xref: /openbmc/linux/fs/btrfs/transaction.c (revision a325f174)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "zoned.h"
27 #include "fs.h"
28 #include "accessors.h"
29 #include "extent-tree.h"
30 #include "root-tree.h"
31 #include "defrag.h"
32 #include "dir-item.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37 
38 static struct kmem_cache *btrfs_trans_handle_cachep;
39 
40 #define BTRFS_ROOT_TRANS_TAG 0
41 
42 /*
43  * Transaction states and transitions
44  *
45  * No running transaction (fs tree blocks are not modified)
46  * |
47  * | To next stage:
48  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
49  * V
50  * Transaction N [[TRANS_STATE_RUNNING]]
51  * |
52  * | New trans handles can be attached to transaction N by calling all
53  * | start_transaction() variants.
54  * |
55  * | To next stage:
56  * |  Call btrfs_commit_transaction() on any trans handle attached to
57  * |  transaction N
58  * V
59  * Transaction N [[TRANS_STATE_COMMIT_PREP]]
60  * |
61  * | If there are simultaneous calls to btrfs_commit_transaction() one will win
62  * | the race and the rest will wait for the winner to commit the transaction.
63  * |
64  * | The winner will wait for previous running transaction to completely finish
65  * | if there is one.
66  * |
67  * Transaction N [[TRANS_STATE_COMMIT_START]]
68  * |
69  * | Then one of the following happens:
70  * | - Wait for all other trans handle holders to release.
71  * |   The btrfs_commit_transaction() caller will do the commit work.
72  * | - Wait for current transaction to be committed by others.
73  * |   Other btrfs_commit_transaction() caller will do the commit work.
74  * |
75  * | At this stage, only btrfs_join_transaction*() variants can attach
76  * | to this running transaction.
77  * | All other variants will wait for current one to finish and attach to
78  * | transaction N+1.
79  * |
80  * | To next stage:
81  * |  Caller is chosen to commit transaction N, and all other trans handle
82  * |  haven been released.
83  * V
84  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
85  * |
86  * | The heavy lifting transaction work is started.
87  * | From running delayed refs (modifying extent tree) to creating pending
88  * | snapshots, running qgroups.
89  * | In short, modify supporting trees to reflect modifications of subvolume
90  * | trees.
91  * |
92  * | At this stage, all start_transaction() calls will wait for this
93  * | transaction to finish and attach to transaction N+1.
94  * |
95  * | To next stage:
96  * |  Until all supporting trees are updated.
97  * V
98  * Transaction N [[TRANS_STATE_UNBLOCKED]]
99  * |						    Transaction N+1
100  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
101  * | need to write them back to disk and update	    |
102  * | super blocks.				    |
103  * |						    |
104  * | At this stage, new transaction is allowed to   |
105  * | start.					    |
106  * | All new start_transaction() calls will be	    |
107  * | attached to transid N+1.			    |
108  * |						    |
109  * | To next stage:				    |
110  * |  Until all tree blocks are super blocks are    |
111  * |  written to block devices			    |
112  * V						    |
113  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
114  *   All tree blocks and super blocks are written.  Transaction N+1
115  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
116  *   data structures will be cleaned up.	    | Life goes on
117  */
118 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
119 	[TRANS_STATE_RUNNING]		= 0U,
120 	[TRANS_STATE_COMMIT_PREP]	= 0U,
121 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
122 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
123 					   __TRANS_ATTACH |
124 					   __TRANS_JOIN |
125 					   __TRANS_JOIN_NOSTART),
126 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
127 					   __TRANS_ATTACH |
128 					   __TRANS_JOIN |
129 					   __TRANS_JOIN_NOLOCK |
130 					   __TRANS_JOIN_NOSTART),
131 	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
132 					   __TRANS_ATTACH |
133 					   __TRANS_JOIN |
134 					   __TRANS_JOIN_NOLOCK |
135 					   __TRANS_JOIN_NOSTART),
136 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
137 					   __TRANS_ATTACH |
138 					   __TRANS_JOIN |
139 					   __TRANS_JOIN_NOLOCK |
140 					   __TRANS_JOIN_NOSTART),
141 };
142 
143 void btrfs_put_transaction(struct btrfs_transaction *transaction)
144 {
145 	WARN_ON(refcount_read(&transaction->use_count) == 0);
146 	if (refcount_dec_and_test(&transaction->use_count)) {
147 		BUG_ON(!list_empty(&transaction->list));
148 		WARN_ON(!RB_EMPTY_ROOT(
149 				&transaction->delayed_refs.href_root.rb_root));
150 		WARN_ON(!RB_EMPTY_ROOT(
151 				&transaction->delayed_refs.dirty_extent_root));
152 		if (transaction->delayed_refs.pending_csums)
153 			btrfs_err(transaction->fs_info,
154 				  "pending csums is %llu",
155 				  transaction->delayed_refs.pending_csums);
156 		/*
157 		 * If any block groups are found in ->deleted_bgs then it's
158 		 * because the transaction was aborted and a commit did not
159 		 * happen (things failed before writing the new superblock
160 		 * and calling btrfs_finish_extent_commit()), so we can not
161 		 * discard the physical locations of the block groups.
162 		 */
163 		while (!list_empty(&transaction->deleted_bgs)) {
164 			struct btrfs_block_group *cache;
165 
166 			cache = list_first_entry(&transaction->deleted_bgs,
167 						 struct btrfs_block_group,
168 						 bg_list);
169 			list_del_init(&cache->bg_list);
170 			btrfs_unfreeze_block_group(cache);
171 			btrfs_put_block_group(cache);
172 		}
173 		WARN_ON(!list_empty(&transaction->dev_update_list));
174 		kfree(transaction);
175 	}
176 }
177 
178 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
179 {
180 	struct btrfs_transaction *cur_trans = trans->transaction;
181 	struct btrfs_fs_info *fs_info = trans->fs_info;
182 	struct btrfs_root *root, *tmp;
183 
184 	/*
185 	 * At this point no one can be using this transaction to modify any tree
186 	 * and no one can start another transaction to modify any tree either.
187 	 */
188 	ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
189 
190 	down_write(&fs_info->commit_root_sem);
191 
192 	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
193 		fs_info->last_reloc_trans = trans->transid;
194 
195 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
196 				 dirty_list) {
197 		list_del_init(&root->dirty_list);
198 		free_extent_buffer(root->commit_root);
199 		root->commit_root = btrfs_root_node(root);
200 		extent_io_tree_release(&root->dirty_log_pages);
201 		btrfs_qgroup_clean_swapped_blocks(root);
202 	}
203 
204 	/* We can free old roots now. */
205 	spin_lock(&cur_trans->dropped_roots_lock);
206 	while (!list_empty(&cur_trans->dropped_roots)) {
207 		root = list_first_entry(&cur_trans->dropped_roots,
208 					struct btrfs_root, root_list);
209 		list_del_init(&root->root_list);
210 		spin_unlock(&cur_trans->dropped_roots_lock);
211 		btrfs_free_log(trans, root);
212 		btrfs_drop_and_free_fs_root(fs_info, root);
213 		spin_lock(&cur_trans->dropped_roots_lock);
214 	}
215 	spin_unlock(&cur_trans->dropped_roots_lock);
216 
217 	up_write(&fs_info->commit_root_sem);
218 }
219 
220 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
221 					 unsigned int type)
222 {
223 	if (type & TRANS_EXTWRITERS)
224 		atomic_inc(&trans->num_extwriters);
225 }
226 
227 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
228 					 unsigned int type)
229 {
230 	if (type & TRANS_EXTWRITERS)
231 		atomic_dec(&trans->num_extwriters);
232 }
233 
234 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
235 					  unsigned int type)
236 {
237 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
238 }
239 
240 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
241 {
242 	return atomic_read(&trans->num_extwriters);
243 }
244 
245 /*
246  * To be called after doing the chunk btree updates right after allocating a new
247  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
248  * chunk after all chunk btree updates and after finishing the second phase of
249  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
250  * group had its chunk item insertion delayed to the second phase.
251  */
252 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
253 {
254 	struct btrfs_fs_info *fs_info = trans->fs_info;
255 
256 	if (!trans->chunk_bytes_reserved)
257 		return;
258 
259 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
260 				trans->chunk_bytes_reserved, NULL);
261 	trans->chunk_bytes_reserved = 0;
262 }
263 
264 /*
265  * either allocate a new transaction or hop into the existing one
266  */
267 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
268 				     unsigned int type)
269 {
270 	struct btrfs_transaction *cur_trans;
271 
272 	spin_lock(&fs_info->trans_lock);
273 loop:
274 	/* The file system has been taken offline. No new transactions. */
275 	if (BTRFS_FS_ERROR(fs_info)) {
276 		spin_unlock(&fs_info->trans_lock);
277 		return -EROFS;
278 	}
279 
280 	cur_trans = fs_info->running_transaction;
281 	if (cur_trans) {
282 		if (TRANS_ABORTED(cur_trans)) {
283 			spin_unlock(&fs_info->trans_lock);
284 			return cur_trans->aborted;
285 		}
286 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
287 			spin_unlock(&fs_info->trans_lock);
288 			return -EBUSY;
289 		}
290 		refcount_inc(&cur_trans->use_count);
291 		atomic_inc(&cur_trans->num_writers);
292 		extwriter_counter_inc(cur_trans, type);
293 		spin_unlock(&fs_info->trans_lock);
294 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
295 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
296 		return 0;
297 	}
298 	spin_unlock(&fs_info->trans_lock);
299 
300 	/*
301 	 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
302 	 * current transaction, and commit it. If there is no transaction, just
303 	 * return ENOENT.
304 	 */
305 	if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
306 		return -ENOENT;
307 
308 	/*
309 	 * JOIN_NOLOCK only happens during the transaction commit, so
310 	 * it is impossible that ->running_transaction is NULL
311 	 */
312 	BUG_ON(type == TRANS_JOIN_NOLOCK);
313 
314 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
315 	if (!cur_trans)
316 		return -ENOMEM;
317 
318 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
319 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
320 
321 	spin_lock(&fs_info->trans_lock);
322 	if (fs_info->running_transaction) {
323 		/*
324 		 * someone started a transaction after we unlocked.  Make sure
325 		 * to redo the checks above
326 		 */
327 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
328 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
329 		kfree(cur_trans);
330 		goto loop;
331 	} else if (BTRFS_FS_ERROR(fs_info)) {
332 		spin_unlock(&fs_info->trans_lock);
333 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
334 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
335 		kfree(cur_trans);
336 		return -EROFS;
337 	}
338 
339 	cur_trans->fs_info = fs_info;
340 	atomic_set(&cur_trans->pending_ordered, 0);
341 	init_waitqueue_head(&cur_trans->pending_wait);
342 	atomic_set(&cur_trans->num_writers, 1);
343 	extwriter_counter_init(cur_trans, type);
344 	init_waitqueue_head(&cur_trans->writer_wait);
345 	init_waitqueue_head(&cur_trans->commit_wait);
346 	cur_trans->state = TRANS_STATE_RUNNING;
347 	/*
348 	 * One for this trans handle, one so it will live on until we
349 	 * commit the transaction.
