xref: /openbmc/linux/fs/btrfs/transaction.c (revision a2cce7a9)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		if (transaction->delayed_refs.pending_csums)
68 			printk(KERN_ERR "pending csums is %llu\n",
69 			       transaction->delayed_refs.pending_csums);
70 		while (!list_empty(&transaction->pending_chunks)) {
71 			struct extent_map *em;
72 
73 			em = list_first_entry(&transaction->pending_chunks,
74 					      struct extent_map, list);
75 			list_del_init(&em->list);
76 			free_extent_map(em);
77 		}
78 		kmem_cache_free(btrfs_transaction_cachep, transaction);
79 	}
80 }
81 
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 	spin_lock(&tree->lock);
85 	while (!RB_EMPTY_ROOT(&tree->state)) {
86 		struct rb_node *node;
87 		struct extent_state *state;
88 
89 		node = rb_first(&tree->state);
90 		state = rb_entry(node, struct extent_state, rb_node);
91 		rb_erase(&state->rb_node, &tree->state);
92 		RB_CLEAR_NODE(&state->rb_node);
93 		/*
94 		 * btree io trees aren't supposed to have tasks waiting for
95 		 * changes in the flags of extent states ever.
96 		 */
97 		ASSERT(!waitqueue_active(&state->wq));
98 		free_extent_state(state);
99 
100 		cond_resched_lock(&tree->lock);
101 	}
102 	spin_unlock(&tree->lock);
103 }
104 
105 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
106 					 struct btrfs_fs_info *fs_info)
107 {
108 	struct btrfs_root *root, *tmp;
109 
110 	down_write(&fs_info->commit_root_sem);
111 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
112 				 dirty_list) {
113 		list_del_init(&root->dirty_list);
114 		free_extent_buffer(root->commit_root);
115 		root->commit_root = btrfs_root_node(root);
116 		if (is_fstree(root->objectid))
117 			btrfs_unpin_free_ino(root);
118 		clear_btree_io_tree(&root->dirty_log_pages);
119 	}
120 
121 	/* We can free old roots now. */
122 	spin_lock(&trans->dropped_roots_lock);
123 	while (!list_empty(&trans->dropped_roots)) {
124 		root = list_first_entry(&trans->dropped_roots,
125 					struct btrfs_root, root_list);
126 		list_del_init(&root->root_list);
127 		spin_unlock(&trans->dropped_roots_lock);
128 		btrfs_drop_and_free_fs_root(fs_info, root);
129 		spin_lock(&trans->dropped_roots_lock);
130 	}
131 	spin_unlock(&trans->dropped_roots_lock);
132 	up_write(&fs_info->commit_root_sem);
133 }
134 
135 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
136 					 unsigned int type)
137 {
138 	if (type & TRANS_EXTWRITERS)
139 		atomic_inc(&trans->num_extwriters);
140 }
141 
142 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
143 					 unsigned int type)
144 {
145 	if (type & TRANS_EXTWRITERS)
146 		atomic_dec(&trans->num_extwriters);
147 }
148 
149 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
150 					  unsigned int type)
151 {
152 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
153 }
154 
155 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
156 {
157 	return atomic_read(&trans->num_extwriters);
158 }
159 
160 /*
161  * either allocate a new transaction or hop into the existing one
162  */
163 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
164 {
165 	struct btrfs_transaction *cur_trans;
166 	struct btrfs_fs_info *fs_info = root->fs_info;
167 
168 	spin_lock(&fs_info->trans_lock);
169 loop:
170 	/* The file system has been taken offline. No new transactions. */
171 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
172 		spin_unlock(&fs_info->trans_lock);
173 		return -EROFS;
174 	}
175 
176 	cur_trans = fs_info->running_transaction;
177 	if (cur_trans) {
178 		if (cur_trans->aborted) {
179 			spin_unlock(&fs_info->trans_lock);
180 			return cur_trans->aborted;
181 		}
182 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
183 			spin_unlock(&fs_info->trans_lock);
184 			return -EBUSY;
185 		}
186 		atomic_inc(&cur_trans->use_count);
187 		atomic_inc(&cur_trans->num_writers);
188 		extwriter_counter_inc(cur_trans, type);
189 		spin_unlock(&fs_info->trans_lock);
190 		return 0;
191 	}
192 	spin_unlock(&fs_info->trans_lock);
193 
194 	/*
195 	 * If we are ATTACH, we just want to catch the current transaction,
196 	 * and commit it. If there is no transaction, just return ENOENT.
197 	 */
198 	if (type == TRANS_ATTACH)
199 		return -ENOENT;
200 
201 	/*
202 	 * JOIN_NOLOCK only happens during the transaction commit, so
203 	 * it is impossible that ->running_transaction is NULL
204 	 */
205 	BUG_ON(type == TRANS_JOIN_NOLOCK);
206 
207 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
208 	if (!cur_trans)
209 		return -ENOMEM;
210 
211 	spin_lock(&fs_info->trans_lock);
212 	if (fs_info->running_transaction) {
213 		/*
214 		 * someone started a transaction after we unlocked.  Make sure
215 		 * to redo the checks above
216 		 */
217 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
218 		goto loop;
219 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
220 		spin_unlock(&fs_info->trans_lock);
221 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
222 		return -EROFS;
223 	}
224 
225 	atomic_set(&cur_trans->num_writers, 1);
226 	extwriter_counter_init(cur_trans, type);
227 	init_waitqueue_head(&cur_trans->writer_wait);
228 	init_waitqueue_head(&cur_trans->commit_wait);
229 	cur_trans->state = TRANS_STATE_RUNNING;
230 	/*
231 	 * One for this trans handle, one so it will live on until we
232 	 * commit the transaction.
233 	 */
234 	atomic_set(&cur_trans->use_count, 2);
235 	cur_trans->have_free_bgs = 0;
236 	cur_trans->start_time = get_seconds();
237 	cur_trans->dirty_bg_run = 0;
238 
239 	cur_trans->delayed_refs.href_root = RB_ROOT;
240 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
241 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
242 	cur_trans->delayed_refs.num_heads_ready = 0;
243 	cur_trans->delayed_refs.pending_csums = 0;
244 	cur_trans->delayed_refs.num_heads = 0;
245 	cur_trans->delayed_refs.flushing = 0;
246 	cur_trans->delayed_refs.run_delayed_start = 0;
247 	cur_trans->delayed_refs.qgroup_to_skip = 0;
248 
249 	/*
250 	 * although the tree mod log is per file system and not per transaction,
251 	 * the log must never go across transaction boundaries.
252 	 */
253 	smp_mb();
254 	if (!list_empty(&fs_info->tree_mod_seq_list))
255 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
256 			"creating a fresh transaction\n");
257 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
258 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
259 			"creating a fresh transaction\n");
260 	atomic64_set(&fs_info->tree_mod_seq, 0);
261 
262 	spin_lock_init(&cur_trans->delayed_refs.lock);
263 
264 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
265 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
266 	INIT_LIST_HEAD(&cur_trans->switch_commits);
267 	INIT_LIST_HEAD(&cur_trans->pending_ordered);
268 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
269 	INIT_LIST_HEAD(&cur_trans->io_bgs);
270 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
271 	mutex_init(&cur_trans->cache_write_mutex);
272 	cur_trans->num_dirty_bgs = 0;
273 	spin_lock_init(&cur_trans->dirty_bgs_lock);
274 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
275 	spin_lock_init(&cur_trans->deleted_bgs_lock);
276 	spin_lock_init(&cur_trans->dropped_roots_lock);
277 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
278 	extent_io_tree_init(&cur_trans->dirty_pages,
279 			     fs_info->btree_inode->i_mapping);
280 	fs_info->generation++;
281 	cur_trans->transid = fs_info->generation;
282 	fs_info->running_transaction = cur_trans;
283 	cur_trans->aborted = 0;
284 	spin_unlock(&fs_info->trans_lock);
285 
286 	return 0;
287 }
288 
289 /*
290  * this does all the record keeping required to make sure that a reference
291  * counted root is properly recorded in a given transaction.  This is required
292  * to make sure the old root from before we joined the transaction is deleted
293  * when the transaction commits
294  */
295 static int record_root_in_trans(struct btrfs_trans_handle *trans,
296 			       struct btrfs_root *root)
297 {
298 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
299 	    root->last_trans < trans->transid) {
300 		WARN_ON(root == root->fs_info->extent_root);
301 		WARN_ON(root->commit_root != root->node);
302 
303 		/*
304 		 * see below for IN_TRANS_SETUP usage rules
305 		 * we have the reloc mutex held now, so there
306 		 * is only one writer in this function
307 		 */
308 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
309 
310 		/* make sure readers find IN_TRANS_SETUP before
311 		 * they find our root->last_trans update
312 		 */
313 		smp_wmb();
314 
315 		spin_lock(&root->fs_info->fs_roots_radix_lock);
316 		if (root->last_trans == trans->transid) {
317 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
318 			return 0;
319 		}
320 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
321 			   (unsigned long)root->root_key.objectid,
322 			   BTRFS_ROOT_TRANS_TAG);
323 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
324 		root->last_trans = trans->transid;
325 
326 		/* this is pretty tricky.  We don't want to
327 		 * take the relocation lock in btrfs_record_root_in_trans
328 		 * unless we're really doing the first setup for this root in
329 		 * this transaction.
