xref: /openbmc/linux/fs/btrfs/transaction.c (revision 9c1f8594)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31 
32 #define BTRFS_ROOT_TRANS_TAG 0
33 
34 static noinline void put_transaction(struct btrfs_transaction *transaction)
35 {
36 	WARN_ON(atomic_read(&transaction->use_count) == 0);
37 	if (atomic_dec_and_test(&transaction->use_count)) {
38 		BUG_ON(!list_empty(&transaction->list));
39 		memset(transaction, 0, sizeof(*transaction));
40 		kmem_cache_free(btrfs_transaction_cachep, transaction);
41 	}
42 }
43 
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46 	free_extent_buffer(root->commit_root);
47 	root->commit_root = btrfs_root_node(root);
48 }
49 
50 /*
51  * either allocate a new transaction or hop into the existing one
52  */
53 static noinline int join_transaction(struct btrfs_root *root, int nofail)
54 {
55 	struct btrfs_transaction *cur_trans;
56 
57 	spin_lock(&root->fs_info->trans_lock);
58 	if (root->fs_info->trans_no_join) {
59 		if (!nofail) {
60 			spin_unlock(&root->fs_info->trans_lock);
61 			return -EBUSY;
62 		}
63 	}
64 
65 	cur_trans = root->fs_info->running_transaction;
66 	if (cur_trans) {
67 		atomic_inc(&cur_trans->use_count);
68 		atomic_inc(&cur_trans->num_writers);
69 		cur_trans->num_joined++;
70 		spin_unlock(&root->fs_info->trans_lock);
71 		return 0;
72 	}
73 	spin_unlock(&root->fs_info->trans_lock);
74 
75 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
76 	if (!cur_trans)
77 		return -ENOMEM;
78 	spin_lock(&root->fs_info->trans_lock);
79 	if (root->fs_info->running_transaction) {
80 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
81 		cur_trans = root->fs_info->running_transaction;
82 		atomic_inc(&cur_trans->use_count);
83 		atomic_inc(&cur_trans->num_writers);
84 		cur_trans->num_joined++;
85 		spin_unlock(&root->fs_info->trans_lock);
86 		return 0;
87 	}
88 	atomic_set(&cur_trans->num_writers, 1);
89 	cur_trans->num_joined = 0;
90 	init_waitqueue_head(&cur_trans->writer_wait);
91 	init_waitqueue_head(&cur_trans->commit_wait);
92 	cur_trans->in_commit = 0;
93 	cur_trans->blocked = 0;
94 	/*
95 	 * One for this trans handle, one so it will live on until we
96 	 * commit the transaction.
97 	 */
98 	atomic_set(&cur_trans->use_count, 2);
99 	cur_trans->commit_done = 0;
100 	cur_trans->start_time = get_seconds();
101 
102 	cur_trans->delayed_refs.root = RB_ROOT;
103 	cur_trans->delayed_refs.num_entries = 0;
104 	cur_trans->delayed_refs.num_heads_ready = 0;
105 	cur_trans->delayed_refs.num_heads = 0;
106 	cur_trans->delayed_refs.flushing = 0;
107 	cur_trans->delayed_refs.run_delayed_start = 0;
108 	spin_lock_init(&cur_trans->commit_lock);
109 	spin_lock_init(&cur_trans->delayed_refs.lock);
110 
111 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
112 	list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
113 	extent_io_tree_init(&cur_trans->dirty_pages,
114 			     root->fs_info->btree_inode->i_mapping);
115 	root->fs_info->generation++;
116 	cur_trans->transid = root->fs_info->generation;
117 	root->fs_info->running_transaction = cur_trans;
118 	spin_unlock(&root->fs_info->trans_lock);
119 
120 	return 0;
121 }
122 
123 /*
124  * this does all the record keeping required to make sure that a reference
125  * counted root is properly recorded in a given transaction.  This is required
126  * to make sure the old root from before we joined the transaction is deleted
127  * when the transaction commits
128  */
129 static int record_root_in_trans(struct btrfs_trans_handle *trans,
130 			       struct btrfs_root *root)
131 {
132 	if (root->ref_cows && root->last_trans < trans->transid) {
133 		WARN_ON(root == root->fs_info->extent_root);
134 		WARN_ON(root->commit_root != root->node);
135 
136 		/*
137 		 * see below for in_trans_setup usage rules
138 		 * we have the reloc mutex held now, so there
139 		 * is only one writer in this function
140 		 */
141 		root->in_trans_setup = 1;
142 
143 		/* make sure readers find in_trans_setup before
144 		 * they find our root->last_trans update
145 		 */
146 		smp_wmb();
147 
148 		spin_lock(&root->fs_info->fs_roots_radix_lock);
149 		if (root->last_trans == trans->transid) {
150 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
151 			return 0;
152 		}
153 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
154 			   (unsigned long)root->root_key.objectid,
155 			   BTRFS_ROOT_TRANS_TAG);
156 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
157 		root->last_trans = trans->transid;
158 
159 		/* this is pretty tricky.  We don't want to
160 		 * take the relocation lock in btrfs_record_root_in_trans
161 		 * unless we're really doing the first setup for this root in
162 		 * this transaction.
163 		 *
164 		 * Normally we'd use root->last_trans as a flag to decide
165 		 * if we want to take the expensive mutex.
166 		 *
167 		 * But, we have to set root->last_trans before we
168 		 * init the relocation root, otherwise, we trip over warnings
169 		 * in ctree.c.  The solution used here is to flag ourselves
170 		 * with root->in_trans_setup.  When this is 1, we're still
171 		 * fixing up the reloc trees and everyone must wait.
