xref: /openbmc/linux/fs/btrfs/transaction.c (revision 94cdda6b)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		if (transaction->delayed_refs.pending_csums)
68 			printk(KERN_ERR "pending csums is %llu\n",
69 			       transaction->delayed_refs.pending_csums);
70 		while (!list_empty(&transaction->pending_chunks)) {
71 			struct extent_map *em;
72 
73 			em = list_first_entry(&transaction->pending_chunks,
74 					      struct extent_map, list);
75 			list_del_init(&em->list);
76 			free_extent_map(em);
77 		}
78 		kmem_cache_free(btrfs_transaction_cachep, transaction);
79 	}
80 }
81 
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 	spin_lock(&tree->lock);
85 	while (!RB_EMPTY_ROOT(&tree->state)) {
86 		struct rb_node *node;
87 		struct extent_state *state;
88 
89 		node = rb_first(&tree->state);
90 		state = rb_entry(node, struct extent_state, rb_node);
91 		rb_erase(&state->rb_node, &tree->state);
92 		RB_CLEAR_NODE(&state->rb_node);
93 		/*
94 		 * btree io trees aren't supposed to have tasks waiting for
95 		 * changes in the flags of extent states ever.
96 		 */
97 		ASSERT(!waitqueue_active(&state->wq));
98 		free_extent_state(state);
99 
100 		cond_resched_lock(&tree->lock);
101 	}
102 	spin_unlock(&tree->lock);
103 }
104 
105 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
106 					 struct btrfs_fs_info *fs_info)
107 {
108 	struct btrfs_root *root, *tmp;
109 
110 	down_write(&fs_info->commit_root_sem);
111 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
112 				 dirty_list) {
113 		list_del_init(&root->dirty_list);
114 		free_extent_buffer(root->commit_root);
115 		root->commit_root = btrfs_root_node(root);
116 		if (is_fstree(root->objectid))
117 			btrfs_unpin_free_ino(root);
118 		clear_btree_io_tree(&root->dirty_log_pages);
119 	}
120 	up_write(&fs_info->commit_root_sem);
121 }
122 
123 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
124 					 unsigned int type)
125 {
126 	if (type & TRANS_EXTWRITERS)
127 		atomic_inc(&trans->num_extwriters);
128 }
129 
130 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
131 					 unsigned int type)
132 {
133 	if (type & TRANS_EXTWRITERS)
134 		atomic_dec(&trans->num_extwriters);
135 }
136 
137 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
138 					  unsigned int type)
139 {
140 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
141 }
142 
143 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
144 {
145 	return atomic_read(&trans->num_extwriters);
146 }
147 
148 /*
149  * either allocate a new transaction or hop into the existing one
150  */
151 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
152 {
153 	struct btrfs_transaction *cur_trans;
154 	struct btrfs_fs_info *fs_info = root->fs_info;
155 
156 	spin_lock(&fs_info->trans_lock);
157 loop:
158 	/* The file system has been taken offline. No new transactions. */
159 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
160 		spin_unlock(&fs_info->trans_lock);
161 		return -EROFS;
162 	}
163 
164 	cur_trans = fs_info->running_transaction;
165 	if (cur_trans) {
166 		if (cur_trans->aborted) {
167 			spin_unlock(&fs_info->trans_lock);
168 			return cur_trans->aborted;
169 		}
170 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
171 			spin_unlock(&fs_info->trans_lock);
172 			return -EBUSY;
173 		}
174 		atomic_inc(&cur_trans->use_count);
175 		atomic_inc(&cur_trans->num_writers);
176 		extwriter_counter_inc(cur_trans, type);
177 		spin_unlock(&fs_info->trans_lock);
178 		return 0;
179 	}
180 	spin_unlock(&fs_info->trans_lock);
181 
182 	/*
183 	 * If we are ATTACH, we just want to catch the current transaction,
184 	 * and commit it. If there is no transaction, just return ENOENT.
185 	 */
186 	if (type == TRANS_ATTACH)
187 		return -ENOENT;
188 
189 	/*
190 	 * JOIN_NOLOCK only happens during the transaction commit, so
191 	 * it is impossible that ->running_transaction is NULL
192 	 */
193 	BUG_ON(type == TRANS_JOIN_NOLOCK);
194 
195 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
196 	if (!cur_trans)
197 		return -ENOMEM;
198 
199 	spin_lock(&fs_info->trans_lock);
200 	if (fs_info->running_transaction) {
201 		/*
202 		 * someone started a transaction after we unlocked.  Make sure
203 		 * to redo the checks above
204 		 */
205 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
206 		goto loop;
207 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
208 		spin_unlock(&fs_info->trans_lock);
209 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
210 		return -EROFS;
211 	}
212 
213 	atomic_set(&cur_trans->num_writers, 1);
214 	extwriter_counter_init(cur_trans, type);
215 	init_waitqueue_head(&cur_trans->writer_wait);
216 	init_waitqueue_head(&cur_trans->commit_wait);
217 	cur_trans->state = TRANS_STATE_RUNNING;
218 	/*
219 	 * One for this trans handle, one so it will live on until we
220 	 * commit the transaction.
221 	 */
222 	atomic_set(&cur_trans->use_count, 2);
223 	cur_trans->have_free_bgs = 0;
224 	cur_trans->start_time = get_seconds();
225 	cur_trans->dirty_bg_run = 0;
226 
227 	cur_trans->delayed_refs.href_root = RB_ROOT;
228 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
229 	cur_trans->delayed_refs.num_heads_ready = 0;
230 	cur_trans->delayed_refs.pending_csums = 0;
231 	cur_trans->delayed_refs.num_heads = 0;
232 	cur_trans->delayed_refs.flushing = 0;
233 	cur_trans->delayed_refs.run_delayed_start = 0;
234 
235 	/*
236 	 * although the tree mod log is per file system and not per transaction,
237 	 * the log must never go across transaction boundaries.
238 	 */
239 	smp_mb();
240 	if (!list_empty(&fs_info->tree_mod_seq_list))
241 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
242 			"creating a fresh transaction\n");
243 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
244 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
245 			"creating a fresh transaction\n");
246 	atomic64_set(&fs_info->tree_mod_seq, 0);
247 
248 	spin_lock_init(&cur_trans->delayed_refs.lock);
249 
250 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
251 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
252 	INIT_LIST_HEAD(&cur_trans->switch_commits);
253 	INIT_LIST_HEAD(&cur_trans->pending_ordered);
254 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
255 	INIT_LIST_HEAD(&cur_trans->io_bgs);
256 	mutex_init(&cur_trans->cache_write_mutex);
257 	cur_trans->num_dirty_bgs = 0;
258 	spin_lock_init(&cur_trans->dirty_bgs_lock);
259 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
260 	extent_io_tree_init(&cur_trans->dirty_pages,
261 			     fs_info->btree_inode->i_mapping);
262 	fs_info->generation++;
263 	cur_trans->transid = fs_info->generation;
264 	fs_info->running_transaction = cur_trans;
265 	cur_trans->aborted = 0;
266 	spin_unlock(&fs_info->trans_lock);
267 
268 	return 0;
269 }
270 
271 /*
272  * this does all the record keeping required to make sure that a reference
273  * counted root is properly recorded in a given transaction.  This is required
274  * to make sure the old root from before we joined the transaction is deleted
275  * when the transaction commits
276  */
277 static int record_root_in_trans(struct btrfs_trans_handle *trans,
278 			       struct btrfs_root *root)
279 {
280 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
281 	    root->last_trans < trans->transid) {
282 		WARN_ON(root == root->fs_info->extent_root);
283 		WARN_ON(root->commit_root != root->node);
284 
285 		/*
286 		 * see below for IN_TRANS_SETUP usage rules
287 		 * we have the reloc mutex held now, so there
288 		 * is only one writer in this function
289 		 */
290 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
291 
292 		/* make sure readers find IN_TRANS_SETUP before
293 		 * they find our root->last_trans update
294 		 */
295 		smp_wmb();
296 
297 		spin_lock(&root->fs_info->fs_roots_radix_lock);
298 		if (root->last_trans == trans->transid) {
299 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
300 			return 0;
301 		}
302 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
303 			   (unsigned long)root->root_key.objectid,
304 			   BTRFS_ROOT_TRANS_TAG);
305 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
306 		root->last_trans = trans->transid;
307 
308 		/* this is pretty tricky.  We don't want to
309 		 * take the relocation lock in btrfs_record_root_in_trans
310 		 * unless we're really doing the first setup for this root in
311 		 * this transaction.
312 		 *
313 		 * Normally we'd use root->last_trans as a flag to decide
314 		 * if we want to take the expensive mutex.
315 		 *
316 		 * But, we have to set root->last_trans before we
317 		 * init the relocation root, otherwise, we trip over warnings
318 		 * in ctree.c.  The solution used here is to flag ourselves
319 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
320 		 * fixing up the reloc trees and everyone must wait.
