1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 #include "qgroup.h" 35 36 #define BTRFS_ROOT_TRANS_TAG 0 37 38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 39 [TRANS_STATE_RUNNING] = 0U, 40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | 41 __TRANS_START), 42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | 43 __TRANS_START | 44 __TRANS_ATTACH), 45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | 46 __TRANS_START | 47 __TRANS_ATTACH | 48 __TRANS_JOIN), 49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | 50 __TRANS_START | 51 __TRANS_ATTACH | 52 __TRANS_JOIN | 53 __TRANS_JOIN_NOLOCK), 54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | 55 __TRANS_START | 56 __TRANS_ATTACH | 57 __TRANS_JOIN | 58 __TRANS_JOIN_NOLOCK), 59 }; 60 61 void btrfs_put_transaction(struct btrfs_transaction *transaction) 62 { 63 WARN_ON(atomic_read(&transaction->use_count) == 0); 64 if (atomic_dec_and_test(&transaction->use_count)) { 65 BUG_ON(!list_empty(&transaction->list)); 66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root)); 67 if (transaction->delayed_refs.pending_csums) 68 printk(KERN_ERR "pending csums is %llu\n", 69 transaction->delayed_refs.pending_csums); 70 while (!list_empty(&transaction->pending_chunks)) { 71 struct extent_map *em; 72 73 em = list_first_entry(&transaction->pending_chunks, 74 struct extent_map, list); 75 list_del_init(&em->list); 76 free_extent_map(em); 77 } 78 kmem_cache_free(btrfs_transaction_cachep, transaction); 79 } 80 } 81 82 static void clear_btree_io_tree(struct extent_io_tree *tree) 83 { 84 spin_lock(&tree->lock); 85 /* 86 * Do a single barrier for the waitqueue_active check here, the state 87 * of the waitqueue should not change once clear_btree_io_tree is 88 * called. 89 */ 90 smp_mb(); 91 while (!RB_EMPTY_ROOT(&tree->state)) { 92 struct rb_node *node; 93 struct extent_state *state; 94 95 node = rb_first(&tree->state); 96 state = rb_entry(node, struct extent_state, rb_node); 97 rb_erase(&state->rb_node, &tree->state); 98 RB_CLEAR_NODE(&state->rb_node); 99 /* 100 * btree io trees aren't supposed to have tasks waiting for 101 * changes in the flags of extent states ever. 102 */ 103 ASSERT(!waitqueue_active(&state->wq)); 104 free_extent_state(state); 105 106 cond_resched_lock(&tree->lock); 107 } 108 spin_unlock(&tree->lock); 109 } 110 111 static noinline void switch_commit_roots(struct btrfs_transaction *trans, 112 struct btrfs_fs_info *fs_info) 113 { 114 struct btrfs_root *root, *tmp; 115 116 down_write(&fs_info->commit_root_sem); 117 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 118 dirty_list) { 119 list_del_init(&root->dirty_list); 120 free_extent_buffer(root->commit_root); 121 root->commit_root = btrfs_root_node(root); 122 if (is_fstree(root->objectid)) 123 btrfs_unpin_free_ino(root); 124 clear_btree_io_tree(&root->dirty_log_pages); 125 } 126 127 /* We can free old roots now. */ 128 spin_lock(&trans->dropped_roots_lock); 129 while (!list_empty(&trans->dropped_roots)) { 130 root = list_first_entry(&trans->dropped_roots, 131 struct btrfs_root, root_list); 132 list_del_init(&root->root_list); 133 spin_unlock(&trans->dropped_roots_lock); 134 btrfs_drop_and_free_fs_root(fs_info, root); 135 spin_lock(&trans->dropped_roots_lock); 136 } 137 spin_unlock(&trans->dropped_roots_lock); 138 up_write(&fs_info->commit_root_sem); 139 } 140 141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 142 unsigned int type) 143 { 144 if (type & TRANS_EXTWRITERS) 145 atomic_inc(&trans->num_extwriters); 146 } 147 148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 149 unsigned int type) 150 { 151 if (type & TRANS_EXTWRITERS) 152 atomic_dec(&trans->num_extwriters); 153 } 154 155 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 156 unsigned int type) 157 { 158 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 159 } 160 161 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 162 { 163 return atomic_read(&trans->num_extwriters); 164 } 165 166 /* 167 * either allocate a new transaction or hop into the existing one 168 */ 169 static noinline int join_transaction(struct btrfs_root *root, unsigned int type) 170 { 171 struct btrfs_transaction *cur_trans; 172 struct btrfs_fs_info *fs_info = root->fs_info; 173 174 spin_lock(&fs_info->trans_lock); 175 loop: 176 /* The file system has been taken offline. No new transactions. */ 177 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 178 spin_unlock(&fs_info->trans_lock); 179 return -EROFS; 180 } 181 182 cur_trans = fs_info->running_transaction; 183 if (cur_trans) { 184 if (cur_trans->aborted) { 185 spin_unlock(&fs_info->trans_lock); 186 return cur_trans->aborted; 187 } 188 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 189 spin_unlock(&fs_info->trans_lock); 190 return -EBUSY; 191 } 192 atomic_inc(&cur_trans->use_count); 193 atomic_inc(&cur_trans->num_writers); 194 extwriter_counter_inc(cur_trans, type); 195 spin_unlock(&fs_info->trans_lock); 196 return 0; 197 } 198 spin_unlock(&fs_info->trans_lock); 199 200 /* 201 * If we are ATTACH, we just want to catch the current transaction, 202 * and commit it. If there is no transaction, just return ENOENT. 203 */ 204 if (type == TRANS_ATTACH) 205 return -ENOENT; 206 207 /* 208 * JOIN_NOLOCK only happens during the transaction commit, so 209 * it is impossible that ->running_transaction is NULL 210 */ 211 BUG_ON(type == TRANS_JOIN_NOLOCK); 212 213 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 214 if (!cur_trans) 215 return -ENOMEM; 216 217 spin_lock(&fs_info->trans_lock); 218 if (fs_info->running_transaction) { 219 /* 220 * someone started a transaction after we unlocked. Make sure 221 * to redo the checks above 222 */ 223 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 224 goto loop; 225 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 226 spin_unlock(&fs_info->trans_lock); 227 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 228 return -EROFS; 229 } 230 231 atomic_set(&cur_trans->num_writers, 1); 232 extwriter_counter_init(cur_trans, type); 233 init_waitqueue_head(&cur_trans->writer_wait); 234 init_waitqueue_head(&cur_trans->commit_wait); 235 init_waitqueue_head(&cur_trans->pending_wait); 236 cur_trans->state = TRANS_STATE_RUNNING; 237 /* 238 * One for this trans handle, one so it will live on until we 239 * commit the transaction. 240 */ 241 atomic_set(&cur_trans->use_count, 2); 242 atomic_set(&cur_trans->pending_ordered, 0); 243 cur_trans->flags = 0; 244 cur_trans->start_time = get_seconds(); 245 246 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 247 248 cur_trans->delayed_refs.href_root = RB_ROOT; 249 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 250 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 251 252 /* 253 * although the tree mod log is per file system and not per transaction, 254 * the log must never go across transaction boundaries. 255 */ 256 smp_mb(); 257 if (!list_empty(&fs_info->tree_mod_seq_list)) 258 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when " 259 "creating a fresh transaction\n"); 260 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 261 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when " 262 "creating a fresh transaction\n"); 263 atomic64_set(&fs_info->tree_mod_seq, 0); 264 265 spin_lock_init(&cur_trans->delayed_refs.lock); 266 267 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 268 INIT_LIST_HEAD(&cur_trans->pending_chunks); 269 INIT_LIST_HEAD(&cur_trans->switch_commits); 270 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 271 INIT_LIST_HEAD(&cur_trans->io_bgs); 272 INIT_LIST_HEAD(&cur_trans->dropped_roots); 273 mutex_init(&cur_trans->cache_write_mutex); 274 cur_trans->num_dirty_bgs = 0; 275 spin_lock_init(&cur_trans->dirty_bgs_lock); 276 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 277 spin_lock_init(&cur_trans->deleted_bgs_lock); 278 spin_lock_init(&cur_trans->dropped_roots_lock); 279 list_add_tail(&cur_trans->list, &fs_info->trans_list); 280 extent_io_tree_init(&cur_trans->dirty_pages, 281 fs_info->btree_inode->i_mapping); 282 fs_info->generation++; 283 cur_trans->transid = fs_info->generation; 284 fs_info->running_transaction = cur_trans; 285 cur_trans->aborted = 0; 286 spin_unlock(&fs_info->trans_lock); 287 288 return 0; 289 } 290 291 /* 292 * this does all the record keeping required to make sure that a reference 293 * counted root is properly recorded in a given