xref: /openbmc/linux/fs/btrfs/transaction.c (revision 9cfc5c90)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		if (transaction->delayed_refs.pending_csums)
68 			printk(KERN_ERR "pending csums is %llu\n",
69 			       transaction->delayed_refs.pending_csums);
70 		while (!list_empty(&transaction->pending_chunks)) {
71 			struct extent_map *em;
72 
73 			em = list_first_entry(&transaction->pending_chunks,
74 					      struct extent_map, list);
75 			list_del_init(&em->list);
76 			free_extent_map(em);
77 		}
78 		kmem_cache_free(btrfs_transaction_cachep, transaction);
79 	}
80 }
81 
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 	spin_lock(&tree->lock);
85 	/*
86 	 * Do a single barrier for the waitqueue_active check here, the state
87 	 * of the waitqueue should not change once clear_btree_io_tree is
88 	 * called.
89 	 */
90 	smp_mb();
91 	while (!RB_EMPTY_ROOT(&tree->state)) {
92 		struct rb_node *node;
93 		struct extent_state *state;
94 
95 		node = rb_first(&tree->state);
96 		state = rb_entry(node, struct extent_state, rb_node);
97 		rb_erase(&state->rb_node, &tree->state);
98 		RB_CLEAR_NODE(&state->rb_node);
99 		/*
100 		 * btree io trees aren't supposed to have tasks waiting for
101 		 * changes in the flags of extent states ever.
102 		 */
103 		ASSERT(!waitqueue_active(&state->wq));
104 		free_extent_state(state);
105 
106 		cond_resched_lock(&tree->lock);
107 	}
108 	spin_unlock(&tree->lock);
109 }
110 
111 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
112 					 struct btrfs_fs_info *fs_info)
113 {
114 	struct btrfs_root *root, *tmp;
115 
116 	down_write(&fs_info->commit_root_sem);
117 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
118 				 dirty_list) {
119 		list_del_init(&root->dirty_list);
120 		free_extent_buffer(root->commit_root);
121 		root->commit_root = btrfs_root_node(root);
122 		if (is_fstree(root->objectid))
123 			btrfs_unpin_free_ino(root);
124 		clear_btree_io_tree(&root->dirty_log_pages);
125 	}
126 
127 	/* We can free old roots now. */
128 	spin_lock(&trans->dropped_roots_lock);
129 	while (!list_empty(&trans->dropped_roots)) {
130 		root = list_first_entry(&trans->dropped_roots,
131 					struct btrfs_root, root_list);
132 		list_del_init(&root->root_list);
133 		spin_unlock(&trans->dropped_roots_lock);
134 		btrfs_drop_and_free_fs_root(fs_info, root);
135 		spin_lock(&trans->dropped_roots_lock);
136 	}
137 	spin_unlock(&trans->dropped_roots_lock);
138 	up_write(&fs_info->commit_root_sem);
139 }
140 
141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
142 					 unsigned int type)
143 {
144 	if (type & TRANS_EXTWRITERS)
145 		atomic_inc(&trans->num_extwriters);
146 }
147 
148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
149 					 unsigned int type)
150 {
151 	if (type & TRANS_EXTWRITERS)
152 		atomic_dec(&trans->num_extwriters);
153 }
154 
155 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
156 					  unsigned int type)
157 {
158 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
159 }
160 
161 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
162 {
163 	return atomic_read(&trans->num_extwriters);
164 }
165 
166 /*
167  * either allocate a new transaction or hop into the existing one
168  */
169 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
170 {
171 	struct btrfs_transaction *cur_trans;
172 	struct btrfs_fs_info *fs_info = root->fs_info;
173 
174 	spin_lock(&fs_info->trans_lock);
175 loop:
176 	/* The file system has been taken offline. No new transactions. */
177 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
178 		spin_unlock(&fs_info->trans_lock);
179 		return -EROFS;
180 	}
181 
182 	cur_trans = fs_info->running_transaction;
183 	if (cur_trans) {
184 		if (cur_trans->aborted) {
185 			spin_unlock(&fs_info->trans_lock);
186 			return cur_trans->aborted;
187 		}
188 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
189 			spin_unlock(&fs_info->trans_lock);
190 			return -EBUSY;
191 		}
192 		atomic_inc(&cur_trans->use_count);
193 		atomic_inc(&cur_trans->num_writers);
194 		extwriter_counter_inc(cur_trans, type);
195 		spin_unlock(&fs_info->trans_lock);
196 		return 0;
197 	}
198 	spin_unlock(&fs_info->trans_lock);
199 
200 	/*
201 	 * If we are ATTACH, we just want to catch the current transaction,
202 	 * and commit it. If there is no transaction, just return ENOENT.
203 	 */
204 	if (type == TRANS_ATTACH)
205 		return -ENOENT;
206 
207 	/*
208 	 * JOIN_NOLOCK only happens during the transaction commit, so
209 	 * it is impossible that ->running_transaction is NULL
210 	 */
211 	BUG_ON(type == TRANS_JOIN_NOLOCK);
212 
213 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
214 	if (!cur_trans)
215 		return -ENOMEM;
216 
217 	spin_lock(&fs_info->trans_lock);
218 	if (fs_info->running_transaction) {
219 		/*
220 		 * someone started a transaction after we unlocked.  Make sure
221 		 * to redo the checks above
222 		 */
223 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
224 		goto loop;
225 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
226 		spin_unlock(&fs_info->trans_lock);
227 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
228 		return -EROFS;
229 	}
230 
231 	atomic_set(&cur_trans->num_writers, 1);
232 	extwriter_counter_init(cur_trans, type);
233 	init_waitqueue_head(&cur_trans->writer_wait);
234 	init_waitqueue_head(&cur_trans->commit_wait);
235 	init_waitqueue_head(&cur_trans->pending_wait);
236 	cur_trans->state = TRANS_STATE_RUNNING;
237 	/*
238 	 * One for this trans handle, one so it will live on until we
239 	 * commit the transaction.
240 	 */
241 	atomic_set(&cur_trans->use_count, 2);
242 	atomic_set(&cur_trans->pending_ordered, 0);
243 	cur_trans->flags = 0;
244 	cur_trans->start_time = get_seconds();
245 
246 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
247 
248 	cur_trans->delayed_refs.href_root = RB_ROOT;
249 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
250 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
251 
252 	/*
253 	 * although the tree mod log is per file system and not per transaction,
254 	 * the log must never go across transaction boundaries.
255 	 */
256 	smp_mb();
257 	if (!list_empty(&fs_info->tree_mod_seq_list))
258 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
259 			"creating a fresh transaction\n");
260 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
261 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
262 			"creating a fresh transaction\n");
263 	atomic64_set(&fs_info->tree_mod_seq, 0);
264 
265 	spin_lock_init(&cur_trans->delayed_refs.lock);
266 
267 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
268 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
269 	INIT_LIST_HEAD(&cur_trans->switch_commits);
270 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
271 	INIT_LIST_HEAD(&cur_trans->io_bgs);
272 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
273 	mutex_init(&cur_trans->cache_write_mutex);
274 	cur_trans->num_dirty_bgs = 0;
275 	spin_lock_init(&cur_trans->dirty_bgs_lock);
276 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
277 	spin_lock_init(&cur_trans->deleted_bgs_lock);
278 	spin_lock_init(&cur_trans->dropped_roots_lock);
279 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
280 	extent_io_tree_init(&cur_trans->dirty_pages,
281 			     fs_info->btree_inode->i_mapping);
282 	fs_info->generation++;
283 	cur_trans->transid = fs_info->generation;
284 	fs_info->running_transaction = cur_trans;
285 	cur_trans->aborted = 0;
286 	spin_unlock(&fs_info->trans_lock);
287 
288 	return 0;
289 }
290 
291 /*
292  * this does all the record keeping required to make sure that a reference
293  * counted root is properly recorded in a given transaction.  This is required
294  * to make sure the old root from before we joined the transaction is deleted
295  * when the transaction commits
296  */
297 static int record_root_in_trans(struct btrfs_trans_handle *trans,
298 			       struct btrfs_root *root)
299 {
300 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
301 	    root->last_trans < trans->transid) {
302 		WARN_ON(root == root->fs_info->extent_root);
303 		WARN_ON(root->commit_root != root->node);
304 
305 		/*
306 		 * see below for IN_TRANS_SETUP usage rules
307 		 * we have the reloc mutex held now, so there
308 		 * is only one writer in this function
309 		 */
310 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
311 
312 		/* make sure readers find IN_TRANS_SETUP before
313 		 * they find our root->last_trans update
314 		 */
315 		smp_wmb();
316 
317 		spin_lock(&root->fs_info->fs_roots_radix_lock);
318 		if (root->last_trans == trans->transid) {
319 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
320 			return 0;
321 		}
322 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
323 			   (unsigned long)root->root_key.objectid,
324 			   BTRFS_ROOT_TRANS_TAG);
325 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
326 		root->last_trans = trans->transid;
327 
328 		/* this is pretty tricky.  We don't want to
329 		 * take the relocation lock in btrfs_record_root_in_trans
330 		 * unless we're really doing the first setup for this root in
331 		 * this transaction.
