xref: /openbmc/linux/fs/btrfs/transaction.c (revision 95e9fd10)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 
34 #define BTRFS_ROOT_TRANS_TAG 0
35 
36 void put_transaction(struct btrfs_transaction *transaction)
37 {
38 	WARN_ON(atomic_read(&transaction->use_count) == 0);
39 	if (atomic_dec_and_test(&transaction->use_count)) {
40 		BUG_ON(!list_empty(&transaction->list));
41 		WARN_ON(transaction->delayed_refs.root.rb_node);
42 		memset(transaction, 0, sizeof(*transaction));
43 		kmem_cache_free(btrfs_transaction_cachep, transaction);
44 	}
45 }
46 
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49 	free_extent_buffer(root->commit_root);
50 	root->commit_root = btrfs_root_node(root);
51 }
52 
53 /*
54  * either allocate a new transaction or hop into the existing one
55  */
56 static noinline int join_transaction(struct btrfs_root *root, int nofail)
57 {
58 	struct btrfs_transaction *cur_trans;
59 	struct btrfs_fs_info *fs_info = root->fs_info;
60 
61 	spin_lock(&fs_info->trans_lock);
62 loop:
63 	/* The file system has been taken offline. No new transactions. */
64 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
65 		spin_unlock(&fs_info->trans_lock);
66 		return -EROFS;
67 	}
68 
69 	if (fs_info->trans_no_join) {
70 		if (!nofail) {
71 			spin_unlock(&fs_info->trans_lock);
72 			return -EBUSY;
73 		}
74 	}
75 
76 	cur_trans = fs_info->running_transaction;
77 	if (cur_trans) {
78 		if (cur_trans->aborted) {
79 			spin_unlock(&fs_info->trans_lock);
80 			return cur_trans->aborted;
81 		}
82 		atomic_inc(&cur_trans->use_count);
83 		atomic_inc(&cur_trans->num_writers);
84 		cur_trans->num_joined++;
85 		spin_unlock(&fs_info->trans_lock);
86 		return 0;
87 	}
88 	spin_unlock(&fs_info->trans_lock);
89 
90 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
91 	if (!cur_trans)
92 		return -ENOMEM;
93 
94 	spin_lock(&fs_info->trans_lock);
95 	if (fs_info->running_transaction) {
96 		/*
97 		 * someone started a transaction after we unlocked.  Make sure
98 		 * to redo the trans_no_join checks above
99 		 */
100 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
101 		cur_trans = fs_info->running_transaction;
102 		goto loop;
103 	} else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
104 		spin_unlock(&fs_info->trans_lock);
105 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
106 		return -EROFS;
107 	}
108 
109 	atomic_set(&cur_trans->num_writers, 1);
110 	cur_trans->num_joined = 0;
111 	init_waitqueue_head(&cur_trans->writer_wait);
112 	init_waitqueue_head(&cur_trans->commit_wait);
113 	cur_trans->in_commit = 0;
114 	cur_trans->blocked = 0;
115 	/*
116 	 * One for this trans handle, one so it will live on until we
117 	 * commit the transaction.
118 	 */
119 	atomic_set(&cur_trans->use_count, 2);
120 	cur_trans->commit_done = 0;
121 	cur_trans->start_time = get_seconds();
122 
123 	cur_trans->delayed_refs.root = RB_ROOT;
124 	cur_trans->delayed_refs.num_entries = 0;
125 	cur_trans->delayed_refs.num_heads_ready = 0;
126 	cur_trans->delayed_refs.num_heads = 0;
127 	cur_trans->delayed_refs.flushing = 0;
128 	cur_trans->delayed_refs.run_delayed_start = 0;
129 
130 	/*
131 	 * although the tree mod log is per file system and not per transaction,
132 	 * the log must never go across transaction boundaries.
133 	 */
134 	smp_mb();
135 	if (!list_empty(&fs_info->tree_mod_seq_list)) {
136 		printk(KERN_ERR "btrfs: tree_mod_seq_list not empty when "
137 			"creating a fresh transaction\n");
138 		WARN_ON(1);
139 	}
140 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) {
141 		printk(KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
142 			"creating a fresh transaction\n");
143 		WARN_ON(1);
144 	}
145 	atomic_set(&fs_info->tree_mod_seq, 0);
146 
147 	spin_lock_init(&cur_trans->commit_lock);
148 	spin_lock_init(&cur_trans->delayed_refs.lock);
149 
150 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
151 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
152 	extent_io_tree_init(&cur_trans->dirty_pages,
153 			     fs_info->btree_inode->i_mapping);
154 	fs_info->generation++;
155 	cur_trans->transid = fs_info->generation;
156 	fs_info->running_transaction = cur_trans;
157 	cur_trans->aborted = 0;
158 	spin_unlock(&fs_info->trans_lock);
159 
160 	return 0;
161 }
162 
163 /*
164  * this does all the record keeping required to make sure that a reference
165  * counted root is properly recorded in a given transaction.  This is required
166  * to make sure the old root from before we joined the transaction is deleted
167  * when the transaction commits
168  */
169 static int record_root_in_trans(struct btrfs_trans_handle *trans,
170 			       struct btrfs_root *root)
171 {
172 	if (root->ref_cows && root->last_trans < trans->transid) {
173 		WARN_ON(root == root->fs_info->extent_root);
174 		WARN_ON(root->commit_root != root->node);
175 
176 		/*
177 		 * see below for in_trans_setup usage rules
178 		 * we have the reloc mutex held now, so there
179 		 * is only one writer in this function
180 		 */
181 		root->in_trans_setup = 1;
182 
183 		/* make sure readers find in_trans_setup before
184 		 * they find our root->last_trans update
185 		 */
186 		smp_wmb();
187 
188 		spin_lock(&root->fs_info->fs_roots_radix_lock);
189 		if (root->last_trans == trans->transid) {
190 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
191 			return 0;
192 		}
193 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
194 			   (unsigned long)root->root_key.objectid,
195 			   BTRFS_ROOT_TRANS_TAG);
196 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
197 		root->last_trans = trans->transid;
198 
199 		/* this is pretty tricky.  We don't want to
200 		 * take the relocation lock in btrfs_record_root_in_trans
201 		 * unless we're really doing the first setup for this root in
202 		 * this transaction.
203 		 *
204 		 * Normally we'd use root->last_trans as a flag to decide
205 		 * if we want to take the expensive mutex.
206 		 *
207 		 * But, we have to set root->last_trans before we
208 		 * init the relocation root, otherwise, we trip over warnings
209 		 * in ctree.c.  The solution used here is to flag ourselves
210 		 * with root->in_trans_setup.  When this is 1, we're still
211 		 * fixing up the reloc trees and everyone must wait.
