xref: /openbmc/linux/fs/btrfs/transaction.c (revision 97da55fc)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 
35 #define BTRFS_ROOT_TRANS_TAG 0
36 
37 void put_transaction(struct btrfs_transaction *transaction)
38 {
39 	WARN_ON(atomic_read(&transaction->use_count) == 0);
40 	if (atomic_dec_and_test(&transaction->use_count)) {
41 		BUG_ON(!list_empty(&transaction->list));
42 		WARN_ON(transaction->delayed_refs.root.rb_node);
43 		kmem_cache_free(btrfs_transaction_cachep, transaction);
44 	}
45 }
46 
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49 	free_extent_buffer(root->commit_root);
50 	root->commit_root = btrfs_root_node(root);
51 }
52 
53 static inline int can_join_transaction(struct btrfs_transaction *trans,
54 				       int type)
55 {
56 	return !(trans->in_commit &&
57 		 type != TRANS_JOIN &&
58 		 type != TRANS_JOIN_NOLOCK);
59 }
60 
61 /*
62  * either allocate a new transaction or hop into the existing one
63  */
64 static noinline int join_transaction(struct btrfs_root *root, int type)
65 {
66 	struct btrfs_transaction *cur_trans;
67 	struct btrfs_fs_info *fs_info = root->fs_info;
68 
69 	spin_lock(&fs_info->trans_lock);
70 loop:
71 	/* The file system has been taken offline. No new transactions. */
72 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
73 		spin_unlock(&fs_info->trans_lock);
74 		return -EROFS;
75 	}
76 
77 	if (fs_info->trans_no_join) {
78 		/*
79 		 * If we are JOIN_NOLOCK we're already committing a current
80 		 * transaction, we just need a handle to deal with something
81 		 * when committing the transaction, such as inode cache and
82 		 * space cache. It is a special case.
83 		 */
84 		if (type != TRANS_JOIN_NOLOCK) {
85 			spin_unlock(&fs_info->trans_lock);
86 			return -EBUSY;
87 		}
88 	}
89 
90 	cur_trans = fs_info->running_transaction;
91 	if (cur_trans) {
92 		if (cur_trans->aborted) {
93 			spin_unlock(&fs_info->trans_lock);
94 			return cur_trans->aborted;
95 		}
96 		if (!can_join_transaction(cur_trans, type)) {
97 			spin_unlock(&fs_info->trans_lock);
98 			return -EBUSY;
99 		}
100 		atomic_inc(&cur_trans->use_count);
101 		atomic_inc(&cur_trans->num_writers);
102 		cur_trans->num_joined++;
103 		spin_unlock(&fs_info->trans_lock);
104 		return 0;
105 	}
106 	spin_unlock(&fs_info->trans_lock);
107 
108 	/*
109 	 * If we are ATTACH, we just want to catch the current transaction,
110 	 * and commit it. If there is no transaction, just return ENOENT.
111 	 */
112 	if (type == TRANS_ATTACH)
113 		return -ENOENT;
114 
115 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
116 	if (!cur_trans)
117 		return -ENOMEM;
118 
119 	spin_lock(&fs_info->trans_lock);
120 	if (fs_info->running_transaction) {
121 		/*
122 		 * someone started a transaction after we unlocked.  Make sure
123 		 * to redo the trans_no_join checks above
124 		 */
125 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
126 		goto loop;
127 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
128 		spin_unlock(&fs_info->trans_lock);
129 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
130 		return -EROFS;
131 	}
132 
133 	atomic_set(&cur_trans->num_writers, 1);
134 	cur_trans->num_joined = 0;
135 	init_waitqueue_head(&cur_trans->writer_wait);
136 	init_waitqueue_head(&cur_trans->commit_wait);
137 	cur_trans->in_commit = 0;
138 	cur_trans->blocked = 0;
139 	/*
140 	 * One for this trans handle, one so it will live on until we
141 	 * commit the transaction.
142 	 */
143 	atomic_set(&cur_trans->use_count, 2);
144 	cur_trans->commit_done = 0;
145 	cur_trans->start_time = get_seconds();
146 
147 	cur_trans->delayed_refs.root = RB_ROOT;
148 	cur_trans->delayed_refs.num_entries = 0;
149 	cur_trans->delayed_refs.num_heads_ready = 0;
150 	cur_trans->delayed_refs.num_heads = 0;
151 	cur_trans->delayed_refs.flushing = 0;
152 	cur_trans->delayed_refs.run_delayed_start = 0;
153 
154 	/*
155 	 * although the tree mod log is per file system and not per transaction,
156 	 * the log must never go across transaction boundaries.
157 	 */
158 	smp_mb();
159 	if (!list_empty(&fs_info->tree_mod_seq_list))
160 		WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
161 			"creating a fresh transaction\n");
162 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
163 		WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
164 			"creating a fresh transaction\n");
165 	atomic_set(&fs_info->tree_mod_seq, 0);
166 
167 	spin_lock_init(&cur_trans->commit_lock);
168 	spin_lock_init(&cur_trans->delayed_refs.lock);
169 	atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
170 	atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
171 	init_waitqueue_head(&cur_trans->delayed_refs.wait);
172 
173 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
174 	INIT_LIST_HEAD(&cur_trans->ordered_operations);
175 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
176 	extent_io_tree_init(&cur_trans->dirty_pages,
177 			     fs_info->btree_inode->i_mapping);
178 	fs_info->generation++;
179 	cur_trans->transid = fs_info->generation;
180 	fs_info->running_transaction = cur_trans;
181 	cur_trans->aborted = 0;
182 	spin_unlock(&fs_info->trans_lock);
183 
184 	return 0;
185 }
186 
187 /*
188  * this does all the record keeping required to make sure that a reference
189  * counted root is properly recorded in a given transaction.  This is required
190  * to make sure the old root from before we joined the transaction is deleted
191  * when the transaction commits
192  */
193 static int record_root_in_trans(struct btrfs_trans_handle *trans,
194 			       struct btrfs_root *root)
195 {
196 	if (root->ref_cows && root->last_trans < trans->transid) {
197 		WARN_ON(root == root->fs_info->extent_root);
198 		WARN_ON(root->commit_root != root->node);
199 
200 		/*
201 		 * see below for in_trans_setup usage rules
202 		 * we have the reloc mutex held now, so there
203 		 * is only one writer in this function
204 		 */
205 		root->in_trans_setup = 1;
206 
207 		/* make sure readers find in_trans_setup before
208 		 * they find our root->last_trans update
209 		 */
210 		smp_wmb();
211 
212 		spin_lock(&root->fs_info->fs_roots_radix_lock);
213 		if (root->last_trans == trans->transid) {
214 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
215 			return 0;
216 		}
217 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
218 			   (unsigned long)root->root_key.objectid,
219 			   BTRFS_ROOT_TRANS_TAG);
220 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
221 		root->last_trans = trans->transid;
222 
223 		/* this is pretty tricky.  We don't want to
224 		 * take the relocation lock in btrfs_record_root_in_trans
225 		 * unless we're really doing the first setup for this root in
226 		 * this transaction.
227 		 *
228 		 * Normally we'd use root->last_trans as a flag to decide
229 		 * if we want to take the expensive mutex.
230 		 *
231 		 * But, we have to set root->last_trans before we
232 		 * init the relocation root, otherwise, we trip over warnings
233 		 * in ctree.c.  The solution used here is to flag ourselves
234 		 * with root->in_trans_setup.  When this is 1, we're still
235 		 * fixing up the reloc trees and everyone must wait.
