xref: /openbmc/linux/fs/btrfs/transaction.c (revision 9977a8c3497a8f7f7f951994f298a8e4d961234f)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(refcount_read(&transaction->use_count) == 0);
64 	if (refcount_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		if (transaction->delayed_refs.pending_csums)
68 			btrfs_err(transaction->fs_info,
69 				  "pending csums is %llu",
70 				  transaction->delayed_refs.pending_csums);
71 		while (!list_empty(&transaction->pending_chunks)) {
72 			struct extent_map *em;
73 
74 			em = list_first_entry(&transaction->pending_chunks,
75 					      struct extent_map, list);
76 			list_del_init(&em->list);
77 			free_extent_map(em);
78 		}
79 		/*
80 		 * If any block groups are found in ->deleted_bgs then it's
81 		 * because the transaction was aborted and a commit did not
82 		 * happen (things failed before writing the new superblock
83 		 * and calling btrfs_finish_extent_commit()), so we can not
84 		 * discard the physical locations of the block groups.
85 		 */
86 		while (!list_empty(&transaction->deleted_bgs)) {
87 			struct btrfs_block_group_cache *cache;
88 
89 			cache = list_first_entry(&transaction->deleted_bgs,
90 						 struct btrfs_block_group_cache,
91 						 bg_list);
92 			list_del_init(&cache->bg_list);
93 			btrfs_put_block_group_trimming(cache);
94 			btrfs_put_block_group(cache);
95 		}
96 		kfree(transaction);
97 	}
98 }
99 
100 static void clear_btree_io_tree(struct extent_io_tree *tree)
101 {
102 	spin_lock(&tree->lock);
103 	/*
104 	 * Do a single barrier for the waitqueue_active check here, the state
105 	 * of the waitqueue should not change once clear_btree_io_tree is
106 	 * called.
107 	 */
108 	smp_mb();
109 	while (!RB_EMPTY_ROOT(&tree->state)) {
110 		struct rb_node *node;
111 		struct extent_state *state;
112 
113 		node = rb_first(&tree->state);
114 		state = rb_entry(node, struct extent_state, rb_node);
115 		rb_erase(&state->rb_node, &tree->state);
116 		RB_CLEAR_NODE(&state->rb_node);
117 		/*
118 		 * btree io trees aren't supposed to have tasks waiting for
119 		 * changes in the flags of extent states ever.
120 		 */
121 		ASSERT(!waitqueue_active(&state->wq));
122 		free_extent_state(state);
123 
124 		cond_resched_lock(&tree->lock);
125 	}
126 	spin_unlock(&tree->lock);
127 }
128 
129 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
130 					 struct btrfs_fs_info *fs_info)
131 {
132 	struct btrfs_root *root, *tmp;
133 
134 	down_write(&fs_info->commit_root_sem);
135 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
136 				 dirty_list) {
137 		list_del_init(&root->dirty_list);
138 		free_extent_buffer(root->commit_root);
139 		root->commit_root = btrfs_root_node(root);
140 		if (is_fstree(root->objectid))
141 			btrfs_unpin_free_ino(root);
142 		clear_btree_io_tree(&root->dirty_log_pages);
143 	}
144 
145 	/* We can free old roots now. */
146 	spin_lock(&trans->dropped_roots_lock);
147 	while (!list_empty(&trans->dropped_roots)) {
148 		root = list_first_entry(&trans->dropped_roots,
149 					struct btrfs_root, root_list);
150 		list_del_init(&root->root_list);
151 		spin_unlock(&trans->dropped_roots_lock);
152 		btrfs_drop_and_free_fs_root(fs_info, root);
153 		spin_lock(&trans->dropped_roots_lock);
154 	}
155 	spin_unlock(&trans->dropped_roots_lock);
156 	up_write(&fs_info->commit_root_sem);
157 }
158 
159 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
160 					 unsigned int type)
161 {
162 	if (type & TRANS_EXTWRITERS)
163 		atomic_inc(&trans->num_extwriters);
164 }
165 
166 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
167 					 unsigned int type)
168 {
169 	if (type & TRANS_EXTWRITERS)
170 		atomic_dec(&trans->num_extwriters);
171 }
172 
173 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
174 					  unsigned int type)
175 {
176 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
177 }
178 
179 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
180 {
181 	return atomic_read(&trans->num_extwriters);
182 }
183 
184 /*
185  * either allocate a new transaction or hop into the existing one
186  */
187 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
188 				     unsigned int type)
189 {
190 	struct btrfs_transaction *cur_trans;
191 
192 	spin_lock(&fs_info->trans_lock);
193 loop:
194 	/* The file system has been taken offline. No new transactions. */
195 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
196 		spin_unlock(&fs_info->trans_lock);
197 		return -EROFS;
198 	}
199 
200 	cur_trans = fs_info->running_transaction;
201 	if (cur_trans) {
202 		if (cur_trans->aborted) {
203 			spin_unlock(&fs_info->trans_lock);
204 			return cur_trans->aborted;
205 		}
206 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
207 			spin_unlock(&fs_info->trans_lock);
208 			return -EBUSY;
209 		}
210 		refcount_inc(&cur_trans->use_count);
211 		atomic_inc(&cur_trans->num_writers);
212 		extwriter_counter_inc(cur_trans, type);
213 		spin_unlock(&fs_info->trans_lock);
214 		return 0;
215 	}
216 	spin_unlock(&fs_info->trans_lock);
217 
218 	/*
219 	 * If we are ATTACH, we just want to catch the current transaction,
220 	 * and commit it. If there is no transaction, just return ENOENT.
221 	 */
222 	if (type == TRANS_ATTACH)
223 		return -ENOENT;
224 
225 	/*
226 	 * JOIN_NOLOCK only happens during the transaction commit, so
227 	 * it is impossible that ->running_transaction is NULL
228 	 */
229 	BUG_ON(type == TRANS_JOIN_NOLOCK);
230 
231 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
232 	if (!cur_trans)
233 		return -ENOMEM;
234 
235 	spin_lock(&fs_info->trans_lock);
236 	if (fs_info->running_transaction) {
237 		/*
238 		 * someone started a transaction after we unlocked.  Make sure
239 		 * to redo the checks above
240 		 */
241 		kfree(cur_trans);
242 		goto loop;
243 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
244 		spin_unlock(&fs_info->trans_lock);
245 		kfree(cur_trans);
246 		return -EROFS;
247 	}
248 
249 	cur_trans->fs_info = fs_info;
250 	atomic_set(&cur_trans->num_writers, 1);
251 	extwriter_counter_init(cur_trans, type);
252 	init_waitqueue_head(&cur_trans->writer_wait);
253 	init_waitqueue_head(&cur_trans->commit_wait);
254 	init_waitqueue_head(&cur_trans->pending_wait);
255 	cur_trans->state = TRANS_STATE_RUNNING;
256 	/*
257 	 * One for this trans handle, one so it will live on until we
258 	 * commit the transaction.
259 	 */
260 	refcount_set(&cur_trans->use_count, 2);
261 	atomic_set(&cur_trans->pending_ordered, 0);
262 	cur_trans->flags = 0;
263 	cur_trans->start_time = get_seconds();
264 
265 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
266 
267 	cur_trans->delayed_refs.href_root = RB_ROOT;
268 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
269 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
270 
271 	/*
272 	 * although the tree mod log is per file system and not per transaction,
273 	 * the log must never go across transaction boundaries.
274 	 */
275 	smp_mb();
276 	if (!list_empty(&fs_info->tree_mod_seq_list))
277 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
278 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
279 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
280 	atomic64_set(&fs_info->tree_mod_seq, 0);
281 
282 	spin_lock_init(&cur_trans->delayed_refs.lock);
283 
284 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 	INIT_LIST_HEAD(&cur_trans->switch_commits);
287 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 	INIT_LIST_HEAD(&cur_trans->io_bgs);
289 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 	mutex_init(&cur_trans->cache_write_mutex);
291 	cur_trans->num_dirty_bgs = 0;
292 	spin_lock_init(&cur_trans->dirty_bgs_lock);
293 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 	spin_lock_init(&cur_trans->dropped_roots_lock);
295 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 	extent_io_tree_init(&cur_trans->dirty_pages,
297 			     fs_info->btree_inode);
298 	fs_info->generation++;
299 	cur_trans->transid = fs_info->generation;
300 	fs_info->running_transaction = cur_trans;
301 	cur_trans->aborted = 0;
302 	spin_unlock(&fs_info->trans_lock);
303 
304 	return 0;
305 }
306 
307 /*
308  * this does all the record keeping required to make sure that a reference
309  * counted root is properly recorded in a given transaction.  This is required
310  * to make sure the old root from before we joined the transaction is deleted
311  * when the transaction commits
312  */
313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 			       struct btrfs_root *root,
315 			       int force)
316 {
317 	struct btrfs_fs_info *fs_info = root->fs_info;
318 
319 	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
320 	    root->last_trans < trans->transid) || force) {
321 		WARN_ON(root == fs_info->extent_root);
322 		WARN_ON(root->commit_root != root->node);
323 
324 		/*
325 		 * see below for IN_TRANS_SETUP usage rules
326 		 * we have the reloc mutex held now, so there
327 		 * is only one writer in this function
328 		 */
329 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
330 
331 		/* make sure readers find IN_TRANS_SETUP before
332 		 * they find our root->last_trans update
333 		 */
334 		smp_wmb();
335 
336 		spin_lock(&fs_info->fs_roots_radix_lock);
337 		if (root->last_trans == trans->transid && !force) {
338 			spin_unlock(&fs_info->fs_roots_radix_lock);
339 			return 0;
340 		}
341 		radix_tree_tag_set(&fs_info->fs_roots_radix,
342 				   (unsigned long)root->root_key.objectid,
343 				   BTRFS_ROOT_TRANS_TAG);
344 		spin_unlock(&fs_info->fs_roots_radix_lock);
345 		root->last_trans = trans->transid;
346 
347 		/* this is pretty tricky.  We don't want to
348 		 * take the relocation lock in btrfs_record_root_in_trans
349 		 * unless we're really doing the first setup for this root in
350 		 * this transaction.