321 		 *
322 		 * When this is zero, they can trust root->last_trans and fly
323 		 * through btrfs_record_root_in_trans without having to take the
324 		 * lock.  smp_wmb() makes sure that all the writes above are
325 		 * done before we pop in the zero below
326 		 */
327 		btrfs_init_reloc_root(trans, root);
328 		smp_mb__before_atomic();
329 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
330 	}
331 	return 0;
332 }
333 
334 
335 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
336 			       struct btrfs_root *root)
337 {
338 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
339 		return 0;
340 
341 	/*
342 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
343 	 * and barriers
344 	 */
345 	smp_rmb();
346 	if (root->last_trans == trans->transid &&
347 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
348 		return 0;
349 
350 	mutex_lock(&root->fs_info->reloc_mutex);
351 	record_root_in_trans(trans, root);
352 	mutex_unlock(&root->fs_info->reloc_mutex);
353 
354 	return 0;
355 }
356 
357 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
358 {
359 	return (trans->state >= TRANS_STATE_BLOCKED &&
360 		trans->state < TRANS_STATE_UNBLOCKED &&
361 		!trans->aborted);
362 }
363 
364 /* wait for commit against the current transaction to become unblocked
365  * when this is done, it is safe to start a new transaction, but the current
366  * transaction might not be fully on disk.
367  */
368 static void wait_current_trans(struct btrfs_root *root)
369 {
370 	struct btrfs_transaction *cur_trans;
371 
372 	spin_lock(&root->fs_info->trans_lock);
373 	cur_trans = root->fs_info->running_transaction;
374 	if (cur_trans && is_transaction_blocked(cur_trans)) {
375 		atomic_inc(&cur_trans->use_count);
376 		spin_unlock(&root->fs_info->trans_lock);
377 
378 		wait_event(root->fs_info->transaction_wait,
379 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
380 			   cur_trans->aborted);
381 		btrfs_put_transaction(cur_trans);
382 	} else {
383 		spin_unlock(&root->fs_info->trans_lock);
384 	}
385 }
386 
387 static int may_wait_transaction(struct btrfs_root *root, int type)
388 {
389 	if (root->fs_info->log_root_recovering)
390 		return 0;
391 
392 	if (type == TRANS_USERSPACE)
393 		return 1;
394 
395 	if (type == TRANS_START &&
396 	    !atomic_read(&root->fs_info->open_ioctl_trans))
397 		return 1;
398 
399 	return 0;
400 }
401 
402 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
403 {
404 	if (!root->fs_info->reloc_ctl ||
405 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
406 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
407 	    root->reloc_root)
408 		return false;
409 
410 	return true;
411 }
412 
413 static struct btrfs_trans_handle *
414 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
415 		  enum btrfs_reserve_flush_enum flush)
416 {
417 	struct btrfs_trans_handle *h;
418 	struct btrfs_transaction *cur_trans;
419 	u64 num_bytes = 0;
420 	u64 qgroup_reserved = 0;
421 	bool reloc_reserved = false;
422 	int ret;
423 
424 	/* Send isn't supposed to start transactions. */
425 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
426 
427 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
428 		return ERR_PTR(-EROFS);
429 
430 	if (current->journal_info) {
431 		WARN_ON(type & TRANS_EXTWRITERS);
432 		h = current->journal_info;
433 		h->use_count++;
434 		WARN_ON(h->use_count > 2);
435 		h->orig_rsv = h->block_rsv;
436 		h->block_rsv = NULL;
437 		goto got_it;
438 	}
439 
440 	/*
441 	 * Do the reservation before we join the transaction so we can do all
442 	 * the appropriate flushing if need be.
443 	 */
444 	if (num_items > 0 && root != root->fs_info->chunk_root) {
445 		if (root->fs_info->quota_enabled &&
446 		    is_fstree(root->root_key.objectid)) {
447 			qgroup_reserved = num_items * root->nodesize;
448 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
449 			if (ret)
450 				return ERR_PTR(ret);
451 		}
452 
453 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
454 		/*
455 		 * Do the reservation for the relocation root creation
456 		 */
457 		if (need_reserve_reloc_root(root)) {
458 			num_bytes += root->nodesize;
459 			reloc_reserved = true;
460 		}
461 
462 		ret = btrfs_block_rsv_add(root,
463 					  &root->fs_info->trans_block_rsv,
464 					  num_bytes, flush);
465 		if (ret)
466 			goto reserve_fail;
467 	}
468 again:
469 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
470 	if (!h) {
471 		ret = -ENOMEM;
472 		goto alloc_fail;
473 	}
474 
475 	/*
476 	 * If we are JOIN_NOLOCK we're already committing a transaction and
477 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
478 	 * because we're already holding a ref.  We need this because we could
479 	 * have raced in and did an fsync() on a file which can kick a commit
480 	 * and then we deadlock with somebody doing a freeze.
481 	 *
482 	 * If we are ATTACH, it means we just want to catch the current
483 	 * transaction and commit it, so we needn't do sb_start_intwrite().
484 	 */
485 	if (type & __TRANS_FREEZABLE)
486 		sb_start_intwrite(root->fs_info->sb);
487 
488 	if (may_wait_transaction(root, type))
489 		wait_current_trans(root);
490 
491 	do {
492 		ret = join_transaction(root, type);
493 		if (ret == -EBUSY) {
494 			wait_current_trans(root);
495 			if (unlikely(type == TRANS_ATTACH))
496 				ret = -ENOENT;
497 		}
498 	} while (ret == -EBUSY);
499 
500 	if (ret < 0) {
501 		/* We must get the transaction if we are JOIN_NOLOCK. */
502 		BUG_ON(type == TRANS_JOIN_NOLOCK);
503 		goto join_fail;
504 	}
505 
506 	cur_trans = root->fs_info->running_transaction;
507 
508 	h->transid = cur_trans->transid;
509 	h->transaction = cur_trans;
510 	h->blocks_used = 0;
511 	h->bytes_reserved = 0;
512 	h->root = root;
513 	h->delayed_ref_updates = 0;
514 	h->use_count = 1;
515 	h->adding_csums = 0;
516 	h->block_rsv = NULL;
517 	h->orig_rsv = NULL;
518 	h->aborted = 0;
519 	h->qgroup_reserved = 0;
520 	h->delayed_ref_elem.seq = 0;
521 	h->type = type;
522 	h->allocating_chunk = false;
523 	h->reloc_reserved = false;
524 	h->sync = false;
525 	INIT_LIST_HEAD(&h->qgroup_ref_list);
526 	INIT_LIST_HEAD(&h->new_bgs);
527 	INIT_LIST_HEAD(&h->ordered);
528 
529 	smp_mb();
530 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
531 	    may_wait_transaction(root, type)) {
532 		current->journal_info = h;
533 		btrfs_commit_transaction(h, root);
534 		goto again;
535 	}
536 
537 	if (num_bytes) {
538 		trace_btrfs_space_reservation(root->fs_info, "transaction",
539 					      h->transid, num_bytes, 1);
540 		h->block_rsv = &root->fs_info->trans_block_rsv;
541 		h->bytes_reserved = num_bytes;
542 		h->reloc_reserved = reloc_reserved;
543 	}
544 	h->qgroup_reserved = qgroup_reserved;
545 
546 got_it:
547 	btrfs_record_root_in_trans(h, root);
548 
549 	if (!current->journal_info && type != TRANS_USERSPACE)
550 		current->journal_info = h;
551 	return h;
552 
553 join_fail:
554 	if (type & __TRANS_FREEZABLE)
555 		sb_end_intwrite(root->fs_info->sb);
556 	kmem_cache_free(btrfs_trans_handle_cachep, h);
557 alloc_fail:
558 	if (num_bytes)
559 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
560 					num_bytes);
561 reserve_fail:
562 	if (qgroup_reserved)
563 		btrfs_qgroup_free(root, qgroup_reserved);
564 	return ERR_PTR(ret);
565 }
566 
567 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
568 						   int num_items)
569 {
570 	return start_transaction(root, num_items, TRANS_START,
571 				 BTRFS_RESERVE_FLUSH_ALL);
572 }
573 
574 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
575 					struct btrfs_root *root, int num_items)
576 {
577 	return start_transaction(root, num_items, TRANS_START,
578 				 BTRFS_RESERVE_FLUSH_LIMIT);
579 }
580 
581 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
582 {
583 	return start_transaction(root, 0, TRANS_JOIN, 0);
584 }
585 
586 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
587 {
588 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
589 }
590 
591 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
592 {
593 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
594 }
595 
596 /*
597  * btrfs_attach_transaction() - catch the running transaction
598  *
599  * It is used when we want to commit the current the transaction, but
600  * don't want to start a new one.
