1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 35 #define BTRFS_ROOT_TRANS_TAG 0 36 37 void put_transaction(struct btrfs_transaction *transaction) 38 { 39 WARN_ON(atomic_read(&transaction->use_count) == 0); 40 if (atomic_dec_and_test(&transaction->use_count)) { 41 BUG_ON(!list_empty(&transaction->list)); 42 WARN_ON(transaction->delayed_refs.root.rb_node); 43 memset(transaction, 0, sizeof(*transaction)); 44 kmem_cache_free(btrfs_transaction_cachep, transaction); 45 } 46 } 47 48 static noinline void switch_commit_root(struct btrfs_root *root) 49 { 50 free_extent_buffer(root->commit_root); 51 root->commit_root = btrfs_root_node(root); 52 } 53 54 /* 55 * either allocate a new transaction or hop into the existing one 56 */ 57 static noinline int join_transaction(struct btrfs_root *root, int type) 58 { 59 struct btrfs_transaction *cur_trans; 60 struct btrfs_fs_info *fs_info = root->fs_info; 61 62 spin_lock(&fs_info->trans_lock); 63 loop: 64 /* The file system has been taken offline. No new transactions. */ 65 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 66 spin_unlock(&fs_info->trans_lock); 67 return -EROFS; 68 } 69 70 if (fs_info->trans_no_join) { 71 /* 72 * If we are JOIN_NOLOCK we're already committing a current 73 * transaction, we just need a handle to deal with something 74 * when committing the transaction, such as inode cache and 75 * space cache. It is a special case. 76 */ 77 if (type != TRANS_JOIN_NOLOCK) { 78 spin_unlock(&fs_info->trans_lock); 79 return -EBUSY; 80 } 81 } 82 83 cur_trans = fs_info->running_transaction; 84 if (cur_trans) { 85 if (cur_trans->aborted) { 86 spin_unlock(&fs_info->trans_lock); 87 return cur_trans->aborted; 88 } 89 atomic_inc(&cur_trans->use_count); 90 atomic_inc(&cur_trans->num_writers); 91 cur_trans->num_joined++; 92 spin_unlock(&fs_info->trans_lock); 93 return 0; 94 } 95 spin_unlock(&fs_info->trans_lock); 96 97 /* 98 * If we are ATTACH, we just want to catch the current transaction, 99 * and commit it. If there is no transaction, just return ENOENT. 100 */ 101 if (type == TRANS_ATTACH) 102 return -ENOENT; 103 104 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 105 if (!cur_trans) 106 return -ENOMEM; 107 108 spin_lock(&fs_info->trans_lock); 109 if (fs_info->running_transaction) { 110 /* 111 * someone started a transaction after we unlocked. Make sure 112 * to redo the trans_no_join checks above 113 */ 114 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 115 cur_trans = fs_info->running_transaction; 116 goto loop; 117 } else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 118 spin_unlock(&fs_info->trans_lock); 119 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 120 return -EROFS; 121 } 122 123 atomic_set(&cur_trans->num_writers, 1); 124 cur_trans->num_joined = 0; 125 init_waitqueue_head(&cur_trans->writer_wait); 126 init_waitqueue_head(&cur_trans->commit_wait); 127 cur_trans->in_commit = 0; 128 cur_trans->blocked = 0; 129 /* 130 * One for this trans handle, one so it will live on until we 131 * commit the transaction. 132 */ 133 atomic_set(&cur_trans->use_count, 2); 134 cur_trans->commit_done = 0; 135 cur_trans->start_time = get_seconds(); 136 137 cur_trans->delayed_refs.root = RB_ROOT; 138 cur_trans->delayed_refs.num_entries = 0; 139 cur_trans->delayed_refs.num_heads_ready = 0; 140 cur_trans->delayed_refs.num_heads = 0; 141 cur_trans->delayed_refs.flushing = 0; 142 cur_trans->delayed_refs.run_delayed_start = 0; 143 144 /* 145 * although the tree mod log is per file system and not per transaction, 146 * the log must never go across transaction boundaries. 147 */ 148 smp_mb(); 149 if (!list_empty(&fs_info->tree_mod_seq_list)) 150 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when " 151 "creating a fresh transaction\n"); 152 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 153 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when " 154 "creating a fresh transaction\n"); 155 atomic_set(&fs_info->tree_mod_seq, 0); 156 157 spin_lock_init(&cur_trans->commit_lock); 158 spin_lock_init(&cur_trans->delayed_refs.lock); 159 160 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 161 list_add_tail(&cur_trans->list, &fs_info->trans_list); 162 extent_io_tree_init(&cur_trans->dirty_pages, 163 fs_info->btree_inode->i_mapping); 164 fs_info->generation++; 165 cur_trans->transid = fs_info->generation; 166 fs_info->running_transaction = cur_trans; 167 cur_trans->aborted = 0; 168 spin_unlock(&fs_info->trans_lock); 169 170 return 0; 171 } 172 173 /* 174 * this does all the record keeping required to make sure that a reference 175 * counted root is properly recorded in a given transaction. This is required 176 * to make sure the old root from before we joined the transaction is deleted 177 * when the transaction commits 178 */ 179 static int record_root_in_trans(struct btrfs_trans_handle *trans, 180 struct btrfs_root *root) 181 { 182 if (root->ref_cows && root->last_trans < trans->transid) { 183 WARN_ON(root == root->fs_info->extent_root); 184 WARN_ON(root->commit_root != root->node); 185 186 /* 187 * see below for in_trans_setup usage rules 188 * we have the reloc mutex held now, so there 189 * is only one writer in this function 190 */ 191 root->in_trans_setup = 1; 192 193 /* make sure readers find in_trans_setup before 194 * they find our root->last_trans update 195 */ 196 smp_wmb(); 197 198 spin_lock(&root->fs_info->fs_roots_radix_lock); 199 if (root->last_trans == trans->transid) { 200 spin_unlock(&root->fs_info->fs_roots_radix_lock); 201 return 0; 202 } 203 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 204 (unsigned long)root->root_key.objectid, 205 BTRFS_ROOT_TRANS_TAG); 206 spin_unlock(&root->fs_info->fs_roots_radix_lock); 207 root->last_trans = trans->transid; 208 209 /* this is pretty tricky. We don't want to 210 * take the relocation lock in btrfs_record_root_in_trans 211 * unless we're really doing the first setup for this root in 212 * this transaction. 213 * 214 * Normally we'd use root->last_trans as a flag to decide 215 * if we want to take the expensive mutex. 