330 		 *
331 		 * Normally we'd use root->last_trans as a flag to decide
332 		 * if we want to take the expensive mutex.
333 		 *
334 		 * But, we have to set root->last_trans before we
335 		 * init the relocation root, otherwise, we trip over warnings
336 		 * in ctree.c.  The solution used here is to flag ourselves
337 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
338 		 * fixing up the reloc trees and everyone must wait.
339 		 *
340 		 * When this is zero, they can trust root->last_trans and fly
341 		 * through btrfs_record_root_in_trans without having to take the
342 		 * lock.  smp_wmb() makes sure that all the writes above are
343 		 * done before we pop in the zero below
344 		 */
345 		btrfs_init_reloc_root(trans, root);
346 		smp_mb__before_atomic();
347 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
348 	}
349 	return 0;
350 }
351 
352 
353 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
354 			    struct btrfs_root *root)
355 {
356 	struct btrfs_transaction *cur_trans = trans->transaction;
357 
358 	/* Add ourselves to the transaction dropped list */
359 	spin_lock(&cur_trans->dropped_roots_lock);
360 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
361 	spin_unlock(&cur_trans->dropped_roots_lock);
362 
363 	/* Make sure we don't try to update the root at commit time */
364 	spin_lock(&root->fs_info->fs_roots_radix_lock);
365 	radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
366 			     (unsigned long)root->root_key.objectid,
367 			     BTRFS_ROOT_TRANS_TAG);
368 	spin_unlock(&root->fs_info->fs_roots_radix_lock);
369 }
370 
371 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
372 			       struct btrfs_root *root)
373 {
374 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
375 		return 0;
376 
377 	/*
378 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
379 	 * and barriers
380 	 */
381 	smp_rmb();
382 	if (root->last_trans == trans->transid &&
383 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
384 		return 0;
385 
386 	mutex_lock(&root->fs_info->reloc_mutex);
387 	record_root_in_trans(trans, root);
388 	mutex_unlock(&root->fs_info->reloc_mutex);
389 
390 	return 0;
391 }
392 
393 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
394 {
395 	return (trans->state >= TRANS_STATE_BLOCKED &&
396 		trans->state < TRANS_STATE_UNBLOCKED &&
397 		!trans->aborted);
398 }
399 
400 /* wait for commit against the current transaction to become unblocked
401  * when this is done, it is safe to start a new transaction, but the current
402  * transaction might not be fully on disk.
403  */
404 static void wait_current_trans(struct btrfs_root *root)
405 {
406 	struct btrfs_transaction *cur_trans;
407 
408 	spin_lock(&root->fs_info->trans_lock);
409 	cur_trans = root->fs_info->running_transaction;
410 	if (cur_trans && is_transaction_blocked(cur_trans)) {
411 		atomic_inc(&cur_trans->use_count);
412 		spin_unlock(&root->fs_info->trans_lock);
413 
414 		wait_event(root->fs_info->transaction_wait,
415 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
416 			   cur_trans->aborted);
417 		btrfs_put_transaction(cur_trans);
418 	} else {
419 		spin_unlock(&root->fs_info->trans_lock);
420 	}
421 }
422 
423 static int may_wait_transaction(struct btrfs_root *root, int type)
424 {
425 	if (root->fs_info->log_root_recovering)
426 		return 0;
427 
428 	if (type == TRANS_USERSPACE)
429 		return 1;
430 
431 	if (type == TRANS_START &&
432 	    !atomic_read(&root->fs_info->open_ioctl_trans))
433 		return 1;
434 
435 	return 0;
436 }
437 
438 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
439 {
440 	if (!root->fs_info->reloc_ctl ||
441 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
442 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
443 	    root->reloc_root)
444 		return false;
445 
446 	return true;
447 }
448 
449 static struct btrfs_trans_handle *
450 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
451 		  enum btrfs_reserve_flush_enum flush)
452 {
453 	struct btrfs_trans_handle *h;
454 	struct btrfs_transaction *cur_trans;
455 	u64 num_bytes = 0;
456 	u64 qgroup_reserved = 0;
457 	bool reloc_reserved = false;
458 	int ret;
459 
460 	/* Send isn't supposed to start transactions. */
461 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
462 
463 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
464 		return ERR_PTR(-EROFS);
465 
466 	if (current->journal_info) {
467 		WARN_ON(type & TRANS_EXTWRITERS);
468 		h = current->journal_info;
469 		h->use_count++;
470 		WARN_ON(h->use_count > 2);
471 		h->orig_rsv = h->block_rsv;
472 		h->block_rsv = NULL;
473 		goto got_it;
474 	}
475 
476 	/*
477 	 * Do the reservation before we join the transaction so we can do all
478 	 * the appropriate flushing if need be.
479 	 */
480 	if (num_items > 0 && root != root->fs_info->chunk_root) {
481 		if (root->fs_info->quota_enabled &&
482 		    is_fstree(root->root_key.objectid)) {
483 			qgroup_reserved = num_items * root->nodesize;
484 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
485 			if (ret)
486 				return ERR_PTR(ret);
487 		}
488 
489 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
490 		/*
491 		 * Do the reservation for the relocation root creation
492 		 */
493 		if (need_reserve_reloc_root(root)) {
494 			num_bytes += root->nodesize;
495 			reloc_reserved = true;
496 		}
497 
498 		ret = btrfs_block_rsv_add(root,
499 					  &root->fs_info->trans_block_rsv,
500 					  num_bytes, flush);
501 		if (ret)
502 			goto reserve_fail;
503 	}
504 again:
505 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
506 	if (!h) {
507 		ret = -ENOMEM;
508 		goto alloc_fail;
509 	}
510 
511 	/*
512 	 * If we are JOIN_NOLOCK we're already committing a transaction and
513 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
514 	 * because we're already holding a ref.  We need this because we could
515 	 * have raced in and did an fsync() on a file which can kick a commit
516 	 * and then we deadlock with somebody doing a freeze.
517 	 *
518 	 * If we are ATTACH, it means we just want to catch the current
519 	 * transaction and commit it, so we needn't do sb_start_intwrite().
520 	 */
521 	if (type & __TRANS_FREEZABLE)
522 		sb_start_intwrite(root->fs_info->sb);
523 
524 	if (may_wait_transaction(root, type))
525 		wait_current_trans(root);
526 
527 	do {
528 		ret = join_transaction(root, type);
529 		if (ret == -EBUSY) {
530 			wait_current_trans(root);
531 			if (unlikely(type == TRANS_ATTACH))
532 				ret = -ENOENT;
533 		}
534 	} while (ret == -EBUSY);
535 
536 	if (ret < 0) {
537 		/* We must get the transaction if we are JOIN_NOLOCK. */
538 		BUG_ON(type == TRANS_JOIN_NOLOCK);
539 		goto join_fail;
540 	}
541 
542 	cur_trans = root->fs_info->running_transaction;
543 
544 	h->transid = cur_trans->transid;
545 	h->transaction = cur_trans;
546 	h->blocks_used = 0;
547 	h->bytes_reserved = 0;
548 	h->chunk_bytes_reserved = 0;
549 	h->root = root;
550 	h->delayed_ref_updates = 0;
551 	h->use_count = 1;
552 	h->adding_csums = 0;
553 	h->block_rsv = NULL;
554 	h->orig_rsv = NULL;
555 	h->aborted = 0;
556 	h->qgroup_reserved = 0;
557 	h->delayed_ref_elem.seq = 0;
558 	h->type = type;
559 	h->allocating_chunk = false;
560 	h->reloc_reserved = false;
561 	h->sync = false;
562 	INIT_LIST_HEAD(&h->qgroup_ref_list);
563 	INIT_LIST_HEAD(&h->new_bgs);
564 	INIT_LIST_HEAD(&h->ordered);
565 
566 	smp_mb();
567 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
568 	    may_wait_transaction(root, type)) {
569 		current->journal_info = h;
570 		btrfs_commit_transaction(h, root);
571 		goto again;
572 	}
573 
574 	if (num_bytes) {
575 		trace_btrfs_space_reservation(root->fs_info, "transaction",
576 					      h->transid, num_bytes, 1);
577 		h->block_rsv = &root->fs_info->trans_block_rsv;
578 		h->bytes_reserved = num_bytes;
579 		h->reloc_reserved = reloc_reserved;
580 	}
581 	h->qgroup_reserved = qgroup_reserved;
582 
583 got_it:
584 	btrfs_record_root_in_trans(h, root);
585 
586 	if (!current->journal_info && type != TRANS_USERSPACE)
587 		current->journal_info = h;
588 	return h;
589 
590 join_fail:
591 	if (type & __TRANS_FREEZABLE)
592 		sb_end_intwrite(root->fs_info->sb);
593 	kmem_cache_free(btrfs_trans_handle_cachep, h);
594 alloc_fail:
595 	if (num_bytes)
596 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
597 					num_bytes);
598 reserve_fail:
599 	if (qgroup_reserved)
600 		btrfs_qgroup_free(root, qgroup_reserved);
601 	return ERR_PTR(ret);
602 }
603 
604 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
605 						   int num_items)
606 {
607 	return start_transaction(root, num_items, TRANS_START,
608 				 BTRFS_RESERVE_FLUSH_ALL);
609 }
610 
611 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
612 					struct btrfs_root *root, int num_items)
613 {
614 	return start_transaction(root, num_items, TRANS_START,
615 				 BTRFS_RESERVE_FLUSH_LIMIT);
616 }
617 
618 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
619 {
620 	return start_transaction(root, 0, TRANS_JOIN, 0);
621 }
622 
623 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
624 {
625 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
626 }
627 
628 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
629 {
630 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
631 }
632 
633 /*
634  * btrfs_attach_transaction() - catch the running transaction
635  *
636  * It is used when we want to commit the current the transaction, but
637  * don't want to start a new one.
