xref: /openbmc/linux/fs/btrfs/transaction.c (revision 8fdff1dc)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 
35 #define BTRFS_ROOT_TRANS_TAG 0
36 
37 void put_transaction(struct btrfs_transaction *transaction)
38 {
39 	WARN_ON(atomic_read(&transaction->use_count) == 0);
40 	if (atomic_dec_and_test(&transaction->use_count)) {
41 		BUG_ON(!list_empty(&transaction->list));
42 		WARN_ON(transaction->delayed_refs.root.rb_node);
43 		memset(transaction, 0, sizeof(*transaction));
44 		kmem_cache_free(btrfs_transaction_cachep, transaction);
45 	}
46 }
47 
48 static noinline void switch_commit_root(struct btrfs_root *root)
49 {
50 	free_extent_buffer(root->commit_root);
51 	root->commit_root = btrfs_root_node(root);
52 }
53 
54 /*
55  * either allocate a new transaction or hop into the existing one
56  */
57 static noinline int join_transaction(struct btrfs_root *root, int type)
58 {
59 	struct btrfs_transaction *cur_trans;
60 	struct btrfs_fs_info *fs_info = root->fs_info;
61 
62 	spin_lock(&fs_info->trans_lock);
63 loop:
64 	/* The file system has been taken offline. No new transactions. */
65 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
66 		spin_unlock(&fs_info->trans_lock);
67 		return -EROFS;
68 	}
69 
70 	if (fs_info->trans_no_join) {
71 		/*
72 		 * If we are JOIN_NOLOCK we're already committing a current
73 		 * transaction, we just need a handle to deal with something
74 		 * when committing the transaction, such as inode cache and
75 		 * space cache. It is a special case.
76 		 */
77 		if (type != TRANS_JOIN_NOLOCK) {
78 			spin_unlock(&fs_info->trans_lock);
79 			return -EBUSY;
80 		}
81 	}
82 
83 	cur_trans = fs_info->running_transaction;
84 	if (cur_trans) {
85 		if (cur_trans->aborted) {
86 			spin_unlock(&fs_info->trans_lock);
87 			return cur_trans->aborted;
88 		}
89 		atomic_inc(&cur_trans->use_count);
90 		atomic_inc(&cur_trans->num_writers);
91 		cur_trans->num_joined++;
92 		spin_unlock(&fs_info->trans_lock);
93 		return 0;
94 	}
95 	spin_unlock(&fs_info->trans_lock);
96 
97 	/*
98 	 * If we are ATTACH, we just want to catch the current transaction,
99 	 * and commit it. If there is no transaction, just return ENOENT.
100 	 */
101 	if (type == TRANS_ATTACH)
102 		return -ENOENT;
103 
104 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
105 	if (!cur_trans)
106 		return -ENOMEM;
107 
108 	spin_lock(&fs_info->trans_lock);
109 	if (fs_info->running_transaction) {
110 		/*
111 		 * someone started a transaction after we unlocked.  Make sure
112 		 * to redo the trans_no_join checks above
113 		 */
114 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
115 		cur_trans = fs_info->running_transaction;
116 		goto loop;
117 	} else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
118 		spin_unlock(&fs_info->trans_lock);
119 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
120 		return -EROFS;
121 	}
122 
123 	atomic_set(&cur_trans->num_writers, 1);
124 	cur_trans->num_joined = 0;
125 	init_waitqueue_head(&cur_trans->writer_wait);
126 	init_waitqueue_head(&cur_trans->commit_wait);
127 	cur_trans->in_commit = 0;
128 	cur_trans->blocked = 0;
129 	/*
130 	 * One for this trans handle, one so it will live on until we
131 	 * commit the transaction.
132 	 */
133 	atomic_set(&cur_trans->use_count, 2);
134 	cur_trans->commit_done = 0;
135 	cur_trans->start_time = get_seconds();
136 
137 	cur_trans->delayed_refs.root = RB_ROOT;
138 	cur_trans->delayed_refs.num_entries = 0;
139 	cur_trans->delayed_refs.num_heads_ready = 0;
140 	cur_trans->delayed_refs.num_heads = 0;
141 	cur_trans->delayed_refs.flushing = 0;
142 	cur_trans->delayed_refs.run_delayed_start = 0;
143 
144 	/*
145 	 * although the tree mod log is per file system and not per transaction,
146 	 * the log must never go across transaction boundaries.
147 	 */
148 	smp_mb();
149 	if (!list_empty(&fs_info->tree_mod_seq_list))
150 		WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
151 			"creating a fresh transaction\n");
152 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
153 		WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
154 			"creating a fresh transaction\n");
155 	atomic_set(&fs_info->tree_mod_seq, 0);
156 
157 	spin_lock_init(&cur_trans->commit_lock);
158 	spin_lock_init(&cur_trans->delayed_refs.lock);
159 
160 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
161 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
162 	extent_io_tree_init(&cur_trans->dirty_pages,
163 			     fs_info->btree_inode->i_mapping);
164 	fs_info->generation++;
165 	cur_trans->transid = fs_info->generation;
166 	fs_info->running_transaction = cur_trans;
167 	cur_trans->aborted = 0;
168 	spin_unlock(&fs_info->trans_lock);
169 
170 	return 0;
171 }
172 
173 /*
174  * this does all the record keeping required to make sure that a reference
175  * counted root is properly recorded in a given transaction.  This is required
176  * to make sure the old root from before we joined the transaction is deleted
177  * when the transaction commits
178  */
179 static int record_root_in_trans(struct btrfs_trans_handle *trans,
180 			       struct btrfs_root *root)
181 {
182 	if (root->ref_cows && root->last_trans < trans->transid) {
183 		WARN_ON(root == root->fs_info->extent_root);
184 		WARN_ON(root->commit_root != root->node);
185 
186 		/*
187 		 * see below for in_trans_setup usage rules
188 		 * we have the reloc mutex held now, so there
189 		 * is only one writer in this function
190 		 */
191 		root->in_trans_setup = 1;
192 
193 		/* make sure readers find in_trans_setup before
194 		 * they find our root->last_trans update
195 		 */
196 		smp_wmb();
197 
198 		spin_lock(&root->fs_info->fs_roots_radix_lock);
199 		if (root->last_trans == trans->transid) {
200 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
201 			return 0;
202 		}
203 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
204 			   (unsigned long)root->root_key.objectid,
205 			   BTRFS_ROOT_TRANS_TAG);
206 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
207 		root->last_trans = trans->transid;
208 
209 		/* this is pretty tricky.  We don't want to
210 		 * take the relocation lock in btrfs_record_root_in_trans
211 		 * unless we're really doing the first setup for this root in
212 		 * this transaction.
213 		 *
214 		 * Normally we'd use root->last_trans as a flag to decide
215 		 * if we want to take the expensive mutex.
216 		 *
217 		 * But, we have to set root->last_trans before we
218 		 * init the relocation root, otherwise, we trip over warnings
219 		 * in ctree.c.  The solution used here is to flag ourselves
220 		 * with root->in_trans_setup.  When this is 1, we're still
221 		 * fixing up the reloc trees and everyone must wait.