332 		 *
333 		 * Normally we'd use root->last_trans as a flag to decide
334 		 * if we want to take the expensive mutex.
335 		 *
336 		 * But, we have to set root->last_trans before we
337 		 * init the relocation root, otherwise, we trip over warnings
338 		 * in ctree.c.  The solution used here is to flag ourselves
339 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
340 		 * fixing up the reloc trees and everyone must wait.
341 		 *
342 		 * When this is zero, they can trust root->last_trans and fly
343 		 * through btrfs_record_root_in_trans without having to take the
344 		 * lock.  smp_wmb() makes sure that all the writes above are
345 		 * done before we pop in the zero below
346 		 */
347 		btrfs_init_reloc_root(trans, root);
348 		smp_mb__before_atomic();
349 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
350 	}
351 	return 0;
352 }
353 
354 
355 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
356 			    struct btrfs_root *root)
357 {
358 	struct btrfs_transaction *cur_trans = trans->transaction;
359 
360 	/* Add ourselves to the transaction dropped list */
361 	spin_lock(&cur_trans->dropped_roots_lock);
362 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
363 	spin_unlock(&cur_trans->dropped_roots_lock);
364 
365 	/* Make sure we don't try to update the root at commit time */
366 	spin_lock(&root->fs_info->fs_roots_radix_lock);
367 	radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
368 			     (unsigned long)root->root_key.objectid,
369 			     BTRFS_ROOT_TRANS_TAG);
370 	spin_unlock(&root->fs_info->fs_roots_radix_lock);
371 }
372 
373 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
374 			       struct btrfs_root *root)
375 {
376 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
377 		return 0;
378 
379 	/*
380 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
381 	 * and barriers
382 	 */
383 	smp_rmb();
384 	if (root->last_trans == trans->transid &&
385 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
386 		return 0;
387 
388 	mutex_lock(&root->fs_info->reloc_mutex);
389 	record_root_in_trans(trans, root);
390 	mutex_unlock(&root->fs_info->reloc_mutex);
391 
392 	return 0;
393 }
394 
395 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
396 {
397 	return (trans->state >= TRANS_STATE_BLOCKED &&
398 		trans->state < TRANS_STATE_UNBLOCKED &&
399 		!trans->aborted);
400 }
401 
402 /* wait for commit against the current transaction to become unblocked
403  * when this is done, it is safe to start a new transaction, but the current
404  * transaction might not be fully on disk.
405  */
406 static void wait_current_trans(struct btrfs_root *root)
407 {
408 	struct btrfs_transaction *cur_trans;
409 
410 	spin_lock(&root->fs_info->trans_lock);
411 	cur_trans = root->fs_info->running_transaction;
412 	if (cur_trans && is_transaction_blocked(cur_trans)) {
413 		atomic_inc(&cur_trans->use_count);
414 		spin_unlock(&root->fs_info->trans_lock);
415 
416 		wait_event(root->fs_info->transaction_wait,
417 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
418 			   cur_trans->aborted);
419 		btrfs_put_transaction(cur_trans);
420 	} else {
421 		spin_unlock(&root->fs_info->trans_lock);
422 	}
423 }
424 
425 static int may_wait_transaction(struct btrfs_root *root, int type)
426 {
427 	if (root->fs_info->log_root_recovering)
428 		return 0;
429 
430 	if (type == TRANS_USERSPACE)
431 		return 1;
432 
433 	if (type == TRANS_START &&
434 	    !atomic_read(&root->fs_info->open_ioctl_trans))
435 		return 1;
436 
437 	return 0;
438 }
439 
440 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
441 {
442 	if (!root->fs_info->reloc_ctl ||
443 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
444 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
445 	    root->reloc_root)
446 		return false;
447 
448 	return true;
449 }
450 
451 static struct btrfs_trans_handle *
452 start_transaction(struct btrfs_root *root, unsigned int num_items,
453 		  unsigned int type, enum btrfs_reserve_flush_enum flush)
454 {
455 	struct btrfs_trans_handle *h;
456 	struct btrfs_transaction *cur_trans;
457 	u64 num_bytes = 0;
458 	u64 qgroup_reserved = 0;
459 	bool reloc_reserved = false;
460 	int ret;
461 
462 	/* Send isn't supposed to start transactions. */
463 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
464 
465 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
466 		return ERR_PTR(-EROFS);
467 
468 	if (current->journal_info) {
469 		WARN_ON(type & TRANS_EXTWRITERS);
470 		h = current->journal_info;
471 		h->use_count++;
472 		WARN_ON(h->use_count > 2);
473 		h->orig_rsv = h->block_rsv;
474 		h->block_rsv = NULL;
475 		goto got_it;
476 	}
477 
478 	/*
479 	 * Do the reservation before we join the transaction so we can do all
480 	 * the appropriate flushing if need be.
481 	 */
482 	if (num_items > 0 && root != root->fs_info->chunk_root) {
483 		qgroup_reserved = num_items * root->nodesize;
484 		ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
485 		if (ret)
486 			return ERR_PTR(ret);
487 
488 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
489 		/*
490 		 * Do the reservation for the relocation root creation
491 		 */
492 		if (need_reserve_reloc_root(root)) {
493 			num_bytes += root->nodesize;
494 			reloc_reserved = true;
495 		}
496 
497 		ret = btrfs_block_rsv_add(root,
498 					  &root->fs_info->trans_block_rsv,
499 					  num_bytes, flush);
500 		if (ret)
501 			goto reserve_fail;
502 	}
503 again:
504 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
505 	if (!h) {
506 		ret = -ENOMEM;
507 		goto alloc_fail;
508 	}
509 
510 	/*
511 	 * If we are JOIN_NOLOCK we're already committing a transaction and
512 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
513 	 * because we're already holding a ref.  We need this because we could
514 	 * have raced in and did an fsync() on a file which can kick a commit
515 	 * and then we deadlock with somebody doing a freeze.
516 	 *
517 	 * If we are ATTACH, it means we just want to catch the current
518 	 * transaction and commit it, so we needn't do sb_start_intwrite().
519 	 */
520 	if (type & __TRANS_FREEZABLE)
521 		sb_start_intwrite(root->fs_info->sb);
522 
523 	if (may_wait_transaction(root, type))
524 		wait_current_trans(root);
525 
526 	do {
527 		ret = join_transaction(root, type);
528 		if (ret == -EBUSY) {
529 			wait_current_trans(root);
530 			if (unlikely(type == TRANS_ATTACH))
531 				ret = -ENOENT;
532 		}
533 	} while (ret == -EBUSY);
534 
535 	if (ret < 0) {
536 		/* We must get the transaction if we are JOIN_NOLOCK. */
537 		BUG_ON(type == TRANS_JOIN_NOLOCK);
538 		goto join_fail;
539 	}
540 
541 	cur_trans = root->fs_info->running_transaction;
542 
543 	h->transid = cur_trans->transid;
544 	h->transaction = cur_trans;
545 	h->root = root;
546 	h->use_count = 1;
547 
548 	h->type = type;
549 	h->can_flush_pending_bgs = true;
550 	INIT_LIST_HEAD(&h->qgroup_ref_list);
551 	INIT_LIST_HEAD(&h->new_bgs);
552 
553 	smp_mb();
554 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
555 	    may_wait_transaction(root, type)) {
556 		current->journal_info = h;
557 		btrfs_commit_transaction(h, root);
558 		goto again;
559 	}
560 
561 	if (num_bytes) {
562 		trace_btrfs_space_reservation(root->fs_info, "transaction",
563 					      h->transid, num_bytes, 1);
564 		h->block_rsv = &root->fs_info->trans_block_rsv;
565 		h->bytes_reserved = num_bytes;
566 		h->reloc_reserved = reloc_reserved;
567 	}
568 
569 got_it:
570 	btrfs_record_root_in_trans(h, root);
571 
572 	if (!current->journal_info && type != TRANS_USERSPACE)
573 		current->journal_info = h;
574 	return h;
575 
576 join_fail:
577 	if (type & __TRANS_FREEZABLE)
578 		sb_end_intwrite(root->fs_info->sb);
579 	kmem_cache_free(btrfs_trans_handle_cachep, h);
580 alloc_fail:
581 	if (num_bytes)
582 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
583 					num_bytes);
584 reserve_fail:
585 	btrfs_qgroup_free_meta(root, qgroup_reserved);
586 	return ERR_PTR(ret);
587 }
588 
589 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
590 						   unsigned int num_items)
591 {
592 	return start_transaction(root, num_items, TRANS_START,
593 				 BTRFS_RESERVE_FLUSH_ALL);
594 }
595 
596 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
597 					struct btrfs_root *root,
598 					unsigned int num_items)
599 {
600 	return start_transaction(root, num_items, TRANS_START,
601 				 BTRFS_RESERVE_FLUSH_LIMIT);
602 }
603 
604 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
605 {
606 	return start_transaction(root, 0, TRANS_JOIN, 0);
607 }
608 
609 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
610 {
611 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
612 }
613 
614 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
615 {
616 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
617 }
618 
619 /*
620  * btrfs_attach_transaction() - catch the running transaction
621  *
622  * It is used when we want to commit the current the transaction, but
623  * don't want to start a new one.