236 		 *
237 		 * When this is zero, they can trust root->last_trans and fly
238 		 * through btrfs_record_root_in_trans without having to take the
239 		 * lock.  smp_wmb() makes sure that all the writes above are
240 		 * done before we pop in the zero below
241 		 */
242 		btrfs_init_reloc_root(trans, root);
243 		smp_wmb();
244 		root->in_trans_setup = 0;
245 	}
246 	return 0;
247 }
248 
249 
250 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
251 			       struct btrfs_root *root)
252 {
253 	if (!root->ref_cows)
254 		return 0;
255 
256 	/*
257 	 * see record_root_in_trans for comments about in_trans_setup usage
258 	 * and barriers
259 	 */
260 	smp_rmb();
261 	if (root->last_trans == trans->transid &&
262 	    !root->in_trans_setup)
263 		return 0;
264 
265 	mutex_lock(&root->fs_info->reloc_mutex);
266 	record_root_in_trans(trans, root);
267 	mutex_unlock(&root->fs_info->reloc_mutex);
268 
269 	return 0;
270 }
271 
272 /* wait for commit against the current transaction to become unblocked
273  * when this is done, it is safe to start a new transaction, but the current
274  * transaction might not be fully on disk.
275  */
276 static void wait_current_trans(struct btrfs_root *root)
277 {
278 	struct btrfs_transaction *cur_trans;
279 
280 	spin_lock(&root->fs_info->trans_lock);
281 	cur_trans = root->fs_info->running_transaction;
282 	if (cur_trans && cur_trans->blocked) {
283 		atomic_inc(&cur_trans->use_count);
284 		spin_unlock(&root->fs_info->trans_lock);
285 
286 		wait_event(root->fs_info->transaction_wait,
287 			   !cur_trans->blocked);
288 		put_transaction(cur_trans);
289 	} else {
290 		spin_unlock(&root->fs_info->trans_lock);
291 	}
292 }
293 
294 static int may_wait_transaction(struct btrfs_root *root, int type)
295 {
296 	if (root->fs_info->log_root_recovering)
297 		return 0;
298 
299 	if (type == TRANS_USERSPACE)
300 		return 1;
301 
302 	if (type == TRANS_START &&
303 	    !atomic_read(&root->fs_info->open_ioctl_trans))
304 		return 1;
305 
306 	return 0;
307 }
308 
309 static struct btrfs_trans_handle *
310 start_transaction(struct btrfs_root *root, u64 num_items, int type,
311 		  enum btrfs_reserve_flush_enum flush)
312 {
313 	struct btrfs_trans_handle *h;
314 	struct btrfs_transaction *cur_trans;
315 	u64 num_bytes = 0;
316 	int ret;
317 	u64 qgroup_reserved = 0;
318 
319 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
320 		return ERR_PTR(-EROFS);
321 
322 	if (current->journal_info) {
323 		WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
324 		h = current->journal_info;
325 		h->use_count++;
326 		WARN_ON(h->use_count > 2);
327 		h->orig_rsv = h->block_rsv;
328 		h->block_rsv = NULL;
329 		goto got_it;
330 	}
331 
332 	/*
333 	 * Do the reservation before we join the transaction so we can do all
334 	 * the appropriate flushing if need be.
335 	 */
336 	if (num_items > 0 && root != root->fs_info->chunk_root) {
337 		if (root->fs_info->quota_enabled &&
338 		    is_fstree(root->root_key.objectid)) {
339 			qgroup_reserved = num_items * root->leafsize;
340 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
341 			if (ret)
342 				return ERR_PTR(ret);
343 		}
344 
345 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
346 		ret = btrfs_block_rsv_add(root,
347 					  &root->fs_info->trans_block_rsv,
348 					  num_bytes, flush);
349 		if (ret)
350 			goto reserve_fail;
351 	}
352 again:
353 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
354 	if (!h) {
355 		ret = -ENOMEM;
356 		goto alloc_fail;
357 	}
358 
359 	/*
360 	 * If we are JOIN_NOLOCK we're already committing a transaction and
361 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
362 	 * because we're already holding a ref.  We need this because we could
363 	 * have raced in and did an fsync() on a file which can kick a commit
364 	 * and then we deadlock with somebody doing a freeze.
365 	 *
366 	 * If we are ATTACH, it means we just want to catch the current
367 	 * transaction and commit it, so we needn't do sb_start_intwrite().
368 	 */
369 	if (type < TRANS_JOIN_NOLOCK)
370 		sb_start_intwrite(root->fs_info->sb);
371 
372 	if (may_wait_transaction(root, type))
373 		wait_current_trans(root);
374 
375 	do {
376 		ret = join_transaction(root, type);
377 		if (ret == -EBUSY) {
378 			wait_current_trans(root);
379 			if (unlikely(type == TRANS_ATTACH))
380 				ret = -ENOENT;
381 		}
382 	} while (ret == -EBUSY);
383 
384 	if (ret < 0) {
385 		/* We must get the transaction if we are JOIN_NOLOCK. */
386 		BUG_ON(type == TRANS_JOIN_NOLOCK);
387 		goto join_fail;
388 	}
389 
390 	cur_trans = root->fs_info->running_transaction;
391 
392 	h->transid = cur_trans->transid;
393 	h->transaction = cur_trans;
394 	h->blocks_used = 0;
395 	h->bytes_reserved = 0;
396 	h->root = root;
397 	h->delayed_ref_updates = 0;
398 	h->use_count = 1;
399 	h->adding_csums = 0;
400 	h->block_rsv = NULL;
401 	h->orig_rsv = NULL;
402 	h->aborted = 0;
403 	h->qgroup_reserved = 0;
404 	h->delayed_ref_elem.seq = 0;
405 	h->type = type;
406 	h->allocating_chunk = false;
407 	INIT_LIST_HEAD(&h->qgroup_ref_list);
408 	INIT_LIST_HEAD(&h->new_bgs);
409 
410 	smp_mb();
411 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
412 		btrfs_commit_transaction(h, root);
413 		goto again;
414 	}
415 
416 	if (num_bytes) {
417 		trace_btrfs_space_reservation(root->fs_info, "transaction",
418 					      h->transid, num_bytes, 1);
419 		h->block_rsv = &root->fs_info->trans_block_rsv;
420 		h->bytes_reserved = num_bytes;
421 	}
422 	h->qgroup_reserved = qgroup_reserved;
423 
424 got_it:
425 	btrfs_record_root_in_trans(h, root);
426 
427 	if (!current->journal_info && type != TRANS_USERSPACE)
428 		current->journal_info = h;
429 	return h;
430 
431 join_fail:
432 	if (type < TRANS_JOIN_NOLOCK)
433 		sb_end_intwrite(root->fs_info->sb);
434 	kmem_cache_free(btrfs_trans_handle_cachep, h);
435 alloc_fail:
436 	if (num_bytes)
437 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
438 					num_bytes);
439 reserve_fail:
440 	if (qgroup_reserved)
441 		btrfs_qgroup_free(root, qgroup_reserved);
442 	return ERR_PTR(ret);
443 }
444 
445 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
446 						   int num_items)
447 {
448 	return start_transaction(root, num_items, TRANS_START,
449 				 BTRFS_RESERVE_FLUSH_ALL);
450 }
451 
452 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
453 					struct btrfs_root *root, int num_items)
454 {
455 	return start_transaction(root, num_items, TRANS_START,
456 				 BTRFS_RESERVE_FLUSH_LIMIT);
457 }
458 
459 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
460 {
461 	return start_transaction(root, 0, TRANS_JOIN, 0);
462 }
463 
464 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
465 {
466 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
467 }
468 
469 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
470 {
471 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
472 }
473 
474 /*
475  * btrfs_attach_transaction() - catch the running transaction
476  *
477  * It is used when we want to commit the current the transaction, but
478  * don't want to start a new one.