172 		 *
173 		 * When this is zero, they can trust root->last_trans and fly
174 		 * through btrfs_record_root_in_trans without having to take the
175 		 * lock.  smp_wmb() makes sure that all the writes above are
176 		 * done before we pop in the zero below
177 		 */
178 		btrfs_init_reloc_root(trans, root);
179 		smp_wmb();
180 		root->in_trans_setup = 0;
181 	}
182 	return 0;
183 }
184 
185 
186 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
187 			       struct btrfs_root *root)
188 {
189 	if (!root->ref_cows)
190 		return 0;
191 
192 	/*
193 	 * see record_root_in_trans for comments about in_trans_setup usage
194 	 * and barriers
195 	 */
196 	smp_rmb();
197 	if (root->last_trans == trans->transid &&
198 	    !root->in_trans_setup)
199 		return 0;
200 
201 	mutex_lock(&root->fs_info->reloc_mutex);
202 	record_root_in_trans(trans, root);
203 	mutex_unlock(&root->fs_info->reloc_mutex);
204 
205 	return 0;
206 }
207 
208 /* wait for commit against the current transaction to become unblocked
209  * when this is done, it is safe to start a new transaction, but the current
210  * transaction might not be fully on disk.
211  */
212 static void wait_current_trans(struct btrfs_root *root)
213 {
214 	struct btrfs_transaction *cur_trans;
215 
216 	spin_lock(&root->fs_info->trans_lock);
217 	cur_trans = root->fs_info->running_transaction;
218 	if (cur_trans && cur_trans->blocked) {
219 		atomic_inc(&cur_trans->use_count);
220 		spin_unlock(&root->fs_info->trans_lock);
221 
222 		wait_event(root->fs_info->transaction_wait,
223 			   !cur_trans->blocked);
224 		put_transaction(cur_trans);
225 	} else {
226 		spin_unlock(&root->fs_info->trans_lock);
227 	}
228 }
229 
230 enum btrfs_trans_type {
231 	TRANS_START,
232 	TRANS_JOIN,
233 	TRANS_USERSPACE,
234 	TRANS_JOIN_NOLOCK,
235 };
236 
237 static int may_wait_transaction(struct btrfs_root *root, int type)
238 {
239 	if (root->fs_info->log_root_recovering)
240 		return 0;
241 
242 	if (type == TRANS_USERSPACE)
243 		return 1;
244 
245 	if (type == TRANS_START &&
246 	    !atomic_read(&root->fs_info->open_ioctl_trans))
247 		return 1;
248 
249 	return 0;
250 }
251 
252 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
253 						    u64 num_items, int type)
254 {
255 	struct btrfs_trans_handle *h;
256 	struct btrfs_transaction *cur_trans;
257 	u64 num_bytes = 0;
258 	int ret;
259 
260 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
261 		return ERR_PTR(-EROFS);
262 
263 	if (current->journal_info) {
264 		WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
265 		h = current->journal_info;
266 		h->use_count++;
267 		h->orig_rsv = h->block_rsv;
268 		h->block_rsv = NULL;
269 		goto got_it;
270 	}
271 
272 	/*
273 	 * Do the reservation before we join the transaction so we can do all
274 	 * the appropriate flushing if need be.
275 	 */
276 	if (num_items > 0 && root != root->fs_info->chunk_root) {
277 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
278 		ret = btrfs_block_rsv_add(NULL, root,
279 					  &root->fs_info->trans_block_rsv,
280 					  num_bytes);
281 		if (ret)
282 			return ERR_PTR(ret);
283 	}
284 again:
285 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
286 	if (!h)
287 		return ERR_PTR(-ENOMEM);
288 
289 	if (may_wait_transaction(root, type))
290 		wait_current_trans(root);
291 
292 	do {
293 		ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
294 		if (ret == -EBUSY)
295 			wait_current_trans(root);
296 	} while (ret == -EBUSY);
297 
298 	if (ret < 0) {
299 		kmem_cache_free(btrfs_trans_handle_cachep, h);
300 		return ERR_PTR(ret);
301 	}
302 
303 	cur_trans = root->fs_info->running_transaction;
304 
305 	h->transid = cur_trans->transid;
306 	h->transaction = cur_trans;
307 	h->blocks_used = 0;
308 	h->bytes_reserved = 0;
309 	h->delayed_ref_updates = 0;
310 	h->use_count = 1;
311 	h->block_rsv = NULL;
312 	h->orig_rsv = NULL;
313 
314 	smp_mb();
315 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
316 		btrfs_commit_transaction(h, root);
317 		goto again;
318 	}
319 
320 	if (num_bytes) {
321 		h->block_rsv = &root->fs_info->trans_block_rsv;
322 		h->bytes_reserved = num_bytes;
323 	}
324 
325 got_it:
326 	btrfs_record_root_in_trans(h, root);
327 
328 	if (!current->journal_info && type != TRANS_USERSPACE)
329 		current->journal_info = h;
330 	return h;
331 }
332 
333 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
334 						   int num_items)
335 {
336 	return start_transaction(root, num_items, TRANS_START);
337 }
338 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
339 {
340 	return start_transaction(root, 0, TRANS_JOIN);
341 }
342 
343 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
344 {
345 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
346 }
347 
348 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
349 {
350 	return start_transaction(root, 0, TRANS_USERSPACE);
351 }
352 
353 /* wait for a transaction commit to be fully complete */
354 static noinline void wait_for_commit(struct btrfs_root *root,
355 				    struct btrfs_transaction *commit)
356 {
357 	wait_event(commit->commit_wait, commit->commit_done);
358 }
359 
360 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
361 {
362 	struct btrfs_transaction *cur_trans = NULL, *t;
363 	int ret;
364 