212 		 *
213 		 * When this is zero, they can trust root->last_trans and fly
214 		 * through btrfs_record_root_in_trans without having to take the
215 		 * lock.  smp_wmb() makes sure that all the writes above are
216 		 * done before we pop in the zero below
217 		 */
218 		btrfs_init_reloc_root(trans, root);
219 		smp_wmb();
220 		root->in_trans_setup = 0;
221 	}
222 	return 0;
223 }
224 
225 
226 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
227 			       struct btrfs_root *root)
228 {
229 	if (!root->ref_cows)
230 		return 0;
231 
232 	/*
233 	 * see record_root_in_trans for comments about in_trans_setup usage
234 	 * and barriers
235 	 */
236 	smp_rmb();
237 	if (root->last_trans == trans->transid &&
238 	    !root->in_trans_setup)
239 		return 0;
240 
241 	mutex_lock(&root->fs_info->reloc_mutex);
242 	record_root_in_trans(trans, root);
243 	mutex_unlock(&root->fs_info->reloc_mutex);
244 
245 	return 0;
246 }
247 
248 /* wait for commit against the current transaction to become unblocked
249  * when this is done, it is safe to start a new transaction, but the current
250  * transaction might not be fully on disk.
251  */
252 static void wait_current_trans(struct btrfs_root *root)
253 {
254 	struct btrfs_transaction *cur_trans;
255 
256 	spin_lock(&root->fs_info->trans_lock);
257 	cur_trans = root->fs_info->running_transaction;
258 	if (cur_trans && cur_trans->blocked) {
259 		atomic_inc(&cur_trans->use_count);
260 		spin_unlock(&root->fs_info->trans_lock);
261 
262 		wait_event(root->fs_info->transaction_wait,
263 			   !cur_trans->blocked);
264 		put_transaction(cur_trans);
265 	} else {
266 		spin_unlock(&root->fs_info->trans_lock);
267 	}
268 }
269 
270 enum btrfs_trans_type {
271 	TRANS_START,
272 	TRANS_JOIN,
273 	TRANS_USERSPACE,
274 	TRANS_JOIN_NOLOCK,
275 };
276 
277 static int may_wait_transaction(struct btrfs_root *root, int type)
278 {
279 	if (root->fs_info->log_root_recovering)
280 		return 0;
281 
282 	if (type == TRANS_USERSPACE)
283 		return 1;
284 
285 	if (type == TRANS_START &&
286 	    !atomic_read(&root->fs_info->open_ioctl_trans))
287 		return 1;
288 
289 	return 0;
290 }
291 
292 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
293 						    u64 num_items, int type)
294 {
295 	struct btrfs_trans_handle *h;
296 	struct btrfs_transaction *cur_trans;
297 	u64 num_bytes = 0;
298 	int ret;
299 	u64 qgroup_reserved = 0;
300 
301 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
302 		return ERR_PTR(-EROFS);
303 
304 	if (current->journal_info) {
305 		WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
306 		h = current->journal_info;
307 		h->use_count++;
308 		h->orig_rsv = h->block_rsv;
309 		h->block_rsv = NULL;
310 		goto got_it;
311 	}
312 
313 	/*
314 	 * Do the reservation before we join the transaction so we can do all
315 	 * the appropriate flushing if need be.
316 	 */
317 	if (num_items > 0 && root != root->fs_info->chunk_root) {
318 		if (root->fs_info->quota_enabled &&
319 		    is_fstree(root->root_key.objectid)) {
320 			qgroup_reserved = num_items * root->leafsize;
321 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
322 			if (ret)
323 				return ERR_PTR(ret);
324 		}
325 
326 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
327 		ret = btrfs_block_rsv_add(root,
328 					  &root->fs_info->trans_block_rsv,
329 					  num_bytes);
330 		if (ret)
331 			return ERR_PTR(ret);
332 	}
333 again:
334 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
335 	if (!h)
336 		return ERR_PTR(-ENOMEM);
337 
338 	sb_start_intwrite(root->fs_info->sb);
339 
340 	if (may_wait_transaction(root, type))
341 		wait_current_trans(root);
342 
343 	do {
344 		ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
345 		if (ret == -EBUSY)
346 			wait_current_trans(root);
347 	} while (ret == -EBUSY);
348 
349 	if (ret < 0) {
350 		sb_end_intwrite(root->fs_info->sb);
351 		kmem_cache_free(btrfs_trans_handle_cachep, h);
352 		return ERR_PTR(ret);
353 	}
354 
355 	cur_trans = root->fs_info->running_transaction;
356 
357 	h->transid = cur_trans->transid;
358 	h->transaction = cur_trans;
359 	h->blocks_used = 0;
360 	h->bytes_reserved = 0;
361 	h->root = root;
362 	h->delayed_ref_updates = 0;
363 	h->use_count = 1;
364 	h->adding_csums = 0;
365 	h->block_rsv = NULL;
366 	h->orig_rsv = NULL;
367 	h->aborted = 0;
368 	h->qgroup_reserved = qgroup_reserved;
369 	h->delayed_ref_elem.seq = 0;
370 	INIT_LIST_HEAD(&h->qgroup_ref_list);
371 
372 	smp_mb();
373 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
374 		btrfs_commit_transaction(h, root);
375 		goto again;
376 	}
377 
378 	if (num_bytes) {
379 		trace_btrfs_space_reservation(root->fs_info, "transaction",
380 					      h->transid, num_bytes, 1);
381 		h->block_rsv = &root->fs_info->trans_block_rsv;
382 		h->bytes_reserved = num_bytes;
383 	}
384 
385 got_it:
386 	btrfs_record_root_in_trans(h, root);
387 
388 	if (!current->journal_info && type != TRANS_USERSPACE)
389 		current->journal_info = h;
390 	return h;
391 }
392 
393 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
394 						   int num_items)
395 {
396 	return start_transaction(root, num_items, TRANS_START);
397 }
398 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
399 {
400 	return start_transaction(root, 0, TRANS_JOIN);
401 }
402 
403 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
404 {
405 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
406 }
407 
408 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
409 {
410 	return start_transaction(root, 0, TRANS_USERSPACE);
411 }
412 
413 /* wait for a transaction commit to be fully complete */
414 static noinline void wait_for_commit(struct btrfs_root *root,
415 				    struct btrfs_transaction *commit)
416 {
417 	wait_event(commit->commit_wait, commit->commit_done);
418 }
419 
420 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
421 {
422 	struct btrfs_transaction *cur_trans = NULL, *t;
423 	int ret;
424 
425 	ret = 0;
426 	if (transid) {
427 		if (transid <= root->fs_info->last_trans_committed)
428 			goto out;
429 
430 		/* find specified transaction */
431 		spin_lock(&root->fs_info->trans_lock);
432 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
433 			if (t->transid == transid) {
434 				cur_trans = t;
435 				atomic_inc(&cur_trans->use_count);
436 				break;
437 			}
438 			if (t->transid > transid)
439 				break;
440 		}
441 		spin_unlock(&root->fs_info->trans_lock);
442 		ret = -EINVAL;
443 		if (!cur_trans)
444 			goto out;  /* bad transid */
445 	} else {
446 		/* find newest transaction that is committing | committed */