479  *
480  * Note: If this function return -ENOENT, it just means there is no
481  * running transaction. But it is possible that the inactive transaction
482  * is still in the memory, not fully on disk. If you hope there is no
483  * inactive transaction in the fs when -ENOENT is returned, you should
484  * invoke
485  *     btrfs_attach_transaction_barrier()
486  */
487 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
488 {
489 	return start_transaction(root, 0, TRANS_ATTACH, 0);
490 }
491 
492 /*
493  * btrfs_attach_transaction() - catch the running transaction
494  *
495  * It is similar to the above function, the differentia is this one
496  * will wait for all the inactive transactions until they fully
497  * complete.
498  */
499 struct btrfs_trans_handle *
500 btrfs_attach_transaction_barrier(struct btrfs_root *root)
501 {
502 	struct btrfs_trans_handle *trans;
503 
504 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
505 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
506 		btrfs_wait_for_commit(root, 0);
507 
508 	return trans;
509 }
510 
511 /* wait for a transaction commit to be fully complete */
512 static noinline void wait_for_commit(struct btrfs_root *root,
513 				    struct btrfs_transaction *commit)
514 {
515 	wait_event(commit->commit_wait, commit->commit_done);
516 }
517 
518 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
519 {
520 	struct btrfs_transaction *cur_trans = NULL, *t;
521 	int ret = 0;
522 
523 	if (transid) {
524 		if (transid <= root->fs_info->last_trans_committed)
525 			goto out;
526 
527 		ret = -EINVAL;
528 		/* find specified transaction */
529 		spin_lock(&root->fs_info->trans_lock);
530 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
531 			if (t->transid == transid) {
532 				cur_trans = t;
533 				atomic_inc(&cur_trans->use_count);
534 				ret = 0;
535 				break;
536 			}
537 			if (t->transid > transid) {
538 				ret = 0;
539 				break;
540 			}
541 		}
542 		spin_unlock(&root->fs_info->trans_lock);
543 		/* The specified transaction doesn't exist */
544 		if (!cur_trans)
545 			goto out;
546 	} else {
547 		/* find newest transaction that is committing | committed */
548 		spin_lock(&root->fs_info->trans_lock);
549 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
550 					    list) {
551 			if (t->in_commit) {
552 				if (t->commit_done)
553 					break;
554 				cur_trans = t;
555 				atomic_inc(&cur_trans->use_count);
556 				break;
557 			}
558 		}
559 		spin_unlock(&root->fs_info->trans_lock);
560 		if (!cur_trans)
561 			goto out;  /* nothing committing|committed */
562 	}
563 
564 	wait_for_commit(root, cur_trans);
565 	put_transaction(cur_trans);
566 out:
567 	return ret;
568 }
569 
570 void btrfs_throttle(struct btrfs_root *root)
571 {
572 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
573 		wait_current_trans(root);
574 }
575 
576 static int should_end_transaction(struct btrfs_trans_handle *trans,
577 				  struct btrfs_root *root)
578 {
579 	int ret;
580 
581 	ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
582 	return ret ? 1 : 0;
583 }
584 
585 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
586 				 struct btrfs_root *root)
587 {
588 	struct btrfs_transaction *cur_trans = trans->transaction;
589 	int updates;
590 	int err;
591 
592 	smp_mb();
593 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
594 		return 1;
595 
596 	updates = trans->delayed_ref_updates;
597 	trans->delayed_ref_updates = 0;
598 	if (updates) {
599 		err = btrfs_run_delayed_refs(trans, root, updates);
600 		if (err) /* Error code will also eval true */
601 			return err;
602 	}
603 
604 	return should_end_transaction(trans, root);
605 }
606 
607 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
608 			  struct btrfs_root *root, int throttle)
609 {
610 	struct btrfs_transaction *cur_trans = trans->transaction;
611 	struct btrfs_fs_info *info = root->fs_info;
612 	int count = 0;
613 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
614 	int err = 0;
615 
616 	if (--trans->use_count) {
617 		trans->block_rsv = trans->orig_rsv;
618 		return 0;
619 	}
620 
621 	/*
622 	 * do the qgroup accounting as early as possible
623 	 */
624 	err = btrfs_delayed_refs_qgroup_accounting(trans, info);
625 
626 	btrfs_trans_release_metadata(trans, root);
627 	trans->block_rsv = NULL;
628 	/*
629 	 * the same root has to be passed to start_transaction and
630 	 * end_transaction. Subvolume quota depends on this.
631 	 */
632 	WARN_ON(trans->root != root);
633 
634 	if (trans->qgroup_reserved) {
635 		btrfs_qgroup_free(root, trans->qgroup_reserved);
636 		trans->qgroup_reserved = 0;
637 	}
638 
639 	if (!list_empty(&trans->new_bgs))
640 		btrfs_create_pending_block_groups(trans, root);
641 
642 	while (count < 1) {
643 		unsigned long cur = trans->delayed_ref_updates;
644 		trans->delayed_ref_updates = 0;
645 		if (cur &&
646 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
647 			trans->delayed_ref_updates = 0;
648 			btrfs_run_delayed_refs(trans, root, cur);
649 		} else {
650 			break;
651 		}
652 		count++;
653 	}
654 
655 	btrfs_trans_release_metadata(trans, root);
656 	trans->block_rsv = NULL;
657 
658 	if (!list_empty(&trans->new_bgs))
659 		btrfs_create_pending_block_groups(trans, root);
660 
661 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
662 	    should_end_transaction(trans, root)) {
663 		trans->transaction->blocked = 1;
664 		smp_wmb();
665 	}
666 
667 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
668 		if (throttle) {
669 			/*
670 			 * We may race with somebody else here so end up having
671 			 * to call end_transaction on ourselves again, so inc
672 			 * our use_count.
673 			 */
674 			trans->use_count++;
675 			return btrfs_commit_transaction(trans, root);
676 		} else {
677 			wake_up_process(info->transaction_kthread);
678 		}
679 	}
680 
681 	if (trans->type < TRANS_JOIN_NOLOCK)
682 		sb_end_intwrite(root->fs_info->sb);
683 
684 	WARN_ON(cur_trans != info->running_transaction);
685 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
686 	atomic_dec(&cur_trans->num_writers);
687 
688 	smp_mb();
689 	if (waitqueue_active(&cur_trans->writer_wait))
690 		wake_up(&cur_trans->writer_wait);
691 	put_transaction(cur_trans);
692 
693 	if (current->journal_info == trans)
694 		current->journal_info = NULL;
695 
696 	if (throttle)
697 		btrfs_run_delayed_iputs(root);
698 
699 	if (trans->aborted ||
700 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
701 		err = -EIO;
702 	assert_qgroups_uptodate(trans);
703 
704 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
705 	return err;
706 }
707 
708 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
709 			  struct btrfs_root *root)
710 {
711 	int ret;
712 
713 	ret = __btrfs_end_transaction(trans, root, 0);
714 	if (ret)
715 		return ret;
716 	return 0;
717 }
718 
719 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
720 				   struct btrfs_root *root)
721 {
722 	int ret;
723 
724 	ret = __btrfs_end_transaction(trans, root, 1);
725 	if (ret)
726 		return ret;
727 	return 0;
728 }
729 
730 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
731 				struct btrfs_root *root)
732 {
733 	return __btrfs_end_transaction(trans, root, 1);
734 }
735 
736 /*
737  * when btree blocks are allocated, they have some corresponding bits set for
738  * them in one of two extent_io trees.  This is used to make sure all of
739  * those extents are sent to disk but does not wait on them
740  */
741 int btrfs_write_marked_extents(struct btrfs_root *root,
742 			       struct extent_io_tree *dirty_pages, int mark)
743 {
744 	int err = 0;
745 	int werr = 0;
746 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
747 	struct extent_state *cached_state = NULL;
748 	u64 start = 0;
749 	u64 end;
750 	struct blk_plug plug;
751 
752 	blk_start_plug(&plug);
753 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
754 				      mark, &cached_state)) {
755 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
756 				   mark, &cached_state, GFP_NOFS);
757 		cached_state = NULL;
758 		err = filemap_fdatawrite_range(mapping, start, end);
759 		if (err)
760 			werr = err;
761 		cond_resched();
762 		start = end + 1;
763 	}
764 	if (err)
765 		werr = err;
766 	blk_finish_plug(&plug);
767 	return werr;
768 }
769 
770 /*
771  * when btree blocks are allocated, they have some corresponding bits set for
772  * them in one of two extent_io trees.  This is used to make sure all of
773  * those extents are on disk for transaction or log commit.  We wait
774  * on all the pages and clear them from the dirty pages state tree
775  */
776 int btrfs_wait_marked_extents(struct btrfs_root *root,
777 			      struct extent_io_tree *dirty_pages, int mark)
778 {
779 	int err = 0;
780 	int werr = 0;
781 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
782 	struct extent_state *cached_state = NULL;
783 	u64 start = 0;
784 	u64 end;
785 
786 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
787 				      EXTENT_NEED_WAIT, &cached_state)) {
788 		clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
789 				 0, 0, &cached_state, GFP_NOFS);
790 		err = filemap_fdatawait_range(mapping, start, end);
791 		if (err)
792 			werr = err;
793 		cond_resched();
794 		start = end + 1;
795 	}
796 	if (err)
797 		werr = err;
798 	return werr;
799 }
800 
801 /*
802  * when btree blocks are allocated, they have some corresponding bits set for
803  * them in one of two extent_io trees.  This is used to make sure all of
804  * those extents are on disk for transaction or log commit
805  */
806 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
807 				struct extent_io_tree *dirty_pages, int mark)
808 {
809 	int ret;
810 	int ret2;
811 
812 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
813 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
814 
815 	if (ret)
816 		return ret;
817 	if (ret2)
818 		return ret2;
819 	return 0;
820 }
821 
822 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
823 				     struct btrfs_root *root)
824 {
825 	if (!trans || !trans->transaction) {
826 		struct inode *btree_inode;
827 		btree_inode = root->fs_info->btree_inode;
828 		return filemap_write_and_wait(btree_inode->i_mapping);
829 	}
830 	return btrfs_write_and_wait_marked_extents(root,
831 					   &trans->transaction->dirty_pages,
832 					   EXTENT_DIRTY);
833 }
834 
835 /*
836  * this is used to update the root pointer in the tree of tree roots.