216 * 217 * But, we have to set root->last_trans before we 218 * init the relocation root, otherwise, we trip over warnings 219 * in ctree.c. The solution used here is to flag ourselves 220 * with root->in_trans_setup. When this is 1, we're still 221 * fixing up the reloc trees and everyone must wait. 222 * 223 * When this is zero, they can trust root->last_trans and fly 224 * through btrfs_record_root_in_trans without having to take the 225 * lock. smp_wmb() makes sure that all the writes above are 226 * done before we pop in the zero below 227 */ 228 btrfs_init_reloc_root(trans, root); 229 smp_wmb(); 230 root->in_trans_setup = 0; 231 } 232 return 0; 233 } 234 235 236 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 237 struct btrfs_root *root) 238 { 239 if (!root->ref_cows) 240 return 0; 241 242 /* 243 * see record_root_in_trans for comments about in_trans_setup usage 244 * and barriers 245 */ 246 smp_rmb(); 247 if (root->last_trans == trans->transid && 248 !root->in_trans_setup) 249 return 0; 250 251 mutex_lock(&root->fs_info->reloc_mutex); 252 record_root_in_trans(trans, root); 253 mutex_unlock(&root->fs_info->reloc_mutex); 254 255 return 0; 256 } 257 258 /* wait for commit against the current transaction to become unblocked 259 * when this is done, it is safe to start a new transaction, but the current 260 * transaction might not be fully on disk. 261 */ 262 static void wait_current_trans(struct btrfs_root *root) 263 { 264 struct btrfs_transaction *cur_trans; 265 266 spin_lock(&root->fs_info->trans_lock); 267 cur_trans = root->fs_info->running_transaction; 268 if (cur_trans && cur_trans->blocked) { 269 atomic_inc(&cur_trans->use_count); 270 spin_unlock(&root->fs_info->trans_lock); 271 272 wait_event(root->fs_info->transaction_wait, 273 !cur_trans->blocked); 274 put_transaction(cur_trans); 275 } else { 276 spin_unlock(&root->fs_info->trans_lock); 277 } 278 } 279 280 static int may_wait_transaction(struct btrfs_root *root, int type) 281 { 282 if (root->fs_info->log_root_recovering) 283 return 0; 284 285 if (type == TRANS_USERSPACE) 286 return 1; 287 288 if (type == TRANS_START && 289 !atomic_read(&root->fs_info->open_ioctl_trans)) 290 return 1; 291 292 return 0; 293 } 294 295 static struct btrfs_trans_handle * 296 start_transaction(struct btrfs_root *root, u64 num_items, int type, 297 enum btrfs_reserve_flush_enum flush) 298 { 299 struct btrfs_trans_handle *h; 300 struct btrfs_transaction *cur_trans; 301 u64 num_bytes = 0; 302 int ret; 303 u64 qgroup_reserved = 0; 304 305 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) 306 return ERR_PTR(-EROFS); 307 308 if (current->journal_info) { 309 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK); 310 h = current->journal_info; 311 h->use_count++; 312 WARN_ON(h->use_count > 2); 313 h->orig_rsv = h->block_rsv; 314 h->block_rsv = NULL; 315 goto got_it; 316 } 317 318 /* 319 * Do the reservation before we join the transaction so we can do all 320 * the appropriate flushing if need be. 321 */ 322 if (num_items > 0 && root != root->fs_info->chunk_root) { 323 if (root->fs_info->quota_enabled && 324 is_fstree(root->root_key.objectid)) { 325 qgroup_reserved = num_items * root->leafsize; 326 ret = btrfs_qgroup_reserve(root, qgroup_reserved); 327 if (ret) 328 return ERR_PTR(ret); 329 } 330 331 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 332 ret = btrfs_block_rsv_add(root, 333 &root->fs_info->trans_block_rsv, 334 num_bytes, flush); 335 if (ret) 336 return ERR_PTR(ret); 337 } 338 again: 339 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 340 if (!h) 341 return ERR_PTR(-ENOMEM); 342 343 /* 344 * If we are JOIN_NOLOCK we're already committing a transaction and 345 * waiting on this guy, so we don't need to do the sb_start_intwrite 346 * because we're already holding a ref. We need this because we could 347 * have raced in and did an fsync() on a file which can kick a commit 348 * and then we deadlock with somebody doing a freeze. 349 * 350 * If we are ATTACH, it means we just want to catch the current 351 * transaction and commit it, so we needn't do sb_start_intwrite(). 352 */ 353 if (type < TRANS_JOIN_NOLOCK) 354 sb_start_intwrite(root->fs_info->sb); 355 356 if (may_wait_transaction(root, type)) 357 wait_current_trans(root); 358 359 do { 360 ret = join_transaction(root, type); 361 if (ret == -EBUSY) 362 wait_current_trans(root); 363 } while (ret == -EBUSY); 364 365 if (ret < 0) { 366 /* We must get the transaction if we are JOIN_NOLOCK. */ 367 BUG_ON(type == TRANS_JOIN_NOLOCK); 368 369 if (type < TRANS_JOIN_NOLOCK) 370 sb_end_intwrite(root->fs_info->sb); 371 kmem_cache_free(btrfs_trans_handle_cachep, h); 372 return ERR_PTR(ret); 373 } 374 375 cur_trans = root->fs_info->running_transaction; 376 377 h->transid = cur_trans->transid; 378 h->transaction = cur_trans; 379 h->blocks_used = 0; 380 h->bytes_reserved = 0; 381 h->root = root; 382 h->delayed_ref_updates = 0; 383 h->use_count = 1; 384 h->adding_csums = 0; 385 h->block_rsv = NULL; 386 h->orig_rsv = NULL; 387 h->aborted = 0; 388 h->qgroup_reserved = qgroup_reserved; 389 h->delayed_ref_elem.seq = 0; 390 h->type = type; 391 INIT_LIST_HEAD(&h->qgroup_ref_list); 392 INIT_LIST_HEAD(&h->new_bgs); 393 394 smp_mb(); 395 if (cur_trans->blocked && may_wait_transaction(root, type)) { 396 btrfs_commit_transaction(h, root); 397 goto again; 398 } 399 400 if (num_bytes) { 401 trace_btrfs_space_reservation(root->fs_info, "transaction", 402 h->transid, num_bytes, 1); 403 h->block_rsv = &root->fs_info->trans_block_rsv; 404 h->bytes_reserved = num_bytes; 405 } 406 407 got_it: 408 btrfs_record_root_in_trans(h, root); 409 410 if (!current->journal_info && type != TRANS_USERSPACE) 411 current->journal_info = h; 412 return h; 413 } 414 415 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 416 int num_items) 417 { 418 return start_transaction(root, num_items, TRANS_START, 419 BTRFS_RESERVE_FLUSH_ALL); 420 } 421 422 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 423 struct btrfs_root *root, int num_items) 424 { 425 return start_transaction(root, num_items, TRANS_START, 426 BTRFS_RESERVE_FLUSH_LIMIT); 427 } 428 429 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 430 { 431 return start_transaction(root, 0, TRANS_JOIN, 0); 432 } 433 434 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 435 { 436 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0); 437 } 438 439 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 440 { 441 return start_transaction(root, 0, TRANS_USERSPACE, 0); 442 } 443 444 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 445 { 446 return start_transaction(root, 0, TRANS_ATTACH, 0); 447 } 448 449 /* wait for a transaction commit to be fully complete */ 450 static noinline void wait_for_commit(struct btrfs_root *root, 451 struct