350 	 */
351 	refcount_set(&cur_trans->use_count, 2);
352 	cur_trans->flags = 0;
353 	cur_trans->start_time = ktime_get_seconds();
354 
355 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
356 
357 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
358 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
359 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
360 
361 	/*
362 	 * although the tree mod log is per file system and not per transaction,
363 	 * the log must never go across transaction boundaries.
364 	 */
365 	smp_mb();
366 	if (!list_empty(&fs_info->tree_mod_seq_list))
367 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
368 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
369 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
370 	atomic64_set(&fs_info->tree_mod_seq, 0);
371 
372 	spin_lock_init(&cur_trans->delayed_refs.lock);
373 
374 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
375 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
376 	INIT_LIST_HEAD(&cur_trans->switch_commits);
377 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
378 	INIT_LIST_HEAD(&cur_trans->io_bgs);
379 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
380 	mutex_init(&cur_trans->cache_write_mutex);
381 	spin_lock_init(&cur_trans->dirty_bgs_lock);
382 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
383 	spin_lock_init(&cur_trans->dropped_roots_lock);
384 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
385 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
386 			IO_TREE_TRANS_DIRTY_PAGES);
387 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
388 			IO_TREE_FS_PINNED_EXTENTS);
389 	fs_info->generation++;
390 	cur_trans->transid = fs_info->generation;
391 	fs_info->running_transaction = cur_trans;
392 	cur_trans->aborted = 0;
393 	spin_unlock(&fs_info->trans_lock);
394 
395 	return 0;
396 }
397 
398 /*
399  * This does all the record keeping required to make sure that a shareable root
400  * is properly recorded in a given transaction.  This is required to make sure
401  * the old root from before we joined the transaction is deleted when the
402  * transaction commits.
403  */
404 static int record_root_in_trans(struct btrfs_trans_handle *trans,
405 			       struct btrfs_root *root,
406 			       int force)
407 {
408 	struct btrfs_fs_info *fs_info = root->fs_info;
409 	int ret = 0;
410 
411 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
412 	    root->last_trans < trans->transid) || force) {
413 		WARN_ON(!force && root->commit_root != root->node);
414 
415 		/*
416 		 * see below for IN_TRANS_SETUP usage rules
417 		 * we have the reloc mutex held now, so there
418 		 * is only one writer in this function
419 		 */
420 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
421 
422 		/* make sure readers find IN_TRANS_SETUP before
423 		 * they find our root->last_trans update
424 		 */
425 		smp_wmb();
426 
427 		spin_lock(&fs_info->fs_roots_radix_lock);
428 		if (root->last_trans == trans->transid && !force) {
429 			spin_unlock(&fs_info->fs_roots_radix_lock);
430 			return 0;
431 		}
432 		radix_tree_tag_set(&fs_info->fs_roots_radix,
433 				   (unsigned long)root->root_key.objectid,
434 				   BTRFS_ROOT_TRANS_TAG);
435 		spin_unlock(&fs_info->fs_roots_radix_lock);
436 		root->last_trans = trans->transid;
437 
438 		/* this is pretty tricky.  We don't want to
439 		 * take the relocation lock in btrfs_record_root_in_trans
440 		 * unless we're really doing the first setup for this root in
441 		 * this transaction.
442 		 *
443 		 * Normally we'd use root->last_trans as a flag to decide
444 		 * if we want to take the expensive mutex.
445 		 *
446 		 * But, we have to set root->last_trans before we
447 		 * init the relocation root, otherwise, we trip over warnings
448 		 * in ctree.c.  The solution used here is to flag ourselves
449 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
450 		 * fixing up the reloc trees and everyone must wait.
451 		 *
452 		 * When this is zero, they can trust root->last_trans and fly
453 		 * through btrfs_record_root_in_trans without having to take the
454 		 * lock.  smp_wmb() makes sure that all the writes above are
455 		 * done before we pop in the zero below
456 		 */
457 		ret = btrfs_init_reloc_root(trans, root);
458 		smp_mb__before_atomic();
459 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
460 	}
461 	return ret;
462 }
463 
464 
465 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
466 			    struct btrfs_root *root)
467 {
468 	struct btrfs_fs_info *fs_info = root->fs_info;
469 	struct btrfs_transaction *cur_trans = trans->transaction;
470 
471 	/* Add ourselves to the transaction dropped list */
472 	spin_lock(&cur_trans->dropped_roots_lock);
473 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
474 	spin_unlock(&cur_trans->dropped_roots_lock);
475 
476 	/* Make sure we don't try to update the root at commit time */
477 	spin_lock(&fs_info->fs_roots_radix_lock);
478 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
479 			     (unsigned long)root->root_key.objectid,
480 			     BTRFS_ROOT_TRANS_TAG);
481 	spin_unlock(&fs_info->fs_roots_radix_lock);
482 }
483 
484 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
485 			       struct btrfs_root *root)
486 {
487 	struct btrfs_fs_info *fs_info = root->fs_info;
488 	int ret;
489 
490 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
491 		return 0;
492 
493 	/*
494 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
495 	 * and barriers
496 	 */
497 	smp_rmb();
498 	if (root->last_trans == trans->transid &&
499 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
500 		return 0;
501 
502 	mutex_lock(&fs_info->reloc_mutex);
503 	ret = record_root_in_trans(trans, root, 0);
504 	mutex_unlock(&fs_info->reloc_mutex);
505 
506 	return ret;
507 }
508 
509 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
510 {
511 	return (trans->state >= TRANS_STATE_COMMIT_START &&
512 		trans->state < TRANS_STATE_UNBLOCKED &&
513 		!TRANS_ABORTED(trans));
514 }
515 
516 /* wait for commit against the current transaction to become unblocked
517  * when this is done, it is safe to start a new transaction, but the current
518  * transaction might not be fully on disk.
519  */
520 static void wait_current_trans(struct btrfs_fs_info *fs_info)
521 {
522 	struct btrfs_transaction *cur_trans;
523 
524 	spin_lock(&fs_info->trans_lock);
525 	cur_trans = fs_info->running_transaction;
526 	if (cur_trans && is_transaction_blocked(cur_trans)) {
527 		refcount_inc(&cur_trans->use_count);
528 		spin_unlock(&fs_info->trans_lock);
529 
530 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
531 		wait_event(fs_info->transaction_wait,
532 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
533 			   TRANS_ABORTED(cur_trans));
534 		btrfs_put_transaction(cur_trans);
535 	} else {
536 		spin_unlock(&fs_info->trans_lock);
537 	}
538 }
539 
540 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
541 {
542 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
543 		return 0;
544 
545 	if (type == TRANS_START)
546 		return 1;
547 
548 	return 0;
549 }
550 
551 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
552 {
553 	struct btrfs_fs_info *fs_info = root->fs_info;
554 
555 	if (!fs_info->reloc_ctl ||
556 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
557 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
558 	    root->reloc_root)
559 		return false;
560 
561 	return true;
562 }
563 
564 static struct btrfs_trans_handle *
565 start_transaction(struct btrfs_root *root, unsigned int num_items,
566 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
567 		  bool enforce_qgroups)
568 {
569 	struct btrfs_fs_info *fs_info = root->fs_info;
570 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
571 	struct btrfs_trans_handle *h;
572 	struct btrfs_transaction *cur_trans;
573 	u64 num_bytes = 0;
574 	u64 qgroup_reserved = 0;
575 	bool reloc_reserved = false;
576 	bool do_chunk_alloc = false;
577 	int ret;
578 
579 	if (BTRFS_FS_ERROR(fs_info))
580 		return ERR_PTR(-EROFS);
581 
582 	if (current->journal_info) {
583 		WARN_ON(type & TRANS_EXTWRITERS);
584 		h = current->journal_info;
585 		refcount_inc(&h->use_count);
586 		WARN_ON(refcount_read(&h->use_count) > 2);
587 		h->orig_rsv = h->block_rsv;
588 		h->block_rsv = NULL;
589 		goto got_it;
590 	}
591 
592 	/*
593 	 * Do the reservation before we join the transaction so we can do all
594 	 * the appropriate flushing if need be.
595 	 */
596 	if (num_items && root != fs_info->chunk_root) {
597 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
598 		u64 delayed_refs_bytes = 0;
599 
600 		qgroup_reserved = num_items * fs_info->nodesize;
601 		/*
602 		 * Use prealloc for now, as there might be a currently running
603 		 * transaction that could free this reserved space prematurely
604 		 * by committing.
605 		 */
606 		ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
607 							 enforce_qgroups, false);
608 		if (ret)
609 			return ERR_PTR(ret);
610 
611 		/*
612 		 * We want to reserve all the bytes we may need all at once, so
613 		 * we only do 1 enospc flushing cycle per transaction start.  We
614 		 * accomplish this by simply assuming we'll do num_items worth
615 		 * of delayed refs updates in this trans handle, and refill that
616 		 * amount for whatever is missing in the reserve.
617 		 */
618 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
619 		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
620 		    !btrfs_block_rsv_full(delayed_refs_rsv)) {
621 			delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info,
622 									  num_items);
623 			num_bytes += delayed_refs_bytes;
624 		}
625 
626 		/*
627 		 * Do the reservation for the relocation root creation
628 		 */
629 		if (need_reserve_reloc_root(root)) {
630 			num_bytes += fs_info->nodesize;
631 			reloc_reserved = true;
632 		}
633 
634 		ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
635 		if (ret)
636 			goto reserve_fail;
637 		if (delayed_refs_bytes) {
638 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
639 							  delayed_refs_bytes);
640 			num_bytes -= delayed_refs_bytes;
641 		}
642 
643 		if (rsv->space_info->force_alloc)
644 			do_chunk_alloc = true;
645 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
646 		   !btrfs_block_rsv_full(delayed_refs_rsv)) {
647 		/*
648 		 * Some people call with btrfs_start_transaction(root, 0)
649 		 * because they can be throttled, but have some other mechanism
650 		 * for reserving space.  We still want these guys to refill the
651 		 * delayed block_rsv so just add 1 items worth of reservation
652 		 * here.
653 		 */
654 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
655 		if (ret)
656 			goto reserve_fail;
657 	}
658 again:
659 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
660 	if (!h) {
661 		ret = -ENOMEM;
662 		goto alloc_fail;
663 	}
664 
665 	/*
666 	 * If we are JOIN_NOLOCK we're already committing a transaction and
667 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
668 	 * because we're already holding a ref.  We need this because we could
669 	 * have raced in and did an fsync() on a file which can kick a commit
670 	 * and then we deadlock with somebody doing a freeze.
671 	 *
672 	 * If we are ATTACH, it means we just want to catch the current
673 	 * transaction and commit it, so we needn't do sb_start_intwrite().