365 	ret = 0;
366 	if (transid) {
367 		if (transid <= root->fs_info->last_trans_committed)
368 			goto out;
369 
370 		/* find specified transaction */
371 		spin_lock(&root->fs_info->trans_lock);
372 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
373 			if (t->transid == transid) {
374 				cur_trans = t;
375 				atomic_inc(&cur_trans->use_count);
376 				break;
377 			}
378 			if (t->transid > transid)
379 				break;
380 		}
381 		spin_unlock(&root->fs_info->trans_lock);
382 		ret = -EINVAL;
383 		if (!cur_trans)
384 			goto out;  /* bad transid */
385 	} else {
386 		/* find newest transaction that is committing | committed */
387 		spin_lock(&root->fs_info->trans_lock);
388 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
389 					    list) {
390 			if (t->in_commit) {
391 				if (t->commit_done)
392 					break;
393 				cur_trans = t;
394 				atomic_inc(&cur_trans->use_count);
395 				break;
396 			}
397 		}
398 		spin_unlock(&root->fs_info->trans_lock);
399 		if (!cur_trans)
400 			goto out;  /* nothing committing|committed */
401 	}
402 
403 	wait_for_commit(root, cur_trans);
404 
405 	put_transaction(cur_trans);
406 	ret = 0;
407 out:
408 	return ret;
409 }
410 
411 void btrfs_throttle(struct btrfs_root *root)
412 {
413 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
414 		wait_current_trans(root);
415 }
416 
417 static int should_end_transaction(struct btrfs_trans_handle *trans,
418 				  struct btrfs_root *root)
419 {
420 	int ret;
421 	ret = btrfs_block_rsv_check(trans, root,
422 				    &root->fs_info->global_block_rsv, 0, 5);
423 	return ret ? 1 : 0;
424 }
425 
426 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
427 				 struct btrfs_root *root)
428 {
429 	struct btrfs_transaction *cur_trans = trans->transaction;
430 	int updates;
431 
432 	smp_mb();
433 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
434 		return 1;
435 
436 	updates = trans->delayed_ref_updates;
437 	trans->delayed_ref_updates = 0;
438 	if (updates)
439 		btrfs_run_delayed_refs(trans, root, updates);
440 
441 	return should_end_transaction(trans, root);
442 }
443 
444 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
445 			  struct btrfs_root *root, int throttle, int lock)
446 {
447 	struct btrfs_transaction *cur_trans = trans->transaction;
448 	struct btrfs_fs_info *info = root->fs_info;
449 	int count = 0;
450 
451 	if (--trans->use_count) {
452 		trans->block_rsv = trans->orig_rsv;
453 		return 0;
454 	}
455 
456 	while (count < 4) {
457 		unsigned long cur = trans->delayed_ref_updates;
458 		trans->delayed_ref_updates = 0;
459 		if (cur &&
460 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
461 			trans->delayed_ref_updates = 0;
462 
463 			/*
464 			 * do a full flush if the transaction is trying
465 			 * to close
466 			 */
467 			if (trans->transaction->delayed_refs.flushing)
468 				cur = 0;
469 			btrfs_run_delayed_refs(trans, root, cur);
470 		} else {
471 			break;
472 		}
473 		count++;
474 	}
475 
476 	btrfs_trans_release_metadata(trans, root);
477 
478 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
479 	    should_end_transaction(trans, root)) {
480 		trans->transaction->blocked = 1;
481 		smp_wmb();
482 	}
483 
484 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
485 		if (throttle) {
486 			/*
487 			 * We may race with somebody else here so end up having
488 			 * to call end_transaction on ourselves again, so inc
489 			 * our use_count.
490 			 */
491 			trans->use_count++;
492 			return btrfs_commit_transaction(trans, root);
493 		} else {
494 			wake_up_process(info->transaction_kthread);
495 		}
496 	}
497 
498 	WARN_ON(cur_trans != info->running_transaction);
499 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
500 	atomic_dec(&cur_trans->num_writers);
501 
502 	smp_mb();
503 	if (waitqueue_active(&cur_trans->writer_wait))
504 		wake_up(&cur_trans->writer_wait);
505 	put_transaction(cur_trans);
506 
507 	if (current->journal_info == trans)
508 		current->journal_info = NULL;
509 	memset(trans, 0, sizeof(*trans));
510 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
511 
512 	if (throttle)
513 		btrfs_run_delayed_iputs(root);
514 
515 	return 0;
516 }
517 
518 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
519 			  struct btrfs_root *root)
520 {
521 	int ret;
522 
523 	ret = __btrfs_end_transaction(trans, root, 0, 1);
524 	if (ret)
525 		return ret;
526 	return 0;
527 }
528 
529 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
530 				   struct btrfs_root *root)
531 {
532 	int ret;
533 
534 	ret = __btrfs_end_transaction(trans, root, 1, 1);
535 	if (ret)
536 		return ret;
537 	return 0;
538 }
539 
540 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
541 				 struct btrfs_root *root)
542 {
543 	int ret;
544 
545 	ret = __btrfs_end_transaction(trans, root, 0, 0);
546 	if (ret)
547 		return ret;
548 	return 0;
549 }
550 
551 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
552 				struct btrfs_root *root)
553 {
554 	return __btrfs_end_transaction(trans, root, 1, 1);
555 }
556 
557 /*
558  * when btree blocks are allocated, they have some corresponding bits set for
559  * them in one of two extent_io trees.  This is used to make sure all of
560  * those extents are sent to disk but does not wait on them