222 		 *
223 		 * When this is zero, they can trust root->last_trans and fly
224 		 * through btrfs_record_root_in_trans without having to take the
225 		 * lock.  smp_wmb() makes sure that all the writes above are
226 		 * done before we pop in the zero below
227 		 */
228 		btrfs_init_reloc_root(trans, root);
229 		smp_wmb();
230 		root->in_trans_setup = 0;
231 	}
232 	return 0;
233 }
234 
235 
236 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
237 			       struct btrfs_root *root)
238 {
239 	if (!root->ref_cows)
240 		return 0;
241 
242 	/*
243 	 * see record_root_in_trans for comments about in_trans_setup usage
244 	 * and barriers
245 	 */
246 	smp_rmb();
247 	if (root->last_trans == trans->transid &&
248 	    !root->in_trans_setup)
249 		return 0;
250 
251 	mutex_lock(&root->fs_info->reloc_mutex);
252 	record_root_in_trans(trans, root);
253 	mutex_unlock(&root->fs_info->reloc_mutex);
254 
255 	return 0;
256 }
257 
258 /* wait for commit against the current transaction to become unblocked
259  * when this is done, it is safe to start a new transaction, but the current
260  * transaction might not be fully on disk.
261  */
262 static void wait_current_trans(struct btrfs_root *root)
263 {
264 	struct btrfs_transaction *cur_trans;
265 
266 	spin_lock(&root->fs_info->trans_lock);
267 	cur_trans = root->fs_info->running_transaction;
268 	if (cur_trans && cur_trans->blocked) {
269 		atomic_inc(&cur_trans->use_count);
270 		spin_unlock(&root->fs_info->trans_lock);
271 
272 		wait_event(root->fs_info->transaction_wait,
273 			   !cur_trans->blocked);
274 		put_transaction(cur_trans);
275 	} else {
276 		spin_unlock(&root->fs_info->trans_lock);
277 	}
278 }
279 
280 static int may_wait_transaction(struct btrfs_root *root, int type)
281 {
282 	if (root->fs_info->log_root_recovering)
283 		return 0;
284 
285 	if (type == TRANS_USERSPACE)
286 		return 1;
287 
288 	if (type == TRANS_START &&
289 	    !atomic_read(&root->fs_info->open_ioctl_trans))
290 		return 1;
291 
292 	return 0;
293 }
294 
295 static struct btrfs_trans_handle *
296 start_transaction(struct btrfs_root *root, u64 num_items, int type,
297 		  enum btrfs_reserve_flush_enum flush)
298 {
299 	struct btrfs_trans_handle *h;
300 	struct btrfs_transaction *cur_trans;
301 	u64 num_bytes = 0;
302 	int ret;
303 	u64 qgroup_reserved = 0;
304 
305 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
306 		return ERR_PTR(-EROFS);
307 
308 	if (current->journal_info) {
309 		WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
310 		h = current->journal_info;
311 		h->use_count++;
312 		WARN_ON(h->use_count > 2);
313 		h->orig_rsv = h->block_rsv;
314 		h->block_rsv = NULL;
315 		goto got_it;
316 	}
317 
318 	/*
319 	 * Do the reservation before we join the transaction so we can do all
320 	 * the appropriate flushing if need be.
321 	 */
322 	if (num_items > 0 && root != root->fs_info->chunk_root) {
323 		if (root->fs_info->quota_enabled &&
324 		    is_fstree(root->root_key.objectid)) {
325 			qgroup_reserved = num_items * root->leafsize;
326 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
327 			if (ret)
328 				return ERR_PTR(ret);
329 		}
330 
331 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
332 		ret = btrfs_block_rsv_add(root,
333 					  &root->fs_info->trans_block_rsv,
334 					  num_bytes, flush);
335 		if (ret)
336 			return ERR_PTR(ret);
337 	}
338 again:
339 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
340 	if (!h)
341 		return ERR_PTR(-ENOMEM);
342 
343 	/*
344 	 * If we are JOIN_NOLOCK we're already committing a transaction and
345 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
346 	 * because we're already holding a ref.  We need this because we could
347 	 * have raced in and did an fsync() on a file which can kick a commit
348 	 * and then we deadlock with somebody doing a freeze.
349 	 *
350 	 * If we are ATTACH, it means we just want to catch the current
351 	 * transaction and commit it, so we needn't do sb_start_intwrite().
352 	 */
353 	if (type < TRANS_JOIN_NOLOCK)
354 		sb_start_intwrite(root->fs_info->sb);
355 
356 	if (may_wait_transaction(root, type))
357 		wait_current_trans(root);
358 
359 	do {
360 		ret = join_transaction(root, type);
361 		if (ret == -EBUSY)
362 			wait_current_trans(root);
363 	} while (ret == -EBUSY);
364 
365 	if (ret < 0) {
366 		/* We must get the transaction if we are JOIN_NOLOCK. */
367 		BUG_ON(type == TRANS_JOIN_NOLOCK);
368 
369 		if (type < TRANS_JOIN_NOLOCK)
370 			sb_end_intwrite(root->fs_info->sb);
371 		kmem_cache_free(btrfs_trans_handle_cachep, h);
372 		return ERR_PTR(ret);
373 	}
374 
375 	cur_trans = root->fs_info->running_transaction;
376 
377 	h->transid = cur_trans->transid;
378 	h->transaction = cur_trans;
379 	h->blocks_used = 0;
380 	h->bytes_reserved = 0;
381 	h->root = root;
382 	h->delayed_ref_updates = 0;
383 	h->use_count = 1;
384 	h->adding_csums = 0;
385 	h->block_rsv = NULL;
386 	h->orig_rsv = NULL;
387 	h->aborted = 0;
388 	h->qgroup_reserved = qgroup_reserved;
389 	h->delayed_ref_elem.seq = 0;
390 	h->type = type;
391 	INIT_LIST_HEAD(&h->qgroup_ref_list);
392 	INIT_LIST_HEAD(&h->new_bgs);
393 
394 	smp_mb();
395 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
396 		btrfs_commit_transaction(h, root);
397 		goto again;
398 	}
399 
400 	if (num_bytes) {
401 		trace_btrfs_space_reservation(root->fs_info, "transaction",
402 					      h->transid, num_bytes, 1);
403 		h->block_rsv = &root->fs_info->trans_block_rsv;
404 		h->bytes_reserved = num_bytes;
405 	}
406 
407 got_it:
408 	btrfs_record_root_in_trans(h, root);
409 
410 	if (!current->journal_info && type != TRANS_USERSPACE)
411 		current->journal_info = h;
412 	return h;
413 }
414 
415 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
416 						   int num_items)
417 {
418 	return start_transaction(root, num_items, TRANS_START,
419 				 BTRFS_RESERVE_FLUSH_ALL);
420 }
421 
422 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
423 					struct btrfs_root *root, int num_items)
424 {
425 	return start_transaction(root, num_items, TRANS_START,
426 				 BTRFS_RESERVE_FLUSH_LIMIT);
427 }
428 
429 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
430 {
431 	return start_transaction(root, 0, TRANS_JOIN, 0);
432 }
433 
434 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
435 {
436 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
437 }
438 
439 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
440 {
441 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
442 }
443 
444 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
445 {
446 	return start_transaction(root, 0, TRANS_ATTACH, 0);
447 }
448 
449 /* wait for a transaction commit to be fully complete */
450 static noinline void wait_for_commit(struct btrfs_root *root,
451 				    struct btrfs_transaction *commit)
452 {
453 	wait_event(commit->commit_wait, commit->commit_done);
454 }
455 
456 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
457 {
458 	struct btrfs_transaction *cur_trans = NULL, *t;
459 	int ret = 0;
460 
461 	if (transid) {
462 		if (transid <= root->fs_info->last_trans_committed)
463 			goto out;
464 
465 		ret = -EINVAL;
466 		/* find specified transaction */
467 		spin_lock(&root->fs_info->trans_lock);
468 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
469 			if (t->transid == transid) {
470 				cur_trans = t;
471 				atomic_inc(&cur_trans->use_count);
472 				ret = 0;
473 				break;
474 			}
475 			if (t->transid > transid) {
476 				ret = 0;
477 				break;
478 			}
479 		}
480 		spin_unlock(&root->fs_info->trans_lock);
481 		/* The specified transaction doesn't exist */
482 		if (!cur_trans)
483 			goto out;
484 	} else {
485 		/* find newest transaction that is committing | committed */
486 		spin_lock(&root->fs_info->trans_lock);
487 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
488 					    list) {
489 			if (t->in_commit) {
490 				if (t->commit_done)
491 					break;
492 				cur_trans = t;
493 				atomic_inc(&cur_trans->use_count);