674 	 */
675 	if (type & __TRANS_FREEZABLE)
676 		sb_start_intwrite(fs_info->sb);
677 
678 	if (may_wait_transaction(fs_info, type))
679 		wait_current_trans(fs_info);
680 
681 	do {
682 		ret = join_transaction(fs_info, type);
683 		if (ret == -EBUSY) {
684 			wait_current_trans(fs_info);
685 			if (unlikely(type == TRANS_ATTACH ||
686 				     type == TRANS_JOIN_NOSTART))
687 				ret = -ENOENT;
688 		}
689 	} while (ret == -EBUSY);
690 
691 	if (ret < 0)
692 		goto join_fail;
693 
694 	cur_trans = fs_info->running_transaction;
695 
696 	h->transid = cur_trans->transid;
697 	h->transaction = cur_trans;
698 	refcount_set(&h->use_count, 1);
699 	h->fs_info = root->fs_info;
700 
701 	h->type = type;
702 	INIT_LIST_HEAD(&h->new_bgs);
703 
704 	smp_mb();
705 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
706 	    may_wait_transaction(fs_info, type)) {
707 		current->journal_info = h;
708 		btrfs_commit_transaction(h);
709 		goto again;
710 	}
711 
712 	if (num_bytes) {
713 		trace_btrfs_space_reservation(fs_info, "transaction",
714 					      h->transid, num_bytes, 1);
715 		h->block_rsv = &fs_info->trans_block_rsv;
716 		h->bytes_reserved = num_bytes;
717 		h->reloc_reserved = reloc_reserved;
718 	}
719 
720 	/*
721 	 * Now that we have found a transaction to be a part of, convert the
722 	 * qgroup reservation from prealloc to pertrans. A different transaction
723 	 * can't race in and free our pertrans out from under us.
724 	 */
725 	if (qgroup_reserved)
726 		btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
727 
728 got_it:
729 	if (!current->journal_info)
730 		current->journal_info = h;
731 
732 	/*
733 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
734 	 * ALLOC_FORCE the first run through, and then we won't allocate for
735 	 * anybody else who races in later.  We don't care about the return
736 	 * value here.
737 	 */
738 	if (do_chunk_alloc && num_bytes) {
739 		u64 flags = h->block_rsv->space_info->flags;
740 
741 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
742 				  CHUNK_ALLOC_NO_FORCE);
743 	}
744 
745 	/*
746 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
747 	 * call btrfs_join_transaction() while we're also starting a
748 	 * transaction.
749 	 *
750 	 * Thus it need to be called after current->journal_info initialized,
751 	 * or we can deadlock.
752 	 */
753 	ret = btrfs_record_root_in_trans(h, root);
754 	if (ret) {
755 		/*
756 		 * The transaction handle is fully initialized and linked with
757 		 * other structures so it needs to be ended in case of errors,
758 		 * not just freed.
759 		 */
760 		btrfs_end_transaction(h);
761 		return ERR_PTR(ret);
762 	}
763 
764 	return h;
765 
766 join_fail:
767 	if (type & __TRANS_FREEZABLE)
768 		sb_end_intwrite(fs_info->sb);
769 	kmem_cache_free(btrfs_trans_handle_cachep, h);
770 alloc_fail:
771 	if (num_bytes)
772 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
773 					num_bytes, NULL);
774 reserve_fail:
775 	btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
776 	return ERR_PTR(ret);
777 }
778 
779 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
780 						   unsigned int num_items)
781 {
782 	return start_transaction(root, num_items, TRANS_START,
783 				 BTRFS_RESERVE_FLUSH_ALL, true);
784 }
785 
786 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
787 					struct btrfs_root *root,
788 					unsigned int num_items)
789 {
790 	return start_transaction(root, num_items, TRANS_START,
791 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
792 }
793 
794 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
795 {
796 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
797 				 true);
798 }
799 
800 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
801 {
802 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
803 				 BTRFS_RESERVE_NO_FLUSH, true);
804 }
805 
806 /*
807  * Similar to regular join but it never starts a transaction when none is
808  * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
809  * This is similar to btrfs_attach_transaction() but it allows the join to
810  * happen if the transaction commit already started but it's not yet in the
811  * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
812  */
813 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
814 {
815 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
816 				 BTRFS_RESERVE_NO_FLUSH, true);
817 }
818 
819 /*
820  * btrfs_attach_transaction() - catch the running transaction
821  *
822  * It is used when we want to commit the current the transaction, but
823  * don't want to start a new one.
824  *
825  * Note: If this function return -ENOENT, it just means there is no
826  * running transaction. But it is possible that the inactive transaction
827  * is still in the memory, not fully on disk. If you hope there is no
828  * inactive transaction in the fs when -ENOENT is returned, you should
829  * invoke
830  *     btrfs_attach_transaction_barrier()
831  */
832 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
833 {
834 	return start_transaction(root, 0, TRANS_ATTACH,
835 				 BTRFS_RESERVE_NO_FLUSH, true);
836 }
837 
838 /*
839  * btrfs_attach_transaction_barrier() - catch the running transaction
840  *
841  * It is similar to the above function, the difference is this one
842  * will wait for all the inactive transactions until they fully
843  * complete.
844  */
845 struct btrfs_trans_handle *
846 btrfs_attach_transaction_barrier(struct btrfs_root *root)
847 {
848 	struct btrfs_trans_handle *trans;
849 
850 	trans = start_transaction(root, 0, TRANS_ATTACH,
851 				  BTRFS_RESERVE_NO_FLUSH, true);
852 	if (trans == ERR_PTR(-ENOENT)) {
853 		int ret;
854 
855 		ret = btrfs_wait_for_commit(root->fs_info, 0);
856 		if (ret)
857 			return ERR_PTR(ret);
858 	}
859 
860 	return trans;
861 }
862 
863 /* Wait for a transaction commit to reach at least the given state. */
864 static noinline void wait_for_commit(struct btrfs_transaction *commit,
865 				     const enum btrfs_trans_state min_state)
866 {
867 	struct btrfs_fs_info *fs_info = commit->fs_info;
868 	u64 transid = commit->transid;
869 	bool put = false;
870 
871 	/*
872 	 * At the moment this function is called with min_state either being
873 	 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
874 	 */
875 	if (min_state == TRANS_STATE_COMPLETED)
876 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
877 	else
878 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
879 
880 	while (1) {
881 		wait_event(commit->commit_wait, commit->state >= min_state);
882 		if (put)
883 			btrfs_put_transaction(commit);
884 
885 		if (min_state < TRANS_STATE_COMPLETED)
886 			break;
887 
888 		/*
889 		 * A transaction isn't really completed until all of the
890 		 * previous transactions are completed, but with fsync we can
891 		 * end up with SUPER_COMMITTED transactions before a COMPLETED
892 		 * transaction. Wait for those.
893 		 */
894 
895 		spin_lock(&fs_info->trans_lock);
896 		commit = list_first_entry_or_null(&fs_info->trans_list,
897 						  struct btrfs_transaction,
898 						  list);
899 		if (!commit || commit->transid > transid) {
900 			spin_unlock(&fs_info->trans_lock);
901 			break;
902 		}
903 		refcount_inc(&commit->use_count);
904 		put = true;
905 		spin_unlock(&fs_info->trans_lock);
906 	}
907 }
908 
909 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
910 {
911 	struct btrfs_transaction *cur_trans = NULL, *t;
912 	int ret = 0;
913 
914 	if (transid) {
915 		if (transid <= fs_info->last_trans_committed)
916 			goto out;
917 
918 		/* find specified transaction */
919 		spin_lock(&fs_info->trans_lock);
920 		list_for_each_entry(t, &fs_info->trans_list, list) {
921 			if (t->transid == transid) {
922 				cur_trans = t;
923 				refcount_inc(&cur_trans->use_count);
924 				ret = 0;
925 				break;
926 			}
927 			if (t->transid > transid) {
928 				ret = 0;
929 				break;
930 			}
931 		}
932 		spin_unlock(&fs_info->trans_lock);
933 
934 		/*
935 		 * The specified transaction doesn't exist, or we
936 		 * raced with btrfs_commit_transaction
937 		 */
938 		if (!cur_trans) {
939 			if (transid > fs_info->last_trans_committed)
940 				ret = -EINVAL;
941 			goto out;
942 		}
943 	} else {
944 		/* find newest transaction that is committing | committed */
945 		spin_lock(&fs_info->trans_lock);
946 		list_for_each_entry_reverse(t, &fs_info->trans_list,
947 					    list) {
948 			if (t->state >= TRANS_STATE_COMMIT_START) {
949 				if (t->state == TRANS_STATE_COMPLETED)
950 					break;
951 				cur_trans = t;
952 				refcount_inc(&cur_trans->use_count);
953 				break;
954 			}
955 		}
956 		spin_unlock(&fs_info->trans_lock);
957 		if (!cur_trans)
958 			goto out;  /* nothing committing|committed */
959 	}
960 
961 	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
962 	ret = cur_trans->aborted;
963 	btrfs_put_transaction(cur_trans);
964 out:
965 	return ret;
966 }
967 
968 void btrfs_throttle(struct btrfs_fs_info *fs_info)
969 {
970 	wait_current_trans(fs_info);
971 }
972 
973 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
974 {
975 	struct btrfs_transaction *cur_trans = trans->transaction;
976 
977 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
978 	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
979 		return true;
980 
981 	if (btrfs_check_space_for_delayed_refs(trans->fs_info))
982 		return true;
983 
984 	return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
985 }
986 
987 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
988 
989 {
990 	struct btrfs_fs_info *fs_info = trans->fs_info;
991 
992 	if (!trans->block_rsv) {
993 		ASSERT(!trans->bytes_reserved);
994 		return;
995 	}
996 
997 	if (!trans->bytes_reserved)
998 		return;
999 
1000 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1001 	trace_btrfs_space_reservation(fs_info, "transaction",
1002 				      trans->transid, trans->bytes_reserved, 0);
1003 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
1004 				trans->bytes_reserved, NULL);
1005 	trans->bytes_reserved = 0;
1006 }
1007 
1008 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1009 				   int throttle)
1010 {
1011 	struct btrfs_fs_info *info = trans->fs_info;
1012 	struct btrfs_transaction *cur_trans = trans->transaction;
1013 	int err = 0;
1014 
1015 	if (refcount_read(&trans->use_count) > 1) {
1016 		refcount_dec(&trans->use_count);
1017 		trans->block_rsv = trans->orig_rsv;
1018 		return 0;
1019 	}
1020 
1021 	btrfs_trans_release_metadata(trans);
1022 	trans->block_rsv = NULL;
1023 
1024 	btrfs_create_pending_block_groups(trans);
1025 
1026 	btrfs_trans_release_chunk_metadata(trans);
1027 
1028 	if (trans->type & __TRANS_FREEZABLE)
1029 		sb_end_intwrite(info->sb);
1030 
1031 	WARN_ON(cur_trans != info->running_transaction);
1032 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1033 	atomic_dec(&cur_trans->num_writers);
1034 	extwriter_counter_dec(cur_trans, trans->type);
1035 
1036 	cond_wake_up(&cur_trans->writer_wait);
1037 
1038 	btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1039 	btrfs_lockdep_release(info, btrfs_trans_num_writers);
1040 
1041 	btrfs_put_transaction(cur_trans);
1042 
1043 	if (current->journal_info == trans)
1044 		current->journal_info = NULL;
1045 
1046 	if (throttle)
1047 		btrfs_run_delayed_iputs(info);
1048 
1049 	if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1050 		wake_up_process(info->transaction_kthread);
1051 		if (TRANS_ABORTED(trans))
1052 			err = trans->aborted;
1053 		else
1054 			err = -EROFS;
1055 	}
1056 
1057 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1058 	return err;
1059 }
1060 
1061 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1062 {
1063 	return __btrfs_end_transaction(trans, 0);
1064 }
1065 
1066 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1067 {
1068 	return __btrfs_end_transaction(trans, 1);
1069 }
1070 
1071 /*
1072  * when btree blocks are allocated, they have some corresponding bits set for
1073  * them in one of two extent_io trees.  This is used to make sure all of
1074  * those extents are sent to disk but does not wait on them
1075  */
1076 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1077 			       struct extent_io_tree *dirty_pages, int mark)
1078 {
1079 	int err = 0;
1080 	int werr = 0;
1081 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1082 	struct extent_state *cached_state = NULL;
1083 	u64 start = 0;
1084 	u64 end;
1085 
1086 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1087 				     mark, &cached_state)) {
1088 		bool wait_writeback = false;
1089 
1090 		err = convert_extent_bit(dirty_pages, start, end,
1091 					 EXTENT_NEED_WAIT,
1092 					 mark, &cached_state);
1093 		/*
1094 		 * convert_extent_bit can return -ENOMEM, which is most of the
1095 		 * time a temporary error. So when it happens, ignore the error
1096 		 * and wait for writeback of this range to finish - because we
1097 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1098 		 * to __btrfs_wait_marked_extents() would not know that
1099 		 * writeback for this range started and therefore wouldn't
1100 		 * wait for it to finish - we don't want to commit a
1101 		 * superblock that points to btree nodes/leafs for which
1102 		 * writeback hasn't finished yet (and without errors).