447 		spin_lock(&root->fs_info->trans_lock);
448 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
449 					    list) {
450 			if (t->in_commit) {
451 				if (t->commit_done)
452 					break;
453 				cur_trans = t;
454 				atomic_inc(&cur_trans->use_count);
455 				break;
456 			}
457 		}
458 		spin_unlock(&root->fs_info->trans_lock);
459 		if (!cur_trans)
460 			goto out;  /* nothing committing|committed */
461 	}
462 
463 	wait_for_commit(root, cur_trans);
464 
465 	put_transaction(cur_trans);
466 	ret = 0;
467 out:
468 	return ret;
469 }
470 
471 void btrfs_throttle(struct btrfs_root *root)
472 {
473 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
474 		wait_current_trans(root);
475 }
476 
477 static int should_end_transaction(struct btrfs_trans_handle *trans,
478 				  struct btrfs_root *root)
479 {
480 	int ret;
481 
482 	ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
483 	return ret ? 1 : 0;
484 }
485 
486 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
487 				 struct btrfs_root *root)
488 {
489 	struct btrfs_transaction *cur_trans = trans->transaction;
490 	int updates;
491 	int err;
492 
493 	smp_mb();
494 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
495 		return 1;
496 
497 	updates = trans->delayed_ref_updates;
498 	trans->delayed_ref_updates = 0;
499 	if (updates) {
500 		err = btrfs_run_delayed_refs(trans, root, updates);
501 		if (err) /* Error code will also eval true */
502 			return err;
503 	}
504 
505 	return should_end_transaction(trans, root);
506 }
507 
508 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
509 			  struct btrfs_root *root, int throttle, int lock)
510 {
511 	struct btrfs_transaction *cur_trans = trans->transaction;
512 	struct btrfs_fs_info *info = root->fs_info;
513 	int count = 0;
514 	int err = 0;
515 
516 	if (--trans->use_count) {
517 		trans->block_rsv = trans->orig_rsv;
518 		return 0;
519 	}
520 
521 	/*
522 	 * do the qgroup accounting as early as possible
523 	 */
524 	err = btrfs_delayed_refs_qgroup_accounting(trans, info);
525 
526 	btrfs_trans_release_metadata(trans, root);
527 	trans->block_rsv = NULL;
528 	/*
529 	 * the same root has to be passed to start_transaction and
530 	 * end_transaction. Subvolume quota depends on this.
531 	 */
532 	WARN_ON(trans->root != root);
533 
534 	if (trans->qgroup_reserved) {
535 		btrfs_qgroup_free(root, trans->qgroup_reserved);
536 		trans->qgroup_reserved = 0;
537 	}
538 
539 	while (count < 2) {
540 		unsigned long cur = trans->delayed_ref_updates;
541 		trans->delayed_ref_updates = 0;
542 		if (cur &&
543 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
544 			trans->delayed_ref_updates = 0;
545 			btrfs_run_delayed_refs(trans, root, cur);
546 		} else {
547 			break;
548 		}
549 		count++;
550 	}
551 	btrfs_trans_release_metadata(trans, root);
552 	trans->block_rsv = NULL;
553 
554 	sb_end_intwrite(root->fs_info->sb);
555 
556 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
557 	    should_end_transaction(trans, root)) {
558 		trans->transaction->blocked = 1;
559 		smp_wmb();
560 	}
561 
562 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
563 		if (throttle) {
564 			/*
565 			 * We may race with somebody else here so end up having
566 			 * to call end_transaction on ourselves again, so inc
567 			 * our use_count.
568 			 */
569 			trans->use_count++;
570 			return btrfs_commit_transaction(trans, root);
571 		} else {
572 			wake_up_process(info->transaction_kthread);
573 		}
574 	}
575 
576 	WARN_ON(cur_trans != info->running_transaction);
577 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
578 	atomic_dec(&cur_trans->num_writers);
579 
580 	smp_mb();
581 	if (waitqueue_active(&cur_trans->writer_wait))
582 		wake_up(&cur_trans->writer_wait);
583 	put_transaction(cur_trans);
584 
585 	if (current->journal_info == trans)
586 		current->journal_info = NULL;
587 
588 	if (throttle)
589 		btrfs_run_delayed_iputs(root);
590 
591 	if (trans->aborted ||
592 	    root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
593 		err = -EIO;
594 	}
595 	assert_qgroups_uptodate(trans);
596 
597 	memset(trans, 0, sizeof(*trans));
598 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
599 	return err;
600 }
601 
602 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
603 			  struct btrfs_root *root)
604 {
605 	int ret;
606 
607 	ret = __btrfs_end_transaction(trans, root, 0, 1);
608 	if (ret)
609 		return ret;
610 	return 0;
611 }
612 
613 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
614 				   struct btrfs_root *root)
615 {
616 	int ret;
617 
618 	ret = __btrfs_end_transaction(trans, root, 1, 1);
619 	if (ret)
620 		return ret;
621 	return 0;
622 }
623 
624 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
625 				 struct btrfs_root *root)
626 {
627 	int ret;
628 
629 	ret = __btrfs_end_transaction(trans, root, 0, 0);
630 	if (ret)
631 		return ret;
632 	return 0;
633 }
634 
635 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
636 				struct btrfs_root *root)
637 {
638 	return __btrfs_end_transaction(trans, root, 1, 1);
639 }
640 
641 /*
642  * when btree blocks are allocated, they have some corresponding bits set for
643  * them in one of two extent_io trees.  This is used to make sure all of
644  * those extents are sent to disk but does not wait on them
645  */
646 int btrfs_write_marked_extents(struct btrfs_root *root,
647 			       struct extent_io_tree *dirty_pages, int mark)
648 {
649 	int err = 0;
650 	int werr = 0;
651 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
652 	u64 start = 0;
653 	u64 end;
654 
655 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
656 				      mark)) {
657 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
658 				   GFP_NOFS);
659 		err = filemap_fdatawrite_range(mapping, start, end);
660 		if (err)
661 			werr = err;
662 		cond_resched();
663 		start = end + 1;
664 	}
665 	if (err)
666 		werr = err;
667 	return werr;
668 }
669 
670 /*
671  * when btree blocks are allocated, they have some corresponding bits set for
672  * them in one of two extent_io trees.  This is used to make sure all of
673  * those extents are on disk for transaction or log commit.  We wait
674  * on all the pages and clear them from the dirty pages state tree
675  */
676 int btrfs_wait_marked_extents(struct btrfs_root *root,
677 			      struct extent_io_tree *dirty_pages, int mark)
678 {
679 	int err = 0;
680 	int werr = 0;
681 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
682 	u64 start = 0;
683 	u64 end;
684 
685 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
686 				      EXTENT_NEED_WAIT)) {