btrfs_transaction *commit) 452 { 453 wait_event(commit->commit_wait, commit->commit_done); 454 } 455 456 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 457 { 458 struct btrfs_transaction *cur_trans = NULL, *t; 459 int ret = 0; 460 461 if (transid) { 462 if (transid <= root->fs_info->last_trans_committed) 463 goto out; 464 465 ret = -EINVAL; 466 /* find specified transaction */ 467 spin_lock(&root->fs_info->trans_lock); 468 list_for_each_entry(t, &root->fs_info->trans_list, list) { 469 if (t->transid == transid) { 470 cur_trans = t; 471 atomic_inc(&cur_trans->use_count); 472 ret = 0; 473 break; 474 } 475 if (t->transid > transid) { 476 ret = 0; 477 break; 478 } 479 } 480 spin_unlock(&root->fs_info->trans_lock); 481 /* The specified transaction doesn't exist */ 482 if (!cur_trans) 483 goto out; 484 } else { 485 /* find newest transaction that is committing | committed */ 486 spin_lock(&root->fs_info->trans_lock); 487 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 488 list) { 489 if (t->in_commit) { 490 if (t->commit_done) 491 break; 492 cur_trans = t; 493 atomic_inc(&cur_trans->use_count); 494 break; 495 } 496 } 497 spin_unlock(&root->fs_info->trans_lock); 498 if (!cur_trans) 499 goto out; /* nothing committing|committed */ 500 } 501 502 wait_for_commit(root, cur_trans); 503 put_transaction(cur_trans); 504 out: 505 return ret; 506 } 507 508 void btrfs_throttle(struct btrfs_root *root) 509 { 510 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 511 wait_current_trans(root); 512 } 513 514 static int should_end_transaction(struct btrfs_trans_handle *trans, 515 struct btrfs_root *root) 516 { 517 int ret; 518 519 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 520 return ret ? 1 : 0; 521 } 522 523 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 524 struct btrfs_root *root) 525 { 526 struct btrfs_transaction *cur_trans = trans->transaction; 527 int updates; 528 int err; 529 530 smp_mb(); 531 if (cur_trans->blocked || cur_trans->delayed_refs.flushing) 532 return 1; 533 534 updates = trans->delayed_ref_updates; 535 trans->delayed_ref_updates = 0; 536 if (updates) { 537 err = btrfs_run_delayed_refs(trans, root, updates); 538 if (err) /* Error code will also eval true */ 539 return err; 540 } 541 542 return should_end_transaction(trans, root); 543 } 544 545 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 546 struct btrfs_root *root, int throttle) 547 { 548 struct btrfs_transaction *cur_trans = trans->transaction; 549 struct btrfs_fs_info *info = root->fs_info; 550 int count = 0; 551 int lock = (trans->type != TRANS_JOIN_NOLOCK); 552 int err = 0; 553 554 if (--trans->use_count) { 555 trans->block_rsv = trans->orig_rsv; 556 return 0; 557 } 558 559 /* 560 * do the qgroup accounting as early as possible 561 */ 562 err = btrfs_delayed_refs_qgroup_accounting(trans, info); 563 564 btrfs_trans_release_metadata(trans, root); 565 trans->block_rsv = NULL; 566 /* 567 * the same root has to be passed to start_transaction and 568 * end_transaction. Subvolume quota depends on this. 569 */ 570 WARN_ON(trans->root != root); 571 572 if (trans->qgroup_reserved) { 573 btrfs_qgroup_free(root, trans->qgroup_reserved); 574 trans->qgroup_reserved = 0; 575 } 576 577 if (!list_empty(&trans->new_bgs)) 578 btrfs_create_pending_block_groups(trans, root); 579 580 while (count < 2) { 581 unsigned long cur = trans->delayed_ref_updates; 582 trans->delayed_ref_updates = 0; 583 if (cur && 584 trans->transaction->delayed_refs.num_heads_ready > 64) { 585 trans->delayed_ref_updates = 0; 586 btrfs_run_delayed_refs(trans, root, cur); 587 } else { 588 break; 589 } 590 count++; 591 } 592 btrfs_trans_release_metadata(trans, root); 593 trans->block_rsv = NULL; 594 595 if (!list_empty(&trans->new_bgs)) 596 btrfs_create_pending_block_groups(trans, root); 597 598 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 599 should_end_transaction(trans, root)) { 600 trans->transaction->blocked = 1; 601 smp_wmb(); 602 } 603 604 if (lock && cur_trans->blocked && !cur_trans->in_commit) { 605 if (throttle) { 606 /* 607 * We may race with somebody else here so end up having 608 * to call end_transaction on ourselves again, so inc 609 * our use_count. 610 */ 611 trans->use_count++; 612 return btrfs_commit_transaction(trans, root); 613 } else { 614 wake_up_process(info->transaction_kthread); 615 } 616 } 617 618 if (trans->type < TRANS_JOIN_NOLOCK) 619 sb_end_intwrite(root->fs_info->sb); 620 621 WARN_ON(cur_trans != info->running_transaction); 622 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 623 atomic_dec(&cur_trans->num_writers); 624 625 smp_mb(); 626 if (waitqueue_active(&cur_trans->writer_wait)) 627 wake_up(&cur_trans->writer_wait); 628 put_transaction(cur_trans); 629 630 if (current->journal_info == trans) 631 current->journal_info = NULL; 632 633 if (throttle) 634 btrfs_run_delayed_iputs(root); 635 636 if (trans->aborted || 637 root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 638 err = -EIO; 639 } 640 assert_qgroups_uptodate(trans); 641 642 memset(trans, 0, sizeof(*trans)); 643 kmem_cache_free(btrfs_trans_handle_cachep, trans); 644 return err; 645 } 646 647 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 648 struct btrfs_root *root) 649 { 650 int ret; 651 652 ret = __btrfs_end_transaction(trans, root, 0); 653 if (ret) 654 return ret; 655 return 0; 656 } 657 658 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 659 struct btrfs_root *root) 660 { 661 int ret; 662 663 ret = __btrfs_end_transaction(trans, root, 1); 664 if (ret) 665 return ret; 666 return 0; 667 } 668 669 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans, 670 struct btrfs_root *root) 671 { 672 return __btrfs_end_transaction(trans, root, 1); 673 } 674 675 /* 676 * when btree blocks are allocated, they have some corresponding bits set for 677 * them in one of two extent_io trees. This is used to make sure all of 678 * those extents are sent to disk but does not wait on them 679 */ 680 int btrfs_write_marked_extents(struct btrfs_root *root, 681 struct extent_io_tree *dirty_pages, int mark) 682 { 683 int err = 0; 684 int werr = 0; 685 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 686 struct extent_state *cached_state = NULL; 687 u64 start = 0; 688 u64 end; 689 690 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 691 mark, &cached_state)) { 692 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 693 mark, &cached_state, GFP_NOFS); 