 1192 * be deleted 1193 */ 1194 void btrfs_add_dead_root(struct btrfs_root *root) 1195 { 1196 struct btrfs_fs_info *fs_info = root->fs_info; 1197 1198 spin_lock(&fs_info->trans_lock); 1199 if (list_empty(&root->root_list)) 1200 list_add_tail(&root->root_list, &fs_info->dead_roots); 1201 spin_unlock(&fs_info->trans_lock); 1202 } 1203 1204 /* 1205 * update all the cowonly tree roots on disk 1206 */ 1207 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1208 { 1209 struct btrfs_fs_info *fs_info = trans->fs_info; 1210 struct btrfs_root *gang[8]; 1211 int i; 1212 int ret; 1213 int err = 0; 1214 1215 spin_lock(&fs_info->fs_roots_radix_lock); 1216 while (1) { 1217 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1218 (void **)gang, 0, 1219 ARRAY_SIZE(gang), 1220 BTRFS_ROOT_TRANS_TAG); 1221 if (ret == 0) 1222 break; 1223 for (i = 0; i < ret; i++) { 1224 struct btrfs_root *root = gang[i]; 1225 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1226 (unsigned long)root->root_key.objectid, 1227 BTRFS_ROOT_TRANS_TAG); 1228 spin_unlock(&fs_info->fs_roots_radix_lock); 1229 1230 btrfs_free_log(trans, root); 1231 btrfs_update_reloc_root(trans, root); 1232 1233 btrfs_save_ino_cache(root, trans); 1234 1235 /* see comments in should_cow_block() */ 1236 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1237 smp_mb__after_atomic(); 1238 1239 if (root->commit_root != root->node) { 1240 list_add_tail(&root->dirty_list, 1241 &trans->transaction->switch_commits); 1242 btrfs_set_root_node(&root->root_item, 1243 root->node); 1244 } 1245 1246 err = btrfs_update_root(trans, fs_info->tree_root, 1247 &root->root_key, 1248 &root->root_item); 1249 spin_lock(&fs_info->fs_roots_radix_lock); 1250 if (err) 1251 break; 1252 btrfs_qgroup_free_meta_all_pertrans(root); 1253 } 1254 } 1255 spin_unlock(&fs_info->fs_roots_radix_lock); 1256 return err; 1257 } 1258 1259 /* 1260 * defrag a given btree. 1261 * Every leaf in the btree is read and defragged. 1262 */ 1263 int btrfs_defrag_root(struct btrfs_root *root) 1264 { 1265 struct btrfs_fs_info *info = root->fs_info; 1266 struct btrfs_trans_handle *trans; 1267 int ret; 1268 1269 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1270 return 0; 1271 1272 while (1) { 1273 trans = btrfs_start_transaction(root, 0); 1274 if (IS_ERR(trans)) 1275 return PTR_ERR(trans); 1276 1277 ret = btrfs_defrag_leaves(trans, root); 1278 1279 btrfs_end_transaction(trans); 1280 btrfs_btree_balance_dirty(info); 1281 cond_resched(); 1282 1283 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1284 break; 1285 1286 if (btrfs_defrag_cancelled(info)) { 1287 btrfs_debug(info, "defrag_root cancelled"); 1288 ret = -EAGAIN; 1289 break; 1290 } 1291 } 1292 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1293 return ret; 1294 } 1295 1296 /* 1297 * Do all special snapshot related qgroup dirty hack. 1298 * 1299 * Will do all needed qgroup inherit and dirty hack like switch commit 1300 * roots inside one transaction and write all btree into disk, to make 1301 * qgroup works. 1302 */ 1303 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1304 struct btrfs_root *src, 1305 struct btrfs_root *parent, 1306 struct btrfs_qgroup_inherit *inherit, 1307 u64 dst_objectid) 1308 { 1309 struct btrfs_fs_info *fs_info = src->fs_info; 1310 int ret; 1311 1312 /* 1313 * Save some performance in the case that qgroups are not 1314 * enabled. If this check races with the ioctl, rescan will 1315 * kick in anyway. 1316 */ 1317 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1318 return 0; 1319 1320 /* 1321 * Ensure dirty @src will be committed. Or, after coming 1322 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1323 * recorded root will never be updated again, causing an outdated root 1324 * item. 1325 */ 1326 record_root_in_trans(trans, src, 1); 1327 1328 /* 1329 * We are going to commit transaction, see btrfs_commit_transaction() 1330 * comment for reason locking tree_log_mutex 1331 */ 1332 mutex_lock(&fs_info->tree_log_mutex); 1333 1334 ret = commit_fs_roots(trans); 1335 if (ret) 1336 goto out; 1337 ret = btrfs_qgroup_account_extents(trans); 1338 if (ret < 0) 1339 goto out; 1340 1341 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1342 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1343 inherit); 1344 if (ret < 0) 1345 goto out; 1346 1347 /* 1348 * Now we do a simplified commit transaction, which will: 1349 * 1) commit all subvolume and extent tree 1350 * To ensure all subvolume and extent tree have a valid 1351 * commit_root to accounting later insert_dir_item() 1352 * 2) write all btree blocks onto disk 1353 * This is to make sure later btree modification will be cowed 1354 * Or commit_root can be populated and cause wrong qgroup numbers 1355 * In this simplified commit, we don't really care about other trees 1356 * like chunk and root tree, as they won't affect qgroup. 