687 		clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
688 		err = filemap_fdatawait_range(mapping, start, end);
689 		if (err)
690 			werr = err;
691 		cond_resched();
692 		start = end + 1;
693 	}
694 	if (err)
695 		werr = err;
696 	return werr;
697 }
698 
699 /*
700  * when btree blocks are allocated, they have some corresponding bits set for
701  * them in one of two extent_io trees.  This is used to make sure all of
702  * those extents are on disk for transaction or log commit
703  */
704 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
705 				struct extent_io_tree *dirty_pages, int mark)
706 {
707 	int ret;
708 	int ret2;
709 
710 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
711 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
712 
713 	if (ret)
714 		return ret;
715 	if (ret2)
716 		return ret2;
717 	return 0;
718 }
719 
720 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
721 				     struct btrfs_root *root)
722 {
723 	if (!trans || !trans->transaction) {
724 		struct inode *btree_inode;
725 		btree_inode = root->fs_info->btree_inode;
726 		return filemap_write_and_wait(btree_inode->i_mapping);
727 	}
728 	return btrfs_write_and_wait_marked_extents(root,
729 					   &trans->transaction->dirty_pages,
730 					   EXTENT_DIRTY);
731 }
732 
733 /*
734  * this is used to update the root pointer in the tree of tree roots.
735  *
736  * But, in the case of the extent allocation tree, updating the root
737  * pointer may allocate blocks which may change the root of the extent
738  * allocation tree.
739  *
740  * So, this loops and repeats and makes sure the cowonly root didn't
741  * change while the root pointer was being updated in the metadata.
742  */
743 static int update_cowonly_root(struct btrfs_trans_handle *trans,
744 			       struct btrfs_root *root)
745 {
746 	int ret;
747 	u64 old_root_bytenr;
748 	u64 old_root_used;
749 	struct btrfs_root *tree_root = root->fs_info->tree_root;
750 
751 	old_root_used = btrfs_root_used(&root->root_item);
752 	btrfs_write_dirty_block_groups(trans, root);
753 
754 	while (1) {
755 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
756 		if (old_root_bytenr == root->node->start &&
757 		    old_root_used == btrfs_root_used(&root->root_item))
758 			break;
759 
760 		btrfs_set_root_node(&root->root_item, root->node);
761 		ret = btrfs_update_root(trans, tree_root,
762 					&root->root_key,
763 					&root->root_item);
764 		if (ret)
765 			return ret;
766 
767 		old_root_used = btrfs_root_used(&root->root_item);
768 		ret = btrfs_write_dirty_block_groups(trans, root);
769 		if (ret)
770 			return ret;
771 	}
772 
773 	if (root != root->fs_info->extent_root)
774 		switch_commit_root(root);
775 
776 	return 0;
777 }
778 
779 /*
780  * update all the cowonly tree roots on disk
781  *
782  * The error handling in this function may not be obvious. Any of the
783  * failures will cause the file system to go offline. We still need
784  * to clean up the delayed refs.
785  */
786 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
787 					 struct btrfs_root *root)
788 {
789 	struct btrfs_fs_info *fs_info = root->fs_info;
790 	struct list_head *next;
791 	struct extent_buffer *eb;
792 	int ret;
793 
794 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
795 	if (ret)
796 		return ret;
797 
798 	eb = btrfs_lock_root_node(fs_info->tree_root);
799 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
800 			      0, &eb);
801 	btrfs_tree_unlock(eb);
802 	free_extent_buffer(eb);
803 
804 	if (ret)
805 		return ret;
806 
807 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
808 	if (ret)
809 		return ret;
810 
811 	ret = btrfs_run_dev_stats(trans, root->fs_info);
812 	BUG_ON(ret);
813 
814 	ret = btrfs_run_qgroups(trans, root->fs_info);
815 	BUG_ON(ret);
816 
817 	/* run_qgroups might have added some more refs */
818 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
819 	BUG_ON(ret);
820 
821 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
822 		next = fs_info->dirty_cowonly_roots.next;
823 		list_del_init(next);
824 		root = list_entry(next, struct btrfs_root, dirty_list);
825 
826 		ret = update_cowonly_root(trans, root);
827 		if (ret)
828 			return ret;
829 	}
830 
831 	down_write(&fs_info->extent_commit_sem);
832 	switch_commit_root(fs_info->extent_root);
833 	up_write(&fs_info->extent_commit_sem);
834 
835 	return 0;
836 }
837 
838 /*
839  * dead roots are old snapshots that need to be deleted.  This allocates
840  * a dirty root struct and adds it into the list of dead roots that need to
841  * be deleted
842  */
843 int btrfs_add_dead_root(struct btrfs_root *root)
844 {
845 	spin_lock(&root->fs_info->trans_lock);
846 	list_add(&root->root_list, &root->fs_info->dead_roots);
847 	spin_unlock(&root->fs_info->trans_lock);
848 	return 0;
849 }
850 
851 /*
852  * update all the cowonly tree roots on disk
853  */
854 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
855 				    struct btrfs_root *root)
856 {
857 	struct btrfs_root *gang[8];
858 	struct btrfs_fs_info *fs_info = root->fs_info;
859 	int i;
860 	int ret;
861 	int err = 0;
862 
863 	spin_lock(&fs_info->fs_roots_radix_lock);
864 	while (1) {
865 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
866 						 (void **)gang, 0,
867 						 ARRAY_SIZE(gang),
868 						 BTRFS_ROOT_TRANS_TAG);
869 		if (ret == 0)
870 			break;
871 		for (i = 0; i < ret; i++) {
872 			root = gang[i];
873 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
874 					(unsigned long)root->root_key.objectid,
875 					BTRFS_ROOT_TRANS_TAG);
876 			spin_unlock(&fs_info->fs_roots_radix_lock);
877 
878 			btrfs_free_log(trans, root);
879 			btrfs_update_reloc_root(trans, root);
880 			btrfs_orphan_commit_root(trans, root);
881 
882 			btrfs_save_ino_cache(root, trans);
883 
884 			/* see comments in should_cow_block() */
885 			root->force_cow = 0;
886 			smp_wmb();
887 
888 			if (root->commit_root != root->node) {
889 				mutex_lock(&root->fs_commit_mutex);
890 				switch_commit_root(root);
891 				btrfs_unpin_free_ino(root);
892 				mutex_unlock(&root->fs_commit_mutex);
893 
894 				btrfs_set_root_node(&root->root_item,
895 						    root->node);
896 			}
897 
898 			err = btrfs_update_root(trans, fs_info->tree_root,
899 						&root->root_key,
900 						&root->root_item);
901 			spin_lock(&fs_info->fs_roots_radix_lock);
902 			if (err)
903 				break;
904 		}
905 	}
906 	spin_unlock(&fs_info->fs_roots_radix_lock);
907 	return err;
908 }
909 
910 /*
911  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
912  * otherwise every leaf in the btree is read and defragged.