1103 		 * We cleanup any entries left in the io tree when committing
1104 		 * the transaction (through extent_io_tree_release()).
1105 		 */
1106 		if (err == -ENOMEM) {
1107 			err = 0;
1108 			wait_writeback = true;
1109 		}
1110 		if (!err)
1111 			err = filemap_fdatawrite_range(mapping, start, end);
1112 		if (err)
1113 			werr = err;
1114 		else if (wait_writeback)
1115 			werr = filemap_fdatawait_range(mapping, start, end);
1116 		free_extent_state(cached_state);
1117 		cached_state = NULL;
1118 		cond_resched();
1119 		start = end + 1;
1120 	}
1121 	return werr;
1122 }
1123 
1124 /*
1125  * when btree blocks are allocated, they have some corresponding bits set for
1126  * them in one of two extent_io trees.  This is used to make sure all of
1127  * those extents are on disk for transaction or log commit.  We wait
1128  * on all the pages and clear them from the dirty pages state tree
1129  */
1130 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1131 				       struct extent_io_tree *dirty_pages)
1132 {
1133 	int err = 0;
1134 	int werr = 0;
1135 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1136 	struct extent_state *cached_state = NULL;
1137 	u64 start = 0;
1138 	u64 end;
1139 
1140 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1141 				     EXTENT_NEED_WAIT, &cached_state)) {
1142 		/*
1143 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1144 		 * When committing the transaction, we'll remove any entries
1145 		 * left in the io tree. For a log commit, we don't remove them
1146 		 * after committing the log because the tree can be accessed
1147 		 * concurrently - we do it only at transaction commit time when
1148 		 * it's safe to do it (through extent_io_tree_release()).
1149 		 */
1150 		err = clear_extent_bit(dirty_pages, start, end,
1151 				       EXTENT_NEED_WAIT, &cached_state);
1152 		if (err == -ENOMEM)
1153 			err = 0;
1154 		if (!err)
1155 			err = filemap_fdatawait_range(mapping, start, end);
1156 		if (err)
1157 			werr = err;
1158 		free_extent_state(cached_state);
1159 		cached_state = NULL;
1160 		cond_resched();
1161 		start = end + 1;
1162 	}
1163 	if (err)
1164 		werr = err;
1165 	return werr;
1166 }
1167 
1168 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1169 		       struct extent_io_tree *dirty_pages)
1170 {
1171 	bool errors = false;
1172 	int err;
1173 
1174 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1175 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1176 		errors = true;
1177 
1178 	if (errors && !err)
1179 		err = -EIO;
1180 	return err;
1181 }
1182 
1183 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1184 {
1185 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1186 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1187 	bool errors = false;
1188 	int err;
1189 
1190 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1191 
1192 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1193 	if ((mark & EXTENT_DIRTY) &&
1194 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1195 		errors = true;
1196 
1197 	if ((mark & EXTENT_NEW) &&
1198 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1199 		errors = true;
1200 
1201 	if (errors && !err)
1202 		err = -EIO;
1203 	return err;
1204 }
1205 
1206 /*
1207  * When btree blocks are allocated the corresponding extents are marked dirty.
1208  * This function ensures such extents are persisted on disk for transaction or
1209  * log commit.
1210  *
1211  * @trans: transaction whose dirty pages we'd like to write
1212  */
1213 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1214 {
1215 	int ret;
1216 	int ret2;
1217 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1218 	struct btrfs_fs_info *fs_info = trans->fs_info;
1219 	struct blk_plug plug;
1220 
1221 	blk_start_plug(&plug);
1222 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1223 	blk_finish_plug(&plug);
1224 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1225 
1226 	extent_io_tree_release(&trans->transaction->dirty_pages);
1227 
1228 	if (ret)
1229 		return ret;
1230 	else if (ret2)
1231 		return ret2;
1232 	else
1233 		return 0;
1234 }
1235 
1236 /*
1237  * this is used to update the root pointer in the tree of tree roots.
1238  *
1239  * But, in the case of the extent allocation tree, updating the root
1240  * pointer may allocate blocks which may change the root of the extent
1241  * allocation tree.
1242  *
1243  * So, this loops and repeats and makes sure the cowonly root didn't
1244  * change while the root pointer was being updated in the metadata.
1245  */
1246 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1247 			       struct btrfs_root *root)
1248 {
1249 	int ret;
1250 	u64 old_root_bytenr;
1251 	u64 old_root_used;
1252 	struct btrfs_fs_info *fs_info = root->fs_info;
1253 	struct btrfs_root *tree_root = fs_info->tree_root;
1254 
1255 	old_root_used = btrfs_root_used(&root->root_item);
1256 
1257 	while (1) {
1258 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1259 		if (old_root_bytenr == root->node->start &&
1260 		    old_root_used == btrfs_root_used(&root->root_item))
1261 			break;
1262 
1263 		btrfs_set_root_node(&root->root_item, root->node);
1264 		ret = btrfs_update_root(trans, tree_root,
1265 					&root->root_key,
1266 					&root->root_item);
1267 		if (ret)
1268 			return ret;
1269 
1270 		old_root_used = btrfs_root_used(&root->root_item);
1271 	}
1272 
1273 	return 0;
1274 }
1275 
1276 /*
1277  * update all the cowonly tree roots on disk
1278  *
1279  * The error handling in this function may not be obvious. Any of the
1280  * failures will cause the file system to go offline. We still need
1281  * to clean up the delayed refs.
1282  */
1283 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1284 {
1285 	struct btrfs_fs_info *fs_info = trans->fs_info;
1286 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1287 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1288 	struct list_head *next;
1289 	struct extent_buffer *eb;
1290 	int ret;
1291 
1292 	/*
1293 	 * At this point no one can be using this transaction to modify any tree
1294 	 * and no one can start another transaction to modify any tree either.
1295 	 */
1296 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1297 
1298 	eb = btrfs_lock_root_node(fs_info->tree_root);
1299 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1300 			      0, &eb, BTRFS_NESTING_COW);
1301 	btrfs_tree_unlock(eb);
1302 	free_extent_buffer(eb);
1303 
1304 	if (ret)
1305 		return ret;
1306 
1307 	ret = btrfs_run_dev_stats(trans);
1308 	if (ret)
1309 		return ret;
1310 	ret = btrfs_run_dev_replace(trans);
1311 	if (ret)
1312 		return ret;
1313 	ret = btrfs_run_qgroups(trans);
1314 	if (ret)
1315 		return ret;
1316 
1317 	ret = btrfs_setup_space_cache(trans);
1318 	if (ret)
1319 		return ret;
1320 
1321 again:
1322 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1323 		struct btrfs_root *root;
1324 		next = fs_info->dirty_cowonly_roots.next;
1325 		list_del_init(next);
1326 		root = list_entry(next, struct btrfs_root, dirty_list);
1327 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1328 
1329 		list_add_tail(&root->dirty_list,
1330 			      &trans->transaction->switch_commits);
1331 		ret = update_cowonly_root(trans, root);
1332 		if (ret)
1333 			return ret;
1334 	}
1335 
1336 	/* Now flush any delayed refs generated by updating all of the roots */
1337 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1338 	if (ret)
1339 		return ret;
1340 
1341 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1342 		ret = btrfs_write_dirty_block_groups(trans);
1343 		if (ret)
1344 			return ret;
1345 
1346 		/*
1347 		 * We're writing the dirty block groups, which could generate
1348 		 * delayed refs, which could generate more dirty block groups,
1349 		 * so we want to keep this flushing in this loop to make sure
1350 		 * everything gets run.
1351 		 */
1352 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1353 		if (ret)
1354 			return ret;
1355 	}
1356 
1357 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1358 		goto again;
1359 
1360 	/* Update dev-replace pointer once everything is committed */
1361 	fs_info->dev_replace.committed_cursor_left =
1362 		fs_info->dev_replace.cursor_left_last_write_of_item;
1363 
1364 	return 0;
1365 }
1366 
1367 /*
1368  * If we had a pending drop we need to see if there are any others left in our
1369  * dead roots list, and if not clear our bit and wake any waiters.
1370  */
1371 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1372 {
1373 	/*
1374 	 * We put the drop in progress roots at the front of the list, so if the
1375 	 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1376 	 * up.