351 		 *
352 		 * Normally we'd use root->last_trans as a flag to decide
353 		 * if we want to take the expensive mutex.
354 		 *
355 		 * But, we have to set root->last_trans before we
356 		 * init the relocation root, otherwise, we trip over warnings
357 		 * in ctree.c.  The solution used here is to flag ourselves
358 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
359 		 * fixing up the reloc trees and everyone must wait.
360 		 *
361 		 * When this is zero, they can trust root->last_trans and fly
362 		 * through btrfs_record_root_in_trans without having to take the
363 		 * lock.  smp_wmb() makes sure that all the writes above are
364 		 * done before we pop in the zero below
365 		 */
366 		btrfs_init_reloc_root(trans, root);
367 		smp_mb__before_atomic();
368 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
369 	}
370 	return 0;
371 }
372 
373 
374 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
375 			    struct btrfs_root *root)
376 {
377 	struct btrfs_fs_info *fs_info = root->fs_info;
378 	struct btrfs_transaction *cur_trans = trans->transaction;
379 
380 	/* Add ourselves to the transaction dropped list */
381 	spin_lock(&cur_trans->dropped_roots_lock);
382 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
383 	spin_unlock(&cur_trans->dropped_roots_lock);
384 
385 	/* Make sure we don't try to update the root at commit time */
386 	spin_lock(&fs_info->fs_roots_radix_lock);
387 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
388 			     (unsigned long)root->root_key.objectid,
389 			     BTRFS_ROOT_TRANS_TAG);
390 	spin_unlock(&fs_info->fs_roots_radix_lock);
391 }
392 
393 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
394 			       struct btrfs_root *root)
395 {
396 	struct btrfs_fs_info *fs_info = root->fs_info;
397 
398 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
399 		return 0;
400 
401 	/*
402 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
403 	 * and barriers
404 	 */
405 	smp_rmb();
406 	if (root->last_trans == trans->transid &&
407 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
408 		return 0;
409 
410 	mutex_lock(&fs_info->reloc_mutex);
411 	record_root_in_trans(trans, root, 0);
412 	mutex_unlock(&fs_info->reloc_mutex);
413 
414 	return 0;
415 }
416 
417 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
418 {
419 	return (trans->state >= TRANS_STATE_BLOCKED &&
420 		trans->state < TRANS_STATE_UNBLOCKED &&
421 		!trans->aborted);
422 }
423 
424 /* wait for commit against the current transaction to become unblocked
425  * when this is done, it is safe to start a new transaction, but the current
426  * transaction might not be fully on disk.
427  */
428 static void wait_current_trans(struct btrfs_fs_info *fs_info)
429 {
430 	struct btrfs_transaction *cur_trans;
431 
432 	spin_lock(&fs_info->trans_lock);
433 	cur_trans = fs_info->running_transaction;
434 	if (cur_trans && is_transaction_blocked(cur_trans)) {
435 		refcount_inc(&cur_trans->use_count);
436 		spin_unlock(&fs_info->trans_lock);
437 
438 		wait_event(fs_info->transaction_wait,
439 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
440 			   cur_trans->aborted);
441 		btrfs_put_transaction(cur_trans);
442 	} else {
443 		spin_unlock(&fs_info->trans_lock);
444 	}
445 }
446 
447 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
448 {
449 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
450 		return 0;
451 
452 	if (type == TRANS_USERSPACE)
453 		return 1;
454 
455 	if (type == TRANS_START &&
456 	    !atomic_read(&fs_info->open_ioctl_trans))
457 		return 1;
458 
459 	return 0;
460 }
461 
462 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
463 {
464 	struct btrfs_fs_info *fs_info = root->fs_info;
465 
466 	if (!fs_info->reloc_ctl ||
467 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
468 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
469 	    root->reloc_root)
470 		return false;
471 
472 	return true;
473 }
474 
475 static struct btrfs_trans_handle *
476 start_transaction(struct btrfs_root *root, unsigned int num_items,
477 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
478 		  bool enforce_qgroups)
479 {
480 	struct btrfs_fs_info *fs_info = root->fs_info;
481 
482 	struct btrfs_trans_handle *h;
483 	struct btrfs_transaction *cur_trans;
484 	u64 num_bytes = 0;
485 	u64 qgroup_reserved = 0;
486 	bool reloc_reserved = false;
487 	int ret;
488 
489 	/* Send isn't supposed to start transactions. */
490 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
491 
492 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
493 		return ERR_PTR(-EROFS);
494 
495 	if (current->journal_info) {
496 		WARN_ON(type & TRANS_EXTWRITERS);
497 		h = current->journal_info;
498 		refcount_inc(&h->use_count);
499 		WARN_ON(refcount_read(&h->use_count) > 2);
500 		h->orig_rsv = h->block_rsv;
501 		h->block_rsv = NULL;
502 		goto got_it;
503 	}
504 
505 	/*
506 	 * Do the reservation before we join the transaction so we can do all
507 	 * the appropriate flushing if need be.
508 	 */
509 	if (num_items && root != fs_info->chunk_root) {
510 		qgroup_reserved = num_items * fs_info->nodesize;
511 		ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved,
512 						enforce_qgroups);
513 		if (ret)
514 			return ERR_PTR(ret);
515 
516 		num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
517 		/*
518 		 * Do the reservation for the relocation root creation
519 		 */
520 		if (need_reserve_reloc_root(root)) {
521 			num_bytes += fs_info->nodesize;
522 			reloc_reserved = true;
523 		}
524 
525 		ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
526 					  num_bytes, flush);
527 		if (ret)
528 			goto reserve_fail;
529 	}
530 again:
531 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
532 	if (!h) {
533 		ret = -ENOMEM;
534 		goto alloc_fail;
535 	}
536 
537 	/*
538 	 * If we are JOIN_NOLOCK we're already committing a transaction and
539 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
540 	 * because we're already holding a ref.  We need this because we could
541 	 * have raced in and did an fsync() on a file which can kick a commit
542 	 * and then we deadlock with somebody doing a freeze.
543 	 *
544 	 * If we are ATTACH, it means we just want to catch the current
545 	 * transaction and commit it, so we needn't do sb_start_intwrite().
546 	 */
547 	if (type & __TRANS_FREEZABLE)
548 		sb_start_intwrite(fs_info->sb);
549 
550 	if (may_wait_transaction(fs_info, type))
551 		wait_current_trans(fs_info);
552 
553 	do {
554 		ret = join_transaction(fs_info, type);
555 		if (ret == -EBUSY) {
556 			wait_current_trans(fs_info);
557 			if (unlikely(type == TRANS_ATTACH))
558 				ret = -ENOENT;
559 		}
560 	} while (ret == -EBUSY);
561 
562 	if (ret < 0)
563 		goto join_fail;
564 
565 	cur_trans = fs_info->running_transaction;
566 
567 	h->transid = cur_trans->transid;
568 	h->transaction = cur_trans;
569 	h->root = root;
570 	refcount_set(&h->use_count, 1);
571 	h->fs_info = root->fs_info;
572 
573 	h->type = type;
574 	h->can_flush_pending_bgs = true;
575 	INIT_LIST_HEAD(&h->new_bgs);
576 
577 	smp_mb();
578 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
579 	    may_wait_transaction(fs_info, type)) {
580 		current->journal_info = h;
581 		btrfs_commit_transaction(h);
582 		goto again;
583 	}
584 
585 	if (num_bytes) {
586 		trace_btrfs_space_reservation(fs_info, "transaction",
587 					      h->transid, num_bytes, 1);
588 		h->block_rsv = &fs_info->trans_block_rsv;
589 		h->bytes_reserved = num_bytes;
590 		h->reloc_reserved = reloc_reserved;
591 	}
592 
593 got_it:
594 	btrfs_record_root_in_trans(h, root);
595 
596 	if (!current->journal_info && type != TRANS_USERSPACE)
597 		current->journal_info = h;
598 	return h;
599 
600 join_fail:
601 	if (type & __TRANS_FREEZABLE)
602 		sb_end_intwrite(fs_info->sb);
603 	kmem_cache_free(btrfs_trans_handle_cachep, h);
604 alloc_fail:
605 	if (num_bytes)
606 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
607 					num_bytes);
608 reserve_fail:
609 	btrfs_qgroup_free_meta(root, qgroup_reserved);
610 	return ERR_PTR(ret);
611 }
612 
613 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
614 						   unsigned int num_items)
615 {
616 	return start_transaction(root, num_items, TRANS_START,
617 				 BTRFS_RESERVE_FLUSH_ALL, true);
618 }
619 
620 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
621 					struct btrfs_root *root,
622 					unsigned int num_items,
623 					int min_factor)
624 {
625 	struct btrfs_fs_info *fs_info = root->fs_info;
626 	struct btrfs_trans_handle *trans;
627 	u64 num_bytes;
628 	int ret;
629 
630 	/*
631 	 * We have two callers: unlink and block group removal.  The
632 	 * former should succeed even if we will temporarily exceed
633 	 * quota and the latter operates on the extent root so
634 	 * qgroup enforcement is ignored anyway.