transaction. This is required 294 * to make sure the old root from before we joined the transaction is deleted 295 * when the transaction commits 296 */ 297 static int record_root_in_trans(struct btrfs_trans_handle *trans, 298 struct btrfs_root *root) 299 { 300 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 301 root->last_trans < trans->transid) { 302 WARN_ON(root == root->fs_info->extent_root); 303 WARN_ON(root->commit_root != root->node); 304 305 /* 306 * see below for IN_TRANS_SETUP usage rules 307 * we have the reloc mutex held now, so there 308 * is only one writer in this function 309 */ 310 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 311 312 /* make sure readers find IN_TRANS_SETUP before 313 * they find our root->last_trans update 314 */ 315 smp_wmb(); 316 317 spin_lock(&root->fs_info->fs_roots_radix_lock); 318 if (root->last_trans == trans->transid) { 319 spin_unlock(&root->fs_info->fs_roots_radix_lock); 320 return 0; 321 } 322 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 323 (unsigned long)root->root_key.objectid, 324 BTRFS_ROOT_TRANS_TAG); 325 spin_unlock(&root->fs_info->fs_roots_radix_lock); 326 root->last_trans = trans->transid; 327 328 /* this is pretty tricky. We don't want to 329 * take the relocation lock in btrfs_record_root_in_trans 330 * unless we're really doing the first setup for this root in 331 * this transaction. 332 * 333 * Normally we'd use root->last_trans as a flag to decide 334 * if we want to take the expensive mutex. 335 * 336 * But, we have to set root->last_trans before we 337 * init the relocation root, otherwise, we trip over warnings 338 * in ctree.c. The solution used here is to flag ourselves 339 * with root IN_TRANS_SETUP. When this is 1, we're still 340 * fixing up the reloc trees and everyone must wait. 341 * 342 * When this is zero, they can trust root->last_trans and fly 343 * through btrfs_record_root_in_trans without having to take the 344 * lock. smp_wmb() makes sure that all the writes above are 345 * done before we pop in the zero below 346 */ 347 btrfs_init_reloc_root(trans, root); 348 smp_mb__before_atomic(); 349 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 350 } 351 return 0; 352 } 353 354 355 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 356 struct btrfs_root *root) 357 { 358 struct btrfs_transaction *cur_trans = trans->transaction; 359 360 /* Add ourselves to the transaction dropped list */ 361 spin_lock(&cur_trans->dropped_roots_lock); 362 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 363 spin_unlock(&cur_trans->dropped_roots_lock); 364 365 /* Make sure we don't try to update the root at commit time */ 366 spin_lock(&root->fs_info->fs_roots_radix_lock); 367 radix_tree_tag_clear(&root->fs_info->fs_roots_radix, 368 (unsigned long)root->root_key.objectid, 369 BTRFS_ROOT_TRANS_TAG); 370 spin_unlock(&root->fs_info->fs_roots_radix_lock); 371 } 372 373 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 374 struct btrfs_root *root) 375 { 376 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 377 return 0; 378 379 /* 380 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 381 * and barriers 382 */ 383 smp_rmb(); 384 if (root->last_trans == trans->transid && 385 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 386 return 0; 387 388 mutex_lock(&root->fs_info->reloc_mutex); 389 record_root_in_trans(trans, root); 390 mutex_unlock(&root->fs_info->reloc_mutex); 391 392 return 0; 393 } 394 395 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 396 { 397 return (trans->state >= TRANS_STATE_BLOCKED && 398 trans->state < TRANS_STATE_UNBLOCKED && 399 !trans->aborted); 400 } 401 402 /* wait for commit against the current transaction to become unblocked 403 * when this is done, it is safe to start a new transaction, but the current 404 * transaction might not be fully on disk. 405 */ 406 static void wait_current_trans(struct btrfs_root *root) 407 { 408 struct btrfs_transaction *cur_trans; 409 410 spin_lock(&root->fs_info->trans_lock); 411 cur_trans = root->fs_info->running_transaction; 412 if (cur_trans && is_transaction_blocked(cur_trans)) { 413 atomic_inc(&cur_trans->use_count); 414 spin_unlock(&root->fs_info->trans_lock); 415 416 wait_event(root->fs_info->transaction_wait, 417 cur_trans->state >= TRANS_STATE_UNBLOCKED || 418 cur_trans->aborted); 419 btrfs_put_transaction(cur_trans); 420 } else { 421 spin_unlock(&root->fs_info->trans_lock); 422 } 423 } 424 425 static int may_wait_transaction(struct btrfs_root *root, int type) 426 { 427 if (root->fs_info->log_root_recovering) 428 return 0; 429 430 if (type == TRANS_USERSPACE) 431 return 1; 432 433 if (type == TRANS_START && 434 !atomic_read(&root->fs_info->open_ioctl_trans)) 435 return 1; 436 437 return 0; 438 } 439 440 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 441 { 442 if (!root->fs_info->reloc_ctl || 443 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 444 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 445 root->reloc_root) 446 return false; 447 448 return true; 449 } 450 451 static struct btrfs_trans_handle * 452 start_transaction(struct btrfs_root *root, unsigned int num_items, 453 unsigned int type, enum btrfs_reserve_flush_enum flush) 454 { 455 struct btrfs_trans_handle *h; 456 struct btrfs_transaction *cur_trans; 457 u64 num_bytes = 0; 458 u64 qgroup_reserved = 0; 459 bool reloc_reserved = false; 460 int ret; 461 462 /* Send isn't supposed to start transactions. */ 463 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 464 465 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 466 return ERR_PTR(-EROFS); 467 468 if (current->journal_info) { 469 WARN_ON(type & TRANS_EXTWRITERS); 470 h = current->journal_info; 471 h->use_count++; 472 WARN_ON(h->use_count > 2); 473 h->orig_rsv = h->block_rsv; 474 h->block_rsv = NULL; 475 goto got_it; 476 } 477 478 /* 479 * Do the reservation before we join the transaction so we can do all 480 * the appropriate flushing if need be. 481 */ 482 if (num_items > 0 && root != root->fs_info->chunk_root) { 483 qgroup_reserved = num_items * root->nodesize; 484 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved); 485 if (ret) 486 return ERR_PTR(ret); 487 488 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 489 /* 490 * Do the reservation for the relocation root creation 491 */ 492 if (need_reserve_reloc_root(root)) { 493 num_bytes += root->nodesize; 494 reloc_reserved = true; 495 } 496 497 ret = btrfs_block_rsv_add(root, 498 &root->fs_info->trans_block_rsv, 499 num_bytes, flush); 500 if (ret) 501 goto reserve_fail; 502 } 503 again: 504 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 505 if (!h) { 506 ret = -ENOMEM; 507 goto alloc_fail; 508 } 509 510 /* 511 * If we are JOIN_NOLOCK we're already committing a transaction and 512 * waiting on this guy, so we don't need to do the sb_start_intwrite 513 * because we're already holding a ref. We need this because we could 514 * have raced in and did an fsync() on a file which can kick a commit 515 * and then we deadlock with somebody doing a freeze. 516 * 517 * If we are ATTACH, it means we just want to catch the current 518 * transaction and commit it, so we needn't do sb_start_intwrite(). 