601  *
602  * Note: If this function return -ENOENT, it just means there is no
603  * running transaction. But it is possible that the inactive transaction
604  * is still in the memory, not fully on disk. If you hope there is no
605  * inactive transaction in the fs when -ENOENT is returned, you should
606  * invoke
607  *     btrfs_attach_transaction_barrier()
608  */
609 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
610 {
611 	return start_transaction(root, 0, TRANS_ATTACH, 0);
612 }
613 
614 /*
615  * btrfs_attach_transaction_barrier() - catch the running transaction
616  *
617  * It is similar to the above function, the differentia is this one
618  * will wait for all the inactive transactions until they fully
619  * complete.
620  */
621 struct btrfs_trans_handle *
622 btrfs_attach_transaction_barrier(struct btrfs_root *root)
623 {
624 	struct btrfs_trans_handle *trans;
625 
626 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
627 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
628 		btrfs_wait_for_commit(root, 0);
629 
630 	return trans;
631 }
632 
633 /* wait for a transaction commit to be fully complete */
634 static noinline void wait_for_commit(struct btrfs_root *root,
635 				    struct btrfs_transaction *commit)
636 {
637 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
638 }
639 
640 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
641 {
642 	struct btrfs_transaction *cur_trans = NULL, *t;
643 	int ret = 0;
644 
645 	if (transid) {
646 		if (transid <= root->fs_info->last_trans_committed)
647 			goto out;
648 
649 		/* find specified transaction */
650 		spin_lock(&root->fs_info->trans_lock);
651 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
652 			if (t->transid == transid) {
653 				cur_trans = t;
654 				atomic_inc(&cur_trans->use_count);
655 				ret = 0;
656 				break;
657 			}
658 			if (t->transid > transid) {
659 				ret = 0;
660 				break;
661 			}
662 		}
663 		spin_unlock(&root->fs_info->trans_lock);
664 
665 		/*
666 		 * The specified transaction doesn't exist, or we
667 		 * raced with btrfs_commit_transaction
668 		 */
669 		if (!cur_trans) {
670 			if (transid > root->fs_info->last_trans_committed)
671 				ret = -EINVAL;
672 			goto out;
673 		}
674 	} else {
675 		/* find newest transaction that is committing | committed */
676 		spin_lock(&root->fs_info->trans_lock);
677 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
678 					    list) {
679 			if (t->state >= TRANS_STATE_COMMIT_START) {
680 				if (t->state == TRANS_STATE_COMPLETED)
681 					break;
682 				cur_trans = t;
683 				atomic_inc(&cur_trans->use_count);
684 				break;
685 			}
686 		}
687 		spin_unlock(&root->fs_info->trans_lock);
688 		if (!cur_trans)
689 			goto out;  /* nothing committing|committed */
690 	}
691 
692 	wait_for_commit(root, cur_trans);
693 	btrfs_put_transaction(cur_trans);
694 out:
695 	return ret;
696 }
697 
698 void btrfs_throttle(struct btrfs_root *root)
699 {
700 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
701 		wait_current_trans(root);
702 }
703 
704 static int should_end_transaction(struct btrfs_trans_handle *trans,
705 				  struct btrfs_root *root)
706 {
707 	if (root->fs_info->global_block_rsv.space_info->full &&
708 	    btrfs_check_space_for_delayed_refs(trans, root))
709 		return 1;
710 
711 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
712 }
713 
714 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
715 				 struct btrfs_root *root)
716 {
717 	struct btrfs_transaction *cur_trans = trans->transaction;
718 	int updates;
719 	int err;
720 
721 	smp_mb();
722 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
723 	    cur_trans->delayed_refs.flushing)
724 		return 1;
725 
726 	updates = trans->delayed_ref_updates;
727 	trans->delayed_ref_updates = 0;
728 	if (updates) {
729 		err = btrfs_run_delayed_refs(trans, root, updates * 2);
730 		if (err) /* Error code will also eval true */
731 			return err;
732 	}
733 
734 	return should_end_transaction(trans, root);
735 }
736 
737 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
738 			  struct btrfs_root *root, int throttle)
739 {
740 	struct btrfs_transaction *cur_trans = trans->transaction;
741 	struct btrfs_fs_info *info = root->fs_info;
742 	unsigned long cur = trans->delayed_ref_updates;
743 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
744 	int err = 0;
745 	int must_run_delayed_refs = 0;
746 
747 	if (trans->use_count > 1) {
748 		trans->use_count--;
749 		trans->block_rsv = trans->orig_rsv;
750 		return 0;
751 	}
752 
753 	btrfs_trans_release_metadata(trans, root);
754 	trans->block_rsv = NULL;
755 
756 	if (!list_empty(&trans->new_bgs))
757 		btrfs_create_pending_block_groups(trans, root);
758 
759 	if (!list_empty(&trans->ordered)) {
760 		spin_lock(&info->trans_lock);
761 		list_splice(&trans->ordered, &cur_trans->pending_ordered);
762 		spin_unlock(&info->trans_lock);
763 	}
764 
765 	trans->delayed_ref_updates = 0;
766 	if (!trans->sync) {
767 		must_run_delayed_refs =
768 			btrfs_should_throttle_delayed_refs(trans, root);
769 		cur = max_t(unsigned long, cur, 32);
770 
771 		/*
772 		 * don't make the caller wait if they are from a NOLOCK
773 		 * or ATTACH transaction, it will deadlock with commit
774 		 */
775 		if (must_run_delayed_refs == 1 &&
776 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
777 			must_run_delayed_refs = 2;
778 	}
779 
780 	if (trans->qgroup_reserved) {
781 		/*
782 		 * the same root has to be passed here between start_transaction
783 		 * and end_transaction. Subvolume quota depends on this.
784 		 */
785 		btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
786 		trans->qgroup_reserved = 0;
787 	}
788 
789 	btrfs_trans_release_metadata(trans, root);
790 	trans->block_rsv = NULL;
791 
792 	if (!list_empty(&trans->new_bgs))
793 		btrfs_create_pending_block_groups(trans, root);
794 
795 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
796 	    should_end_transaction(trans, root) &&
797 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
798 		spin_lock(&info->trans_lock);
799 		if (cur_trans->state == TRANS_STATE_RUNNING)
800 			cur_trans->state = TRANS_STATE_BLOCKED;
801 		spin_unlock(&info->trans_lock);
802 	}
803 
804 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
805 		if (throttle)
806 			return btrfs_commit_transaction(trans, root);
807 		else
808 			wake_up_process(info->transaction_kthread);
809 	}
810 
811 	if (trans->type & __TRANS_FREEZABLE)
812 		sb_end_intwrite(root->fs_info->sb);
813 
814 	WARN_ON(cur_trans != info->running_transaction);
815 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
816 	atomic_dec(&cur_trans->num_writers);
817 	extwriter_counter_dec(cur_trans, trans->type);
818 
819 	smp_mb();
820 	if (waitqueue_active(&cur_trans->writer_wait))
821 		wake_up(&cur_trans->writer_wait);
822 	btrfs_put_transaction(cur_trans);
823 
824 	if (current->journal_info == trans)
825 		current->journal_info = NULL;
826 
827 	if (throttle)
828 		btrfs_run_delayed_iputs(root);
829 
830 	if (trans->aborted ||
831 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
832 		wake_up_process(info->transaction_kthread);
833 		err = -EIO;
834 	}
835 	assert_qgroups_uptodate(trans);
836 
837 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
838 	if (must_run_delayed_refs) {
839 		btrfs_async_run_delayed_refs(root, cur,
840 					     must_run_delayed_refs == 1);
841 	}
842 	return err;
843 }
844 
845 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
846 			  struct btrfs_root *root)
847 {
848 	return __btrfs_end_transaction(trans, root, 0);
849 }
850 
851 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
852 				   struct btrfs_root *root)
853 {
854 	return __btrfs_end_transaction(trans, root, 1);
855 }
856 
857 /*
858  * when btree blocks are allocated, they have some corresponding bits set for
859  * them in one of two extent_io trees.  This is used to make sure all of
860  * those extents are sent to disk but does not wait on them
861  */
862 int btrfs_write_marked_extents(struct btrfs_root *root,
863 			       struct extent_io_tree *dirty_pages, int mark)
864 {
865 	int err = 0;
866 	int werr = 0;
867 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
868 	struct extent_state *cached_state = NULL;
869 	u64 start = 0;
870 	u64 end;
871 
872 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
873 				      mark, &cached_state)) {
874 		bool wait_writeback = false;
875 
876 		err = convert_extent_bit(dirty_pages, start, end,
877 					 EXTENT_NEED_WAIT,
878 					 mark, &cached_state, GFP_NOFS);
879 		/*
880 		 * convert_extent_bit can return -ENOMEM, which is most of the
881 		 * time a temporary error. So when it happens, ignore the error
882 		 * and wait for writeback of this range to finish - because we
883 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
884 		 * to btrfs_wait_marked_extents() would not know that writeback
885 		 * for this range started and therefore wouldn't wait for it to
886 		 * finish - we don't want to commit a superblock that points to
887 		 * btree nodes/leafs for which writeback hasn't finished yet
888 		 * (and without errors).