635 	 */
636 	trans = start_transaction(root, num_items, TRANS_START,
637 				  BTRFS_RESERVE_FLUSH_ALL, false);
638 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
639 		return trans;
640 
641 	trans = btrfs_start_transaction(root, 0);
642 	if (IS_ERR(trans))
643 		return trans;
644 
645 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
646 	ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
647 				       num_bytes, min_factor);
648 	if (ret) {
649 		btrfs_end_transaction(trans);
650 		return ERR_PTR(ret);
651 	}
652 
653 	trans->block_rsv = &fs_info->trans_block_rsv;
654 	trans->bytes_reserved = num_bytes;
655 	trace_btrfs_space_reservation(fs_info, "transaction",
656 				      trans->transid, num_bytes, 1);
657 
658 	return trans;
659 }
660 
661 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
662 					struct btrfs_root *root,
663 					unsigned int num_items)
664 {
665 	return start_transaction(root, num_items, TRANS_START,
666 				 BTRFS_RESERVE_FLUSH_LIMIT, true);
667 }
668 
669 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
670 {
671 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
672 				 true);
673 }
674 
675 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
676 {
677 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
678 				 BTRFS_RESERVE_NO_FLUSH, true);
679 }
680 
681 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
682 {
683 	return start_transaction(root, 0, TRANS_USERSPACE,
684 				 BTRFS_RESERVE_NO_FLUSH, true);
685 }
686 
687 /*
688  * btrfs_attach_transaction() - catch the running transaction
689  *
690  * It is used when we want to commit the current the transaction, but
691  * don't want to start a new one.
692  *
693  * Note: If this function return -ENOENT, it just means there is no
694  * running transaction. But it is possible that the inactive transaction
695  * is still in the memory, not fully on disk. If you hope there is no
696  * inactive transaction in the fs when -ENOENT is returned, you should
697  * invoke
698  *     btrfs_attach_transaction_barrier()
699  */
700 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
701 {
702 	return start_transaction(root, 0, TRANS_ATTACH,
703 				 BTRFS_RESERVE_NO_FLUSH, true);
704 }
705 
706 /*
707  * btrfs_attach_transaction_barrier() - catch the running transaction
708  *
709  * It is similar to the above function, the differentia is this one
710  * will wait for all the inactive transactions until they fully
711  * complete.
712  */
713 struct btrfs_trans_handle *
714 btrfs_attach_transaction_barrier(struct btrfs_root *root)
715 {
716 	struct btrfs_trans_handle *trans;
717 
718 	trans = start_transaction(root, 0, TRANS_ATTACH,
719 				  BTRFS_RESERVE_NO_FLUSH, true);
720 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
721 		btrfs_wait_for_commit(root->fs_info, 0);
722 
723 	return trans;
724 }
725 
726 /* wait for a transaction commit to be fully complete */
727 static noinline void wait_for_commit(struct btrfs_transaction *commit)
728 {
729 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
730 }
731 
732 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
733 {
734 	struct btrfs_transaction *cur_trans = NULL, *t;
735 	int ret = 0;
736 
737 	if (transid) {
738 		if (transid <= fs_info->last_trans_committed)
739 			goto out;
740 
741 		/* find specified transaction */
742 		spin_lock(&fs_info->trans_lock);
743 		list_for_each_entry(t, &fs_info->trans_list, list) {
744 			if (t->transid == transid) {
745 				cur_trans = t;
746 				refcount_inc(&cur_trans->use_count);
747 				ret = 0;
748 				break;
749 			}
750 			if (t->transid > transid) {
751 				ret = 0;
752 				break;
753 			}
754 		}
755 		spin_unlock(&fs_info->trans_lock);
756 
757 		/*
758 		 * The specified transaction doesn't exist, or we
759 		 * raced with btrfs_commit_transaction
760 		 */
761 		if (!cur_trans) {
762 			if (transid > fs_info->last_trans_committed)
763 				ret = -EINVAL;
764 			goto out;
765 		}
766 	} else {
767 		/* find newest transaction that is committing | committed */
768 		spin_lock(&fs_info->trans_lock);
769 		list_for_each_entry_reverse(t, &fs_info->trans_list,
770 					    list) {
771 			if (t->state >= TRANS_STATE_COMMIT_START) {
772 				if (t->state == TRANS_STATE_COMPLETED)
773 					break;
774 				cur_trans = t;
775 				refcount_inc(&cur_trans->use_count);
776 				break;
777 			}
778 		}
779 		spin_unlock(&fs_info->trans_lock);
780 		if (!cur_trans)
781 			goto out;  /* nothing committing|committed */
782 	}
783 
784 	wait_for_commit(cur_trans);
785 	btrfs_put_transaction(cur_trans);
786 out:
787 	return ret;
788 }
789 
790 void btrfs_throttle(struct btrfs_fs_info *fs_info)
791 {
792 	if (!atomic_read(&fs_info->open_ioctl_trans))
793 		wait_current_trans(fs_info);
794 }
795 
796 static int should_end_transaction(struct btrfs_trans_handle *trans)
797 {
798 	struct btrfs_fs_info *fs_info = trans->fs_info;
799 
800 	if (btrfs_check_space_for_delayed_refs(trans, fs_info))
801 		return 1;
802 
803 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
804 }
805 
806 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
807 {
808 	struct btrfs_transaction *cur_trans = trans->transaction;
809 	struct btrfs_fs_info *fs_info = trans->fs_info;
810 	int updates;
811 	int err;
812 
813 	smp_mb();
814 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
815 	    cur_trans->delayed_refs.flushing)
816 		return 1;
817 
818 	updates = trans->delayed_ref_updates;
819 	trans->delayed_ref_updates = 0;
820 	if (updates) {
821 		err = btrfs_run_delayed_refs(trans, fs_info, updates * 2);
822 		if (err) /* Error code will also eval true */
823 			return err;
824 	}
825 
826 	return should_end_transaction(trans);
827 }
828 
829 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
830 				   int throttle)
831 {
832 	struct btrfs_fs_info *info = trans->fs_info;
833 	struct btrfs_transaction *cur_trans = trans->transaction;
834 	u64 transid = trans->transid;
835 	unsigned long cur = trans->delayed_ref_updates;
836 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
837 	int err = 0;
838 	int must_run_delayed_refs = 0;
839 
840 	if (refcount_read(&trans->use_count) > 1) {
841 		refcount_dec(&trans->use_count);
842 		trans->block_rsv = trans->orig_rsv;
843 		return 0;
844 	}
845 
846 	btrfs_trans_release_metadata(trans, info);
847 	trans->block_rsv = NULL;
848 
849 	if (!list_empty(&trans->new_bgs))
850 		btrfs_create_pending_block_groups(trans, info);
851 
852 	trans->delayed_ref_updates = 0;
853 	if (!trans->sync) {
854 		must_run_delayed_refs =
855 			btrfs_should_throttle_delayed_refs(trans, info);
856 		cur = max_t(unsigned long, cur, 32);
857 
858 		/*
859 		 * don't make the caller wait if they are from a NOLOCK
860 		 * or ATTACH transaction, it will deadlock with commit
861 		 */
862 		if (must_run_delayed_refs == 1 &&
863 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
864 			must_run_delayed_refs = 2;
865 	}
866 
867 	btrfs_trans_release_metadata(trans, info);
868 	trans->block_rsv = NULL;
869 
870 	if (!list_empty(&trans->new_bgs))
871 		btrfs_create_pending_block_groups(trans, info);
872 
873 	btrfs_trans_release_chunk_metadata(trans);
874 
875 	if (lock && !atomic_read(&info->open_ioctl_trans) &&
876 	    should_end_transaction(trans) &&
877 	    READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
878 		spin_lock(&info->trans_lock);
879 		if (cur_trans->state == TRANS_STATE_RUNNING)
880 			cur_trans->state = TRANS_STATE_BLOCKED;
881 		spin_unlock(&info->trans_lock);
882 	}
883 
884 	if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
885 		if (throttle)
886 			return btrfs_commit_transaction(trans);
887 		else
888 			wake_up_process(info->transaction_kthread);
889 	}
890 
891 	if (trans->type & __TRANS_FREEZABLE)
892 		sb_end_intwrite(info->sb);
893 
894 	WARN_ON(cur_trans != info->running_transaction);
895 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
896 	atomic_dec(&cur_trans->num_writers);
897 	extwriter_counter_dec(cur_trans, trans->type);
898 
899 	/*
900 	 * Make sure counter is updated before we wake up waiters.
901 	 */
902 	smp_mb();
903 	if (waitqueue_active(&cur_trans->writer_wait))
904 		wake_up(&cur_trans->writer_wait);
905 	btrfs_put_transaction(cur_trans);
906 
907 	if (current->journal_info == trans)
908 		current->journal_info = NULL;
909 
910 	if (throttle)
911 		btrfs_run_delayed_iputs(info);
912 
913 	if (trans->aborted ||
914 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
915 		wake_up_process(info->transaction_kthread);
916 		err = -EIO;
917 	}
918 
919 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
920 	if (must_run_delayed_refs) {
921 		btrfs_async_run_delayed_refs(info, cur, transid,
922 					     must_run_delayed_refs == 1);
923 	}
924 	return err;
925 }
926 
927 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
928 {
929 	return __btrfs_end_transaction(trans, 0);
930 }
931 
932 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
933 {
934 	return __btrfs_end_transaction(trans, 1);
935 }
936 
937 /*
938  * when btree blocks are allocated, they have some corresponding bits set for
939  * them in one of two extent_io trees.  This is used to make sure all of
940  * those extents are sent to disk but does not wait on them
941  */
942 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
943 			       struct extent_io_tree *dirty_pages, int mark)
944 {
945 	int err = 0;
946 	int werr = 0;
947 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
948 	struct extent_state *cached_state = NULL;
949 	u64 start = 0;
950 	u64 end;
951 
952 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
953 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
954 				      mark, &cached_state)) {
955 		bool wait_writeback = false;
956 
957 		err = convert_extent_bit(dirty_pages, start, end,
958 					 EXTENT_NEED_WAIT,
959 					 mark, &cached_state);
960 		/*
961 		 * convert_extent_bit can return -ENOMEM, which is most of the
962 		 * time a temporary error. So when it happens, ignore the error
963 		 * and wait for writeback of this range to finish - because we
964 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
965 		 * to __btrfs_wait_marked_extents() would not know that
966 		 * writeback for this range started and therefore wouldn't
967 		 * wait for it to finish - we don't want to commit a
968 		 * superblock that points to btree nodes/leafs for which
969 		 * writeback hasn't finished yet (and without errors).