519 */ 520 if (type & __TRANS_FREEZABLE) 521 sb_start_intwrite(root->fs_info->sb); 522 523 if (may_wait_transaction(root, type)) 524 wait_current_trans(root); 525 526 do { 527 ret = join_transaction(root, type); 528 if (ret == -EBUSY) { 529 wait_current_trans(root); 530 if (unlikely(type == TRANS_ATTACH)) 531 ret = -ENOENT; 532 } 533 } while (ret == -EBUSY); 534 535 if (ret < 0) { 536 /* We must get the transaction if we are JOIN_NOLOCK. */ 537 BUG_ON(type == TRANS_JOIN_NOLOCK); 538 goto join_fail; 539 } 540 541 cur_trans = root->fs_info->running_transaction; 542 543 h->transid = cur_trans->transid; 544 h->transaction = cur_trans; 545 h->root = root; 546 h->use_count = 1; 547 548 h->type = type; 549 h->can_flush_pending_bgs = true; 550 INIT_LIST_HEAD(&h->qgroup_ref_list); 551 INIT_LIST_HEAD(&h->new_bgs); 552 553 smp_mb(); 554 if (cur_trans->state >= TRANS_STATE_BLOCKED && 555 may_wait_transaction(root, type)) { 556 current->journal_info = h; 557 btrfs_commit_transaction(h, root); 558 goto again; 559 } 560 561 if (num_bytes) { 562 trace_btrfs_space_reservation(root->fs_info, "transaction", 563 h->transid, num_bytes, 1); 564 h->block_rsv = &root->fs_info->trans_block_rsv; 565 h->bytes_reserved = num_bytes; 566 h->reloc_reserved = reloc_reserved; 567 } 568 569 got_it: 570 btrfs_record_root_in_trans(h, root); 571 572 if (!current->journal_info && type != TRANS_USERSPACE) 573 current->journal_info = h; 574 return h; 575 576 join_fail: 577 if (type & __TRANS_FREEZABLE) 578 sb_end_intwrite(root->fs_info->sb); 579 kmem_cache_free(btrfs_trans_handle_cachep, h); 580 alloc_fail: 581 if (num_bytes) 582 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 583 num_bytes); 584 reserve_fail: 585 btrfs_qgroup_free_meta(root, qgroup_reserved); 586 return ERR_PTR(ret); 587 } 588 589 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 590 unsigned int num_items) 591 { 592 return start_transaction(root, num_items, TRANS_START, 593 BTRFS_RESERVE_FLUSH_ALL); 594 } 595 596 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 597 struct btrfs_root *root, 598 unsigned int num_items) 599 { 600 return start_transaction(root, num_items, TRANS_START, 601 BTRFS_RESERVE_FLUSH_LIMIT); 602 } 603 604 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 605 { 606 return start_transaction(root, 0, TRANS_JOIN, 0); 607 } 608 609 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 610 { 611 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0); 612 } 613 614 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 615 { 616 return start_transaction(root, 0, TRANS_USERSPACE, 0); 617 } 618 619 /* 620 * btrfs_attach_transaction() - catch the running transaction 621 * 622 * It is used when we want to commit the current the transaction, but 623 * don't want to start a new one. 624 * 625 * Note: If this function return -ENOENT, it just means there is no 626 * running transaction. But it is possible that the inactive transaction 627 * is still in the memory, not fully on disk. If you hope there is no 628 * inactive transaction in the fs when -ENOENT is returned, you should 629 * invoke 630 * btrfs_attach_transaction_barrier() 631 */ 632 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 633 { 634 return start_transaction(root, 0, TRANS_ATTACH, 0); 635 } 636 637 /* 638 * btrfs_attach_transaction_barrier() - catch the running transaction 639 * 640 * It is similar to the above function, the differentia is this one 641 * will wait for all the inactive transactions until they fully 642 * complete. 643 */ 644 struct btrfs_trans_handle * 645 btrfs_attach_transaction_barrier(struct btrfs_root *root) 646 { 647 struct btrfs_trans_handle *trans; 648 649 trans = start_transaction(root, 0, TRANS_ATTACH, 0); 650 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 651 btrfs_wait_for_commit(root, 0); 652 653 return trans; 654 } 655 656 /* wait for a transaction commit to be fully complete */ 657 static noinline void wait_for_commit(struct btrfs_root *root, 658 struct btrfs_transaction *commit) 659 { 660 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 661 } 662 663 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 664 { 665 struct btrfs_transaction *cur_trans = NULL, *t; 666 int ret = 0; 667 668 if (transid) { 669 if (transid <= root->fs_info->last_trans_committed) 670 goto out; 671 672 /* find specified transaction */ 673 spin_lock(&root->fs_info->trans_lock); 674 list_for_each_entry(t, &root->fs_info->trans_list, list) { 675 if (t->transid == transid) { 676 cur_trans = t; 677 atomic_inc(&cur_trans->use_count); 678 ret = 0; 679 break; 680 } 681 if (t->transid > transid) { 682 ret = 0; 683 break; 684 } 685 } 686 spin_unlock(&root->fs_info->trans_lock); 687 688 /* 689 * The specified transaction doesn't exist, or we 690 * raced with btrfs_commit_transaction 691 */ 692 if (!cur_trans) { 693 if (transid > root->fs_info->last_trans_committed) 694 ret = -EINVAL; 695 goto out; 696 } 697 } else { 698 /* find newest transaction that is committing | committed */ 699 spin_lock(&root->fs_info->trans_lock); 700 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 701 list) { 702 if (t->state >= TRANS_STATE_COMMIT_START) { 703 if (t->state == TRANS_STATE_COMPLETED) 704 break; 705 cur_trans = t; 706 atomic_inc(&cur_trans->use_count); 707 break; 708 } 709 } 710 spin_unlock(&root->fs_info->trans_lock); 711 if (!cur_trans) 712 goto out; /* nothing committing|committed */ 713 } 714 715 wait_for_commit(root, cur_trans); 716 btrfs_put_transaction(cur_trans); 717 out: 718 return ret; 719 } 720 721 void btrfs_throttle(struct btrfs_root *root) 722 { 723 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 724 wait_current_trans(root); 725 } 726 727 static int should_end_transaction(struct btrfs_trans_handle *trans, 728 struct btrfs_root *root) 729 { 730 if (root->fs_info->global_block_rsv.space_info->full && 731 btrfs_check_space_for_delayed_refs(trans, root)) 732 return 1; 733 734 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 735 } 736 737 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 738 struct btrfs_root *root) 739 { 740 struct btrfs_transaction *cur_trans = trans->transaction; 741 int updates; 742 int err; 743 744 smp_mb(); 745 if (cur_trans->state >= TRANS_STATE_BLOCKED || 746 cur_trans->delayed_refs.flushing) 747 return 1; 748 749 updates = trans->delayed_ref_updates; 750 trans->delayed_ref_updates = 0; 751 if (updates) { 752 err = btrfs_run_delayed_refs(trans, root, updates * 2); 753 if (err) /* Error code will also eval true */ 754 return err; 755 } 756 757 return should_end_transaction(trans, root); 758 } 759 760 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 761 struct btrfs_root *root, int throttle) 762 { 763 struct btrfs_transaction *cur_trans = trans->transaction; 764 struct btrfs_fs_info *info = root->fs_info; 765 unsigned long cur = trans->delayed_ref_updates; 766 int lock = (trans->type != TRANS_JOIN_NOLOCK); 767 int err = 0; 768 int must_run_delayed_refs = 0; 769 770 if (trans->use_count > 1) { 771 trans->use_count--; 772 trans->block_rsv = trans->orig_rsv; 773 return 0; 774 } 775 776 btrfs_trans_release_metadata(trans, root); 777 trans->block_rsv = NULL; 778 779 if (!list_empty(&trans->new_bgs)) 780 btrfs_create_pending_block_groups(trans, root); 781 782 trans->delayed_ref_updates = 0; 783 if (!trans->sync) { 784 must_run_delayed_refs = 785 btrfs_should_throttle_delayed_refs(trans, root); 786 cur = max_t(unsigned long, cur, 32); 787 788 /* 789 * don't make the caller wait if they are from a NOLOCK 790 * or ATTACH transaction, it will deadlock with commit 791 */ 792 if (must_run_delayed_refs == 1 && 793 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH))) 794 must_run_delayed_refs = 2; 795 } 796 797 btrfs_trans_release_metadata(trans, root); 798 trans->block_rsv = NULL; 799 800 if (!list_empty(&trans->new_bgs)) 801 btrfs_create_pending_block_groups(trans, root); 802 803 btrfs_trans_release_chunk_metadata(trans); 804 805 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 806 should_end_transaction(trans, root) && 807 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 808 spin_lock(&info->trans_lock); 809 if (cur_trans->state == TRANS_STATE_RUNNING) 810 cur_trans->state = TRANS_STATE_BLOCKED; 811 spin_unlock(&info->trans_lock); 812 } 813 814 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 815 if (throttle) 816 return btrfs_commit_transaction(trans, root); 817 else 818 wake_up_process(info->transaction_kthread); 819 } 820 821 if (trans->type & __TRANS_FREEZABLE) 822 sb_end_intwrite(root->fs_info->sb); 823 824 WARN_ON(cur_trans != info->running_transaction); 825 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 826 atomic_dec(&cur_trans->num_writers); 827 extwriter_counter_dec(cur_trans, trans->type); 828 829 /* 830 * Make sure counter is updated before we wake up waiters. 