1377 	 */
1378 	spin_lock(&fs_info->trans_lock);
1379 	if (!list_empty(&fs_info->dead_roots)) {
1380 		struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1381 							   struct btrfs_root,
1382 							   root_list);
1383 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1384 			spin_unlock(&fs_info->trans_lock);
1385 			return;
1386 		}
1387 	}
1388 	spin_unlock(&fs_info->trans_lock);
1389 
1390 	btrfs_wake_unfinished_drop(fs_info);
1391 }
1392 
1393 /*
1394  * dead roots are old snapshots that need to be deleted.  This allocates
1395  * a dirty root struct and adds it into the list of dead roots that need to
1396  * be deleted
1397  */
1398 void btrfs_add_dead_root(struct btrfs_root *root)
1399 {
1400 	struct btrfs_fs_info *fs_info = root->fs_info;
1401 
1402 	spin_lock(&fs_info->trans_lock);
1403 	if (list_empty(&root->root_list)) {
1404 		btrfs_grab_root(root);
1405 
1406 		/* We want to process the partially complete drops first. */
1407 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1408 			list_add(&root->root_list, &fs_info->dead_roots);
1409 		else
1410 			list_add_tail(&root->root_list, &fs_info->dead_roots);
1411 	}
1412 	spin_unlock(&fs_info->trans_lock);
1413 }
1414 
1415 /*
1416  * Update each subvolume root and its relocation root, if it exists, in the tree
1417  * of tree roots. Also free log roots if they exist.
1418  */
1419 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1420 {
1421 	struct btrfs_fs_info *fs_info = trans->fs_info;
1422 	struct btrfs_root *gang[8];
1423 	int i;
1424 	int ret;
1425 
1426 	/*
1427 	 * At this point no one can be using this transaction to modify any tree
1428 	 * and no one can start another transaction to modify any tree either.
1429 	 */
1430 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1431 
1432 	spin_lock(&fs_info->fs_roots_radix_lock);
1433 	while (1) {
1434 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1435 						 (void **)gang, 0,
1436 						 ARRAY_SIZE(gang),
1437 						 BTRFS_ROOT_TRANS_TAG);
1438 		if (ret == 0)
1439 			break;
1440 		for (i = 0; i < ret; i++) {
1441 			struct btrfs_root *root = gang[i];
1442 			int ret2;
1443 
1444 			/*
1445 			 * At this point we can neither have tasks logging inodes
1446 			 * from a root nor trying to commit a log tree.
1447 			 */
1448 			ASSERT(atomic_read(&root->log_writers) == 0);
1449 			ASSERT(atomic_read(&root->log_commit[0]) == 0);
1450 			ASSERT(atomic_read(&root->log_commit[1]) == 0);
1451 
1452 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1453 					(unsigned long)root->root_key.objectid,
1454 					BTRFS_ROOT_TRANS_TAG);
1455 			spin_unlock(&fs_info->fs_roots_radix_lock);
1456 
1457 			btrfs_free_log(trans, root);
1458 			ret2 = btrfs_update_reloc_root(trans, root);
1459 			if (ret2)
1460 				return ret2;
1461 
1462 			/* see comments in should_cow_block() */
1463 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1464 			smp_mb__after_atomic();
1465 
1466 			if (root->commit_root != root->node) {
1467 				list_add_tail(&root->dirty_list,
1468 					&trans->transaction->switch_commits);
1469 				btrfs_set_root_node(&root->root_item,
1470 						    root->node);
1471 			}
1472 
1473 			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1474 						&root->root_key,
1475 						&root->root_item);
1476 			if (ret2)
1477 				return ret2;
1478 			spin_lock(&fs_info->fs_roots_radix_lock);
1479 			btrfs_qgroup_free_meta_all_pertrans(root);
1480 		}
1481 	}
1482 	spin_unlock(&fs_info->fs_roots_radix_lock);
1483 	return 0;
1484 }
1485 
1486 /*
1487  * defrag a given btree.
1488  * Every leaf in the btree is read and defragged.
1489  */
1490 int btrfs_defrag_root(struct btrfs_root *root)
1491 {
1492 	struct btrfs_fs_info *info = root->fs_info;
1493 	struct btrfs_trans_handle *trans;
1494 	int ret;
1495 
1496 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1497 		return 0;
1498 
1499 	while (1) {
1500 		trans = btrfs_start_transaction(root, 0);
1501 		if (IS_ERR(trans)) {
1502 			ret = PTR_ERR(trans);
1503 			break;
1504 		}
1505 
1506 		ret = btrfs_defrag_leaves(trans, root);
1507 
1508 		btrfs_end_transaction(trans);
1509 		btrfs_btree_balance_dirty(info);
1510 		cond_resched();
1511 
1512 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1513 			break;
1514 
1515 		if (btrfs_defrag_cancelled(info)) {
1516 			btrfs_debug(info, "defrag_root cancelled");
1517 			ret = -EAGAIN;
1518 			break;
1519 		}
1520 	}
1521 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1522 	return ret;
1523 }
1524 
1525 /*
1526  * Do all special snapshot related qgroup dirty hack.
1527  *
1528  * Will do all needed qgroup inherit and dirty hack like switch commit
1529  * roots inside one transaction and write all btree into disk, to make
1530  * qgroup works.
1531  */
1532 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1533 				   struct btrfs_root *src,
1534 				   struct btrfs_root *parent,
1535 				   struct btrfs_qgroup_inherit *inherit,
1536 				   u64 dst_objectid)
1537 {
1538 	struct btrfs_fs_info *fs_info = src->fs_info;
1539 	int ret;
1540 
1541 	/*
1542 	 * Save some performance in the case that qgroups are not
1543 	 * enabled. If this check races with the ioctl, rescan will
1544 	 * kick in anyway.
1545 	 */
1546 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1547 		return 0;
1548 
1549 	/*
1550 	 * Ensure dirty @src will be committed.  Or, after coming
1551 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1552 	 * recorded root will never be updated again, causing an outdated root
1553 	 * item.
1554 	 */
1555 	ret = record_root_in_trans(trans, src, 1);
1556 	if (ret)
1557 		return ret;
1558 
1559 	/*
1560 	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1561 	 * src root, so we must run the delayed refs here.
1562 	 *
1563 	 * However this isn't particularly fool proof, because there's no
1564 	 * synchronization keeping us from changing the tree after this point
1565 	 * before we do the qgroup_inherit, or even from making changes while
1566 	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1567 	 * for now flush the delayed refs to narrow the race window where the
1568 	 * qgroup counters could end up wrong.
1569 	 */
1570 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1571 	if (ret) {
1572 		btrfs_abort_transaction(trans, ret);
1573 		return ret;
1574 	}
1575 
1576 	ret = commit_fs_roots(trans);
1577 	if (ret)
1578 		goto out;
1579 	ret = btrfs_qgroup_account_extents(trans);
1580 	if (ret < 0)
1581 		goto out;
1582 
1583 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1584 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1585 				   inherit);
1586 	if (ret < 0)
1587 		goto out;
1588 
1589 	/*
1590 	 * Now we do a simplified commit transaction, which will:
1591 	 * 1) commit all subvolume and extent tree
1592 	 *    To ensure all subvolume and extent tree have a valid
1593 	 *    commit_root to accounting later insert_dir_item()
1594 	 * 2) write all btree blocks onto disk
1595 	 *    This is to make sure later btree modification will be cowed
1596 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1597 	 * In this simplified commit, we don't really care about other trees
1598 	 * like chunk and root tree, as they won't affect qgroup.
1599 	 * And we don't write super to avoid half committed status.
1600 	 */
1601 	ret = commit_cowonly_roots(trans);
1602 	if (ret)
1603 		goto out;
1604 	switch_commit_roots(trans);
1605 	ret = btrfs_write_and_wait_transaction(trans);
1606 	if (ret)
1607 		btrfs_handle_fs_error(fs_info, ret,
1608 			"Error while writing out transaction for qgroup");
1609 
1610 out:
1611 	/*
1612 	 * Force parent root to be updated, as we recorded it before so its
1613 	 * last_trans == cur_transid.
1614 	 * Or it won't be committed again onto disk after later
1615 	 * insert_dir_item()
1616 	 */
1617 	if (!ret)
1618 		ret = record_root_in_trans(trans, parent, 1);
1619 	return ret;
1620 }
1621 
1622 /*
1623  * new snapshots need to be created at a very specific time in the
1624  * transaction commit.  This does the actual creation.
1625  *
1626  * Note:
1627  * If the error which may affect the commitment of the current transaction
1628  * happens, we should return the error number. If the error which just affect
1629  * the creation of the pending snapshots, just return 0.
1630  */
1631 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1632 				   struct btrfs_pending_snapshot *pending)
1633 {
1634 
1635 	struct btrfs_fs_info *fs_info = trans->fs_info;
1636 	struct btrfs_key key;
1637 	struct btrfs_root_item *new_root_item;
1638 	struct btrfs_root *tree_root = fs_info->tree_root;
1639 	struct btrfs_root *root = pending->root;
1640 	struct btrfs_root *parent_root;
1641 	struct btrfs_block_rsv *rsv;
1642 	struct inode *parent_inode = pending->dir;
1643 	struct btrfs_path *path;
1644 	struct btrfs_dir_item *dir_item;
1645 	struct extent_buffer *tmp;
1646 	struct extent_buffer *old;
1647 	struct timespec64 cur_time;
1648 	int ret = 0;
1649 	u64 to_reserve = 0;
1650 	u64 index = 0;
1651 	u64 objectid;
1652 	u64 root_flags;
1653 	unsigned int nofs_flags;
1654 	struct fscrypt_name fname;
1655 
1656 	ASSERT(pending->path);
1657 	path = pending->path;
1658 
1659 	ASSERT(pending->root_item);
1660 	new_root_item = pending->root_item;
1661 
1662 	/*
1663 	 * We're inside a transaction and must make sure that any potential
1664 	 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1665 	 * filesystem.
1666 	 */
1667 	nofs_flags = memalloc_nofs_save();
1668 	pending->error = fscrypt_setup_filename(parent_inode,
1669 						&pending->dentry->d_name, 0,
1670 						&fname);
1671 	memalloc_nofs_restore(nofs_flags);
1672 	if (pending->error)
1673 		goto free_pending;
1674 
1675 	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1676 	if (pending->error)
1677 		goto free_fname;
1678 
1679 	/*
1680 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1681 	 * accounted by later btrfs_qgroup_inherit().