889 		 * We cleanup any entries left in the io tree when committing
890 		 * the transaction (through clear_btree_io_tree()).
891 		 */
892 		if (err == -ENOMEM) {
893 			err = 0;
894 			wait_writeback = true;
895 		}
896 		if (!err)
897 			err = filemap_fdatawrite_range(mapping, start, end);
898 		if (err)
899 			werr = err;
900 		else if (wait_writeback)
901 			werr = filemap_fdatawait_range(mapping, start, end);
902 		free_extent_state(cached_state);
903 		cached_state = NULL;
904 		cond_resched();
905 		start = end + 1;
906 	}
907 	return werr;
908 }
909 
910 /*
911  * when btree blocks are allocated, they have some corresponding bits set for
912  * them in one of two extent_io trees.  This is used to make sure all of
913  * those extents are on disk for transaction or log commit.  We wait
914  * on all the pages and clear them from the dirty pages state tree
915  */
916 int btrfs_wait_marked_extents(struct btrfs_root *root,
917 			      struct extent_io_tree *dirty_pages, int mark)
918 {
919 	int err = 0;
920 	int werr = 0;
921 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
922 	struct extent_state *cached_state = NULL;
923 	u64 start = 0;
924 	u64 end;
925 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
926 	bool errors = false;
927 
928 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
929 				      EXTENT_NEED_WAIT, &cached_state)) {
930 		/*
931 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
932 		 * When committing the transaction, we'll remove any entries
933 		 * left in the io tree. For a log commit, we don't remove them
934 		 * after committing the log because the tree can be accessed
935 		 * concurrently - we do it only at transaction commit time when
936 		 * it's safe to do it (through clear_btree_io_tree()).
937 		 */
938 		err = clear_extent_bit(dirty_pages, start, end,
939 				       EXTENT_NEED_WAIT,
940 				       0, 0, &cached_state, GFP_NOFS);
941 		if (err == -ENOMEM)
942 			err = 0;
943 		if (!err)
944 			err = filemap_fdatawait_range(mapping, start, end);
945 		if (err)
946 			werr = err;
947 		free_extent_state(cached_state);
948 		cached_state = NULL;
949 		cond_resched();
950 		start = end + 1;
951 	}
952 	if (err)
953 		werr = err;
954 
955 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
956 		if ((mark & EXTENT_DIRTY) &&
957 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
958 				       &btree_ino->runtime_flags))
959 			errors = true;
960 
961 		if ((mark & EXTENT_NEW) &&
962 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
963 				       &btree_ino->runtime_flags))
964 			errors = true;
965 	} else {
966 		if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
967 				       &btree_ino->runtime_flags))
968 			errors = true;
969 	}
970 
971 	if (errors && !werr)
972 		werr = -EIO;
973 
974 	return werr;
975 }
976 
977 /*
978  * when btree blocks are allocated, they have some corresponding bits set for
979  * them in one of two extent_io trees.  This is used to make sure all of
980  * those extents are on disk for transaction or log commit
981  */
982 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
983 				struct extent_io_tree *dirty_pages, int mark)
984 {
985 	int ret;
986 	int ret2;
987 	struct blk_plug plug;
988 
989 	blk_start_plug(&plug);
990 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
991 	blk_finish_plug(&plug);
992 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
993 
994 	if (ret)
995 		return ret;
996 	if (ret2)
997 		return ret2;
998 	return 0;
999 }
1000 
1001 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1002 				     struct btrfs_root *root)
1003 {
1004 	int ret;
1005 
1006 	ret = btrfs_write_and_wait_marked_extents(root,
1007 					   &trans->transaction->dirty_pages,
1008 					   EXTENT_DIRTY);
1009 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1010 
1011 	return ret;
1012 }
1013 
1014 /*
1015  * this is used to update the root pointer in the tree of tree roots.
1016  *
1017  * But, in the case of the extent allocation tree, updating the root
1018  * pointer may allocate blocks which may change the root of the extent
1019  * allocation tree.
1020  *
1021  * So, this loops and repeats and makes sure the cowonly root didn't
1022  * change while the root pointer was being updated in the metadata.
1023  */
1024 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1025 			       struct btrfs_root *root)
1026 {
1027 	int ret;
1028 	u64 old_root_bytenr;
1029 	u64 old_root_used;
1030 	struct btrfs_root *tree_root = root->fs_info->tree_root;
1031 
1032 	old_root_used = btrfs_root_used(&root->root_item);
1033 
1034 	while (1) {
1035 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1036 		if (old_root_bytenr == root->node->start &&
1037 		    old_root_used == btrfs_root_used(&root->root_item))
1038 			break;
1039 
1040 		btrfs_set_root_node(&root->root_item, root->node);
1041 		ret = btrfs_update_root(trans, tree_root,
1042 					&root->root_key,
1043 					&root->root_item);
1044 		if (ret)
1045 			return ret;
1046 
1047 		old_root_used = btrfs_root_used(&root->root_item);
1048 	}
1049 
1050 	return 0;
1051 }
1052 
1053 /*
1054  * update all the cowonly tree roots on disk
1055  *
1056  * The error handling in this function may not be obvious. Any of the
1057  * failures will cause the file system to go offline. We still need
1058  * to clean up the delayed refs.
1059  */
1060 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1061 					 struct btrfs_root *root)
1062 {
1063 	struct btrfs_fs_info *fs_info = root->fs_info;
1064 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1065 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1066 	struct list_head *next;
1067 	struct extent_buffer *eb;
1068 	int ret;
1069 
1070 	eb = btrfs_lock_root_node(fs_info->tree_root);
1071 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1072 			      0, &eb);
1073 	btrfs_tree_unlock(eb);
1074 	free_extent_buffer(eb);
1075 
1076 	if (ret)
1077 		return ret;
1078 
1079 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1080 	if (ret)
1081 		return ret;
1082 
1083 	ret = btrfs_run_dev_stats(trans, root->fs_info);
1084 	if (ret)
1085 		return ret;
1086 	ret = btrfs_run_dev_replace(trans, root->fs_info);
1087 	if (ret)
1088 		return ret;
1089 	ret = btrfs_run_qgroups(trans, root->fs_info);
1090 	if (ret)
1091 		return ret;
1092 
1093 	ret = btrfs_setup_space_cache(trans, root);
1094 	if (ret)
1095 		return ret;
1096 
1097 	/* run_qgroups might have added some more refs */
1098 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1099 	if (ret)
1100 		return ret;
1101 again:
1102 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1103 		next = fs_info->dirty_cowonly_roots.next;
1104 		list_del_init(next);
1105 		root = list_entry(next, struct btrfs_root, dirty_list);
1106 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1107 
1108 		if (root != fs_info->extent_root)
1109 			list_add_tail(&root->dirty_list,
1110 				      &trans->transaction->switch_commits);
1111 		ret = update_cowonly_root(trans, root);
1112 		if (ret)
1113 			return ret;
1114 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1115 		if (ret)
1116 			return ret;
1117 	}
1118 
1119 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1120 		ret = btrfs_write_dirty_block_groups(trans, root);
1121 		if (ret)
1122 			return ret;
1123 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1124 		if (ret)
1125 			return ret;
1126 	}
1127 
1128 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1129 		goto again;
1130 
1131 	list_add_tail(&fs_info->extent_root->dirty_list,
1132 		      &trans->transaction->switch_commits);
1133 	btrfs_after_dev_replace_commit(fs_info);
1134 
1135 	return 0;
1136 }
1137 
1138 /*
1139  * dead roots are old snapshots that need to be deleted.  This allocates
1140  * a dirty root struct and adds it into the list of dead roots that need to
1141  * be deleted
1142  */
1143 void btrfs_add_dead_root(struct btrfs_root *root)
1144 {
1145 	spin_lock(&root->fs_info->trans_lock);
1146 	if (list_empty(&root->root_list))
1147 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1148 	spin_unlock(&root->fs_info->trans_lock);
1149 }
1150 
1151 /*
1152  * update all the cowonly tree roots on disk
1153  */
1154 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1155 				    struct btrfs_root *root)
1156 {
1157 	struct btrfs_root *gang[8];
1158 	struct btrfs_fs_info *fs_info = root->fs_info;
1159 	int i;
1160 	int ret;
1161 	int err = 0;
1162 
1163 	spin_lock(&fs_info->fs_roots_radix_lock);
1164 	while (1) {
1165 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1166 						 (void **)gang, 0,
1167 						 ARRAY_SIZE(gang),
1168 						 BTRFS_ROOT_TRANS_TAG);
1169 		if (ret == 0)
1170 			break;
1171 		for (i = 0; i < ret; i++) {
1172 			root = gang[i];
1173 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1174 					(unsigned long)root->root_key.objectid,
1175 					BTRFS_ROOT_TRANS_TAG);
1176 			spin_unlock(&fs_info->fs_roots_radix_lock);
1177 
1178 			btrfs_free_log(trans, root);
1179 			btrfs_update_reloc_root(trans, root);
1180 			btrfs_orphan_commit_root(trans, root);
1181 
1182 			btrfs_save_ino_cache(root, trans);
1183 
1184 			/* see comments in should_cow_block() */
1185 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1186 			smp_mb__after_atomic();
1187 
1188 			if (root->commit_root != root->node) {
1189 				list_add_tail(&root->dirty_list,
1190 					&trans->transaction->switch_commits);
1191 				btrfs_set_root_node(&root->root_item,
1192 						    root->node);
1193 			}
1194 
1195 			err = btrfs_update_root(trans, fs_info->tree_root,
1196 						&root->root_key,
1197 						&root->root_item);
1198 			spin_lock(&fs_info->fs_roots_radix_lock);
1199 			if (err)
1200 				break;
1201 		}
1202 	}
1203 	spin_unlock(&fs_info->fs_roots_radix_lock);
1204 	return err;
1205 }
1206 
1207 /*
1208  * defrag a given btree.