831 */ 832 smp_mb(); 833 if (waitqueue_active(&cur_trans->writer_wait)) 834 wake_up(&cur_trans->writer_wait); 835 btrfs_put_transaction(cur_trans); 836 837 if (current->journal_info == trans) 838 current->journal_info = NULL; 839 840 if (throttle) 841 btrfs_run_delayed_iputs(root); 842 843 if (trans->aborted || 844 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 845 wake_up_process(info->transaction_kthread); 846 err = -EIO; 847 } 848 assert_qgroups_uptodate(trans); 849 850 kmem_cache_free(btrfs_trans_handle_cachep, trans); 851 if (must_run_delayed_refs) { 852 btrfs_async_run_delayed_refs(root, cur, 853 must_run_delayed_refs == 1); 854 } 855 return err; 856 } 857 858 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 859 struct btrfs_root *root) 860 { 861 return __btrfs_end_transaction(trans, root, 0); 862 } 863 864 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 865 struct btrfs_root *root) 866 { 867 return __btrfs_end_transaction(trans, root, 1); 868 } 869 870 /* 871 * when btree blocks are allocated, they have some corresponding bits set for 872 * them in one of two extent_io trees. This is used to make sure all of 873 * those extents are sent to disk but does not wait on them 874 */ 875 int btrfs_write_marked_extents(struct btrfs_root *root, 876 struct extent_io_tree *dirty_pages, int mark) 877 { 878 int err = 0; 879 int werr = 0; 880 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 881 struct extent_state *cached_state = NULL; 882 u64 start = 0; 883 u64 end; 884 885 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 886 mark, &cached_state)) { 887 bool wait_writeback = false; 888 889 err = convert_extent_bit(dirty_pages, start, end, 890 EXTENT_NEED_WAIT, 891 mark, &cached_state, GFP_NOFS); 892 /* 893 * convert_extent_bit can return -ENOMEM, which is most of the 894 * time a temporary error. So when it happens, ignore the error 895 * and wait for writeback of this range to finish - because we 896 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 897 * to btrfs_wait_marked_extents() would not know that writeback 898 * for this range started and therefore wouldn't wait for it to 899 * finish - we don't want to commit a superblock that points to 900 * btree nodes/leafs for which writeback hasn't finished yet 901 * (and without errors). 902 * We cleanup any entries left in the io tree when committing 903 * the transaction (through clear_btree_io_tree()). 904 */ 905 if (err == -ENOMEM) { 906 err = 0; 907 wait_writeback = true; 908 } 909 if (!err) 910 err = filemap_fdatawrite_range(mapping, start, end); 911 if (err) 912 werr = err; 913 else if (wait_writeback) 914 werr = filemap_fdatawait_range(mapping, start, end); 915 free_extent_state(cached_state); 916 cached_state = NULL; 917 cond_resched(); 918 start = end + 1; 919 } 920 return werr; 921 } 922 923 /* 924 * when btree blocks are allocated, they have some corresponding bits set for 925 * them in one of two extent_io trees. This is used to make sure all of 926 * those extents are on disk for transaction or log commit. We wait 927 * on all the pages and clear them from the dirty pages state tree 928 */ 929 int btrfs_wait_marked_extents(struct btrfs_root *root, 930 struct extent_io_tree *dirty_pages, int mark) 931 { 932 int err = 0; 933 int werr = 0; 934 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 935 struct extent_state *cached_state = NULL; 936 u64 start = 0; 937 u64 end; 938 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 939 bool errors = false; 940 941 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 942 EXTENT_NEED_WAIT, &cached_state)) { 943 /* 944 * Ignore -ENOMEM errors returned by clear_extent_bit(). 945 * When committing the transaction, we'll remove any entries 946 * left in the io tree. For a log commit, we don't remove them 947 * after committing the log because the tree can be accessed 948 * concurrently - we do it only at transaction commit time when 949 * it's safe to do it (through clear_btree_io_tree()). 950 */ 951 err = clear_extent_bit(dirty_pages, start, end, 952 EXTENT_NEED_WAIT, 953 0, 0, &cached_state, GFP_NOFS); 954 if (err == -ENOMEM) 955 err = 0; 956 if (!err) 957 err = filemap_fdatawait_range(mapping, start, end); 958 if (err) 959 werr = err; 960 free_extent_state(cached_state); 961 cached_state = NULL; 962 cond_resched(); 963 start = end + 1; 964 } 965 if (err) 966 werr = err; 967 968 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 969 if ((mark & EXTENT_DIRTY) && 970 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, 971 &btree_ino->runtime_flags)) 972 errors = true; 973 974 if ((mark & EXTENT_NEW) && 975 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, 976 &btree_ino->runtime_flags)) 977 errors = true; 978 } else { 979 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR, 980 &btree_ino->runtime_flags)) 981 errors = true; 982 } 983 984 if (errors && !werr) 985 werr = -EIO; 986 987 return werr; 988 } 989 990 /* 991 * when btree blocks are allocated, they have some corresponding bits set for 992 * them in one of two extent_io trees. This is used to make sure all of 993 * those extents are on disk for transaction or log commit 994 */ 995 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 996 struct extent_io_tree *dirty_pages, int mark) 997 { 998 int ret; 999 int ret2; 1000 struct blk_plug plug; 1001 1002 blk_start_plug(&plug); 1003 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 1004 blk_finish_plug(&plug); 1005 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 1006 1007 if (ret) 1008 return ret; 1009 if (ret2) 1010 return ret2; 1011 return 0; 1012 } 1013 1014 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 1015 struct btrfs_root *root) 1016 { 1017 int ret; 1018 1019 ret = btrfs_write_and_wait_marked_extents(root, 1020 &trans->transaction->dirty_pages, 1021 EXTENT_DIRTY); 1022 clear_btree_io_tree(&trans->transaction->dirty_pages); 1023 1024 return ret; 1025 } 1026 1027 /* 1028 * this is used to update the root pointer in the tree of tree roots. 1029 * 1030 * But, in the case of the extent allocation tree, updating the root 1031 * pointer may allocate blocks which may change the root of the extent 1032 * allocation tree. 1033 * 1034 * So, this loops and repeats and makes sure the cowonly root didn't 1035 * change while the root pointer was being updated in the metadata. 1036 */ 1037 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1038 struct btrfs_root *root) 1039 { 1040 int ret; 1041 u64 old_root_bytenr; 1042 u64 old_root_used; 1043 struct btrfs_root *tree_root = root->fs_info->tree_root; 1044 1045 old_root_used = btrfs_root_used(&root->root_item); 1046 1047 while (1) { 1048 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1049 if (old_root_bytenr == root->node->start && 1050 old_root_used == btrfs_root_used(&root->root_item)) 1051 break; 1052 1053 btrfs_set_root_node(&root->root_item, root->node); 1054 ret = btrfs_update_root(trans, tree_root, 1055 &root->root_key, 1056 &root->root_item); 1057 if (ret) 1058 return ret; 1059 1060 old_root_used = btrfs_root_used(&root->root_item); 1061 } 1062 1063 return 0; 1064 } 1065 1066 /* 1067 * update all the cowonly tree roots on disk 1068 * 1069 * The error handling in this function may not be obvious. Any of the 1070 * failures will cause the file system to go offline. We still need 1071 * to clean up the delayed refs. 1072 */ 1073 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 1074 struct btrfs_root *root) 1075 { 1076 struct btrfs_fs_info *fs_info = root->fs_info; 1077 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1078 struct list_head *io_bgs = &trans->transaction->io_bgs; 1079 struct list_head *next; 1080 struct extent_buffer *eb; 1081 int ret; 1082 1083 eb = btrfs_lock_root_node(fs_info->tree_root); 1084 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1085 0, &eb); 1086 btrfs_tree_unlock(eb); 1087 free_extent_buffer(eb); 1088 1089 if (ret) 1090 return ret; 1091 1092 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1093 if (ret) 1094 return ret; 1095 1096 ret = btrfs_run_dev_stats(trans, root->fs_info); 1097 if (ret) 1098 return ret; 1099 ret = btrfs_run_dev_replace(trans, root->fs_info); 1100 if (ret) 1101 return ret; 1102 ret = btrfs_run_qgroups(trans, root->fs_info); 1103 if (ret) 1104 return ret; 1105 1106 ret = btrfs_setup_space_cache(trans, root); 1107 if (ret) 1108 return ret; 1109 1110 /* run_qgroups might have added some more refs */ 1111 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1112 if (ret) 1113 return ret; 1114 again: 1115 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1116 next = fs_info->dirty_cowonly_roots.next; 1117 list_del_init(next); 1118 root = list_entry(next, struct btrfs_root, dirty_list); 1119 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1120 1121 if (root != fs_info->extent_root) 1122 list_add_tail(&root->dirty_list, 1123 &trans->transaction->switch_commits); 1124 ret = update_cowonly_root(trans, root); 1125 if (ret) 1126 return ret; 1127 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1128 if (ret) 1129 return ret; 1130 } 1131 1132 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1133 