624  *
625  * Note: If this function return -ENOENT, it just means there is no
626  * running transaction. But it is possible that the inactive transaction
627  * is still in the memory, not fully on disk. If you hope there is no
628  * inactive transaction in the fs when -ENOENT is returned, you should
629  * invoke
630  *     btrfs_attach_transaction_barrier()
631  */
632 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
633 {
634 	return start_transaction(root, 0, TRANS_ATTACH, 0);
635 }
636 
637 /*
638  * btrfs_attach_transaction_barrier() - catch the running transaction
639  *
640  * It is similar to the above function, the differentia is this one
641  * will wait for all the inactive transactions until they fully
642  * complete.
643  */
644 struct btrfs_trans_handle *
645 btrfs_attach_transaction_barrier(struct btrfs_root *root)
646 {
647 	struct btrfs_trans_handle *trans;
648 
649 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
650 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
651 		btrfs_wait_for_commit(root, 0);
652 
653 	return trans;
654 }
655 
656 /* wait for a transaction commit to be fully complete */
657 static noinline void wait_for_commit(struct btrfs_root *root,
658 				    struct btrfs_transaction *commit)
659 {
660 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
661 }
662 
663 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
664 {
665 	struct btrfs_transaction *cur_trans = NULL, *t;
666 	int ret = 0;
667 
668 	if (transid) {
669 		if (transid <= root->fs_info->last_trans_committed)
670 			goto out;
671 
672 		/* find specified transaction */
673 		spin_lock(&root->fs_info->trans_lock);
674 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
675 			if (t->transid == transid) {
676 				cur_trans = t;
677 				atomic_inc(&cur_trans->use_count);
678 				ret = 0;
679 				break;
680 			}
681 			if (t->transid > transid) {
682 				ret = 0;
683 				break;
684 			}
685 		}
686 		spin_unlock(&root->fs_info->trans_lock);
687 
688 		/*
689 		 * The specified transaction doesn't exist, or we
690 		 * raced with btrfs_commit_transaction
691 		 */
692 		if (!cur_trans) {
693 			if (transid > root->fs_info->last_trans_committed)
694 				ret = -EINVAL;
695 			goto out;
696 		}
697 	} else {
698 		/* find newest transaction that is committing | committed */
699 		spin_lock(&root->fs_info->trans_lock);
700 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
701 					    list) {
702 			if (t->state >= TRANS_STATE_COMMIT_START) {
703 				if (t->state == TRANS_STATE_COMPLETED)
704 					break;
705 				cur_trans = t;
706 				atomic_inc(&cur_trans->use_count);
707 				break;
708 			}
709 		}
710 		spin_unlock(&root->fs_info->trans_lock);
711 		if (!cur_trans)
712 			goto out;  /* nothing committing|committed */
713 	}
714 
715 	wait_for_commit(root, cur_trans);
716 	btrfs_put_transaction(cur_trans);
717 out:
718 	return ret;
719 }
720 
721 void btrfs_throttle(struct btrfs_root *root)
722 {
723 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
724 		wait_current_trans(root);
725 }
726 
727 static int should_end_transaction(struct btrfs_trans_handle *trans,
728 				  struct btrfs_root *root)
729 {
730 	if (root->fs_info->global_block_rsv.space_info->full &&
731 	    btrfs_check_space_for_delayed_refs(trans, root))
732 		return 1;
733 
734 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
735 }
736 
737 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
738 				 struct btrfs_root *root)
739 {
740 	struct btrfs_transaction *cur_trans = trans->transaction;
741 	int updates;
742 	int err;
743 
744 	smp_mb();
745 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
746 	    cur_trans->delayed_refs.flushing)
747 		return 1;
748 
749 	updates = trans->delayed_ref_updates;
750 	trans->delayed_ref_updates = 0;
751 	if (updates) {
752 		err = btrfs_run_delayed_refs(trans, root, updates * 2);
753 		if (err) /* Error code will also eval true */
754 			return err;
755 	}
756 
757 	return should_end_transaction(trans, root);
758 }
759 
760 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
761 			  struct btrfs_root *root, int throttle)
762 {
763 	struct btrfs_transaction *cur_trans = trans->transaction;
764 	struct btrfs_fs_info *info = root->fs_info;
765 	unsigned long cur = trans->delayed_ref_updates;
766 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
767 	int err = 0;
768 	int must_run_delayed_refs = 0;
769 
770 	if (trans->use_count > 1) {
771 		trans->use_count--;
772 		trans->block_rsv = trans->orig_rsv;
773 		return 0;
774 	}
775 
776 	btrfs_trans_release_metadata(trans, root);
777 	trans->block_rsv = NULL;
778 
779 	if (!list_empty(&trans->new_bgs))
780 		btrfs_create_pending_block_groups(trans, root);
781 
782 	trans->delayed_ref_updates = 0;
783 	if (!trans->sync) {
784 		must_run_delayed_refs =
785 			btrfs_should_throttle_delayed_refs(trans, root);
786 		cur = max_t(unsigned long, cur, 32);
787 
788 		/*
789 		 * don't make the caller wait if they are from a NOLOCK
790 		 * or ATTACH transaction, it will deadlock with commit
791 		 */
792 		if (must_run_delayed_refs == 1 &&
793 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
794 			must_run_delayed_refs = 2;
795 	}
796 
797 	btrfs_trans_release_metadata(trans, root);
798 	trans->block_rsv = NULL;
799 
800 	if (!list_empty(&trans->new_bgs))
801 		btrfs_create_pending_block_groups(trans, root);
802 
803 	btrfs_trans_release_chunk_metadata(trans);
804 
805 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
806 	    should_end_transaction(trans, root) &&
807 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
808 		spin_lock(&info->trans_lock);
809 		if (cur_trans->state == TRANS_STATE_RUNNING)
810 			cur_trans->state = TRANS_STATE_BLOCKED;
811 		spin_unlock(&info->trans_lock);
812 	}
813 
814 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
815 		if (throttle)
816 			return btrfs_commit_transaction(trans, root);
817 		else
818 			wake_up_process(info->transaction_kthread);
819 	}
820 
821 	if (trans->type & __TRANS_FREEZABLE)
822 		sb_end_intwrite(root->fs_info->sb);
823 
824 	WARN_ON(cur_trans != info->running_transaction);
825 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
826 	atomic_dec(&cur_trans->num_writers);
827 	extwriter_counter_dec(cur_trans, trans->type);
828 
829 	/*
830 	 * Make sure counter is updated before we wake up waiters.
831 	 */
832 	smp_mb();
833 	if (waitqueue_active(&cur_trans->writer_wait))
834 		wake_up(&cur_trans->writer_wait);
835 	btrfs_put_transaction(cur_trans);
836 
837 	if (current->journal_info == trans)
838 		current->journal_info = NULL;
839 
840 	if (throttle)
841 		btrfs_run_delayed_iputs(root);
842 
843 	if (trans->aborted ||
844 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
845 		wake_up_process(info->transaction_kthread);
846 		err = -EIO;
847 	}
848 	assert_qgroups_uptodate(trans);
849 
850 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
851 	if (must_run_delayed_refs) {
852 		btrfs_async_run_delayed_refs(root, cur,
853 					     must_run_delayed_refs == 1);
854 	}
855 	return err;
856 }
857 
858 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
859 			  struct btrfs_root *root)
860 {
861 	return __btrfs_end_transaction(trans, root, 0);
862 }
863 
864 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
865 				   struct btrfs_root *root)
866 {
867 	return __btrfs_end_transaction(trans, root, 1);
868 }
869 
870 /*
871  * when btree blocks are allocated, they have some corresponding bits set for
872  * them in one of two extent_io trees.  This is used to make sure all of
873  * those extents are sent to disk but does not wait on them
874  */
875 int btrfs_write_marked_extents(struct btrfs_root *root,
876 			       struct extent_io_tree *dirty_pages, int mark)
877 {
878 	int err = 0;
879 	int werr = 0;
880 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
881 	struct extent_state *cached_state = NULL;
882 	u64 start = 0;
883 	u64 end;
884 
885 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
886 				      mark, &cached_state)) {
887 		bool wait_writeback = false;
888 
889 		err = convert_extent_bit(dirty_pages, start, end,
890 					 EXTENT_NEED_WAIT,
891 					 mark, &cached_state, GFP_NOFS);
892 		/*
893 		 * convert_extent_bit can return -ENOMEM, which is most of the
894 		 * time a temporary error. So when it happens, ignore the error
895 		 * and wait for writeback of this range to finish - because we
896 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
897 		 * to btrfs_wait_marked_extents() would not know that writeback
898 		 * for this range started and therefore wouldn't wait for it to
899 		 * finish - we don't want to commit a superblock that points to
900 		 * btree nodes/leafs for which writeback hasn't finished yet
901 		 * (and without errors).
