1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 34 #define BTRFS_ROOT_TRANS_TAG 0 35 36 void put_transaction(struct btrfs_transaction *transaction) 37 { 38 WARN_ON(atomic_read(&transaction->use_count) == 0); 39 if (atomic_dec_and_test(&transaction->use_count)) { 40 BUG_ON(!list_empty(&transaction->list)); 41 WARN_ON(transaction->delayed_refs.root.rb_node); 42 memset(transaction, 0, sizeof(*transaction)); 43 kmem_cache_free(btrfs_transaction_cachep, transaction); 44 } 45 } 46 47 static noinline void switch_commit_root(struct btrfs_root *root) 48 { 49 free_extent_buffer(root->commit_root); 50 root->commit_root = btrfs_root_node(root); 51 } 52 53 /* 54 * either allocate a new transaction or hop into the existing one 55 */ 56 static noinline int join_transaction(struct btrfs_root *root, int nofail) 57 { 58 struct btrfs_transaction *cur_trans; 59 struct btrfs_fs_info *fs_info = root->fs_info; 60 61 spin_lock(&fs_info->trans_lock); 62 loop: 63 /* The file system has been taken offline. No new transactions. */ 64 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 65 spin_unlock(&fs_info->trans_lock); 66 return -EROFS; 67 } 68 69 if (fs_info->trans_no_join) { 70 if (!nofail) { 71 spin_unlock(&fs_info->trans_lock); 72 return -EBUSY; 73 } 74 } 75 76 cur_trans = fs_info->running_transaction; 77 if (cur_trans) { 78 if (cur_trans->aborted) { 79 spin_unlock(&fs_info->trans_lock); 80 return cur_trans->aborted; 81 } 82 atomic_inc(&cur_trans->use_count); 83 atomic_inc(&cur_trans->num_writers); 84 cur_trans->num_joined++; 85 spin_unlock(&fs_info->trans_lock); 86 return 0; 87 } 88 spin_unlock(&fs_info->trans_lock); 89 90 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 91 if (!cur_trans) 92 return -ENOMEM; 93 94 spin_lock(&fs_info->trans_lock); 95 if (fs_info->running_transaction) { 96 /* 97 * someone started a transaction after we unlocked. Make sure 98 * to redo the trans_no_join checks above 99 */ 100 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 101 cur_trans = fs_info->running_transaction; 102 goto loop; 103 } else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 104 spin_unlock(&fs_info->trans_lock); 105 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 106 return -EROFS; 107 } 108 109 atomic_set(&cur_trans->num_writers, 1); 110 cur_trans->num_joined = 0; 111 init_waitqueue_head(&cur_trans->writer_wait); 112 init_waitqueue_head(&cur_trans->commit_wait); 113 cur_trans->in_commit = 0; 114 cur_trans->blocked = 0; 115 /* 116 * One for this trans handle, one so it will live on until we 117 * commit the transaction. 118 */ 119 atomic_set(&cur_trans->use_count, 2); 120 cur_trans->commit_done = 0; 121 cur_trans->start_time = get_seconds(); 122 123 cur_trans->delayed_refs.root = RB_ROOT; 124 cur_trans->delayed_refs.num_entries = 0; 125 cur_trans->delayed_refs.num_heads_ready = 0; 126 cur_trans->delayed_refs.num_heads = 0; 127 cur_trans->delayed_refs.flushing = 0; 128 cur_trans->delayed_refs.run_delayed_start = 0; 129 130 /* 131 * although the tree mod log is per file system and not per transaction, 132 * the log must never go across transaction boundaries. 133 */ 134 smp_mb(); 135 if (!list_empty(&fs_info->tree_mod_seq_list)) { 136 printk(KERN_ERR "btrfs: tree_mod_seq_list not empty when " 137 "creating a fresh transaction\n"); 138 WARN_ON(1); 139 } 140 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) { 141 printk(KERN_ERR "btrfs: tree_mod_log rb tree not empty when " 142 "creating a fresh transaction\n"); 143 WARN_ON(1); 144 } 145 atomic_set(&fs_info->tree_mod_seq, 0); 146 147 spin_lock_init(&cur_trans->commit_lock); 148 spin_lock_init(&cur_trans->delayed_refs.lock); 149 150 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 151 list_add_tail(&cur_trans->list, &fs_info->trans_list); 152 extent_io_tree_init(&cur_trans->dirty_pages, 153 fs_info->btree_inode->i_mapping); 154 fs_info->generation++; 155 cur_trans->transid = fs_info->generation; 156 fs_info->running_transaction = cur_trans; 157 cur_trans->aborted = 0; 158 spin_unlock(&fs_info->trans_lock); 159 160 return 0; 161 } 162 163 /* 164 * this does all the record keeping required to make sure that a reference 165 * counted root is properly recorded in a given transaction. This is required 166 * to make sure the old root from before we joined the transaction is deleted 167 * when the transaction commits 168 */ 169 static int record_root_in_trans(struct btrfs_trans_handle *trans, 170 struct btrfs_root *root) 171 { 172 if (root->ref_cows && root->last_trans < trans->transid) { 173 WARN_ON(root == root->fs_info->extent_root); 174 WARN_ON(root->commit_root != root->node); 175 176 /* 177 * see below for in_trans_setup usage rules 178 * we have the reloc mutex held now, so there 179 * is only one writer in this function 180 */ 181 root->in_trans_setup = 1; 182 183 /* make sure readers find in_trans_setup before 184 * they find our root->last_trans update 185 */ 186 smp_wmb(); 187 188 spin_lock(&root->fs_info->fs_roots_radix_lock); 189 if (root->last_trans == trans->transid) { 190 spin_unlock(&root->fs_info->fs_roots_radix_lock); 191 return 0; 192 } 193 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 194 (unsigned long)root->root_key.objectid, 195 BTRFS_ROOT_TRANS_TAG); 196 spin_unlock(&root->fs_info->fs_roots_radix_lock); 197 root->last_trans = trans->transid; 198 199 /* this is pretty tricky. We don't want to 200 * take the relocation lock in btrfs_record_root_in_trans 201 * unless we're really doing the first setup for this root in 202 * this transaction. 203 * 204 * Normally we'd use root->last_trans as a flag to decide 205 * if we want to take the expensive mutex. 