1682 	 */
1683 	btrfs_set_skip_qgroup(trans, objectid);
1684 
1685 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1686 
1687 	if (to_reserve > 0) {
1688 		pending->error = btrfs_block_rsv_add(fs_info,
1689 						     &pending->block_rsv,
1690 						     to_reserve,
1691 						     BTRFS_RESERVE_NO_FLUSH);
1692 		if (pending->error)
1693 			goto clear_skip_qgroup;
1694 	}
1695 
1696 	key.objectid = objectid;
1697 	key.offset = (u64)-1;
1698 	key.type = BTRFS_ROOT_ITEM_KEY;
1699 
1700 	rsv = trans->block_rsv;
1701 	trans->block_rsv = &pending->block_rsv;
1702 	trans->bytes_reserved = trans->block_rsv->reserved;
1703 	trace_btrfs_space_reservation(fs_info, "transaction",
1704 				      trans->transid,
1705 				      trans->bytes_reserved, 1);
1706 	parent_root = BTRFS_I(parent_inode)->root;
1707 	ret = record_root_in_trans(trans, parent_root, 0);
1708 	if (ret)
1709 		goto fail;
1710 	cur_time = current_time(parent_inode);
1711 
1712 	/*
1713 	 * insert the directory item
1714 	 */
1715 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1716 	if (ret) {
1717 		btrfs_abort_transaction(trans, ret);
1718 		goto fail;
1719 	}
1720 
1721 	/* check if there is a file/dir which has the same name. */
1722 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1723 					 btrfs_ino(BTRFS_I(parent_inode)),
1724 					 &fname.disk_name, 0);
1725 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1726 		pending->error = -EEXIST;
1727 		goto dir_item_existed;
1728 	} else if (IS_ERR(dir_item)) {
1729 		ret = PTR_ERR(dir_item);
1730 		btrfs_abort_transaction(trans, ret);
1731 		goto fail;
1732 	}
1733 	btrfs_release_path(path);
1734 
1735 	/*
1736 	 * pull in the delayed directory update
1737 	 * and the delayed inode item
1738 	 * otherwise we corrupt the FS during
1739 	 * snapshot
1740 	 */
1741 	ret = btrfs_run_delayed_items(trans);
1742 	if (ret) {	/* Transaction aborted */
1743 		btrfs_abort_transaction(trans, ret);
1744 		goto fail;
1745 	}
1746 
1747 	ret = record_root_in_trans(trans, root, 0);
1748 	if (ret) {
1749 		btrfs_abort_transaction(trans, ret);
1750 		goto fail;
1751 	}
1752 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1753 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1754 	btrfs_check_and_init_root_item(new_root_item);
1755 
1756 	root_flags = btrfs_root_flags(new_root_item);
1757 	if (pending->readonly)
1758 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1759 	else
1760 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1761 	btrfs_set_root_flags(new_root_item, root_flags);
1762 
1763 	btrfs_set_root_generation_v2(new_root_item,
1764 			trans->transid);
1765 	generate_random_guid(new_root_item->uuid);
1766 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1767 			BTRFS_UUID_SIZE);
1768 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1769 		memset(new_root_item->received_uuid, 0,
1770 		       sizeof(new_root_item->received_uuid));
1771 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1772 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1773 		btrfs_set_root_stransid(new_root_item, 0);
1774 		btrfs_set_root_rtransid(new_root_item, 0);
1775 	}
1776 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1777 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1778 	btrfs_set_root_otransid(new_root_item, trans->transid);
1779 
1780 	old = btrfs_lock_root_node(root);
1781 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1782 			      BTRFS_NESTING_COW);
1783 	if (ret) {
1784 		btrfs_tree_unlock(old);
1785 		free_extent_buffer(old);
1786 		btrfs_abort_transaction(trans, ret);
1787 		goto fail;
1788 	}
1789 
1790 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1791 	/* clean up in any case */
1792 	btrfs_tree_unlock(old);
1793 	free_extent_buffer(old);
1794 	if (ret) {
1795 		btrfs_abort_transaction(trans, ret);
1796 		goto fail;
1797 	}
1798 	/* see comments in should_cow_block() */
1799 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1800 	smp_wmb();
1801 
1802 	btrfs_set_root_node(new_root_item, tmp);
1803 	/* record when the snapshot was created in key.offset */
1804 	key.offset = trans->transid;
1805 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1806 	btrfs_tree_unlock(tmp);
1807 	free_extent_buffer(tmp);
1808 	if (ret) {
1809 		btrfs_abort_transaction(trans, ret);
1810 		goto fail;
1811 	}
1812 
1813 	/*
1814 	 * insert root back/forward references
1815 	 */
1816 	ret = btrfs_add_root_ref(trans, objectid,
1817 				 parent_root->root_key.objectid,
1818 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1819 				 &fname.disk_name);
1820 	if (ret) {
1821 		btrfs_abort_transaction(trans, ret);
1822 		goto fail;
1823 	}
1824 
1825 	key.offset = (u64)-1;
1826 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1827 	if (IS_ERR(pending->snap)) {
1828 		ret = PTR_ERR(pending->snap);
1829 		pending->snap = NULL;
1830 		btrfs_abort_transaction(trans, ret);
1831 		goto fail;
1832 	}
1833 
1834 	ret = btrfs_reloc_post_snapshot(trans, pending);
1835 	if (ret) {
1836 		btrfs_abort_transaction(trans, ret);
1837 		goto fail;
1838 	}
1839 
1840 	/*
1841 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1842 	 * snapshot hack to do fast snapshot.
1843 	 * To co-operate with that hack, we do hack again.
1844 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1845 	 */
1846 	ret = qgroup_account_snapshot(trans, root, parent_root,
1847 				      pending->inherit, objectid);
1848 	if (ret < 0)
1849 		goto fail;
1850 
1851 	ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1852 				    BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1853 				    index);
1854 	/* We have check then name at the beginning, so it is impossible. */
1855 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1856 	if (ret) {
1857 		btrfs_abort_transaction(trans, ret);
1858 		goto fail;
1859 	}
1860 
1861 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1862 						  fname.disk_name.len * 2);
1863 	parent_inode->i_mtime = inode_set_ctime_current(parent_inode);
1864 	ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1865 	if (ret) {
1866 		btrfs_abort_transaction(trans, ret);
1867 		goto fail;
1868 	}
1869 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1870 				  BTRFS_UUID_KEY_SUBVOL,
1871 				  objectid);
1872 	if (ret) {
1873 		btrfs_abort_transaction(trans, ret);
1874 		goto fail;
1875 	}
1876 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1877 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1878 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1879 					  objectid);
1880 		if (ret && ret != -EEXIST) {
1881 			btrfs_abort_transaction(trans, ret);
1882 			goto fail;
1883 		}
1884 	}
1885 
1886 fail:
1887 	pending->error = ret;
1888 dir_item_existed:
1889 	trans->block_rsv = rsv;
1890 	trans->bytes_reserved = 0;
1891 clear_skip_qgroup:
1892 	btrfs_clear_skip_qgroup(trans);
1893 free_fname:
1894 	fscrypt_free_filename(&fname);
1895 free_pending:
1896 	kfree(new_root_item);
1897 	pending->root_item = NULL;
1898 	btrfs_free_path(path);
1899 	pending->path = NULL;
1900 
1901 	return ret;
1902 }
1903 
1904 /*
1905  * create all the snapshots we've scheduled for creation
1906  */
1907 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1908 {
1909 	struct btrfs_pending_snapshot *pending, *next;
1910 	struct list_head *head = &trans->transaction->pending_snapshots;
1911 	int ret = 0;
1912 
1913 	list_for_each_entry_safe(pending, next, head, list) {
1914 		list_del(&pending->list);
1915 		ret = create_pending_snapshot(trans, pending);
1916 		if (ret)
1917 			break;
1918 	}
1919 	return ret;
1920 }
1921 
1922 static void update_super_roots(struct btrfs_fs_info *fs_info)
1923 {
1924 	struct btrfs_root_item *root_item;
1925 	struct btrfs_super_block *super;
1926 
1927 	super = fs_info->super_copy;
1928 
1929 	root_item = &fs_info->chunk_root->root_item;
1930 	super->chunk_root = root_item->bytenr;
1931 	super->chunk_root_generation = root_item->generation;
1932 	super->chunk_root_level = root_item->level;
1933 
1934 	root_item = &fs_info->tree_root->root_item;
1935 	super->root = root_item->bytenr;
1936 	super->generation = root_item->generation;
1937 	super->root_level = root_item->level;
1938 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1939 		super->cache_generation = root_item->generation;
1940 	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1941 		super->cache_generation = 0;
1942 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1943 		super->uuid_tree_generation = root_item->generation;
1944 }
1945 
1946 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1947 {
1948 	struct btrfs_transaction *trans;
1949 	int ret = 0;
1950 
1951 	spin_lock(&info->trans_lock);
1952 	trans = info->running_transaction;
1953 	if (trans)
1954 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1955 	spin_unlock(&info->trans_lock);
1956 	return ret;
1957 }
1958 
1959 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1960 {
1961 	struct btrfs_transaction *trans;
1962 	int ret = 0;
1963 
1964 	spin_lock(&info->trans_lock);
1965 	trans = info->running_transaction;
1966 	if (trans)
1967 		ret = is_transaction_blocked(trans);
1968 	spin_unlock(&info->trans_lock);
1969 	return ret;
1970 }
1971 
1972 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1973 {
1974 	struct btrfs_fs_info *fs_info = trans->fs_info;
1975 	struct btrfs_transaction *cur_trans;
1976 
1977 	/* Kick the transaction kthread. */
1978 	set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1979 	wake_up_process(fs_info->transaction_kthread);
1980 
1981 	/* take transaction reference */
1982 	cur_trans = trans->transaction;
1983 	refcount_inc(&cur_trans->use_count);
1984 
1985 	btrfs_end_transaction(trans);
1986 
1987 	/*
1988 	 * Wait for the current transaction commit to start and block
1989 	 * subsequent transaction joins
1990 	 */
1991 	btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1992 	wait_event(fs_info->transaction_blocked_wait,
1993 		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
1994 		   TRANS_ABORTED(cur_trans));
1995 	btrfs_put_transaction(cur_trans);
1996 }
1997 
1998 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1999 {
2000 	struct btrfs_fs_info *fs_info = trans->fs_info;
2001 	struct btrfs_transaction *cur_trans = trans->transaction;
2002 
2003 	WARN_ON(refcount_read(&trans->use_count) > 1);
2004 
2005 	btrfs_abort_transaction(trans, err);
2006 
2007 	spin_lock(&fs_info->trans_lock);
2008 
2009 	/*
2010 	 * If the transaction is removed from the list, it means this
2011 	 * transaction has been committed successfully, so it is impossible
2012 	 * to call the cleanup function.
2013 	 */
2014 	BUG_ON(list_empty(&cur_trans->list));
2015 
2016 	if (cur_trans == fs_info->running_transaction) {
2017 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
2018 		spin_unlock(&fs_info->trans_lock);
2019 
2020 		/*
2021 		 * The thread has already released the lockdep map as reader
2022 		 * already in btrfs_commit_transaction().
2023 		 */
2024 		btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2025 		wait_event(cur_trans->writer_wait,
2026 			   atomic_read(&cur_trans->num_writers) == 1);
2027 
2028 		spin_lock(&fs_info->trans_lock);
2029 	}
2030 
2031 	/*
2032 	 * Now that we know no one else is still using the transaction we can
2033 	 * remove the transaction from the list of transactions. This avoids
2034 	 * the transaction kthread from cleaning up the transaction while some
2035 	 * other task is still using it, which could result in a use-after-free
2036 	 * on things like log trees, as it forces the transaction kthread to
2037 	 * wait for this transaction to be cleaned up by us.