1209  * Every leaf in the btree is read and defragged.
1210  */
1211 int btrfs_defrag_root(struct btrfs_root *root)
1212 {
1213 	struct btrfs_fs_info *info = root->fs_info;
1214 	struct btrfs_trans_handle *trans;
1215 	int ret;
1216 
1217 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1218 		return 0;
1219 
1220 	while (1) {
1221 		trans = btrfs_start_transaction(root, 0);
1222 		if (IS_ERR(trans))
1223 			return PTR_ERR(trans);
1224 
1225 		ret = btrfs_defrag_leaves(trans, root);
1226 
1227 		btrfs_end_transaction(trans, root);
1228 		btrfs_btree_balance_dirty(info->tree_root);
1229 		cond_resched();
1230 
1231 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1232 			break;
1233 
1234 		if (btrfs_defrag_cancelled(root->fs_info)) {
1235 			pr_debug("BTRFS: defrag_root cancelled\n");
1236 			ret = -EAGAIN;
1237 			break;
1238 		}
1239 	}
1240 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1241 	return ret;
1242 }
1243 
1244 /*
1245  * new snapshots need to be created at a very specific time in the
1246  * transaction commit.  This does the actual creation.
1247  *
1248  * Note:
1249  * If the error which may affect the commitment of the current transaction
1250  * happens, we should return the error number. If the error which just affect
1251  * the creation of the pending snapshots, just return 0.
1252  */
1253 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1254 				   struct btrfs_fs_info *fs_info,
1255 				   struct btrfs_pending_snapshot *pending)
1256 {
1257 	struct btrfs_key key;
1258 	struct btrfs_root_item *new_root_item;
1259 	struct btrfs_root *tree_root = fs_info->tree_root;
1260 	struct btrfs_root *root = pending->root;
1261 	struct btrfs_root *parent_root;
1262 	struct btrfs_block_rsv *rsv;
1263 	struct inode *parent_inode;
1264 	struct btrfs_path *path;
1265 	struct btrfs_dir_item *dir_item;
1266 	struct dentry *dentry;
1267 	struct extent_buffer *tmp;
1268 	struct extent_buffer *old;
1269 	struct timespec cur_time = CURRENT_TIME;
1270 	int ret = 0;
1271 	u64 to_reserve = 0;
1272 	u64 index = 0;
1273 	u64 objectid;
1274 	u64 root_flags;
1275 	uuid_le new_uuid;
1276 
1277 	path = btrfs_alloc_path();
1278 	if (!path) {
1279 		pending->error = -ENOMEM;
1280 		return 0;
1281 	}
1282 
1283 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1284 	if (!new_root_item) {
1285 		pending->error = -ENOMEM;
1286 		goto root_item_alloc_fail;
1287 	}
1288 
1289 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1290 	if (pending->error)
1291 		goto no_free_objectid;
1292 
1293 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1294 
1295 	if (to_reserve > 0) {
1296 		pending->error = btrfs_block_rsv_add(root,
1297 						     &pending->block_rsv,
1298 						     to_reserve,
1299 						     BTRFS_RESERVE_NO_FLUSH);
1300 		if (pending->error)
1301 			goto no_free_objectid;
1302 	}
1303 
1304 	key.objectid = objectid;
1305 	key.offset = (u64)-1;
1306 	key.type = BTRFS_ROOT_ITEM_KEY;
1307 
1308 	rsv = trans->block_rsv;
1309 	trans->block_rsv = &pending->block_rsv;
1310 	trans->bytes_reserved = trans->block_rsv->reserved;
1311 
1312 	dentry = pending->dentry;
1313 	parent_inode = pending->dir;
1314 	parent_root = BTRFS_I(parent_inode)->root;
1315 	record_root_in_trans(trans, parent_root);
1316 
1317 	/*
1318 	 * insert the directory item
1319 	 */
1320 	ret = btrfs_set_inode_index(parent_inode, &index);
1321 	BUG_ON(ret); /* -ENOMEM */
1322 
1323 	/* check if there is a file/dir which has the same name. */
1324 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1325 					 btrfs_ino(parent_inode),
1326 					 dentry->d_name.name,
1327 					 dentry->d_name.len, 0);
1328 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1329 		pending->error = -EEXIST;
1330 		goto dir_item_existed;
1331 	} else if (IS_ERR(dir_item)) {
1332 		ret = PTR_ERR(dir_item);
1333 		btrfs_abort_transaction(trans, root, ret);
1334 		goto fail;
1335 	}
1336 	btrfs_release_path(path);
1337 
1338 	/*
1339 	 * pull in the delayed directory update
1340 	 * and the delayed inode item
1341 	 * otherwise we corrupt the FS during
1342 	 * snapshot
1343 	 */
1344 	ret = btrfs_run_delayed_items(trans, root);
1345 	if (ret) {	/* Transaction aborted */
1346 		btrfs_abort_transaction(trans, root, ret);
1347 		goto fail;
1348 	}
1349 
1350 	record_root_in_trans(trans, root);
1351 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1352 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1353 	btrfs_check_and_init_root_item(new_root_item);
1354 
1355 	root_flags = btrfs_root_flags(new_root_item);
1356 	if (pending->readonly)
1357 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1358 	else
1359 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1360 	btrfs_set_root_flags(new_root_item, root_flags);
1361 
1362 	btrfs_set_root_generation_v2(new_root_item,
1363 			trans->transid);
1364 	uuid_le_gen(&new_uuid);
1365 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1366 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1367 			BTRFS_UUID_SIZE);
1368 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1369 		memset(new_root_item->received_uuid, 0,
1370 		       sizeof(new_root_item->received_uuid));
1371 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1372 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1373 		btrfs_set_root_stransid(new_root_item, 0);
1374 		btrfs_set_root_rtransid(new_root_item, 0);
1375 	}
1376 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1377 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1378 	btrfs_set_root_otransid(new_root_item, trans->transid);
1379 
1380 	old = btrfs_lock_root_node(root);
1381 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1382 	if (ret) {
1383 		btrfs_tree_unlock(old);
1384 		free_extent_buffer(old);
1385 		btrfs_abort_transaction(trans, root, ret);
1386 		goto fail;
1387 	}
1388 
1389 	btrfs_set_lock_blocking(old);
1390 
1391 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1392 	/* clean up in any case */
1393 	btrfs_tree_unlock(old);
1394 	free_extent_buffer(old);
1395 	if (ret) {
1396 		btrfs_abort_transaction(trans, root, ret);
1397 		goto fail;
1398 	}
1399 
1400 	/*
1401 	 * We need to flush delayed refs in order to make sure all of our quota
1402 	 * operations have been done before we call btrfs_qgroup_inherit.