913  */
914 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
915 {
916 	struct btrfs_fs_info *info = root->fs_info;
917 	struct btrfs_trans_handle *trans;
918 	int ret;
919 	unsigned long nr;
920 
921 	if (xchg(&root->defrag_running, 1))
922 		return 0;
923 
924 	while (1) {
925 		trans = btrfs_start_transaction(root, 0);
926 		if (IS_ERR(trans))
927 			return PTR_ERR(trans);
928 
929 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
930 
931 		nr = trans->blocks_used;
932 		btrfs_end_transaction(trans, root);
933 		btrfs_btree_balance_dirty(info->tree_root, nr);
934 		cond_resched();
935 
936 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
937 			break;
938 	}
939 	root->defrag_running = 0;
940 	return ret;
941 }
942 
943 /*
944  * new snapshots need to be created at a very specific time in the
945  * transaction commit.  This does the actual creation
946  */
947 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
948 				   struct btrfs_fs_info *fs_info,
949 				   struct btrfs_pending_snapshot *pending)
950 {
951 	struct btrfs_key key;
952 	struct btrfs_root_item *new_root_item;
953 	struct btrfs_root *tree_root = fs_info->tree_root;
954 	struct btrfs_root *root = pending->root;
955 	struct btrfs_root *parent_root;
956 	struct btrfs_block_rsv *rsv;
957 	struct inode *parent_inode;
958 	struct dentry *parent;
959 	struct dentry *dentry;
960 	struct extent_buffer *tmp;
961 	struct extent_buffer *old;
962 	struct timespec cur_time = CURRENT_TIME;
963 	int ret;
964 	u64 to_reserve = 0;
965 	u64 index = 0;
966 	u64 objectid;
967 	u64 root_flags;
968 	uuid_le new_uuid;
969 
970 	rsv = trans->block_rsv;
971 
972 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
973 	if (!new_root_item) {
974 		ret = pending->error = -ENOMEM;
975 		goto fail;
976 	}
977 
978 	ret = btrfs_find_free_objectid(tree_root, &objectid);
979 	if (ret) {
980 		pending->error = ret;
981 		goto fail;
982 	}
983 
984 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
985 
986 	if (to_reserve > 0) {
987 		ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
988 						  to_reserve);
989 		if (ret) {
990 			pending->error = ret;
991 			goto fail;
992 		}
993 	}
994 
995 	ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
996 				   objectid, pending->inherit);
997 	kfree(pending->inherit);
998 	if (ret) {
999 		pending->error = ret;
1000 		goto fail;
1001 	}
1002 
1003 	key.objectid = objectid;
1004 	key.offset = (u64)-1;
1005 	key.type = BTRFS_ROOT_ITEM_KEY;
1006 
1007 	trans->block_rsv = &pending->block_rsv;
1008 
1009 	dentry = pending->dentry;
1010 	parent = dget_parent(dentry);
1011 	parent_inode = parent->d_inode;
1012 	parent_root = BTRFS_I(parent_inode)->root;
1013 	record_root_in_trans(trans, parent_root);
1014 
1015 	/*
1016 	 * insert the directory item
1017 	 */
1018 	ret = btrfs_set_inode_index(parent_inode, &index);
1019 	BUG_ON(ret); /* -ENOMEM */
1020 	ret = btrfs_insert_dir_item(trans, parent_root,
1021 				dentry->d_name.name, dentry->d_name.len,
1022 				parent_inode, &key,
1023 				BTRFS_FT_DIR, index);
1024 	if (ret == -EEXIST) {
1025 		pending->error = -EEXIST;
1026 		dput(parent);
1027 		goto fail;
1028 	} else if (ret) {
1029 		goto abort_trans_dput;
1030 	}
1031 
1032 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1033 					 dentry->d_name.len * 2);
1034 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1035 	ret = btrfs_update_inode(trans, parent_root, parent_inode);
1036 	if (ret)
1037 		goto abort_trans_dput;
1038 
1039 	/*
1040 	 * pull in the delayed directory update
1041 	 * and the delayed inode item
1042 	 * otherwise we corrupt the FS during
1043 	 * snapshot
1044 	 */
1045 	ret = btrfs_run_delayed_items(trans, root);
1046 	if (ret) { /* Transaction aborted */
1047 		dput(parent);
1048 		goto fail;
1049 	}
1050 
1051 	record_root_in_trans(trans, root);
1052 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1053 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1054 	btrfs_check_and_init_root_item(new_root_item);
1055 
1056 	root_flags = btrfs_root_flags(new_root_item);
1057 	if (pending->readonly)
1058 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1059 	else
1060 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1061 	btrfs_set_root_flags(new_root_item, root_flags);
1062 
1063 	btrfs_set_root_generation_v2(new_root_item,
1064 			trans->transid);
1065 	uuid_le_gen(&new_uuid);
1066 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1067 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1068 			BTRFS_UUID_SIZE);
1069 	new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1070 	new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1071 	btrfs_set_root_otransid(new_root_item, trans->transid);
1072 	memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1073 	memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1074 	btrfs_set_root_stransid(new_root_item, 0);
1075 	btrfs_set_root_rtransid(new_root_item, 0);
1076 
1077 	old = btrfs_lock_root_node(root);
1078 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1079 	if (ret) {
1080 		btrfs_tree_unlock(old);
1081 		free_extent_buffer(old);
1082 		goto abort_trans_dput;
1083 	}
1084 
1085 	btrfs_set_lock_blocking(old);
1086 
1087 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1088 	/* clean up in any case */
1089 	btrfs_tree_unlock(old);
1090 	free_extent_buffer(old);
1091 	if (ret)
1092 		goto abort_trans_dput;
1093 