902 		 * We cleanup any entries left in the io tree when committing
903 		 * the transaction (through clear_btree_io_tree()).
904 		 */
905 		if (err == -ENOMEM) {
906 			err = 0;
907 			wait_writeback = true;
908 		}
909 		if (!err)
910 			err = filemap_fdatawrite_range(mapping, start, end);
911 		if (err)
912 			werr = err;
913 		else if (wait_writeback)
914 			werr = filemap_fdatawait_range(mapping, start, end);
915 		free_extent_state(cached_state);
916 		cached_state = NULL;
917 		cond_resched();
918 		start = end + 1;
919 	}
920 	return werr;
921 }
922 
923 /*
924  * when btree blocks are allocated, they have some corresponding bits set for
925  * them in one of two extent_io trees.  This is used to make sure all of
926  * those extents are on disk for transaction or log commit.  We wait
927  * on all the pages and clear them from the dirty pages state tree
928  */
929 int btrfs_wait_marked_extents(struct btrfs_root *root,
930 			      struct extent_io_tree *dirty_pages, int mark)
931 {
932 	int err = 0;
933 	int werr = 0;
934 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
935 	struct extent_state *cached_state = NULL;
936 	u64 start = 0;
937 	u64 end;
938 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
939 	bool errors = false;
940 
941 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
942 				      EXTENT_NEED_WAIT, &cached_state)) {
943 		/*
944 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
945 		 * When committing the transaction, we'll remove any entries
946 		 * left in the io tree. For a log commit, we don't remove them
947 		 * after committing the log because the tree can be accessed
948 		 * concurrently - we do it only at transaction commit time when
949 		 * it's safe to do it (through clear_btree_io_tree()).
950 		 */
951 		err = clear_extent_bit(dirty_pages, start, end,
952 				       EXTENT_NEED_WAIT,
953 				       0, 0, &cached_state, GFP_NOFS);
954 		if (err == -ENOMEM)
955 			err = 0;
956 		if (!err)
957 			err = filemap_fdatawait_range(mapping, start, end);
958 		if (err)
959 			werr = err;
960 		free_extent_state(cached_state);
961 		cached_state = NULL;
962 		cond_resched();
963 		start = end + 1;
964 	}
965 	if (err)
966 		werr = err;
967 
968 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
969 		if ((mark & EXTENT_DIRTY) &&
970 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
971 				       &btree_ino->runtime_flags))
972 			errors = true;
973 
974 		if ((mark & EXTENT_NEW) &&
975 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
976 				       &btree_ino->runtime_flags))
977 			errors = true;
978 	} else {
979 		if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
980 				       &btree_ino->runtime_flags))
981 			errors = true;
982 	}
983 
984 	if (errors && !werr)
985 		werr = -EIO;
986 
987 	return werr;
988 }
989 
990 /*
991  * when btree blocks are allocated, they have some corresponding bits set for
992  * them in one of two extent_io trees.  This is used to make sure all of
993  * those extents are on disk for transaction or log commit
994  */
995 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
996 				struct extent_io_tree *dirty_pages, int mark)
997 {
998 	int ret;
999 	int ret2;
1000 	struct blk_plug plug;
1001 
1002 	blk_start_plug(&plug);
1003 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1004 	blk_finish_plug(&plug);
1005 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1006 
1007 	if (ret)
1008 		return ret;
1009 	if (ret2)
1010 		return ret2;
1011 	return 0;
1012 }
1013 
1014 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1015 				     struct btrfs_root *root)
1016 {
1017 	int ret;
1018 
1019 	ret = btrfs_write_and_wait_marked_extents(root,
1020 					   &trans->transaction->dirty_pages,
1021 					   EXTENT_DIRTY);
1022 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1023 
1024 	return ret;
1025 }
1026 
1027 /*
1028  * this is used to update the root pointer in the tree of tree roots.
1029  *
1030  * But, in the case of the extent allocation tree, updating the root
1031  * pointer may allocate blocks which may change the root of the extent
1032  * allocation tree.
1033  *
1034  * So, this loops and repeats and makes sure the cowonly root didn't
1035  * change while the root pointer was being updated in the metadata.
1036  */
1037 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1038 			       struct btrfs_root *root)
1039 {
1040 	int ret;
1041 	u64 old_root_bytenr;
1042 	u64 old_root_used;
1043 	struct btrfs_root *tree_root = root->fs_info->tree_root;
1044 
1045 	old_root_used = btrfs_root_used(&root->root_item);
1046 
1047 	while (1) {
1048 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1049 		if (old_root_bytenr == root->node->start &&
1050 		    old_root_used == btrfs_root_used(&root->root_item))
1051 			break;
1052 
1053 		btrfs_set_root_node(&root->root_item, root->node);
1054 		ret = btrfs_update_root(trans, tree_root,
1055 					&root->root_key,
1056 					&root->root_item);
1057 		if (ret)
1058 			return ret;
1059 
1060 		old_root_used = btrfs_root_used(&root->root_item);
1061 	}
1062 
1063 	return 0;
1064 }
1065 
1066 /*
1067  * update all the cowonly tree roots on disk
1068  *
1069  * The error handling in this function may not be obvious. Any of the
1070  * failures will cause the file system to go offline. We still need
1071  * to clean up the delayed refs.
1072  */
1073 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1074 					 struct btrfs_root *root)
1075 {
1076 	struct btrfs_fs_info *fs_info = root->fs_info;
1077 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1078 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1079 	struct list_head *next;
1080 	struct extent_buffer *eb;
1081 	int ret;
1082 
1083 	eb = btrfs_lock_root_node(fs_info->tree_root);
1084 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1085 			      0, &eb);
1086 	btrfs_tree_unlock(eb);
1087 	free_extent_buffer(eb);
1088 
1089 	if (ret)
1090 		return ret;
1091 
1092 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1093 	if (ret)
1094 		return ret;
1095 
1096 	ret = btrfs_run_dev_stats(trans, root->fs_info);
1097 	if (ret)
1098 		return ret;
1099 	ret = btrfs_run_dev_replace(trans, root->fs_info);
1100 	if (ret)
1101 		return ret;
1102 	ret = btrfs_run_qgroups(trans, root->fs_info);
1103 	if (ret)
1104 		return ret;
1105 
1106 	ret = btrfs_setup_space_cache(trans, root);
1107 	if (ret)
1108 		return ret;
1109 
1110 	/* run_qgroups might have added some more refs */
1111 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1112 	if (ret)
1113 		return ret;
1114 again:
1115 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1116 		next = fs_info->dirty_cowonly_roots.next;
1117 		list_del_init(next);
1118 		root = list_entry(next, struct btrfs_root, dirty_list);
1119 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1120 
1121 		if (root != fs_info->extent_root)
1122 			list_add_tail(&root->dirty_list,
1123 				      &trans->transaction->switch_commits);
1124 		ret = update_cowonly_root(trans, root);
1125 		if (ret)
1126 			return ret;
1127 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1128 		if (ret)
1129 			return ret;
1130 	}
1131 
1132 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1133 		ret = btrfs_write_dirty_block_groups(trans, root);
1134 		if (ret)
1135 			return ret;
1136 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1137 		if (ret)
1138 			return ret;
1139 	}
1140 
1141 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1142 		goto again;
1143 
1144 	list_add_tail(&fs_info->extent_root->dirty_list,
1145 		      &trans->transaction->switch_commits);
1146 	btrfs_after_dev_replace_commit(fs_info);
1147 
1148 	return 0;
1149 }
1150 
1151 /*
1152  * dead roots are old snapshots that need to be deleted.  This allocates
1153  * a dirty root struct and adds it into the list of dead roots that need to
1154  * be deleted
1155  */
1156 void btrfs_add_dead_root(struct btrfs_root *root)
1157 {
1158 	spin_lock(&root->fs_info->trans_lock);
1159 	if (list_empty(&root->root_list))
1160 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1161 	spin_unlock(&root->fs_info->trans_lock);
1162 }
1163 
1164 /*
1165  * update all the cowonly tree roots on disk
1166  */
1167 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1168 				    struct btrfs_root *root)
1169 {
1170 	struct btrfs_root *gang[8];
1171 	struct btrfs_fs_info *fs_info = root->fs_info;
1172 	int i;
1173 	int ret;
1174 	int err = 0;
1175 
1176 	spin_lock(&fs_info->fs_roots_radix_lock);
1177 	while (1) {
1178 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1179 						 (void **)gang, 0,
1180 						 ARRAY_SIZE(gang),
1181 						 BTRFS_ROOT_TRANS_TAG);
1182 		if (ret == 0)
1183 			break;
1184 		for (i = 0; i < ret; i++) {
1185 			root = gang[i];
1186 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1187 					(unsigned long)root->root_key.objectid,
1188 					BTRFS_ROOT_TRANS_TAG);
1189 			spin_unlock(&fs_info->fs_roots_radix_lock);
1190 
1191 			btrfs_free_log(trans, root);
1192 			btrfs_update_reloc_root(trans, root);
1193 			btrfs_orphan_commit_root(trans, root);
1194 
1195 			btrfs_save_ino_cache(root, trans);
1196 
1197 			/* see comments in should_cow_block() */
1198 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1199 			smp_mb__after_atomic();
1200 
1201 			if (root->commit_root != root->node) {
1202 				list_add_tail(&root->dirty_list,
1203 					&trans->transaction->switch_commits);
1204 				btrfs_set_root_node(&root->root_item,
1205 						    root->node);
1206 			}
1207 
1208 			err = btrfs_update_root(trans, fs_info->tree_root,
1209 						&root->root_key,
1210 						&root->root_item);
1211 			spin_lock(&fs_info->fs_roots_radix_lock);
1212 			if (err)
1213 				break;
1214 			btrfs_qgroup_free_meta_all(root);
1215 		}
1216 	}
1217 	spin_unlock(&fs_info->fs_roots_radix_lock);
1218 	return err;
1219 }
1220 
1221 /*
1222  * defrag a given btree.