1403 	 */
1404 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1405 	if (ret) {
1406 		btrfs_abort_transaction(trans, root, ret);
1407 		goto fail;
1408 	}
1409 
1410 	ret = btrfs_qgroup_inherit(trans, fs_info,
1411 				   root->root_key.objectid,
1412 				   objectid, pending->inherit);
1413 	if (ret) {
1414 		btrfs_abort_transaction(trans, root, ret);
1415 		goto fail;
1416 	}
1417 
1418 	/* see comments in should_cow_block() */
1419 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1420 	smp_wmb();
1421 
1422 	btrfs_set_root_node(new_root_item, tmp);
1423 	/* record when the snapshot was created in key.offset */
1424 	key.offset = trans->transid;
1425 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1426 	btrfs_tree_unlock(tmp);
1427 	free_extent_buffer(tmp);
1428 	if (ret) {
1429 		btrfs_abort_transaction(trans, root, ret);
1430 		goto fail;
1431 	}
1432 
1433 	/*
1434 	 * insert root back/forward references
1435 	 */
1436 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1437 				 parent_root->root_key.objectid,
1438 				 btrfs_ino(parent_inode), index,
1439 				 dentry->d_name.name, dentry->d_name.len);
1440 	if (ret) {
1441 		btrfs_abort_transaction(trans, root, ret);
1442 		goto fail;
1443 	}
1444 
1445 	key.offset = (u64)-1;
1446 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1447 	if (IS_ERR(pending->snap)) {
1448 		ret = PTR_ERR(pending->snap);
1449 		btrfs_abort_transaction(trans, root, ret);
1450 		goto fail;
1451 	}
1452 
1453 	ret = btrfs_reloc_post_snapshot(trans, pending);
1454 	if (ret) {
1455 		btrfs_abort_transaction(trans, root, ret);
1456 		goto fail;
1457 	}
1458 
1459 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1460 	if (ret) {
1461 		btrfs_abort_transaction(trans, root, ret);
1462 		goto fail;
1463 	}
1464 
1465 	ret = btrfs_insert_dir_item(trans, parent_root,
1466 				    dentry->d_name.name, dentry->d_name.len,
1467 				    parent_inode, &key,
1468 				    BTRFS_FT_DIR, index);
1469 	/* We have check then name at the beginning, so it is impossible. */
1470 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1471 	if (ret) {
1472 		btrfs_abort_transaction(trans, root, ret);
1473 		goto fail;
1474 	}
1475 
1476 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1477 					 dentry->d_name.len * 2);
1478 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1479 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1480 	if (ret) {
1481 		btrfs_abort_transaction(trans, root, ret);
1482 		goto fail;
1483 	}
1484 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1485 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1486 	if (ret) {
1487 		btrfs_abort_transaction(trans, root, ret);
1488 		goto fail;
1489 	}
1490 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1491 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1492 					  new_root_item->received_uuid,
1493 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1494 					  objectid);
1495 		if (ret && ret != -EEXIST) {
1496 			btrfs_abort_transaction(trans, root, ret);
1497 			goto fail;
1498 		}
1499 	}
1500 fail:
1501 	pending->error = ret;
1502 dir_item_existed:
1503 	trans->block_rsv = rsv;
1504 	trans->bytes_reserved = 0;
1505 no_free_objectid:
1506 	kfree(new_root_item);
1507 root_item_alloc_fail:
1508 	btrfs_free_path(path);
1509 	return ret;
1510 }
1511 
1512 /*
1513  * create all the snapshots we've scheduled for creation
1514  */
1515 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1516 					     struct btrfs_fs_info *fs_info)
1517 {
1518 	struct btrfs_pending_snapshot *pending, *next;
1519 	struct list_head *head = &trans->transaction->pending_snapshots;
1520 	int ret = 0;
1521 
1522 	list_for_each_entry_safe(pending, next, head, list) {
1523 		list_del(&pending->list);
1524 		ret = create_pending_snapshot(trans, fs_info, pending);
1525 		if (ret)
1526 			break;
1527 	}
1528 	return ret;
1529 }
1530 
1531 static void update_super_roots(struct btrfs_root *root)
1532 {
1533 	struct btrfs_root_item *root_item;
1534 	struct btrfs_super_block *super;
1535 
1536 	super = root->fs_info->super_copy;
1537 
1538 	root_item = &root->fs_info->chunk_root->root_item;
1539 	super->chunk_root = root_item->bytenr;
1540 	super->chunk_root_generation = root_item->generation;
1541 	super->chunk_root_level = root_item->level;
1542 
1543 	root_item = &root->fs_info->tree_root->root_item;
1544 	super->root = root_item->bytenr;
1545 	super->generation = root_item->generation;
1546 	super->root_level = root_item->level;
1547 	if (btrfs_test_opt(root, SPACE_CACHE))
1548 		super->cache_generation = root_item->generation;
1549 	if (root->fs_info->update_uuid_tree_gen)
1550 		super->uuid_tree_generation = root_item->generation;
1551 }
1552 
1553 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1554 {
1555 	struct btrfs_transaction *trans;
1556 	int ret = 0;
1557 
1558 	spin_lock(&info->trans_lock);
1559 	trans = info->running_transaction;
1560 	if (trans)
1561 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1562 	spin_unlock(&info->trans_lock);
1563 	return ret;
1564 }
1565 
1566 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1567 {
1568 	struct btrfs_transaction *trans;
1569 	int ret = 0;
1570 
1571 	spin_lock(&info->trans_lock);
1572 	trans = info->running_transaction;
1573 	if (trans)
1574 		ret = is_transaction_blocked(trans);
1575 	spin_unlock(&info->trans_lock);
1576 	return ret;
1577 }
1578 
1579 /*
1580  * wait for the current transaction commit to start and block subsequent
1581  * transaction joins
1582  */
1583 static void wait_current_trans_commit_start(struct btrfs_root *root,
1584 					    struct btrfs_transaction *trans)
1585 {
1586 	wait_event(root->fs_info->transaction_blocked_wait,
1587 		   trans->state >= TRANS_STATE_COMMIT_START ||
1588 		   trans->aborted);
1589 }
1590 
1591 /*
1592  * wait for the current transaction to start and then become unblocked.
1593  * caller holds ref.
1594  */
1595 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1596 					 struct btrfs_transaction *trans)
1597 {
1598 	wait_event(root->fs_info->transaction_wait,
1599 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1600 		   trans->aborted);
1601 }
1602 
1603 /*
1604  * commit transactions asynchronously. once btrfs_commit_transaction_async
1605  * returns, any subsequent transaction will not be allowed to join.
1606  */
1607 struct btrfs_async_commit {
1608 	struct btrfs_trans_handle *newtrans;
1609 	struct btrfs_root *root;
1610 	struct work_struct work;
1611 };
1612 
1613 static void do_async_commit(struct work_struct *work)
1614 {
1615 	struct btrfs_async_commit *ac =
1616 		container_of(work, struct btrfs_async_commit, work);
1617 
1618 	/*
1619 	 * We've got freeze protection passed with the transaction.
1620 	 * Tell lockdep about it.
1621 	 */
1622 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1623 		rwsem_acquire_read(
1624 		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1625 		     0, 1, _THIS_IP_);
1626 
1627 	current->journal_info = ac->newtrans;
1628 
1629 	btrfs_commit_transaction(ac->newtrans, ac->root);
1630 	kfree(ac);
1631 }
1632 
1633 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1634 				   struct btrfs_root *root,
1635 				   int wait_for_unblock)
1636 {
1637 	struct btrfs_async_commit *ac;
1638 	struct btrfs_transaction *cur_trans;
1639 
1640 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1641 	if (!ac)
1642 		return -ENOMEM;
1643 
1644 	INIT_WORK(&ac->work, do_async_commit);
1645 	ac->root = root;
1646 	ac->newtrans = btrfs_join_transaction(root);
1647 	if (IS_ERR(ac->newtrans)) {
1648 		int err = PTR_ERR(ac->newtrans);
1649 		kfree(ac);
1650 		return err;
1651 	}
1652 
1653 	/* take transaction reference */
1654 	cur_trans = trans->transaction;
1655 	atomic_inc(&cur_trans->use_count);
1656 
1657 	btrfs_end_transaction(trans, root);
1658 
1659 	/*
1660 	 * Tell lockdep we've released the freeze rwsem, since the
1661 	 * async commit thread will be the one to unlock it.
1662 	 */
1663 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1664 		rwsem_release(
1665 			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1666 			1, _THIS_IP_);
1667 
1668 	schedule_work(&ac->work);
1669 
1670 	/* wait for transaction to start and unblock */
1671 	if (wait_for_unblock)
1672 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1673 	else
1674 		wait_current_trans_commit_start(root, cur_trans);
1675 
1676 	if (current->journal_info == trans)
1677 		current->journal_info = NULL;
1678 
1679 	btrfs_put_transaction(cur_trans);
1680 	return 0;
1681 }
1682 
1683 
1684 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1685 				struct btrfs_root *root, int err)
1686 {
1687 	struct btrfs_transaction *cur_trans = trans->transaction;
1688 	DEFINE_WAIT(wait);
1689 
1690 	WARN_ON(trans->use_count > 1);
1691 
1692 	btrfs_abort_transaction(trans, root, err);
1693 
1694 	spin_lock(&root->fs_info->trans_lock);
1695 
1696 	/*
1697 	 * If the transaction is removed from the list, it means this
1698 	 * transaction has been committed successfully, so it is impossible
1699 	 * to call the cleanup function.