561  */
562 int btrfs_write_marked_extents(struct btrfs_root *root,
563 			       struct extent_io_tree *dirty_pages, int mark)
564 {
565 	int ret;
566 	int err = 0;
567 	int werr = 0;
568 	struct page *page;
569 	struct inode *btree_inode = root->fs_info->btree_inode;
570 	u64 start = 0;
571 	u64 end;
572 	unsigned long index;
573 
574 	while (1) {
575 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
576 					    mark);
577 		if (ret)
578 			break;
579 		while (start <= end) {
580 			cond_resched();
581 
582 			index = start >> PAGE_CACHE_SHIFT;
583 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
584 			page = find_get_page(btree_inode->i_mapping, index);
585 			if (!page)
586 				continue;
587 
588 			btree_lock_page_hook(page);
589 			if (!page->mapping) {
590 				unlock_page(page);
591 				page_cache_release(page);
592 				continue;
593 			}
594 
595 			if (PageWriteback(page)) {
596 				if (PageDirty(page))
597 					wait_on_page_writeback(page);
598 				else {
599 					unlock_page(page);
600 					page_cache_release(page);
601 					continue;
602 				}
603 			}
604 			err = write_one_page(page, 0);
605 			if (err)
606 				werr = err;
607 			page_cache_release(page);
608 		}
609 	}
610 	if (err)
611 		werr = err;
612 	return werr;
613 }
614 
615 /*
616  * when btree blocks are allocated, they have some corresponding bits set for
617  * them in one of two extent_io trees.  This is used to make sure all of
618  * those extents are on disk for transaction or log commit.  We wait
619  * on all the pages and clear them from the dirty pages state tree
620  */
621 int btrfs_wait_marked_extents(struct btrfs_root *root,
622 			      struct extent_io_tree *dirty_pages, int mark)
623 {
624 	int ret;
625 	int err = 0;
626 	int werr = 0;
627 	struct page *page;
628 	struct inode *btree_inode = root->fs_info->btree_inode;
629 	u64 start = 0;
630 	u64 end;
631 	unsigned long index;
632 
633 	while (1) {
634 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
635 					    mark);
636 		if (ret)
637 			break;
638 
639 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
640 		while (start <= end) {
641 			index = start >> PAGE_CACHE_SHIFT;
642 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
643 			page = find_get_page(btree_inode->i_mapping, index);
644 			if (!page)
645 				continue;
646 			if (PageDirty(page)) {
647 				btree_lock_page_hook(page);
648 				wait_on_page_writeback(page);
649 				err = write_one_page(page, 0);
650 				if (err)
651 					werr = err;
652 			}
653 			wait_on_page_writeback(page);
654 			page_cache_release(page);
655 			cond_resched();
656 		}
657 	}
658 	if (err)
659 		werr = err;
660 	return werr;
661 }
662 
663 /*
664  * when btree blocks are allocated, they have some corresponding bits set for
665  * them in one of two extent_io trees.  This is used to make sure all of
666  * those extents are on disk for transaction or log commit
667  */
668 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
669 				struct extent_io_tree *dirty_pages, int mark)
670 {
671 	int ret;
672 	int ret2;
673 
674 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
675 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
676 	return ret || ret2;
677 }
678 
679 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
680 				     struct btrfs_root *root)
681 {
682 	if (!trans || !trans->transaction) {
683 		struct inode *btree_inode;
684 		btree_inode = root->fs_info->btree_inode;
685 		return filemap_write_and_wait(btree_inode->i_mapping);
686 	}
687 	return btrfs_write_and_wait_marked_extents(root,
688 					   &trans->transaction->dirty_pages,
689 					   EXTENT_DIRTY);
690 }
691 
692 /*
693  * this is used to update the root pointer in the tree of tree roots.
694  *
695  * But, in the case of the extent allocation tree, updating the root
696  * pointer may allocate blocks which may change the root of the extent
697  * allocation tree.
698  *
699  * So, this loops and repeats and makes sure the cowonly root didn't
700  * change while the root pointer was being updated in the metadata.
701  */
702 static int update_cowonly_root(struct btrfs_trans_handle *trans,
703 			       struct btrfs_root *root)
704 {
705 	int ret;
706 	u64 old_root_bytenr;
707 	u64 old_root_used;
708 	struct btrfs_root *tree_root = root->fs_info->tree_root;
709 
710 	old_root_used = btrfs_root_used(&root->root_item);
711 	btrfs_write_dirty_block_groups(trans, root);
712 
713 	while (1) {
714 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
715 		if (old_root_bytenr == root->node->start &&
716 		    old_root_used == btrfs_root_used(&root->root_item))
717 			break;
718 
719 		btrfs_set_root_node(&root->root_item, root->node);
720 		ret = btrfs_update_root(trans, tree_root,
721 					&root->root_key,
722 					&root->root_item);
723 		BUG_ON(ret);
724 
725 		old_root_used = btrfs_root_used(&root->root_item);
726 		ret = btrfs_write_dirty_block_groups(trans, root);
727 		BUG_ON(ret);
728 	}
729 
730 	if (root != root->fs_info->extent_root)
731 		switch_commit_root(root);
732 
733 	return 0;
734 }
735 
736 /*
737  * update all the cowonly tree roots on disk
738  */
739 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
740 					 struct btrfs_root *root)
741 {