970 		 * We cleanup any entries left in the io tree when committing
971 		 * the transaction (through clear_btree_io_tree()).
972 		 */
973 		if (err == -ENOMEM) {
974 			err = 0;
975 			wait_writeback = true;
976 		}
977 		if (!err)
978 			err = filemap_fdatawrite_range(mapping, start, end);
979 		if (err)
980 			werr = err;
981 		else if (wait_writeback)
982 			werr = filemap_fdatawait_range(mapping, start, end);
983 		free_extent_state(cached_state);
984 		cached_state = NULL;
985 		cond_resched();
986 		start = end + 1;
987 	}
988 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
989 	return werr;
990 }
991 
992 /*
993  * when btree blocks are allocated, they have some corresponding bits set for
994  * them in one of two extent_io trees.  This is used to make sure all of
995  * those extents are on disk for transaction or log commit.  We wait
996  * on all the pages and clear them from the dirty pages state tree
997  */
998 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
999 				       struct extent_io_tree *dirty_pages)
1000 {
1001 	int err = 0;
1002 	int werr = 0;
1003 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1004 	struct extent_state *cached_state = NULL;
1005 	u64 start = 0;
1006 	u64 end;
1007 
1008 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1009 				      EXTENT_NEED_WAIT, &cached_state)) {
1010 		/*
1011 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1012 		 * When committing the transaction, we'll remove any entries
1013 		 * left in the io tree. For a log commit, we don't remove them
1014 		 * after committing the log because the tree can be accessed
1015 		 * concurrently - we do it only at transaction commit time when
1016 		 * it's safe to do it (through clear_btree_io_tree()).
1017 		 */
1018 		err = clear_extent_bit(dirty_pages, start, end,
1019 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1020 		if (err == -ENOMEM)
1021 			err = 0;
1022 		if (!err)
1023 			err = filemap_fdatawait_range(mapping, start, end);
1024 		if (err)
1025 			werr = err;
1026 		free_extent_state(cached_state);
1027 		cached_state = NULL;
1028 		cond_resched();
1029 		start = end + 1;
1030 	}
1031 	if (err)
1032 		werr = err;
1033 	return werr;
1034 }
1035 
1036 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1037 		       struct extent_io_tree *dirty_pages)
1038 {
1039 	bool errors = false;
1040 	int err;
1041 
1042 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1043 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1044 		errors = true;
1045 
1046 	if (errors && !err)
1047 		err = -EIO;
1048 	return err;
1049 }
1050 
1051 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1052 {
1053 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1054 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1055 	bool errors = false;
1056 	int err;
1057 
1058 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1059 
1060 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1061 	if ((mark & EXTENT_DIRTY) &&
1062 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1063 		errors = true;
1064 
1065 	if ((mark & EXTENT_NEW) &&
1066 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1067 		errors = true;
1068 
1069 	if (errors && !err)
1070 		err = -EIO;
1071 	return err;
1072 }
1073 
1074 /*
1075  * when btree blocks are allocated, they have some corresponding bits set for
1076  * them in one of two extent_io trees.  This is used to make sure all of
1077  * those extents are on disk for transaction or log commit
1078  */
1079 static int btrfs_write_and_wait_marked_extents(struct btrfs_fs_info *fs_info,
1080 				struct extent_io_tree *dirty_pages, int mark)
1081 {
1082 	int ret;
1083 	int ret2;
1084 	struct blk_plug plug;
1085 
1086 	blk_start_plug(&plug);
1087 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, mark);
1088 	blk_finish_plug(&plug);
1089 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1090 
1091 	if (ret)
1092 		return ret;
1093 	if (ret2)
1094 		return ret2;
1095 	return 0;
1096 }
1097 
1098 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1099 					    struct btrfs_fs_info *fs_info)
1100 {
1101 	int ret;
1102 
1103 	ret = btrfs_write_and_wait_marked_extents(fs_info,
1104 					   &trans->transaction->dirty_pages,
1105 					   EXTENT_DIRTY);
1106 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1107 
1108 	return ret;
1109 }
1110 
1111 /*
1112  * this is used to update the root pointer in the tree of tree roots.
1113  *
1114  * But, in the case of the extent allocation tree, updating the root
1115  * pointer may allocate blocks which may change the root of the extent
1116  * allocation tree.
1117  *
1118  * So, this loops and repeats and makes sure the cowonly root didn't
1119  * change while the root pointer was being updated in the metadata.
1120  */
1121 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1122 			       struct btrfs_root *root)
1123 {
1124 	int ret;
1125 	u64 old_root_bytenr;
1126 	u64 old_root_used;
1127 	struct btrfs_fs_info *fs_info = root->fs_info;
1128 	struct btrfs_root *tree_root = fs_info->tree_root;
1129 
1130 	old_root_used = btrfs_root_used(&root->root_item);
1131 
1132 	while (1) {
1133 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1134 		if (old_root_bytenr == root->node->start &&
1135 		    old_root_used == btrfs_root_used(&root->root_item))
1136 			break;
1137 
1138 		btrfs_set_root_node(&root->root_item, root->node);
1139 		ret = btrfs_update_root(trans, tree_root,
1140 					&root->root_key,
1141 					&root->root_item);
1142 		if (ret)
1143 			return ret;
1144 
1145 		old_root_used = btrfs_root_used(&root->root_item);
1146 	}
1147 
1148 	return 0;
1149 }
1150 
1151 /*
1152  * update all the cowonly tree roots on disk
1153  *
1154  * The error handling in this function may not be obvious. Any of the
1155  * failures will cause the file system to go offline. We still need
1156  * to clean up the delayed refs.
1157  */
1158 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1159 					 struct btrfs_fs_info *fs_info)
1160 {
1161 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1162 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1163 	struct list_head *next;
1164 	struct extent_buffer *eb;
1165 	int ret;
1166 
1167 	eb = btrfs_lock_root_node(fs_info->tree_root);
1168 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1169 			      0, &eb);
1170 	btrfs_tree_unlock(eb);
1171 	free_extent_buffer(eb);
1172 
1173 	if (ret)
1174 		return ret;
1175 
1176 	ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1177 	if (ret)
1178 		return ret;
1179 
1180 	ret = btrfs_run_dev_stats(trans, fs_info);
1181 	if (ret)
1182 		return ret;
1183 	ret = btrfs_run_dev_replace(trans, fs_info);
1184 	if (ret)
1185 		return ret;
1186 	ret = btrfs_run_qgroups(trans, fs_info);
1187 	if (ret)
1188 		return ret;
1189 
1190 	ret = btrfs_setup_space_cache(trans, fs_info);
1191 	if (ret)
1192 		return ret;
1193 
1194 	/* run_qgroups might have added some more refs */
1195 	ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1196 	if (ret)
1197 		return ret;
1198 again:
1199 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1200 		struct btrfs_root *root;
1201 		next = fs_info->dirty_cowonly_roots.next;
1202 		list_del_init(next);
1203 		root = list_entry(next, struct btrfs_root, dirty_list);
1204 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1205 
1206 		if (root != fs_info->extent_root)
1207 			list_add_tail(&root->dirty_list,
1208 				      &trans->transaction->switch_commits);
1209 		ret = update_cowonly_root(trans, root);
1210 		if (ret)
1211 			return ret;
1212 		ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1213 		if (ret)
1214 			return ret;
1215 	}
1216 
1217 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1218 		ret = btrfs_write_dirty_block_groups(trans, fs_info);
1219 		if (ret)
1220 			return ret;
1221 		ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1222 		if (ret)
1223 			return ret;
1224 	}
1225 
1226 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1227 		goto again;
1228 
1229 	list_add_tail(&fs_info->extent_root->dirty_list,
1230 		      &trans->transaction->switch_commits);
1231 	btrfs_after_dev_replace_commit(fs_info);
1232 
1233 	return 0;
1234 }
1235 
1236 /*
1237  * dead roots are old snapshots that need to be deleted.  This allocates
1238  * a dirty root struct and adds it into the list of dead roots that need to
1239  * be deleted
1240  */
1241 void btrfs_add_dead_root(struct btrfs_root *root)
1242 {
1243 	struct btrfs_fs_info *fs_info = root->fs_info;
1244 
1245 	spin_lock(&fs_info->trans_lock);
1246 	if (list_empty(&root->root_list))
1247 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1248 	spin_unlock(&fs_info->trans_lock);
1249 }
1250 
1251 /*
1252  * update all the cowonly tree roots on disk
1253  */
1254 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1255 				    struct btrfs_fs_info *fs_info)
1256 {
1257 	struct btrfs_root *gang[8];
1258 	int i;
1259 	int ret;
1260 	int err = 0;
1261 
1262 	spin_lock(&fs_info->fs_roots_radix_lock);
1263 	while (1) {
1264 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1265 						 (void **)gang, 0,
1266 						 ARRAY_SIZE(gang),
1267 						 BTRFS_ROOT_TRANS_TAG);
1268 		if (ret == 0)
1269 			break;
1270 		for (i = 0; i < ret; i++) {
1271 			struct btrfs_root *root = gang[i];
1272 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1273 					(unsigned long)root->root_key.objectid,
1274 					BTRFS_ROOT_TRANS_TAG);
1275 			spin_unlock(&fs_info->fs_roots_radix_lock);
1276 
1277 			btrfs_free_log(trans, root);
1278 			btrfs_update_reloc_root(trans, root);
1279 			btrfs_orphan_commit_root(trans, root);
1280 
1281 			btrfs_save_ino_cache(root, trans);
1282 
1283 			/* see comments in should_cow_block() */
1284 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1285 			smp_mb__after_atomic();
1286 
1287 			if (root->commit_root != root->node) {
1288 				list_add_tail(&root->dirty_list,
1289 					&trans->transaction->switch_commits);
1290 				btrfs_set_root_node(&root->root_item,
1291 						    root->node);
1292 			}
1293 
1294 			err = btrfs_update_root(trans, fs_info->tree_root,
1295 						&root->root_key,
1296 						&root->root_item);
1297 			spin_lock(&fs_info->fs_roots_radix_lock);
1298 			if (err)
1299 				break;
1300 			btrfs_qgroup_free_meta_all(root);
1301 		}
1302 	}
1303 	spin_unlock(&fs_info->fs_roots_radix_lock);
1304 	return err;
1305 }
1306 
1307 /*
1308  * defrag a given btree.