494 				break;
495 			}
496 		}
497 		spin_unlock(&root->fs_info->trans_lock);
498 		if (!cur_trans)
499 			goto out;  /* nothing committing|committed */
500 	}
501 
502 	wait_for_commit(root, cur_trans);
503 	put_transaction(cur_trans);
504 out:
505 	return ret;
506 }
507 
508 void btrfs_throttle(struct btrfs_root *root)
509 {
510 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
511 		wait_current_trans(root);
512 }
513 
514 static int should_end_transaction(struct btrfs_trans_handle *trans,
515 				  struct btrfs_root *root)
516 {
517 	int ret;
518 
519 	ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
520 	return ret ? 1 : 0;
521 }
522 
523 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
524 				 struct btrfs_root *root)
525 {
526 	struct btrfs_transaction *cur_trans = trans->transaction;
527 	int updates;
528 	int err;
529 
530 	smp_mb();
531 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
532 		return 1;
533 
534 	updates = trans->delayed_ref_updates;
535 	trans->delayed_ref_updates = 0;
536 	if (updates) {
537 		err = btrfs_run_delayed_refs(trans, root, updates);
538 		if (err) /* Error code will also eval true */
539 			return err;
540 	}
541 
542 	return should_end_transaction(trans, root);
543 }
544 
545 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
546 			  struct btrfs_root *root, int throttle)
547 {
548 	struct btrfs_transaction *cur_trans = trans->transaction;
549 	struct btrfs_fs_info *info = root->fs_info;
550 	int count = 0;
551 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
552 	int err = 0;
553 
554 	if (--trans->use_count) {
555 		trans->block_rsv = trans->orig_rsv;
556 		return 0;
557 	}
558 
559 	/*
560 	 * do the qgroup accounting as early as possible
561 	 */
562 	err = btrfs_delayed_refs_qgroup_accounting(trans, info);
563 
564 	btrfs_trans_release_metadata(trans, root);
565 	trans->block_rsv = NULL;
566 	/*
567 	 * the same root has to be passed to start_transaction and
568 	 * end_transaction. Subvolume quota depends on this.
569 	 */
570 	WARN_ON(trans->root != root);
571 
572 	if (trans->qgroup_reserved) {
573 		btrfs_qgroup_free(root, trans->qgroup_reserved);
574 		trans->qgroup_reserved = 0;
575 	}
576 
577 	if (!list_empty(&trans->new_bgs))
578 		btrfs_create_pending_block_groups(trans, root);
579 
580 	while (count < 2) {
581 		unsigned long cur = trans->delayed_ref_updates;
582 		trans->delayed_ref_updates = 0;
583 		if (cur &&
584 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
585 			trans->delayed_ref_updates = 0;
586 			btrfs_run_delayed_refs(trans, root, cur);
587 		} else {
588 			break;
589 		}
590 		count++;
591 	}
592 	btrfs_trans_release_metadata(trans, root);
593 	trans->block_rsv = NULL;
594 
595 	if (!list_empty(&trans->new_bgs))
596 		btrfs_create_pending_block_groups(trans, root);
597 
598 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
599 	    should_end_transaction(trans, root)) {
600 		trans->transaction->blocked = 1;
601 		smp_wmb();
602 	}
603 
604 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
605 		if (throttle) {
606 			/*
607 			 * We may race with somebody else here so end up having
608 			 * to call end_transaction on ourselves again, so inc
609 			 * our use_count.
610 			 */
611 			trans->use_count++;
612 			return btrfs_commit_transaction(trans, root);
613 		} else {
614 			wake_up_process(info->transaction_kthread);
615 		}
616 	}
617 
618 	if (trans->type < TRANS_JOIN_NOLOCK)
619 		sb_end_intwrite(root->fs_info->sb);
620 
621 	WARN_ON(cur_trans != info->running_transaction);
622 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
623 	atomic_dec(&cur_trans->num_writers);
624 
625 	smp_mb();
626 	if (waitqueue_active(&cur_trans->writer_wait))
627 		wake_up(&cur_trans->writer_wait);
628 	put_transaction(cur_trans);
629 
630 	if (current->journal_info == trans)
631 		current->journal_info = NULL;
632 
633 	if (throttle)
634 		btrfs_run_delayed_iputs(root);
635 
636 	if (trans->aborted ||
637 	    root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
638 		err = -EIO;
639 	}
640 	assert_qgroups_uptodate(trans);
641 
642 	memset(trans, 0, sizeof(*trans));
643 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
644 	return err;
645 }
646 
647 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
648 			  struct btrfs_root *root)
649 {
650 	int ret;
651 
652 	ret = __btrfs_end_transaction(trans, root, 0);
653 	if (ret)
654 		return ret;
655 	return 0;
656 }
657 
658 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
659 				   struct btrfs_root *root)
660 {
661 	int ret;
662 
663 	ret = __btrfs_end_transaction(trans, root, 1);
664 	if (ret)
665 		return ret;
666 	return 0;
667 }
668 
669 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
670 				struct btrfs_root *root)
671 {
672 	return __btrfs_end_transaction(trans, root, 1);
673 }
674 
675 /*
676  * when btree blocks are allocated, they have some corresponding bits set for
677  * them in one of two extent_io trees.  This is used to make sure all of
678  * those extents are sent to disk but does not wait on them
679  */
680 int btrfs_write_marked_extents(struct btrfs_root *root,
681 			       struct extent_io_tree *dirty_pages, int mark)
682 {
683 	int err = 0;
684 	int werr = 0;
685 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
686 	struct extent_state *cached_state = NULL;
687 	u64 start = 0;
688 	u64 end;
689 
690 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
691 				      mark, &cached_state)) {
692 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
693 				   mark, &cached_state, GFP_NOFS);
694 		cached_state = NULL;
695 		err = filemap_fdatawrite_range(mapping, start, end);
696 		if (err)
697 			werr = err;
698 		cond_resched();
699 		start = end + 1;
700 	}
701 	if (err)
702 		werr = err;
703 	return werr;
704 }
705 
706 /*
707  * when btree blocks are allocated, they have some corresponding bits set for
708  * them in one of two extent_io trees.  This is used to make sure all of
709  * those extents are on disk for transaction or log commit.  We wait
710  * on all the pages and clear them from the dirty pages state tree
711  */
712 int btrfs_wait_marked_extents(struct btrfs_root *root,
713 			      struct extent_io_tree *dirty_pages, int mark)
714 {
715 	int err = 0;
716 	int werr = 0;
717 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
718 	struct extent_state *cached_state = NULL;
719 	u64 start = 0;
720 	u64 end;
721 
722 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
723 				      EXTENT_NEED_WAIT, &cached_state)) {
724 		clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
725 				 0, 0, &cached_state, GFP_NOFS);
726 		err = filemap_fdatawait_range(mapping, start, end);
727 		if (err)
728 			werr = err;
729 		cond_resched();
730 		start = end + 1;
731 	}
732 	if (err)
733 		werr = err;
734 	return werr;
735 }
736 
737 /*
738  * when btree blocks are allocated, they have some corresponding bits set for
739  * them in one of two extent_io trees.  This is used to make sure all of
740  * those extents are on disk for transaction or log commit
741  */
742 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
743 				struct extent_io_tree *dirty_pages, int mark)
744 {
745 	int ret;
746 	int ret2;
747 
748 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
749 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
750 
751 	if (ret)
752 		return ret;
753 	if (ret2)
754 		return ret2;
755 	return 0;
756 }
757 
758 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
759 				     struct btrfs_root *root)
760 {
761 	if (!trans || !trans->transaction) {
762 		struct inode *btree_inode;
763 		btree_inode = root->fs_info->btree_inode;
764 		return filemap_write_and_wait(btree_inode->i_mapping);
765 	}
766 	return btrfs_write_and_wait_marked_extents(root,
767 					   &trans->transaction->dirty_pages,
768 					   EXTENT_DIRTY);
769 }
770 
771 /*
772  * this is used to update the root pointer in the tree of tree roots.