694 cached_state = NULL; 695 err = filemap_fdatawrite_range(mapping, start, end); 696 if (err) 697 werr = err; 698 cond_resched(); 699 start = end + 1; 700 } 701 if (err) 702 werr = err; 703 return werr; 704 } 705 706 /* 707 * when btree blocks are allocated, they have some corresponding bits set for 708 * them in one of two extent_io trees. This is used to make sure all of 709 * those extents are on disk for transaction or log commit. We wait 710 * on all the pages and clear them from the dirty pages state tree 711 */ 712 int btrfs_wait_marked_extents(struct btrfs_root *root, 713 struct extent_io_tree *dirty_pages, int mark) 714 { 715 int err = 0; 716 int werr = 0; 717 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 718 struct extent_state *cached_state = NULL; 719 u64 start = 0; 720 u64 end; 721 722 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 723 EXTENT_NEED_WAIT, &cached_state)) { 724 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 725 0, 0, &cached_state, GFP_NOFS); 726 err = filemap_fdatawait_range(mapping, start, end); 727 if (err) 728 werr = err; 729 cond_resched(); 730 start = end + 1; 731 } 732 if (err) 733 werr = err; 734 return werr; 735 } 736 737 /* 738 * when btree blocks are allocated, they have some corresponding bits set for 739 * them in one of two extent_io trees. This is used to make sure all of 740 * those extents are on disk for transaction or log commit 741 */ 742 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 743 struct extent_io_tree *dirty_pages, int mark) 744 { 745 int ret; 746 int ret2; 747 748 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 749 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 750 751 if (ret) 752 return ret; 753 if (ret2) 754 return ret2; 755 return 0; 756 } 757 758 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 759 struct btrfs_root *root) 760 { 761 if (!trans || !trans->transaction) { 762 struct inode *btree_inode; 763 btree_inode = root->fs_info->btree_inode; 764 return filemap_write_and_wait(btree_inode->i_mapping); 765 } 766 return btrfs_write_and_wait_marked_extents(root, 767 &trans->transaction->dirty_pages, 768 EXTENT_DIRTY); 769 } 770 771 /* 772 * this is used to update the root pointer in the tree of tree roots. 773 * 774 * But, in the case of the extent allocation tree, updating the root 775 * pointer may allocate blocks which may change the root of the extent 776 * allocation tree. 777 * 778 * So, this loops and repeats and makes sure the cowonly root didn't 779 * change while the root pointer was being updated in the metadata. 780 */ 781 static int update_cowonly_root(struct btrfs_trans_handle *trans, 782 struct btrfs_root *root) 783 { 784 int ret; 785 u64 old_root_bytenr; 786 u64 old_root_used; 787 struct btrfs_root *tree_root = root->fs_info->tree_root; 788 789 old_root_used = btrfs_root_used(&root->root_item); 790 btrfs_write_dirty_block_groups(trans, root); 791 792 while (1) { 793 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 794 if (old_root_bytenr == root->node->start && 795 old_root_used == btrfs_root_used(&root->root_item)) 796 break; 797 798 btrfs_set_root_node(&root->root_item, root->node); 799 ret = btrfs_update_root(trans, tree_root, 800 &root->root_key, 801 &root->root_item); 802 if (ret) 803 return ret; 804 805 old_root_used = btrfs_root_used(&root->root_item); 806 ret = btrfs_write_dirty_block_groups(trans, root); 807 if (ret) 808 return ret; 809 } 810 811 if (root != root->fs_info->extent_root) 812 switch_commit_root(root); 813 814 return 0; 815 } 816 817 /* 818 * update all the cowonly tree roots on disk 819 * 820 * The error handling in this function may not be obvious. Any of the 821 * failures will cause the file system to go offline. We still need 822 * to clean up the delayed refs. 823 */ 824 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 825 struct btrfs_root *root) 826 { 827 struct btrfs_fs_info *fs_info = root->fs_info; 828 struct list_head *next; 829 struct extent_buffer *eb; 830 int ret; 831 832 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 833 if (ret) 834 return ret; 835 836 eb = btrfs_lock_root_node(fs_info->tree_root); 837 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 838 0, &eb); 839 btrfs_tree_unlock(eb); 840 free_extent_buffer(eb); 841 842 if (ret) 843 return ret; 844 845 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 846 if (ret) 847 return ret; 848 849 ret = btrfs_run_dev_stats(trans, root->fs_info); 850 WARN_ON(ret); 851 ret = btrfs_run_dev_replace(trans, root->fs_info); 852 WARN_ON(ret); 853 854 ret = btrfs_run_qgroups(trans, root->fs_info); 855 BUG_ON(ret); 856 857 /* run_qgroups might have added some more refs */ 858 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 859 BUG_ON(ret); 860 861 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 862 next = fs_info->dirty_cowonly_roots.next; 863 list_del_init(next); 864 root = list_entry(next, struct btrfs_root, dirty_list); 865 866 ret = update_cowonly_root(trans, root); 867 if (ret) 868 return ret; 869 } 870 871 down_write(&fs_info->extent_commit_sem); 872 switch_commit_root(fs_info->extent_root); 873 up_write(&fs_info->extent_commit_sem); 874 875 btrfs_after_dev_replace_commit(fs_info); 876 877 return 0; 878 } 879 880 /* 881 * dead roots are old snapshots that need to be deleted. This allocates 882 * a dirty root struct and adds it into the list of dead roots that need to 883 * be deleted 884 */ 885 int btrfs_add_dead_root(struct btrfs_root *root) 886 { 887 spin_lock(&root->fs_info->trans_lock); 888 list_add(&root->root_list, &root->fs_info->dead_roots); 889 spin_unlock(&root->fs_info->trans_lock); 890 return 0; 891 } 892 893 /* 894 * update all the cowonly tree roots on disk 895 */ 896 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 897 struct btrfs_root *root) 898 { 899 struct btrfs_root *gang[8]; 900 struct btrfs_fs_info *fs_info = root->fs_info; 901 int i; 902 int ret; 903 int err = 0; 904 905 spin_lock(&fs_info->fs_roots_radix_lock); 906 while (1) { 907 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 908 (void **)gang, 0, 909 ARRAY_SIZE(gang), 910 BTRFS_ROOT_TRANS_TAG); 911 if (ret == 0) 912 break; 913 for (i = 0; i < ret; i++) { 914 root = gang[i]; 915 radix_tree_tag_clear(&fs_info->fs_roots_radix, 916 (unsigned long)root->root_key.objectid, 917 BTRFS_ROOT_TRANS_TAG); 918 spin_unlock(&fs_info->fs_roots_radix_lock); 919 920 btrfs_free_log(trans, root); 921 btrfs_update_reloc_root(trans, root); 922 btrfs_orphan_commit_root(trans, root); 923 924 btrfs_save_ino_cache(root, trans); 925 926 /* see comments in should_cow_block() */ 927 root->force_cow = 0; 928 smp_wmb(); 929 930 if (root->commit_root != root->node) { 931 mutex_lock(&root->fs_commit_mutex); 932 switch_commit_root(root); 933 btrfs_unpin_free_ino(root); 934 mutex_unlock(&root->fs_commit_mutex); 935 936 btrfs_set_root_node(&root->root_item, 937 root->node); 938 } 939 940 err = btrfs_update_root(trans, fs_info->tree_root, 941 &root->root_key, 942 &root->root_item); 943 spin_lock(&fs_info->fs_roots_radix_lock); 944 if (err) 945 break; 946 } 947 } 948 spin_unlock(&fs_info->fs_roots_radix_lock); 949 return err; 950 } 951 952 /* 953 * defrag a given btree. If cacheonly == 1, this won't read from the disk, 954 * otherwise every leaf in the btree is read and defragged. 