742 	struct btrfs_fs_info *fs_info = root->fs_info;
743 	struct list_head *next;
744 	struct extent_buffer *eb;
745 	int ret;
746 
747 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
748 	BUG_ON(ret);
749 
750 	eb = btrfs_lock_root_node(fs_info->tree_root);
751 	btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
752 	btrfs_tree_unlock(eb);
753 	free_extent_buffer(eb);
754 
755 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
756 	BUG_ON(ret);
757 
758 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
759 		next = fs_info->dirty_cowonly_roots.next;
760 		list_del_init(next);
761 		root = list_entry(next, struct btrfs_root, dirty_list);
762 
763 		update_cowonly_root(trans, root);
764 	}
765 
766 	down_write(&fs_info->extent_commit_sem);
767 	switch_commit_root(fs_info->extent_root);
768 	up_write(&fs_info->extent_commit_sem);
769 
770 	return 0;
771 }
772 
773 /*
774  * dead roots are old snapshots that need to be deleted.  This allocates
775  * a dirty root struct and adds it into the list of dead roots that need to
776  * be deleted
777  */
778 int btrfs_add_dead_root(struct btrfs_root *root)
779 {
780 	spin_lock(&root->fs_info->trans_lock);
781 	list_add(&root->root_list, &root->fs_info->dead_roots);
782 	spin_unlock(&root->fs_info->trans_lock);
783 	return 0;
784 }
785 
786 /*
787  * update all the cowonly tree roots on disk
788  */
789 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
790 				    struct btrfs_root *root)
791 {
792 	struct btrfs_root *gang[8];
793 	struct btrfs_fs_info *fs_info = root->fs_info;
794 	int i;
795 	int ret;
796 	int err = 0;
797 
798 	spin_lock(&fs_info->fs_roots_radix_lock);
799 	while (1) {
800 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
801 						 (void **)gang, 0,
802 						 ARRAY_SIZE(gang),
803 						 BTRFS_ROOT_TRANS_TAG);
804 		if (ret == 0)
805 			break;
806 		for (i = 0; i < ret; i++) {
807 			root = gang[i];
808 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
809 					(unsigned long)root->root_key.objectid,
810 					BTRFS_ROOT_TRANS_TAG);
811 			spin_unlock(&fs_info->fs_roots_radix_lock);
812 
813 			btrfs_free_log(trans, root);
814 			btrfs_update_reloc_root(trans, root);
815 			btrfs_orphan_commit_root(trans, root);
816 
817 			btrfs_save_ino_cache(root, trans);
818 
819 			if (root->commit_root != root->node) {
820 				mutex_lock(&root->fs_commit_mutex);
821 				switch_commit_root(root);
822 				btrfs_unpin_free_ino(root);
823 				mutex_unlock(&root->fs_commit_mutex);
824 
825 				btrfs_set_root_node(&root->root_item,
826 						    root->node);
827 			}
828 
829 			err = btrfs_update_root(trans, fs_info->tree_root,
830 						&root->root_key,
831 						&root->root_item);
832 			spin_lock(&fs_info->fs_roots_radix_lock);
833 			if (err)
834 				break;
835 		}
836 	}
837 	spin_unlock(&fs_info->fs_roots_radix_lock);
838 	return err;
839 }
840 
841 /*
842  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
843  * otherwise every leaf in the btree is read and defragged.
844  */
845 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
846 {
847 	struct btrfs_fs_info *info = root->fs_info;
848 	struct btrfs_trans_handle *trans;
849 	int ret;
850 	unsigned long nr;
851 
852 	if (xchg(&root->defrag_running, 1))
853 		return 0;
854 
855 	while (1) {
856 		trans = btrfs_start_transaction(root, 0);
857 		if (IS_ERR(trans))
858 			return PTR_ERR(trans);
859 
860 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
861 
862 		nr = trans->blocks_used;
863 		btrfs_end_transaction(trans, root);
864 		btrfs_btree_balance_dirty(info->tree_root, nr);
865 		cond_resched();
866 
867 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
868 			break;
869 	}
870 	root->defrag_running = 0;
871 	return ret;
872 }
873 
874 /*
875  * new snapshots need to be created at a very specific time in the
876  * transaction commit.  This does the actual creation
877  */
878 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
879 				   struct btrfs_fs_info *fs_info,
880 				   struct btrfs_pending_snapshot *pending)
881 {
882 	struct btrfs_key key;
883 	struct btrfs_root_item *new_root_item;
884 	struct btrfs_root *tree_root = fs_info->tree_root;
885 	struct btrfs_root *root = pending->root;
886 	struct btrfs_root *parent_root;
887 	struct btrfs_block_rsv *rsv;
888 	struct inode *parent_inode;
889 	struct dentry *parent;
890 	struct dentry *dentry;
891 	struct extent_buffer *tmp;
892 	struct extent_buffer *old;
893 	int ret;
894 	u64 to_reserve = 0;
895 	u64 index = 0;
896 	u64 objectid;
897 	u64 root_flags;
898 
899 	rsv = trans->block_rsv;
900 
901 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
902 	if (!new_root_item) {
903 		pending->error = -ENOMEM;
904 		goto fail;
905 	}
906 
907 	ret = btrfs_find_free_objectid(tree_root, &objectid);
908 	if (ret) {
909 		pending->error = ret;
910 		goto fail;
911 	}
912 
913 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
914 	btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
915 
916 	if (to_reserve > 0) {
917 		ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
918 					  to_reserve);
919 		if (ret) {
920 			pending->error = ret;
921 			goto fail;
922 		}
923 	}
924 
925 	key.objectid = objectid;
926 	key.offset = (u64)-1;
927 	key.type = BTRFS_ROOT_ITEM_KEY;
928 