1309  * Every leaf in the btree is read and defragged.
1310  */
1311 int btrfs_defrag_root(struct btrfs_root *root)
1312 {
1313 	struct btrfs_fs_info *info = root->fs_info;
1314 	struct btrfs_trans_handle *trans;
1315 	int ret;
1316 
1317 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1318 		return 0;
1319 
1320 	while (1) {
1321 		trans = btrfs_start_transaction(root, 0);
1322 		if (IS_ERR(trans))
1323 			return PTR_ERR(trans);
1324 
1325 		ret = btrfs_defrag_leaves(trans, root);
1326 
1327 		btrfs_end_transaction(trans);
1328 		btrfs_btree_balance_dirty(info);
1329 		cond_resched();
1330 
1331 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1332 			break;
1333 
1334 		if (btrfs_defrag_cancelled(info)) {
1335 			btrfs_debug(info, "defrag_root cancelled");
1336 			ret = -EAGAIN;
1337 			break;
1338 		}
1339 	}
1340 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1341 	return ret;
1342 }
1343 
1344 /*
1345  * Do all special snapshot related qgroup dirty hack.
1346  *
1347  * Will do all needed qgroup inherit and dirty hack like switch commit
1348  * roots inside one transaction and write all btree into disk, to make
1349  * qgroup works.
1350  */
1351 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1352 				   struct btrfs_root *src,
1353 				   struct btrfs_root *parent,
1354 				   struct btrfs_qgroup_inherit *inherit,
1355 				   u64 dst_objectid)
1356 {
1357 	struct btrfs_fs_info *fs_info = src->fs_info;
1358 	int ret;
1359 
1360 	/*
1361 	 * Save some performance in the case that qgroups are not
1362 	 * enabled. If this check races with the ioctl, rescan will
1363 	 * kick in anyway.
1364 	 */
1365 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1366 		return 0;
1367 
1368 	/*
1369 	 * We are going to commit transaction, see btrfs_commit_transaction()
1370 	 * comment for reason locking tree_log_mutex
1371 	 */
1372 	mutex_lock(&fs_info->tree_log_mutex);
1373 
1374 	ret = commit_fs_roots(trans, fs_info);
1375 	if (ret)
1376 		goto out;
1377 	ret = btrfs_qgroup_account_extents(trans, fs_info);
1378 	if (ret < 0)
1379 		goto out;
1380 
1381 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1382 	ret = btrfs_qgroup_inherit(trans, fs_info,
1383 				   src->root_key.objectid, dst_objectid,
1384 				   inherit);
1385 	if (ret < 0)
1386 		goto out;
1387 
1388 	/*
1389 	 * Now we do a simplified commit transaction, which will:
1390 	 * 1) commit all subvolume and extent tree
1391 	 *    To ensure all subvolume and extent tree have a valid
1392 	 *    commit_root to accounting later insert_dir_item()
1393 	 * 2) write all btree blocks onto disk
1394 	 *    This is to make sure later btree modification will be cowed
1395 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1396 	 * In this simplified commit, we don't really care about other trees
1397 	 * like chunk and root tree, as they won't affect qgroup.
1398 	 * And we don't write super to avoid half committed status.
1399 	 */
1400 	ret = commit_cowonly_roots(trans, fs_info);
1401 	if (ret)
1402 		goto out;
1403 	switch_commit_roots(trans->transaction, fs_info);
1404 	ret = btrfs_write_and_wait_transaction(trans, fs_info);
1405 	if (ret)
1406 		btrfs_handle_fs_error(fs_info, ret,
1407 			"Error while writing out transaction for qgroup");
1408 
1409 out:
1410 	mutex_unlock(&fs_info->tree_log_mutex);
1411 
1412 	/*
1413 	 * Force parent root to be updated, as we recorded it before so its
1414 	 * last_trans == cur_transid.
1415 	 * Or it won't be committed again onto disk after later
1416 	 * insert_dir_item()
1417 	 */
1418 	if (!ret)
1419 		record_root_in_trans(trans, parent, 1);
1420 	return ret;
1421 }
1422 
1423 /*
1424  * new snapshots need to be created at a very specific time in the
1425  * transaction commit.  This does the actual creation.
1426  *
1427  * Note:
1428  * If the error which may affect the commitment of the current transaction
1429  * happens, we should return the error number. If the error which just affect
1430  * the creation of the pending snapshots, just return 0.
1431  */
1432 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1433 				   struct btrfs_fs_info *fs_info,
1434 				   struct btrfs_pending_snapshot *pending)
1435 {
1436 	struct btrfs_key key;
1437 	struct btrfs_root_item *new_root_item;
1438 	struct btrfs_root *tree_root = fs_info->tree_root;
1439 	struct btrfs_root *root = pending->root;
1440 	struct btrfs_root *parent_root;
1441 	struct btrfs_block_rsv *rsv;
1442 	struct inode *parent_inode;
1443 	struct btrfs_path *path;
1444 	struct btrfs_dir_item *dir_item;
1445 	struct dentry *dentry;
1446 	struct extent_buffer *tmp;
1447 	struct extent_buffer *old;
1448 	struct timespec cur_time;
1449 	int ret = 0;
1450 	u64 to_reserve = 0;
1451 	u64 index = 0;
1452 	u64 objectid;
1453 	u64 root_flags;
1454 	uuid_le new_uuid;
1455 
1456 	ASSERT(pending->path);
1457 	path = pending->path;
1458 
1459 	ASSERT(pending->root_item);
1460 	new_root_item = pending->root_item;
1461 
1462 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1463 	if (pending->error)
1464 		goto no_free_objectid;
1465 
1466 	/*
1467 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1468 	 * accounted by later btrfs_qgroup_inherit().