773  *
774  * But, in the case of the extent allocation tree, updating the root
775  * pointer may allocate blocks which may change the root of the extent
776  * allocation tree.
777  *
778  * So, this loops and repeats and makes sure the cowonly root didn't
779  * change while the root pointer was being updated in the metadata.
780  */
781 static int update_cowonly_root(struct btrfs_trans_handle *trans,
782 			       struct btrfs_root *root)
783 {
784 	int ret;
785 	u64 old_root_bytenr;
786 	u64 old_root_used;
787 	struct btrfs_root *tree_root = root->fs_info->tree_root;
788 
789 	old_root_used = btrfs_root_used(&root->root_item);
790 	btrfs_write_dirty_block_groups(trans, root);
791 
792 	while (1) {
793 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
794 		if (old_root_bytenr == root->node->start &&
795 		    old_root_used == btrfs_root_used(&root->root_item))
796 			break;
797 
798 		btrfs_set_root_node(&root->root_item, root->node);
799 		ret = btrfs_update_root(trans, tree_root,
800 					&root->root_key,
801 					&root->root_item);
802 		if (ret)
803 			return ret;
804 
805 		old_root_used = btrfs_root_used(&root->root_item);
806 		ret = btrfs_write_dirty_block_groups(trans, root);
807 		if (ret)
808 			return ret;
809 	}
810 
811 	if (root != root->fs_info->extent_root)
812 		switch_commit_root(root);
813 
814 	return 0;
815 }
816 
817 /*
818  * update all the cowonly tree roots on disk
819  *
820  * The error handling in this function may not be obvious. Any of the
821  * failures will cause the file system to go offline. We still need
822  * to clean up the delayed refs.
823  */
824 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
825 					 struct btrfs_root *root)
826 {
827 	struct btrfs_fs_info *fs_info = root->fs_info;
828 	struct list_head *next;
829 	struct extent_buffer *eb;
830 	int ret;
831 
832 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
833 	if (ret)
834 		return ret;
835 
836 	eb = btrfs_lock_root_node(fs_info->tree_root);
837 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
838 			      0, &eb);
839 	btrfs_tree_unlock(eb);
840 	free_extent_buffer(eb);
841 
842 	if (ret)
843 		return ret;
844 
845 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
846 	if (ret)
847 		return ret;
848 
849 	ret = btrfs_run_dev_stats(trans, root->fs_info);
850 	WARN_ON(ret);
851 	ret = btrfs_run_dev_replace(trans, root->fs_info);
852 	WARN_ON(ret);
853 
854 	ret = btrfs_run_qgroups(trans, root->fs_info);
855 	BUG_ON(ret);
856 
857 	/* run_qgroups might have added some more refs */
858 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
859 	BUG_ON(ret);
860 
861 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
862 		next = fs_info->dirty_cowonly_roots.next;
863 		list_del_init(next);
864 		root = list_entry(next, struct btrfs_root, dirty_list);
865 
866 		ret = update_cowonly_root(trans, root);
867 		if (ret)
868 			return ret;
869 	}
870 
871 	down_write(&fs_info->extent_commit_sem);
872 	switch_commit_root(fs_info->extent_root);
873 	up_write(&fs_info->extent_commit_sem);
874 
875 	btrfs_after_dev_replace_commit(fs_info);
876 
877 	return 0;
878 }
879 
880 /*
881  * dead roots are old snapshots that need to be deleted.  This allocates
882  * a dirty root struct and adds it into the list of dead roots that need to
883  * be deleted
884  */
885 int btrfs_add_dead_root(struct btrfs_root *root)
886 {
887 	spin_lock(&root->fs_info->trans_lock);
888 	list_add(&root->root_list, &root->fs_info->dead_roots);
889 	spin_unlock(&root->fs_info->trans_lock);
890 	return 0;
891 }
892 
893 /*
894  * update all the cowonly tree roots on disk
895  */
896 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
897 				    struct btrfs_root *root)
898 {
899 	struct btrfs_root *gang[8];
900 	struct btrfs_fs_info *fs_info = root->fs_info;
901 	int i;
902 	int ret;
903 	int err = 0;
904 
905 	spin_lock(&fs_info->fs_roots_radix_lock);
906 	while (1) {
907 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
908 						 (void **)gang, 0,
909 						 ARRAY_SIZE(gang),
910 						 BTRFS_ROOT_TRANS_TAG);
911 		if (ret == 0)
912 			break;
913 		for (i = 0; i < ret; i++) {
914 			root = gang[i];
915 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
916 					(unsigned long)root->root_key.objectid,
917 					BTRFS_ROOT_TRANS_TAG);
918 			spin_unlock(&fs_info->fs_roots_radix_lock);
919 
920 			btrfs_free_log(trans, root);
921 			btrfs_update_reloc_root(trans, root);
922 			btrfs_orphan_commit_root(trans, root);
923 
924 			btrfs_save_ino_cache(root, trans);
925 
926 			/* see comments in should_cow_block() */
927 			root->force_cow = 0;
928 			smp_wmb();
929 
930 			if (root->commit_root != root->node) {
931 				mutex_lock(&root->fs_commit_mutex);
932 				switch_commit_root(root);
933 				btrfs_unpin_free_ino(root);
934 				mutex_unlock(&root->fs_commit_mutex);
935 
936 				btrfs_set_root_node(&root->root_item,
937 						    root->node);
938 			}
939 
940 			err = btrfs_update_root(trans, fs_info->tree_root,
941 						&root->root_key,
942 						&root->root_item);
943 			spin_lock(&fs_info->fs_roots_radix_lock);
944 			if (err)
945 				break;
946 		}
947 	}
948 	spin_unlock(&fs_info->fs_roots_radix_lock);
949 	return err;
950 }
951 
952 /*
953  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
954  * otherwise every leaf in the btree is read and defragged.