1357 * And we don't write super to avoid half committed status. 1358 */ 1359 ret = commit_cowonly_roots(trans); 1360 if (ret) 1361 goto out; 1362 switch_commit_roots(trans->transaction); 1363 ret = btrfs_write_and_wait_transaction(trans); 1364 if (ret) 1365 btrfs_handle_fs_error(fs_info, ret, 1366 "Error while writing out transaction for qgroup"); 1367 1368 out: 1369 mutex_unlock(&fs_info->tree_log_mutex); 1370 1371 /* 1372 * Force parent root to be updated, as we recorded it before so its 1373 * last_trans == cur_transid. 1374 * Or it won't be committed again onto disk after later 1375 * insert_dir_item() 1376 */ 1377 if (!ret) 1378 record_root_in_trans(trans, parent, 1); 1379 return ret; 1380 } 1381 1382 /* 1383 * new snapshots need to be created at a very specific time in the 1384 * transaction commit. This does the actual creation. 1385 * 1386 * Note: 1387 * If the error which may affect the commitment of the current transaction 1388 * happens, we should return the error number. If the error which just affect 1389 * the creation of the pending snapshots, just return 0. 1390 */ 1391 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1392 struct btrfs_pending_snapshot *pending) 1393 { 1394 1395 struct btrfs_fs_info *fs_info = trans->fs_info; 1396 struct btrfs_key key; 1397 struct btrfs_root_item *new_root_item; 1398 struct btrfs_root *tree_root = fs_info->tree_root; 1399 struct btrfs_root *root = pending->root; 1400 struct btrfs_root *parent_root; 1401 struct btrfs_block_rsv *rsv; 1402 struct inode *parent_inode; 1403 struct btrfs_path *path; 1404 struct btrfs_dir_item *dir_item; 1405 struct dentry *dentry; 1406 struct extent_buffer *tmp; 1407 struct extent_buffer *old; 1408 struct timespec64 cur_time; 1409 int ret = 0; 1410 u64 to_reserve = 0; 1411 u64 index = 0; 1412 u64 objectid; 1413 u64 root_flags; 1414 uuid_le new_uuid; 1415 1416 ASSERT(pending->path); 1417 path = pending->path; 1418 1419 ASSERT(pending->root_item); 1420 new_root_item = pending->root_item; 1421 1422 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1423 if (pending->error) 1424 goto no_free_objectid; 1425 1426 /* 1427 * Make qgroup to skip current new snapshot's qgroupid, as it is 1428 * accounted by later btrfs_qgroup_inherit(). 1429 */ 1430 btrfs_set_skip_qgroup(trans, objectid); 1431 1432 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1433 1434 if (to_reserve > 0) { 1435 pending->error = btrfs_block_rsv_add(root, 1436 &pending->block_rsv, 1437 to_reserve, 1438 BTRFS_RESERVE_NO_FLUSH); 1439 if (pending->error) 1440 goto clear_skip_qgroup; 1441 } 1442 1443 key.objectid = objectid; 1444 key.offset = (u64)-1; 1445 key.type = BTRFS_ROOT_ITEM_KEY; 1446 1447 rsv = trans->block_rsv; 1448 trans->block_rsv = &pending->block_rsv; 1449 trans->bytes_reserved = trans->block_rsv->reserved; 1450 trace_btrfs_space_reservation(fs_info, "transaction", 1451 trans->transid, 1452 trans->bytes_reserved, 1); 1453 dentry = pending->dentry; 1454 parent_inode = pending->dir; 1455 parent_root = BTRFS_I(parent_inode)->root; 1456 record_root_in_trans(trans, parent_root, 0); 1457 1458 cur_time = current_time(parent_inode); 1459 1460 /* 1461 * insert the directory item 1462 */ 1463 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1464 BUG_ON(ret); /* -ENOMEM */ 1465 1466 /* check if there is a file/dir which has the same name. */ 1467 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1468 btrfs_ino(BTRFS_I(parent_inode)), 1469 dentry->d_name.name, 1470 dentry->d_name.len, 0); 1471 if (dir_item != NULL && !IS_ERR(dir_item)) { 1472 pending->error = -EEXIST; 1473 goto dir_item_existed; 1474 } else if (IS_ERR(dir_item)) { 1475 ret = PTR_ERR(dir_item); 1476 btrfs_abort_transaction(trans, ret); 1477 goto fail; 1478 } 1479 btrfs_release_path(path); 1480 1481 /* 1482 * pull in the delayed directory update 1483 * and the delayed inode item 1484 * otherwise we corrupt the FS during 1485 * snapshot 1486 */ 1487 ret = btrfs_run_delayed_items(trans); 1488 if (ret) { /* Transaction aborted */ 1489 btrfs_abort_transaction(trans, ret); 1490 goto fail; 1491 } 1492 1493 record_root_in_trans(trans, root, 0); 1494 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1495 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1496 btrfs_check_and_init_root_item(new_root_item); 1497 1498 root_flags = btrfs_root_flags(new_root_item); 1499 if (pending->readonly) 1500 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1501 else 1502 