837  *
838  * But, in the case of the extent allocation tree, updating the root
839  * pointer may allocate blocks which may change the root of the extent
840  * allocation tree.
841  *
842  * So, this loops and repeats and makes sure the cowonly root didn't
843  * change while the root pointer was being updated in the metadata.
844  */
845 static int update_cowonly_root(struct btrfs_trans_handle *trans,
846 			       struct btrfs_root *root)
847 {
848 	int ret;
849 	u64 old_root_bytenr;
850 	u64 old_root_used;
851 	struct btrfs_root *tree_root = root->fs_info->tree_root;
852 
853 	old_root_used = btrfs_root_used(&root->root_item);
854 	btrfs_write_dirty_block_groups(trans, root);
855 
856 	while (1) {
857 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
858 		if (old_root_bytenr == root->node->start &&
859 		    old_root_used == btrfs_root_used(&root->root_item))
860 			break;
861 
862 		btrfs_set_root_node(&root->root_item, root->node);
863 		ret = btrfs_update_root(trans, tree_root,
864 					&root->root_key,
865 					&root->root_item);
866 		if (ret)
867 			return ret;
868 
869 		old_root_used = btrfs_root_used(&root->root_item);
870 		ret = btrfs_write_dirty_block_groups(trans, root);
871 		if (ret)
872 			return ret;
873 	}
874 
875 	if (root != root->fs_info->extent_root)
876 		switch_commit_root(root);
877 
878 	return 0;
879 }
880 
881 /*
882  * update all the cowonly tree roots on disk
883  *
884  * The error handling in this function may not be obvious. Any of the
885  * failures will cause the file system to go offline. We still need
886  * to clean up the delayed refs.
887  */
888 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
889 					 struct btrfs_root *root)
890 {
891 	struct btrfs_fs_info *fs_info = root->fs_info;
892 	struct list_head *next;
893 	struct extent_buffer *eb;
894 	int ret;
895 
896 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
897 	if (ret)
898 		return ret;
899 
900 	eb = btrfs_lock_root_node(fs_info->tree_root);
901 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
902 			      0, &eb);
903 	btrfs_tree_unlock(eb);
904 	free_extent_buffer(eb);
905 
906 	if (ret)
907 		return ret;
908 
909 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
910 	if (ret)
911 		return ret;
912 
913 	ret = btrfs_run_dev_stats(trans, root->fs_info);
914 	WARN_ON(ret);
915 	ret = btrfs_run_dev_replace(trans, root->fs_info);
916 	WARN_ON(ret);
917 
918 	ret = btrfs_run_qgroups(trans, root->fs_info);
919 	BUG_ON(ret);
920 
921 	/* run_qgroups might have added some more refs */
922 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
923 	BUG_ON(ret);
924 
925 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
926 		next = fs_info->dirty_cowonly_roots.next;
927 		list_del_init(next);
928 		root = list_entry(next, struct btrfs_root, dirty_list);
929 
930 		ret = update_cowonly_root(trans, root);
931 		if (ret)
932 			return ret;
933 	}
934 
935 	down_write(&fs_info->extent_commit_sem);
936 	switch_commit_root(fs_info->extent_root);
937 	up_write(&fs_info->extent_commit_sem);
938 
939 	btrfs_after_dev_replace_commit(fs_info);
940 
941 	return 0;
942 }
943 
944 /*
945  * dead roots are old snapshots that need to be deleted.  This allocates
946  * a dirty root struct and adds it into the list of dead roots that need to
947  * be deleted
948  */
949 int btrfs_add_dead_root(struct btrfs_root *root)
950 {
951 	spin_lock(&root->fs_info->trans_lock);
952 	list_add(&root->root_list, &root->fs_info->dead_roots);
953 	spin_unlock(&root->fs_info->trans_lock);
954 	return 0;
955 }
956 
957 /*
958  * update all the cowonly tree roots on disk
959  */
960 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
961 				    struct btrfs_root *root)
962 {
963 	struct btrfs_root *gang[8];
964 	struct btrfs_fs_info *fs_info = root->fs_info;
965 	int i;
966 	int ret;
967 	int err = 0;
968 
969 	spin_lock(&fs_info->fs_roots_radix_lock);
970 	while (1) {
971 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
972 						 (void **)gang, 0,
973 						 ARRAY_SIZE(gang),
974 						 BTRFS_ROOT_TRANS_TAG);
975 		if (ret == 0)
976 			break;
977 		for (i = 0; i < ret; i++) {
978 			root = gang[i];
979 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
980 					(unsigned long)root->root_key.objectid,
981 					BTRFS_ROOT_TRANS_TAG);
982 			spin_unlock(&fs_info->fs_roots_radix_lock);
983 
984 			btrfs_free_log(trans, root);
985 			btrfs_update_reloc_root(trans, root);
986 			btrfs_orphan_commit_root(trans, root);
987 
988 			btrfs_save_ino_cache(root, trans);
989 
990 			/* see comments in should_cow_block() */
991 			root->force_cow = 0;
992 			smp_wmb();
993 
994 			if (root->commit_root != root->node) {
995 				mutex_lock(&root->fs_commit_mutex);
996 				switch_commit_root(root);
997 				btrfs_unpin_free_ino(root);
998 				mutex_unlock(&root->fs_commit_mutex);
999 
1000 				btrfs_set_root_node(&root->root_item,
1001 						    root->node);
1002 			}
1003 
1004 			err = btrfs_update_root(trans, fs_info->tree_root,
1005 						&root->root_key,
1006 						&root->root_item);
1007 			spin_lock(&fs_info->fs_roots_radix_lock);
1008 			if (err)
1009 				break;
1010 		}
1011 	}
1012 	spin_unlock(&fs_info->fs_roots_radix_lock);
1013 	return err;
1014 }
1015 
1016 /*
1017  * defrag a given btree.