638  *
639  * Note: If this function return -ENOENT, it just means there is no
640  * running transaction. But it is possible that the inactive transaction
641  * is still in the memory, not fully on disk. If you hope there is no
642  * inactive transaction in the fs when -ENOENT is returned, you should
643  * invoke
644  *     btrfs_attach_transaction_barrier()
645  */
646 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
647 {
648 	return start_transaction(root, 0, TRANS_ATTACH, 0);
649 }
650 
651 /*
652  * btrfs_attach_transaction_barrier() - catch the running transaction
653  *
654  * It is similar to the above function, the differentia is this one
655  * will wait for all the inactive transactions until they fully
656  * complete.
657  */
658 struct btrfs_trans_handle *
659 btrfs_attach_transaction_barrier(struct btrfs_root *root)
660 {
661 	struct btrfs_trans_handle *trans;
662 
663 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
664 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
665 		btrfs_wait_for_commit(root, 0);
666 
667 	return trans;
668 }
669 
670 /* wait for a transaction commit to be fully complete */
671 static noinline void wait_for_commit(struct btrfs_root *root,
672 				    struct btrfs_transaction *commit)
673 {
674 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
675 }
676 
677 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
678 {
679 	struct btrfs_transaction *cur_trans = NULL, *t;
680 	int ret = 0;
681 
682 	if (transid) {
683 		if (transid <= root->fs_info->last_trans_committed)
684 			goto out;
685 
686 		/* find specified transaction */
687 		spin_lock(&root->fs_info->trans_lock);
688 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
689 			if (t->transid == transid) {
690 				cur_trans = t;
691 				atomic_inc(&cur_trans->use_count);
692 				ret = 0;
693 				break;
694 			}
695 			if (t->transid > transid) {
696 				ret = 0;
697 				break;
698 			}
699 		}
700 		spin_unlock(&root->fs_info->trans_lock);
701 
702 		/*
703 		 * The specified transaction doesn't exist, or we
704 		 * raced with btrfs_commit_transaction
705 		 */
706 		if (!cur_trans) {
707 			if (transid > root->fs_info->last_trans_committed)
708 				ret = -EINVAL;
709 			goto out;
710 		}
711 	} else {
712 		/* find newest transaction that is committing | committed */
713 		spin_lock(&root->fs_info->trans_lock);
714 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
715 					    list) {
716 			if (t->state >= TRANS_STATE_COMMIT_START) {
717 				if (t->state == TRANS_STATE_COMPLETED)
718 					break;
719 				cur_trans = t;
720 				atomic_inc(&cur_trans->use_count);
721 				break;
722 			}
723 		}
724 		spin_unlock(&root->fs_info->trans_lock);
725 		if (!cur_trans)
726 			goto out;  /* nothing committing|committed */
727 	}
728 
729 	wait_for_commit(root, cur_trans);
730 	btrfs_put_transaction(cur_trans);
731 out:
732 	return ret;
733 }
734 
735 void btrfs_throttle(struct btrfs_root *root)
736 {
737 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
738 		wait_current_trans(root);
739 }
740 
741 static int should_end_transaction(struct btrfs_trans_handle *trans,
742 				  struct btrfs_root *root)
743 {
744 	if (root->fs_info->global_block_rsv.space_info->full &&
745 	    btrfs_check_space_for_delayed_refs(trans, root))
746 		return 1;
747 
748 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
749 }
750 
751 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
752 				 struct btrfs_root *root)
753 {
754 	struct btrfs_transaction *cur_trans = trans->transaction;
755 	int updates;
756 	int err;
757 
758 	smp_mb();
759 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
760 	    cur_trans->delayed_refs.flushing)
761 		return 1;
762 
763 	updates = trans->delayed_ref_updates;
764 	trans->delayed_ref_updates = 0;
765 	if (updates) {
766 		err = btrfs_run_delayed_refs(trans, root, updates * 2);
767 		if (err) /* Error code will also eval true */
768 			return err;
769 	}
770 
771 	return should_end_transaction(trans, root);
772 }
773 
774 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
775 			  struct btrfs_root *root, int throttle)
776 {
777 	struct btrfs_transaction *cur_trans = trans->transaction;
778 	struct btrfs_fs_info *info = root->fs_info;
779 	unsigned long cur = trans->delayed_ref_updates;
780 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
781 	int err = 0;
782 	int must_run_delayed_refs = 0;
783 
784 	if (trans->use_count > 1) {
785 		trans->use_count--;
786 		trans->block_rsv = trans->orig_rsv;
787 		return 0;
788 	}
789 
790 	btrfs_trans_release_metadata(trans, root);
791 	trans->block_rsv = NULL;
792 
793 	if (!list_empty(&trans->new_bgs))
794 		btrfs_create_pending_block_groups(trans, root);
795 
796 	if (!list_empty(&trans->ordered)) {
797 		spin_lock(&info->trans_lock);
798 		list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
799 		spin_unlock(&info->trans_lock);
800 	}
801 
802 	trans->delayed_ref_updates = 0;
803 	if (!trans->sync) {
804 		must_run_delayed_refs =
805 			btrfs_should_throttle_delayed_refs(trans, root);
806 		cur = max_t(unsigned long, cur, 32);
807 
808 		/*
809 		 * don't make the caller wait if they are from a NOLOCK
810 		 * or ATTACH transaction, it will deadlock with commit
811 		 */
812 		if (must_run_delayed_refs == 1 &&
813 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
814 			must_run_delayed_refs = 2;
815 	}
816 
817 	if (trans->qgroup_reserved) {
818 		/*
819 		 * the same root has to be passed here between start_transaction
820 		 * and end_transaction. Subvolume quota depends on this.
821 		 */
822 		btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
823 		trans->qgroup_reserved = 0;
824 	}
825 
826 	btrfs_trans_release_metadata(trans, root);
827 	trans->block_rsv = NULL;
828 
829 	if (!list_empty(&trans->new_bgs))
830 		btrfs_create_pending_block_groups(trans, root);
831 
832 	btrfs_trans_release_chunk_metadata(trans);
833 
834 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
835 	    should_end_transaction(trans, root) &&
836 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
837 		spin_lock(&info->trans_lock);
838 		if (cur_trans->state == TRANS_STATE_RUNNING)
839 			cur_trans->state = TRANS_STATE_BLOCKED;
840 		spin_unlock(&info->trans_lock);
841 	}
842 
843 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
844 		if (throttle)
845 			return btrfs_commit_transaction(trans, root);
846 		else
847 			wake_up_process(info->transaction_kthread);
848 	}
849 
850 	if (trans->type & __TRANS_FREEZABLE)
851 		sb_end_intwrite(root->fs_info->sb);
852 
853 	WARN_ON(cur_trans != info->running_transaction);
854 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
855 	atomic_dec(&cur_trans->num_writers);
856 	extwriter_counter_dec(cur_trans, trans->type);
857 
858 	smp_mb();
859 	if (waitqueue_active(&cur_trans->writer_wait))
860 		wake_up(&cur_trans->writer_wait);
861 	btrfs_put_transaction(cur_trans);
862 
863 	if (current->journal_info == trans)
864 		current->journal_info = NULL;
865 
866 	if (throttle)
867 		btrfs_run_delayed_iputs(root);
868 
869 	if (trans->aborted ||
870 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
871 		wake_up_process(info->transaction_kthread);
872 		err = -EIO;
873 	}
874 	assert_qgroups_uptodate(trans);
875 
876 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
877 	if (must_run_delayed_refs) {
878 		btrfs_async_run_delayed_refs(root, cur,
879 					     must_run_delayed_refs == 1);
880 	}
881 	return err;
882 }
883 
884 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
885 			  struct btrfs_root *root)
886 {
887 	return __btrfs_end_transaction(trans, root, 0);
888 }
889 
890 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
891 				   struct btrfs_root *root)
892 {
893 	return __btrfs_end_transaction(trans, root, 1);
894 }
895 
896 /*
897  * when btree blocks are allocated, they have some corresponding bits set for
898  * them in one of two extent_io trees.  This is used to make sure all of
899  * those extents are sent to disk but does not wait on them
900  */
901 int btrfs_write_marked_extents(struct btrfs_root *root,
902 			       struct extent_io_tree *dirty_pages, int mark)
903 {
904 	int err = 0;
905 	int werr = 0;
906 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
907 	struct extent_state *cached_state = NULL;
908 	u64 start = 0;
909 	u64 end;
910 
911 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
912 				      mark, &cached_state)) {
913 		bool wait_writeback = false;
914 
915 		err = convert_extent_bit(dirty_pages, start, end,
916 					 EXTENT_NEED_WAIT,
917 					 mark, &cached_state, GFP_NOFS);
918 		/*
919 		 * convert_extent_bit can return -ENOMEM, which is most of the
920 		 * time a temporary error. So when it happens, ignore the error
921 		 * and wait for writeback of this range to finish - because we
922 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
923 		 * to btrfs_wait_marked_extents() would not know that writeback
924 		 * for this range started and therefore wouldn't wait for it to
925 		 * finish - we don't want to commit a superblock that points to
926 		 * btree nodes/leafs for which writeback hasn't finished yet
927 		 * (and without errors).