929 	trans->block_rsv = &pending->block_rsv;
930 
931 	dentry = pending->dentry;
932 	parent = dget_parent(dentry);
933 	parent_inode = parent->d_inode;
934 	parent_root = BTRFS_I(parent_inode)->root;
935 	record_root_in_trans(trans, parent_root);
936 
937 	/*
938 	 * insert the directory item
939 	 */
940 	ret = btrfs_set_inode_index(parent_inode, &index);
941 	BUG_ON(ret);
942 	ret = btrfs_insert_dir_item(trans, parent_root,
943 				dentry->d_name.name, dentry->d_name.len,
944 				parent_inode, &key,
945 				BTRFS_FT_DIR, index);
946 	BUG_ON(ret);
947 
948 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
949 					 dentry->d_name.len * 2);
950 	ret = btrfs_update_inode(trans, parent_root, parent_inode);
951 	BUG_ON(ret);
952 
953 	/*
954 	 * pull in the delayed directory update
955 	 * and the delayed inode item
956 	 * otherwise we corrupt the FS during
957 	 * snapshot
958 	 */
959 	ret = btrfs_run_delayed_items(trans, root);
960 	BUG_ON(ret);
961 
962 	record_root_in_trans(trans, root);
963 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
964 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
965 	btrfs_check_and_init_root_item(new_root_item);
966 
967 	root_flags = btrfs_root_flags(new_root_item);
968 	if (pending->readonly)
969 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
970 	else
971 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
972 	btrfs_set_root_flags(new_root_item, root_flags);
973 
974 	old = btrfs_lock_root_node(root);
975 	btrfs_cow_block(trans, root, old, NULL, 0, &old);
976 	btrfs_set_lock_blocking(old);
977 
978 	btrfs_copy_root(trans, root, old, &tmp, objectid);
979 	btrfs_tree_unlock(old);
980 	free_extent_buffer(old);
981 
982 	btrfs_set_root_node(new_root_item, tmp);
983 	/* record when the snapshot was created in key.offset */
984 	key.offset = trans->transid;
985 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
986 	btrfs_tree_unlock(tmp);
987 	free_extent_buffer(tmp);
988 	BUG_ON(ret);
989 
990 	/*
991 	 * insert root back/forward references
992 	 */
993 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
994 				 parent_root->root_key.objectid,
995 				 btrfs_ino(parent_inode), index,
996 				 dentry->d_name.name, dentry->d_name.len);
997 	BUG_ON(ret);
998 	dput(parent);
999 
1000 	key.offset = (u64)-1;
1001 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1002 	BUG_ON(IS_ERR(pending->snap));
1003 
1004 	btrfs_reloc_post_snapshot(trans, pending);
1005 	btrfs_orphan_post_snapshot(trans, pending);
1006 fail:
1007 	kfree(new_root_item);
1008 	trans->block_rsv = rsv;
1009 	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1010 	return 0;
1011 }
1012 
1013 /*
1014  * create all the snapshots we've scheduled for creation
1015  */
1016 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1017 					     struct btrfs_fs_info *fs_info)
1018 {
1019 	struct btrfs_pending_snapshot *pending;
1020 	struct list_head *head = &trans->transaction->pending_snapshots;
1021 	int ret;
1022 
1023 	list_for_each_entry(pending, head, list) {
1024 		ret = create_pending_snapshot(trans, fs_info, pending);
1025 		BUG_ON(ret);
1026 	}
1027 	return 0;
1028 }
1029 
1030 static void update_super_roots(struct btrfs_root *root)
1031 {
1032 	struct btrfs_root_item *root_item;
1033 	struct btrfs_super_block *super;
1034 
1035 	super = &root->fs_info->super_copy;
1036 
1037 	root_item = &root->fs_info->chunk_root->root_item;
1038 	super->chunk_root = root_item->bytenr;
1039 	super->chunk_root_generation = root_item->generation;
1040 	super->chunk_root_level = root_item->level;
1041 
1042 	root_item = &root->fs_info->tree_root->root_item;
1043 	super->root = root_item->bytenr;
1044 	super->generation = root_item->generation;
1045 	super->root_level = root_item->level;
1046 	if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1047 		super->cache_generation = root_item->generation;
1048 }
1049 
1050 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1051 {
1052 	int ret = 0;
1053 	spin_lock(&info->trans_lock);
1054 	if (info->running_transaction)
1055 		ret = info->running_transaction->in_commit;
1056 	spin_unlock(&info->trans_lock);
1057 	return ret;
1058 }
1059 
1060 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1061 {
1062 	int ret = 0;
1063 	spin_lock(&info->trans_lock);
1064 	if (info->running_transaction)
1065 		ret = info->running_transaction->blocked;
1066 	spin_unlock(&info->trans_lock);
1067 	return ret;
1068 }
1069 
1070 /*
1071  * wait for the current transaction commit to start and block subsequent
1072  * transaction joins
1073  */
1074 static void wait_current_trans_commit_start(struct btrfs_root *root,
1075 					    struct btrfs_transaction *trans)
1076 {
1077 	wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1078 }
1079 
1080 /*
1081  * wait for the current transaction to start and then become unblocked.
1082  * caller holds ref.
1083  */
1084 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1085 					 struct btrfs_transaction *trans)
1086 {
1087 	wait_event(root->fs_info->transaction_wait,
1088 		   trans->commit_done || (trans->in_commit && !trans->blocked));
1089 }
1090 
1091 /*
1092  * commit transactions asynchronously. once btrfs_commit_transaction_async
1093  * returns, any subsequent transaction will not be allowed to join.