955 */ 956 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly) 957 { 958 struct btrfs_fs_info *info = root->fs_info; 959 struct btrfs_trans_handle *trans; 960 int ret; 961 962 if (xchg(&root->defrag_running, 1)) 963 return 0; 964 965 while (1) { 966 trans = btrfs_start_transaction(root, 0); 967 if (IS_ERR(trans)) 968 return PTR_ERR(trans); 969 970 ret = btrfs_defrag_leaves(trans, root, cacheonly); 971 972 btrfs_end_transaction(trans, root); 973 btrfs_btree_balance_dirty(info->tree_root); 974 cond_resched(); 975 976 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 977 break; 978 } 979 root->defrag_running = 0; 980 return ret; 981 } 982 983 /* 984 * new snapshots need to be created at a very specific time in the 985 * transaction commit. This does the actual creation 986 */ 987 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 988 struct btrfs_fs_info *fs_info, 989 struct btrfs_pending_snapshot *pending) 990 { 991 struct btrfs_key key; 992 struct btrfs_root_item *new_root_item; 993 struct btrfs_root *tree_root = fs_info->tree_root; 994 struct btrfs_root *root = pending->root; 995 struct btrfs_root *parent_root; 996 struct btrfs_block_rsv *rsv; 997 struct inode *parent_inode; 998 struct btrfs_path *path; 999 struct btrfs_dir_item *dir_item; 1000 struct dentry *parent; 1001 struct dentry *dentry; 1002 struct extent_buffer *tmp; 1003 struct extent_buffer *old; 1004 struct timespec cur_time = CURRENT_TIME; 1005 int ret; 1006 u64 to_reserve = 0; 1007 u64 index = 0; 1008 u64 objectid; 1009 u64 root_flags; 1010 uuid_le new_uuid; 1011 1012 path = btrfs_alloc_path(); 1013 if (!path) { 1014 ret = pending->error = -ENOMEM; 1015 goto path_alloc_fail; 1016 } 1017 1018 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 1019 if (!new_root_item) { 1020 ret = pending->error = -ENOMEM; 1021 goto root_item_alloc_fail; 1022 } 1023 1024 ret = btrfs_find_free_objectid(tree_root, &objectid); 1025 if (ret) { 1026 pending->error = ret; 1027 goto no_free_objectid; 1028 } 1029 1030 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve); 1031 1032 if (to_reserve > 0) { 1033 ret = btrfs_block_rsv_add(root, &pending->block_rsv, 1034 to_reserve, 1035 BTRFS_RESERVE_NO_FLUSH); 1036 if (ret) { 1037 pending->error = ret; 1038 goto no_free_objectid; 1039 } 1040 } 1041 1042 ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid, 1043 objectid, pending->inherit); 1044 if (ret) { 1045 pending->error = ret; 1046 goto no_free_objectid; 1047 } 1048 1049 key.objectid = objectid; 1050 key.offset = (u64)-1; 1051 key.type = BTRFS_ROOT_ITEM_KEY; 1052 1053 rsv = trans->block_rsv; 1054 trans->block_rsv = &pending->block_rsv; 1055 1056 dentry = pending->dentry; 1057 parent = dget_parent(dentry); 1058 parent_inode = parent->d_inode; 1059 parent_root = BTRFS_I(parent_inode)->root; 1060 record_root_in_trans(trans, parent_root); 1061 1062 /* 1063 * insert the directory item 1064 */ 1065 ret = btrfs_set_inode_index(parent_inode, &index); 1066 BUG_ON(ret); /* -ENOMEM */ 1067 1068 /* check if there is a file/dir which has the same name. */ 1069 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1070 btrfs_ino(parent_inode), 1071 dentry->d_name.name, 1072 dentry->d_name.len, 0); 1073 if (dir_item != NULL && !IS_ERR(dir_item)) { 1074 pending->error = -EEXIST; 1075 goto fail; 1076 } else if (IS_ERR(dir_item)) { 1077 ret = PTR_ERR(dir_item); 1078 btrfs_abort_transaction(trans, root, ret); 1079 goto fail; 1080 } 1081 btrfs_release_path(path); 1082 1083 /* 1084 * pull in the delayed directory update 1085 * and the delayed inode item 1086 * otherwise we corrupt the FS during 1087 * snapshot 1088 */ 1089 ret = btrfs_run_delayed_items(trans, root); 1090 if (ret) { /* Transaction aborted */ 1091 btrfs_abort_transaction(trans, root, ret); 1092 goto fail; 1093 } 1094 1095 record_root_in_trans(trans, root); 1096 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1097 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1098 btrfs_check_and_init_root_item(new_root_item); 1099 1100 root_flags = btrfs_root_flags(new_root_item); 1101 if (pending->readonly) 1102 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1103 else 1104 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1105 btrfs_set_root_flags(new_root_item, root_flags); 1106 1107 btrfs_set_root_generation_v2(new_root_item, 1108 trans->transid); 1109 uuid_le_gen(&new_uuid); 1110 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1111 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1112 BTRFS_UUID_SIZE); 1113 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec); 1114 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec); 1115 btrfs_set_root_otransid(new_root_item, trans->transid); 1116 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1117 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1118 btrfs_set_root_stransid(new_root_item, 0); 1119 btrfs_set_root_rtransid(new_root_item, 0); 1120 1121 old = btrfs_lock_root_node(root); 1122 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1123 if (ret) { 1124 btrfs_tree_unlock(old); 1125 free_extent_buffer(old); 1126 btrfs_abort_transaction(trans, root, ret); 1127 goto fail; 1128 } 1129 1130 btrfs_set_lock_blocking(old); 1131 1132 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1133 /* clean up in any case */ 1134 btrfs_tree_unlock(old); 1135 free_extent_buffer(old); 1136 if (ret) { 1137 btrfs_abort_transaction(trans, root, ret); 1138 goto fail; 1139 } 1140 1141 /* see comments in should_cow_block() */ 1142 root->force_cow = 1; 1143 smp_wmb(); 1144 1145 