955  */
956 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
957 {
958 	struct btrfs_fs_info *info = root->fs_info;
959 	struct btrfs_trans_handle *trans;
960 	int ret;
961 
962 	if (xchg(&root->defrag_running, 1))
963 		return 0;
964 
965 	while (1) {
966 		trans = btrfs_start_transaction(root, 0);
967 		if (IS_ERR(trans))
968 			return PTR_ERR(trans);
969 
970 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
971 
972 		btrfs_end_transaction(trans, root);
973 		btrfs_btree_balance_dirty(info->tree_root);
974 		cond_resched();
975 
976 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
977 			break;
978 	}
979 	root->defrag_running = 0;
980 	return ret;
981 }
982 
983 /*
984  * new snapshots need to be created at a very specific time in the
985  * transaction commit.  This does the actual creation
986  */
987 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
988 				   struct btrfs_fs_info *fs_info,
989 				   struct btrfs_pending_snapshot *pending)
990 {
991 	struct btrfs_key key;
992 	struct btrfs_root_item *new_root_item;
993 	struct btrfs_root *tree_root = fs_info->tree_root;
994 	struct btrfs_root *root = pending->root;
995 	struct btrfs_root *parent_root;
996 	struct btrfs_block_rsv *rsv;
997 	struct inode *parent_inode;
998 	struct btrfs_path *path;
999 	struct btrfs_dir_item *dir_item;
1000 	struct dentry *parent;
1001 	struct dentry *dentry;
1002 	struct extent_buffer *tmp;
1003 	struct extent_buffer *old;
1004 	struct timespec cur_time = CURRENT_TIME;
1005 	int ret;
1006 	u64 to_reserve = 0;
1007 	u64 index = 0;
1008 	u64 objectid;
1009 	u64 root_flags;
1010 	uuid_le new_uuid;
1011 
1012 	path = btrfs_alloc_path();
1013 	if (!path) {
1014 		ret = pending->error = -ENOMEM;
1015 		goto path_alloc_fail;
1016 	}
1017 
1018 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1019 	if (!new_root_item) {
1020 		ret = pending->error = -ENOMEM;
1021 		goto root_item_alloc_fail;
1022 	}
1023 
1024 	ret = btrfs_find_free_objectid(tree_root, &objectid);
1025 	if (ret) {
1026 		pending->error = ret;
1027 		goto no_free_objectid;
1028 	}
1029 
1030 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1031 
1032 	if (to_reserve > 0) {
1033 		ret = btrfs_block_rsv_add(root, &pending->block_rsv,
1034 					  to_reserve,
1035 					  BTRFS_RESERVE_NO_FLUSH);
1036 		if (ret) {
1037 			pending->error = ret;
1038 			goto no_free_objectid;
1039 		}
1040 	}
1041 
1042 	ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
1043 				   objectid, pending->inherit);
1044 	if (ret) {
1045 		pending->error = ret;
1046 		goto no_free_objectid;
1047 	}
1048 
1049 	key.objectid = objectid;
1050 	key.offset = (u64)-1;
1051 	key.type = BTRFS_ROOT_ITEM_KEY;
1052 
1053 	rsv = trans->block_rsv;
1054 	trans->block_rsv = &pending->block_rsv;
1055 
1056 	dentry = pending->dentry;
1057 	parent = dget_parent(dentry);
1058 	parent_inode = parent->d_inode;
1059 	parent_root = BTRFS_I(parent_inode)->root;
1060 	record_root_in_trans(trans, parent_root);
1061 
1062 	/*
1063 	 * insert the directory item
1064 	 */
1065 	ret = btrfs_set_inode_index(parent_inode, &index);
1066 	BUG_ON(ret); /* -ENOMEM */
1067 
1068 	/* check if there is a file/dir which has the same name. */
1069 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1070 					 btrfs_ino(parent_inode),
1071 					 dentry->d_name.name,
1072 					 dentry->d_name.len, 0);
1073 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1074 		pending->error = -EEXIST;
1075 		goto fail;
1076 	} else if (IS_ERR(dir_item)) {
1077 		ret = PTR_ERR(dir_item);
1078 		btrfs_abort_transaction(trans, root, ret);
1079 		goto fail;
1080 	}
1081 	btrfs_release_path(path);
1082 
1083 	/*
1084 	 * pull in the delayed directory update
1085 	 * and the delayed inode item
1086 	 * otherwise we corrupt the FS during
1087 	 * snapshot
1088 	 */
1089 	ret = btrfs_run_delayed_items(trans, root);
1090 	if (ret) {	/* Transaction aborted */
1091 		btrfs_abort_transaction(trans, root, ret);
1092 		goto fail;
1093 	}
1094 
1095 	record_root_in_trans(trans, root);
1096 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1097 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1098 	btrfs_check_and_init_root_item(new_root_item);
1099 
1100 	root_flags = btrfs_root_flags(new_root_item);
1101 	if (pending->readonly)
1102 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1103 	else
1104 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1105 	btrfs_set_root_flags(new_root_item, root_flags);
1106 
1107 	btrfs_set_root_generation_v2(new_root_item,
1108 			trans->transid);
1109 	uuid_le_gen(&new_uuid);
1110 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1111 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1112 			BTRFS_UUID_SIZE);
1113 	new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1114 	new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1115 	btrfs_set_root_otransid(new_root_item, trans->transid);
1116 	memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1117 	memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1118 	btrfs_set_root_stransid(new_root_item, 0);
1119 	btrfs_set_root_rtransid(new_root_item, 0);
1120 
1121 	old = btrfs_lock_root_node(root);
1122 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1123 	if (ret) {
1124 		btrfs_tree_unlock(old);
1125 		free_extent_buffer(old);
1126 		btrfs_abort_transaction(trans, root, ret);
1127 		goto fail;
1128 	}
1129 
1130 	btrfs_set_lock_blocking(old);
1131 
1132 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1133 	/* clean up in any case */
1134 	btrfs_tree_unlock(old);
1135 	free_extent_buffer(old);
1136 	if (ret) {
1137 		btrfs_abort_transaction(trans, root, ret);
1138 		goto fail;
1139 	}
1140 
1141 	/* see comments in should_cow_block() */
1142 	root->force_cow = 1;
1143 	smp_wmb();
1144 
1145 	btrfs_set_root_node(new_root_item, tmp);
1146 	/* record when the snapshot was created in key.offset */
1147 	key.offset = trans->transid;
1148 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1149 	btrfs_tree_unlock(tmp);
1150 	free_extent_buffer(tmp);
1151 	if (ret) {
1152 		btrfs_abort_transaction(trans, root, ret);