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1503 btrfs_set_root_flags(new_root_item, root_flags); 1504 1505 btrfs_set_root_generation_v2(new_root_item, 1506 trans->transid); 1507 uuid_le_gen(&new_uuid); 1508 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1509 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1510 BTRFS_UUID_SIZE); 1511 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1512 memset(new_root_item->received_uuid, 0, 1513 sizeof(new_root_item->received_uuid)); 1514 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1515 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1516 btrfs_set_root_stransid(new_root_item, 0); 1517 btrfs_set_root_rtransid(new_root_item, 0); 1518 } 1519 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1520 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1521 btrfs_set_root_otransid(new_root_item, trans->transid); 1522 1523 old = btrfs_lock_root_node(root); 1524 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1525 if (ret) { 1526 btrfs_tree_unlock(old); 1527 free_extent_buffer(old); 1528 btrfs_abort_transaction(trans, ret); 1529 goto fail; 1530 } 1531 1532 btrfs_set_lock_blocking_write(old); 1533 1534 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1535 /* clean up in any case */ 1536 btrfs_tree_unlock(old); 1537 free_extent_buffer(old); 1538 if (ret) { 1539 btrfs_abort_transaction(trans, ret); 1540 goto fail; 1541 } 1542 /* see comments in should_cow_block() */ 1543 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1544 smp_wmb(); 1545 1546 btrfs_set_root_node(new_root_item, tmp); 1547 /* record when the snapshot was created in key.offset */ 1548 key.offset = trans->transid; 1549 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1550 btrfs_tree_unlock(tmp); 1551 free_extent_buffer(tmp); 1552 if (ret) { 1553 btrfs_abort_transaction(trans, ret); 1554 goto fail; 1555 } 1556 1557 /* 1558 * insert root back/forward references 1559 */ 1560 ret = btrfs_add_root_ref(trans, objectid, 1561 parent_root->root_key.objectid, 1562 btrfs_ino(BTRFS_I(parent_inode)), index, 1563 dentry->d_name.name, dentry->d_name.len); 1564 if (ret) { 1565 btrfs_abort_transaction(trans, ret); 1566 goto fail; 1567 } 1568 1569 key.offset = (u64)-1; 1570 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key); 1571 if (IS_ERR(pending->snap)) { 1572 ret = PTR_ERR(pending->snap); 1573 btrfs_abort_transaction(trans, ret); 1574 goto fail; 1575 } 1576 1577 ret = btrfs_reloc_post_snapshot(trans, pending); 1578 if (ret) { 1579 btrfs_abort_transaction(trans, ret); 1580 goto fail; 1581 } 1582 1583 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1584 if (ret) { 1585 btrfs_abort_transaction(trans, ret); 1586 goto fail; 1587 } 1588 1589 /* 1590 * Do special qgroup accounting for snapshot, as we do some qgroup 1591 * snapshot hack to do fast snapshot. 1592 * To co-operate with that hack, we do hack again. 1593 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1594 */ 1595 ret = qgroup_account_snapshot(trans, root, parent_root, 1596 pending->inherit, objectid); 1597 if (ret < 0) 1598 goto fail; 1599 1600 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1601 dentry->d_name.len, BTRFS_I(parent_inode), 1602 &key, BTRFS_FT_DIR, index); 1603 /* We have check then name at the beginning, so it is impossible. */ 1604 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1605 if (ret) { 1606 btrfs_abort_transaction(trans, ret); 1607 goto fail; 1608 } 1609 1610 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1611 dentry->d_name.len * 2); 1612 parent_inode->i_mtime = parent_inode->i_ctime = 1613 current_time(parent_inode); 1614 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1615 if (ret) { 1616 btrfs_abort_transaction(trans, ret); 1617 goto fail; 1618 } 1619 ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL, 1620 objectid); 1621 if (ret) { 1622 btrfs_abort_transaction(trans, ret); 1623 goto fail; 1624 } 1625 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1626 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1627 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1628 objectid); 1629 if (ret && ret != -EEXIST) { 1630 btrfs_abort_transaction(trans, ret); 1631 goto fail; 1632 } 1633 } 1634 1635 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1636 if (ret) { 1637 btrfs_abort_transaction(trans, ret); 1638 goto fail; 1639 } 1640 1641 fail: 1642 pending->error = ret; 1643 dir_item_existed: 1644 trans->block_rsv = rsv; 1645 trans->bytes_reserved = 0; 1646 clear_skip_qgroup: 1647 btrfs_clear_skip_qgroup(trans); 1648 no_free_objectid: 1649 kfree(new_root_item); 1650 pending->root_item = NULL; 1651 btrfs_free_path(path); 1652 pending->path = NULL; 1653 1654 return ret; 1655 } 1656 1657 /* 1658 * create all the snapshots we've scheduled for creation 1659 */ 1660 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1661 { 1662 struct btrfs_pending_snapshot *pending, *next; 1663 struct list_head *head = &trans->transaction->pending_snapshots; 1664 int ret = 0; 1665 1666 list_for_each_entry_safe(pending, next, head, list) { 1667 list_del(&pending->list); 1668 ret = create_pending_snapshot(trans, pending); 1669 if (ret) 1670 break; 1671 } 1672 return ret; 1673 } 1674 1675 static void update_super_roots(struct btrfs_fs_info *fs_info) 1676 { 1677 struct btrfs_root_item *root_item; 1678 struct btrfs_super_block *super; 1679 1680 super = fs_info->super_copy; 1681 1682 root_item = &fs_info->chunk_root->root_item; 1683 super->chunk_root = root_item->bytenr; 1684 super->chunk_root_generation = root_item->generation; 1685 super->chunk_root_level = root_item->level; 1686 1687 root_item = &fs_info->tree_root->root_item; 1688 super->root = root_item->bytenr; 1689 super->generation = root_item->generation; 1690 super->root_level = root_item->level; 1691 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1692 super->cache_generation = root_item->generation; 1693 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1694 super->uuid_tree_generation = root_item->generation; 1695 } 1696 1697 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1698 { 1699 struct btrfs_transaction *trans; 1700 int ret = 0; 1701 1702 spin_lock(&info->trans_lock); 1703 trans = info->running_transaction; 1704 if (trans) 1705 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1706 spin_unlock(&info->trans_lock); 1707 return ret; 1708 } 1709 1710 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1711 { 1712 struct btrfs_transaction *trans; 1713 int ret = 0; 1714 1715 spin_lock(&info->trans_lock); 1716 trans = info->running_transaction; 1717 if (trans) 1718 ret = is_transaction_blocked(trans); 1719 spin_unlock(&info->trans_lock); 1720 return ret; 1721 } 1722 1723 /* 1724 * wait for the current transaction commit to start and block subsequent 1725 * transaction joins 1726 */ 1727 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, 1728 struct btrfs_transaction *trans) 1729 { 1730 wait_event(fs_info->transaction_blocked_wait, 1731 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted); 1732 } 1733 1734 /* 1735 * wait for the current transaction to start and then become unblocked. 1736 * caller holds ref. 1737 */ 1738 static void wait_current_trans_commit_start_and_unblock( 1739 struct btrfs_fs_info *fs_info, 1740 struct btrfs_transaction *trans) 1741 { 1742 wait_event(fs_info->transaction_wait, 1743 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted); 1744 } 1745 1746 /* 1747 * commit transactions asynchronously. once btrfs_commit_transaction_async 1748 * returns, any subsequent transaction will not be allowed to join. 1749 */ 1750 struct btrfs_async_commit { 1751 struct btrfs_trans_handle *newtrans; 1752 struct work_struct work; 1753 }; 1754 1755 static void do_async_commit(struct work_struct *work) 1756 { 1757 struct btrfs_async_commit *ac = 1758 container_of(work, struct btrfs_async_commit, work); 1759 1760 /* 1761 * We've got freeze protection passed with the transaction. 1762 * Tell lockdep about it. 1763 */ 1764 if (ac->newtrans->type & __TRANS_FREEZABLE) 1765 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1766 1767 current->journal_info = ac->newtrans; 1768 1769 btrfs_commit_transaction(ac->newtrans); 1770 kfree(ac); 1771 } 1772 1773 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1774 int wait_for_unblock) 1775 { 1776 struct btrfs_fs_info *fs_info = trans->fs_info; 1777 struct btrfs_async_commit *ac; 1778 struct btrfs_transaction *cur_trans; 1779 1780 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1781 if (!ac) 1782 return -ENOMEM; 1783 1784 INIT_WORK(&ac->work, do_async_commit); 1785 ac->newtrans = btrfs_join_transaction(trans->root); 1786 if (IS_ERR(ac->newtrans)) { 1787 int err = PTR_ERR(ac->newtrans); 1788 kfree(ac); 1789 return err; 1790 } 1791 1792 /* take transaction reference */ 1793 cur_trans = trans->transaction; 1794 refcount_inc(&cur_trans->use_count); 1795 1796 btrfs_end_transaction(trans); 1797 1798 /* 1799 * Tell lockdep we've released the freeze rwsem, since the 1800 * async commit thread will be the one to unlock it. 1801 */ 1802 if (ac->newtrans->type & __TRANS_FREEZABLE) 1803 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1804 1805 schedule_work(&ac->work); 1806 1807 /* wait for transaction to start and unblock */ 1808 if (wait_for_unblock) 1809 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); 