1469 	 */
1470 	btrfs_set_skip_qgroup(trans, objectid);
1471 
1472 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1473 
1474 	if (to_reserve > 0) {
1475 		pending->error = btrfs_block_rsv_add(root,
1476 						     &pending->block_rsv,
1477 						     to_reserve,
1478 						     BTRFS_RESERVE_NO_FLUSH);
1479 		if (pending->error)
1480 			goto clear_skip_qgroup;
1481 	}
1482 
1483 	key.objectid = objectid;
1484 	key.offset = (u64)-1;
1485 	key.type = BTRFS_ROOT_ITEM_KEY;
1486 
1487 	rsv = trans->block_rsv;
1488 	trans->block_rsv = &pending->block_rsv;
1489 	trans->bytes_reserved = trans->block_rsv->reserved;
1490 	trace_btrfs_space_reservation(fs_info, "transaction",
1491 				      trans->transid,
1492 				      trans->bytes_reserved, 1);
1493 	dentry = pending->dentry;
1494 	parent_inode = pending->dir;
1495 	parent_root = BTRFS_I(parent_inode)->root;
1496 	record_root_in_trans(trans, parent_root, 0);
1497 
1498 	cur_time = current_time(parent_inode);
1499 
1500 	/*
1501 	 * insert the directory item
1502 	 */
1503 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1504 	BUG_ON(ret); /* -ENOMEM */
1505 
1506 	/* check if there is a file/dir which has the same name. */
1507 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1508 					 btrfs_ino(BTRFS_I(parent_inode)),
1509 					 dentry->d_name.name,
1510 					 dentry->d_name.len, 0);
1511 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1512 		pending->error = -EEXIST;
1513 		goto dir_item_existed;
1514 	} else if (IS_ERR(dir_item)) {
1515 		ret = PTR_ERR(dir_item);
1516 		btrfs_abort_transaction(trans, ret);
1517 		goto fail;
1518 	}
1519 	btrfs_release_path(path);
1520 
1521 	/*
1522 	 * pull in the delayed directory update
1523 	 * and the delayed inode item
1524 	 * otherwise we corrupt the FS during
1525 	 * snapshot
1526 	 */
1527 	ret = btrfs_run_delayed_items(trans, fs_info);
1528 	if (ret) {	/* Transaction aborted */
1529 		btrfs_abort_transaction(trans, ret);
1530 		goto fail;
1531 	}
1532 
1533 	record_root_in_trans(trans, root, 0);
1534 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1535 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1536 	btrfs_check_and_init_root_item(new_root_item);
1537 
1538 	root_flags = btrfs_root_flags(new_root_item);
1539 	if (pending->readonly)
1540 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1541 	else
1542 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1543 	btrfs_set_root_flags(new_root_item, root_flags);
1544 
1545 	btrfs_set_root_generation_v2(new_root_item,
1546 			trans->transid);
1547 	uuid_le_gen(&new_uuid);
1548 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1549 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1550 			BTRFS_UUID_SIZE);
1551 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1552 		memset(new_root_item->received_uuid, 0,
1553 		       sizeof(new_root_item->received_uuid));
1554 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1555 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1556 		btrfs_set_root_stransid(new_root_item, 0);
1557 		btrfs_set_root_rtransid(new_root_item, 0);
1558 	}
1559 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1560 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1561 	btrfs_set_root_otransid(new_root_item, trans->transid);
1562 
1563 	old = btrfs_lock_root_node(root);
1564 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1565 	if (ret) {
1566 		btrfs_tree_unlock(old);
1567 		free_extent_buffer(old);
1568 		btrfs_abort_transaction(trans, ret);
1569 		goto fail;
1570 	}
1571 
1572 	btrfs_set_lock_blocking(old);
1573 
1574 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1575 	/* clean up in any case */
1576 	btrfs_tree_unlock(old);
1577 	free_extent_buffer(old);
1578 	if (ret) {
1579 		btrfs_abort_transaction(trans, ret);
1580 		goto fail;
1581 	}
1582 	/* see comments in should_cow_block() */
1583 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1584 	smp_wmb();
1585 
1586 	btrfs_set_root_node(new_root_item, tmp);
1587 	/* record when the snapshot was created in key.offset */
1588 	key.offset = trans->transid;
1589 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1590 	btrfs_tree_unlock(tmp);
1591 	free_extent_buffer(tmp);
1592 	if (ret) {
1593 		btrfs_abort_transaction(trans, ret);
1594 		goto fail;
1595 	}
1596 
1597 	/*
1598 	 * insert root back/forward references
1599 	 */
1600 	ret = btrfs_add_root_ref(trans, fs_info, objectid,
1601 				 parent_root->root_key.objectid,
1602 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1603 				 dentry->d_name.name, dentry->d_name.len);
1604 	if (ret) {
1605 		btrfs_abort_transaction(trans, ret);
1606 		goto fail;
1607 	}
1608 
1609 	key.offset = (u64)-1;
1610 	pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1611 	if (IS_ERR(pending->snap)) {
1612 		ret = PTR_ERR(pending->snap);
1613 		btrfs_abort_transaction(trans, ret);
1614 		goto fail;
1615 	}
1616 
1617 	ret = btrfs_reloc_post_snapshot(trans, pending);
1618 	if (ret) {
1619 		btrfs_abort_transaction(trans, ret);
1620 		goto fail;
1621 	}
1622 
1623 	ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1624 	if (ret) {
1625 		btrfs_abort_transaction(trans, ret);
1626 		goto fail;
1627 	}
1628 
1629 	/*
1630 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1631 	 * snapshot hack to do fast snapshot.
1632 	 * To co-operate with that hack, we do hack again.
1633 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1634 	 */
1635 	ret = qgroup_account_snapshot(trans, root, parent_root,
1636 				      pending->inherit, objectid);
1637 	if (ret < 0)
1638 		goto fail;
1639 
1640 	ret = btrfs_insert_dir_item(trans, parent_root,
1641 				    dentry->d_name.name, dentry->d_name.len,
1642 				    BTRFS_I(parent_inode), &key,
1643 				    BTRFS_FT_DIR, index);
1644 	/* We have check then name at the beginning, so it is impossible. */
1645 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1646 	if (ret) {
1647 		btrfs_abort_transaction(trans, ret);
1648 		goto fail;
1649 	}
1650 
1651 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1652 					 dentry->d_name.len * 2);
1653 	parent_inode->i_mtime = parent_inode->i_ctime =
1654 		current_time(parent_inode);
1655 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1656 	if (ret) {
1657 		btrfs_abort_transaction(trans, ret);
1658 		goto fail;
1659 	}
1660 	ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b,
1661 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1662 	if (ret) {
1663 		btrfs_abort_transaction(trans, ret);
1664 		goto fail;
1665 	}
1666 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1667 		ret = btrfs_uuid_tree_add(trans, fs_info,
1668 					  new_root_item->received_uuid,
1669 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1670 					  objectid);
1671 		if (ret && ret != -EEXIST) {
1672 			btrfs_abort_transaction(trans, ret);
1673 			goto fail;
1674 		}
1675 	}
1676 
1677 	ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1678 	if (ret) {
1679 		btrfs_abort_transaction(trans, ret);
1680 		goto fail;
1681 	}
1682 
1683 fail:
1684 	pending->error = ret;
1685 dir_item_existed:
1686 	trans->block_rsv = rsv;
1687 	trans->bytes_reserved = 0;
1688 clear_skip_qgroup:
1689 	btrfs_clear_skip_qgroup(trans);
1690 no_free_objectid:
1691 	kfree(new_root_item);
1692 	pending->root_item = NULL;
1693 	btrfs_free_path(path);
1694 	pending->path = NULL;
1695 
1696 	return ret;
1697 }
1698 
1699 /*
1700  * create all the snapshots we've scheduled for creation
1701  */
1702 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1703 					     struct btrfs_fs_info *fs_info)
1704 {
1705 	struct btrfs_pending_snapshot *pending, *next;
1706 	struct list_head *head = &trans->transaction->pending_snapshots;
1707 	int ret = 0;
1708 
1709 	list_for_each_entry_safe(pending, next, head, list) {
1710 		list_del(&pending->list);
1711 		ret = create_pending_snapshot(trans, fs_info, pending);
1712 		if (ret)
1713 			break;
1714 	}
1715 	return ret;
1716 }
1717 
1718 static void update_super_roots(struct btrfs_fs_info *fs_info)
1719 {
1720 	struct btrfs_root_item *root_item;
1721 	struct btrfs_super_block *super;
1722 
1723 	super = fs_info->super_copy;
1724 
1725 	root_item = &fs_info->chunk_root->root_item;
1726 	super->chunk_root = root_item->bytenr;
1727 	super->chunk_root_generation = root_item->generation;
1728 	super->chunk_root_level = root_item->level;
1729 
1730 	root_item = &fs_info->tree_root->root_item;
1731 	super->root = root_item->bytenr;
1732 	super->generation = root_item->generation;
1733 	super->root_level = root_item->level;
1734 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1735 		super->cache_generation = root_item->generation;
1736 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1737 		super->uuid_tree_generation = root_item->generation;
1738 }
1739 
1740 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1741 {
1742 	struct btrfs_transaction *trans;
1743 	int ret = 0;
1744 
1745 	spin_lock(&info->trans_lock);
1746 	trans = info->running_transaction;
1747 	if (trans)
1748 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1749 	spin_unlock(&info->trans_lock);
1750 	return ret;
1751 }
1752 
1753 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1754 {
1755 	struct btrfs_transaction *trans;
1756 	int ret = 0;
1757 
1758 	spin_lock(&info->trans_lock);
1759 	trans = info->running_transaction;
1760 	if (trans)
1761 		ret = is_transaction_blocked(trans);
1762 	spin_unlock(&info->trans_lock);
1763 	return ret;
1764 }
1765 
1766 /*
1767  * wait for the current transaction commit to start and block subsequent
1768  * transaction joins
1769  */
1770 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1771 					    struct btrfs_transaction *trans)
1772 {
1773 	wait_event(fs_info->transaction_blocked_wait,
1774 		   trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1775 }
1776 
1777 /*
1778  * wait for the current transaction to start and then become unblocked.
1779  * caller holds ref.
1780  */
1781 static void wait_current_trans_commit_start_and_unblock(
1782 					struct btrfs_fs_info *fs_info,
1783 					struct btrfs_transaction *trans)
1784 {
1785 	wait_event(fs_info->transaction_wait,
1786 		   trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1787 }
1788 
1789 /*
1790  * commit transactions asynchronously. once btrfs_commit_transaction_async
1791  * returns, any subsequent transaction will not be allowed to join.
1792  */
1793 struct btrfs_async_commit {
1794 	struct btrfs_trans_handle *newtrans;
1795 	struct work_struct work;
1796 };
1797 
1798 static void do_async_commit(struct work_struct *work)
1799 {
1800 	struct btrfs_async_commit *ac =
1801 		container_of(work, struct btrfs_async_commit, work);
1802 
1803 	/*
1804 	 * We've got freeze protection passed with the transaction.
1805 	 * Tell lockdep about it.
1806 	 */
1807 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1808 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1809 
1810 	current->journal_info = ac->newtrans;
1811 
1812 	btrfs_commit_transaction(ac->newtrans);
1813 	kfree(ac);
1814 }
1815 
1816 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1817 				   int wait_for_unblock)
1818 {
1819 	struct btrfs_fs_info *fs_info = trans->fs_info;
1820 	struct btrfs_async_commit *ac;
1821 	struct btrfs_transaction *cur_trans;
1822 
1823 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1824 	if (!ac)
1825 		return -ENOMEM;
1826 
1827 	INIT_WORK(&ac->work, do_async_commit);
1828 	ac->newtrans = btrfs_join_transaction(trans->root);
1829 	if (IS_ERR(ac->newtrans)) {
1830 		int err = PTR_ERR(ac->newtrans);
1831 		kfree(ac);
1832 		return err;
1833 	}
1834 
1835 	/* take transaction reference */
1836 	cur_trans = trans->transaction;
1837 	refcount_inc(&cur_trans->use_count);
1838 
1839 	btrfs_end_transaction(trans);
1840 
1841 	/*
1842 	 * Tell lockdep we've released the freeze rwsem, since the
1843 	 * async commit thread will be the one to unlock it.