1700 	 */
1701 	BUG_ON(list_empty(&cur_trans->list));
1702 
1703 	list_del_init(&cur_trans->list);
1704 	if (cur_trans == root->fs_info->running_transaction) {
1705 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1706 		spin_unlock(&root->fs_info->trans_lock);
1707 		wait_event(cur_trans->writer_wait,
1708 			   atomic_read(&cur_trans->num_writers) == 1);
1709 
1710 		spin_lock(&root->fs_info->trans_lock);
1711 	}
1712 	spin_unlock(&root->fs_info->trans_lock);
1713 
1714 	btrfs_cleanup_one_transaction(trans->transaction, root);
1715 
1716 	spin_lock(&root->fs_info->trans_lock);
1717 	if (cur_trans == root->fs_info->running_transaction)
1718 		root->fs_info->running_transaction = NULL;
1719 	spin_unlock(&root->fs_info->trans_lock);
1720 
1721 	if (trans->type & __TRANS_FREEZABLE)
1722 		sb_end_intwrite(root->fs_info->sb);
1723 	btrfs_put_transaction(cur_trans);
1724 	btrfs_put_transaction(cur_trans);
1725 
1726 	trace_btrfs_transaction_commit(root);
1727 
1728 	if (current->journal_info == trans)
1729 		current->journal_info = NULL;
1730 	btrfs_scrub_cancel(root->fs_info);
1731 
1732 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1733 }
1734 
1735 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1736 {
1737 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1738 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1739 	return 0;
1740 }
1741 
1742 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1743 {
1744 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1745 		btrfs_wait_ordered_roots(fs_info, -1);
1746 }
1747 
1748 static inline void
1749 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1750 			   struct btrfs_fs_info *fs_info)
1751 {
1752 	struct btrfs_ordered_extent *ordered;
1753 
1754 	spin_lock(&fs_info->trans_lock);
1755 	while (!list_empty(&cur_trans->pending_ordered)) {
1756 		ordered = list_first_entry(&cur_trans->pending_ordered,
1757 					   struct btrfs_ordered_extent,
1758 					   trans_list);
1759 		list_del_init(&ordered->trans_list);
1760 		spin_unlock(&fs_info->trans_lock);
1761 
1762 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1763 						   &ordered->flags));
1764 		btrfs_put_ordered_extent(ordered);
1765 		spin_lock(&fs_info->trans_lock);
1766 	}
1767 	spin_unlock(&fs_info->trans_lock);
1768 }
1769 
1770 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1771 			     struct btrfs_root *root)
1772 {
1773 	struct btrfs_transaction *cur_trans = trans->transaction;
1774 	struct btrfs_transaction *prev_trans = NULL;
1775 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1776 	int ret;
1777 
1778 	/* Stop the commit early if ->aborted is set */
1779 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1780 		ret = cur_trans->aborted;
1781 		btrfs_end_transaction(trans, root);
1782 		return ret;
1783 	}
1784 
1785 	/* make a pass through all the delayed refs we have so far
1786 	 * any runnings procs may add more while we are here
1787 	 */
1788 	ret = btrfs_run_delayed_refs(trans, root, 0);
1789 	if (ret) {
1790 		btrfs_end_transaction(trans, root);
1791 		return ret;
1792 	}
1793 
1794 	btrfs_trans_release_metadata(trans, root);
1795 	trans->block_rsv = NULL;
1796 	if (trans->qgroup_reserved) {
1797 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1798 		trans->qgroup_reserved = 0;
1799 	}
1800 
1801 	cur_trans = trans->transaction;
1802 
1803 	/*
1804 	 * set the flushing flag so procs in this transaction have to
1805 	 * start sending their work down.
1806 	 */
1807 	cur_trans->delayed_refs.flushing = 1;
1808 	smp_wmb();
1809 
1810 	if (!list_empty(&trans->new_bgs))
1811 		btrfs_create_pending_block_groups(trans, root);
1812 
1813 	ret = btrfs_run_delayed_refs(trans, root, 0);
1814 	if (ret) {
1815 		btrfs_end_transaction(trans, root);
1816 		return ret;
1817 	}
1818 
1819 	if (!cur_trans->dirty_bg_run) {
1820 		int run_it = 0;
1821 
1822 		/* this mutex is also taken before trying to set
1823 		 * block groups readonly.  We need to make sure
1824 		 * that nobody has set a block group readonly
1825 		 * after a extents from that block group have been
1826 		 * allocated for cache files.  btrfs_set_block_group_ro
1827 		 * will wait for the transaction to commit if it
1828 		 * finds dirty_bg_run = 1
1829 		 *
1830 		 * The dirty_bg_run flag is also used to make sure only
1831 		 * one process starts all the block group IO.  It wouldn't
1832 		 * hurt to have more than one go through, but there's no
1833 		 * real advantage to it either.
1834 		 */
1835 		mutex_lock(&root->fs_info->ro_block_group_mutex);
1836 		if (!cur_trans->dirty_bg_run) {
1837 			run_it = 1;
1838 			cur_trans->dirty_bg_run = 1;
1839 		}
1840 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
1841 
1842 		if (run_it)
1843 			ret = btrfs_start_dirty_block_groups(trans, root);
1844 	}
1845 	if (ret) {
1846 		btrfs_end_transaction(trans, root);
1847 		return ret;
1848 	}
1849 
1850 	spin_lock(&root->fs_info->trans_lock);
1851 	list_splice(&trans->ordered, &cur_trans->pending_ordered);
1852 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1853 		spin_unlock(&root->fs_info->trans_lock);
1854 		atomic_inc(&cur_trans->use_count);
1855 		ret = btrfs_end_transaction(trans, root);
1856 
1857 		wait_for_commit(root, cur_trans);
1858 
1859 		if (unlikely(cur_trans->aborted))
1860 			ret = cur_trans->aborted;
1861 
1862 		btrfs_put_transaction(cur_trans);
1863 
1864 		return ret;
1865 	}
1866 
1867 	cur_trans->state = TRANS_STATE_COMMIT_START;
1868 	wake_up(&root->fs_info->transaction_blocked_wait);
1869 
1870 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1871 		prev_trans = list_entry(cur_trans->list.prev,
1872 					struct btrfs_transaction, list);
1873 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1874 			atomic_inc(&prev_trans->use_count);
1875 			spin_unlock(&root->fs_info->trans_lock);
1876 
1877 			wait_for_commit(root, prev_trans);
1878 
1879 			btrfs_put_transaction(prev_trans);
1880 		} else {
1881 			spin_unlock(&root->fs_info->trans_lock);
1882 		}
1883 	} else {
1884 		spin_unlock(&root->fs_info->trans_lock);
1885 	}
1886 
1887 	extwriter_counter_dec(cur_trans, trans->type);
1888 
1889 	ret = btrfs_start_delalloc_flush(root->fs_info);
1890 	if (ret)
1891 		goto cleanup_transaction;
1892 
1893 	ret = btrfs_run_delayed_items(trans, root);
1894 	if (ret)
1895 		goto cleanup_transaction;
1896 
1897 	wait_event(cur_trans->writer_wait,
1898 		   extwriter_counter_read(cur_trans) == 0);
1899 
1900 	/* some pending stuffs might be added after the previous flush. */
1901 	ret = btrfs_run_delayed_items(trans, root);
1902 	if (ret)
1903 		goto cleanup_transaction;
1904 
1905 	btrfs_wait_delalloc_flush(root->fs_info);
1906 
1907 	btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1908 
1909 	btrfs_scrub_pause(root);
1910 	/*
1911 	 * Ok now we need to make sure to block out any other joins while we
1912 	 * commit the transaction.  We could have started a join before setting
1913 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1914 	 */
1915 	spin_lock(&root->fs_info->trans_lock);
1916 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1917 	spin_unlock(&root->fs_info->trans_lock);
1918 	wait_event(cur_trans->writer_wait,
1919 		   atomic_read(&cur_trans->num_writers) == 1);
1920 
1921 	/* ->aborted might be set after the previous check, so check it */
1922 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1923 		ret = cur_trans->aborted;
1924 		goto scrub_continue;
1925 	}
1926 	/*
1927 	 * the reloc mutex makes sure that we stop
1928 	 * the balancing code from coming in and moving
1929 	 * extents around in the middle of the commit
1930 	 */
1931 	mutex_lock(&root->fs_info->reloc_mutex);
1932 
1933 	/*
1934 	 * We needn't worry about the delayed items because we will
1935 	 * deal with them in create_pending_snapshot(), which is the
1936 	 * core function of the snapshot creation.
1937 	 */
1938 	ret = create_pending_snapshots(trans, root->fs_info);
1939 	if (ret) {
1940 		mutex_unlock(&root->fs_info->reloc_mutex);
1941 		goto scrub_continue;
1942 	}
1943 
1944 	/*
1945 	 * We insert the dir indexes of the snapshots and update the inode
1946 	 * of the snapshots' parents after the snapshot creation, so there
1947 	 * are some delayed items which are not dealt with. Now deal with
1948 	 * them.
1949 	 *
1950 	 * We needn't worry that this operation will corrupt the snapshots,
1951 	 * because all the tree which are snapshoted will be forced to COW
1952 	 * the nodes and leaves.