2038 	 */
2039 	list_del_init(&cur_trans->list);
2040 
2041 	spin_unlock(&fs_info->trans_lock);
2042 
2043 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2044 
2045 	spin_lock(&fs_info->trans_lock);
2046 	if (cur_trans == fs_info->running_transaction)
2047 		fs_info->running_transaction = NULL;
2048 	spin_unlock(&fs_info->trans_lock);
2049 
2050 	if (trans->type & __TRANS_FREEZABLE)
2051 		sb_end_intwrite(fs_info->sb);
2052 	btrfs_put_transaction(cur_trans);
2053 	btrfs_put_transaction(cur_trans);
2054 
2055 	trace_btrfs_transaction_commit(fs_info);
2056 
2057 	if (current->journal_info == trans)
2058 		current->journal_info = NULL;
2059 
2060 	/*
2061 	 * If relocation is running, we can't cancel scrub because that will
2062 	 * result in a deadlock. Before relocating a block group, relocation
2063 	 * pauses scrub, then starts and commits a transaction before unpausing
2064 	 * scrub. If the transaction commit is being done by the relocation
2065 	 * task or triggered by another task and the relocation task is waiting
2066 	 * for the commit, and we end up here due to an error in the commit
2067 	 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2068 	 * asking for scrub to stop while having it asked to be paused higher
2069 	 * above in relocation code.
2070 	 */
2071 	if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2072 		btrfs_scrub_cancel(fs_info);
2073 
2074 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2075 }
2076 
2077 /*
2078  * Release reserved delayed ref space of all pending block groups of the
2079  * transaction and remove them from the list
2080  */
2081 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2082 {
2083        struct btrfs_fs_info *fs_info = trans->fs_info;
2084        struct btrfs_block_group *block_group, *tmp;
2085 
2086        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2087                btrfs_delayed_refs_rsv_release(fs_info, 1);
2088                list_del_init(&block_group->bg_list);
2089        }
2090 }
2091 
2092 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2093 {
2094 	/*
2095 	 * We use try_to_writeback_inodes_sb() here because if we used
2096 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2097 	 * Currently are holding the fs freeze lock, if we do an async flush
2098 	 * we'll do btrfs_join_transaction() and deadlock because we need to
2099 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2100 	 * from already being in a transaction and our join_transaction doesn't
2101 	 * have to re-take the fs freeze lock.
2102 	 *
2103 	 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2104 	 * if it can read lock sb->s_umount. It will always be able to lock it,
2105 	 * except when the filesystem is being unmounted or being frozen, but in
2106 	 * those cases sync_filesystem() is called, which results in calling
2107 	 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2108 	 * Note that we don't call writeback_inodes_sb() directly, because it
2109 	 * will emit a warning if sb->s_umount is not locked.
2110 	 */
2111 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2112 		try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2113 	return 0;
2114 }
2115 
2116 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2117 {
2118 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2119 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2120 }
2121 
2122 /*
2123  * Add a pending snapshot associated with the given transaction handle to the
2124  * respective handle. This must be called after the transaction commit started
2125  * and while holding fs_info->trans_lock.
2126  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2127  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2128  * returns an error.
2129  */
2130 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2131 {
2132 	struct btrfs_transaction *cur_trans = trans->transaction;
2133 
2134 	if (!trans->pending_snapshot)
2135 		return;
2136 
2137 	lockdep_assert_held(&trans->fs_info->trans_lock);
2138 	ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2139 
2140 	list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2141 }
2142 
2143 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2144 {
2145 	fs_info->commit_stats.commit_count++;
2146 	fs_info->commit_stats.last_commit_dur = interval;
2147 	fs_info->commit_stats.max_commit_dur =
2148 			max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2149 	fs_info->commit_stats.total_commit_dur += interval;
2150 }
2151 
2152 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2153 {
2154 	struct btrfs_fs_info *fs_info = trans->fs_info;
2155 	struct btrfs_transaction *cur_trans = trans->transaction;
2156 	struct btrfs_transaction *prev_trans = NULL;
2157 	int ret;
2158 	ktime_t start_time;
2159 	ktime_t interval;
2160 
2161 	ASSERT(refcount_read(&trans->use_count) == 1);
2162 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2163 
2164 	clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2165 
2166 	/* Stop the commit early if ->aborted is set */
2167 	if (TRANS_ABORTED(cur_trans)) {
2168 		ret = cur_trans->aborted;
2169 		goto lockdep_trans_commit_start_release;
2170 	}
2171 
2172 	btrfs_trans_release_metadata(trans);
2173 	trans->block_rsv = NULL;
2174 
2175 	/*
2176 	 * We only want one transaction commit doing the flushing so we do not
2177 	 * waste a bunch of time on lock contention on the extent root node.
2178 	 */
2179 	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2180 			      &cur_trans->delayed_refs.flags)) {
2181 		/*
2182 		 * Make a pass through all the delayed refs we have so far.
2183 		 * Any running threads may add more while we are here.
2184 		 */
2185 		ret = btrfs_run_delayed_refs(trans, 0);
2186 		if (ret)
2187 			goto lockdep_trans_commit_start_release;
2188 	}
2189 
2190 	btrfs_create_pending_block_groups(trans);
2191 
2192 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2193 		int run_it = 0;
2194 
2195 		/* this mutex is also taken before trying to set
2196 		 * block groups readonly.  We need to make sure
2197 		 * that nobody has set a block group readonly
2198 		 * after a extents from that block group have been
2199 		 * allocated for cache files.  btrfs_set_block_group_ro
2200 		 * will wait for the transaction to commit if it
2201 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2202 		 *
2203 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2204 		 * only one process starts all the block group IO.  It wouldn't
2205 		 * hurt to have more than one go through, but there's no
2206 		 * real advantage to it either.
2207 		 */
2208 		mutex_lock(&fs_info->ro_block_group_mutex);
2209 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2210 				      &cur_trans->flags))
2211 			run_it = 1;
2212 		mutex_unlock(&fs_info->ro_block_group_mutex);
2213 
2214 		if (run_it) {
2215 			ret = btrfs_start_dirty_block_groups(trans);
2216 			if (ret)
2217 				goto lockdep_trans_commit_start_release;
2218 		}
2219 	}
2220 
2221 	spin_lock(&fs_info->trans_lock);
2222 	if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2223 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2224 
2225 		add_pending_snapshot(trans);
2226 
2227 		spin_unlock(&fs_info->trans_lock);
2228 		refcount_inc(&cur_trans->use_count);
2229 
2230 		if (trans->in_fsync)
2231 			want_state = TRANS_STATE_SUPER_COMMITTED;
2232 
2233 		btrfs_trans_state_lockdep_release(fs_info,
2234 						  BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2235 		ret = btrfs_end_transaction(trans);
2236 		wait_for_commit(cur_trans, want_state);
2237 
2238 		if (TRANS_ABORTED(cur_trans))
2239 			ret = cur_trans->aborted;
2240 
2241 		btrfs_put_transaction(cur_trans);
2242 
2243 		return ret;
2244 	}
2245 
2246 	cur_trans->state = TRANS_STATE_COMMIT_PREP;
2247 	wake_up(&fs_info->transaction_blocked_wait);
2248 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2249 
2250 	if (cur_trans->list.prev != &fs_info->trans_list) {
2251 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2252 
2253 		if (trans->in_fsync)
2254 			want_state = TRANS_STATE_SUPER_COMMITTED;
2255 
2256 		prev_trans = list_entry(cur_trans->list.prev,
2257 					struct btrfs_transaction, list);
2258 		if (prev_trans->state < want_state) {
2259 			refcount_inc(&prev_trans->use_count);
2260 			spin_unlock(&fs_info->trans_lock);
2261 
2262 			wait_for_commit(prev_trans, want_state);
2263 
2264 			ret = READ_ONCE(prev_trans->aborted);
2265 
2266 			btrfs_put_transaction(prev_trans);
2267 			if (ret)
2268 				goto lockdep_release;
2269 			spin_lock(&fs_info->trans_lock);
2270 		}
2271 	} else {
2272 		/*
2273 		 * The previous transaction was aborted and was already removed
2274 		 * from the list of transactions at fs_info->trans_list. So we
2275 		 * abort to prevent writing a new superblock that reflects a
2276 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2277 		 */
2278 		if (BTRFS_FS_ERROR(fs_info)) {
2279 			spin_unlock(&fs_info->trans_lock);
2280 			ret = -EROFS;
2281 			goto lockdep_release;
2282 		}
2283 	}
2284 
2285 	cur_trans->state = TRANS_STATE_COMMIT_START;
2286 	wake_up(&fs_info->transaction_blocked_wait);
2287 	spin_unlock(&fs_info->trans_lock);
2288 
2289 	/*
2290 	 * Get the time spent on the work done by the commit thread and not
2291 	 * the time spent waiting on a previous commit
2292 	 */
2293 	start_time = ktime_get_ns();
2294 
2295 	extwriter_counter_dec(cur_trans, trans->type);
2296 
2297 	ret = btrfs_start_delalloc_flush(fs_info);
2298 	if (ret)
2299 		goto lockdep_release;
2300 
2301 	ret = btrfs_run_delayed_items(trans);
2302 	if (ret)
2303 		goto lockdep_release;
2304 
2305 	/*
2306 	 * The thread has started/joined the transaction thus it holds the
2307 	 * lockdep map as a reader. It has to release it before acquiring the
2308 	 * lockdep map as a writer.
2309 	 */
2310 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2311 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2312 	wait_event(cur_trans->writer_wait,
2313 		   extwriter_counter_read(cur_trans) == 0);
2314 
2315 	/* some pending stuffs might be added after the previous flush. */
2316 	ret = btrfs_run_delayed_items(trans);
2317 	if (ret) {
2318 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2319 		goto cleanup_transaction;
2320 	}
2321 
2322 	btrfs_wait_delalloc_flush(fs_info);
2323 
2324 	/*
2325 	 * Wait for all ordered extents started by a fast fsync that joined this
2326 	 * transaction. Otherwise if this transaction commits before the ordered
2327 	 * extents complete we lose logged data after a power failure.
2328 	 */
2329 	btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2330 	wait_event(cur_trans->pending_wait,
2331 		   atomic_read(&cur_trans->pending_ordered) == 0);
2332 
2333 	btrfs_scrub_pause(fs_info);
2334 	/*
2335 	 * Ok now we need to make sure to block out any other joins while we
2336 	 * commit the transaction.  We could have started a join before setting
2337 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2338 	 */
2339 	spin_lock(&fs_info->trans_lock);
2340 	add_pending_snapshot(trans);
2341 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2342 	spin_unlock(&fs_info->trans_lock);
2343 
2344 	/*
2345 	 * The thread has started/joined the transaction thus it holds the
2346 	 * lockdep map as a reader. It has to release it before acquiring the
2347 	 * lockdep map as a writer.
2348 	 */
2349 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2350 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2351 	wait_event(cur_trans->writer_wait,
2352 		   atomic_read(&cur_trans->num_writers) == 1);
2353 
2354 	/*
2355 	 * Make lockdep happy by acquiring the state locks after
2356 	 * btrfs_trans_num_writers is released. If we acquired the state locks
2357 	 * before releasing the btrfs_trans_num_writers lock then lockdep would
2358 	 * complain because we did not follow the reverse order unlocking rule.
2359 	 */
2360 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2361 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2362 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2363 
2364 	/*
2365 	 * We've started the commit, clear the flag in case we were triggered to
2366 	 * do an async commit but somebody else started before the transaction
2367 	 * kthread could do the work.