1844 	 */
1845 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1846 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1847 
1848 	schedule_work(&ac->work);
1849 
1850 	/* wait for transaction to start and unblock */
1851 	if (wait_for_unblock)
1852 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1853 	else
1854 		wait_current_trans_commit_start(fs_info, cur_trans);
1855 
1856 	if (current->journal_info == trans)
1857 		current->journal_info = NULL;
1858 
1859 	btrfs_put_transaction(cur_trans);
1860 	return 0;
1861 }
1862 
1863 
1864 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1865 				struct btrfs_root *root, int err)
1866 {
1867 	struct btrfs_fs_info *fs_info = root->fs_info;
1868 	struct btrfs_transaction *cur_trans = trans->transaction;
1869 	DEFINE_WAIT(wait);
1870 
1871 	WARN_ON(refcount_read(&trans->use_count) > 1);
1872 
1873 	btrfs_abort_transaction(trans, err);
1874 
1875 	spin_lock(&fs_info->trans_lock);
1876 
1877 	/*
1878 	 * If the transaction is removed from the list, it means this
1879 	 * transaction has been committed successfully, so it is impossible
1880 	 * to call the cleanup function.
1881 	 */
1882 	BUG_ON(list_empty(&cur_trans->list));
1883 
1884 	list_del_init(&cur_trans->list);
1885 	if (cur_trans == fs_info->running_transaction) {
1886 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1887 		spin_unlock(&fs_info->trans_lock);
1888 		wait_event(cur_trans->writer_wait,
1889 			   atomic_read(&cur_trans->num_writers) == 1);
1890 
1891 		spin_lock(&fs_info->trans_lock);
1892 	}
1893 	spin_unlock(&fs_info->trans_lock);
1894 
1895 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1896 
1897 	spin_lock(&fs_info->trans_lock);
1898 	if (cur_trans == fs_info->running_transaction)
1899 		fs_info->running_transaction = NULL;
1900 	spin_unlock(&fs_info->trans_lock);
1901 
1902 	if (trans->type & __TRANS_FREEZABLE)
1903 		sb_end_intwrite(fs_info->sb);
1904 	btrfs_put_transaction(cur_trans);
1905 	btrfs_put_transaction(cur_trans);
1906 
1907 	trace_btrfs_transaction_commit(root);
1908 
1909 	if (current->journal_info == trans)
1910 		current->journal_info = NULL;
1911 	btrfs_scrub_cancel(fs_info);
1912 
1913 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1914 }
1915 
1916 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1917 {
1918 	/*
1919 	 * We use writeback_inodes_sb here because if we used
1920 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1921 	 * Currently are holding the fs freeze lock, if we do an async flush
1922 	 * we'll do btrfs_join_transaction() and deadlock because we need to
1923 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
1924 	 * from already being in a transaction and our join_transaction doesn't
1925 	 * have to re-take the fs freeze lock.
1926 	 */
1927 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1928 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1929 	return 0;
1930 }
1931 
1932 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1933 {
1934 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1935 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1936 }
1937 
1938 static inline void
1939 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1940 {
1941 	wait_event(cur_trans->pending_wait,
1942 		   atomic_read(&cur_trans->pending_ordered) == 0);
1943 }
1944 
1945 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1946 {
1947 	struct btrfs_fs_info *fs_info = trans->fs_info;
1948 	struct btrfs_transaction *cur_trans = trans->transaction;
1949 	struct btrfs_transaction *prev_trans = NULL;
1950 	int ret;
1951 
1952 	/* Stop the commit early if ->aborted is set */
1953 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
1954 		ret = cur_trans->aborted;
1955 		btrfs_end_transaction(trans);
1956 		return ret;
1957 	}
1958 
1959 	/* make a pass through all the delayed refs we have so far
1960 	 * any runnings procs may add more while we are here
1961 	 */
1962 	ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1963 	if (ret) {
1964 		btrfs_end_transaction(trans);
1965 		return ret;
1966 	}
1967 
1968 	btrfs_trans_release_metadata(trans, fs_info);
1969 	trans->block_rsv = NULL;
1970 
1971 	cur_trans = trans->transaction;
1972 
1973 	/*
1974 	 * set the flushing flag so procs in this transaction have to
1975 	 * start sending their work down.
1976 	 */
1977 	cur_trans->delayed_refs.flushing = 1;
1978 	smp_wmb();
1979 
1980 	if (!list_empty(&trans->new_bgs))
1981 		btrfs_create_pending_block_groups(trans, fs_info);
1982 
1983 	ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1984 	if (ret) {
1985 		btrfs_end_transaction(trans);
1986 		return ret;
1987 	}
1988 
1989 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1990 		int run_it = 0;
1991 
1992 		/* this mutex is also taken before trying to set
1993 		 * block groups readonly.  We need to make sure
1994 		 * that nobody has set a block group readonly
1995 		 * after a extents from that block group have been
1996 		 * allocated for cache files.  btrfs_set_block_group_ro
1997 		 * will wait for the transaction to commit if it
1998 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1999 		 *
2000 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2001 		 * only one process starts all the block group IO.  It wouldn't
2002 		 * hurt to have more than one go through, but there's no
2003 		 * real advantage to it either.
2004 		 */
2005 		mutex_lock(&fs_info->ro_block_group_mutex);
2006 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2007 				      &cur_trans->flags))
2008 			run_it = 1;
2009 		mutex_unlock(&fs_info->ro_block_group_mutex);
2010 
2011 		if (run_it)
2012 			ret = btrfs_start_dirty_block_groups(trans, fs_info);
2013 	}
2014 	if (ret) {
2015 		btrfs_end_transaction(trans);
2016 		return ret;
2017 	}
2018 
2019 	spin_lock(&fs_info->trans_lock);
2020 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2021 		spin_unlock(&fs_info->trans_lock);
2022 		refcount_inc(&cur_trans->use_count);
2023 		ret = btrfs_end_transaction(trans);
2024 
2025 		wait_for_commit(cur_trans);
2026 
2027 		if (unlikely(cur_trans->aborted))
2028 			ret = cur_trans->aborted;
2029 
2030 		btrfs_put_transaction(cur_trans);
2031 
2032 		return ret;
2033 	}
2034 
2035 	cur_trans->state = TRANS_STATE_COMMIT_START;
2036 	wake_up(&fs_info->transaction_blocked_wait);
2037 
2038 	if (cur_trans->list.prev != &fs_info->trans_list) {
2039 		prev_trans = list_entry(cur_trans->list.prev,
2040 					struct btrfs_transaction, list);
2041 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2042 			refcount_inc(&prev_trans->use_count);
2043 			spin_unlock(&fs_info->trans_lock);
2044 
2045 			wait_for_commit(prev_trans);
2046 			ret = prev_trans->aborted;
2047 
2048 			btrfs_put_transaction(prev_trans);
2049 			if (ret)
2050 				goto cleanup_transaction;
2051 		} else {
2052 			spin_unlock(&fs_info->trans_lock);
2053 		}
2054 	} else {
2055 		spin_unlock(&fs_info->trans_lock);
2056 	}
2057 
2058 	extwriter_counter_dec(cur_trans, trans->type);
2059 
2060 	ret = btrfs_start_delalloc_flush(fs_info);
2061 	if (ret)
2062 		goto cleanup_transaction;
2063 
2064 	ret = btrfs_run_delayed_items(trans, fs_info);
2065 	if (ret)
2066 		goto cleanup_transaction;
2067 
2068 	wait_event(cur_trans->writer_wait,
2069 		   extwriter_counter_read(cur_trans) == 0);
2070 
2071 	/* some pending stuffs might be added after the previous flush. */
2072 	ret = btrfs_run_delayed_items(trans, fs_info);
2073 	if (ret)
2074 		goto cleanup_transaction;
2075 
2076 	btrfs_wait_delalloc_flush(fs_info);
2077 
2078 	btrfs_wait_pending_ordered(cur_trans);
2079 
2080 	btrfs_scrub_pause(fs_info);
2081 	/*
2082 	 * Ok now we need to make sure to block out any other joins while we
2083 	 * commit the transaction.  We could have started a join before setting
2084 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2085 	 */
2086 	spin_lock(&fs_info->trans_lock);
2087 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2088 	spin_unlock(&fs_info->trans_lock);
2089 	wait_event(cur_trans->writer_wait,
2090 		   atomic_read(&cur_trans->num_writers) == 1);
2091 
2092 	/* ->aborted might be set after the previous check, so check it */
2093 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2094 		ret = cur_trans->aborted;
2095 		goto scrub_continue;
2096 	}
2097 	/*
2098 	 * the reloc mutex makes sure that we stop
2099 	 * the balancing code from coming in and moving
2100 	 * extents around in the middle of the commit
2101 	 */
2102 	mutex_lock(&fs_info->reloc_mutex);
2103 
2104 	/*
2105 	 * We needn't worry about the delayed items because we will
2106 	 * deal with them in create_pending_snapshot(), which is the
2107 	 * core function of the snapshot creation.
2108 	 */
2109 	ret = create_pending_snapshots(trans, fs_info);
2110 	if (ret) {
2111 		mutex_unlock(&fs_info->reloc_mutex);
2112 		goto scrub_continue;
2113 	}
2114 
2115 	/*
2116 	 * We insert the dir indexes of the snapshots and update the inode
2117 	 * of the snapshots' parents after the snapshot creation, so there
2118 	 * are some delayed items which are not dealt with. Now deal with
2119 	 * them.
2120 	 *
2121 	 * We needn't worry that this operation will corrupt the snapshots,
2122 	 * because all the tree which are snapshoted will be forced to COW
2123 	 * the nodes and leaves.