206 * 207 * But, we have to set root->last_trans before we 208 * init the relocation root, otherwise, we trip over warnings 209 * in ctree.c. The solution used here is to flag ourselves 210 * with root->in_trans_setup. When this is 1, we're still 211 * fixing up the reloc trees and everyone must wait. 212 * 213 * When this is zero, they can trust root->last_trans and fly 214 * through btrfs_record_root_in_trans without having to take the 215 * lock. smp_wmb() makes sure that all the writes above are 216 * done before we pop in the zero below 217 */ 218 btrfs_init_reloc_root(trans, root); 219 smp_wmb(); 220 root->in_trans_setup = 0; 221 } 222 return 0; 223 } 224 225 226 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 227 struct btrfs_root *root) 228 { 229 if (!root->ref_cows) 230 return 0; 231 232 /* 233 * see record_root_in_trans for comments about in_trans_setup usage 234 * and barriers 235 */ 236 smp_rmb(); 237 if (root->last_trans == trans->transid && 238 !root->in_trans_setup) 239 return 0; 240 241 mutex_lock(&root->fs_info->reloc_mutex); 242 record_root_in_trans(trans, root); 243 mutex_unlock(&root->fs_info->reloc_mutex); 244 245 return 0; 246 } 247 248 /* wait for commit against the current transaction to become unblocked 249 * when this is done, it is safe to start a new transaction, but the current 250 * transaction might not be fully on disk. 251 */ 252 static void wait_current_trans(struct btrfs_root *root) 253 { 254 struct btrfs_transaction *cur_trans; 255 256 spin_lock(&root->fs_info->trans_lock); 257 cur_trans = root->fs_info->running_transaction; 258 if (cur_trans && cur_trans->blocked) { 259 atomic_inc(&cur_trans->use_count); 260 spin_unlock(&root->fs_info->trans_lock); 261 262 wait_event(root->fs_info->transaction_wait, 263 !cur_trans->blocked); 264 put_transaction(cur_trans); 265 } else { 266 spin_unlock(&root->fs_info->trans_lock); 267 } 268 } 269 270 enum btrfs_trans_type { 271 TRANS_START, 272 TRANS_JOIN, 273 TRANS_USERSPACE, 274 TRANS_JOIN_NOLOCK, 275 }; 276 277 static int may_wait_transaction(struct btrfs_root *root, int type) 278 { 279 if (root->fs_info->log_root_recovering) 280 return 0; 281 282 if (type == TRANS_USERSPACE) 283 return 1; 284 285 if (type == TRANS_START && 286 !atomic_read(&root->fs_info->open_ioctl_trans)) 287 return 1; 288 289 return 0; 290 } 291 292 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root, 293 u64 num_items, int type) 294 { 295 struct btrfs_trans_handle *h; 296 struct btrfs_transaction *cur_trans; 297 u64 num_bytes = 0; 298 int ret; 299 u64 qgroup_reserved = 0; 300 301 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) 302 return ERR_PTR(-EROFS); 303 304 if (current->journal_info) { 305 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK); 306 h = current->journal_info; 307 h->use_count++; 308 h->orig_rsv = h->block_rsv; 309 h->block_rsv = NULL; 310 goto got_it; 311 } 312 313 /* 314 * Do the reservation before we join the transaction so we can do all 315 * the appropriate flushing if need be. 316 */ 317 if (num_items > 0 && root != root->fs_info->chunk_root) { 318 if (root->fs_info->quota_enabled && 319 is_fstree(root->root_key.objectid)) { 320 qgroup_reserved = num_items * root->leafsize; 321 ret = btrfs_qgroup_reserve(root, qgroup_reserved); 322 if (ret) 323 return ERR_PTR(ret); 324 } 325 326 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 327 ret = btrfs_block_rsv_add(root, 328 &root->fs_info->trans_block_rsv, 329 num_bytes); 330 if (ret) 331 return ERR_PTR(ret); 332 } 333 again: 334 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 335 if (!h) 336 return ERR_PTR(-ENOMEM); 337 338 sb_start_intwrite(root->fs_info->sb); 339 340 if (may_wait_transaction(root, type)) 341 wait_current_trans(root); 342 343 do { 344 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK); 345 if (ret == -EBUSY) 346 wait_current_trans(root); 347 } while (ret == -EBUSY); 348 349 if (ret < 0) { 350 sb_end_intwrite(root->fs_info->sb); 351 kmem_cache_free(btrfs_trans_handle_cachep, h); 352 return ERR_PTR(ret); 353 } 354 355 cur_trans = root->fs_info->running_transaction; 356 357 h->transid = cur_trans->transid; 358 h->transaction = cur_trans; 359 h->blocks_used = 0; 360 h->bytes_reserved = 0; 361 h->root = root; 362 h->delayed_ref_updates = 0; 363 h->use_count = 1; 364 h->adding_csums = 0; 365 h->block_rsv = NULL; 366 h->orig_rsv = NULL; 367 h->aborted = 0; 368 h->qgroup_reserved = qgroup_reserved; 369 h->delayed_ref_elem.seq = 0; 370 INIT_LIST_HEAD(&h->qgroup_ref_list); 371 372 smp_mb(); 373 if (cur_trans->blocked && may_wait_transaction(root, type)) { 374 btrfs_commit_transaction(h, root); 375 goto again; 376 } 377 378 if (num_bytes) { 379 trace_btrfs_space_reservation(root->fs_info, "transaction", 380 h->transid, num_bytes, 1); 381 h->block_rsv = &root->fs_info->trans_block_rsv; 382 h->bytes_reserved = num_bytes; 383 } 384 385 got_it: 386 btrfs_record_root_in_trans(h, root); 387 388 if (!current->journal_info && type != TRANS_USERSPACE) 389 current->journal_info = h; 390 return h; 391 } 392 393 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 394 int num_items) 395 { 396 return start_transaction(root, num_items, TRANS_START); 397 } 398 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 399 { 400 return start_transaction(root, 0, TRANS_JOIN); 401 } 402 403 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 404 { 405 return start_transaction(root, 0, TRANS_JOIN_NOLOCK); 406 } 407 408 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 409 { 410 return start_transaction(root, 0, TRANS_USERSPACE); 411 } 412 413 /* wait for a transaction commit to be fully complete */ 414 static noinline void wait_for_commit(struct btrfs_root *root, 415 struct btrfs_transaction *commit) 416 { 417 wait_event(commit->commit_wait, commit->commit_done); 418 } 419 420 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 421 { 422 struct btrfs_transaction *cur_trans = NULL, *t; 423 int ret; 