1810 else 1811 wait_current_trans_commit_start(fs_info, cur_trans); 1812 1813 if (current->journal_info == trans) 1814 current->journal_info = NULL; 1815 1816 btrfs_put_transaction(cur_trans); 1817 return 0; 1818 } 1819 1820 1821 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1822 { 1823 struct btrfs_fs_info *fs_info = trans->fs_info; 1824 struct btrfs_transaction *cur_trans = trans->transaction; 1825 1826 WARN_ON(refcount_read(&trans->use_count) > 1); 1827 1828 btrfs_abort_transaction(trans, err); 1829 1830 spin_lock(&fs_info->trans_lock); 1831 1832 /* 1833 * If the transaction is removed from the list, it means this 1834 * transaction has been committed successfully, so it is impossible 1835 * to call the cleanup function. 1836 */ 1837 BUG_ON(list_empty(&cur_trans->list)); 1838 1839 list_del_init(&cur_trans->list); 1840 if (cur_trans == fs_info->running_transaction) { 1841 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1842 spin_unlock(&fs_info->trans_lock); 1843 wait_event(cur_trans->writer_wait, 1844 atomic_read(&cur_trans->num_writers) == 1); 1845 1846 spin_lock(&fs_info->trans_lock); 1847 } 1848 spin_unlock(&fs_info->trans_lock); 1849 1850 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1851 1852 spin_lock(&fs_info->trans_lock); 1853 if (cur_trans == fs_info->running_transaction) 1854 fs_info->running_transaction = NULL; 1855 spin_unlock(&fs_info->trans_lock); 1856 1857 if (trans->type & __TRANS_FREEZABLE) 1858 sb_end_intwrite(fs_info->sb); 1859 btrfs_put_transaction(cur_trans); 1860 btrfs_put_transaction(cur_trans); 1861 1862 trace_btrfs_transaction_commit(trans->root); 1863 1864 if (current->journal_info == trans) 1865 current->journal_info = NULL; 1866 btrfs_scrub_cancel(fs_info); 1867 1868 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1869 } 1870 1871 /* 1872 * Release reserved delayed ref space of all pending block groups of the 1873 * transaction and remove them from the list 1874 */ 1875 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 1876 { 1877 struct btrfs_fs_info *fs_info = trans->fs_info; 1878 struct btrfs_block_group_cache *block_group, *tmp; 1879 1880 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 1881 btrfs_delayed_refs_rsv_release(fs_info, 1); 1882 list_del_init(&block_group->bg_list); 1883 } 1884 } 1885 1886 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans) 1887 { 1888 struct btrfs_fs_info *fs_info = trans->fs_info; 1889 1890 /* 1891 * We use writeback_inodes_sb here because if we used 1892 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 1893 * Currently are holding the fs freeze lock, if we do an async flush 1894 * we'll do btrfs_join_transaction() and deadlock because we need to 1895 * wait for the fs freeze lock. Using the direct flushing we benefit 1896 * from already being in a transaction and our join_transaction doesn't 1897 * have to re-take the fs freeze lock. 1898 */ 1899 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) { 1900 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 1901 } else { 1902 struct btrfs_pending_snapshot *pending; 1903 struct list_head *head = &trans->transaction->pending_snapshots; 1904 1905 /* 1906 * Flush dellaloc for any root that is going to be snapshotted. 1907 * This is done to avoid a corrupted version of files, in the 1908 * snapshots, that had both buffered and direct IO writes (even 1909 * if they were done sequentially) due to an unordered update of 1910 * the inode's size on disk. 1911 */ 1912 list_for_each_entry(pending, head, list) { 1913 int ret; 1914 1915 ret = btrfs_start_delalloc_snapshot(pending->root); 1916 if (ret) 1917 return ret; 1918 } 1919 } 1920 return 0; 1921 } 1922 1923 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans) 1924 { 1925 struct btrfs_fs_info *fs_info = trans->fs_info; 1926 1927 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) { 1928 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1929 } else { 1930 struct btrfs_pending_snapshot *pending; 1931 struct list_head *head = &trans->transaction->pending_snapshots; 1932 1933 /* 1934 * Wait for any dellaloc that we started previously for the roots 1935 * that are going to be snapshotted. This is to avoid a corrupted 1936 * version of files in the snapshots that had both buffered and 1937 * direct IO writes (even if they were done sequentially). 