1153 		goto fail;
1154 	}
1155 
1156 	/*
1157 	 * insert root back/forward references
1158 	 */
1159 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1160 				 parent_root->root_key.objectid,
1161 				 btrfs_ino(parent_inode), index,
1162 				 dentry->d_name.name, dentry->d_name.len);
1163 	if (ret) {
1164 		btrfs_abort_transaction(trans, root, ret);
1165 		goto fail;
1166 	}
1167 
1168 	key.offset = (u64)-1;
1169 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1170 	if (IS_ERR(pending->snap)) {
1171 		ret = PTR_ERR(pending->snap);
1172 		btrfs_abort_transaction(trans, root, ret);
1173 		goto fail;
1174 	}
1175 
1176 	ret = btrfs_reloc_post_snapshot(trans, pending);
1177 	if (ret) {
1178 		btrfs_abort_transaction(trans, root, ret);
1179 		goto fail;
1180 	}
1181 
1182 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1183 	if (ret) {
1184 		btrfs_abort_transaction(trans, root, ret);
1185 		goto fail;
1186 	}
1187 
1188 	ret = btrfs_insert_dir_item(trans, parent_root,
1189 				    dentry->d_name.name, dentry->d_name.len,
1190 				    parent_inode, &key,
1191 				    BTRFS_FT_DIR, index);
1192 	/* We have check then name at the beginning, so it is impossible. */
1193 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1194 	if (ret) {
1195 		btrfs_abort_transaction(trans, root, ret);
1196 		goto fail;
1197 	}
1198 
1199 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1200 					 dentry->d_name.len * 2);
1201 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1202 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1203 	if (ret)
1204 		btrfs_abort_transaction(trans, root, ret);
1205 fail:
1206 	dput(parent);
1207 	trans->block_rsv = rsv;
1208 no_free_objectid:
1209 	kfree(new_root_item);
1210 root_item_alloc_fail:
1211 	btrfs_free_path(path);
1212 path_alloc_fail:
1213 	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1214 	return ret;
1215 }
1216 
1217 /*
1218  * create all the snapshots we've scheduled for creation
1219  */
1220 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1221 					     struct btrfs_fs_info *fs_info)
1222 {
1223 	struct btrfs_pending_snapshot *pending;
1224 	struct list_head *head = &trans->transaction->pending_snapshots;
1225 
1226 	list_for_each_entry(pending, head, list)
1227 		create_pending_snapshot(trans, fs_info, pending);
1228 	return 0;
1229 }
1230 
1231 static void update_super_roots(struct btrfs_root *root)
1232 {
1233 	struct btrfs_root_item *root_item;
1234 	struct btrfs_super_block *super;
1235 
1236 	super = root->fs_info->super_copy;
1237 
1238 	root_item = &root->fs_info->chunk_root->root_item;
1239 	super->chunk_root = root_item->bytenr;
1240 	super->chunk_root_generation = root_item->generation;
1241 	super->chunk_root_level = root_item->level;
1242 
1243 	root_item = &root->fs_info->tree_root->root_item;
1244 	super->root = root_item->bytenr;
1245 	super->generation = root_item->generation;
1246 	super->root_level = root_item->level;
1247 	if (btrfs_test_opt(root, SPACE_CACHE))
1248 		super->cache_generation = root_item->generation;
1249 }
1250 
1251 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1252 {
1253 	int ret = 0;
1254 	spin_lock(&info->trans_lock);
1255 	if (info->running_transaction)
1256 		ret = info->running_transaction->in_commit;
1257 	spin_unlock(&info->trans_lock);
1258 	return ret;
1259 }
1260 
1261 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1262 {
1263 	int ret = 0;
1264 	spin_lock(&info->trans_lock);
1265 	if (info->running_transaction)
1266 		ret = info->running_transaction->blocked;
1267 	spin_unlock(&info->trans_lock);
1268 	return ret;
1269 }
1270 
1271 /*
1272  * wait for the current transaction commit to start and block subsequent
1273  * transaction joins
1274  */
1275 static void wait_current_trans_commit_start(struct btrfs_root *root,
1276 					    struct btrfs_transaction *trans)
1277 {
1278 	wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1279 }
1280 
1281 /*
1282  * wait for the current transaction to start and then become unblocked.
1283  * caller holds ref.
1284  */
1285 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1286 					 struct btrfs_transaction *trans)
1287 {
1288 	wait_event(root->fs_info->transaction_wait,
1289 		   trans->commit_done || (trans->in_commit && !trans->blocked));
1290 }
1291 
1292 /*
1293  * commit transactions asynchronously. once btrfs_commit_transaction_async
1294  * returns, any subsequent transaction will not be allowed to join.
1295  */
1296 struct btrfs_async_commit {
1297 	struct btrfs_trans_handle *newtrans;
1298 	struct btrfs_root *root;
1299 	struct delayed_work work;
1300 };
1301 
1302 static void do_async_commit(struct work_struct *work)
1303 {
1304 	struct btrfs_async_commit *ac =
1305 		container_of(work, struct btrfs_async_commit, work.work);
1306 
1307 	/*
1308 	 * We've got freeze protection passed with the transaction.
1309 	 * Tell lockdep about it.
1310 	 */
1311 	if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1312 		rwsem_acquire_read(
1313 		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1314 		     0, 1, _THIS_IP_);
1315 
1316 	current->journal_info = ac->newtrans;
1317 
1318 	btrfs_commit_transaction(ac->newtrans, ac->root);
1319 	kfree(ac);
1320 }
1321 
1322 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1323 				   struct btrfs_root *root,
1324 				   int wait_for_unblock)
1325 {
1326 	struct btrfs_async_commit *ac;
1327 	struct btrfs_transaction *cur_trans;
1328 
1329 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1330 	if (!ac)
1331 		return -ENOMEM;
1332 
1333 	INIT_DELAYED_WORK(&ac->work, do_async_commit);
1334 	ac->root = root;
1335 	ac->newtrans = btrfs_join_transaction(root);
1336 	if (IS_ERR(ac->newtrans)) {
1337 		int err = PTR_ERR(ac->newtrans);
1338 		kfree(ac);
1339 		return err;
1340 	}
1341 
1342 	/* take transaction reference */
1343 	cur_trans = trans->transaction;
1344 	atomic_inc(&cur_trans->use_count);
1345 
1346 	btrfs_end_transaction(trans, root);
1347 
1348 	/*
1349 	 * Tell lockdep we've released the freeze rwsem, since the
1350 	 * async commit thread will be the one to unlock it.