ret = btrfs_write_dirty_block_groups(trans, root); 1134 if (ret) 1135 return ret; 1136 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1137 if (ret) 1138 return ret; 1139 } 1140 1141 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1142 goto again; 1143 1144 list_add_tail(&fs_info->extent_root->dirty_list, 1145 &trans->transaction->switch_commits); 1146 btrfs_after_dev_replace_commit(fs_info); 1147 1148 return 0; 1149 } 1150 1151 /* 1152 * dead roots are old snapshots that need to be deleted. This allocates 1153 * a dirty root struct and adds it into the list of dead roots that need to 1154 * be deleted 1155 */ 1156 void btrfs_add_dead_root(struct btrfs_root *root) 1157 { 1158 spin_lock(&root->fs_info->trans_lock); 1159 if (list_empty(&root->root_list)) 1160 list_add_tail(&root->root_list, &root->fs_info->dead_roots); 1161 spin_unlock(&root->fs_info->trans_lock); 1162 } 1163 1164 /* 1165 * update all the cowonly tree roots on disk 1166 */ 1167 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 1168 struct btrfs_root *root) 1169 { 1170 struct btrfs_root *gang[8]; 1171 struct btrfs_fs_info *fs_info = root->fs_info; 1172 int i; 1173 int ret; 1174 int err = 0; 1175 1176 spin_lock(&fs_info->fs_roots_radix_lock); 1177 while (1) { 1178 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1179 (void **)gang, 0, 1180 ARRAY_SIZE(gang), 1181 BTRFS_ROOT_TRANS_TAG); 1182 if (ret == 0) 1183 break; 1184 for (i = 0; i < ret; i++) { 1185 root = gang[i]; 1186 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1187 (unsigned long)root->root_key.objectid, 1188 BTRFS_ROOT_TRANS_TAG); 1189 spin_unlock(&fs_info->fs_roots_radix_lock); 1190 1191 btrfs_free_log(trans, root); 1192 btrfs_update_reloc_root(trans, root); 1193 btrfs_orphan_commit_root(trans, root); 1194 1195 btrfs_save_ino_cache(root, trans); 1196 1197 /* see comments in should_cow_block() */ 1198 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1199 smp_mb__after_atomic(); 1200 1201 if (root->commit_root != root->node) { 1202 list_add_tail(&root->dirty_list, 1203 &trans->transaction->switch_commits); 1204 btrfs_set_root_node(&root->root_item, 1205 root->node); 1206 } 1207 1208 err = btrfs_update_root(trans, fs_info->tree_root, 1209 &root->root_key, 1210 &root->root_item); 1211 spin_lock(&fs_info->fs_roots_radix_lock); 1212 if (err) 1213 break; 1214 btrfs_qgroup_free_meta_all(root); 1215 } 1216 } 1217 spin_unlock(&fs_info->fs_roots_radix_lock); 1218 return err; 1219 } 1220 1221 /* 1222 * defrag a given btree. 1223 * Every leaf in the btree is read and defragged. 1224 */ 1225 int btrfs_defrag_root(struct btrfs_root *root) 1226 { 1227 struct btrfs_fs_info *info = root->fs_info; 1228 struct btrfs_trans_handle *trans; 1229 int ret; 1230 1231 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1232 return 0; 1233 1234 while (1) { 1235 trans = btrfs_start_transaction(root, 0); 1236 if (IS_ERR(trans)) 1237 return PTR_ERR(trans); 1238 1239 ret = btrfs_defrag_leaves(trans, root); 1240 1241 btrfs_end_transaction(trans, root); 1242 btrfs_btree_balance_dirty(info->tree_root); 1243 cond_resched(); 1244 1245 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 1246 break; 1247 1248 if (btrfs_defrag_cancelled(root->fs_info)) { 1249 pr_debug("BTRFS: defrag_root cancelled\n"); 1250 ret = -EAGAIN; 1251 break; 1252 } 1253 } 1254 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1255 return ret; 1256 } 1257 1258 /* 1259 * new snapshots need to be created at a very specific time in the 1260 * transaction commit. This does the actual creation. 1261 * 1262 * Note: 1263 * If the error which may affect the commitment of the current transaction 1264 * happens, we should return the error number. If the error which just affect 1265 * the creation of the pending snapshots, just return 0. 1266 */ 1267 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1268 struct btrfs_fs_info *fs_info, 1269 struct btrfs_pending_snapshot *pending) 1270 { 1271 struct btrfs_key key; 1272 struct btrfs_root_item *new_root_item; 1273 struct btrfs_root *tree_root = fs_info->tree_root; 1274 struct btrfs_root *root = pending->root; 1275 struct btrfs_root *parent_root; 1276 struct btrfs_block_rsv *rsv; 1277 struct inode *parent_inode; 1278 struct btrfs_path *path; 1279 struct btrfs_dir_item *dir_item; 1280 struct dentry *dentry; 1281 struct extent_buffer *tmp; 1282 struct extent_buffer *old; 1283 struct timespec cur_time = CURRENT_TIME; 1284 int ret = 0; 1285 u64 to_reserve = 0; 1286 u64 index = 0; 1287 u64 objectid; 1288 u64 root_flags; 1289 uuid_le new_uuid; 1290 1291 path = btrfs_alloc_path(); 1292 if (!path) { 1293 pending->error = -ENOMEM; 1294 return 0; 1295 } 1296 1297 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 1298 if (!new_root_item) { 1299 pending->error = -ENOMEM; 1300 goto root_item_alloc_fail; 1301 } 1302 1303 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1304 if (pending->error) 1305 goto no_free_objectid; 1306 1307 /* 1308 * Make qgroup to skip current new snapshot's qgroupid, as it is 1309 * accounted by later btrfs_qgroup_inherit(). 1310 */ 1311 btrfs_set_skip_qgroup(trans, objectid); 1312 1313 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1314 1315 if (to_reserve > 0) { 1316 pending->error = btrfs_block_rsv_add(root, 1317 &pending->block_rsv, 1318 to_reserve, 1319 BTRFS_RESERVE_NO_FLUSH); 1320 if (pending->error) 1321 goto clear_skip_qgroup; 1322 } 1323 1324 key.objectid = objectid; 1325 key.offset = (u64)-1; 1326 key.type = BTRFS_ROOT_ITEM_KEY; 1327 1328 rsv = trans->block_rsv; 1329 trans->block_rsv = &pending->block_rsv; 1330 trans->bytes_reserved = trans->block_rsv->reserved; 1331 1332 dentry = pending->dentry; 1333 parent_inode = pending->dir; 1334 parent_root = BTRFS_I(parent_inode)->root; 1335 record_root_in_trans(trans, parent_root); 1336 1337 /* 1338 * insert the directory item 1339 */ 1340 ret = btrfs_set_inode_index(parent_inode, &index); 1341 BUG_ON(ret); /* -ENOMEM */ 1342 1343 /* check if there is a file/dir which has the same name. */ 1344 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1345 btrfs_ino(parent_inode), 1346 dentry->d_name.name, 1347 dentry->d_name.len, 0); 1348 if (dir_item != NULL && !IS_ERR(dir_item)) { 1349 pending->error = -EEXIST; 1350 goto dir_item_existed; 1351 } else if (IS_ERR(dir_item)) { 1352 ret = PTR_ERR(dir_item); 1353 btrfs_abort_transaction(trans, root, ret); 1354 goto fail; 1355 } 1356 btrfs_release_path(path); 1357 1358 /* 1359 * pull in the delayed directory update 1360 * and the delayed inode item 1361 * otherwise we corrupt the FS during 1362 * snapshot 1363 */ 1364 ret = btrfs_run_delayed_items(trans, root); 1365 if (ret) { /* Transaction aborted */ 1366 btrfs_abort_transaction(trans, root, ret); 1367 goto fail; 1368 } 1369 1370 record_root_in_trans(trans, root); 1371 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1372 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1373 btrfs_check_and_init_root_item(new_root_item); 1374 1375 root_flags = btrfs_root_flags(new_root_item); 1376 if (pending->readonly) 1377 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1378 else 1379 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1380 btrfs_set_root_flags(new_root_item, root_flags); 1381 1382 btrfs_set_root_generation_v2(new_root_item, 1383 trans->transid); 1384 uuid_le_gen(&new_uuid); 1385 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1386 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1387 BTRFS_UUID_SIZE); 1388 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1389 memset(new_root_item->received_uuid, 0, 1390 sizeof(new_root_item->received_uuid)); 1391 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1392 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1393 btrfs_set_root_stransid(new_root_item, 0); 1394 btrfs_set_root_rtransid(new_root_item, 0); 1395 } 1396 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1397 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1398 btrfs_set_root_otransid(new_root_item, trans->transid); 1399 1400 old = btrfs_lock_root_node(root); 1401 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1402 if (ret) { 1403 btrfs_tree_unlock(old); 1404 free_extent_buffer(old); 1405 btrfs_abort_transaction(trans, root, ret); 1406 goto fail; 1407 } 1408 1409 btrfs_set_lock_blocking(old); 1410 1411 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1412 /* clean up in any case */ 1413 btrfs_tree_unlock(old); 1414 free_extent_buffer(old); 1415 if (ret) { 1416 btrfs_abort_transaction(trans, root, ret); 1417 goto fail; 1418 } 1419 /* see comments in should_cow_block() */ 1420 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1421 smp_wmb(); 1422 1423 btrfs_set_root_node(new_root_item, tmp); 1424 /* record when the snapshot was created in key.offset */ 1425 key.offset = trans->transid; 1426 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1427 btrfs_tree_unlock(tmp); 1428 free_extent_buffer(tmp); 1429 if (ret) { 1430 btrfs_abort_transaction(trans, root, ret); 1431 goto fail; 1432 } 1433 1434 /* 1435 * insert root back/forward references 1436 */ 1437 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1438 parent_root->root_key.objectid, 1439 btrfs_ino(parent_inode), index, 1440 dentry->d_name.name, dentry->d_name.len); 1441 if (ret) { 1442 btrfs_abort_transaction(trans, root, ret); 1443 goto fail; 1444 } 1445 1446 key.offset = (u64)-1; 1447 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1448 if (IS_ERR(pending->snap)) { 1449 ret = PTR_ERR(pending->snap); 1450 btrfs_abort_transaction(trans, root, ret); 1451 goto fail; 1452 } 1453 1454 ret = btrfs_reloc_post_snapshot(trans, pending); 1455 if (ret) { 1456 btrfs_abort_transaction(trans, root, ret); 1457 goto fail; 1458 } 1459 1460 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1461 if (ret) { 1462 btrfs_abort_transaction(trans, root, ret); 1463 goto fail; 1464 } 1465 1466 ret = btrfs_insert_dir_item(trans, parent_root, 1467 dentry->d_name.name, dentry->d_name.len, 1468 parent_inode, &key, 1469 BTRFS_FT_DIR, index); 1470 /* We have check then name at the beginning, so it is impossible. */ 1471 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1472 if (ret) { 1473 btrfs_abort_transaction(trans, root, ret); 1474 goto fail; 1475 } 1476 1477 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1478 dentry->d_name.len * 2); 1479 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 1480 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1481 if (ret) { 1482 btrfs_abort_transaction(trans, root, ret); 1483 goto fail; 1484 } 1485 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b, 1486 BTRFS_UUID_KEY_SUBVOL, objectid); 1487 if (ret) { 1488 btrfs_abort_transaction(trans, root, ret); 1489 goto fail; 1490 } 1491 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1492 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 1493 new_root_item->received_uuid, 1494 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1495 objectid); 1496 if (ret && ret != -EEXIST) { 1497 btrfs_abort_transaction(trans, root, ret); 1498 goto fail; 1499 } 1500 } 1501 1502 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1503 if (ret) { 1504 btrfs_abort_transaction(trans, root, ret); 1505 goto fail; 1506 } 1507 1508 /* 1509 * account qgroup counters before qgroup_inherit() 1510 */ 1511 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info); 1512 if (ret) 1513 goto fail; 1514 ret = btrfs_qgroup_account_extents(trans, fs_info); 1515 if (ret) 1516 goto fail; 1517 ret = btrfs_qgroup_inherit(trans, fs_info, 1518 root->root_key.objectid, 1519 objectid, pending->inherit); 1520 if (ret) { 1521 btrfs_abort_transaction(trans, root, ret); 1522 goto fail; 1523 } 1524 1525 fail: 1526 pending->error = ret; 1527 dir_item_existed: 1528 trans->block_rsv = rsv; 1529 trans->bytes_reserved = 0; 1530 clear_skip_qgroup: 1531 btrfs_clear_skip_qgroup(trans); 1532 no_free_objectid: 1533 kfree(new_root_item); 1534 root_item_alloc_fail: 1535 btrfs_free_path(path); 1536 return ret; 1537 } 1538 1539 /* 1540 * create all the snapshots we've scheduled for creation 1541 */ 1542 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1543 struct btrfs_fs_info *fs_info) 1544 { 1545 struct btrfs_pending_snapshot *pending, *next; 1546 struct list_head *head = &trans->transaction->pending_snapshots; 1547 int ret = 0; 1548 1549 list_for_each_entry_safe(pending, next, head, list) { 1550 list_del(&pending->list); 1551 ret = create_pending_snapshot(trans, fs_info, pending); 1552 if (ret) 1553 break; 1554 } 1555 return ret; 1556 } 1557 1558 static void update_super_roots(struct btrfs_root *root) 1559 { 1560 struct btrfs_root_item *root_item; 1561 struct btrfs_super_block *super; 1562 1563 super = root->fs_info->super_copy; 1564 1565 root_item = &root->fs_info->chunk_root->root_item; 1566 super->chunk_root = root_item->bytenr; 1567 super->chunk_root_generation = root_item->generation; 1568 super->chunk_root_level = root_item->level; 1569 1570 root_item = &root->fs_info->tree_root->root_item; 1571 super->root = root_item->bytenr; 1572 super->generation = root_item->generation; 1573 super->root_level = root_item->level; 1574 if (btrfs_test_opt(root, SPACE_CACHE)) 1575 super->cache_generation = root_item->generation; 1576 if (root->fs_info->update_uuid_tree_gen) 1577 super->uuid_tree_generation = root_item->generation; 1578 } 1579 1580 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1581 { 1582 struct btrfs_transaction *trans; 1583 int ret = 0; 1584 1585 spin_lock(&info->trans_lock); 1586 trans = info->running_transaction; 1587 if (trans) 1588 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1589 spin_unlock(&info->trans_lock); 1590 return ret; 1591 } 1592 1593 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1594 { 1595 struct btrfs_transaction *trans; 1596 int ret = 0; 1597 1598 spin_lock(&info->trans_lock); 1599 trans = info->running_transaction; 1600 if (trans) 1601 ret = is_transaction_blocked(trans); 1602 spin_unlock(&info->trans_lock); 1603 return ret; 1604 } 1605 1606 /* 1607 * wait for the current transaction commit to start and block subsequent 1608 * transaction joins 1609 */ 1610 static void wait_current_trans_commit_start(struct btrfs_root *root, 1611 struct btrfs_transaction *trans) 1612 { 1613 wait_event(root->fs_info->transaction_blocked_wait, 1614 trans->state >= TRANS_STATE_COMMIT_START || 1615 trans->aborted); 1616 } 1617 1618 /* 1619 * wait for the current transaction to start and then become unblocked. 1620 * caller holds ref. 1621 */ 1622 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1623 struct btrfs_transaction *trans) 1624 { 1625 wait_event(root->fs_info->transaction_wait, 1626 trans->state >= TRANS_STATE_UNBLOCKED || 1627 trans->aborted); 1628 } 1629 1630 /* 1631 * commit transactions asynchronously. once btrfs_commit_transaction_async 1632 * returns, any subsequent transaction will not be allowed to join. 1633 */ 1634 struct btrfs_async_commit { 1635 struct btrfs_trans_handle *newtrans; 1636 struct btrfs_root *root; 1637 struct work_struct work; 1638 }; 1639 1640 static void do_async_commit(struct work_struct *work) 1641 { 1642 struct btrfs_async_commit *ac = 1643 container_of(work, struct btrfs_async_commit, work); 1644 1645 /* 1646 * We've got freeze protection passed with the transaction. 1647 * Tell lockdep about it. 1648 */ 1649 if (ac->newtrans->type & __TRANS_FREEZABLE) 1650 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS); 1651 1652 current->journal_info = ac->newtrans; 1653 1654 btrfs_commit_transaction(ac->newtrans, ac->root); 1655 kfree(ac); 1656 } 1657 1658 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1659 struct btrfs_root *root, 1660 int wait_for_unblock) 1661 { 1662 struct btrfs_async_commit *ac; 1663 struct btrfs_transaction *cur_trans; 1664 1665 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1666 if (!ac) 1667 return -ENOMEM; 1668 1669 INIT_WORK(&ac->work, do_async_commit); 1670 ac->root = root; 1671 ac->newtrans = btrfs_join_transaction(root); 1672 if (IS_ERR(ac->newtrans)) { 1673 int err = PTR_ERR(ac->newtrans); 1674 kfree(ac); 1675 return err; 1676 } 1677 1678 /* take transaction reference */ 1679 cur_trans = trans->transaction; 1680 atomic_inc(&cur_trans->use_count); 1681 1682 btrfs_end_transaction(trans, root); 1683 1684 /* 1685 * Tell lockdep we've released the freeze rwsem, since the 1686 * async commit thread will be the one to unlock it. 1687 */ 1688 if (ac->newtrans->type & __TRANS_FREEZABLE) 1689 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS); 1690 1691 schedule_work(&ac->work); 1692 1693 /* wait for transaction to start and unblock */ 1694 if (wait_for_unblock) 1695 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1696 else 1697 wait_current_trans_commit_start(root, cur_trans); 1698 1699 if (current->journal_info == trans) 1700 current->journal_info = NULL; 1701 1702 btrfs_put_transaction(cur_trans); 1703 return 0; 1704 } 1705 1706 1707 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1708 struct btrfs_root *root, int err) 1709 { 1710 struct btrfs_transaction *cur_trans = trans->transaction; 1711 DEFINE_WAIT(wait); 1712 1713 WARN_ON(trans->use_count > 1); 1714 1715 btrfs_abort_transaction(trans, root, err); 1716 1717 spin_lock(&root->fs_info->trans_lock); 1718 1719 /* 1720 * If the transaction is removed from the list, it means this 1721 * transaction has been committed successfully, so it is impossible 1722 * to call the cleanup function. 