1018  * Every leaf in the btree is read and defragged.
1019  */
1020 int btrfs_defrag_root(struct btrfs_root *root)
1021 {
1022 	struct btrfs_fs_info *info = root->fs_info;
1023 	struct btrfs_trans_handle *trans;
1024 	int ret;
1025 
1026 	if (xchg(&root->defrag_running, 1))
1027 		return 0;
1028 
1029 	while (1) {
1030 		trans = btrfs_start_transaction(root, 0);
1031 		if (IS_ERR(trans))
1032 			return PTR_ERR(trans);
1033 
1034 		ret = btrfs_defrag_leaves(trans, root);
1035 
1036 		btrfs_end_transaction(trans, root);
1037 		btrfs_btree_balance_dirty(info->tree_root);
1038 		cond_resched();
1039 
1040 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1041 			break;
1042 
1043 		if (btrfs_defrag_cancelled(root->fs_info)) {
1044 			printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1045 			ret = -EAGAIN;
1046 			break;
1047 		}
1048 	}
1049 	root->defrag_running = 0;
1050 	return ret;
1051 }
1052 
1053 /*
1054  * new snapshots need to be created at a very specific time in the
1055  * transaction commit.  This does the actual creation.
1056  *
1057  * Note:
1058  * If the error which may affect the commitment of the current transaction
1059  * happens, we should return the error number. If the error which just affect
1060  * the creation of the pending snapshots, just return 0.
1061  */
1062 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1063 				   struct btrfs_fs_info *fs_info,
1064 				   struct btrfs_pending_snapshot *pending)
1065 {
1066 	struct btrfs_key key;
1067 	struct btrfs_root_item *new_root_item;
1068 	struct btrfs_root *tree_root = fs_info->tree_root;
1069 	struct btrfs_root *root = pending->root;
1070 	struct btrfs_root *parent_root;
1071 	struct btrfs_block_rsv *rsv;
1072 	struct inode *parent_inode;
1073 	struct btrfs_path *path;
1074 	struct btrfs_dir_item *dir_item;
1075 	struct dentry *dentry;
1076 	struct extent_buffer *tmp;
1077 	struct extent_buffer *old;
1078 	struct timespec cur_time = CURRENT_TIME;
1079 	int ret = 0;
1080 	u64 to_reserve = 0;
1081 	u64 index = 0;
1082 	u64 objectid;
1083 	u64 root_flags;
1084 	uuid_le new_uuid;
1085 
1086 	path = btrfs_alloc_path();
1087 	if (!path) {
1088 		pending->error = -ENOMEM;
1089 		return 0;
1090 	}
1091 
1092 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1093 	if (!new_root_item) {
1094 		pending->error = -ENOMEM;
1095 		goto root_item_alloc_fail;
1096 	}
1097 
1098 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1099 	if (pending->error)
1100 		goto no_free_objectid;
1101 
1102 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1103 
1104 	if (to_reserve > 0) {
1105 		pending->error = btrfs_block_rsv_add(root,
1106 						     &pending->block_rsv,
1107 						     to_reserve,
1108 						     BTRFS_RESERVE_NO_FLUSH);
1109 		if (pending->error)
1110 			goto no_free_objectid;
1111 	}
1112 
1113 	pending->error = btrfs_qgroup_inherit(trans, fs_info,
1114 					      root->root_key.objectid,
1115 					      objectid, pending->inherit);
1116 	if (pending->error)
1117 		goto no_free_objectid;
1118 
1119 	key.objectid = objectid;
1120 	key.offset = (u64)-1;
1121 	key.type = BTRFS_ROOT_ITEM_KEY;
1122 
1123 	rsv = trans->block_rsv;
1124 	trans->block_rsv = &pending->block_rsv;
1125 	trans->bytes_reserved = trans->block_rsv->reserved;
1126 
1127 	dentry = pending->dentry;
1128 	parent_inode = pending->dir;
1129 	parent_root = BTRFS_I(parent_inode)->root;
1130 	record_root_in_trans(trans, parent_root);
1131 
1132 	/*
1133 	 * insert the directory item
1134 	 */
1135 	ret = btrfs_set_inode_index(parent_inode, &index);
1136 	BUG_ON(ret); /* -ENOMEM */
1137 
1138 	/* check if there is a file/dir which has the same name. */
1139 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1140 					 btrfs_ino(parent_inode),
1141 					 dentry->d_name.name,
1142 					 dentry->d_name.len, 0);
1143 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1144 		pending->error = -EEXIST;
1145 		goto dir_item_existed;
1146 	} else if (IS_ERR(dir_item)) {
1147 		ret = PTR_ERR(dir_item);
1148 		btrfs_abort_transaction(trans, root, ret);
1149 		goto fail;
1150 	}
1151 	btrfs_release_path(path);
1152 
1153 	/*
1154 	 * pull in the delayed directory update
1155 	 * and the delayed inode item
1156 	 * otherwise we corrupt the FS during
1157 	 * snapshot
1158 	 */
1159 	ret = btrfs_run_delayed_items(trans, root);
1160 	if (ret) {	/* Transaction aborted */
1161 		btrfs_abort_transaction(trans, root, ret);
1162 		goto fail;
1163 	}
1164 
1165 	record_root_in_trans(trans, root);
1166 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1167 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1168 	btrfs_check_and_init_root_item(new_root_item);
1169 
1170 	root_flags = btrfs_root_flags(new_root_item);
1171 	if (pending->readonly)
1172 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1173 	else
1174 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1175 	btrfs_set_root_flags(new_root_item, root_flags);
1176 
1177 	btrfs_set_root_generation_v2(new_root_item,
1178 			trans->transid);
1179 	uuid_le_gen(&new_uuid);
1180 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1181 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1182 			BTRFS_UUID_SIZE);
1183 	new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1184 	new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1185 	btrfs_set_root_otransid(new_root_item, trans->transid);
1186 	memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1187 	memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1188 	btrfs_set_root_stransid(new_root_item, 0);
1189 	btrfs_set_root_rtransid(new_root_item, 0);
1190 
1191 	old = btrfs_lock_root_node(root);
1192 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1193 	if (ret) {
1194 		btrfs_tree_unlock(old);
1195 		free_extent_buffer(old);
1196 		btrfs_abort_transaction(trans, root, ret);
1197 		goto fail;
1198 	}
1199 
1200 	btrfs_set_lock_blocking(old);
1201 
1202 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1203 	/* clean up in any case */
1204 	btrfs_tree_unlock(old);
1205 	free_extent_buffer(old);
1206 	if (ret) {
1207 		btrfs_abort_transaction(trans, root, ret);
1208 		goto fail;
1209 	}
1210 
1211 	/* see comments in should_cow_block() */
1212 	root->force_cow = 1;
1213 	smp_wmb();
1214 
1215 	btrfs_set_root_node(new_root_item, tmp);
1216 	/* record when the snapshot was created in key.offset */
1217 	key.offset = trans->transid;
1218 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1219 	btrfs_tree_unlock(tmp);
1220 	free_extent_buffer(tmp);
1221 	if (ret) {
1222 		btrfs_abort_transaction(trans, root, ret);
1223 		goto fail;
1224 	}
1225 
1226 	/*
1227 	 * insert root back/forward references
1228 	 */
1229 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1230 				 parent_root->root_key.objectid,
1231 				 btrfs_ino(parent_inode), index,
1232 				 dentry->d_name.name, dentry->d_name.len);
1233 	if (ret) {
1234 		btrfs_abort_transaction(trans, root, ret);
1235 		goto fail;
1236 	}
1237 
1238 	key.offset = (u64)-1;
1239 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1240 	if (IS_ERR(pending->snap)) {
1241 		ret = PTR_ERR(pending->snap);
1242 		btrfs_abort_transaction(trans, root, ret);
1243 		goto fail;
1244 	}
1245 
1246 	ret = btrfs_reloc_post_snapshot(trans, pending);
1247 	if (ret) {
1248 		btrfs_abort_transaction(trans, root, ret);
1249 		goto fail;
1250 	}
1251 
1252 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1253 	if (ret) {
1254 		btrfs_abort_transaction(trans, root, ret);
1255 		goto fail;
1256 	}
1257 
1258 	ret = btrfs_insert_dir_item(trans, parent_root,
1259 				    dentry->d_name.name, dentry->d_name.len,
1260 				    parent_inode, &key,
1261 				    BTRFS_FT_DIR, index);
1262 	/* We have check then name at the beginning, so it is impossible. */