424 425 ret = 0; 426 if (transid) { 427 if (transid <= root->fs_info->last_trans_committed) 428 goto out; 429 430 /* find specified transaction */ 431 spin_lock(&root->fs_info->trans_lock); 432 list_for_each_entry(t, &root->fs_info->trans_list, list) { 433 if (t->transid == transid) { 434 cur_trans = t; 435 atomic_inc(&cur_trans->use_count); 436 break; 437 } 438 if (t->transid > transid) 439 break; 440 } 441 spin_unlock(&root->fs_info->trans_lock); 442 ret = -EINVAL; 443 if (!cur_trans) 444 goto out; /* bad transid */ 445 } else { 446 /* find newest transaction that is committing | committed */ 447 spin_lock(&root->fs_info->trans_lock); 448 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 449 list) { 450 if (t->in_commit) { 451 if (t->commit_done) 452 break; 453 cur_trans = t; 454 atomic_inc(&cur_trans->use_count); 455 break; 456 } 457 } 458 spin_unlock(&root->fs_info->trans_lock); 459 if (!cur_trans) 460 goto out; /* nothing committing|committed */ 461 } 462 463 wait_for_commit(root, cur_trans); 464 465 put_transaction(cur_trans); 466 ret = 0; 467 out: 468 return ret; 469 } 470 471 void btrfs_throttle(struct btrfs_root *root) 472 { 473 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 474 wait_current_trans(root); 475 } 476 477 static int should_end_transaction(struct btrfs_trans_handle *trans, 478 struct btrfs_root *root) 479 { 480 int ret; 481 482 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 483 return ret ? 1 : 0; 484 } 485 486 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 487 struct btrfs_root *root) 488 { 489 struct btrfs_transaction *cur_trans = trans->transaction; 490 int updates; 491 int err; 492 493 smp_mb(); 494 if (cur_trans->blocked || cur_trans->delayed_refs.flushing) 495 return 1; 496 497 updates = trans->delayed_ref_updates; 498 trans->delayed_ref_updates = 0; 499 if (updates) { 500 err = btrfs_run_delayed_refs(trans, root, updates); 501 if (err) /* Error code will also eval true */ 502 return err; 503 } 504 505 return should_end_transaction(trans, root); 506 } 507 508 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 509 struct btrfs_root *root, int throttle, int lock) 510 { 511 struct btrfs_transaction *cur_trans = trans->transaction; 512 struct btrfs_fs_info *info = root->fs_info; 513 int count = 0; 514 int err = 0; 515 516 if (--trans->use_count) { 517 trans->block_rsv = trans->orig_rsv; 518 return 0; 519 } 520 521 /* 522 * do the qgroup accounting as early as possible 523 */ 524 err = btrfs_delayed_refs_qgroup_accounting(trans, info); 525 526 btrfs_trans_release_metadata(trans, root); 527 trans->block_rsv = NULL; 528 /* 529 * the same root has to be passed to start_transaction and 530 * end_transaction. Subvolume quota depends on this. 531 */ 532 WARN_ON(trans->root != root); 533 534 if (trans->qgroup_reserved) { 535 btrfs_qgroup_free(root, trans->qgroup_reserved); 536 trans->qgroup_reserved = 0; 537 } 538 539 while (count < 2) { 540 unsigned long cur = trans->delayed_ref_updates; 541 trans->delayed_ref_updates = 0; 542 if (cur && 543 trans->transaction->delayed_refs.num_heads_ready > 64) { 544 trans->delayed_ref_updates = 0; 545 btrfs_run_delayed_refs(trans, root, cur); 546 } else { 547 break; 548 } 549 count++; 550 } 551 btrfs_trans_release_metadata(trans, root); 552 trans->block_rsv = NULL; 553 554 sb_end_intwrite(root->fs_info->sb); 555 556 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 557 should_end_transaction(trans, root)) { 558 trans->transaction->blocked = 1; 559 smp_wmb(); 560 } 561 562 if (lock && cur_trans->blocked && !cur_trans->in_commit) { 563 if (throttle) { 564 /* 565 * We may race with somebody else here so end up having 566 * to call end_transaction on ourselves again, so inc 567 * our use_count. 568 */ 569 trans->use_count++; 570 return btrfs_commit_transaction(trans, root); 571 } else { 572 wake_up_process(info->transaction_kthread); 573 } 574 } 575 576 WARN_ON(cur_trans != info->running_transaction); 577 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 578 atomic_dec(&cur_trans->num_writers); 579 580 smp_mb(); 581 if (waitqueue_active(&cur_trans->writer_wait)) 582 wake_up(&cur_trans->writer_wait); 583 put_transaction(cur_trans); 584 585 if (current->journal_info == trans) 586 current->journal_info = NULL; 587 588 if (throttle) 589 btrfs_run_delayed_iputs(root); 590 591 if (trans->aborted || 592 root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 593 err = -EIO; 594 } 595 assert_qgroups_uptodate(trans); 596 597 memset(trans, 0, sizeof(*trans)); 598 kmem_cache_free(btrfs_trans_handle_cachep, trans); 599 return err; 600 } 601 602 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 603 struct btrfs_root *root) 604 { 605 int ret; 606 607 ret = __btrfs_end_transaction(trans, root, 0, 1); 608 if (ret) 609 return ret; 610 return 0; 611 } 612 613 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 614 struct btrfs_root *root) 615 { 616 int ret; 617 618 ret = __btrfs_end_transaction(trans, root, 1, 1); 619 if (ret) 620 return ret; 621 return 0; 622 } 623 624 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans, 625 struct btrfs_root *root) 626 { 627 int ret; 628 629 ret = __btrfs_end_transaction(trans, root, 0, 0); 630 if (ret) 631 return ret; 632 return 0; 633 } 634 635 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans, 636 struct btrfs_root *root) 637 { 638 return __btrfs_end_transaction(trans, root, 1, 1); 639 } 640 641 /* 642 * when btree blocks are allocated, they have some corresponding bits set for 643 * them in one of two extent_io trees. This is used to make sure all of 644 * those extents are sent to disk but does not wait on them 645 */ 646 int btrfs_write_marked_extents(struct btrfs_root *root, 647 struct extent_io_tree *dirty_pages, int mark) 648 { 649 int err = 0; 650 int werr = 0; 651 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 652 u64 start = 0; 653 u64 end; 654 655 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 656 mark)) { 657 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark, 658 GFP_NOFS); 659 err = filemap_fdatawrite_range(mapping, start, end); 660 if (err) 661 werr = err; 662 cond_resched(); 663 start = end + 1; 664 } 665 if (err) 666 werr = err; 667 return werr; 668 } 669 670 /* 671 * when btree blocks are allocated, they have some corresponding bits set for 672 * them in one of two extent_io trees. This is used to make sure all of 673 * those extents are on disk for transaction or log commit. We wait 674 * on all the pages and clear them from the dirty pages state tree 675 */ 676 int btrfs_wait_marked_extents(struct btrfs_root *root, 677 struct extent_io_tree *dirty_pages, int mark) 678 { 679 int err = 0; 680 int werr = 0; 681 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 682 u64 start = 0; 683 u64 end; 684 685 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 686 EXTENT_NEED_WAIT)) { 687 clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS); 688 err = filemap_fdatawait_range(mapping, start, end); 689 if (err) 690 werr = err; 691 cond_resched(); 692 start = end + 1; 693 } 694 if (err) 695 werr = err; 696 return werr; 697 } 698 699 /* 700 * when btree blocks are allocated, they have some corresponding bits set for 701 * them in one of two extent_io trees. This is used to make sure all of 702 * those extents are on disk for transaction or log commit 703 */ 704 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 705 struct extent_io_tree *dirty_pages, int mark) 706 { 707 int ret; 708 int ret2; 709 710 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 711 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 712 713 if (ret) 714 return ret; 715 if (ret2) 716 return ret2; 717 return 0; 718 } 719 720 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 721 struct btrfs_root *root) 722 { 723 if (!trans || !trans->transaction) { 724 struct inode *btree_inode; 725 btree_inode = root->fs_info->btree_inode; 726 return filemap_write_and_wait(btree_inode->i_mapping); 727 } 728 return btrfs_write_and_wait_marked_extents(root, 729 &trans->transaction->dirty_pages, 730 EXTENT_DIRTY); 731 } 732 733 /* 734 * this is used to update the root pointer in the tree of tree roots. 735 * 736 * But, in the case of the extent allocation tree, updating the root 737 * pointer may allocate blocks which may change the root of the extent 738 * allocation tree. 739 * 740 * So, this loops and repeats and makes sure the cowonly root didn't 741 * change while the root pointer was being updated in the metadata. 742 */ 743 static int update_cowonly_root(struct btrfs_trans_handle *trans, 744 struct btrfs_root *root) 745 { 746 int ret; 747 u64 old_root_bytenr; 748 u64 old_root_used; 749 struct btrfs_root *tree_root = root->fs_info->tree_root; 750 751 old_root_used = btrfs_root_used(&root->root_item); 752 btrfs_write_dirty_block_groups(trans, root); 753 754 while (1) { 755 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 756 if (old_root_bytenr == root->node->start && 757 old_root_used == btrfs_root_used(&root->root_item)) 758 break; 759 760 btrfs_set_root_node(&root->root_item, root->node); 761 ret = btrfs_update_root(trans, tree_root, 762 &root->root_key, 763 &root->root_item); 764 if (ret) 765 return ret; 766 767 old_root_used = btrfs_root_used(&root->root_item); 768 ret = btrfs_write_dirty_block_groups(trans, root); 769 if (ret) 770 return ret; 771 } 772 773 if (root != root->fs_info->extent_root) 774 switch_commit_root(root); 775 776 return 0; 777 } 778 779 /* 780 * update all the cowonly tree roots on disk 781 * 782 * The error handling in this function may not be obvious. Any of the 783 * failures will cause the file system to go offline. We still need 784 * to clean up the delayed refs. 785 */ 786 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 787 struct btrfs_root *root) 788 { 789 struct btrfs_fs_info *fs_info = root->fs_info; 790 struct list_head *next; 791 struct extent_buffer *eb; 792 int ret; 793 794 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 795 if (ret) 796 return ret; 797 798 eb = btrfs_lock_root_node(fs_info->tree_root); 799 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 800 0, &eb); 801 btrfs_tree_unlock(eb); 802 free_extent_buffer(eb); 803 804 if (ret) 805 return ret; 806 807 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 808 if (ret) 809 return ret; 810 811 ret = btrfs_run_dev_stats(trans, root->fs_info); 812 BUG_ON(ret); 813 814 ret = btrfs_run_qgroups(trans, root->fs_info); 815 BUG_ON(ret); 816 817 /* run_qgroups might have added some more refs */ 818 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 819 BUG_ON(ret); 820 821 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 822 next = fs_info->dirty_cowonly_roots.next; 823 list_del_init(next); 824 root = list_entry(next, struct btrfs_root, dirty_list); 825 826 ret = update_cowonly_root(trans, root); 827 if (ret) 828 return ret; 829 } 830 831 down_write(&fs_info->extent_commit_sem); 832 switch_commit_root(fs_info->extent_root); 833 up_write(&fs_info->extent_commit_sem); 834 835 return 0; 836 } 837 838 /* 839 * dead roots are old snapshots that need to be deleted. This allocates 840 * a dirty root struct and adds it into the list of dead roots that need to 841 * be deleted 842 */ 843 int btrfs_add_dead_root(struct btrfs_root *root) 844 { 845 spin_lock(&root->fs_info->trans_lock); 846 list_add(&root->root_list, &root->fs_info->dead_roots); 847 spin_unlock(&root->fs_info->trans_lock); 848 return 0; 849 } 850 851 /* 852 * update all the cowonly tree roots on disk 853 */ 854 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 855 