btrfs_set_root_node(new_root_item, tmp); 1146 /* record when the snapshot was created in key.offset */ 1147 key.offset = trans->transid; 1148 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1149 btrfs_tree_unlock(tmp); 1150 free_extent_buffer(tmp); 1151 if (ret) { 1152 btrfs_abort_transaction(trans, root, ret); 1153 goto fail; 1154 } 1155 1156 /* 1157 * insert root back/forward references 1158 */ 1159 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1160 parent_root->root_key.objectid, 1161 btrfs_ino(parent_inode), index, 1162 dentry->d_name.name, dentry->d_name.len); 1163 if (ret) { 1164 btrfs_abort_transaction(trans, root, ret); 1165 goto fail; 1166 } 1167 1168 key.offset = (u64)-1; 1169 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1170 if (IS_ERR(pending->snap)) { 1171 ret = PTR_ERR(pending->snap); 1172 btrfs_abort_transaction(trans, root, ret); 1173 goto fail; 1174 } 1175 1176 ret = btrfs_reloc_post_snapshot(trans, pending); 1177 if (ret) { 1178 btrfs_abort_transaction(trans, root, ret); 1179 goto fail; 1180 } 1181 1182 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1183 if (ret) { 1184 btrfs_abort_transaction(trans, root, ret); 1185 goto fail; 1186 } 1187 1188 ret = btrfs_insert_dir_item(trans, parent_root, 1189 dentry->d_name.name, dentry->d_name.len, 1190 parent_inode, &key, 1191 BTRFS_FT_DIR, index); 1192 /* We have check then name at the beginning, so it is impossible. */ 1193 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1194 if (ret) { 1195 btrfs_abort_transaction(trans, root, ret); 1196 goto fail; 1197 } 1198 1199 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1200 dentry->d_name.len * 2); 1201 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 1202 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1203 if (ret) 1204 btrfs_abort_transaction(trans, root, ret); 1205 fail: 1206 dput(parent); 1207 trans->block_rsv = rsv; 1208 no_free_objectid: 1209 kfree(new_root_item); 1210 root_item_alloc_fail: 1211 btrfs_free_path(path); 1212 path_alloc_fail: 1213 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1); 1214 return ret; 1215 } 1216 1217 /* 1218 * create all the snapshots we've scheduled for creation 1219 */ 1220 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1221 struct btrfs_fs_info *fs_info) 1222 { 1223 struct btrfs_pending_snapshot *pending; 1224 struct list_head *head = &trans->transaction->pending_snapshots; 1225 1226 list_for_each_entry(pending, head, list) 1227 create_pending_snapshot(trans, fs_info, pending); 1228 return 0; 1229 } 1230 1231 static void update_super_roots(struct btrfs_root *root) 1232 { 1233 struct btrfs_root_item *root_item; 1234 struct btrfs_super_block *super; 1235 1236 super = root->fs_info->super_copy; 1237 1238 root_item = &root->fs_info->chunk_root->root_item; 1239 super->chunk_root = root_item->bytenr; 1240 super->chunk_root_generation = root_item->generation; 1241 super->chunk_root_level = root_item->level; 1242 1243 root_item = &root->fs_info->tree_root->root_item; 1244 super->root = root_item->bytenr; 1245 super->generation = root_item->generation; 1246 super->root_level = root_item->level; 1247 if (btrfs_test_opt(root, SPACE_CACHE)) 1248 super->cache_generation = root_item->generation; 1249 } 1250 1251 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1252 { 1253 int ret = 0; 1254 spin_lock(&info->trans_lock); 1255 if (info->running_transaction) 1256 ret = info->running_transaction->in_commit; 1257 spin_unlock(&info->trans_lock); 1258 return ret; 1259 } 1260 1261 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1262 { 1263 int ret = 0; 1264 spin_lock(&info->trans_lock); 1265 if (info->running_transaction) 1266 ret = info->running_transaction->blocked; 1267 spin_unlock(&info->trans_lock); 1268 return ret; 1269 } 1270 1271 /* 1272 * wait for the current transaction commit to start and block subsequent 1273 * transaction joins 1274 */ 1275 static void wait_current_trans_commit_start(struct btrfs_root *root, 1276 struct btrfs_transaction *trans) 1277 { 1278 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit); 1279 } 1280 1281 /* 1282 * wait for the current transaction to start and then become unblocked. 1283 * caller holds ref. 1284 */ 1285 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1286 struct btrfs_transaction *trans) 1287 { 1288 wait_event(root->fs_info->transaction_wait, 1289 trans->commit_done || (trans->in_commit && !trans->blocked)); 1290 } 1291 1292 /* 1293 * commit transactions asynchronously. once btrfs_commit_transaction_async 1294 * returns, any subsequent transaction will not be allowed to join. 1295 */ 1296 struct btrfs_async_commit { 1297 struct btrfs_trans_handle *newtrans; 1298 struct btrfs_root *root; 1299 struct delayed_work work; 1300 }; 1301 1302 static void do_async_commit(struct work_struct *work) 1303 { 1304 struct btrfs_async_commit *ac = 1305 container_of(work, struct btrfs_async_commit, work.work); 1306 1307 /* 1308 * We've got freeze protection passed with the transaction. 1309 * Tell lockdep about it. 1310 */ 1311 if (ac->newtrans->type < TRANS_JOIN_NOLOCK) 1312 rwsem_acquire_read( 1313 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1314 0, 1, _THIS_IP_); 1315 1316 current->journal_info = ac->newtrans; 1317 1318 btrfs_commit_transaction(ac->newtrans, ac->root); 1319 kfree(ac); 1320 } 1321 1322 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1323 struct btrfs_root *root, 1324 int wait_for_unblock) 1325 { 1326 struct btrfs_async_commit *ac; 1327 struct btrfs_transaction *cur_trans; 1328 1329 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1330 if (!ac) 1331 return -ENOMEM; 1332 1333 INIT_DELAYED_WORK(&ac->work, do_async_commit); 1334 ac->root = root; 1335 ac->newtrans = btrfs_join_transaction(root); 1336 if (IS_ERR(ac->newtrans)) { 1337 int err = PTR_ERR(ac->newtrans); 1338 kfree(ac); 1339 return err; 1340 } 1341 1342 /* take transaction reference */ 1343 cur_trans = trans->transaction; 1344 atomic_inc(&cur_trans->use_count); 1345 1346 btrfs_end_transaction(trans, root); 1347 1348 /* 1349 * Tell lockdep we've released the freeze rwsem, since the 1350 * async commit thread will be the one to unlock it. 1351 */ 1352 if (trans->type < TRANS_JOIN_NOLOCK) 1353 rwsem_release( 1354 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1355 1, _THIS_IP_); 1356 1357 schedule_delayed_work(&ac->work, 0); 1358 1359 /* wait for transaction to start and unblock */ 1360 if (wait_for_unblock) 1361 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1362 else 1363 wait_current_trans_commit_start(root, cur_trans); 1364 1365 if (current->journal_info == trans) 1366 current->journal_info = NULL; 1367 1368 put_transaction(cur_trans); 1369 return 0; 1370 } 1371 1372 1373 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1374 struct btrfs_root *root, int err) 1375 { 1376 struct btrfs_transaction *cur_trans = trans->transaction; 1377 1378 WARN_ON(trans->use_count > 1); 1379 1380 btrfs_abort_transaction(trans, root, err); 1381 1382 spin_lock(&root->fs_info->trans_lock); 1383 list_del_init(&cur_trans->list); 1384 if (cur_trans == root->fs_info->running_transaction) { 1385 root->fs_info->running_transaction = NULL; 1386 root->fs_info->trans_no_join = 0; 1387 } 1388 spin_unlock(&root->fs_info->trans_lock); 1389 1390 btrfs_cleanup_one_transaction(trans->transaction, root); 1391 1392 put_transaction(cur_trans); 1393 put_transaction(cur_trans); 1394 1395 trace_btrfs_transaction_commit(root); 1396 1397 btrfs_scrub_continue(root); 1398 1399 if (current->journal_info == trans) 1400 current->journal_info = NULL; 1401 1402 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1403 } 1404 1405 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans, 1406 struct btrfs_root *root) 1407 { 1408 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT); 1409 int snap_pending = 0; 1410 int ret; 1411 1412 if (!flush_on_commit) { 1413 spin_lock(&root->fs_info->trans_lock); 1414 if (!list_empty(&trans->transaction->pending_snapshots)) 1415 snap_pending = 1; 1416 spin_unlock(&root->fs_info->trans_lock); 1417 } 1418 1419 if (flush_on_commit || snap_pending) { 1420 btrfs_start_delalloc_inodes(root, 1); 1421 btrfs_wait_ordered_extents(root, 1); 1422 } 1423 1424 ret = btrfs_run_delayed_items(trans, root); 1425 if (ret) 1426 return ret; 1427 1428 /* 1429 * running the delayed items may have added new refs. account 1430 * them now so that they hinder processing of more delayed refs 1431 * as little as possible. 1432 */ 1433 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 1434 1435 /* 1436 * rename don't use btrfs_join_transaction, so, once we 1437 * set the transaction to blocked above, we aren't going 1438 * to get any new ordered operations. We can safely run 1439 * it here and no for sure that nothing new will be added 1440 * to the list 1441 */ 1442 btrfs_run_ordered_operations(root, 1); 1443 1444 return 0; 1445 } 1446 1447 /* 1448 * btrfs_transaction state sequence: 1449 * in_commit = 0, blocked = 0 (initial) 1450 * in_commit = 1, blocked = 1 1451 * blocked = 0 1452 * commit_done = 1 1453 */ 1454 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1455 struct btrfs_root *root) 1456 { 1457 unsigned long joined = 0; 1458 struct btrfs_transaction *cur_trans = trans->transaction; 1459 struct btrfs_transaction *prev_trans = NULL; 1460 DEFINE_WAIT(wait); 1461 int ret; 1462 int should_grow = 0; 1463 unsigned long now = get_seconds(); 1464 1465 ret = btrfs_run_ordered_operations(root, 0); 1466 if (ret) { 1467 btrfs_abort_transaction(trans, root, ret); 1468 goto cleanup_transaction; 1469 } 1470 1471 if (cur_trans->aborted) { 1472 ret = cur_trans->aborted; 1473 goto cleanup_transaction; 1474 } 1475 1476 /* make a pass through all the delayed refs we have so far 1477 * any runnings procs may add more while we are here 1478 */ 1479 ret = btrfs_run_delayed_refs(trans, root, 0); 1480 if (ret) 1481 goto cleanup_transaction; 1482 1483 btrfs_trans_release_metadata(trans, root); 1484 trans->block_rsv = NULL; 1485 1486 cur_trans = trans->transaction; 1487 1488 /* 1489 * set the flushing flag so procs in this transaction have to 1490 * start sending their work down. 1491 */ 1492 cur_trans->delayed_refs.flushing = 1; 1493 1494 if (!list_empty(&trans->new_bgs)) 1495 btrfs_create_pending_block_groups(trans, root); 1496 1497 ret = btrfs_run_delayed_refs(trans, root, 0); 1498 if (ret) 1499 goto cleanup_transaction; 1500 1501 spin_lock(&cur_trans->commit_lock); 1502 if (cur_trans->in_commit) { 1503 spin_unlock(&cur_trans->commit_lock); 1504 atomic_inc(&cur_trans->use_count); 1505 ret = btrfs_end_transaction(trans, root); 1506 1507 wait_for_commit(root, cur_trans); 1508 1509 put_transaction(cur_trans); 1510 1511 return ret; 1512 } 1513 1514 trans->transaction->in_commit = 1; 1515 trans->transaction->blocked = 1; 1516 spin_unlock(&cur_trans->commit_lock); 1517 wake_up(&root->fs_info->transaction_blocked_wait); 1518 1519 spin_lock(&root->fs_info->trans_lock); 1520 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1521 prev_trans = list_entry(cur_trans->list.prev, 1522 struct btrfs_transaction, list); 1523 if (!prev_trans->commit_done) { 1524 atomic_inc(&prev_trans->use_count); 1525 spin_unlock(&root->fs_info->trans_lock); 1526 1527 wait_for_commit(root, prev_trans); 1528 1529 put_transaction(prev_trans); 1530 } else { 1531 spin_unlock(&root->fs_info->trans_lock); 1532 } 1533 } else { 1534 spin_unlock(&root->fs_info->trans_lock); 1535 } 1536 1537 if (!btrfs_test_opt(root, SSD) && 1538 (now < cur_trans->start_time || now - cur_trans->start_time < 1)) 1539 should_grow = 1; 1540 1541 do { 1542 joined = cur_trans->num_joined; 1543 1544 WARN_ON(cur_trans != trans->transaction); 1545 1546 ret = btrfs_flush_all_pending_stuffs(trans, root); 1547 if (ret) 1548 goto cleanup_transaction; 1549 1550 prepare_to_wait(&cur_trans->writer_wait, &wait, 1551 TASK_UNINTERRUPTIBLE); 1552 1553 if (atomic_read(&cur_trans->num_writers) > 1) 1554 schedule_timeout(MAX_SCHEDULE_TIMEOUT); 1555 else if (should_grow) 1556 schedule_timeout(1); 1557 1558 finish_wait(&cur_trans->writer_wait, &wait); 1559 } while (atomic_read(&cur_trans->num_writers) > 1 || 1560 (should_grow && cur_trans->num_joined != joined)); 1561 1562 ret = btrfs_flush_all_pending_stuffs(trans, root); 1563 if (ret) 1564 goto cleanup_transaction; 1565 1566 /* 1567 * Ok now we need to make sure to block out any other joins while we 1568 * commit the transaction. We could have started a join before setting 1569 * no_join so make sure to wait for num_writers to == 1 again. 1570 */ 1571 spin_lock(&root->fs_info->trans_lock); 1572 root->fs_info->trans_no_join = 1; 1573 spin_unlock(&root->fs_info->trans_lock); 1574 wait_event(cur_trans->writer_wait, 1575 atomic_read(&cur_trans->num_writers) == 1); 1576 1577 /* 1578 * the reloc mutex makes sure that we stop 1579 * the balancing code from coming in and moving 1580 * extents around in the middle of the commit 1581 */ 1582 mutex_lock(&root->fs_info->reloc_mutex); 1583 1584 /* 1585 * We needn't worry about the delayed items because we will 1586 * deal with them in create_pending_snapshot(), which is the 1587 * core function of the snapshot creation. 