1094 	/* see comments in should_cow_block() */
1095 	root->force_cow = 1;
1096 	smp_wmb();
1097 
1098 	btrfs_set_root_node(new_root_item, tmp);
1099 	/* record when the snapshot was created in key.offset */
1100 	key.offset = trans->transid;
1101 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1102 	btrfs_tree_unlock(tmp);
1103 	free_extent_buffer(tmp);
1104 	if (ret)
1105 		goto abort_trans_dput;
1106 
1107 	/*
1108 	 * insert root back/forward references
1109 	 */
1110 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1111 				 parent_root->root_key.objectid,
1112 				 btrfs_ino(parent_inode), index,
1113 				 dentry->d_name.name, dentry->d_name.len);
1114 	dput(parent);
1115 	if (ret)
1116 		goto fail;
1117 
1118 	key.offset = (u64)-1;
1119 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1120 	if (IS_ERR(pending->snap)) {
1121 		ret = PTR_ERR(pending->snap);
1122 		goto abort_trans;
1123 	}
1124 
1125 	ret = btrfs_reloc_post_snapshot(trans, pending);
1126 	if (ret)
1127 		goto abort_trans;
1128 	ret = 0;
1129 fail:
1130 	kfree(new_root_item);
1131 	trans->block_rsv = rsv;
1132 	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1133 	return ret;
1134 
1135 abort_trans_dput:
1136 	dput(parent);
1137 abort_trans:
1138 	btrfs_abort_transaction(trans, root, ret);
1139 	goto fail;
1140 }
1141 
1142 /*
1143  * create all the snapshots we've scheduled for creation
1144  */
1145 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1146 					     struct btrfs_fs_info *fs_info)
1147 {
1148 	struct btrfs_pending_snapshot *pending;
1149 	struct list_head *head = &trans->transaction->pending_snapshots;
1150 
1151 	list_for_each_entry(pending, head, list)
1152 		create_pending_snapshot(trans, fs_info, pending);
1153 	return 0;
1154 }
1155 
1156 static void update_super_roots(struct btrfs_root *root)
1157 {
1158 	struct btrfs_root_item *root_item;
1159 	struct btrfs_super_block *super;
1160 
1161 	super = root->fs_info->super_copy;
1162 
1163 	root_item = &root->fs_info->chunk_root->root_item;
1164 	super->chunk_root = root_item->bytenr;
1165 	super->chunk_root_generation = root_item->generation;
1166 	super->chunk_root_level = root_item->level;
1167 
1168 	root_item = &root->fs_info->tree_root->root_item;
1169 	super->root = root_item->bytenr;
1170 	super->generation = root_item->generation;
1171 	super->root_level = root_item->level;
1172 	if (btrfs_test_opt(root, SPACE_CACHE))
1173 		super->cache_generation = root_item->generation;
1174 }
1175 
1176 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1177 {
1178 	int ret = 0;
1179 	spin_lock(&info->trans_lock);
1180 	if (info->running_transaction)
1181 		ret = info->running_transaction->in_commit;
1182 	spin_unlock(&info->trans_lock);
1183 	return ret;
1184 }
1185 
1186 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1187 {
1188 	int ret = 0;
1189 	spin_lock(&info->trans_lock);
1190 	if (info->running_transaction)
1191 		ret = info->running_transaction->blocked;
1192 	spin_unlock(&info->trans_lock);
1193 	return ret;
1194 }
1195 
1196 /*
1197  * wait for the current transaction commit to start and block subsequent
1198  * transaction joins
1199  */
1200 static void wait_current_trans_commit_start(struct btrfs_root *root,
1201 					    struct btrfs_transaction *trans)
1202 {
1203 	wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1204 }
1205 
1206 /*
1207  * wait for the current transaction to start and then become unblocked.
1208  * caller holds ref.
1209  */
1210 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1211 					 struct btrfs_transaction *trans)
1212 {
1213 	wait_event(root->fs_info->transaction_wait,
1214 		   trans->commit_done || (trans->in_commit && !trans->blocked));
1215 }
1216 
1217 /*
1218  * commit transactions asynchronously. once btrfs_commit_transaction_async
1219  * returns, any subsequent transaction will not be allowed to join.
1220  */
1221 struct btrfs_async_commit {
1222 	struct btrfs_trans_handle *newtrans;
1223 	struct btrfs_root *root;
1224 	struct delayed_work work;
1225 };
1226 
1227 static void do_async_commit(struct work_struct *work)
1228 {
1229 	struct btrfs_async_commit *ac =
1230 		container_of(work, struct btrfs_async_commit, work.work);
1231 
1232 	btrfs_commit_transaction(ac->newtrans, ac->root);
1233 	kfree(ac);
1234 }
1235 
1236 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1237 				   struct btrfs_root *root,
1238 				   int wait_for_unblock)
1239 {
1240 	struct btrfs_async_commit *ac;
1241 	struct btrfs_transaction *cur_trans;
1242 
1243 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1244 	if (!ac)
1245 		return -ENOMEM;
1246 
1247 	INIT_DELAYED_WORK(&ac->work, do_async_commit);
1248 	ac->root = root;
1249 	ac->newtrans = btrfs_join_transaction(root);
1250 	if (IS_ERR(ac->newtrans)) {
1251 		int err = PTR_ERR(ac->newtrans);
1252 		kfree(ac);
1253 		return err;
1254 	}
1255 
1256 	/* take transaction reference */
1257 	cur_trans = trans->transaction;
1258 	atomic_inc(&cur_trans->use_count);
1259 
1260 	btrfs_end_transaction(trans, root);
1261 	schedule_delayed_work(&ac->work, 0);
1262 
1263 	/* wait for transaction to start and unblock */
1264 	if (wait_for_unblock)
1265 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1266 	else
1267 		wait_current_trans_commit_start(root, cur_trans);
1268 
1269 	if (current->journal_info == trans)
1270 		current->journal_info = NULL;
1271 
1272 	put_transaction(cur_trans);