1223  * Every leaf in the btree is read and defragged.
1224  */
1225 int btrfs_defrag_root(struct btrfs_root *root)
1226 {
1227 	struct btrfs_fs_info *info = root->fs_info;
1228 	struct btrfs_trans_handle *trans;
1229 	int ret;
1230 
1231 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1232 		return 0;
1233 
1234 	while (1) {
1235 		trans = btrfs_start_transaction(root, 0);
1236 		if (IS_ERR(trans))
1237 			return PTR_ERR(trans);
1238 
1239 		ret = btrfs_defrag_leaves(trans, root);
1240 
1241 		btrfs_end_transaction(trans, root);
1242 		btrfs_btree_balance_dirty(info->tree_root);
1243 		cond_resched();
1244 
1245 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1246 			break;
1247 
1248 		if (btrfs_defrag_cancelled(root->fs_info)) {
1249 			pr_debug("BTRFS: defrag_root cancelled\n");
1250 			ret = -EAGAIN;
1251 			break;
1252 		}
1253 	}
1254 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1255 	return ret;
1256 }
1257 
1258 /*
1259  * new snapshots need to be created at a very specific time in the
1260  * transaction commit.  This does the actual creation.
1261  *
1262  * Note:
1263  * If the error which may affect the commitment of the current transaction
1264  * happens, we should return the error number. If the error which just affect
1265  * the creation of the pending snapshots, just return 0.
1266  */
1267 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1268 				   struct btrfs_fs_info *fs_info,
1269 				   struct btrfs_pending_snapshot *pending)
1270 {
1271 	struct btrfs_key key;
1272 	struct btrfs_root_item *new_root_item;
1273 	struct btrfs_root *tree_root = fs_info->tree_root;
1274 	struct btrfs_root *root = pending->root;
1275 	struct btrfs_root *parent_root;
1276 	struct btrfs_block_rsv *rsv;
1277 	struct inode *parent_inode;
1278 	struct btrfs_path *path;
1279 	struct btrfs_dir_item *dir_item;
1280 	struct dentry *dentry;
1281 	struct extent_buffer *tmp;
1282 	struct extent_buffer *old;
1283 	struct timespec cur_time = CURRENT_TIME;
1284 	int ret = 0;
1285 	u64 to_reserve = 0;
1286 	u64 index = 0;
1287 	u64 objectid;
1288 	u64 root_flags;
1289 	uuid_le new_uuid;
1290 
1291 	path = btrfs_alloc_path();
1292 	if (!path) {
1293 		pending->error = -ENOMEM;
1294 		return 0;
1295 	}
1296 
1297 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1298 	if (!new_root_item) {
1299 		pending->error = -ENOMEM;
1300 		goto root_item_alloc_fail;
1301 	}
1302 
1303 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1304 	if (pending->error)
1305 		goto no_free_objectid;
1306 
1307 	/*
1308 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1309 	 * accounted by later btrfs_qgroup_inherit().
1310 	 */
1311 	btrfs_set_skip_qgroup(trans, objectid);
1312 
1313 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1314 
1315 	if (to_reserve > 0) {
1316 		pending->error = btrfs_block_rsv_add(root,
1317 						     &pending->block_rsv,
1318 						     to_reserve,
1319 						     BTRFS_RESERVE_NO_FLUSH);
1320 		if (pending->error)
1321 			goto clear_skip_qgroup;
1322 	}
1323 
1324 	key.objectid = objectid;
1325 	key.offset = (u64)-1;
1326 	key.type = BTRFS_ROOT_ITEM_KEY;
1327 
1328 	rsv = trans->block_rsv;
1329 	trans->block_rsv = &pending->block_rsv;
1330 	trans->bytes_reserved = trans->block_rsv->reserved;
1331 
1332 	dentry = pending->dentry;
1333 	parent_inode = pending->dir;
1334 	parent_root = BTRFS_I(parent_inode)->root;
1335 	record_root_in_trans(trans, parent_root);
1336 
1337 	/*
1338 	 * insert the directory item
1339 	 */
1340 	ret = btrfs_set_inode_index(parent_inode, &index);
1341 	BUG_ON(ret); /* -ENOMEM */
1342 
1343 	/* check if there is a file/dir which has the same name. */
1344 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1345 					 btrfs_ino(parent_inode),
1346 					 dentry->d_name.name,
1347 					 dentry->d_name.len, 0);
1348 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1349 		pending->error = -EEXIST;
1350 		goto dir_item_existed;
1351 	} else if (IS_ERR(dir_item)) {
1352 		ret = PTR_ERR(dir_item);
1353 		btrfs_abort_transaction(trans, root, ret);
1354 		goto fail;
1355 	}
1356 	btrfs_release_path(path);
1357 
1358 	/*
1359 	 * pull in the delayed directory update
1360 	 * and the delayed inode item
1361 	 * otherwise we corrupt the FS during
1362 	 * snapshot
1363 	 */
1364 	ret = btrfs_run_delayed_items(trans, root);
1365 	if (ret) {	/* Transaction aborted */
1366 		btrfs_abort_transaction(trans, root, ret);
1367 		goto fail;
1368 	}
1369 
1370 	record_root_in_trans(trans, root);
1371 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1372 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1373 	btrfs_check_and_init_root_item(new_root_item);
1374 
1375 	root_flags = btrfs_root_flags(new_root_item);
1376 	if (pending->readonly)
1377 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1378 	else
1379 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1380 	btrfs_set_root_flags(new_root_item, root_flags);
1381 
1382 	btrfs_set_root_generation_v2(new_root_item,
1383 			trans->transid);
1384 	uuid_le_gen(&new_uuid);
1385 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1386 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1387 			BTRFS_UUID_SIZE);
1388 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1389 		memset(new_root_item->received_uuid, 0,
1390 		       sizeof(new_root_item->received_uuid));
1391 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1392 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1393 		btrfs_set_root_stransid(new_root_item, 0);
1394 		btrfs_set_root_rtransid(new_root_item, 0);
1395 	}
1396 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1397 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1398 	btrfs_set_root_otransid(new_root_item, trans->transid);
1399 
1400 	old = btrfs_lock_root_node(root);
1401 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1402 	if (ret) {
1403 		btrfs_tree_unlock(old);
1404 		free_extent_buffer(old);
1405 		btrfs_abort_transaction(trans, root, ret);
1406 		goto fail;
1407 	}
1408 
1409 	btrfs_set_lock_blocking(old);
1410 
1411 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1412 	/* clean up in any case */
1413 	btrfs_tree_unlock(old);
1414 	free_extent_buffer(old);
1415 	if (ret) {
1416 		btrfs_abort_transaction(trans, root, ret);
1417 		goto fail;
1418 	}
1419 	/* see comments in should_cow_block() */
1420 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1421 	smp_wmb();
1422 
1423 	btrfs_set_root_node(new_root_item, tmp);
1424 	/* record when the snapshot was created in key.offset */
1425 	key.offset = trans->transid;
1426 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1427 	btrfs_tree_unlock(tmp);
1428 	free_extent_buffer(tmp);
1429 	if (ret) {
1430 		btrfs_abort_transaction(trans, root, ret);
1431 		goto fail;
1432 	}
1433 
1434 	/*
1435 	 * insert root back/forward references
1436 	 */
1437 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1438 				 parent_root->root_key.objectid,
1439 				 btrfs_ino(parent_inode), index,
1440 				 dentry->d_name.name, dentry->d_name.len);
1441 	if (ret) {
1442 		btrfs_abort_transaction(trans, root, ret);
1443 		goto fail;
1444 	}
1445 
1446 	key.offset = (u64)-1;
1447 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1448 	if (IS_ERR(pending->snap)) {
1449 		ret = PTR_ERR(pending->snap);
1450 		btrfs_abort_transaction(trans, root, ret);
1451 		goto fail;
1452 	}
1453 
1454 	ret = btrfs_reloc_post_snapshot(trans, pending);
1455 	if (ret) {
1456 		btrfs_abort_transaction(trans, root, ret);
1457 		goto fail;
1458 	}
1459 
1460 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1461 	if (ret) {
1462 		btrfs_abort_transaction(trans, root, ret);
1463 		goto fail;
1464 	}
1465 
1466 	ret = btrfs_insert_dir_item(trans, parent_root,
1467 				    dentry->d_name.name, dentry->d_name.len,