1263 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1264 	if (ret) {
1265 		btrfs_abort_transaction(trans, root, ret);
1266 		goto fail;
1267 	}
1268 
1269 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1270 					 dentry->d_name.len * 2);
1271 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1272 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1273 	if (ret)
1274 		btrfs_abort_transaction(trans, root, ret);
1275 fail:
1276 	pending->error = ret;
1277 dir_item_existed:
1278 	trans->block_rsv = rsv;
1279 	trans->bytes_reserved = 0;
1280 no_free_objectid:
1281 	kfree(new_root_item);
1282 root_item_alloc_fail:
1283 	btrfs_free_path(path);
1284 	return ret;
1285 }
1286 
1287 /*
1288  * create all the snapshots we've scheduled for creation
1289  */
1290 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1291 					     struct btrfs_fs_info *fs_info)
1292 {
1293 	struct btrfs_pending_snapshot *pending, *next;
1294 	struct list_head *head = &trans->transaction->pending_snapshots;
1295 	int ret = 0;
1296 
1297 	list_for_each_entry_safe(pending, next, head, list) {
1298 		list_del(&pending->list);
1299 		ret = create_pending_snapshot(trans, fs_info, pending);
1300 		if (ret)
1301 			break;
1302 	}
1303 	return ret;
1304 }
1305 
1306 static void update_super_roots(struct btrfs_root *root)
1307 {
1308 	struct btrfs_root_item *root_item;
1309 	struct btrfs_super_block *super;
1310 
1311 	super = root->fs_info->super_copy;
1312 
1313 	root_item = &root->fs_info->chunk_root->root_item;
1314 	super->chunk_root = root_item->bytenr;
1315 	super->chunk_root_generation = root_item->generation;
1316 	super->chunk_root_level = root_item->level;
1317 
1318 	root_item = &root->fs_info->tree_root->root_item;
1319 	super->root = root_item->bytenr;
1320 	super->generation = root_item->generation;
1321 	super->root_level = root_item->level;
1322 	if (btrfs_test_opt(root, SPACE_CACHE))
1323 		super->cache_generation = root_item->generation;
1324 }
1325 
1326 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1327 {
1328 	int ret = 0;
1329 	spin_lock(&info->trans_lock);
1330 	if (info->running_transaction)
1331 		ret = info->running_transaction->in_commit;
1332 	spin_unlock(&info->trans_lock);
1333 	return ret;
1334 }
1335 
1336 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1337 {
1338 	int ret = 0;
1339 	spin_lock(&info->trans_lock);
1340 	if (info->running_transaction)
1341 		ret = info->running_transaction->blocked;
1342 	spin_unlock(&info->trans_lock);
1343 	return ret;
1344 }
1345 
1346 /*
1347  * wait for the current transaction commit to start and block subsequent
1348  * transaction joins
1349  */
1350 static void wait_current_trans_commit_start(struct btrfs_root *root,
1351 					    struct btrfs_transaction *trans)
1352 {
1353 	wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1354 }
1355 
1356 /*
1357  * wait for the current transaction to start and then become unblocked.
1358  * caller holds ref.
1359  */
1360 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1361 					 struct btrfs_transaction *trans)
1362 {
1363 	wait_event(root->fs_info->transaction_wait,
1364 		   trans->commit_done || (trans->in_commit && !trans->blocked));
1365 }
1366 
1367 /*
1368  * commit transactions asynchronously. once btrfs_commit_transaction_async
1369  * returns, any subsequent transaction will not be allowed to join.
1370  */
1371 struct btrfs_async_commit {
1372 	struct btrfs_trans_handle *newtrans;
1373 	struct btrfs_root *root;
1374 	struct work_struct work;
1375 };
1376 
1377 static void do_async_commit(struct work_struct *work)
1378 {
1379 	struct btrfs_async_commit *ac =
1380 		container_of(work, struct btrfs_async_commit, work);
1381 
1382 	/*
1383 	 * We've got freeze protection passed with the transaction.
1384 	 * Tell lockdep about it.
1385 	 */
1386 	if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1387 		rwsem_acquire_read(
1388 		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1389 		     0, 1, _THIS_IP_);
1390 
1391 	current->journal_info = ac->newtrans;
1392 
1393 	btrfs_commit_transaction(ac->newtrans, ac->root);
1394 	kfree(ac);
1395 }
1396 
1397 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1398 				   struct btrfs_root *root,
1399 				   int wait_for_unblock)
1400 {
1401 	struct btrfs_async_commit *ac;
1402 	struct btrfs_transaction *cur_trans;
1403 
1404 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1405 	if (!ac)
1406 		return -ENOMEM;
1407 
1408 	INIT_WORK(&ac->work, do_async_commit);
1409 	ac->root = root;
1410 	ac->newtrans = btrfs_join_transaction(root);
1411 	if (IS_ERR(ac->newtrans)) {
1412 		int err = PTR_ERR(ac->newtrans);
1413 		kfree(ac);
1414 		return err;
1415 	}
1416 
1417 	/* take transaction reference */
1418 	cur_trans = trans->transaction;
1419 	atomic_inc(&cur_trans->use_count);
1420 
1421 	btrfs_end_transaction(trans, root);
1422 
1423 	/*
1424 	 * Tell lockdep we've released the freeze rwsem, since the
1425 	 * async commit thread will be the one to unlock it.
1426 	 */
1427 	if (trans->type < TRANS_JOIN_NOLOCK)
1428 		rwsem_release(
1429 			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1430 			1, _THIS_IP_);
1431 
1432 	schedule_work(&ac->work);
1433 
1434 	/* wait for transaction to start and unblock */
1435 	if (wait_for_unblock)
1436 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1437 	else
1438 		wait_current_trans_commit_start(root, cur_trans);
1439 
1440 	if (current->journal_info == trans)
1441 		current->journal_info = NULL;
1442 
1443 	put_transaction(cur_trans);
1444 	return 0;
1445 }
1446 
1447 
1448 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1449 				struct btrfs_root *root, int err)
1450 {
1451 	struct btrfs_transaction *cur_trans = trans->transaction;
1452 	DEFINE_WAIT(wait);
1453 
1454 	WARN_ON(trans->use_count > 1);
1455 
1456 	btrfs_abort_transaction(trans, root, err);
1457 
1458 	spin_lock(&root->fs_info->trans_lock);
1459 
1460 	if (list_empty(&cur_trans->list)) {
1461 		spin_unlock(&root->fs_info->trans_lock);
1462 		btrfs_end_transaction(trans, root);
1463 		return;
1464 	}
1465 
1466 	list_del_init(&cur_trans->list);
1467 	if (cur_trans == root->fs_info->running_transaction) {
1468 		root->fs_info->trans_no_join = 1;
1469 		spin_unlock(&root->fs_info->trans_lock);
1470 		wait_event(cur_trans->writer_wait,
1471 			   atomic_read(&cur_trans->num_writers) == 1);
1472 
1473 		spin_lock(&root->fs_info->trans_lock);
1474 		root->fs_info->running_transaction = NULL;
1475 	}
1476 	spin_unlock(&root->fs_info->trans_lock);
1477 
1478 	btrfs_cleanup_one_transaction(trans->transaction, root);
1479 
1480 	put_transaction(cur_trans);
1481 	put_transaction(cur_trans);
1482 
1483 	trace_btrfs_transaction_commit(root);
1484 
1485 	btrfs_scrub_continue(root);
1486 
1487 	if (current->journal_info == trans)
1488 		current->journal_info = NULL;
1489 
1490 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1491 }
1492 
1493 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1494 					  struct btrfs_root *root)
1495 {
1496 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1497 	int snap_pending = 0;
1498 	int ret;
1499 
1500 	if (!flush_on_commit) {
1501 		spin_lock(&root->fs_info->trans_lock);
1502 		if (!list_empty(&trans->transaction->pending_snapshots))
1503 			snap_pending = 1;
1504 		spin_unlock(&root->fs_info->trans_lock);
1505 	}
1506 
1507 	if (flush_on_commit || snap_pending) {
1508 		ret = btrfs_start_delalloc_inodes(root, 1);
1509 		if (ret)
1510 			return ret;
1511 		btrfs_wait_ordered_extents(root, 1);
1512 	}
1513 
1514 	ret = btrfs_run_delayed_items(trans, root);
1515 	if (ret)
1516 		return ret;
1517 
1518 	/*
1519 	 * running the delayed items may have added new refs. account
1520 	 * them now so that they hinder processing of more delayed refs
1521 	 * as little as possible.