1273 	return 0;
1274 }
1275 
1276 
1277 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1278 				struct btrfs_root *root, int err)
1279 {
1280 	struct btrfs_transaction *cur_trans = trans->transaction;
1281 
1282 	WARN_ON(trans->use_count > 1);
1283 
1284 	btrfs_abort_transaction(trans, root, err);
1285 
1286 	spin_lock(&root->fs_info->trans_lock);
1287 	list_del_init(&cur_trans->list);
1288 	if (cur_trans == root->fs_info->running_transaction) {
1289 		root->fs_info->running_transaction = NULL;
1290 		root->fs_info->trans_no_join = 0;
1291 	}
1292 	spin_unlock(&root->fs_info->trans_lock);
1293 
1294 	btrfs_cleanup_one_transaction(trans->transaction, root);
1295 
1296 	put_transaction(cur_trans);
1297 	put_transaction(cur_trans);
1298 
1299 	trace_btrfs_transaction_commit(root);
1300 
1301 	btrfs_scrub_continue(root);
1302 
1303 	if (current->journal_info == trans)
1304 		current->journal_info = NULL;
1305 
1306 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1307 }
1308 
1309 /*
1310  * btrfs_transaction state sequence:
1311  *    in_commit = 0, blocked = 0  (initial)
1312  *    in_commit = 1, blocked = 1
1313  *    blocked = 0
1314  *    commit_done = 1
1315  */
1316 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1317 			     struct btrfs_root *root)
1318 {
1319 	unsigned long joined = 0;
1320 	struct btrfs_transaction *cur_trans = trans->transaction;
1321 	struct btrfs_transaction *prev_trans = NULL;
1322 	DEFINE_WAIT(wait);
1323 	int ret = -EIO;
1324 	int should_grow = 0;
1325 	unsigned long now = get_seconds();
1326 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1327 
1328 	btrfs_run_ordered_operations(root, 0);
1329 
1330 	if (cur_trans->aborted)
1331 		goto cleanup_transaction;
1332 
1333 	/* make a pass through all the delayed refs we have so far
1334 	 * any runnings procs may add more while we are here
1335 	 */
1336 	ret = btrfs_run_delayed_refs(trans, root, 0);
1337 	if (ret)
1338 		goto cleanup_transaction;
1339 
1340 	btrfs_trans_release_metadata(trans, root);
1341 	trans->block_rsv = NULL;
1342 
1343 	cur_trans = trans->transaction;
1344 
1345 	/*
1346 	 * set the flushing flag so procs in this transaction have to
1347 	 * start sending their work down.
1348 	 */
1349 	cur_trans->delayed_refs.flushing = 1;
1350 
1351 	ret = btrfs_run_delayed_refs(trans, root, 0);
1352 	if (ret)
1353 		goto cleanup_transaction;
1354 
1355 	spin_lock(&cur_trans->commit_lock);
1356 	if (cur_trans->in_commit) {
1357 		spin_unlock(&cur_trans->commit_lock);
1358 		atomic_inc(&cur_trans->use_count);
1359 		ret = btrfs_end_transaction(trans, root);
1360 
1361 		wait_for_commit(root, cur_trans);
1362 
1363 		put_transaction(cur_trans);
1364 
1365 		return ret;
1366 	}
1367 
1368 	trans->transaction->in_commit = 1;
1369 	trans->transaction->blocked = 1;
1370 	spin_unlock(&cur_trans->commit_lock);
1371 	wake_up(&root->fs_info->transaction_blocked_wait);
1372 
1373 	spin_lock(&root->fs_info->trans_lock);
1374 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1375 		prev_trans = list_entry(cur_trans->list.prev,
1376 					struct btrfs_transaction, list);
1377 		if (!prev_trans->commit_done) {
1378 			atomic_inc(&prev_trans->use_count);
1379 			spin_unlock(&root->fs_info->trans_lock);
1380 
1381 			wait_for_commit(root, prev_trans);
1382 
1383 			put_transaction(prev_trans);
1384 		} else {
1385 			spin_unlock(&root->fs_info->trans_lock);
1386 		}
1387 	} else {
1388 		spin_unlock(&root->fs_info->trans_lock);
1389 	}
1390 
1391 	if (!btrfs_test_opt(root, SSD) &&
1392 	    (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1393 		should_grow = 1;
1394 
1395 	do {
1396 		int snap_pending = 0;
1397 
1398 		joined = cur_trans->num_joined;
1399 		if (!list_empty(&trans->transaction->pending_snapshots))
1400 			snap_pending = 1;
1401 
1402 		WARN_ON(cur_trans != trans->transaction);
1403 
1404 		if (flush_on_commit || snap_pending) {
1405 			btrfs_start_delalloc_inodes(root, 1);
1406 			btrfs_wait_ordered_extents(root, 0, 1);
1407 		}
1408 
1409 		ret = btrfs_run_delayed_items(trans, root);
1410 		if (ret)
1411 			goto cleanup_transaction;
1412 
1413 		/*
1414 		 * running the delayed items may have added new refs. account
1415 		 * them now so that they hinder processing of more delayed refs
1416 		 * as little as possible.
1417 		 */
1418 		btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1419 
1420 		/*
1421 		 * rename don't use btrfs_join_transaction, so, once we
1422 		 * set the transaction to blocked above, we aren't going
1423 		 * to get any new ordered operations.  We can safely run
1424 		 * it here and no for sure that nothing new will be added
1425 		 * to the list
1426 		 */
1427 		btrfs_run_ordered_operations(root, 1);
1428 
1429 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1430 				TASK_UNINTERRUPTIBLE);
1431 
1432 		if (atomic_read(&cur_trans->num_writers) > 1)
1433 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1434 		else if (should_grow)
1435 			schedule_timeout(1);
1436 
1437 		finish_wait(&cur_trans->writer_wait, &wait);
1438 	} while (atomic_read(&cur_trans->num_writers) > 1 ||
1439 		 (should_grow && cur_trans->num_joined != joined));
1440 
1441 	/*
1442 	 * Ok now we need to make sure to block out any other joins while we
1443 	 * commit the transaction.  We could have started a join before setting
1444 	 * no_join so make sure to wait for num_writers to == 1 again.