928 		 * We cleanup any entries left in the io tree when committing
929 		 * the transaction (through clear_btree_io_tree()).
930 		 */
931 		if (err == -ENOMEM) {
932 			err = 0;
933 			wait_writeback = true;
934 		}
935 		if (!err)
936 			err = filemap_fdatawrite_range(mapping, start, end);
937 		if (err)
938 			werr = err;
939 		else if (wait_writeback)
940 			werr = filemap_fdatawait_range(mapping, start, end);
941 		free_extent_state(cached_state);
942 		cached_state = NULL;
943 		cond_resched();
944 		start = end + 1;
945 	}
946 	return werr;
947 }
948 
949 /*
950  * when btree blocks are allocated, they have some corresponding bits set for
951  * them in one of two extent_io trees.  This is used to make sure all of
952  * those extents are on disk for transaction or log commit.  We wait
953  * on all the pages and clear them from the dirty pages state tree
954  */
955 int btrfs_wait_marked_extents(struct btrfs_root *root,
956 			      struct extent_io_tree *dirty_pages, int mark)
957 {
958 	int err = 0;
959 	int werr = 0;
960 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
961 	struct extent_state *cached_state = NULL;
962 	u64 start = 0;
963 	u64 end;
964 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
965 	bool errors = false;
966 
967 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
968 				      EXTENT_NEED_WAIT, &cached_state)) {
969 		/*
970 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
971 		 * When committing the transaction, we'll remove any entries
972 		 * left in the io tree. For a log commit, we don't remove them
973 		 * after committing the log because the tree can be accessed
974 		 * concurrently - we do it only at transaction commit time when
975 		 * it's safe to do it (through clear_btree_io_tree()).
976 		 */
977 		err = clear_extent_bit(dirty_pages, start, end,
978 				       EXTENT_NEED_WAIT,
979 				       0, 0, &cached_state, GFP_NOFS);
980 		if (err == -ENOMEM)
981 			err = 0;
982 		if (!err)
983 			err = filemap_fdatawait_range(mapping, start, end);
984 		if (err)
985 			werr = err;
986 		free_extent_state(cached_state);
987 		cached_state = NULL;
988 		cond_resched();
989 		start = end + 1;
990 	}
991 	if (err)
992 		werr = err;
993 
994 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
995 		if ((mark & EXTENT_DIRTY) &&
996 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
997 				       &btree_ino->runtime_flags))
998 			errors = true;
999 
1000 		if ((mark & EXTENT_NEW) &&
1001 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1002 				       &btree_ino->runtime_flags))
1003 			errors = true;
1004 	} else {
1005 		if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1006 				       &btree_ino->runtime_flags))
1007 			errors = true;
1008 	}
1009 
1010 	if (errors && !werr)
1011 		werr = -EIO;
1012 
1013 	return werr;
1014 }
1015 
1016 /*
1017  * when btree blocks are allocated, they have some corresponding bits set for
1018  * them in one of two extent_io trees.  This is used to make sure all of
1019  * those extents are on disk for transaction or log commit
1020  */
1021 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1022 				struct extent_io_tree *dirty_pages, int mark)
1023 {
1024 	int ret;
1025 	int ret2;
1026 	struct blk_plug plug;
1027 
1028 	blk_start_plug(&plug);
1029 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1030 	blk_finish_plug(&plug);
1031 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1032 
1033 	if (ret)
1034 		return ret;
1035 	if (ret2)
1036 		return ret2;
1037 	return 0;
1038 }
1039 
1040 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1041 				     struct btrfs_root *root)
1042 {
1043 	int ret;
1044 
1045 	ret = btrfs_write_and_wait_marked_extents(root,
1046 					   &trans->transaction->dirty_pages,
1047 					   EXTENT_DIRTY);
1048 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1049 
1050 	return ret;
1051 }
1052 
1053 /*
1054  * this is used to update the root pointer in the tree of tree roots.
1055  *
1056  * But, in the case of the extent allocation tree, updating the root
1057  * pointer may allocate blocks which may change the root of the extent
1058  * allocation tree.
1059  *
1060  * So, this loops and repeats and makes sure the cowonly root didn't
1061  * change while the root pointer was being updated in the metadata.
1062  */
1063 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1064 			       struct btrfs_root *root)
1065 {
1066 	int ret;
1067 	u64 old_root_bytenr;
1068 	u64 old_root_used;
1069 	struct btrfs_root *tree_root = root->fs_info->tree_root;
1070 
1071 	old_root_used = btrfs_root_used(&root->root_item);
1072 
1073 	while (1) {
1074 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1075 		if (old_root_bytenr == root->node->start &&
1076 		    old_root_used == btrfs_root_used(&root->root_item))
1077 			break;
1078 
1079 		btrfs_set_root_node(&root->root_item, root->node);
1080 		ret = btrfs_update_root(trans, tree_root,
1081 					&root->root_key,
1082 					&root->root_item);
1083 		if (ret)
1084 			return ret;
1085 
1086 		old_root_used = btrfs_root_used(&root->root_item);
1087 	}
1088 
1089 	return 0;
1090 }
1091 
1092 /*
1093  * update all the cowonly tree roots on disk
1094  *
1095  * The error handling in this function may not be obvious. Any of the
1096  * failures will cause the file system to go offline. We still need
1097  * to clean up the delayed refs.
1098  */
1099 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1100 					 struct btrfs_root *root)
1101 {
1102 	struct btrfs_fs_info *fs_info = root->fs_info;
1103 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1104 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1105 	struct list_head *next;
1106 	struct extent_buffer *eb;
1107 	int ret;
1108 
1109 	eb = btrfs_lock_root_node(fs_info->tree_root);
1110 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1111 			      0, &eb);
1112 	btrfs_tree_unlock(eb);
1113 	free_extent_buffer(eb);
1114 
1115 	if (ret)
1116 		return ret;
1117 
1118 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1119 	if (ret)
1120 		return ret;
1121 
1122 	ret = btrfs_run_dev_stats(trans, root->fs_info);
1123 	if (ret)
1124 		return ret;
1125 	ret = btrfs_run_dev_replace(trans, root->fs_info);
1126 	if (ret)
1127 		return ret;
1128 	ret = btrfs_run_qgroups(trans, root->fs_info);
1129 	if (ret)
1130 		return ret;
1131 
1132 	ret = btrfs_setup_space_cache(trans, root);
1133 	if (ret)
1134 		return ret;
1135 
1136 	/* run_qgroups might have added some more refs */
1137 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1138 	if (ret)
1139 		return ret;
1140 again:
1141 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1142 		next = fs_info->dirty_cowonly_roots.next;
1143 		list_del_init(next);
1144 		root = list_entry(next, struct btrfs_root, dirty_list);
1145 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1146 
1147 		if (root != fs_info->extent_root)
1148 			list_add_tail(&root->dirty_list,
1149 				      &trans->transaction->switch_commits);
1150 		ret = update_cowonly_root(trans, root);
1151 		if (ret)
1152 			return ret;
1153 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1154 		if (ret)
1155 			return ret;
1156 	}
1157 
1158 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1159 		ret = btrfs_write_dirty_block_groups(trans, root);
1160 		if (ret)
1161 			return ret;
1162 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1163 		if (ret)
1164 			return ret;
1165 	}
1166 
1167 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1168 		goto again;
1169 
1170 	list_add_tail(&fs_info->extent_root->dirty_list,
1171 		      &trans->transaction->switch_commits);
1172 	btrfs_after_dev_replace_commit(fs_info);
1173 
1174 	return 0;
1175 }
1176 
1177 /*
1178  * dead roots are old snapshots that need to be deleted.  This allocates
1179  * a dirty root struct and adds it into the list of dead roots that need to
1180  * be deleted
1181  */
1182 void btrfs_add_dead_root(struct btrfs_root *root)
1183 {
1184 	spin_lock(&root->fs_info->trans_lock);
1185 	if (list_empty(&root->root_list))
1186 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1187 	spin_unlock(&root->fs_info->trans_lock);
1188 }
1189 
1190 /*
1191  * update all the cowonly tree roots on disk
1192  */
1193 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1194 				    struct btrfs_root *root)
1195 {
1196 	struct btrfs_root *gang[8];
1197 	struct btrfs_fs_info *fs_info = root->fs_info;
1198 	int i;
1199 	int ret;
1200 	int err = 0;
1201 
1202 	spin_lock(&fs_info->fs_roots_radix_lock);
1203 	while (1) {
1204 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1205 						 (void **)gang, 0,
1206 						 ARRAY_SIZE(gang),
1207 						 BTRFS_ROOT_TRANS_TAG);
1208 		if (ret == 0)
1209 			break;
1210 		for (i = 0; i < ret; i++) {
1211 			root = gang[i];
1212 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1213 					(unsigned long)root->root_key.objectid,
1214 					BTRFS_ROOT_TRANS_TAG);
1215 			spin_unlock(&fs_info->fs_roots_radix_lock);
1216 
1217 			btrfs_free_log(trans, root);
1218 			btrfs_update_reloc_root(trans, root);
1219 			btrfs_orphan_commit_root(trans, root);
1220 
1221 			btrfs_save_ino_cache(root, trans);
1222 
1223 			/* see comments in should_cow_block() */
1224 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1225 			smp_mb__after_atomic();
1226 
1227 			if (root->commit_root != root->node) {
1228 				list_add_tail(&root->dirty_list,
1229 					&trans->transaction->switch_commits);
1230 				btrfs_set_root_node(&root->root_item,
1231 						    root->node);
1232 			}
1233 
1234 			err = btrfs_update_root(trans, fs_info->tree_root,
1235 						&root->root_key,
1236 						&root->root_item);
1237 			spin_lock(&fs_info->fs_roots_radix_lock);
1238 			if (err)
1239 				break;
1240 		}
1241 	}
1242 	spin_unlock(&fs_info->fs_roots_radix_lock);
1243 	return err;
1244 }
1245 
1246 /*
1247  * defrag a given btree.