1522 	 */
1523 	btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1524 
1525 	/*
1526 	 * rename don't use btrfs_join_transaction, so, once we
1527 	 * set the transaction to blocked above, we aren't going
1528 	 * to get any new ordered operations.  We can safely run
1529 	 * it here and no for sure that nothing new will be added
1530 	 * to the list
1531 	 */
1532 	ret = btrfs_run_ordered_operations(trans, root, 1);
1533 
1534 	return ret;
1535 }
1536 
1537 /*
1538  * btrfs_transaction state sequence:
1539  *    in_commit = 0, blocked = 0  (initial)
1540  *    in_commit = 1, blocked = 1
1541  *    blocked = 0
1542  *    commit_done = 1
1543  */
1544 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1545 			     struct btrfs_root *root)
1546 {
1547 	unsigned long joined = 0;
1548 	struct btrfs_transaction *cur_trans = trans->transaction;
1549 	struct btrfs_transaction *prev_trans = NULL;
1550 	DEFINE_WAIT(wait);
1551 	int ret;
1552 	int should_grow = 0;
1553 	unsigned long now = get_seconds();
1554 
1555 	ret = btrfs_run_ordered_operations(trans, root, 0);
1556 	if (ret) {
1557 		btrfs_abort_transaction(trans, root, ret);
1558 		btrfs_end_transaction(trans, root);
1559 		return ret;
1560 	}
1561 
1562 	/* Stop the commit early if ->aborted is set */
1563 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1564 		ret = cur_trans->aborted;
1565 		btrfs_end_transaction(trans, root);
1566 		return ret;
1567 	}
1568 
1569 	/* make a pass through all the delayed refs we have so far
1570 	 * any runnings procs may add more while we are here
1571 	 */
1572 	ret = btrfs_run_delayed_refs(trans, root, 0);
1573 	if (ret) {
1574 		btrfs_end_transaction(trans, root);
1575 		return ret;
1576 	}
1577 
1578 	btrfs_trans_release_metadata(trans, root);
1579 	trans->block_rsv = NULL;
1580 	if (trans->qgroup_reserved) {
1581 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1582 		trans->qgroup_reserved = 0;
1583 	}
1584 
1585 	cur_trans = trans->transaction;
1586 
1587 	/*
1588 	 * set the flushing flag so procs in this transaction have to
1589 	 * start sending their work down.
1590 	 */
1591 	cur_trans->delayed_refs.flushing = 1;
1592 
1593 	if (!list_empty(&trans->new_bgs))
1594 		btrfs_create_pending_block_groups(trans, root);
1595 
1596 	ret = btrfs_run_delayed_refs(trans, root, 0);
1597 	if (ret) {
1598 		btrfs_end_transaction(trans, root);
1599 		return ret;
1600 	}
1601 
1602 	spin_lock(&cur_trans->commit_lock);
1603 	if (cur_trans->in_commit) {
1604 		spin_unlock(&cur_trans->commit_lock);
1605 		atomic_inc(&cur_trans->use_count);
1606 		ret = btrfs_end_transaction(trans, root);
1607 
1608 		wait_for_commit(root, cur_trans);
1609 
1610 		put_transaction(cur_trans);
1611 
1612 		return ret;
1613 	}
1614 
1615 	trans->transaction->in_commit = 1;
1616 	trans->transaction->blocked = 1;
1617 	spin_unlock(&cur_trans->commit_lock);
1618 	wake_up(&root->fs_info->transaction_blocked_wait);
1619 
1620 	spin_lock(&root->fs_info->trans_lock);
1621 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1622 		prev_trans = list_entry(cur_trans->list.prev,
1623 					struct btrfs_transaction, list);
1624 		if (!prev_trans->commit_done) {
1625 			atomic_inc(&prev_trans->use_count);
1626 			spin_unlock(&root->fs_info->trans_lock);
1627 
1628 			wait_for_commit(root, prev_trans);
1629 
1630 			put_transaction(prev_trans);
1631 		} else {
1632 			spin_unlock(&root->fs_info->trans_lock);
1633 		}
1634 	} else {
1635 		spin_unlock(&root->fs_info->trans_lock);
1636 	}
1637 
1638 	if (!btrfs_test_opt(root, SSD) &&
1639 	    (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1640 		should_grow = 1;
1641 
1642 	do {
1643 		joined = cur_trans->num_joined;
1644 
1645 		WARN_ON(cur_trans != trans->transaction);
1646 
1647 		ret = btrfs_flush_all_pending_stuffs(trans, root);
1648 		if (ret)
1649 			goto cleanup_transaction;
1650 
1651 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1652 				TASK_UNINTERRUPTIBLE);
1653 
1654 		if (atomic_read(&cur_trans->num_writers) > 1)
1655 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1656 		else if (should_grow)
1657 			schedule_timeout(1);
1658 
1659 		finish_wait(&cur_trans->writer_wait, &wait);
1660 	} while (atomic_read(&cur_trans->num_writers) > 1 ||
1661 		 (should_grow && cur_trans->num_joined != joined));
1662 
1663 	ret = btrfs_flush_all_pending_stuffs(trans, root);
1664 	if (ret)
1665 		goto cleanup_transaction;
1666 
1667 	/*
1668 	 * Ok now we need to make sure to block out any other joins while we
1669 	 * commit the transaction.  We could have started a join before setting
1670 	 * no_join so make sure to wait for num_writers to == 1 again.
1671 	 */
1672 	spin_lock(&root->fs_info->trans_lock);
1673 	root->fs_info->trans_no_join = 1;
1674 	spin_unlock(&root->fs_info->trans_lock);
1675 	wait_event(cur_trans->writer_wait,
1676 		   atomic_read(&cur_trans->num_writers) == 1);
1677 
1678 	/* ->aborted might be set after the previous check, so check it */
1679 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1680 		ret = cur_trans->aborted;
1681 		goto cleanup_transaction;
1682 	}
1683 	/*
1684 	 * the reloc mutex makes sure that we stop
1685 	 * the balancing code from coming in and moving
1686 	 * extents around in the middle of the commit
1687 	 */
1688 	mutex_lock(&root->fs_info->reloc_mutex);
1689 
1690 	/*
1691 	 * We needn't worry about the delayed items because we will
1692 	 * deal with them in create_pending_snapshot(), which is the
1693 	 * core function of the snapshot creation.