1094  */
1095 struct btrfs_async_commit {
1096 	struct btrfs_trans_handle *newtrans;
1097 	struct btrfs_root *root;
1098 	struct delayed_work work;
1099 };
1100 
1101 static void do_async_commit(struct work_struct *work)
1102 {
1103 	struct btrfs_async_commit *ac =
1104 		container_of(work, struct btrfs_async_commit, work.work);
1105 
1106 	btrfs_commit_transaction(ac->newtrans, ac->root);
1107 	kfree(ac);
1108 }
1109 
1110 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1111 				   struct btrfs_root *root,
1112 				   int wait_for_unblock)
1113 {
1114 	struct btrfs_async_commit *ac;
1115 	struct btrfs_transaction *cur_trans;
1116 
1117 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1118 	if (!ac)
1119 		return -ENOMEM;
1120 
1121 	INIT_DELAYED_WORK(&ac->work, do_async_commit);
1122 	ac->root = root;
1123 	ac->newtrans = btrfs_join_transaction(root);
1124 	if (IS_ERR(ac->newtrans)) {
1125 		int err = PTR_ERR(ac->newtrans);
1126 		kfree(ac);
1127 		return err;
1128 	}
1129 
1130 	/* take transaction reference */
1131 	cur_trans = trans->transaction;
1132 	atomic_inc(&cur_trans->use_count);
1133 
1134 	btrfs_end_transaction(trans, root);
1135 	schedule_delayed_work(&ac->work, 0);
1136 
1137 	/* wait for transaction to start and unblock */
1138 	if (wait_for_unblock)
1139 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1140 	else
1141 		wait_current_trans_commit_start(root, cur_trans);
1142 
1143 	if (current->journal_info == trans)
1144 		current->journal_info = NULL;
1145 
1146 	put_transaction(cur_trans);
1147 	return 0;
1148 }
1149 
1150 /*
1151  * btrfs_transaction state sequence:
1152  *    in_commit = 0, blocked = 0  (initial)
1153  *    in_commit = 1, blocked = 1
1154  *    blocked = 0
1155  *    commit_done = 1
1156  */
1157 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1158 			     struct btrfs_root *root)
1159 {
1160 	unsigned long joined = 0;
1161 	struct btrfs_transaction *cur_trans;
1162 	struct btrfs_transaction *prev_trans = NULL;
1163 	DEFINE_WAIT(wait);
1164 	int ret;
1165 	int should_grow = 0;
1166 	unsigned long now = get_seconds();
1167 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1168 
1169 	btrfs_run_ordered_operations(root, 0);
1170 
1171 	/* make a pass through all the delayed refs we have so far
1172 	 * any runnings procs may add more while we are here
1173 	 */
1174 	ret = btrfs_run_delayed_refs(trans, root, 0);
1175 	BUG_ON(ret);
1176 
1177 	btrfs_trans_release_metadata(trans, root);
1178 
1179 	cur_trans = trans->transaction;
1180 	/*
1181 	 * set the flushing flag so procs in this transaction have to
1182 	 * start sending their work down.
1183 	 */
1184 	cur_trans->delayed_refs.flushing = 1;
1185 
1186 	ret = btrfs_run_delayed_refs(trans, root, 0);
1187 	BUG_ON(ret);
1188 
1189 	spin_lock(&cur_trans->commit_lock);
1190 	if (cur_trans->in_commit) {
1191 		spin_unlock(&cur_trans->commit_lock);
1192 		atomic_inc(&cur_trans->use_count);
1193 		btrfs_end_transaction(trans, root);
1194 
1195 		wait_for_commit(root, cur_trans);
1196 
1197 		put_transaction(cur_trans);
1198 
1199 		return 0;
1200 	}
1201 
1202 	trans->transaction->in_commit = 1;
1203 	trans->transaction->blocked = 1;
1204 	spin_unlock(&cur_trans->commit_lock);
1205 	wake_up(&root->fs_info->transaction_blocked_wait);
1206 
1207 	spin_lock(&root->fs_info->trans_lock);
1208 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1209 		prev_trans = list_entry(cur_trans->list.prev,
1210 					struct btrfs_transaction, list);
1211 		if (!prev_trans->commit_done) {
1212 			atomic_inc(&prev_trans->use_count);
1213 			spin_unlock(&root->fs_info->trans_lock);
1214 
1215 			wait_for_commit(root, prev_trans);
1216 
1217 			put_transaction(prev_trans);
1218 		} else {
1219 			spin_unlock(&root->fs_info->trans_lock);
1220 		}
1221 	} else {
1222 		spin_unlock(&root->fs_info->trans_lock);
1223 	}
1224 
1225 	if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1226 		should_grow = 1;
1227 
1228 	do {
1229 		int snap_pending = 0;
1230 
1231 		joined = cur_trans->num_joined;
1232 		if (!list_empty(&trans->transaction->pending_snapshots))
1233 			snap_pending = 1;
1234 
1235 		WARN_ON(cur_trans != trans->transaction);
1236 
1237 		if (flush_on_commit || snap_pending) {
1238 			btrfs_start_delalloc_inodes(root, 1);
1239 			ret = btrfs_wait_ordered_extents(root, 0, 1);
1240 			BUG_ON(ret);
1241 		}
1242 
1243 		ret = btrfs_run_delayed_items(trans, root);
1244 		BUG_ON(ret);
1245 
1246 		/*
1247 		 * rename don't use btrfs_join_transaction, so, once we
1248 		 * set the transaction to blocked above, we aren't going
1249 		 * to get any new ordered operations.  We can safely run
1250 		 * it here and no for sure that nothing new will be added
1251 		 * to the list
1252 		 */
1253 		btrfs_run_ordered_operations(root, 1);
1254 
1255 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1256 				TASK_UNINTERRUPTIBLE);
1257 
1258 		if (atomic_read(&cur_trans->num_writers) > 1)
1259 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1260 		else if (should_grow)
1261 			schedule_timeout(1);
1262 
1263 		finish_wait(&cur_trans->writer_wait, &wait);
1264 	} while (atomic_read(&cur_trans->num_writers) > 1 ||
1265 		 (should_grow && cur_trans->num_joined != joined));
1266 
1267 	/*
1268 	 * Ok now we need to make sure to block out any other joins while we
1269 	 * commit the transaction.  We could have started a join before setting
1270 	 * no_join so make sure to wait for num_writers to == 1 again.