1468 				    parent_inode, &key,
1469 				    BTRFS_FT_DIR, index);
1470 	/* We have check then name at the beginning, so it is impossible. */
1471 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1472 	if (ret) {
1473 		btrfs_abort_transaction(trans, root, ret);
1474 		goto fail;
1475 	}
1476 
1477 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1478 					 dentry->d_name.len * 2);
1479 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1480 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1481 	if (ret) {
1482 		btrfs_abort_transaction(trans, root, ret);
1483 		goto fail;
1484 	}
1485 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1486 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1487 	if (ret) {
1488 		btrfs_abort_transaction(trans, root, ret);
1489 		goto fail;
1490 	}
1491 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1492 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1493 					  new_root_item->received_uuid,
1494 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1495 					  objectid);
1496 		if (ret && ret != -EEXIST) {
1497 			btrfs_abort_transaction(trans, root, ret);
1498 			goto fail;
1499 		}
1500 	}
1501 
1502 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1503 	if (ret) {
1504 		btrfs_abort_transaction(trans, root, ret);
1505 		goto fail;
1506 	}
1507 
1508 	/*
1509 	 * account qgroup counters before qgroup_inherit()
1510 	 */
1511 	ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1512 	if (ret)
1513 		goto fail;
1514 	ret = btrfs_qgroup_account_extents(trans, fs_info);
1515 	if (ret)
1516 		goto fail;
1517 	ret = btrfs_qgroup_inherit(trans, fs_info,
1518 				   root->root_key.objectid,
1519 				   objectid, pending->inherit);
1520 	if (ret) {
1521 		btrfs_abort_transaction(trans, root, ret);
1522 		goto fail;
1523 	}
1524 
1525 fail:
1526 	pending->error = ret;
1527 dir_item_existed:
1528 	trans->block_rsv = rsv;
1529 	trans->bytes_reserved = 0;
1530 clear_skip_qgroup:
1531 	btrfs_clear_skip_qgroup(trans);
1532 no_free_objectid:
1533 	kfree(new_root_item);
1534 root_item_alloc_fail:
1535 	btrfs_free_path(path);
1536 	return ret;
1537 }
1538 
1539 /*
1540  * create all the snapshots we've scheduled for creation
1541  */
1542 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1543 					     struct btrfs_fs_info *fs_info)
1544 {
1545 	struct btrfs_pending_snapshot *pending, *next;
1546 	struct list_head *head = &trans->transaction->pending_snapshots;
1547 	int ret = 0;
1548 
1549 	list_for_each_entry_safe(pending, next, head, list) {
1550 		list_del(&pending->list);
1551 		ret = create_pending_snapshot(trans, fs_info, pending);
1552 		if (ret)
1553 			break;
1554 	}
1555 	return ret;
1556 }
1557 
1558 static void update_super_roots(struct btrfs_root *root)
1559 {
1560 	struct btrfs_root_item *root_item;
1561 	struct btrfs_super_block *super;
1562 
1563 	super = root->fs_info->super_copy;
1564 
1565 	root_item = &root->fs_info->chunk_root->root_item;
1566 	super->chunk_root = root_item->bytenr;
1567 	super->chunk_root_generation = root_item->generation;
1568 	super->chunk_root_level = root_item->level;
1569 
1570 	root_item = &root->fs_info->tree_root->root_item;
1571 	super->root = root_item->bytenr;
1572 	super->generation = root_item->generation;
1573 	super->root_level = root_item->level;
1574 	if (btrfs_test_opt(root, SPACE_CACHE))
1575 		super->cache_generation = root_item->generation;
1576 	if (root->fs_info->update_uuid_tree_gen)
1577 		super->uuid_tree_generation = root_item->generation;
1578 }
1579 
1580 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1581 {
1582 	struct btrfs_transaction *trans;
1583 	int ret = 0;
1584 
1585 	spin_lock(&info->trans_lock);
1586 	trans = info->running_transaction;
1587 	if (trans)
1588 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1589 	spin_unlock(&info->trans_lock);
1590 	return ret;
1591 }
1592 
1593 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1594 {
1595 	struct btrfs_transaction *trans;
1596 	int ret = 0;
1597 
1598 	spin_lock(&info->trans_lock);
1599 	trans = info->running_transaction;
1600 	if (trans)
1601 		ret = is_transaction_blocked(trans);
1602 	spin_unlock(&info->trans_lock);
1603 	return ret;
1604 }
1605 
1606 /*
1607  * wait for the current transaction commit to start and block subsequent
1608  * transaction joins
1609  */
1610 static void wait_current_trans_commit_start(struct btrfs_root *root,
1611 					    struct btrfs_transaction *trans)
1612 {
1613 	wait_event(root->fs_info->transaction_blocked_wait,
1614 		   trans->state >= TRANS_STATE_COMMIT_START ||
1615 		   trans->aborted);
1616 }
1617 
1618 /*
1619  * wait for the current transaction to start and then become unblocked.
1620  * caller holds ref.
1621  */
1622 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1623 					 struct btrfs_transaction *trans)
1624 {
1625 	wait_event(root->fs_info->transaction_wait,
1626 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1627 		   trans->aborted);
1628 }
1629 
1630 /*
1631  * commit transactions asynchronously. once btrfs_commit_transaction_async
1632  * returns, any subsequent transaction will not be allowed to join.
1633  */
1634 struct btrfs_async_commit {
1635 	struct btrfs_trans_handle *newtrans;
1636 	struct btrfs_root *root;
1637 	struct work_struct work;
1638 };
1639 
1640 static void do_async_commit(struct work_struct *work)
1641 {
1642 	struct btrfs_async_commit *ac =
1643 		container_of(work, struct btrfs_async_commit, work);
1644 
1645 	/*
1646 	 * We've got freeze protection passed with the transaction.
1647 	 * Tell lockdep about it.
1648 	 */
1649 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1650 		__sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1651 
1652 	current->journal_info = ac->newtrans;
1653 
1654 	btrfs_commit_transaction(ac->newtrans, ac->root);
1655 	kfree(ac);
1656 }
1657 
1658 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1659 				   struct btrfs_root *root,
1660 				   int wait_for_unblock)
1661 {
1662 	struct btrfs_async_commit *ac;
1663 	struct btrfs_transaction *cur_trans;
1664 
1665 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1666 	if (!ac)
1667 		return -ENOMEM;
1668 
1669 	INIT_WORK(&ac->work, do_async_commit);
1670 	ac->root = root;
1671 	ac->newtrans = btrfs_join_transaction(root);
1672 	if (IS_ERR(ac->newtrans)) {
1673 		int err = PTR_ERR(ac->newtrans);
1674 		kfree(ac);
1675 		return err;
1676 	}
1677 
1678 	/* take transaction reference */
1679 	cur_trans = trans->transaction;
1680 	atomic_inc(&cur_trans->use_count);
1681 
1682 	btrfs_end_transaction(trans, root);
1683 
1684 	/*
1685 	 * Tell lockdep we've released the freeze rwsem, since the
1686 	 * async commit thread will be the one to unlock it.
1687 	 */
1688 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1689 		__sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1690 
1691 	schedule_work(&ac->work);
1692 
1693 	/* wait for transaction to start and unblock */
1694 	if (wait_for_unblock)
1695 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1696 	else
1697 		wait_current_trans_commit_start(root, cur_trans);
1698 
1699 	if (current->journal_info == trans)
1700 		current->journal_info = NULL;
1701 
1702 	btrfs_put_transaction(cur_trans);
1703 	return 0;
1704 }
1705 
1706 
1707 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1708 				struct btrfs_root *root, int err)
1709 {
1710 	struct btrfs_transaction *cur_trans = trans->transaction;
1711 	DEFINE_WAIT(wait);
1712 
1713 	WARN_ON(trans->use_count > 1);
1714 
1715 	btrfs_abort_transaction(trans, root, err);
1716 
1717 	spin_lock(&root->fs_info->trans_lock);
1718 
1719 	/*
1720 	 * If the transaction is removed from the list, it means this
1721 	 * transaction has been committed successfully, so it is impossible
1722 	 * to call the cleanup function.