1248  * Every leaf in the btree is read and defragged.
1249  */
1250 int btrfs_defrag_root(struct btrfs_root *root)
1251 {
1252 	struct btrfs_fs_info *info = root->fs_info;
1253 	struct btrfs_trans_handle *trans;
1254 	int ret;
1255 
1256 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1257 		return 0;
1258 
1259 	while (1) {
1260 		trans = btrfs_start_transaction(root, 0);
1261 		if (IS_ERR(trans))
1262 			return PTR_ERR(trans);
1263 
1264 		ret = btrfs_defrag_leaves(trans, root);
1265 
1266 		btrfs_end_transaction(trans, root);
1267 		btrfs_btree_balance_dirty(info->tree_root);
1268 		cond_resched();
1269 
1270 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1271 			break;
1272 
1273 		if (btrfs_defrag_cancelled(root->fs_info)) {
1274 			pr_debug("BTRFS: defrag_root cancelled\n");
1275 			ret = -EAGAIN;
1276 			break;
1277 		}
1278 	}
1279 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1280 	return ret;
1281 }
1282 
1283 /*
1284  * new snapshots need to be created at a very specific time in the
1285  * transaction commit.  This does the actual creation.
1286  *
1287  * Note:
1288  * If the error which may affect the commitment of the current transaction
1289  * happens, we should return the error number. If the error which just affect
1290  * the creation of the pending snapshots, just return 0.
1291  */
1292 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1293 				   struct btrfs_fs_info *fs_info,
1294 				   struct btrfs_pending_snapshot *pending)
1295 {
1296 	struct btrfs_key key;
1297 	struct btrfs_root_item *new_root_item;
1298 	struct btrfs_root *tree_root = fs_info->tree_root;
1299 	struct btrfs_root *root = pending->root;
1300 	struct btrfs_root *parent_root;
1301 	struct btrfs_block_rsv *rsv;
1302 	struct inode *parent_inode;
1303 	struct btrfs_path *path;
1304 	struct btrfs_dir_item *dir_item;
1305 	struct dentry *dentry;
1306 	struct extent_buffer *tmp;
1307 	struct extent_buffer *old;
1308 	struct timespec cur_time = CURRENT_TIME;
1309 	int ret = 0;
1310 	u64 to_reserve = 0;
1311 	u64 index = 0;
1312 	u64 objectid;
1313 	u64 root_flags;
1314 	uuid_le new_uuid;
1315 
1316 	path = btrfs_alloc_path();
1317 	if (!path) {
1318 		pending->error = -ENOMEM;
1319 		return 0;
1320 	}
1321 
1322 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1323 	if (!new_root_item) {
1324 		pending->error = -ENOMEM;
1325 		goto root_item_alloc_fail;
1326 	}
1327 
1328 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1329 	if (pending->error)
1330 		goto no_free_objectid;
1331 
1332 	/*
1333 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1334 	 * accounted by later btrfs_qgroup_inherit().
1335 	 */
1336 	btrfs_set_skip_qgroup(trans, objectid);
1337 
1338 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1339 
1340 	if (to_reserve > 0) {
1341 		pending->error = btrfs_block_rsv_add(root,
1342 						     &pending->block_rsv,
1343 						     to_reserve,
1344 						     BTRFS_RESERVE_NO_FLUSH);
1345 		if (pending->error)
1346 			goto clear_skip_qgroup;
1347 	}
1348 
1349 	key.objectid = objectid;
1350 	key.offset = (u64)-1;
1351 	key.type = BTRFS_ROOT_ITEM_KEY;
1352 
1353 	rsv = trans->block_rsv;
1354 	trans->block_rsv = &pending->block_rsv;
1355 	trans->bytes_reserved = trans->block_rsv->reserved;
1356 
1357 	dentry = pending->dentry;
1358 	parent_inode = pending->dir;
1359 	parent_root = BTRFS_I(parent_inode)->root;
1360 	record_root_in_trans(trans, parent_root);
1361 
1362 	/*
1363 	 * insert the directory item
1364 	 */
1365 	ret = btrfs_set_inode_index(parent_inode, &index);
1366 	BUG_ON(ret); /* -ENOMEM */
1367 
1368 	/* check if there is a file/dir which has the same name. */
1369 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1370 					 btrfs_ino(parent_inode),
1371 					 dentry->d_name.name,
1372 					 dentry->d_name.len, 0);
1373 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1374 		pending->error = -EEXIST;
1375 		goto dir_item_existed;
1376 	} else if (IS_ERR(dir_item)) {
1377 		ret = PTR_ERR(dir_item);
1378 		btrfs_abort_transaction(trans, root, ret);
1379 		goto fail;
1380 	}
1381 	btrfs_release_path(path);
1382 
1383 	/*
1384 	 * pull in the delayed directory update
1385 	 * and the delayed inode item
1386 	 * otherwise we corrupt the FS during
1387 	 * snapshot
1388 	 */
1389 	ret = btrfs_run_delayed_items(trans, root);
1390 	if (ret) {	/* Transaction aborted */
1391 		btrfs_abort_transaction(trans, root, ret);
1392 		goto fail;
1393 	}
1394 
1395 	record_root_in_trans(trans, root);
1396 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1397 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1398 	btrfs_check_and_init_root_item(new_root_item);
1399 
1400 	root_flags = btrfs_root_flags(new_root_item);
1401 	if (pending->readonly)
1402 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1403 	else
1404 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1405 	btrfs_set_root_flags(new_root_item, root_flags);
1406 
1407 	btrfs_set_root_generation_v2(new_root_item,
1408 			trans->transid);
1409 	uuid_le_gen(&new_uuid);
1410 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1411 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1412 			BTRFS_UUID_SIZE);
1413 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1414 		memset(new_root_item->received_uuid, 0,
1415 		       sizeof(new_root_item->received_uuid));
1416 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1417 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1418 		btrfs_set_root_stransid(new_root_item, 0);
1419 		btrfs_set_root_rtransid(new_root_item, 0);
1420 	}
1421 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1422 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1423 	btrfs_set_root_otransid(new_root_item, trans->transid);
1424 
1425 	old = btrfs_lock_root_node(root);
1426 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1427 	if (ret) {
1428 		btrfs_tree_unlock(old);
1429 		free_extent_buffer(old);
1430 		btrfs_abort_transaction(trans, root, ret);
1431 		goto fail;
1432 	}
1433 
1434 	btrfs_set_lock_blocking(old);
1435 
1436 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1437 	/* clean up in any case */
1438 	btrfs_tree_unlock(old);
1439 	free_extent_buffer(old);
1440 	if (ret) {
1441 		btrfs_abort_transaction(trans, root, ret);
1442 		goto fail;
1443 	}
1444 	/* see comments in should_cow_block() */
1445 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1446 	smp_wmb();
1447 
1448 	btrfs_set_root_node(new_root_item, tmp);
1449 	/* record when the snapshot was created in key.offset */
1450 	key.offset = trans->transid;
1451 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1452 	btrfs_tree_unlock(tmp);
1453 	free_extent_buffer(tmp);
1454 	if (ret) {
1455 		btrfs_abort_transaction(trans, root, ret);
1456 		goto fail;
1457 	}
1458 
1459 	/*
1460 	 * insert root back/forward references
1461 	 */
1462 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1463 				 parent_root->root_key.objectid,
1464 				 btrfs_ino(parent_inode), index,
1465 				 dentry->d_name.name, dentry->d_name.len);
1466 	if (ret) {
1467 		btrfs_abort_transaction(trans, root, ret);
1468 		goto fail;
1469 	}
1470 
1471 	key.offset = (u64)-1;
1472 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1473 	if (IS_ERR(pending->snap)) {
1474 		ret = PTR_ERR(pending->snap);
1475 		btrfs_abort_transaction(trans, root, ret);
1476 		goto fail;
1477 	}
1478 
1479 	ret = btrfs_reloc_post_snapshot(trans, pending);
1480 	if (ret) {
1481 		btrfs_abort_transaction(trans, root, ret);
1482 		goto fail;
1483 	}
1484 
1485 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1486 	if (ret) {
1487 		btrfs_abort_transaction(trans, root, ret);
1488 		goto fail;
1489 	}
1490 
1491 	ret = btrfs_insert_dir_item(trans, parent_root,
1492 				    dentry->d_name.name, dentry->d_name.len,