1938 */ 1939 list_for_each_entry(pending, head, list) 1940 btrfs_wait_ordered_extents(pending->root, 1941 U64_MAX, 0, U64_MAX); 1942 } 1943 } 1944 1945 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 1946 { 1947 struct btrfs_fs_info *fs_info = trans->fs_info; 1948 struct btrfs_transaction *cur_trans = trans->transaction; 1949 struct btrfs_transaction *prev_trans = NULL; 1950 int ret; 1951 1952 /* Stop the commit early if ->aborted is set */ 1953 if (unlikely(READ_ONCE(cur_trans->aborted))) { 1954 ret = cur_trans->aborted; 1955 btrfs_end_transaction(trans); 1956 return ret; 1957 } 1958 1959 btrfs_trans_release_metadata(trans); 1960 trans->block_rsv = NULL; 1961 1962 /* make a pass through all the delayed refs we have so far 1963 * any runnings procs may add more while we are here 1964 */ 1965 ret = btrfs_run_delayed_refs(trans, 0); 1966 if (ret) { 1967 btrfs_end_transaction(trans); 1968 return ret; 1969 } 1970 1971 cur_trans = trans->transaction; 1972 1973 /* 1974 * set the flushing flag so procs in this transaction have to 1975 * start sending their work down. 1976 */ 1977 cur_trans->delayed_refs.flushing = 1; 1978 smp_wmb(); 1979 1980 btrfs_create_pending_block_groups(trans); 1981 1982 ret = btrfs_run_delayed_refs(trans, 0); 1983 if (ret) { 1984 btrfs_end_transaction(trans); 1985 return ret; 1986 } 1987 1988 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 1989 int run_it = 0; 1990 1991 /* this mutex is also taken before trying to set 1992 * block groups readonly. We need to make sure 1993 * that nobody has set a block group readonly 1994 * after a extents from that block group have been 1995 * allocated for cache files. btrfs_set_block_group_ro 1996 * will wait for the transaction to commit if it 1997 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 1998 * 1999 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2000 * only one process starts all the block group IO. It wouldn't 2001 * hurt to have more than one go through, but there's no 2002 * real advantage to it either. 2003 */ 2004 mutex_lock(&fs_info->ro_block_group_mutex); 2005 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2006 &cur_trans->flags)) 2007 run_it = 1; 2008 mutex_unlock(&fs_info->ro_block_group_mutex); 2009 2010 if (run_it) { 2011 ret = btrfs_start_dirty_block_groups(trans); 2012 if (ret) { 2013 btrfs_end_transaction(trans); 2014 return ret; 2015 } 2016 } 2017 } 2018 2019 spin_lock(&fs_info->trans_lock); 2020 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2021 spin_unlock(&fs_info->trans_lock); 2022 refcount_inc(&cur_trans->use_count); 2023 ret = btrfs_end_transaction(trans); 2024 2025 wait_for_commit(cur_trans); 2026 2027 if (unlikely(cur_trans->aborted)) 2028 ret = cur_trans->aborted; 2029 2030 btrfs_put_transaction(cur_trans); 2031 2032 return ret; 2033 } 2034 2035 cur_trans->state = TRANS_STATE_COMMIT_START; 2036 wake_up(&fs_info->transaction_blocked_wait); 2037 2038 if (cur_trans->list.prev != &fs_info->trans_list) { 2039 prev_trans = list_entry(cur_trans->list.prev, 2040 struct btrfs_transaction, list); 2041 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2042 refcount_inc(&prev_trans->use_count); 2043 spin_unlock(&fs_info->trans_lock); 2044 2045 wait_for_commit(prev_trans); 2046 ret = prev_trans->aborted; 2047 2048 btrfs_put_transaction(prev_trans); 2049 if (ret) 2050 goto cleanup_transaction; 2051 } else { 2052 spin_unlock(&fs_info->trans_lock); 2053 } 2054 } else { 2055 spin_unlock(&fs_info->trans_lock); 2056 /* 2057 * The previous transaction was aborted and was already removed 2058 * from the list of transactions at fs_info->trans_list. So we 2059 * abort to prevent writing a new superblock that reflects a 2060 * corrupt state (pointing to trees with unwritten nodes/leafs). 2061 */ 2062 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) { 2063 ret = -EROFS; 2064 goto cleanup_transaction; 2065 } 2066 } 2067 2068 extwriter_counter_dec(cur_trans, trans->type); 2069 2070 ret = btrfs_start_delalloc_flush(trans); 2071 if (ret) 2072 goto cleanup_transaction; 2073 2074 ret = btrfs_run_delayed_items(trans); 2075 if (ret) 2076 goto cleanup_transaction; 2077 2078 wait_event(cur_trans->writer_wait, 2079 extwriter_counter_read(cur_trans) == 0); 2080 2081 /* some pending stuffs might be added after the previous flush. */ 2082 ret = btrfs_run_delayed_items(trans); 2083 if (ret) 2084 goto cleanup_transaction; 2085 2086 btrfs_wait_delalloc_flush(trans); 2087 2088 btrfs_scrub_pause(fs_info); 2089 /* 2090 * Ok now we need to make sure to block out any other joins while we 2091 * commit the transaction. We could have started a join before setting 2092 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2093 */ 2094 spin_lock(&fs_info->trans_lock); 2095 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2096 spin_unlock(&fs_info->trans_lock); 2097 wait_event(cur_trans->writer_wait, 2098 atomic_read(&cur_trans->num_writers) == 1); 2099 2100 /* ->aborted might be set after the previous check, so check it */ 2101 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2102 ret = cur_trans->aborted; 2103 goto scrub_continue; 2104 } 2105 /* 2106 * the reloc mutex makes sure that we stop 2107 * the balancing code from coming in and moving 2108 * extents around in the middle of the commit 2109 */ 2110 mutex_lock(&fs_info->reloc_mutex); 2111 2112 /* 2113 * We needn't worry about the delayed items because we will 2114 * deal with them in create_pending_snapshot(), which is the 2115 * core function of the snapshot creation. 