1953 	 */
1954 	ret = btrfs_run_delayed_items(trans, root);
1955 	if (ret) {
1956 		mutex_unlock(&root->fs_info->reloc_mutex);
1957 		goto scrub_continue;
1958 	}
1959 
1960 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1961 	if (ret) {
1962 		mutex_unlock(&root->fs_info->reloc_mutex);
1963 		goto scrub_continue;
1964 	}
1965 
1966 	/*
1967 	 * make sure none of the code above managed to slip in a
1968 	 * delayed item
1969 	 */
1970 	btrfs_assert_delayed_root_empty(root);
1971 
1972 	WARN_ON(cur_trans != trans->transaction);
1973 
1974 	/* btrfs_commit_tree_roots is responsible for getting the
1975 	 * various roots consistent with each other.  Every pointer
1976 	 * in the tree of tree roots has to point to the most up to date
1977 	 * root for every subvolume and other tree.  So, we have to keep
1978 	 * the tree logging code from jumping in and changing any
1979 	 * of the trees.
1980 	 *
1981 	 * At this point in the commit, there can't be any tree-log
1982 	 * writers, but a little lower down we drop the trans mutex
1983 	 * and let new people in.  By holding the tree_log_mutex
1984 	 * from now until after the super is written, we avoid races
1985 	 * with the tree-log code.
1986 	 */
1987 	mutex_lock(&root->fs_info->tree_log_mutex);
1988 
1989 	ret = commit_fs_roots(trans, root);
1990 	if (ret) {
1991 		mutex_unlock(&root->fs_info->tree_log_mutex);
1992 		mutex_unlock(&root->fs_info->reloc_mutex);
1993 		goto scrub_continue;
1994 	}
1995 
1996 	/*
1997 	 * Since the transaction is done, we can apply the pending changes
1998 	 * before the next transaction.
1999 	 */
2000 	btrfs_apply_pending_changes(root->fs_info);
2001 
2002 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2003 	 * safe to free the root of tree log roots
2004 	 */
2005 	btrfs_free_log_root_tree(trans, root->fs_info);
2006 
2007 	ret = commit_cowonly_roots(trans, root);
2008 	if (ret) {
2009 		mutex_unlock(&root->fs_info->tree_log_mutex);
2010 		mutex_unlock(&root->fs_info->reloc_mutex);
2011 		goto scrub_continue;
2012 	}
2013 
2014 	/*
2015 	 * The tasks which save the space cache and inode cache may also
2016 	 * update ->aborted, check it.
2017 	 */
2018 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2019 		ret = cur_trans->aborted;
2020 		mutex_unlock(&root->fs_info->tree_log_mutex);
2021 		mutex_unlock(&root->fs_info->reloc_mutex);
2022 		goto scrub_continue;
2023 	}
2024 
2025 	btrfs_prepare_extent_commit(trans, root);
2026 
2027 	cur_trans = root->fs_info->running_transaction;
2028 
2029 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2030 			    root->fs_info->tree_root->node);
2031 	list_add_tail(&root->fs_info->tree_root->dirty_list,
2032 		      &cur_trans->switch_commits);
2033 
2034 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2035 			    root->fs_info->chunk_root->node);
2036 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
2037 		      &cur_trans->switch_commits);
2038 
2039 	switch_commit_roots(cur_trans, root->fs_info);
2040 
2041 	assert_qgroups_uptodate(trans);
2042 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2043 	ASSERT(list_empty(&cur_trans->io_bgs));
2044 	update_super_roots(root);
2045 
2046 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2047 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2048 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2049 	       sizeof(*root->fs_info->super_copy));
2050 
2051 	btrfs_update_commit_device_size(root->fs_info);
2052 	btrfs_update_commit_device_bytes_used(root, cur_trans);
2053 
2054 	clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2055 	clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2056 
2057 	spin_lock(&root->fs_info->trans_lock);
2058 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2059 	root->fs_info->running_transaction = NULL;
2060 	spin_unlock(&root->fs_info->trans_lock);
2061 	mutex_unlock(&root->fs_info->reloc_mutex);
2062 
2063 	wake_up(&root->fs_info->transaction_wait);
2064 
2065 	ret = btrfs_write_and_wait_transaction(trans, root);
2066 	if (ret) {
2067 		btrfs_error(root->fs_info, ret,
2068 			    "Error while writing out transaction");
2069 		mutex_unlock(&root->fs_info->tree_log_mutex);
2070 		goto scrub_continue;
2071 	}
2072 
2073 	ret = write_ctree_super(trans, root, 0);
2074 	if (ret) {
2075 		mutex_unlock(&root->fs_info->tree_log_mutex);
2076 		goto scrub_continue;
2077 	}
2078 
2079 	/*
2080 	 * the super is written, we can safely allow the tree-loggers
2081 	 * to go about their business
2082 	 */
2083 	mutex_unlock(&root->fs_info->tree_log_mutex);
2084 
2085 	btrfs_finish_extent_commit(trans, root);
2086 
2087 	if (cur_trans->have_free_bgs)
2088 		btrfs_clear_space_info_full(root->fs_info);
2089 
2090 	root->fs_info->last_trans_committed = cur_trans->transid;
2091 	/*
2092 	 * We needn't acquire the lock here because there is no other task
2093 	 * which can change it.
2094 	 */
2095 	cur_trans->state = TRANS_STATE_COMPLETED;
2096 	wake_up(&cur_trans->commit_wait);
2097 
2098 	spin_lock(&root->fs_info->trans_lock);
2099 	list_del_init(&cur_trans->list);
2100 	spin_unlock(&root->fs_info->trans_lock);
2101 
2102 	btrfs_put_transaction(cur_trans);
2103 	btrfs_put_transaction(cur_trans);
2104 
2105 	if (trans->type & __TRANS_FREEZABLE)
2106 		sb_end_intwrite(root->fs_info->sb);
2107 
2108 	trace_btrfs_transaction_commit(root);
2109 
2110 	btrfs_scrub_continue(root);
2111 
2112 	if (current->journal_info == trans)
2113 		current->journal_info = NULL;
2114 
2115 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2116 
2117 	if (current != root->fs_info->transaction_kthread)
2118 		btrfs_run_delayed_iputs(root);
2119 
2120 	return ret;
2121 
2122 scrub_continue:
2123 	btrfs_scrub_continue(root);
2124 cleanup_transaction:
2125 	btrfs_trans_release_metadata(trans, root);
2126 	trans->block_rsv = NULL;
2127 	if (trans->qgroup_reserved) {
2128 		btrfs_qgroup_free(root, trans->qgroup_reserved);
2129 		trans->qgroup_reserved = 0;
2130 	}
2131 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2132 	if (current->journal_info == trans)
2133 		current->journal_info = NULL;
2134 	cleanup_transaction(trans, root, ret);
2135 
2136 	return ret;
2137 }
2138 
2139 /*
2140  * return < 0 if error
2141  * 0 if there are no more dead_roots at the time of call
2142  * 1 there are more to be processed, call me again
2143  *
2144  * The return value indicates there are certainly more snapshots to delete, but
2145  * if there comes a new one during processing, it may return 0. We don't mind,
2146  * because btrfs_commit_super will poke cleaner thread and it will process it a
2147  * few seconds later.
2148  */
2149 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2150 {
2151 	int ret;
2152 	struct btrfs_fs_info *fs_info = root->fs_info;
2153 
2154 	spin_lock(&fs_info->trans_lock);
2155 	if (list_empty(&fs_info->dead_roots)) {
2156 		spin_unlock(&fs_info->trans_lock);
2157 		return 0;
2158 	}
2159 	root = list_first_entry(&fs_info->dead_roots,
2160 			struct btrfs_root, root_list);
2161 	list_del_init(&root->root_list);
2162 	spin_unlock(&fs_info->trans_lock);
2163 
2164 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2165 
2166 	btrfs_kill_all_delayed_nodes(root);
2167 
2168 	if (btrfs_header_backref_rev(root->node) <
2169 			BTRFS_MIXED_BACKREF_REV)
2170 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2171 	else
2172 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2173 
2174 	return (ret < 0) ? 0 : 1;
2175 }
2176 
2177 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2178 {
2179 	unsigned long prev;
2180 	unsigned long bit;
2181 
2182 	prev = xchg(&fs_info->pending_changes, 0);
2183 	if (!prev)
2184 		return;
2185 
2186 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2187 	if (prev & bit)
2188 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2189 	prev &= ~bit;
2190 
2191 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2192 	if (prev & bit)
2193 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2194 	prev &= ~bit;
2195 
2196 	bit = 1 << BTRFS_PENDING_COMMIT;
2197 	if (prev & bit)
2198 		btrfs_debug(fs_info, "pending commit done");
2199 	prev &= ~bit;
2200 
2201 	if (prev)
2202 		btrfs_warn(fs_info,
2203 			"unknown pending changes left 0x%lx, ignoring", prev);
2204 }
2205