1351 	 */
1352 	if (trans->type < TRANS_JOIN_NOLOCK)
1353 		rwsem_release(
1354 			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1355 			1, _THIS_IP_);
1356 
1357 	schedule_delayed_work(&ac->work, 0);
1358 
1359 	/* wait for transaction to start and unblock */
1360 	if (wait_for_unblock)
1361 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1362 	else
1363 		wait_current_trans_commit_start(root, cur_trans);
1364 
1365 	if (current->journal_info == trans)
1366 		current->journal_info = NULL;
1367 
1368 	put_transaction(cur_trans);
1369 	return 0;
1370 }
1371 
1372 
1373 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1374 				struct btrfs_root *root, int err)
1375 {
1376 	struct btrfs_transaction *cur_trans = trans->transaction;
1377 
1378 	WARN_ON(trans->use_count > 1);
1379 
1380 	btrfs_abort_transaction(trans, root, err);
1381 
1382 	spin_lock(&root->fs_info->trans_lock);
1383 	list_del_init(&cur_trans->list);
1384 	if (cur_trans == root->fs_info->running_transaction) {
1385 		root->fs_info->running_transaction = NULL;
1386 		root->fs_info->trans_no_join = 0;
1387 	}
1388 	spin_unlock(&root->fs_info->trans_lock);
1389 
1390 	btrfs_cleanup_one_transaction(trans->transaction, root);
1391 
1392 	put_transaction(cur_trans);
1393 	put_transaction(cur_trans);
1394 
1395 	trace_btrfs_transaction_commit(root);
1396 
1397 	btrfs_scrub_continue(root);
1398 
1399 	if (current->journal_info == trans)
1400 		current->journal_info = NULL;
1401 
1402 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1403 }
1404 
1405 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1406 					  struct btrfs_root *root)
1407 {
1408 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1409 	int snap_pending = 0;
1410 	int ret;
1411 
1412 	if (!flush_on_commit) {
1413 		spin_lock(&root->fs_info->trans_lock);
1414 		if (!list_empty(&trans->transaction->pending_snapshots))
1415 			snap_pending = 1;
1416 		spin_unlock(&root->fs_info->trans_lock);
1417 	}
1418 
1419 	if (flush_on_commit || snap_pending) {
1420 		btrfs_start_delalloc_inodes(root, 1);
1421 		btrfs_wait_ordered_extents(root, 1);
1422 	}
1423 
1424 	ret = btrfs_run_delayed_items(trans, root);
1425 	if (ret)
1426 		return ret;
1427 
1428 	/*
1429 	 * running the delayed items may have added new refs. account
1430 	 * them now so that they hinder processing of more delayed refs
1431 	 * as little as possible.
1432 	 */
1433 	btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1434 
1435 	/*
1436 	 * rename don't use btrfs_join_transaction, so, once we
1437 	 * set the transaction to blocked above, we aren't going
1438 	 * to get any new ordered operations.  We can safely run
1439 	 * it here and no for sure that nothing new will be added
1440 	 * to the list
1441 	 */
1442 	btrfs_run_ordered_operations(root, 1);
1443 
1444 	return 0;
1445 }
1446 
1447 /*
1448  * btrfs_transaction state sequence:
1449  *    in_commit = 0, blocked = 0  (initial)
1450  *    in_commit = 1, blocked = 1
1451  *    blocked = 0
1452  *    commit_done = 1
1453  */
1454 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1455 			     struct btrfs_root *root)
1456 {
1457 	unsigned long joined = 0;
1458 	struct btrfs_transaction *cur_trans = trans->transaction;
1459 	struct btrfs_transaction *prev_trans = NULL;
1460 	DEFINE_WAIT(wait);
1461 	int ret;
1462 	int should_grow = 0;
1463 	unsigned long now = get_seconds();
1464 
1465 	ret = btrfs_run_ordered_operations(root, 0);
1466 	if (ret) {
1467 		btrfs_abort_transaction(trans, root, ret);
1468 		goto cleanup_transaction;
1469 	}
1470 
1471 	if (cur_trans->aborted) {
1472 		ret = cur_trans->aborted;
1473 		goto cleanup_transaction;
1474 	}
1475 
1476 	/* make a pass through all the delayed refs we have so far
1477 	 * any runnings procs may add more while we are here
1478 	 */
1479 	ret = btrfs_run_delayed_refs(trans, root, 0);
1480 	if (ret)
1481 		goto cleanup_transaction;
1482 
1483 	btrfs_trans_release_metadata(trans, root);
1484 	trans->block_rsv = NULL;
1485 
1486 	cur_trans = trans->transaction;
1487 
1488 	/*
1489 	 * set the flushing flag so procs in this transaction have to
1490 	 * start sending their work down.
1491 	 */
1492 	cur_trans->delayed_refs.flushing = 1;
1493 
1494 	if (!list_empty(&trans->new_bgs))
1495 		btrfs_create_pending_block_groups(trans, root);
1496 
1497 	ret = btrfs_run_delayed_refs(trans, root, 0);
1498 	if (ret)
1499 		goto cleanup_transaction;
1500 
1501 	spin_lock(&cur_trans->commit_lock);
1502 	if (cur_trans->in_commit) {
1503 		spin_unlock(&cur_trans->commit_lock);
1504 		atomic_inc(&cur_trans->use_count);
1505 		ret = btrfs_end_transaction(trans, root);
1506 
1507 		wait_for_commit(root, cur_trans);
1508 
1509 		put_transaction(cur_trans);
1510 
1511 		return ret;
1512 	}
1513 
1514 	trans->transaction->in_commit = 1;
1515 	trans->transaction->blocked = 1;
1516 	spin_unlock(&cur_trans->commit_lock);
1517 	wake_up(&root->fs_info->transaction_blocked_wait);
1518 
1519 	spin_lock(&root->fs_info->trans_lock);
1520 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1521 		prev_trans = list_entry(cur_trans->list.prev,
1522 					struct btrfs_transaction, list);
1523 		if (!prev_trans->commit_done) {
1524 			atomic_inc(&prev_trans->use_count);
1525 			spin_unlock(&root->fs_info->trans_lock);
1526 
1527 			wait_for_commit(root, prev_trans);
1528 
1529 			put_transaction(prev_trans);
1530 		} else {
1531 			spin_unlock(&root->fs_info->trans_lock);
1532 		}
1533 	} else {
1534 		spin_unlock(&root->fs_info->trans_lock);
1535 	}
1536 
1537 	if (!btrfs_test_opt(root, SSD) &&
1538 	    (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1539 		should_grow = 1;
1540 
1541 	do {
1542 		joined = cur_trans->num_joined;
1543 
1544 		WARN_ON(cur_trans != trans->transaction);
1545 
1546 		ret = btrfs_flush_all_pending_stuffs(trans, root);
1547 		if (ret)
1548 			goto cleanup_transaction;
1549 
1550 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1551 				TASK_UNINTERRUPTIBLE);
1552 
1553 		if (atomic_read(&cur_trans->num_writers) > 1)
1554 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1555 		else if (should_grow)
1556 			schedule_timeout(1);
1557 
1558 		finish_wait(&cur_trans->writer_wait, &wait);
1559 	} while (atomic_read(&cur_trans->num_writers) > 1 ||
1560 		 (should_grow && cur_trans->num_joined != joined));
1561 
1562 	ret = btrfs_flush_all_pending_stuffs(trans, root);
1563 	if (ret)
1564 		goto cleanup_transaction;
1565 
1566 	/*
1567 	 * Ok now we need to make sure to block out any other joins while we
1568 	 * commit the transaction.  We could have started a join before setting
1569 	 * no_join so make sure to wait for num_writers to == 1 again.
1570 	 */
1571 	spin_lock(&root->fs_info->trans_lock);
1572 	root->fs_info->trans_no_join = 1;
1573 	spin_unlock(&root->fs_info->trans_lock);
1574 	wait_event(cur_trans->writer_wait,
1575 		   atomic_read(&cur_trans->num_writers) == 1);
1576 
1577 	/*
1578 	 * the reloc mutex makes sure that we stop
1579 	 * the balancing code from coming in and moving
1580 	 * extents around in the middle of the commit
1581 	 */
1582 	mutex_lock(&root->fs_info->reloc_mutex);
1583 
1584 	/*
1585 	 * We needn't worry about the delayed items because we will
1586 	 * deal with them in create_pending_snapshot(), which is the
1587 	 * core function of the snapshot creation.