2116 */ 2117 ret = create_pending_snapshots(trans); 2118 if (ret) { 2119 mutex_unlock(&fs_info->reloc_mutex); 2120 goto scrub_continue; 2121 } 2122 2123 /* 2124 * We insert the dir indexes of the snapshots and update the inode 2125 * of the snapshots' parents after the snapshot creation, so there 2126 * are some delayed items which are not dealt with. Now deal with 2127 * them. 2128 * 2129 * We needn't worry that this operation will corrupt the snapshots, 2130 * because all the tree which are snapshoted will be forced to COW 2131 * the nodes and leaves. 2132 */ 2133 ret = btrfs_run_delayed_items(trans); 2134 if (ret) { 2135 mutex_unlock(&fs_info->reloc_mutex); 2136 goto scrub_continue; 2137 } 2138 2139 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2140 if (ret) { 2141 mutex_unlock(&fs_info->reloc_mutex); 2142 goto scrub_continue; 2143 } 2144 2145 /* 2146 * make sure none of the code above managed to slip in a 2147 * delayed item 2148 */ 2149 btrfs_assert_delayed_root_empty(fs_info); 2150 2151 WARN_ON(cur_trans != trans->transaction); 2152 2153 /* btrfs_commit_tree_roots is responsible for getting the 2154 * various roots consistent with each other. Every pointer 2155 * in the tree of tree roots has to point to the most up to date 2156 * root for every subvolume and other tree. So, we have to keep 2157 * the tree logging code from jumping in and changing any 2158 * of the trees. 2159 * 2160 * At this point in the commit, there can't be any tree-log 2161 * writers, but a little lower down we drop the trans mutex 2162 * and let new people in. By holding the tree_log_mutex 2163 * from now until after the super is written, we avoid races 2164 * with the tree-log code. 2165 */ 2166 mutex_lock(&fs_info->tree_log_mutex); 2167 2168 ret = commit_fs_roots(trans); 2169 if (ret) { 2170 mutex_unlock(&fs_info->tree_log_mutex); 2171 mutex_unlock(&fs_info->reloc_mutex); 2172 goto scrub_continue; 2173 } 2174 2175 /* 2176 * Since the transaction is done, we can apply the pending changes 2177 * before the next transaction. 2178 */ 2179 btrfs_apply_pending_changes(fs_info); 2180 2181 /* commit_fs_roots gets rid of all the tree log roots, it is now 2182 * safe to free the root of tree log roots 2183 */ 2184 btrfs_free_log_root_tree(trans, fs_info); 2185 2186 /* 2187 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates 2188 * new delayed refs. Must handle them or qgroup can be wrong. 2189 */ 2190 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2191 if (ret) { 2192 mutex_unlock(&fs_info->tree_log_mutex); 2193 mutex_unlock(&fs_info->reloc_mutex); 2194 goto scrub_continue; 2195 } 2196 2197 /* 2198 * Since fs roots are all committed, we can get a quite accurate 2199 * new_roots. So let's do quota accounting. 2200 */ 2201 ret = btrfs_qgroup_account_extents(trans); 2202 if (ret < 0) { 2203 mutex_unlock(&fs_info->tree_log_mutex); 2204 mutex_unlock(&fs_info->reloc_mutex); 2205 goto scrub_continue; 2206 } 2207 2208 ret = commit_cowonly_roots(trans); 2209 if (ret) { 2210 mutex_unlock(&fs_info->tree_log_mutex); 2211 mutex_unlock(&fs_info->reloc_mutex); 2212 goto scrub_continue; 2213 } 2214 2215 /* 2216 * The tasks which save the space cache and inode cache may also 2217 * update ->aborted, check it. 2218 */ 2219 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2220 ret = cur_trans->aborted; 2221 mutex_unlock(&fs_info->tree_log_mutex); 2222 mutex_unlock(&fs_info->reloc_mutex); 2223 goto scrub_continue; 2224 } 2225 2226 btrfs_prepare_extent_commit(fs_info); 2227 2228 cur_trans = fs_info->running_transaction; 2229 2230 btrfs_set_root_node(&fs_info->tree_root->root_item, 2231 fs_info->tree_root->node); 2232 list_add_tail(&fs_info->tree_root->dirty_list, 2233 &cur_trans->switch_commits); 2234 2235 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2236 fs_info->chunk_root->node); 2237 list_add_tail(&fs_info->chunk_root->dirty_list, 2238 &cur_trans->switch_commits); 2239 2240 switch_commit_roots(cur_trans); 2241 2242 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2243 ASSERT(list_empty(&cur_trans->io_bgs)); 2244 update_super_roots(fs_info); 2245 2246 