1723 */ 1724 BUG_ON(list_empty(&cur_trans->list)); 1725 1726 list_del_init(&cur_trans->list); 1727 if (cur_trans == root->fs_info->running_transaction) { 1728 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1729 spin_unlock(&root->fs_info->trans_lock); 1730 wait_event(cur_trans->writer_wait, 1731 atomic_read(&cur_trans->num_writers) == 1); 1732 1733 spin_lock(&root->fs_info->trans_lock); 1734 } 1735 spin_unlock(&root->fs_info->trans_lock); 1736 1737 btrfs_cleanup_one_transaction(trans->transaction, root); 1738 1739 spin_lock(&root->fs_info->trans_lock); 1740 if (cur_trans == root->fs_info->running_transaction) 1741 root->fs_info->running_transaction = NULL; 1742 spin_unlock(&root->fs_info->trans_lock); 1743 1744 if (trans->type & __TRANS_FREEZABLE) 1745 sb_end_intwrite(root->fs_info->sb); 1746 btrfs_put_transaction(cur_trans); 1747 btrfs_put_transaction(cur_trans); 1748 1749 trace_btrfs_transaction_commit(root); 1750 1751 if (current->journal_info == trans) 1752 current->journal_info = NULL; 1753 btrfs_scrub_cancel(root->fs_info); 1754 1755 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1756 } 1757 1758 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1759 { 1760 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1761 return btrfs_start_delalloc_roots(fs_info, 1, -1); 1762 return 0; 1763 } 1764 1765 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1766 { 1767 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1768 btrfs_wait_ordered_roots(fs_info, -1); 1769 } 1770 1771 static inline void 1772 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans) 1773 { 1774 wait_event(cur_trans->pending_wait, 1775 atomic_read(&cur_trans->pending_ordered) == 0); 1776 } 1777 1778 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1779 struct btrfs_root *root) 1780 { 1781 struct btrfs_transaction *cur_trans = trans->transaction; 1782 struct btrfs_transaction *prev_trans = NULL; 1783 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 1784 int ret; 1785 1786 /* Stop the commit early if ->aborted is set */ 1787 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1788 ret = cur_trans->aborted; 1789 btrfs_end_transaction(trans, root); 1790 return ret; 1791 } 1792 1793 /* make a pass through all the delayed refs we have so far 1794 * any runnings procs may add more while we are here 1795 */ 1796 ret = btrfs_run_delayed_refs(trans, root, 0); 1797 if (ret) { 1798 btrfs_end_transaction(trans, root); 1799 return ret; 1800 } 1801 1802 btrfs_trans_release_metadata(trans, root); 1803 trans->block_rsv = NULL; 1804 1805 cur_trans = trans->transaction; 1806 1807 /* 1808 * set the flushing flag so procs in this transaction have to 1809 * start sending their work down. 1810 */ 1811 cur_trans->delayed_refs.flushing = 1; 1812 smp_wmb(); 1813 1814 if (!list_empty(&trans->new_bgs)) 1815 btrfs_create_pending_block_groups(trans, root); 1816 1817 ret = btrfs_run_delayed_refs(trans, root, 0); 1818 if (ret) { 1819 btrfs_end_transaction(trans, root); 1820 return ret; 1821 } 1822 1823 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 1824 int run_it = 0; 1825 1826 /* this mutex is also taken before trying to set 1827 * block groups readonly. We need to make sure 1828 * that nobody has set a block group readonly 1829 * after a extents from that block group have been 1830 * allocated for cache files. btrfs_set_block_group_ro 1831 * will wait for the transaction to commit if it 1832 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 1833 * 1834 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 1835 * only one process starts all the block group IO. It wouldn't 1836 * hurt to have more than one go through, but there's no 1837 * real advantage to it either. 1838 */ 1839 mutex_lock(&root->fs_info->ro_block_group_mutex); 1840 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 1841 &cur_trans->flags)) 1842 run_it = 1; 1843 mutex_unlock(&root->fs_info->ro_block_group_mutex); 1844 1845 if (run_it) 1846 ret = btrfs_start_dirty_block_groups(trans, root); 1847 } 1848 if (ret) { 1849 btrfs_end_transaction(trans, root); 1850 return ret; 1851 } 1852 1853 spin_lock(&root->fs_info->trans_lock); 1854 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 1855 spin_unlock(&root->fs_info->trans_lock); 1856 atomic_inc(&cur_trans->use_count); 1857 ret = btrfs_end_transaction(trans, root); 1858 1859 wait_for_commit(root, cur_trans); 1860 1861 if (unlikely(cur_trans->aborted)) 1862 ret = cur_trans->aborted; 1863 1864 btrfs_put_transaction(cur_trans); 1865 1866 return ret; 1867 } 1868 1869 cur_trans->state = TRANS_STATE_COMMIT_START; 1870 wake_up(&root->fs_info->transaction_blocked_wait); 1871 1872 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1873 prev_trans = list_entry(cur_trans->list.prev, 1874 struct btrfs_transaction, list); 1875 if (prev_trans->state != TRANS_STATE_COMPLETED) { 1876 atomic_inc(&prev_trans->use_count); 1877 spin_unlock(&root->fs_info->trans_lock); 1878 1879 wait_for_commit(root, prev_trans); 1880 ret = prev_trans->aborted; 1881 1882 btrfs_put_transaction(prev_trans); 1883 if (ret) 1884 goto cleanup_transaction; 1885 } else { 1886 spin_unlock(&root->fs_info->trans_lock); 1887 } 1888 } else { 1889 spin_unlock(&root->fs_info->trans_lock); 1890 } 1891 1892 extwriter_counter_dec(cur_trans, trans->type); 1893 1894 ret = btrfs_start_delalloc_flush(root->fs_info); 1895 if (ret) 1896 goto cleanup_transaction; 1897 1898 ret = btrfs_run_delayed_items(trans, root); 1899 if (ret) 1900 goto cleanup_transaction; 1901 1902 wait_event(cur_trans->writer_wait, 1903 extwriter_counter_read(cur_trans) == 0); 1904 1905 /* some pending stuffs might be added after the previous flush. */ 1906 ret = btrfs_run_delayed_items(trans, root); 1907 if (ret) 1908 goto cleanup_transaction; 1909 1910 btrfs_wait_delalloc_flush(root->fs_info); 1911 1912 btrfs_wait_pending_ordered(cur_trans); 1913 1914 btrfs_scrub_pause(root); 1915 /* 1916 * Ok now we need to make sure to block out any other joins while we 1917 * commit the transaction. We could have started a join before setting 1918 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 1919 */ 1920 spin_lock(&root->fs_info->trans_lock); 1921 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1922 spin_unlock(&root->fs_info->trans_lock); 1923 wait_event(cur_trans->writer_wait, 1924 atomic_read(&cur_trans->num_writers) == 1); 1925 1926 /* ->aborted might be set after the previous check, so check it */ 1927 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1928 ret = cur_trans->aborted; 1929 goto scrub_continue; 1930 } 1931 /* 1932 * the reloc mutex makes sure that we stop 1933 * the balancing code from coming in and moving 1934 * extents around in the middle of the commit 1935 */ 1936 mutex_lock(&root->fs_info->reloc_mutex); 1937 1938 /* 1939 * We needn't worry about the delayed items because we will 1940 * deal with them in create_pending_snapshot(), which is the 1941 * core function of the snapshot creation. 1942 */ 1943 ret = create_pending_snapshots(trans, root->fs_info); 1944 if (ret) { 1945 mutex_unlock(&root->fs_info->reloc_mutex); 1946 goto scrub_continue; 1947 } 1948 1949 /* 1950 * We insert the dir indexes of the snapshots and update the inode 1951 * of the snapshots' parents after the snapshot creation, so there 1952 * are some delayed items which are not dealt with. Now deal with 1953 * them. 1954 * 1955 * We needn't worry that this operation will corrupt the snapshots, 1956 * because all the tree which are snapshoted will be forced to COW 1957 * the nodes and leaves. 