struct btrfs_root *root) 856 { 857 struct btrfs_root *gang[8]; 858 struct btrfs_fs_info *fs_info = root->fs_info; 859 int i; 860 int ret; 861 int err = 0; 862 863 spin_lock(&fs_info->fs_roots_radix_lock); 864 while (1) { 865 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 866 (void **)gang, 0, 867 ARRAY_SIZE(gang), 868 BTRFS_ROOT_TRANS_TAG); 869 if (ret == 0) 870 break; 871 for (i = 0; i < ret; i++) { 872 root = gang[i]; 873 radix_tree_tag_clear(&fs_info->fs_roots_radix, 874 (unsigned long)root->root_key.objectid, 875 BTRFS_ROOT_TRANS_TAG); 876 spin_unlock(&fs_info->fs_roots_radix_lock); 877 878 btrfs_free_log(trans, root); 879 btrfs_update_reloc_root(trans, root); 880 btrfs_orphan_commit_root(trans, root); 881 882 btrfs_save_ino_cache(root, trans); 883 884 /* see comments in should_cow_block() */ 885 root->force_cow = 0; 886 smp_wmb(); 887 888 if (root->commit_root != root->node) { 889 mutex_lock(&root->fs_commit_mutex); 890 switch_commit_root(root); 891 btrfs_unpin_free_ino(root); 892 mutex_unlock(&root->fs_commit_mutex); 893 894 btrfs_set_root_node(&root->root_item, 895 root->node); 896 } 897 898 err = btrfs_update_root(trans, fs_info->tree_root, 899 &root->root_key, 900 &root->root_item); 901 spin_lock(&fs_info->fs_roots_radix_lock); 902 if (err) 903 break; 904 } 905 } 906 spin_unlock(&fs_info->fs_roots_radix_lock); 907 return err; 908 } 909 910 /* 911 * defrag a given btree. If cacheonly == 1, this won't read from the disk, 912 * otherwise every leaf in the btree is read and defragged. 913 */ 914 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly) 915 { 916 struct btrfs_fs_info *info = root->fs_info; 917 struct btrfs_trans_handle *trans; 918 int ret; 919 unsigned long nr; 920 921 if (xchg(&root->defrag_running, 1)) 922 return 0; 923 924 while (1) { 925 trans = btrfs_start_transaction(root, 0); 926 if (IS_ERR(trans)) 927 return PTR_ERR(trans); 928 929 ret = btrfs_defrag_leaves(trans, root, cacheonly); 930 931 nr = trans->blocks_used; 932 btrfs_end_transaction(trans, root); 933 btrfs_btree_balance_dirty(info->tree_root, nr); 934 cond_resched(); 935 936 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 937 break; 938 } 939 root->defrag_running = 0; 940 return ret; 941 } 942 943 /* 944 * new snapshots need to be created at a very specific time in the 945 * transaction commit. This does the actual creation 946 */ 947 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 948 struct btrfs_fs_info *fs_info, 949 struct btrfs_pending_snapshot *pending) 950 { 951 struct btrfs_key key; 952 struct btrfs_root_item *new_root_item; 953 struct btrfs_root *tree_root = fs_info->tree_root; 954 struct btrfs_root *root = pending->root; 955 struct btrfs_root *parent_root; 956 struct btrfs_block_rsv *rsv; 957 struct inode *parent_inode; 958 struct dentry *parent; 959 struct dentry *dentry; 960 struct extent_buffer *tmp; 961 struct extent_buffer *old; 962 struct timespec cur_time = CURRENT_TIME; 963 int ret; 964 u64 to_reserve = 0; 965 u64 index = 0; 966 u64 objectid; 967 u64 root_flags; 968 uuid_le new_uuid; 969 970 rsv = trans->block_rsv; 971 972 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 973 if (!new_root_item) { 974 ret = pending->error = -ENOMEM; 975 goto fail; 976 } 977 978 ret = btrfs_find_free_objectid(tree_root, &objectid); 979 if (ret) { 980 pending->error = ret; 981 goto fail; 982 } 983 984 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve); 985 986 if (to_reserve > 0) { 987 ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv, 988 to_reserve); 989 if (ret) { 990 pending->error = ret; 991 goto fail; 992 } 993 } 994 995 ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid, 996 objectid, pending->inherit); 997 kfree(pending->inherit); 998 if (ret) { 999 pending->error = ret; 1000 goto fail; 1001 } 1002 1003 key.objectid = objectid; 1004 key.offset = (u64)-1; 1005 key.type = BTRFS_ROOT_ITEM_KEY; 1006 1007 trans->block_rsv = &pending->block_rsv; 1008 1009 dentry = pending->dentry; 1010 parent = dget_parent(dentry); 1011 parent_inode = parent->d_inode; 1012 parent_root = BTRFS_I(parent_inode)->root; 1013 record_root_in_trans(trans, parent_root); 1014 1015 /* 1016 * insert the directory item 1017 */ 1018 ret = btrfs_set_inode_index(parent_inode, &index); 1019 BUG_ON(ret); /* -ENOMEM */ 1020 ret = btrfs_insert_dir_item(trans, parent_root, 1021 dentry->d_name.name, dentry->d_name.len, 1022 parent_inode, &key, 1023 BTRFS_FT_DIR, index); 1024 if (ret == -EEXIST) { 1025 pending->error = -EEXIST; 1026 dput(parent); 1027 goto fail; 1028 } else if (ret) { 1029 goto abort_trans_dput; 1030 } 1031 1032 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1033 dentry->d_name.len * 2); 1034 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 1035 ret = btrfs_update_inode(trans, parent_root, parent_inode); 1036 if (ret) 1037 goto abort_trans_dput; 1038 1039 /* 1040 * pull in the delayed directory update 1041 * and the delayed inode item 1042 * otherwise we corrupt the FS during 1043 * snapshot 1044 */ 1045 ret = btrfs_run_delayed_items(trans, root); 1046 if (ret) { /* Transaction aborted */ 1047 dput(parent); 1048 goto fail; 1049 } 1050 1051 record_root_in_trans(trans, root); 1052 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1053 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1054 btrfs_check_and_init_root_item(new_root_item); 1055 1056 root_flags = btrfs_root_flags(new_root_item); 1057 if (pending->readonly) 1058 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1059 else 1060 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1061 btrfs_set_root_flags(new_root_item, root_flags); 1062 1063 btrfs_set_root_generation_v2(new_root_item, 1064 trans->transid); 1065 uuid_le_gen(&new_uuid); 1066 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1067 