1588 	 */
1589 	ret = create_pending_snapshots(trans, root->fs_info);
1590 	if (ret) {
1591 		mutex_unlock(&root->fs_info->reloc_mutex);
1592 		goto cleanup_transaction;
1593 	}
1594 
1595 	/*
1596 	 * We insert the dir indexes of the snapshots and update the inode
1597 	 * of the snapshots' parents after the snapshot creation, so there
1598 	 * are some delayed items which are not dealt with. Now deal with
1599 	 * them.
1600 	 *
1601 	 * We needn't worry that this operation will corrupt the snapshots,
1602 	 * because all the tree which are snapshoted will be forced to COW
1603 	 * the nodes and leaves.
1604 	 */
1605 	ret = btrfs_run_delayed_items(trans, root);
1606 	if (ret) {
1607 		mutex_unlock(&root->fs_info->reloc_mutex);
1608 		goto cleanup_transaction;
1609 	}
1610 
1611 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1612 	if (ret) {
1613 		mutex_unlock(&root->fs_info->reloc_mutex);
1614 		goto cleanup_transaction;
1615 	}
1616 
1617 	/*
1618 	 * make sure none of the code above managed to slip in a
1619 	 * delayed item
1620 	 */
1621 	btrfs_assert_delayed_root_empty(root);
1622 
1623 	WARN_ON(cur_trans != trans->transaction);
1624 
1625 	btrfs_scrub_pause(root);
1626 	/* btrfs_commit_tree_roots is responsible for getting the
1627 	 * various roots consistent with each other.  Every pointer
1628 	 * in the tree of tree roots has to point to the most up to date
1629 	 * root for every subvolume and other tree.  So, we have to keep
1630 	 * the tree logging code from jumping in and changing any
1631 	 * of the trees.
1632 	 *
1633 	 * At this point in the commit, there can't be any tree-log
1634 	 * writers, but a little lower down we drop the trans mutex
1635 	 * and let new people in.  By holding the tree_log_mutex
1636 	 * from now until after the super is written, we avoid races
1637 	 * with the tree-log code.
1638 	 */
1639 	mutex_lock(&root->fs_info->tree_log_mutex);
1640 
1641 	ret = commit_fs_roots(trans, root);
1642 	if (ret) {
1643 		mutex_unlock(&root->fs_info->tree_log_mutex);
1644 		mutex_unlock(&root->fs_info->reloc_mutex);
1645 		goto cleanup_transaction;
1646 	}
1647 
1648 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1649 	 * safe to free the root of tree log roots
1650 	 */
1651 	btrfs_free_log_root_tree(trans, root->fs_info);
1652 
1653 	ret = commit_cowonly_roots(trans, root);
1654 	if (ret) {
1655 		mutex_unlock(&root->fs_info->tree_log_mutex);
1656 		mutex_unlock(&root->fs_info->reloc_mutex);
1657 		goto cleanup_transaction;
1658 	}
1659 
1660 	btrfs_prepare_extent_commit(trans, root);
1661 
1662 	cur_trans = root->fs_info->running_transaction;
1663 
1664 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1665 			    root->fs_info->tree_root->node);
1666 	switch_commit_root(root->fs_info->tree_root);
1667 
1668 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1669 			    root->fs_info->chunk_root->node);
1670 	switch_commit_root(root->fs_info->chunk_root);
1671 
1672 	assert_qgroups_uptodate(trans);
1673 	update_super_roots(root);
1674 
1675 	if (!root->fs_info->log_root_recovering) {
1676 		btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1677 		btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1678 	}
1679 
1680 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1681 	       sizeof(*root->fs_info->super_copy));
1682 
1683 	trans->transaction->blocked = 0;
1684 	spin_lock(&root->fs_info->trans_lock);
1685 	root->fs_info->running_transaction = NULL;
1686 	root->fs_info->trans_no_join = 0;
1687 	spin_unlock(&root->fs_info->trans_lock);
1688 	mutex_unlock(&root->fs_info->reloc_mutex);
1689 
1690 	wake_up(&root->fs_info->transaction_wait);
1691 
1692 	ret = btrfs_write_and_wait_transaction(trans, root);
1693 	if (ret) {
1694 		btrfs_error(root->fs_info, ret,
1695 			    "Error while writing out transaction.");
1696 		mutex_unlock(&root->fs_info->tree_log_mutex);
1697 		goto cleanup_transaction;
1698 	}
1699 
1700 	ret = write_ctree_super(trans, root, 0);
1701 	if (ret) {
1702 		mutex_unlock(&root->fs_info->tree_log_mutex);
1703 		goto cleanup_transaction;
1704 	}
1705 
1706 	/*
1707 	 * the super is written, we can safely allow the tree-loggers
1708 	 * to go about their business
1709 	 */
1710 	mutex_unlock(&root->fs_info->tree_log_mutex);
1711 
1712 	btrfs_finish_extent_commit(trans, root);
1713 
1714 	cur_trans->commit_done = 1;
1715 
1716 	root->fs_info->last_trans_committed = cur_trans->transid;
1717 
1718 	wake_up(&cur_trans->commit_wait);
1719 
1720 	spin_lock(&root->fs_info->trans_lock);
1721 	list_del_init(&cur_trans->list);
1722 	spin_unlock(&root->fs_info->trans_lock);
1723 
1724 	put_transaction(cur_trans);
1725 	put_transaction(cur_trans);
1726 
1727 	if (trans->type < TRANS_JOIN_NOLOCK)
1728 		sb_end_intwrite(root->fs_info->sb);
1729 
1730 	trace_btrfs_transaction_commit(root);
1731 
1732 	btrfs_scrub_continue(root);
1733 
1734 	if (current->journal_info == trans)
1735 		current->journal_info = NULL;
1736 
1737 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1738 
1739 	if (current != root->fs_info->transaction_kthread)
1740 		btrfs_run_delayed_iputs(root);
1741 
1742 	return ret;
1743 
1744 cleanup_transaction:
1745 	btrfs_trans_release_metadata(trans, root);
1746 	trans->block_rsv = NULL;
1747 	btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1748 //	WARN_ON(1);
1749 	if (current->journal_info == trans)
1750 		current->journal_info = NULL;
1751 	cleanup_transaction(trans, root, ret);
1752 
1753 	return ret;
1754 }
1755 
1756 /*
1757  * interface function to delete all the snapshots we have scheduled for deletion
1758  */
1759 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1760 {
1761 	LIST_HEAD(list);
1762 	struct btrfs_fs_info *fs_info = root->fs_info;
1763 
1764 	spin_lock(&fs_info->trans_lock);
1765 	list_splice_init(&fs_info->dead_roots, &list);
1766 	spin_unlock(&fs_info->trans_lock);
1767 
1768 	while (!list_empty(&list)) {
1769 		int ret;
1770 
1771 		root = list_entry(list.next, struct btrfs_root, root_list);
1772 		list_del(&root->root_list);
1773 
1774 		btrfs_kill_all_delayed_nodes(root);
1775 
1776 		if (btrfs_header_backref_rev(root->node) <
1777 		    BTRFS_MIXED_BACKREF_REV)
1778 			ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1779 		else
1780 			ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1781 		BUG_ON(ret < 0);
1782 	}
1783 	return 0;
1784 }
1785