1493 				    parent_inode, &key,
1494 				    BTRFS_FT_DIR, index);
1495 	/* We have check then name at the beginning, so it is impossible. */
1496 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1497 	if (ret) {
1498 		btrfs_abort_transaction(trans, root, ret);
1499 		goto fail;
1500 	}
1501 
1502 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1503 					 dentry->d_name.len * 2);
1504 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1505 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1506 	if (ret) {
1507 		btrfs_abort_transaction(trans, root, ret);
1508 		goto fail;
1509 	}
1510 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1511 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1512 	if (ret) {
1513 		btrfs_abort_transaction(trans, root, ret);
1514 		goto fail;
1515 	}
1516 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1517 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1518 					  new_root_item->received_uuid,
1519 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1520 					  objectid);
1521 		if (ret && ret != -EEXIST) {
1522 			btrfs_abort_transaction(trans, root, ret);
1523 			goto fail;
1524 		}
1525 	}
1526 
1527 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1528 	if (ret) {
1529 		btrfs_abort_transaction(trans, root, ret);
1530 		goto fail;
1531 	}
1532 
1533 	/*
1534 	 * account qgroup counters before qgroup_inherit()
1535 	 */
1536 	ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1537 	if (ret)
1538 		goto fail;
1539 	ret = btrfs_qgroup_account_extents(trans, fs_info);
1540 	if (ret)
1541 		goto fail;
1542 	ret = btrfs_qgroup_inherit(trans, fs_info,
1543 				   root->root_key.objectid,
1544 				   objectid, pending->inherit);
1545 	if (ret) {
1546 		btrfs_abort_transaction(trans, root, ret);
1547 		goto fail;
1548 	}
1549 
1550 fail:
1551 	pending->error = ret;
1552 dir_item_existed:
1553 	trans->block_rsv = rsv;
1554 	trans->bytes_reserved = 0;
1555 clear_skip_qgroup:
1556 	btrfs_clear_skip_qgroup(trans);
1557 no_free_objectid:
1558 	kfree(new_root_item);
1559 root_item_alloc_fail:
1560 	btrfs_free_path(path);
1561 	return ret;
1562 }
1563 
1564 /*
1565  * create all the snapshots we've scheduled for creation
1566  */
1567 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1568 					     struct btrfs_fs_info *fs_info)
1569 {
1570 	struct btrfs_pending_snapshot *pending, *next;
1571 	struct list_head *head = &trans->transaction->pending_snapshots;
1572 	int ret = 0;
1573 
1574 	list_for_each_entry_safe(pending, next, head, list) {
1575 		list_del(&pending->list);
1576 		ret = create_pending_snapshot(trans, fs_info, pending);
1577 		if (ret)
1578 			break;
1579 	}
1580 	return ret;
1581 }
1582 
1583 static void update_super_roots(struct btrfs_root *root)
1584 {
1585 	struct btrfs_root_item *root_item;
1586 	struct btrfs_super_block *super;
1587 
1588 	super = root->fs_info->super_copy;
1589 
1590 	root_item = &root->fs_info->chunk_root->root_item;
1591 	super->chunk_root = root_item->bytenr;
1592 	super->chunk_root_generation = root_item->generation;
1593 	super->chunk_root_level = root_item->level;
1594 
1595 	root_item = &root->fs_info->tree_root->root_item;
1596 	super->root = root_item->bytenr;
1597 	super->generation = root_item->generation;
1598 	super->root_level = root_item->level;
1599 	if (btrfs_test_opt(root, SPACE_CACHE))
1600 		super->cache_generation = root_item->generation;
1601 	if (root->fs_info->update_uuid_tree_gen)
1602 		super->uuid_tree_generation = root_item->generation;
1603 }
1604 
1605 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1606 {
1607 	struct btrfs_transaction *trans;
1608 	int ret = 0;
1609 
1610 	spin_lock(&info->trans_lock);
1611 	trans = info->running_transaction;
1612 	if (trans)
1613 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1614 	spin_unlock(&info->trans_lock);
1615 	return ret;
1616 }
1617 
1618 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1619 {
1620 	struct btrfs_transaction *trans;
1621 	int ret = 0;
1622 
1623 	spin_lock(&info->trans_lock);
1624 	trans = info->running_transaction;
1625 	if (trans)
1626 		ret = is_transaction_blocked(trans);
1627 	spin_unlock(&info->trans_lock);
1628 	return ret;
1629 }
1630 
1631 /*
1632  * wait for the current transaction commit to start and block subsequent
1633  * transaction joins
1634  */
1635 static void wait_current_trans_commit_start(struct btrfs_root *root,
1636 					    struct btrfs_transaction *trans)
1637 {
1638 	wait_event(root->fs_info->transaction_blocked_wait,
1639 		   trans->state >= TRANS_STATE_COMMIT_START ||
1640 		   trans->aborted);
1641 }
1642 
1643 /*
1644  * wait for the current transaction to start and then become unblocked.
1645  * caller holds ref.
1646  */
1647 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1648 					 struct btrfs_transaction *trans)
1649 {
1650 	wait_event(root->fs_info->transaction_wait,
1651 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1652 		   trans->aborted);
1653 }
1654 
1655 /*
1656  * commit transactions asynchronously. once btrfs_commit_transaction_async
1657  * returns, any subsequent transaction will not be allowed to join.
1658  */
1659 struct btrfs_async_commit {
1660 	struct btrfs_trans_handle *newtrans;
1661 	struct btrfs_root *root;
1662 	struct work_struct work;
1663 };
1664 
1665 static void do_async_commit(struct work_struct *work)
1666 {
1667 	struct btrfs_async_commit *ac =
1668 		container_of(work, struct btrfs_async_commit, work);
1669 
1670 	/*
1671 	 * We've got freeze protection passed with the transaction.
1672 	 * Tell lockdep about it.
1673 	 */
1674 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1675 		__sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1676 
1677 	current->journal_info = ac->newtrans;
1678 
1679 	btrfs_commit_transaction(ac->newtrans, ac->root);
1680 	kfree(ac);
1681 }
1682 
1683 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1684 				   struct btrfs_root *root,
1685 				   int wait_for_unblock)
1686 {
1687 	struct btrfs_async_commit *ac;
1688 	struct btrfs_transaction *cur_trans;
1689 
1690 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1691 	if (!ac)
1692 		return -ENOMEM;
1693 
1694 	INIT_WORK(&ac->work, do_async_commit);
1695 	ac->root = root;
1696 	ac->newtrans = btrfs_join_transaction(root);
1697 	if (IS_ERR(ac->newtrans)) {
1698 		int err = PTR_ERR(ac->newtrans);
1699 		kfree(ac);
1700 		return err;
1701 	}
1702 
1703 	/* take transaction reference */
1704 	cur_trans = trans->transaction;
1705 	atomic_inc(&cur_trans->use_count);
1706 
1707 	btrfs_end_transaction(trans, root);
1708 
1709 	/*
1710 	 * Tell lockdep we've released the freeze rwsem, since the
1711 	 * async commit thread will be the one to unlock it.
1712 	 */
1713 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1714 		__sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1715 
1716 	schedule_work(&ac->work);
1717 
1718 	/* wait for transaction to start and unblock */
1719 	if (wait_for_unblock)
1720 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1721 	else
1722 		wait_current_trans_commit_start(root, cur_trans);
1723 
1724 	if (current->journal_info == trans)
1725 		current->journal_info = NULL;
1726 
1727 	btrfs_put_transaction(cur_trans);
1728 	return 0;
1729 }
1730 
1731 
1732 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1733 				struct btrfs_root *root, int err)
1734 {
1735 	struct btrfs_transaction *cur_trans = trans->transaction;
1736 	DEFINE_WAIT(wait);
1737 
1738 	WARN_ON(trans->use_count > 1);
1739 
1740 	btrfs_abort_transaction(trans, root, err);
1741 
1742 	spin_lock(&root->fs_info->trans_lock);
1743 
1744 	/*
1745 	 * If the transaction is removed from the list, it means this
1746 	 * transaction has been committed successfully, so it is impossible
1747 	 * to call the cleanup function.