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1068 BTRFS_UUID_SIZE); 1069 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec); 1070 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec); 1071 btrfs_set_root_otransid(new_root_item, trans->transid); 1072 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1073 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1074 btrfs_set_root_stransid(new_root_item, 0); 1075 btrfs_set_root_rtransid(new_root_item, 0); 1076 1077 old = btrfs_lock_root_node(root); 1078 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1079 if (ret) { 1080 btrfs_tree_unlock(old); 1081 free_extent_buffer(old); 1082 goto abort_trans_dput; 1083 } 1084 1085 btrfs_set_lock_blocking(old); 1086 1087 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1088 /* clean up in any case */ 1089 btrfs_tree_unlock(old); 1090 free_extent_buffer(old); 1091 if (ret) 1092 goto abort_trans_dput; 1093 1094 /* see comments in should_cow_block() */ 1095 root->force_cow = 1; 1096 smp_wmb(); 1097 1098 btrfs_set_root_node(new_root_item, tmp); 1099 /* record when the snapshot was created in key.offset */ 1100 key.offset = trans->transid; 1101 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1102 btrfs_tree_unlock(tmp); 1103 free_extent_buffer(tmp); 1104 if (ret) 1105 goto abort_trans_dput; 1106 1107 /* 1108 * insert root back/forward references 1109 */ 1110 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1111 parent_root->root_key.objectid, 1112 btrfs_ino(parent_inode), index, 1113 dentry->d_name.name, dentry->d_name.len); 1114 dput(parent); 1115 if (ret) 1116 goto fail; 1117 1118 key.offset = (u64)-1; 1119 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1120 if (IS_ERR(pending->snap)) { 1121 ret = PTR_ERR(pending->snap); 1122 goto abort_trans; 1123 } 1124 1125 ret = btrfs_reloc_post_snapshot(trans, pending); 1126 if (ret) 1127 goto abort_trans; 1128 ret = 0; 1129 fail: 1130 kfree(new_root_item); 1131 trans->block_rsv = rsv; 1132 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1); 1133 return ret; 1134 1135 abort_trans_dput: 1136 dput(parent); 1137 abort_trans: 1138 btrfs_abort_transaction(trans, root, ret); 1139 goto fail; 1140 } 1141 1142 /* 1143 * create all the snapshots we've scheduled for creation 1144 */ 1145 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1146 struct btrfs_fs_info *fs_info) 1147 { 1148 struct btrfs_pending_snapshot *pending; 1149 struct list_head *head = &trans->transaction->pending_snapshots; 1150 1151 list_for_each_entry(pending, head, list) 1152 create_pending_snapshot(trans, fs_info, pending); 1153 return 0; 1154 } 1155 1156 static void update_super_roots(struct btrfs_root *root) 1157 { 1158 struct btrfs_root_item *root_item; 1159 struct btrfs_super_block *super; 1160 1161 super = root->fs_info->super_copy; 1162 1163 root_item = &root->fs_info->chunk_root->root_item; 1164 super->chunk_root = root_item->bytenr; 1165 super->chunk_root_generation = root_item->generation; 1166 super->chunk_root_level = root_item->level; 1167 1168 root_item = &root->fs_info->tree_root->root_item; 1169 super->root = root_item->bytenr; 1170 super->generation = root_item->generation; 1171 super->root_level = root_item->level; 1172 if (btrfs_test_opt(root, SPACE_CACHE)) 1173 super->cache_generation = root_item->generation; 1174 } 1175 1176 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1177 { 1178 int ret = 0; 1179 spin_lock(&info->trans_lock); 1180 if (info->running_transaction) 1181 ret = info->running_transaction->in_commit; 1182 spin_unlock(&info->trans_lock); 1183 return ret; 1184 } 1185 1186 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1187 { 1188 int ret = 0; 1189 spin_lock(&info->trans_lock); 1190 if (info->running_transaction) 1191 ret = info->running_transaction->blocked; 1192 spin_unlock(&info->trans_lock); 1193 return ret; 1194 } 1195 1196 /* 1197 * wait for the current transaction commit to start and block subsequent 1198 * transaction joins 1199 */ 1200 static void wait_current_trans_commit_start(struct btrfs_root *root, 1201 struct btrfs_transaction *trans) 1202 { 1203 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit); 1204 } 1205 1206 /* 1207 * wait for the current transaction to start and then become unblocked. 1208 * caller holds ref. 1209 */ 1210 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1211 struct btrfs_transaction *trans) 1212 { 1213 wait_event(root->fs_info->transaction_wait, 1214 trans->commit_done || (trans->in_commit && !trans->blocked)); 1215 } 1216 1217 /* 1218 * commit transactions asynchronously. once btrfs_commit_transaction_async 1219 * returns, any subsequent transaction will not be allowed to join. 1220 */ 1221 struct btrfs_async_commit { 1222 struct btrfs_trans_handle *newtrans; 1223 struct btrfs_root *root; 1224 struct delayed_work work; 1225 }; 1226 1227 static void do_async_commit(struct work_struct *work) 1228 { 1229 struct btrfs_async_commit *ac = 1230 container_of(work, struct btrfs_async_commit, work.work); 1231 1232 btrfs_commit_transaction(ac->newtrans, ac->root); 1233 kfree(ac); 1234 } 1235 1236 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1237 struct btrfs_root *root, 1238 int wait_for_unblock) 1239 { 1240 struct btrfs_async_commit *ac; 1241 struct btrfs_transaction *cur_trans; 1242 1243 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1244 if (!ac) 1245 return -ENOMEM; 1246 1247 INIT_DELAYED_WORK(&ac->work, do_async_commit); 1248 ac->root = root; 1249 ac->newtrans = btrfs_join_transaction(root); 1250 if (IS_ERR(ac->newtrans)) { 1251 int err = PTR_ERR(ac->newtrans); 1252 kfree(ac); 1253 return err; 1254 } 1255 1256 /* take transaction reference */ 1257 cur_trans = trans->transaction; 1258 atomic_inc(&cur_trans->use_count); 1259 1260 btrfs_end_transaction(trans, root); 1261 