1694 	 */
1695 	ret = create_pending_snapshots(trans, root->fs_info);
1696 	if (ret) {
1697 		mutex_unlock(&root->fs_info->reloc_mutex);
1698 		goto cleanup_transaction;
1699 	}
1700 
1701 	/*
1702 	 * We insert the dir indexes of the snapshots and update the inode
1703 	 * of the snapshots' parents after the snapshot creation, so there
1704 	 * are some delayed items which are not dealt with. Now deal with
1705 	 * them.
1706 	 *
1707 	 * We needn't worry that this operation will corrupt the snapshots,
1708 	 * because all the tree which are snapshoted will be forced to COW
1709 	 * the nodes and leaves.
1710 	 */
1711 	ret = btrfs_run_delayed_items(trans, root);
1712 	if (ret) {
1713 		mutex_unlock(&root->fs_info->reloc_mutex);
1714 		goto cleanup_transaction;
1715 	}
1716 
1717 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1718 	if (ret) {
1719 		mutex_unlock(&root->fs_info->reloc_mutex);
1720 		goto cleanup_transaction;
1721 	}
1722 
1723 	/*
1724 	 * make sure none of the code above managed to slip in a
1725 	 * delayed item
1726 	 */
1727 	btrfs_assert_delayed_root_empty(root);
1728 
1729 	WARN_ON(cur_trans != trans->transaction);
1730 
1731 	btrfs_scrub_pause(root);
1732 	/* btrfs_commit_tree_roots is responsible for getting the
1733 	 * various roots consistent with each other.  Every pointer
1734 	 * in the tree of tree roots has to point to the most up to date
1735 	 * root for every subvolume and other tree.  So, we have to keep
1736 	 * the tree logging code from jumping in and changing any
1737 	 * of the trees.
1738 	 *
1739 	 * At this point in the commit, there can't be any tree-log
1740 	 * writers, but a little lower down we drop the trans mutex
1741 	 * and let new people in.  By holding the tree_log_mutex
1742 	 * from now until after the super is written, we avoid races
1743 	 * with the tree-log code.
1744 	 */
1745 	mutex_lock(&root->fs_info->tree_log_mutex);
1746 
1747 	ret = commit_fs_roots(trans, root);
1748 	if (ret) {
1749 		mutex_unlock(&root->fs_info->tree_log_mutex);
1750 		mutex_unlock(&root->fs_info->reloc_mutex);
1751 		goto cleanup_transaction;
1752 	}
1753 
1754 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1755 	 * safe to free the root of tree log roots
1756 	 */
1757 	btrfs_free_log_root_tree(trans, root->fs_info);
1758 
1759 	ret = commit_cowonly_roots(trans, root);
1760 	if (ret) {
1761 		mutex_unlock(&root->fs_info->tree_log_mutex);
1762 		mutex_unlock(&root->fs_info->reloc_mutex);
1763 		goto cleanup_transaction;
1764 	}
1765 
1766 	/*
1767 	 * The tasks which save the space cache and inode cache may also
1768 	 * update ->aborted, check it.
1769 	 */
1770 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1771 		ret = cur_trans->aborted;
1772 		mutex_unlock(&root->fs_info->tree_log_mutex);
1773 		mutex_unlock(&root->fs_info->reloc_mutex);
1774 		goto cleanup_transaction;
1775 	}
1776 
1777 	btrfs_prepare_extent_commit(trans, root);
1778 
1779 	cur_trans = root->fs_info->running_transaction;
1780 
1781 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1782 			    root->fs_info->tree_root->node);
1783 	switch_commit_root(root->fs_info->tree_root);
1784 
1785 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1786 			    root->fs_info->chunk_root->node);
1787 	switch_commit_root(root->fs_info->chunk_root);
1788 
1789 	assert_qgroups_uptodate(trans);
1790 	update_super_roots(root);
1791 
1792 	if (!root->fs_info->log_root_recovering) {
1793 		btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1794 		btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1795 	}
1796 
1797 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1798 	       sizeof(*root->fs_info->super_copy));
1799 
1800 	trans->transaction->blocked = 0;
1801 	spin_lock(&root->fs_info->trans_lock);
1802 	root->fs_info->running_transaction = NULL;
1803 	root->fs_info->trans_no_join = 0;
1804 	spin_unlock(&root->fs_info->trans_lock);
1805 	mutex_unlock(&root->fs_info->reloc_mutex);
1806 
1807 	wake_up(&root->fs_info->transaction_wait);
1808 
1809 	ret = btrfs_write_and_wait_transaction(trans, root);
1810 	if (ret) {
1811 		btrfs_error(root->fs_info, ret,
1812 			    "Error while writing out transaction.");
1813 		mutex_unlock(&root->fs_info->tree_log_mutex);
1814 		goto cleanup_transaction;
1815 	}
1816 
1817 	ret = write_ctree_super(trans, root, 0);
1818 	if (ret) {
1819 		mutex_unlock(&root->fs_info->tree_log_mutex);
1820 		goto cleanup_transaction;
1821 	}
1822 
1823 	/*
1824 	 * the super is written, we can safely allow the tree-loggers
1825 	 * to go about their business
1826 	 */
1827 	mutex_unlock(&root->fs_info->tree_log_mutex);
1828 
1829 	btrfs_finish_extent_commit(trans, root);
1830 
1831 	cur_trans->commit_done = 1;
1832 
1833 	root->fs_info->last_trans_committed = cur_trans->transid;
1834 
1835 	wake_up(&cur_trans->commit_wait);
1836 
1837 	spin_lock(&root->fs_info->trans_lock);
1838 	list_del_init(&cur_trans->list);
1839 	spin_unlock(&root->fs_info->trans_lock);
1840 
1841 	put_transaction(cur_trans);
1842 	put_transaction(cur_trans);
1843 
1844 	if (trans->type < TRANS_JOIN_NOLOCK)
1845 		sb_end_intwrite(root->fs_info->sb);
1846 
1847 	trace_btrfs_transaction_commit(root);
1848 
1849 	btrfs_scrub_continue(root);
1850 
1851 	if (current->journal_info == trans)
1852 		current->journal_info = NULL;
1853 
1854 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1855 
1856 	if (current != root->fs_info->transaction_kthread)
1857 		btrfs_run_delayed_iputs(root);
1858 
1859 	return ret;
1860 
1861 cleanup_transaction:
1862 	btrfs_trans_release_metadata(trans, root);
1863 	trans->block_rsv = NULL;
1864 	if (trans->qgroup_reserved) {
1865 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1866 		trans->qgroup_reserved = 0;
1867 	}
1868 	btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1869 //	WARN_ON(1);
1870 	if (current->journal_info == trans)
1871 		current->journal_info = NULL;
1872 	cleanup_transaction(trans, root, ret);
1873 
1874 	return ret;
1875 }
1876 
1877 /*
1878  * interface function to delete all the snapshots we have scheduled for deletion
1879  */
1880 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1881 {
1882 	LIST_HEAD(list);
1883 	struct btrfs_fs_info *fs_info = root->fs_info;
1884 
1885 	spin_lock(&fs_info->trans_lock);
1886 	list_splice_init(&fs_info->dead_roots, &list);
1887 	spin_unlock(&fs_info->trans_lock);
1888 
1889 	while (!list_empty(&list)) {
1890 		int ret;
1891 
1892 		root = list_entry(list.next, struct btrfs_root, root_list);
1893 		list_del(&root->root_list);
1894 
1895 		btrfs_kill_all_delayed_nodes(root);
1896 
1897 		if (btrfs_header_backref_rev(root->node) <
1898 		    BTRFS_MIXED_BACKREF_REV)
1899 			ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1900 		else
1901 			ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1902 		BUG_ON(ret < 0);
1903 	}
1904 	return 0;
1905 }
1906