1723 	 */
1724 	BUG_ON(list_empty(&cur_trans->list));
1725 
1726 	list_del_init(&cur_trans->list);
1727 	if (cur_trans == root->fs_info->running_transaction) {
1728 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1729 		spin_unlock(&root->fs_info->trans_lock);
1730 		wait_event(cur_trans->writer_wait,
1731 			   atomic_read(&cur_trans->num_writers) == 1);
1732 
1733 		spin_lock(&root->fs_info->trans_lock);
1734 	}
1735 	spin_unlock(&root->fs_info->trans_lock);
1736 
1737 	btrfs_cleanup_one_transaction(trans->transaction, root);
1738 
1739 	spin_lock(&root->fs_info->trans_lock);
1740 	if (cur_trans == root->fs_info->running_transaction)
1741 		root->fs_info->running_transaction = NULL;
1742 	spin_unlock(&root->fs_info->trans_lock);
1743 
1744 	if (trans->type & __TRANS_FREEZABLE)
1745 		sb_end_intwrite(root->fs_info->sb);
1746 	btrfs_put_transaction(cur_trans);
1747 	btrfs_put_transaction(cur_trans);
1748 
1749 	trace_btrfs_transaction_commit(root);
1750 
1751 	if (current->journal_info == trans)
1752 		current->journal_info = NULL;
1753 	btrfs_scrub_cancel(root->fs_info);
1754 
1755 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1756 }
1757 
1758 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1759 {
1760 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1761 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1762 	return 0;
1763 }
1764 
1765 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1766 {
1767 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1768 		btrfs_wait_ordered_roots(fs_info, -1);
1769 }
1770 
1771 static inline void
1772 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1773 {
1774 	wait_event(cur_trans->pending_wait,
1775 		   atomic_read(&cur_trans->pending_ordered) == 0);
1776 }
1777 
1778 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1779 			     struct btrfs_root *root)
1780 {
1781 	struct btrfs_transaction *cur_trans = trans->transaction;
1782 	struct btrfs_transaction *prev_trans = NULL;
1783 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1784 	int ret;
1785 
1786 	/* Stop the commit early if ->aborted is set */
1787 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1788 		ret = cur_trans->aborted;
1789 		btrfs_end_transaction(trans, root);
1790 		return ret;
1791 	}
1792 
1793 	/* make a pass through all the delayed refs we have so far
1794 	 * any runnings procs may add more while we are here
1795 	 */
1796 	ret = btrfs_run_delayed_refs(trans, root, 0);
1797 	if (ret) {
1798 		btrfs_end_transaction(trans, root);
1799 		return ret;
1800 	}
1801 
1802 	btrfs_trans_release_metadata(trans, root);
1803 	trans->block_rsv = NULL;
1804 
1805 	cur_trans = trans->transaction;
1806 
1807 	/*
1808 	 * set the flushing flag so procs in this transaction have to
1809 	 * start sending their work down.
1810 	 */
1811 	cur_trans->delayed_refs.flushing = 1;
1812 	smp_wmb();
1813 
1814 	if (!list_empty(&trans->new_bgs))
1815 		btrfs_create_pending_block_groups(trans, root);
1816 
1817 	ret = btrfs_run_delayed_refs(trans, root, 0);
1818 	if (ret) {
1819 		btrfs_end_transaction(trans, root);
1820 		return ret;
1821 	}
1822 
1823 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1824 		int run_it = 0;
1825 
1826 		/* this mutex is also taken before trying to set
1827 		 * block groups readonly.  We need to make sure
1828 		 * that nobody has set a block group readonly
1829 		 * after a extents from that block group have been
1830 		 * allocated for cache files.  btrfs_set_block_group_ro
1831 		 * will wait for the transaction to commit if it
1832 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1833 		 *
1834 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1835 		 * only one process starts all the block group IO.  It wouldn't
1836 		 * hurt to have more than one go through, but there's no
1837 		 * real advantage to it either.
1838 		 */
1839 		mutex_lock(&root->fs_info->ro_block_group_mutex);
1840 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1841 				      &cur_trans->flags))
1842 			run_it = 1;
1843 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
1844 
1845 		if (run_it)
1846 			ret = btrfs_start_dirty_block_groups(trans, root);
1847 	}
1848 	if (ret) {
1849 		btrfs_end_transaction(trans, root);
1850 		return ret;
1851 	}
1852 
1853 	spin_lock(&root->fs_info->trans_lock);
1854 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1855 		spin_unlock(&root->fs_info->trans_lock);
1856 		atomic_inc(&cur_trans->use_count);
1857 		ret = btrfs_end_transaction(trans, root);
1858 
1859 		wait_for_commit(root, cur_trans);
1860 
1861 		if (unlikely(cur_trans->aborted))
1862 			ret = cur_trans->aborted;
1863 
1864 		btrfs_put_transaction(cur_trans);
1865 
1866 		return ret;
1867 	}
1868 
1869 	cur_trans->state = TRANS_STATE_COMMIT_START;
1870 	wake_up(&root->fs_info->transaction_blocked_wait);
1871 
1872 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1873 		prev_trans = list_entry(cur_trans->list.prev,
1874 					struct btrfs_transaction, list);
1875 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1876 			atomic_inc(&prev_trans->use_count);
1877 			spin_unlock(&root->fs_info->trans_lock);
1878 
1879 			wait_for_commit(root, prev_trans);
1880 			ret = prev_trans->aborted;
1881 
1882 			btrfs_put_transaction(prev_trans);
1883 			if (ret)
1884 				goto cleanup_transaction;
1885 		} else {
1886 			spin_unlock(&root->fs_info->trans_lock);
1887 		}
1888 	} else {
1889 		spin_unlock(&root->fs_info->trans_lock);
1890 	}
1891 
1892 	extwriter_counter_dec(cur_trans, trans->type);
1893 
1894 	ret = btrfs_start_delalloc_flush(root->fs_info);
1895 	if (ret)
1896 		goto cleanup_transaction;
1897 
1898 	ret = btrfs_run_delayed_items(trans, root);
1899 	if (ret)
1900 		goto cleanup_transaction;
1901 
1902 	wait_event(cur_trans->writer_wait,
1903 		   extwriter_counter_read(cur_trans) == 0);
1904 
1905 	/* some pending stuffs might be added after the previous flush. */
1906 	ret = btrfs_run_delayed_items(trans, root);
1907 	if (ret)
1908 		goto cleanup_transaction;
1909 
1910 	btrfs_wait_delalloc_flush(root->fs_info);
1911 
1912 	btrfs_wait_pending_ordered(cur_trans);
1913 
1914 	btrfs_scrub_pause(root);
1915 	/*
1916 	 * Ok now we need to make sure to block out any other joins while we
1917 	 * commit the transaction.  We could have started a join before setting
1918 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1919 	 */
1920 	spin_lock(&root->fs_info->trans_lock);
1921 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1922 	spin_unlock(&root->fs_info->trans_lock);
1923 	wait_event(cur_trans->writer_wait,
1924 		   atomic_read(&cur_trans->num_writers) == 1);
1925 
1926 	/* ->aborted might be set after the previous check, so check it */
1927 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1928 		ret = cur_trans->aborted;
1929 		goto scrub_continue;
1930 	}
1931 	/*
1932 	 * the reloc mutex makes sure that we stop
1933 	 * the balancing code from coming in and moving
1934 	 * extents around in the middle of the commit
1935 	 */
1936 	mutex_lock(&root->fs_info->reloc_mutex);
1937 
1938 	/*
1939 	 * We needn't worry about the delayed items because we will
1940 	 * deal with them in create_pending_snapshot(), which is the
1941 	 * core function of the snapshot creation.
1942 	 */
1943 	ret = create_pending_snapshots(trans, root->fs_info);
1944 	if (ret) {
1945 		mutex_unlock(&root->fs_info->reloc_mutex);
1946 		goto scrub_continue;
1947 	}
1948 
1949 	/*
1950 	 * We insert the dir indexes of the snapshots and update the inode
1951 	 * of the snapshots' parents after the snapshot creation, so there
1952 	 * are some delayed items which are not dealt with. Now deal with
1953 	 * them.
1954 	 *
1955 	 * We needn't worry that this operation will corrupt the snapshots,
1956 	 * because all the tree which are snapshoted will be forced to COW
1957 	 * the nodes and leaves.