2368 	 */
2369 	clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2370 
2371 	if (TRANS_ABORTED(cur_trans)) {
2372 		ret = cur_trans->aborted;
2373 		btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2374 		goto scrub_continue;
2375 	}
2376 	/*
2377 	 * the reloc mutex makes sure that we stop
2378 	 * the balancing code from coming in and moving
2379 	 * extents around in the middle of the commit
2380 	 */
2381 	mutex_lock(&fs_info->reloc_mutex);
2382 
2383 	/*
2384 	 * We needn't worry about the delayed items because we will
2385 	 * deal with them in create_pending_snapshot(), which is the
2386 	 * core function of the snapshot creation.
2387 	 */
2388 	ret = create_pending_snapshots(trans);
2389 	if (ret)
2390 		goto unlock_reloc;
2391 
2392 	/*
2393 	 * We insert the dir indexes of the snapshots and update the inode
2394 	 * of the snapshots' parents after the snapshot creation, so there
2395 	 * are some delayed items which are not dealt with. Now deal with
2396 	 * them.
2397 	 *
2398 	 * We needn't worry that this operation will corrupt the snapshots,
2399 	 * because all the tree which are snapshoted will be forced to COW
2400 	 * the nodes and leaves.
2401 	 */
2402 	ret = btrfs_run_delayed_items(trans);
2403 	if (ret)
2404 		goto unlock_reloc;
2405 
2406 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2407 	if (ret)
2408 		goto unlock_reloc;
2409 
2410 	/*
2411 	 * make sure none of the code above managed to slip in a
2412 	 * delayed item
2413 	 */
2414 	btrfs_assert_delayed_root_empty(fs_info);
2415 
2416 	WARN_ON(cur_trans != trans->transaction);
2417 
2418 	ret = commit_fs_roots(trans);
2419 	if (ret)
2420 		goto unlock_reloc;
2421 
2422 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2423 	 * safe to free the root of tree log roots
2424 	 */
2425 	btrfs_free_log_root_tree(trans, fs_info);
2426 
2427 	/*
2428 	 * Since fs roots are all committed, we can get a quite accurate
2429 	 * new_roots. So let's do quota accounting.
2430 	 */
2431 	ret = btrfs_qgroup_account_extents(trans);
2432 	if (ret < 0)
2433 		goto unlock_reloc;
2434 
2435 	ret = commit_cowonly_roots(trans);
2436 	if (ret)
2437 		goto unlock_reloc;
2438 
2439 	/*
2440 	 * The tasks which save the space cache and inode cache may also
2441 	 * update ->aborted, check it.
2442 	 */
2443 	if (TRANS_ABORTED(cur_trans)) {
2444 		ret = cur_trans->aborted;
2445 		goto unlock_reloc;
2446 	}
2447 
2448 	cur_trans = fs_info->running_transaction;
2449 
2450 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2451 			    fs_info->tree_root->node);
2452 	list_add_tail(&fs_info->tree_root->dirty_list,
2453 		      &cur_trans->switch_commits);
2454 
2455 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2456 			    fs_info->chunk_root->node);
2457 	list_add_tail(&fs_info->chunk_root->dirty_list,
2458 		      &cur_trans->switch_commits);
2459 
2460 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2461 		btrfs_set_root_node(&fs_info->block_group_root->root_item,
2462 				    fs_info->block_group_root->node);
2463 		list_add_tail(&fs_info->block_group_root->dirty_list,
2464 			      &cur_trans->switch_commits);
2465 	}
2466 
2467 	switch_commit_roots(trans);
2468 
2469 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2470 	ASSERT(list_empty(&cur_trans->io_bgs));
2471 	update_super_roots(fs_info);
2472 
2473 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2474 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2475 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2476 	       sizeof(*fs_info->super_copy));
2477 
2478 	btrfs_commit_device_sizes(cur_trans);
2479 
2480 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2481 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2482 
2483 	btrfs_trans_release_chunk_metadata(trans);
2484 
2485 	/*
2486 	 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2487 	 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2488 	 * make sure that before we commit our superblock, no other task can
2489 	 * start a new transaction and commit a log tree before we commit our
2490 	 * superblock. Anyone trying to commit a log tree locks this mutex before
2491 	 * writing its superblock.
2492 	 */
2493 	mutex_lock(&fs_info->tree_log_mutex);
2494 
2495 	spin_lock(&fs_info->trans_lock);
2496 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2497 	fs_info->running_transaction = NULL;
2498 	spin_unlock(&fs_info->trans_lock);
2499 	mutex_unlock(&fs_info->reloc_mutex);
2500 
2501 	wake_up(&fs_info->transaction_wait);
2502 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2503 
2504 	/* If we have features changed, wake up the cleaner to update sysfs. */
2505 	if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2506 	    fs_info->cleaner_kthread)
2507 		wake_up_process(fs_info->cleaner_kthread);
2508 
2509 	ret = btrfs_write_and_wait_transaction(trans);
2510 	if (ret) {
2511 		btrfs_handle_fs_error(fs_info, ret,
2512 				      "Error while writing out transaction");
2513 		mutex_unlock(&fs_info->tree_log_mutex);
2514 		goto scrub_continue;
2515 	}
2516 
2517 	ret = write_all_supers(fs_info, 0);
2518 	/*
2519 	 * the super is written, we can safely allow the tree-loggers
2520 	 * to go about their business
2521 	 */
2522 	mutex_unlock(&fs_info->tree_log_mutex);
2523 	if (ret)
2524 		goto scrub_continue;
2525 
2526 	/*
2527 	 * We needn't acquire the lock here because there is no other task
2528 	 * which can change it.
2529 	 */
2530 	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2531 	wake_up(&cur_trans->commit_wait);
2532 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2533 
2534 	btrfs_finish_extent_commit(trans);
2535 
2536 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2537 		btrfs_clear_space_info_full(fs_info);
2538 
2539 	fs_info->last_trans_committed = cur_trans->transid;
2540 	/*
2541 	 * We needn't acquire the lock here because there is no other task
2542 	 * which can change it.
2543 	 */
2544 	cur_trans->state = TRANS_STATE_COMPLETED;
2545 	wake_up(&cur_trans->commit_wait);
2546 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2547 
2548 	spin_lock(&fs_info->trans_lock);
2549 	list_del_init(&cur_trans->list);
2550 	spin_unlock(&fs_info->trans_lock);
2551 
2552 	btrfs_put_transaction(cur_trans);
2553 	btrfs_put_transaction(cur_trans);
2554 
2555 	if (trans->type & __TRANS_FREEZABLE)
2556 		sb_end_intwrite(fs_info->sb);
2557 
2558 	trace_btrfs_transaction_commit(fs_info);
2559 
2560 	interval = ktime_get_ns() - start_time;
2561 
2562 	btrfs_scrub_continue(fs_info);
2563 
2564 	if (current->journal_info == trans)
2565 		current->journal_info = NULL;
2566 
2567 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2568 
2569 	update_commit_stats(fs_info, interval);
2570 
2571 	return ret;
2572 
2573 unlock_reloc:
2574 	mutex_unlock(&fs_info->reloc_mutex);
2575 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2576 scrub_continue:
2577 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2578 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2579 	btrfs_scrub_continue(fs_info);
2580 cleanup_transaction:
2581 	btrfs_trans_release_metadata(trans);
2582 	btrfs_cleanup_pending_block_groups(trans);
2583 	btrfs_trans_release_chunk_metadata(trans);
2584 	trans->block_rsv = NULL;
2585 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2586 	if (current->journal_info == trans)
2587 		current->journal_info = NULL;
2588 	cleanup_transaction(trans, ret);
2589 
2590 	return ret;
2591 
2592 lockdep_release:
2593 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2594 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2595 	goto cleanup_transaction;
2596 
2597 lockdep_trans_commit_start_release:
2598 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2599 	btrfs_end_transaction(trans);
2600 	return ret;
2601 }
2602 
2603 /*
2604  * return < 0 if error
2605  * 0 if there are no more dead_roots at the time of call
2606  * 1 there are more to be processed, call me again
2607  *
2608  * The return value indicates there are certainly more snapshots to delete, but
2609  * if there comes a new one during processing, it may return 0. We don't mind,
2610  * because btrfs_commit_super will poke cleaner thread and it will process it a
2611  * few seconds later.
2612  */
2613 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2614 {
2615 	struct btrfs_root *root;
2616 	int ret;
2617 
2618 	spin_lock(&fs_info->trans_lock);
2619 	if (list_empty(&fs_info->dead_roots)) {
2620 		spin_unlock(&fs_info->trans_lock);
2621 		return 0;
2622 	}
2623 	root = list_first_entry(&fs_info->dead_roots,
2624 			struct btrfs_root, root_list);
2625 	list_del_init(&root->root_list);
2626 	spin_unlock(&fs_info->trans_lock);
2627 
2628 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2629 
2630 	btrfs_kill_all_delayed_nodes(root);
2631 
2632 	if (btrfs_header_backref_rev(root->node) <
2633 			BTRFS_MIXED_BACKREF_REV)
2634 		ret = btrfs_drop_snapshot(root, 0, 0);
2635 	else
2636 		ret = btrfs_drop_snapshot(root, 1, 0);
2637 
2638 	btrfs_put_root(root);
2639 	return (ret < 0) ? 0 : 1;
2640 }
2641 
2642 /*
2643  * We only mark the transaction aborted and then set the file system read-only.
2644  * This will prevent new transactions from starting or trying to join this
2645  * one.
2646  *
2647  * This means that error recovery at the call site is limited to freeing
2648  * any local memory allocations and passing the error code up without
2649  * further cleanup. The transaction should complete as it normally would
2650  * in the call path but will return -EIO.
2651  *
2652  * We'll complete the cleanup in btrfs_end_transaction and
2653  * btrfs_commit_transaction.
2654  */
2655 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2656 				      const char *function,
2657 				      unsigned int line, int errno, bool first_hit)
2658 {
2659 	struct btrfs_fs_info *fs_info = trans->fs_info;
2660 
2661 	WRITE_ONCE(trans->aborted, errno);
2662 	WRITE_ONCE(trans->transaction->aborted, errno);
2663 	if (first_hit && errno == -ENOSPC)
2664 		btrfs_dump_space_info_for_trans_abort(fs_info);
2665 	/* Wake up anybody who may be waiting on this transaction */
2666 	wake_up(&fs_info->transaction_wait);
2667 	wake_up(&fs_info->transaction_blocked_wait);
2668 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
2669 }
2670 
2671 int __init btrfs_transaction_init(void)
2672 {
2673 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2674 			sizeof(struct btrfs_trans_handle), 0,
2675 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2676 	if (!btrfs_trans_handle_cachep)
2677 		return -ENOMEM;
2678 	return 0;
2679 }
2680 
2681 void __cold btrfs_transaction_exit(void)
2682 {
2683 	kmem_cache_destroy(btrfs_trans_handle_cachep);
2684 }
2685