schedule_delayed_work(&ac->work, 0); 1262 1263 /* wait for transaction to start and unblock */ 1264 if (wait_for_unblock) 1265 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1266 else 1267 wait_current_trans_commit_start(root, cur_trans); 1268 1269 if (current->journal_info == trans) 1270 current->journal_info = NULL; 1271 1272 put_transaction(cur_trans); 1273 return 0; 1274 } 1275 1276 1277 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1278 struct btrfs_root *root, int err) 1279 { 1280 struct btrfs_transaction *cur_trans = trans->transaction; 1281 1282 WARN_ON(trans->use_count > 1); 1283 1284 btrfs_abort_transaction(trans, root, err); 1285 1286 spin_lock(&root->fs_info->trans_lock); 1287 list_del_init(&cur_trans->list); 1288 if (cur_trans == root->fs_info->running_transaction) { 1289 root->fs_info->running_transaction = NULL; 1290 root->fs_info->trans_no_join = 0; 1291 } 1292 spin_unlock(&root->fs_info->trans_lock); 1293 1294 btrfs_cleanup_one_transaction(trans->transaction, root); 1295 1296 put_transaction(cur_trans); 1297 put_transaction(cur_trans); 1298 1299 trace_btrfs_transaction_commit(root); 1300 1301 btrfs_scrub_continue(root); 1302 1303 if (current->journal_info == trans) 1304 current->journal_info = NULL; 1305 1306 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1307 } 1308 1309 /* 1310 * btrfs_transaction state sequence: 1311 * in_commit = 0, blocked = 0 (initial) 1312 * in_commit = 1, blocked = 1 1313 * blocked = 0 1314 * commit_done = 1 1315 */ 1316 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1317 struct btrfs_root *root) 1318 { 1319 unsigned long joined = 0; 1320 struct btrfs_transaction *cur_trans = trans->transaction; 1321 struct btrfs_transaction *prev_trans = NULL; 1322 DEFINE_WAIT(wait); 1323 int ret = -EIO; 1324 int should_grow = 0; 1325 unsigned long now = get_seconds(); 1326 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT); 1327 1328 btrfs_run_ordered_operations(root, 0); 1329 1330 if (cur_trans->aborted) 1331 goto cleanup_transaction; 1332 1333 /* make a pass through all the delayed refs we have so far 1334 * any runnings procs may add more while we are here 1335 */ 1336 ret = btrfs_run_delayed_refs(trans, root, 0); 1337 if (ret) 1338 goto cleanup_transaction; 1339 1340 btrfs_trans_release_metadata(trans, root); 1341 trans->block_rsv = NULL; 1342 1343 cur_trans = trans->transaction; 1344 1345 /* 1346 * set the flushing flag so procs in this transaction have to 1347 * start sending their work down. 1348 */ 1349 cur_trans->delayed_refs.flushing = 1; 1350 1351 ret = btrfs_run_delayed_refs(trans, root, 0); 1352 if (ret) 1353 goto cleanup_transaction; 1354 1355 spin_lock(&cur_trans->commit_lock); 1356 if (cur_trans->in_commit) { 1357 spin_unlock(&cur_trans->commit_lock); 1358 atomic_inc(&cur_trans->use_count); 1359 ret = btrfs_end_transaction(trans, root); 1360 1361 wait_for_commit(root, cur_trans); 1362 1363 put_transaction(cur_trans); 1364 1365 return ret; 1366 } 1367 1368 trans->transaction->in_commit = 1; 1369 trans->transaction->blocked = 1; 1370 spin_unlock(&cur_trans->commit_lock); 1371 wake_up(&root->fs_info->transaction_blocked_wait); 1372 1373 spin_lock(&root->fs_info->trans_lock); 1374 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1375 prev_trans = list_entry(cur_trans->list.prev, 1376 struct btrfs_transaction, list); 1377 if (!prev_trans->commit_done) { 1378 atomic_inc(&prev_trans->use_count); 1379 spin_unlock(&root->fs_info->trans_lock); 1380 1381 wait_for_commit(root, prev_trans); 1382 1383 put_transaction(prev_trans); 1384 } else { 1385 spin_unlock(&root->fs_info->trans_lock); 1386 } 1387 } else { 1388 spin_unlock(&root->fs_info->trans_lock); 1389 } 1390 1391 if (!btrfs_test_opt(root, SSD) && 1392 (now < cur_trans->start_time || now - cur_trans->start_time < 1)) 1393 should_grow = 1; 1394 1395 do { 1396 int snap_pending = 0; 1397 1398 joined = cur_trans->num_joined; 1399 if (!list_empty(&trans->transaction->pending_snapshots)) 1400 snap_pending = 1; 1401 1402 WARN_ON(cur_trans != trans->transaction); 1403 1404 if (flush_on_commit || snap_pending) { 1405 btrfs_start_delalloc_inodes(root, 1); 1406 btrfs_wait_ordered_extents(root, 0, 1); 1407 } 1408 1409 ret = btrfs_run_delayed_items(trans, root); 1410 if (ret) 1411 goto cleanup_transaction; 1412 1413 /* 1414 * running the delayed items may have added new refs. account 1415 * them now so that they hinder processing of more delayed refs 1416 * as little as possible. 1417 */ 1418 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 1419 1420 /* 1421 * rename don't use btrfs_join_transaction, so, once we 1422 * set the transaction to blocked above, we aren't going 1423 * to get any new ordered operations. We can safely run 1424 * it here and no for sure that nothing new will be added 1425 * to the list 1426 */ 1427 btrfs_run_ordered_operations(root, 1); 1428 1429 prepare_to_wait(&cur_trans->writer_wait, &wait, 1430 TASK_UNINTERRUPTIBLE); 1431 1432 if (atomic_read(&cur_trans->num_writers) > 1) 1433 schedule_timeout(MAX_SCHEDULE_TIMEOUT); 1434 else if (should_grow) 1435 schedule_timeout(1); 1436 1437 finish_wait(&cur_trans->writer_wait, &wait); 1438 } while (atomic_read(&cur_trans->num_writers) > 1 || 1439 (should_grow && cur_trans->num_joined != joined)); 1440 1441 /* 1442 * Ok now we need to make sure to block out any other joins while we 1443 * commit the transaction. We could have started a join before setting 1444 * no_join so make sure to wait for num_writers to == 1 again. 