1588 */ 1589 ret = create_pending_snapshots(trans, root->fs_info); 1590 if (ret) { 1591 mutex_unlock(&root->fs_info->reloc_mutex); 1592 goto cleanup_transaction; 1593 } 1594 1595 /* 1596 * We insert the dir indexes of the snapshots and update the inode 1597 * of the snapshots' parents after the snapshot creation, so there 1598 * are some delayed items which are not dealt with. Now deal with 1599 * them. 1600 * 1601 * We needn't worry that this operation will corrupt the snapshots, 1602 * because all the tree which are snapshoted will be forced to COW 1603 * the nodes and leaves. 1604 */ 1605 ret = btrfs_run_delayed_items(trans, root); 1606 if (ret) { 1607 mutex_unlock(&root->fs_info->reloc_mutex); 1608 goto cleanup_transaction; 1609 } 1610 1611 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1612 if (ret) { 1613 mutex_unlock(&root->fs_info->reloc_mutex); 1614 goto cleanup_transaction; 1615 } 1616 1617 /* 1618 * make sure none of the code above managed to slip in a 1619 * delayed item 1620 */ 1621 btrfs_assert_delayed_root_empty(root); 1622 1623 WARN_ON(cur_trans != trans->transaction); 1624 1625 btrfs_scrub_pause(root); 1626 /* btrfs_commit_tree_roots is responsible for getting the 1627 * various roots consistent with each other. Every pointer 1628 * in the tree of tree roots has to point to the most up to date 1629 * root for every subvolume and other tree. So, we have to keep 1630 * the tree logging code from jumping in and changing any 1631 * of the trees. 1632 * 1633 * At this point in the commit, there can't be any tree-log 1634 * writers, but a little lower down we drop the trans mutex 1635 * and let new people in. By holding the tree_log_mutex 1636 * from now until after the super is written, we avoid races 1637 * with the tree-log code. 1638 */ 1639 mutex_lock(&root->fs_info->tree_log_mutex); 1640 1641 ret = commit_fs_roots(trans, root); 1642 if (ret) { 1643 mutex_unlock(&root->fs_info->tree_log_mutex); 1644 mutex_unlock(&root->fs_info->reloc_mutex); 1645 goto cleanup_transaction; 1646 } 1647 1648 /* commit_fs_roots gets rid of all the tree log roots, it is now 1649 * safe to free the root of tree log roots 1650 */ 1651 btrfs_free_log_root_tree(trans, root->fs_info); 1652 1653 ret = commit_cowonly_roots(trans, root); 1654 if (ret) { 1655 mutex_unlock(&root->fs_info->tree_log_mutex); 1656 mutex_unlock(&root->fs_info->reloc_mutex); 1657 goto cleanup_transaction; 1658 } 1659 1660 btrfs_prepare_extent_commit(trans, root); 1661 1662 cur_trans = root->fs_info->running_transaction; 1663 1664 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 1665 root->fs_info->tree_root->node); 1666 switch_commit_root(root->fs_info->tree_root); 1667 1668 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 1669 root->fs_info->chunk_root->node); 1670 switch_commit_root(root->fs_info->chunk_root); 1671 1672 assert_qgroups_uptodate(trans); 1673 update_super_roots(root); 1674 1675 if (!root->fs_info->log_root_recovering) { 1676 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 1677 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 1678 } 1679 1680 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 1681 sizeof(*root->fs_info->super_copy)); 1682 1683 trans->transaction->blocked = 0; 1684 spin_lock(&root->fs_info->trans_lock); 1685 root->fs_info->running_transaction = NULL; 1686 root->fs_info->trans_no_join = 0; 1687 spin_unlock(&root->fs_info->trans_lock); 1688 mutex_unlock(&root->fs_info->reloc_mutex); 1689 1690 wake_up(&root->fs_info->transaction_wait); 1691 1692 ret = btrfs_write_and_wait_transaction(trans, root); 1693 if (ret) { 1694 btrfs_error(root->fs_info, ret, 1695 "Error while writing out transaction."); 1696 mutex_unlock(&root->fs_info->tree_log_mutex); 1697 goto cleanup_transaction; 1698 } 1699 1700 ret = write_ctree_super(trans, root, 0); 1701 if (ret) { 1702 mutex_unlock(&root->fs_info->tree_log_mutex); 1703 goto cleanup_transaction; 1704 } 1705 1706 /* 1707 * the super is written, we can safely allow the tree-loggers 1708 * to go about their business 1709 */ 1710 mutex_unlock(&root->fs_info->tree_log_mutex); 1711 1712 btrfs_finish_extent_commit(trans, root); 1713 1714 cur_trans->commit_done = 1; 1715 1716 root->fs_info->last_trans_committed = cur_trans->transid; 1717 1718 wake_up(&cur_trans->commit_wait); 1719 1720 spin_lock(&root->fs_info->trans_lock); 1721 list_del_init(&cur_trans->list); 1722 spin_unlock(&root->fs_info->trans_lock); 1723 1724 put_transaction(cur_trans); 1725 put_transaction(cur_trans); 1726 1727 if (trans->type < TRANS_JOIN_NOLOCK) 1728 sb_end_intwrite(root->fs_info->sb); 1729 1730 trace_btrfs_transaction_commit(root); 1731 1732 btrfs_scrub_continue(root); 1733 1734 if (current->journal_info == trans) 1735 current->journal_info = NULL; 1736 1737 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1738 1739 if (current != root->fs_info->transaction_kthread) 1740 btrfs_run_delayed_iputs(root); 1741 1742 return ret; 1743 1744 cleanup_transaction: 1745 btrfs_trans_release_metadata(trans, root); 1746 trans->block_rsv = NULL; 1747 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n"); 1748 // WARN_ON(1); 1749 if (current->journal_info == trans) 1750 current->journal_info = NULL; 1751 cleanup_transaction(trans, root, ret); 1752 1753 return ret; 1754 } 1755 1756 /* 1757 * interface function to delete all the snapshots we have scheduled for deletion 1758 */ 1759 int btrfs_clean_old_snapshots(struct btrfs_root *root) 1760 { 1761 LIST_HEAD(list); 1762 struct btrfs_fs_info *fs_info = root->fs_info; 1763 1764 spin_lock(&fs_info->trans_lock); 1765 list_splice_init(&fs_info->dead_roots, &list); 1766 spin_unlock(&fs_info->trans_lock); 1767 1768 while (!list_empty(&list)) { 1769 int ret; 1770 1771 root = list_entry(list.next, struct btrfs_root, root_list); 1772 list_del(&root->root_list); 1773 1774 btrfs_kill_all_delayed_nodes(root); 1775 1776 if (btrfs_header_backref_rev(root->node) < 1777 BTRFS_MIXED_BACKREF_REV) 1778 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 1779 else 1780 ret =btrfs_drop_snapshot(root, NULL, 1, 0); 1781 BUG_ON(ret < 0); 1782 } 1783 return 0; 1784 } 1785