1445 	 */
1446 	spin_lock(&root->fs_info->trans_lock);
1447 	root->fs_info->trans_no_join = 1;
1448 	spin_unlock(&root->fs_info->trans_lock);
1449 	wait_event(cur_trans->writer_wait,
1450 		   atomic_read(&cur_trans->num_writers) == 1);
1451 
1452 	/*
1453 	 * the reloc mutex makes sure that we stop
1454 	 * the balancing code from coming in and moving
1455 	 * extents around in the middle of the commit
1456 	 */
1457 	mutex_lock(&root->fs_info->reloc_mutex);
1458 
1459 	ret = btrfs_run_delayed_items(trans, root);
1460 	if (ret) {
1461 		mutex_unlock(&root->fs_info->reloc_mutex);
1462 		goto cleanup_transaction;
1463 	}
1464 
1465 	ret = create_pending_snapshots(trans, root->fs_info);
1466 	if (ret) {
1467 		mutex_unlock(&root->fs_info->reloc_mutex);
1468 		goto cleanup_transaction;
1469 	}
1470 
1471 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1472 	if (ret) {
1473 		mutex_unlock(&root->fs_info->reloc_mutex);
1474 		goto cleanup_transaction;
1475 	}
1476 
1477 	/*
1478 	 * make sure none of the code above managed to slip in a
1479 	 * delayed item
1480 	 */
1481 	btrfs_assert_delayed_root_empty(root);
1482 
1483 	WARN_ON(cur_trans != trans->transaction);
1484 
1485 	btrfs_scrub_pause(root);
1486 	/* btrfs_commit_tree_roots is responsible for getting the
1487 	 * various roots consistent with each other.  Every pointer
1488 	 * in the tree of tree roots has to point to the most up to date
1489 	 * root for every subvolume and other tree.  So, we have to keep
1490 	 * the tree logging code from jumping in and changing any
1491 	 * of the trees.
1492 	 *
1493 	 * At this point in the commit, there can't be any tree-log
1494 	 * writers, but a little lower down we drop the trans mutex
1495 	 * and let new people in.  By holding the tree_log_mutex
1496 	 * from now until after the super is written, we avoid races
1497 	 * with the tree-log code.
1498 	 */
1499 	mutex_lock(&root->fs_info->tree_log_mutex);
1500 
1501 	ret = commit_fs_roots(trans, root);
1502 	if (ret) {
1503 		mutex_unlock(&root->fs_info->tree_log_mutex);
1504 		mutex_unlock(&root->fs_info->reloc_mutex);
1505 		goto cleanup_transaction;
1506 	}
1507 
1508 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1509 	 * safe to free the root of tree log roots
1510 	 */
1511 	btrfs_free_log_root_tree(trans, root->fs_info);
1512 
1513 	ret = commit_cowonly_roots(trans, root);
1514 	if (ret) {
1515 		mutex_unlock(&root->fs_info->tree_log_mutex);
1516 		mutex_unlock(&root->fs_info->reloc_mutex);
1517 		goto cleanup_transaction;
1518 	}
1519 
1520 	btrfs_prepare_extent_commit(trans, root);
1521 
1522 	cur_trans = root->fs_info->running_transaction;
1523 
1524 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1525 			    root->fs_info->tree_root->node);
1526 	switch_commit_root(root->fs_info->tree_root);
1527 
1528 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1529 			    root->fs_info->chunk_root->node);
1530 	switch_commit_root(root->fs_info->chunk_root);
1531 
1532 	assert_qgroups_uptodate(trans);
1533 	update_super_roots(root);
1534 
1535 	if (!root->fs_info->log_root_recovering) {
1536 		btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1537 		btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1538 	}
1539 
1540 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1541 	       sizeof(*root->fs_info->super_copy));
1542 
1543 	trans->transaction->blocked = 0;
1544 	spin_lock(&root->fs_info->trans_lock);
1545 	root->fs_info->running_transaction = NULL;
1546 	root->fs_info->trans_no_join = 0;
1547 	spin_unlock(&root->fs_info->trans_lock);
1548 	mutex_unlock(&root->fs_info->reloc_mutex);
1549 
1550 	wake_up(&root->fs_info->transaction_wait);
1551 
1552 	ret = btrfs_write_and_wait_transaction(trans, root);
1553 	if (ret) {
1554 		btrfs_error(root->fs_info, ret,
1555 			    "Error while writing out transaction.");
1556 		mutex_unlock(&root->fs_info->tree_log_mutex);
1557 		goto cleanup_transaction;
1558 	}
1559 
1560 	ret = write_ctree_super(trans, root, 0);
1561 	if (ret) {
1562 		mutex_unlock(&root->fs_info->tree_log_mutex);
1563 		goto cleanup_transaction;
1564 	}
1565 
1566 	/*
1567 	 * the super is written, we can safely allow the tree-loggers
1568 	 * to go about their business
1569 	 */
1570 	mutex_unlock(&root->fs_info->tree_log_mutex);
1571 
1572 	btrfs_finish_extent_commit(trans, root);
1573 
1574 	cur_trans->commit_done = 1;
1575 
1576 	root->fs_info->last_trans_committed = cur_trans->transid;
1577 
1578 	wake_up(&cur_trans->commit_wait);
1579 
1580 	spin_lock(&root->fs_info->trans_lock);
1581 	list_del_init(&cur_trans->list);
1582 	spin_unlock(&root->fs_info->trans_lock);
1583 
1584 	put_transaction(cur_trans);
1585 	put_transaction(cur_trans);
1586 
1587 	sb_end_intwrite(root->fs_info->sb);
1588 
1589 	trace_btrfs_transaction_commit(root);
1590 
1591 	btrfs_scrub_continue(root);
1592 
1593 	if (current->journal_info == trans)
1594 		current->journal_info = NULL;
1595 
1596 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1597 
1598 	if (current != root->fs_info->transaction_kthread)
1599 		btrfs_run_delayed_iputs(root);
1600 
1601 	return ret;
1602 
1603 cleanup_transaction:
1604 	btrfs_trans_release_metadata(trans, root);
1605 	trans->block_rsv = NULL;
1606 	btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1607 //	WARN_ON(1);
1608 	if (current->journal_info == trans)
1609 		current->journal_info = NULL;
1610 	cleanup_transaction(trans, root, ret);
1611 
1612 	return ret;
1613 }
1614 
1615 /*
1616  * interface function to delete all the snapshots we have scheduled for deletion
1617  */
1618 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1619 {
1620 	LIST_HEAD(list);
1621 	struct btrfs_fs_info *fs_info = root->fs_info;
1622 
1623 	spin_lock(&fs_info->trans_lock);
1624 	list_splice_init(&fs_info->dead_roots, &list);
1625 	spin_unlock(&fs_info->trans_lock);
1626 
1627 	while (!list_empty(&list)) {
1628 		int ret;
1629 
1630 		root = list_entry(list.next, struct btrfs_root, root_list);
1631 		list_del(&root->root_list);
1632 
1633 		btrfs_kill_all_delayed_nodes(root);
1634 
1635 		if (btrfs_header_backref_rev(root->node) <
1636 		    BTRFS_MIXED_BACKREF_REV)
1637 			ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1638 		else
1639 			ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1640 		BUG_ON(ret < 0);
1641 	}
1642 	return 0;
1643 }
1644