1445 */ 1446 spin_lock(&root->fs_info->trans_lock); 1447 root->fs_info->trans_no_join = 1; 1448 spin_unlock(&root->fs_info->trans_lock); 1449 wait_event(cur_trans->writer_wait, 1450 atomic_read(&cur_trans->num_writers) == 1); 1451 1452 /* 1453 * the reloc mutex makes sure that we stop 1454 * the balancing code from coming in and moving 1455 * extents around in the middle of the commit 1456 */ 1457 mutex_lock(&root->fs_info->reloc_mutex); 1458 1459 ret = btrfs_run_delayed_items(trans, root); 1460 if (ret) { 1461 mutex_unlock(&root->fs_info->reloc_mutex); 1462 goto cleanup_transaction; 1463 } 1464 1465 ret = create_pending_snapshots(trans, root->fs_info); 1466 if (ret) { 1467 mutex_unlock(&root->fs_info->reloc_mutex); 1468 goto cleanup_transaction; 1469 } 1470 1471 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1472 if (ret) { 1473 mutex_unlock(&root->fs_info->reloc_mutex); 1474 goto cleanup_transaction; 1475 } 1476 1477 /* 1478 * make sure none of the code above managed to slip in a 1479 * delayed item 1480 */ 1481 btrfs_assert_delayed_root_empty(root); 1482 1483 WARN_ON(cur_trans != trans->transaction); 1484 1485 btrfs_scrub_pause(root); 1486 /* btrfs_commit_tree_roots is responsible for getting the 1487 * various roots consistent with each other. Every pointer 1488 * in the tree of tree roots has to point to the most up to date 1489 * root for every subvolume and other tree. So, we have to keep 1490 * the tree logging code from jumping in and changing any 1491 * of the trees. 1492 * 1493 * At this point in the commit, there can't be any tree-log 1494 * writers, but a little lower down we drop the trans mutex 1495 * and let new people in. By holding the tree_log_mutex 1496 * from now until after the super is written, we avoid races 1497 * with the tree-log code. 1498 */ 1499 mutex_lock(&root->fs_info->tree_log_mutex); 1500 1501 ret = commit_fs_roots(trans, root); 1502 if (ret) { 1503 mutex_unlock(&root->fs_info->tree_log_mutex); 1504 mutex_unlock(&root->fs_info->reloc_mutex); 1505 goto cleanup_transaction; 1506 } 1507 1508 /* commit_fs_roots gets rid of all the tree log roots, it is now 1509 * safe to free the root of tree log roots 1510 */ 1511 btrfs_free_log_root_tree(trans, root->fs_info); 1512 1513 ret = commit_cowonly_roots(trans, root); 1514 if (ret) { 1515 mutex_unlock(&root->fs_info->tree_log_mutex); 1516 mutex_unlock(&root->fs_info->reloc_mutex); 1517 goto cleanup_transaction; 1518 } 1519 1520 btrfs_prepare_extent_commit(trans, root); 1521 1522 cur_trans = root->fs_info->running_transaction; 1523 1524 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 1525 root->fs_info->tree_root->node); 1526 switch_commit_root(root->fs_info->tree_root); 1527 1528 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 1529 root->fs_info->chunk_root->node); 1530 switch_commit_root(root->fs_info->chunk_root); 1531 1532 assert_qgroups_uptodate(trans); 1533 update_super_roots(root); 1534 1535 if (!root->fs_info->log_root_recovering) { 1536 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 1537 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 1538 } 1539 1540 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 1541 sizeof(*root->fs_info->super_copy)); 1542 1543 trans->transaction->blocked = 0; 1544 spin_lock(&root->fs_info->trans_lock); 1545 root->fs_info->running_transaction = NULL; 1546 root->fs_info->trans_no_join = 0; 1547 spin_unlock(&root->fs_info->trans_lock); 1548 mutex_unlock(&root->fs_info->reloc_mutex); 1549 1550 wake_up(&root->fs_info->transaction_wait); 1551 1552 ret = btrfs_write_and_wait_transaction(trans, root); 1553 if (ret) { 1554 btrfs_error(root->fs_info, ret, 1555 "Error while writing out transaction."); 1556 mutex_unlock(&root->fs_info->tree_log_mutex); 1557 goto cleanup_transaction; 1558 } 1559 1560 ret = write_ctree_super(trans, root, 0); 1561 if (ret) { 1562 mutex_unlock(&root->fs_info->tree_log_mutex); 1563 goto cleanup_transaction; 1564 } 1565 1566 /* 1567 * the super is written, we can safely allow the tree-loggers 1568 * to go about their business 1569 */ 1570 mutex_unlock(&root->fs_info->tree_log_mutex); 1571 1572 btrfs_finish_extent_commit(trans, root); 1573 1574 cur_trans->commit_done = 1; 1575 1576 root->fs_info->last_trans_committed = cur_trans->transid; 1577 1578 wake_up(&cur_trans->commit_wait); 1579 1580 spin_lock(&root->fs_info->trans_lock); 1581 list_del_init(&cur_trans->list); 1582 spin_unlock(&root->fs_info->trans_lock); 1583 1584 put_transaction(cur_trans); 1585 put_transaction(cur_trans); 1586 1587 sb_end_intwrite(root->fs_info->sb); 1588 1589 trace_btrfs_transaction_commit(root); 1590 1591 btrfs_scrub_continue(root); 1592 1593 if (current->journal_info == trans) 1594 current->journal_info = NULL; 1595 1596 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1597 1598 if (current != root->fs_info->transaction_kthread) 1599 btrfs_run_delayed_iputs(root); 1600 1601 return ret; 1602 1603 cleanup_transaction: 1604 btrfs_trans_release_metadata(trans, root); 1605 trans->block_rsv = NULL; 1606 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n"); 1607 // WARN_ON(1); 1608 if (current->journal_info == trans) 1609 current->journal_info = NULL; 1610 cleanup_transaction(trans, root, ret); 1611 1612 return ret; 1613 } 1614 1615 /* 1616 * interface function to delete all the snapshots we have scheduled for deletion 1617 */ 1618 int btrfs_clean_old_snapshots(struct btrfs_root *root) 1619 { 1620 LIST_HEAD(list); 1621 struct btrfs_fs_info *fs_info = root->fs_info; 1622 1623 spin_lock(&fs_info->trans_lock); 1624 list_splice_init(&fs_info->dead_roots, &list); 1625 spin_unlock(&fs_info->trans_lock); 1626 1627 while (!list_empty(&list)) { 1628 int ret; 1629 1630 root = list_entry(list.next, struct btrfs_root, root_list); 1631 list_del(&root->root_list); 1632 1633 btrfs_kill_all_delayed_nodes(root); 1634 1635 if (btrfs_header_backref_rev(root->node) < 1636 BTRFS_MIXED_BACKREF_REV) 1637 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 1638 else 1639 ret =btrfs_drop_snapshot(root, NULL, 1, 0); 1640 BUG_ON(ret < 0); 1641 } 1642 return 0; 1643 } 1644