1271 	 */
1272 	spin_lock(&root->fs_info->trans_lock);
1273 	root->fs_info->trans_no_join = 1;
1274 	spin_unlock(&root->fs_info->trans_lock);
1275 	wait_event(cur_trans->writer_wait,
1276 		   atomic_read(&cur_trans->num_writers) == 1);
1277 
1278 	/*
1279 	 * the reloc mutex makes sure that we stop
1280 	 * the balancing code from coming in and moving
1281 	 * extents around in the middle of the commit
1282 	 */
1283 	mutex_lock(&root->fs_info->reloc_mutex);
1284 
1285 	ret = btrfs_run_delayed_items(trans, root);
1286 	BUG_ON(ret);
1287 
1288 	ret = create_pending_snapshots(trans, root->fs_info);
1289 	BUG_ON(ret);
1290 
1291 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1292 	BUG_ON(ret);
1293 
1294 	/*
1295 	 * make sure none of the code above managed to slip in a
1296 	 * delayed item
1297 	 */
1298 	btrfs_assert_delayed_root_empty(root);
1299 
1300 	WARN_ON(cur_trans != trans->transaction);
1301 
1302 	btrfs_scrub_pause(root);
1303 	/* btrfs_commit_tree_roots is responsible for getting the
1304 	 * various roots consistent with each other.  Every pointer
1305 	 * in the tree of tree roots has to point to the most up to date
1306 	 * root for every subvolume and other tree.  So, we have to keep
1307 	 * the tree logging code from jumping in and changing any
1308 	 * of the trees.
1309 	 *
1310 	 * At this point in the commit, there can't be any tree-log
1311 	 * writers, but a little lower down we drop the trans mutex
1312 	 * and let new people in.  By holding the tree_log_mutex
1313 	 * from now until after the super is written, we avoid races
1314 	 * with the tree-log code.
1315 	 */
1316 	mutex_lock(&root->fs_info->tree_log_mutex);
1317 
1318 	ret = commit_fs_roots(trans, root);
1319 	BUG_ON(ret);
1320 
1321 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1322 	 * safe to free the root of tree log roots
1323 	 */
1324 	btrfs_free_log_root_tree(trans, root->fs_info);
1325 
1326 	ret = commit_cowonly_roots(trans, root);
1327 	BUG_ON(ret);
1328 
1329 	btrfs_prepare_extent_commit(trans, root);
1330 
1331 	cur_trans = root->fs_info->running_transaction;
1332 
1333 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1334 			    root->fs_info->tree_root->node);
1335 	switch_commit_root(root->fs_info->tree_root);
1336 
1337 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1338 			    root->fs_info->chunk_root->node);
1339 	switch_commit_root(root->fs_info->chunk_root);
1340 
1341 	update_super_roots(root);
1342 
1343 	if (!root->fs_info->log_root_recovering) {
1344 		btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1345 		btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1346 	}
1347 
1348 	memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1349 	       sizeof(root->fs_info->super_copy));
1350 
1351 	trans->transaction->blocked = 0;
1352 	spin_lock(&root->fs_info->trans_lock);
1353 	root->fs_info->running_transaction = NULL;
1354 	root->fs_info->trans_no_join = 0;
1355 	spin_unlock(&root->fs_info->trans_lock);
1356 	mutex_unlock(&root->fs_info->reloc_mutex);
1357 
1358 	wake_up(&root->fs_info->transaction_wait);
1359 
1360 	ret = btrfs_write_and_wait_transaction(trans, root);
1361 	BUG_ON(ret);
1362 	write_ctree_super(trans, root, 0);
1363 
1364 	/*
1365 	 * the super is written, we can safely allow the tree-loggers
1366 	 * to go about their business
1367 	 */
1368 	mutex_unlock(&root->fs_info->tree_log_mutex);
1369 
1370 	btrfs_finish_extent_commit(trans, root);
1371 
1372 	cur_trans->commit_done = 1;
1373 
1374 	root->fs_info->last_trans_committed = cur_trans->transid;
1375 
1376 	wake_up(&cur_trans->commit_wait);
1377 
1378 	spin_lock(&root->fs_info->trans_lock);
1379 	list_del_init(&cur_trans->list);
1380 	spin_unlock(&root->fs_info->trans_lock);
1381 
1382 	put_transaction(cur_trans);
1383 	put_transaction(cur_trans);
1384 
1385 	trace_btrfs_transaction_commit(root);
1386 
1387 	btrfs_scrub_continue(root);
1388 
1389 	if (current->journal_info == trans)
1390 		current->journal_info = NULL;
1391 
1392 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1393 
1394 	if (current != root->fs_info->transaction_kthread)
1395 		btrfs_run_delayed_iputs(root);
1396 
1397 	return ret;
1398 }
1399 
1400 /*
1401  * interface function to delete all the snapshots we have scheduled for deletion
1402  */
1403 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1404 {
1405 	LIST_HEAD(list);
1406 	struct btrfs_fs_info *fs_info = root->fs_info;
1407 
1408 	spin_lock(&fs_info->trans_lock);
1409 	list_splice_init(&fs_info->dead_roots, &list);
1410 	spin_unlock(&fs_info->trans_lock);
1411 
1412 	while (!list_empty(&list)) {
1413 		root = list_entry(list.next, struct btrfs_root, root_list);
1414 		list_del(&root->root_list);
1415 
1416 		btrfs_kill_all_delayed_nodes(root);
1417 
1418 		if (btrfs_header_backref_rev(root->node) <
1419 		    BTRFS_MIXED_BACKREF_REV)
1420 			btrfs_drop_snapshot(root, NULL, 0);
1421 		else
1422 			btrfs_drop_snapshot(root, NULL, 1);
1423 	}
1424 	return 0;
1425 }
1426