1748 	 */
1749 	BUG_ON(list_empty(&cur_trans->list));
1750 
1751 	list_del_init(&cur_trans->list);
1752 	if (cur_trans == root->fs_info->running_transaction) {
1753 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1754 		spin_unlock(&root->fs_info->trans_lock);
1755 		wait_event(cur_trans->writer_wait,
1756 			   atomic_read(&cur_trans->num_writers) == 1);
1757 
1758 		spin_lock(&root->fs_info->trans_lock);
1759 	}
1760 	spin_unlock(&root->fs_info->trans_lock);
1761 
1762 	btrfs_cleanup_one_transaction(trans->transaction, root);
1763 
1764 	spin_lock(&root->fs_info->trans_lock);
1765 	if (cur_trans == root->fs_info->running_transaction)
1766 		root->fs_info->running_transaction = NULL;
1767 	spin_unlock(&root->fs_info->trans_lock);
1768 
1769 	if (trans->type & __TRANS_FREEZABLE)
1770 		sb_end_intwrite(root->fs_info->sb);
1771 	btrfs_put_transaction(cur_trans);
1772 	btrfs_put_transaction(cur_trans);
1773 
1774 	trace_btrfs_transaction_commit(root);
1775 
1776 	if (current->journal_info == trans)
1777 		current->journal_info = NULL;
1778 	btrfs_scrub_cancel(root->fs_info);
1779 
1780 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1781 }
1782 
1783 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1784 {
1785 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1786 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1787 	return 0;
1788 }
1789 
1790 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1791 {
1792 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1793 		btrfs_wait_ordered_roots(fs_info, -1);
1794 }
1795 
1796 static inline void
1797 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1798 			   struct btrfs_fs_info *fs_info)
1799 {
1800 	struct btrfs_ordered_extent *ordered;
1801 
1802 	spin_lock(&fs_info->trans_lock);
1803 	while (!list_empty(&cur_trans->pending_ordered)) {
1804 		ordered = list_first_entry(&cur_trans->pending_ordered,
1805 					   struct btrfs_ordered_extent,
1806 					   trans_list);
1807 		list_del_init(&ordered->trans_list);
1808 		spin_unlock(&fs_info->trans_lock);
1809 
1810 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1811 						   &ordered->flags));
1812 		btrfs_put_ordered_extent(ordered);
1813 		spin_lock(&fs_info->trans_lock);
1814 	}
1815 	spin_unlock(&fs_info->trans_lock);
1816 }
1817 
1818 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1819 			     struct btrfs_root *root)
1820 {
1821 	struct btrfs_transaction *cur_trans = trans->transaction;
1822 	struct btrfs_transaction *prev_trans = NULL;
1823 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1824 	int ret;
1825 
1826 	/* Stop the commit early if ->aborted is set */
1827 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1828 		ret = cur_trans->aborted;
1829 		btrfs_end_transaction(trans, root);
1830 		return ret;
1831 	}
1832 
1833 	/* make a pass through all the delayed refs we have so far
1834 	 * any runnings procs may add more while we are here
1835 	 */
1836 	ret = btrfs_run_delayed_refs(trans, root, 0);
1837 	if (ret) {
1838 		btrfs_end_transaction(trans, root);
1839 		return ret;
1840 	}
1841 
1842 	btrfs_trans_release_metadata(trans, root);
1843 	trans->block_rsv = NULL;
1844 	if (trans->qgroup_reserved) {
1845 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1846 		trans->qgroup_reserved = 0;
1847 	}
1848 
1849 	cur_trans = trans->transaction;
1850 
1851 	/*
1852 	 * set the flushing flag so procs in this transaction have to
1853 	 * start sending their work down.
1854 	 */
1855 	cur_trans->delayed_refs.flushing = 1;
1856 	smp_wmb();
1857 
1858 	if (!list_empty(&trans->new_bgs))
1859 		btrfs_create_pending_block_groups(trans, root);
1860 
1861 	ret = btrfs_run_delayed_refs(trans, root, 0);
1862 	if (ret) {
1863 		btrfs_end_transaction(trans, root);
1864 		return ret;
1865 	}
1866 
1867 	if (!cur_trans->dirty_bg_run) {
1868 		int run_it = 0;
1869 
1870 		/* this mutex is also taken before trying to set
1871 		 * block groups readonly.  We need to make sure
1872 		 * that nobody has set a block group readonly
1873 		 * after a extents from that block group have been
1874 		 * allocated for cache files.  btrfs_set_block_group_ro
1875 		 * will wait for the transaction to commit if it
1876 		 * finds dirty_bg_run = 1
1877 		 *
1878 		 * The dirty_bg_run flag is also used to make sure only
1879 		 * one process starts all the block group IO.  It wouldn't
1880 		 * hurt to have more than one go through, but there's no
1881 		 * real advantage to it either.
1882 		 */
1883 		mutex_lock(&root->fs_info->ro_block_group_mutex);
1884 		if (!cur_trans->dirty_bg_run) {
1885 			run_it = 1;
1886 			cur_trans->dirty_bg_run = 1;
1887 		}
1888 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
1889 
1890 		if (run_it)
1891 			ret = btrfs_start_dirty_block_groups(trans, root);
1892 	}
1893 	if (ret) {
1894 		btrfs_end_transaction(trans, root);
1895 		return ret;
1896 	}
1897 
1898 	spin_lock(&root->fs_info->trans_lock);
1899 	list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
1900 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1901 		spin_unlock(&root->fs_info->trans_lock);
1902 		atomic_inc(&cur_trans->use_count);
1903 		ret = btrfs_end_transaction(trans, root);
1904 
1905 		wait_for_commit(root, cur_trans);
1906 
1907 		if (unlikely(cur_trans->aborted))
1908 			ret = cur_trans->aborted;
1909 
1910 		btrfs_put_transaction(cur_trans);
1911 
1912 		return ret;
1913 	}
1914 
1915 	cur_trans->state = TRANS_STATE_COMMIT_START;
1916 	wake_up(&root->fs_info->transaction_blocked_wait);
1917 
1918 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1919 		prev_trans = list_entry(cur_trans->list.prev,
1920 					struct btrfs_transaction, list);
1921 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1922 			atomic_inc(&prev_trans->use_count);
1923 			spin_unlock(&root->fs_info->trans_lock);
1924 
1925 			wait_for_commit(root, prev_trans);
1926 			ret = prev_trans->aborted;
1927 
1928 			btrfs_put_transaction(prev_trans);
1929 			if (ret)
1930 				goto cleanup_transaction;
1931 		} else {
1932 			spin_unlock(&root->fs_info->trans_lock);
1933 		}
1934 	} else {
1935 		spin_unlock(&root->fs_info->trans_lock);
1936 	}
1937 
1938 	extwriter_counter_dec(cur_trans, trans->type);
1939 
1940 	ret = btrfs_start_delalloc_flush(root->fs_info);
1941 	if (ret)
1942 		goto cleanup_transaction;
1943 
1944 	ret = btrfs_run_delayed_items(trans, root);
1945 	if (ret)
1946 		goto cleanup_transaction;
1947 
1948 	wait_event(cur_trans->writer_wait,
1949 		   extwriter_counter_read(cur_trans) == 0);
1950 
1951 	/* some pending stuffs might be added after the previous flush. */
1952 	ret = btrfs_run_delayed_items(trans, root);
1953 	if (ret)
1954 		goto cleanup_transaction;
1955 
1956 	btrfs_wait_delalloc_flush(root->fs_info);
1957 
1958 	btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1959 
1960 	btrfs_scrub_pause(root);
1961 	/*
1962 	 * Ok now we need to make sure to block out any other joins while we
1963 	 * commit the transaction.  We could have started a join before setting
1964 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1965 	 */
1966 	spin_lock(&root->fs_info->trans_lock);
1967 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1968 	spin_unlock(&root->fs_info->trans_lock);
1969 	wait_event(cur_trans->writer_wait,
1970 		   atomic_read(&cur_trans->num_writers) == 1);
1971 
1972 	/* ->aborted might be set after the previous check, so check it */
1973 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1974 		ret = cur_trans->aborted;
1975 		goto scrub_continue;
1976 	}
1977 	/*
1978 	 * the reloc mutex makes sure that we stop
1979 	 * the balancing code from coming in and moving
1980 	 * extents around in the middle of the commit
1981 	 */
1982 	mutex_lock(&root->fs_info->reloc_mutex);
1983 
1984 	/*
1985 	 * We needn't worry about the delayed items because we will
1986 	 * deal with them in create_pending_snapshot(), which is the
1987 	 * core function of the snapshot creation.
1988 	 */
1989 	ret = create_pending_snapshots(trans, root->fs_info);
1990 	if (ret) {
1991 		mutex_unlock(&root->fs_info->reloc_mutex);
1992 		goto scrub_continue;
1993 	}
1994 
1995 	/*
1996 	 * We insert the dir indexes of the snapshots and update the inode
1997 	 * of the snapshots' parents after the snapshot creation, so there
1998 	 * are some delayed items which are not dealt with. Now deal with
1999 	 * them.
2000 	 *
2001 	 * We needn't worry that this operation will corrupt the snapshots,
2002 	 * because all the tree which are snapshoted will be forced to COW
2003 	 * the nodes and leaves.