1958 */ 1959 ret = btrfs_run_delayed_items(trans, root); 1960 if (ret) { 1961 mutex_unlock(&root->fs_info->reloc_mutex); 1962 goto scrub_continue; 1963 } 1964 1965 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1966 if (ret) { 1967 mutex_unlock(&root->fs_info->reloc_mutex); 1968 goto scrub_continue; 1969 } 1970 1971 /* Reocrd old roots for later qgroup accounting */ 1972 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info); 1973 if (ret) { 1974 mutex_unlock(&root->fs_info->reloc_mutex); 1975 goto scrub_continue; 1976 } 1977 1978 /* 1979 * make sure none of the code above managed to slip in a 1980 * delayed item 1981 */ 1982 btrfs_assert_delayed_root_empty(root); 1983 1984 WARN_ON(cur_trans != trans->transaction); 1985 1986 /* btrfs_commit_tree_roots is responsible for getting the 1987 * various roots consistent with each other. Every pointer 1988 * in the tree of tree roots has to point to the most up to date 1989 * root for every subvolume and other tree. So, we have to keep 1990 * the tree logging code from jumping in and changing any 1991 * of the trees. 1992 * 1993 * At this point in the commit, there can't be any tree-log 1994 * writers, but a little lower down we drop the trans mutex 1995 * and let new people in. By holding the tree_log_mutex 1996 * from now until after the super is written, we avoid races 1997 * with the tree-log code. 1998 */ 1999 mutex_lock(&root->fs_info->tree_log_mutex); 2000 2001 ret = commit_fs_roots(trans, root); 2002 if (ret) { 2003 mutex_unlock(&root->fs_info->tree_log_mutex); 2004 mutex_unlock(&root->fs_info->reloc_mutex); 2005 goto scrub_continue; 2006 } 2007 2008 /* 2009 * Since the transaction is done, we can apply the pending changes 2010 * before the next transaction. 2011 */ 2012 btrfs_apply_pending_changes(root->fs_info); 2013 2014 /* commit_fs_roots gets rid of all the tree log roots, it is now 2015 * safe to free the root of tree log roots 2016 */ 2017 btrfs_free_log_root_tree(trans, root->fs_info); 2018 2019 /* 2020 * Since fs roots are all committed, we can get a quite accurate 2021 * new_roots. So let's do quota accounting. 2022 */ 2023 ret = btrfs_qgroup_account_extents(trans, root->fs_info); 2024 if (ret < 0) { 2025 mutex_unlock(&root->fs_info->tree_log_mutex); 2026 mutex_unlock(&root->fs_info->reloc_mutex); 2027 goto scrub_continue; 2028 } 2029 2030 ret = commit_cowonly_roots(trans, root); 2031 if (ret) { 2032 mutex_unlock(&root->fs_info->tree_log_mutex); 2033 mutex_unlock(&root->fs_info->reloc_mutex); 2034 goto scrub_continue; 2035 } 2036 2037 /* 2038 * The tasks which save the space cache and inode cache may also 2039 * update ->aborted, check it. 2040 */ 2041 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 2042 ret = cur_trans->aborted; 2043 mutex_unlock(&root->fs_info->tree_log_mutex); 2044 mutex_unlock(&root->fs_info->reloc_mutex); 2045 goto scrub_continue; 2046 } 2047 2048 btrfs_prepare_extent_commit(trans, root); 2049 2050 cur_trans = root->fs_info->running_transaction; 2051 2052 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 2053 root->fs_info->tree_root->node); 2054 list_add_tail(&root->fs_info->tree_root->dirty_list, 2055 &cur_trans->switch_commits); 2056 2057 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 2058 root->fs_info->chunk_root->node); 2059 list_add_tail(&root->fs_info->chunk_root->dirty_list, 2060 &cur_trans->switch_commits); 2061 2062 switch_commit_roots(cur_trans, root->fs_info); 2063 2064 assert_qgroups_uptodate(trans); 2065 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2066 ASSERT(list_empty(&cur_trans->io_bgs)); 2067 update_super_roots(root); 2068 2069 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 2070 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 2071 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 2072 sizeof(*root->fs_info->super_copy)); 2073 2074 btrfs_update_commit_device_size(root->fs_info); 2075 btrfs_update_commit_device_bytes_used(root, cur_trans); 2076 2077 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 2078 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 2079 2080 btrfs_trans_release_chunk_metadata(trans); 2081 2082 spin_lock(&root->fs_info->trans_lock); 2083 cur_trans->state = TRANS_STATE_UNBLOCKED; 2084 root->fs_info->running_transaction = NULL; 2085 spin_unlock(&root->fs_info->trans_lock); 2086 mutex_unlock(&root->fs_info->reloc_mutex); 2087 2088 wake_up(&root->fs_info->transaction_wait); 2089 2090 ret = btrfs_write_and_wait_transaction(trans, root); 2091 if (ret) { 2092 btrfs_std_error(root->fs_info, ret, 2093 "Error while writing out transaction"); 2094 mutex_unlock(&root->fs_info->tree_log_mutex); 2095 goto scrub_continue; 2096 } 2097 2098 ret = write_ctree_super(trans, root, 0); 2099 if (ret) { 2100 mutex_unlock(&root->fs_info->tree_log_mutex); 2101 goto scrub_continue; 2102 } 2103 2104 /* 2105 * the super is written, we can safely allow the tree-loggers 2106 * to go about their business 2107 */ 2108 mutex_unlock(&root->fs_info->tree_log_mutex); 2109 2110 btrfs_finish_extent_commit(trans, root); 2111 2112 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2113 btrfs_clear_space_info_full(root->fs_info); 2114 2115 root->fs_info->last_trans_committed = cur_trans->transid; 2116 /* 2117 * We needn't acquire the lock here because there is no other task 2118 * which can change it. 2119 */ 2120 cur_trans->state = TRANS_STATE_COMPLETED; 2121 wake_up(&cur_trans->commit_wait); 2122 2123 spin_lock(&root->fs_info->trans_lock); 2124 list_del_init(&cur_trans->list); 2125 spin_unlock(&root->fs_info->trans_lock); 2126 2127 btrfs_put_transaction(cur_trans); 2128 btrfs_put_transaction(cur_trans); 2129 2130 if (trans->type & __TRANS_FREEZABLE) 2131 sb_end_intwrite(root->fs_info->sb); 2132 2133 trace_btrfs_transaction_commit(root); 2134 2135 btrfs_scrub_continue(root); 2136 2137 if (current->journal_info == trans) 2138 current->journal_info = NULL; 2139 2140 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2141 2142 if (current != root->fs_info->transaction_kthread && 2143 current != root->fs_info->cleaner_kthread) 2144 btrfs_run_delayed_iputs(root); 2145 2146 return ret; 2147 2148 scrub_continue: 2149 btrfs_scrub_continue(root); 2150 cleanup_transaction: 2151 btrfs_trans_release_metadata(trans, root); 2152 btrfs_trans_release_chunk_metadata(trans); 2153 trans->block_rsv = NULL; 2154 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction."); 2155 if (current->journal_info == trans) 2156 current->journal_info = NULL; 2157 cleanup_transaction(trans, root, ret); 2158 2159 return ret; 2160 } 2161 2162 /* 2163 * return < 0 if error 2164 * 0 if there are no more dead_roots at the time of call 2165 * 1 there are more to be processed, call me again 2166 * 2167 * The return value indicates there are certainly more snapshots to delete, but 2168 * if there comes a new one during processing, it may return 0. We don't mind, 2169 * because btrfs_commit_super will poke cleaner thread and it will process it a 2170 * few seconds later. 2171 */ 2172 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2173 { 2174 int ret; 2175 struct btrfs_fs_info *fs_info = root->fs_info; 2176 2177 spin_lock(&fs_info->trans_lock); 2178 if (list_empty(&fs_info->dead_roots)) { 2179 spin_unlock(&fs_info->trans_lock); 2180 return 0; 2181 } 2182 root = list_first_entry(&fs_info->dead_roots, 2183 struct btrfs_root, root_list); 2184 list_del_init(&root->root_list); 2185 spin_unlock(&fs_info->trans_lock); 2186 2187 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid); 2188 2189 btrfs_kill_all_delayed_nodes(root); 2190 2191 if (btrfs_header_backref_rev(root->node) < 2192 BTRFS_MIXED_BACKREF_REV) 2193 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2194 else 2195 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2196 2197 return (ret < 0) ? 0 : 1; 2198 } 2199 2200 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2201 { 2202 unsigned long prev; 2203 unsigned long bit; 2204 2205 prev = xchg(&fs_info->pending_changes, 0); 2206 if (!prev) 2207 return; 2208 2209 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2210 if (prev & bit) 2211 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2212 prev &= ~bit; 2213 2214 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2215 if (prev & bit) 2216 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2217 prev &= ~bit; 2218 2219 bit = 1 << BTRFS_PENDING_COMMIT; 2220 if (prev & bit) 2221 btrfs_debug(fs_info, "pending commit done"); 2222 prev &= ~bit; 2223 2224 if (prev) 2225 btrfs_warn(fs_info, 2226 "unknown pending changes left 0x%lx, ignoring", prev); 2227 } 2228