2124 	 */
2125 	ret = btrfs_run_delayed_items(trans, fs_info);
2126 	if (ret) {
2127 		mutex_unlock(&fs_info->reloc_mutex);
2128 		goto scrub_continue;
2129 	}
2130 
2131 	ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2132 	if (ret) {
2133 		mutex_unlock(&fs_info->reloc_mutex);
2134 		goto scrub_continue;
2135 	}
2136 
2137 	/*
2138 	 * make sure none of the code above managed to slip in a
2139 	 * delayed item
2140 	 */
2141 	btrfs_assert_delayed_root_empty(fs_info);
2142 
2143 	WARN_ON(cur_trans != trans->transaction);
2144 
2145 	/* btrfs_commit_tree_roots is responsible for getting the
2146 	 * various roots consistent with each other.  Every pointer
2147 	 * in the tree of tree roots has to point to the most up to date
2148 	 * root for every subvolume and other tree.  So, we have to keep
2149 	 * the tree logging code from jumping in and changing any
2150 	 * of the trees.
2151 	 *
2152 	 * At this point in the commit, there can't be any tree-log
2153 	 * writers, but a little lower down we drop the trans mutex
2154 	 * and let new people in.  By holding the tree_log_mutex
2155 	 * from now until after the super is written, we avoid races
2156 	 * with the tree-log code.
2157 	 */
2158 	mutex_lock(&fs_info->tree_log_mutex);
2159 
2160 	ret = commit_fs_roots(trans, fs_info);
2161 	if (ret) {
2162 		mutex_unlock(&fs_info->tree_log_mutex);
2163 		mutex_unlock(&fs_info->reloc_mutex);
2164 		goto scrub_continue;
2165 	}
2166 
2167 	/*
2168 	 * Since the transaction is done, we can apply the pending changes
2169 	 * before the next transaction.
2170 	 */
2171 	btrfs_apply_pending_changes(fs_info);
2172 
2173 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2174 	 * safe to free the root of tree log roots
2175 	 */
2176 	btrfs_free_log_root_tree(trans, fs_info);
2177 
2178 	/*
2179 	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2180 	 * new delayed refs. Must handle them or qgroup can be wrong.
2181 	 */
2182 	ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2183 	if (ret) {
2184 		mutex_unlock(&fs_info->tree_log_mutex);
2185 		mutex_unlock(&fs_info->reloc_mutex);
2186 		goto scrub_continue;
2187 	}
2188 
2189 	/*
2190 	 * Since fs roots are all committed, we can get a quite accurate
2191 	 * new_roots. So let's do quota accounting.
2192 	 */
2193 	ret = btrfs_qgroup_account_extents(trans, fs_info);
2194 	if (ret < 0) {
2195 		mutex_unlock(&fs_info->tree_log_mutex);
2196 		mutex_unlock(&fs_info->reloc_mutex);
2197 		goto scrub_continue;
2198 	}
2199 
2200 	ret = commit_cowonly_roots(trans, fs_info);
2201 	if (ret) {
2202 		mutex_unlock(&fs_info->tree_log_mutex);
2203 		mutex_unlock(&fs_info->reloc_mutex);
2204 		goto scrub_continue;
2205 	}
2206 
2207 	/*
2208 	 * The tasks which save the space cache and inode cache may also
2209 	 * update ->aborted, check it.
2210 	 */
2211 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2212 		ret = cur_trans->aborted;
2213 		mutex_unlock(&fs_info->tree_log_mutex);
2214 		mutex_unlock(&fs_info->reloc_mutex);
2215 		goto scrub_continue;
2216 	}
2217 
2218 	btrfs_prepare_extent_commit(fs_info);
2219 
2220 	cur_trans = fs_info->running_transaction;
2221 
2222 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2223 			    fs_info->tree_root->node);
2224 	list_add_tail(&fs_info->tree_root->dirty_list,
2225 		      &cur_trans->switch_commits);
2226 
2227 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2228 			    fs_info->chunk_root->node);
2229 	list_add_tail(&fs_info->chunk_root->dirty_list,
2230 		      &cur_trans->switch_commits);
2231 
2232 	switch_commit_roots(cur_trans, fs_info);
2233 
2234 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2235 	ASSERT(list_empty(&cur_trans->io_bgs));
2236 	update_super_roots(fs_info);
2237 
2238 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2239 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2240 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2241 	       sizeof(*fs_info->super_copy));
2242 
2243 	btrfs_update_commit_device_size(fs_info);
2244 	btrfs_update_commit_device_bytes_used(fs_info, cur_trans);
2245 
2246 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2247 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2248 
2249 	btrfs_trans_release_chunk_metadata(trans);
2250 
2251 	spin_lock(&fs_info->trans_lock);
2252 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2253 	fs_info->running_transaction = NULL;
2254 	spin_unlock(&fs_info->trans_lock);
2255 	mutex_unlock(&fs_info->reloc_mutex);
2256 
2257 	wake_up(&fs_info->transaction_wait);
2258 
2259 	ret = btrfs_write_and_wait_transaction(trans, fs_info);
2260 	if (ret) {
2261 		btrfs_handle_fs_error(fs_info, ret,
2262 				      "Error while writing out transaction");
2263 		mutex_unlock(&fs_info->tree_log_mutex);
2264 		goto scrub_continue;
2265 	}
2266 
2267 	ret = write_all_supers(fs_info, 0);
2268 	/*
2269 	 * the super is written, we can safely allow the tree-loggers
2270 	 * to go about their business
2271 	 */
2272 	mutex_unlock(&fs_info->tree_log_mutex);
2273 	if (ret)
2274 		goto scrub_continue;
2275 
2276 	btrfs_finish_extent_commit(trans, fs_info);
2277 
2278 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2279 		btrfs_clear_space_info_full(fs_info);
2280 
2281 	fs_info->last_trans_committed = cur_trans->transid;
2282 	/*
2283 	 * We needn't acquire the lock here because there is no other task
2284 	 * which can change it.
2285 	 */
2286 	cur_trans->state = TRANS_STATE_COMPLETED;
2287 	wake_up(&cur_trans->commit_wait);
2288 
2289 	spin_lock(&fs_info->trans_lock);
2290 	list_del_init(&cur_trans->list);
2291 	spin_unlock(&fs_info->trans_lock);
2292 
2293 	btrfs_put_transaction(cur_trans);
2294 	btrfs_put_transaction(cur_trans);
2295 
2296 	if (trans->type & __TRANS_FREEZABLE)
2297 		sb_end_intwrite(fs_info->sb);
2298 
2299 	trace_btrfs_transaction_commit(trans->root);
2300 
2301 	btrfs_scrub_continue(fs_info);
2302 
2303 	if (current->journal_info == trans)
2304 		current->journal_info = NULL;
2305 
2306 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2307 
2308 	/*
2309 	 * If fs has been frozen, we can not handle delayed iputs, otherwise
2310 	 * it'll result in deadlock about SB_FREEZE_FS.
2311 	 */
2312 	if (current != fs_info->transaction_kthread &&
2313 	    current != fs_info->cleaner_kthread &&
2314 	    !test_bit(BTRFS_FS_FROZEN, &fs_info->flags))
2315 		btrfs_run_delayed_iputs(fs_info);
2316 
2317 	return ret;
2318 
2319 scrub_continue:
2320 	btrfs_scrub_continue(fs_info);
2321 cleanup_transaction:
2322 	btrfs_trans_release_metadata(trans, fs_info);
2323 	btrfs_trans_release_chunk_metadata(trans);
2324 	trans->block_rsv = NULL;
2325 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2326 	if (current->journal_info == trans)
2327 		current->journal_info = NULL;
2328 	cleanup_transaction(trans, trans->root, ret);
2329 
2330 	return ret;
2331 }
2332 
2333 /*
2334  * return < 0 if error
2335  * 0 if there are no more dead_roots at the time of call
2336  * 1 there are more to be processed, call me again
2337  *
2338  * The return value indicates there are certainly more snapshots to delete, but
2339  * if there comes a new one during processing, it may return 0. We don't mind,
2340  * because btrfs_commit_super will poke cleaner thread and it will process it a
2341  * few seconds later.
2342  */
2343 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2344 {
2345 	int ret;
2346 	struct btrfs_fs_info *fs_info = root->fs_info;
2347 
2348 	spin_lock(&fs_info->trans_lock);
2349 	if (list_empty(&fs_info->dead_roots)) {
2350 		spin_unlock(&fs_info->trans_lock);
2351 		return 0;
2352 	}
2353 	root = list_first_entry(&fs_info->dead_roots,
2354 			struct btrfs_root, root_list);
2355 	list_del_init(&root->root_list);
2356 	spin_unlock(&fs_info->trans_lock);
2357 
2358 	btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2359 
2360 	btrfs_kill_all_delayed_nodes(root);
2361 
2362 	if (btrfs_header_backref_rev(root->node) <
2363 			BTRFS_MIXED_BACKREF_REV)
2364 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2365 	else
2366 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2367 
2368 	return (ret < 0) ? 0 : 1;
2369 }
2370 
2371 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2372 {
2373 	unsigned long prev;
2374 	unsigned long bit;
2375 
2376 	prev = xchg(&fs_info->pending_changes, 0);
2377 	if (!prev)
2378 		return;
2379 
2380 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2381 	if (prev & bit)
2382 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2383 	prev &= ~bit;
2384 
2385 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2386 	if (prev & bit)
2387 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2388 	prev &= ~bit;
2389 
2390 	bit = 1 << BTRFS_PENDING_COMMIT;
2391 	if (prev & bit)
2392 		btrfs_debug(fs_info, "pending commit done");
2393 	prev &= ~bit;
2394 
2395 	if (prev)
2396 		btrfs_warn(fs_info,
2397 			"unknown pending changes left 0x%lx, ignoring", prev);
2398 }
2399