2004 	 */
2005 	ret = btrfs_run_delayed_items(trans, root);
2006 	if (ret) {
2007 		mutex_unlock(&root->fs_info->reloc_mutex);
2008 		goto scrub_continue;
2009 	}
2010 
2011 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2012 	if (ret) {
2013 		mutex_unlock(&root->fs_info->reloc_mutex);
2014 		goto scrub_continue;
2015 	}
2016 
2017 	/* Reocrd old roots for later qgroup accounting */
2018 	ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2019 	if (ret) {
2020 		mutex_unlock(&root->fs_info->reloc_mutex);
2021 		goto scrub_continue;
2022 	}
2023 
2024 	/*
2025 	 * make sure none of the code above managed to slip in a
2026 	 * delayed item
2027 	 */
2028 	btrfs_assert_delayed_root_empty(root);
2029 
2030 	WARN_ON(cur_trans != trans->transaction);
2031 
2032 	/* btrfs_commit_tree_roots is responsible for getting the
2033 	 * various roots consistent with each other.  Every pointer
2034 	 * in the tree of tree roots has to point to the most up to date
2035 	 * root for every subvolume and other tree.  So, we have to keep
2036 	 * the tree logging code from jumping in and changing any
2037 	 * of the trees.
2038 	 *
2039 	 * At this point in the commit, there can't be any tree-log
2040 	 * writers, but a little lower down we drop the trans mutex
2041 	 * and let new people in.  By holding the tree_log_mutex
2042 	 * from now until after the super is written, we avoid races
2043 	 * with the tree-log code.
2044 	 */
2045 	mutex_lock(&root->fs_info->tree_log_mutex);
2046 
2047 	ret = commit_fs_roots(trans, root);
2048 	if (ret) {
2049 		mutex_unlock(&root->fs_info->tree_log_mutex);
2050 		mutex_unlock(&root->fs_info->reloc_mutex);
2051 		goto scrub_continue;
2052 	}
2053 
2054 	/*
2055 	 * Since the transaction is done, we can apply the pending changes
2056 	 * before the next transaction.
2057 	 */
2058 	btrfs_apply_pending_changes(root->fs_info);
2059 
2060 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2061 	 * safe to free the root of tree log roots
2062 	 */
2063 	btrfs_free_log_root_tree(trans, root->fs_info);
2064 
2065 	/*
2066 	 * Since fs roots are all committed, we can get a quite accurate
2067 	 * new_roots. So let's do quota accounting.
2068 	 */
2069 	ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2070 	if (ret < 0) {
2071 		mutex_unlock(&root->fs_info->tree_log_mutex);
2072 		mutex_unlock(&root->fs_info->reloc_mutex);
2073 		goto scrub_continue;
2074 	}
2075 
2076 	ret = commit_cowonly_roots(trans, root);
2077 	if (ret) {
2078 		mutex_unlock(&root->fs_info->tree_log_mutex);
2079 		mutex_unlock(&root->fs_info->reloc_mutex);
2080 		goto scrub_continue;
2081 	}
2082 
2083 	/*
2084 	 * The tasks which save the space cache and inode cache may also
2085 	 * update ->aborted, check it.
2086 	 */
2087 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2088 		ret = cur_trans->aborted;
2089 		mutex_unlock(&root->fs_info->tree_log_mutex);
2090 		mutex_unlock(&root->fs_info->reloc_mutex);
2091 		goto scrub_continue;
2092 	}
2093 
2094 	btrfs_prepare_extent_commit(trans, root);
2095 
2096 	cur_trans = root->fs_info->running_transaction;
2097 
2098 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2099 			    root->fs_info->tree_root->node);
2100 	list_add_tail(&root->fs_info->tree_root->dirty_list,
2101 		      &cur_trans->switch_commits);
2102 
2103 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2104 			    root->fs_info->chunk_root->node);
2105 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
2106 		      &cur_trans->switch_commits);
2107 
2108 	switch_commit_roots(cur_trans, root->fs_info);
2109 
2110 	assert_qgroups_uptodate(trans);
2111 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2112 	ASSERT(list_empty(&cur_trans->io_bgs));
2113 	update_super_roots(root);
2114 
2115 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2116 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2117 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2118 	       sizeof(*root->fs_info->super_copy));
2119 
2120 	btrfs_update_commit_device_size(root->fs_info);
2121 	btrfs_update_commit_device_bytes_used(root, cur_trans);
2122 
2123 	clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2124 	clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2125 
2126 	btrfs_trans_release_chunk_metadata(trans);
2127 
2128 	spin_lock(&root->fs_info->trans_lock);
2129 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2130 	root->fs_info->running_transaction = NULL;
2131 	spin_unlock(&root->fs_info->trans_lock);
2132 	mutex_unlock(&root->fs_info->reloc_mutex);
2133 
2134 	wake_up(&root->fs_info->transaction_wait);
2135 
2136 	ret = btrfs_write_and_wait_transaction(trans, root);
2137 	if (ret) {
2138 		btrfs_error(root->fs_info, ret,
2139 			    "Error while writing out transaction");
2140 		mutex_unlock(&root->fs_info->tree_log_mutex);
2141 		goto scrub_continue;
2142 	}
2143 
2144 	ret = write_ctree_super(trans, root, 0);
2145 	if (ret) {
2146 		mutex_unlock(&root->fs_info->tree_log_mutex);
2147 		goto scrub_continue;
2148 	}
2149 
2150 	/*
2151 	 * the super is written, we can safely allow the tree-loggers
2152 	 * to go about their business
2153 	 */
2154 	mutex_unlock(&root->fs_info->tree_log_mutex);
2155 
2156 	btrfs_finish_extent_commit(trans, root);
2157 
2158 	if (cur_trans->have_free_bgs)
2159 		btrfs_clear_space_info_full(root->fs_info);
2160 
2161 	root->fs_info->last_trans_committed = cur_trans->transid;
2162 	/*
2163 	 * We needn't acquire the lock here because there is no other task
2164 	 * which can change it.
2165 	 */
2166 	cur_trans->state = TRANS_STATE_COMPLETED;
2167 	wake_up(&cur_trans->commit_wait);
2168 
2169 	spin_lock(&root->fs_info->trans_lock);
2170 	list_del_init(&cur_trans->list);
2171 	spin_unlock(&root->fs_info->trans_lock);
2172 
2173 	btrfs_put_transaction(cur_trans);
2174 	btrfs_put_transaction(cur_trans);
2175 
2176 	if (trans->type & __TRANS_FREEZABLE)
2177 		sb_end_intwrite(root->fs_info->sb);
2178 
2179 	trace_btrfs_transaction_commit(root);
2180 
2181 	btrfs_scrub_continue(root);
2182 
2183 	if (current->journal_info == trans)
2184 		current->journal_info = NULL;
2185 
2186 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2187 
2188 	if (current != root->fs_info->transaction_kthread &&
2189 	    current != root->fs_info->cleaner_kthread)
2190 		btrfs_run_delayed_iputs(root);
2191 
2192 	return ret;
2193 
2194 scrub_continue:
2195 	btrfs_scrub_continue(root);
2196 cleanup_transaction:
2197 	btrfs_trans_release_metadata(trans, root);
2198 	btrfs_trans_release_chunk_metadata(trans);
2199 	trans->block_rsv = NULL;
2200 	if (trans->qgroup_reserved) {
2201 		btrfs_qgroup_free(root, trans->qgroup_reserved);
2202 		trans->qgroup_reserved = 0;
2203 	}
2204 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2205 	if (current->journal_info == trans)
2206 		current->journal_info = NULL;
2207 	cleanup_transaction(trans, root, ret);
2208 
2209 	return ret;
2210 }
2211 
2212 /*
2213  * return < 0 if error
2214  * 0 if there are no more dead_roots at the time of call
2215  * 1 there are more to be processed, call me again
2216  *
2217  * The return value indicates there are certainly more snapshots to delete, but
2218  * if there comes a new one during processing, it may return 0. We don't mind,
2219  * because btrfs_commit_super will poke cleaner thread and it will process it a
2220  * few seconds later.
2221  */
2222 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2223 {
2224 	int ret;
2225 	struct btrfs_fs_info *fs_info = root->fs_info;
2226 
2227 	spin_lock(&fs_info->trans_lock);
2228 	if (list_empty(&fs_info->dead_roots)) {
2229 		spin_unlock(&fs_info->trans_lock);
2230 		return 0;
2231 	}
2232 	root = list_first_entry(&fs_info->dead_roots,
2233 			struct btrfs_root, root_list);
2234 	list_del_init(&root->root_list);
2235 	spin_unlock(&fs_info->trans_lock);
2236 
2237 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2238 
2239 	btrfs_kill_all_delayed_nodes(root);
2240 
2241 	if (btrfs_header_backref_rev(root->node) <
2242 			BTRFS_MIXED_BACKREF_REV)
2243 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2244 	else
2245 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2246 
2247 	return (ret < 0) ? 0 : 1;
2248 }
2249 
2250 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2251 {
2252 	unsigned long prev;
2253 	unsigned long bit;
2254 
2255 	prev = xchg(&fs_info->pending_changes, 0);
2256 	if (!prev)
2257 		return;
2258 
2259 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2260 	if (prev & bit)
2261 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2262 	prev &= ~bit;
2263 
2264 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2265 	if (prev & bit)
2266 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2267 	prev &= ~bit;
2268 
2269 	bit = 1 << BTRFS_PENDING_COMMIT;
2270 	if (prev & bit)
2271 		btrfs_debug(fs_info, "pending commit done");
2272 	prev &= ~bit;
2273 
2274 	if (prev)
2275 		btrfs_warn(fs_info,
2276 			"unknown pending changes left 0x%lx, ignoring", prev);
2277 }
2278