btrfs_set_super_log_root(fs_info->super_copy, 0); 2247 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2248 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2249 sizeof(*fs_info->super_copy)); 2250 2251 btrfs_commit_device_sizes(cur_trans); 2252 2253 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2254 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2255 2256 btrfs_trans_release_chunk_metadata(trans); 2257 2258 spin_lock(&fs_info->trans_lock); 2259 cur_trans->state = TRANS_STATE_UNBLOCKED; 2260 fs_info->running_transaction = NULL; 2261 spin_unlock(&fs_info->trans_lock); 2262 mutex_unlock(&fs_info->reloc_mutex); 2263 2264 wake_up(&fs_info->transaction_wait); 2265 2266 ret = btrfs_write_and_wait_transaction(trans); 2267 if (ret) { 2268 btrfs_handle_fs_error(fs_info, ret, 2269 "Error while writing out transaction"); 2270 mutex_unlock(&fs_info->tree_log_mutex); 2271 goto scrub_continue; 2272 } 2273 2274 ret = write_all_supers(fs_info, 0); 2275 /* 2276 * the super is written, we can safely allow the tree-loggers 2277 * to go about their business 2278 */ 2279 mutex_unlock(&fs_info->tree_log_mutex); 2280 if (ret) 2281 goto scrub_continue; 2282 2283 btrfs_finish_extent_commit(trans); 2284 2285 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2286 btrfs_clear_space_info_full(fs_info); 2287 2288 fs_info->last_trans_committed = cur_trans->transid; 2289 /* 2290 * We needn't acquire the lock here because there is no other task 2291 * which can change it. 2292 */ 2293 cur_trans->state = TRANS_STATE_COMPLETED; 2294 wake_up(&cur_trans->commit_wait); 2295 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags); 2296 2297 spin_lock(&fs_info->trans_lock); 2298 list_del_init(&cur_trans->list); 2299 spin_unlock(&fs_info->trans_lock); 2300 2301 btrfs_put_transaction(cur_trans); 2302 btrfs_put_transaction(cur_trans); 2303 2304 if (trans->type & __TRANS_FREEZABLE) 2305 sb_end_intwrite(fs_info->sb); 2306 2307 trace_btrfs_transaction_commit(trans->root); 2308 2309 btrfs_scrub_continue(fs_info); 2310 2311 if (current->journal_info == trans) 2312 current->journal_info = NULL; 2313 2314 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2315 2316 return ret; 2317 2318 scrub_continue: 2319 btrfs_scrub_continue(fs_info); 2320 cleanup_transaction: 2321 btrfs_trans_release_metadata(trans); 2322 btrfs_cleanup_pending_block_groups(trans); 2323 btrfs_trans_release_chunk_metadata(trans); 2324 trans->block_rsv = NULL; 2325 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2326 if (current->journal_info == trans) 2327 current->journal_info = NULL; 2328 cleanup_transaction(trans, ret); 2329 2330 return ret; 2331 } 2332 2333 /* 2334 * return < 0 if error 2335 * 0 if there are no more dead_roots at the time of call 2336 * 1 there are more to be processed, call me again 2337 * 2338 * The return value indicates there are certainly more snapshots to delete, but 2339 * if there comes a new one during processing, it may return 0. We don't mind, 2340 * because btrfs_commit_super will poke cleaner thread and it will process it a 2341 * few seconds later. 2342 */ 2343 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2344 { 2345 int ret; 2346 struct btrfs_fs_info *fs_info = root->fs_info; 2347 2348 spin_lock(&fs_info->trans_lock); 2349 if (list_empty(&fs_info->dead_roots)) { 2350 spin_unlock(&fs_info->trans_lock); 2351 return 0; 2352 } 2353 root = list_first_entry(&fs_info->dead_roots, 2354 struct btrfs_root, root_list); 2355 list_del_init(&root->root_list); 2356 spin_unlock(&fs_info->trans_lock); 2357 2358 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2359 2360 btrfs_kill_all_delayed_nodes(root); 2361 2362 if (btrfs_header_backref_rev(root->node) < 2363 BTRFS_MIXED_BACKREF_REV) 2364 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2365 else 2366 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2367 2368 return (ret < 0) ? 0 : 1; 2369 } 2370 2371 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2372 { 2373 unsigned long prev; 2374 unsigned long bit; 2375 2376 prev = xchg(&fs_info->pending_changes, 0); 2377 if (!prev) 2378 return; 2379 2380 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2381 if (prev & bit) 2382 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2383 prev &= ~bit; 2384 2385 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2386 if (prev & bit) 2387 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2388 prev &= ~bit; 2389 2390 bit = 1 << BTRFS_PENDING_COMMIT; 2391 if (prev & bit) 2392 btrfs_debug(fs_info, "pending commit done"); 2393 prev &= ~bit; 2394 2395 if (prev) 2396 btrfs_warn(fs_info, 2397 "unknown pending changes left 0x%lx, ignoring", prev); 2398 } 2399