1958 	 */
1959 	ret = btrfs_run_delayed_items(trans, root);
1960 	if (ret) {
1961 		mutex_unlock(&root->fs_info->reloc_mutex);
1962 		goto scrub_continue;
1963 	}
1964 
1965 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1966 	if (ret) {
1967 		mutex_unlock(&root->fs_info->reloc_mutex);
1968 		goto scrub_continue;
1969 	}
1970 
1971 	/* Reocrd old roots for later qgroup accounting */
1972 	ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
1973 	if (ret) {
1974 		mutex_unlock(&root->fs_info->reloc_mutex);
1975 		goto scrub_continue;
1976 	}
1977 
1978 	/*
1979 	 * make sure none of the code above managed to slip in a
1980 	 * delayed item
1981 	 */
1982 	btrfs_assert_delayed_root_empty(root);
1983 
1984 	WARN_ON(cur_trans != trans->transaction);
1985 
1986 	/* btrfs_commit_tree_roots is responsible for getting the
1987 	 * various roots consistent with each other.  Every pointer
1988 	 * in the tree of tree roots has to point to the most up to date
1989 	 * root for every subvolume and other tree.  So, we have to keep
1990 	 * the tree logging code from jumping in and changing any
1991 	 * of the trees.
1992 	 *
1993 	 * At this point in the commit, there can't be any tree-log
1994 	 * writers, but a little lower down we drop the trans mutex
1995 	 * and let new people in.  By holding the tree_log_mutex
1996 	 * from now until after the super is written, we avoid races
1997 	 * with the tree-log code.
1998 	 */
1999 	mutex_lock(&root->fs_info->tree_log_mutex);
2000 
2001 	ret = commit_fs_roots(trans, root);
2002 	if (ret) {
2003 		mutex_unlock(&root->fs_info->tree_log_mutex);
2004 		mutex_unlock(&root->fs_info->reloc_mutex);
2005 		goto scrub_continue;
2006 	}
2007 
2008 	/*
2009 	 * Since the transaction is done, we can apply the pending changes
2010 	 * before the next transaction.
2011 	 */
2012 	btrfs_apply_pending_changes(root->fs_info);
2013 
2014 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2015 	 * safe to free the root of tree log roots
2016 	 */
2017 	btrfs_free_log_root_tree(trans, root->fs_info);
2018 
2019 	/*
2020 	 * Since fs roots are all committed, we can get a quite accurate
2021 	 * new_roots. So let's do quota accounting.
2022 	 */
2023 	ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2024 	if (ret < 0) {
2025 		mutex_unlock(&root->fs_info->tree_log_mutex);
2026 		mutex_unlock(&root->fs_info->reloc_mutex);
2027 		goto scrub_continue;
2028 	}
2029 
2030 	ret = commit_cowonly_roots(trans, root);
2031 	if (ret) {
2032 		mutex_unlock(&root->fs_info->tree_log_mutex);
2033 		mutex_unlock(&root->fs_info->reloc_mutex);
2034 		goto scrub_continue;
2035 	}
2036 
2037 	/*
2038 	 * The tasks which save the space cache and inode cache may also
2039 	 * update ->aborted, check it.
2040 	 */
2041 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2042 		ret = cur_trans->aborted;
2043 		mutex_unlock(&root->fs_info->tree_log_mutex);
2044 		mutex_unlock(&root->fs_info->reloc_mutex);
2045 		goto scrub_continue;
2046 	}
2047 
2048 	btrfs_prepare_extent_commit(trans, root);
2049 
2050 	cur_trans = root->fs_info->running_transaction;
2051 
2052 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2053 			    root->fs_info->tree_root->node);
2054 	list_add_tail(&root->fs_info->tree_root->dirty_list,
2055 		      &cur_trans->switch_commits);
2056 
2057 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2058 			    root->fs_info->chunk_root->node);
2059 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
2060 		      &cur_trans->switch_commits);
2061 
2062 	switch_commit_roots(cur_trans, root->fs_info);
2063 
2064 	assert_qgroups_uptodate(trans);
2065 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2066 	ASSERT(list_empty(&cur_trans->io_bgs));
2067 	update_super_roots(root);
2068 
2069 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2070 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2071 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2072 	       sizeof(*root->fs_info->super_copy));
2073 
2074 	btrfs_update_commit_device_size(root->fs_info);
2075 	btrfs_update_commit_device_bytes_used(root, cur_trans);
2076 
2077 	clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2078 	clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2079 
2080 	btrfs_trans_release_chunk_metadata(trans);
2081 
2082 	spin_lock(&root->fs_info->trans_lock);
2083 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2084 	root->fs_info->running_transaction = NULL;
2085 	spin_unlock(&root->fs_info->trans_lock);
2086 	mutex_unlock(&root->fs_info->reloc_mutex);
2087 
2088 	wake_up(&root->fs_info->transaction_wait);
2089 
2090 	ret = btrfs_write_and_wait_transaction(trans, root);
2091 	if (ret) {
2092 		btrfs_std_error(root->fs_info, ret,
2093 			    "Error while writing out transaction");
2094 		mutex_unlock(&root->fs_info->tree_log_mutex);
2095 		goto scrub_continue;
2096 	}
2097 
2098 	ret = write_ctree_super(trans, root, 0);
2099 	if (ret) {
2100 		mutex_unlock(&root->fs_info->tree_log_mutex);
2101 		goto scrub_continue;
2102 	}
2103 
2104 	/*
2105 	 * the super is written, we can safely allow the tree-loggers
2106 	 * to go about their business
2107 	 */
2108 	mutex_unlock(&root->fs_info->tree_log_mutex);
2109 
2110 	btrfs_finish_extent_commit(trans, root);
2111 
2112 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2113 		btrfs_clear_space_info_full(root->fs_info);
2114 
2115 	root->fs_info->last_trans_committed = cur_trans->transid;
2116 	/*
2117 	 * We needn't acquire the lock here because there is no other task
2118 	 * which can change it.
2119 	 */
2120 	cur_trans->state = TRANS_STATE_COMPLETED;
2121 	wake_up(&cur_trans->commit_wait);
2122 
2123 	spin_lock(&root->fs_info->trans_lock);
2124 	list_del_init(&cur_trans->list);
2125 	spin_unlock(&root->fs_info->trans_lock);
2126 
2127 	btrfs_put_transaction(cur_trans);
2128 	btrfs_put_transaction(cur_trans);
2129 
2130 	if (trans->type & __TRANS_FREEZABLE)
2131 		sb_end_intwrite(root->fs_info->sb);
2132 
2133 	trace_btrfs_transaction_commit(root);
2134 
2135 	btrfs_scrub_continue(root);
2136 
2137 	if (current->journal_info == trans)
2138 		current->journal_info = NULL;
2139 
2140 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2141 
2142 	if (current != root->fs_info->transaction_kthread &&
2143 	    current != root->fs_info->cleaner_kthread)
2144 		btrfs_run_delayed_iputs(root);
2145 
2146 	return ret;
2147 
2148 scrub_continue:
2149 	btrfs_scrub_continue(root);
2150 cleanup_transaction:
2151 	btrfs_trans_release_metadata(trans, root);
2152 	btrfs_trans_release_chunk_metadata(trans);
2153 	trans->block_rsv = NULL;
2154 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2155 	if (current->journal_info == trans)
2156 		current->journal_info = NULL;
2157 	cleanup_transaction(trans, root, ret);
2158 
2159 	return ret;
2160 }
2161 
2162 /*
2163  * return < 0 if error
2164  * 0 if there are no more dead_roots at the time of call
2165  * 1 there are more to be processed, call me again
2166  *
2167  * The return value indicates there are certainly more snapshots to delete, but
2168  * if there comes a new one during processing, it may return 0. We don't mind,
2169  * because btrfs_commit_super will poke cleaner thread and it will process it a
2170  * few seconds later.
2171  */
2172 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2173 {
2174 	int ret;
2175 	struct btrfs_fs_info *fs_info = root->fs_info;
2176 
2177 	spin_lock(&fs_info->trans_lock);
2178 	if (list_empty(&fs_info->dead_roots)) {
2179 		spin_unlock(&fs_info->trans_lock);
2180 		return 0;
2181 	}
2182 	root = list_first_entry(&fs_info->dead_roots,
2183 			struct btrfs_root, root_list);
2184 	list_del_init(&root->root_list);
2185 	spin_unlock(&fs_info->trans_lock);
2186 
2187 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2188 
2189 	btrfs_kill_all_delayed_nodes(root);
2190 
2191 	if (btrfs_header_backref_rev(root->node) <
2192 			BTRFS_MIXED_BACKREF_REV)
2193 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2194 	else
2195 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2196 
2197 	return (ret < 0) ? 0 : 1;
2198 }
2199 
2200 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2201 {
2202 	unsigned long prev;
2203 	unsigned long bit;
2204 
2205 	prev = xchg(&fs_info->pending_changes, 0);
2206 	if (!prev)
2207 		return;
2208 
2209 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2210 	if (prev & bit)
2211 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2212 	prev &= ~bit;
2213 
2214 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2215 	if (prev & bit)
2216 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2217 	prev &= ~bit;
2218 
2219 	bit = 1 << BTRFS_PENDING_COMMIT;
2220 	if (prev & bit)
2221 		btrfs_debug(fs_info, "pending commit done");
2222 	prev &= ~bit;
2223 
2224 	if (prev)
2225 		btrfs_warn(fs_info,
2226 			"unknown pending changes left 0x%lx, ignoring", prev);
2227 }
2228