xref: /openbmc/linux/fs/btrfs/transaction.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22 #include "block-group.h"
23 #include "space-info.h"
24 #include "zoned.h"
25 
26 #define BTRFS_ROOT_TRANS_TAG 0
27 
28 /*
29  * Transaction states and transitions
30  *
31  * No running transaction (fs tree blocks are not modified)
32  * |
33  * | To next stage:
34  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35  * V
36  * Transaction N [[TRANS_STATE_RUNNING]]
37  * |
38  * | New trans handles can be attached to transaction N by calling all
39  * | start_transaction() variants.
40  * |
41  * | To next stage:
42  * |  Call btrfs_commit_transaction() on any trans handle attached to
43  * |  transaction N
44  * V
45  * Transaction N [[TRANS_STATE_COMMIT_START]]
46  * |
47  * | Will wait for previous running transaction to completely finish if there
48  * | is one
49  * |
50  * | Then one of the following happes:
51  * | - Wait for all other trans handle holders to release.
52  * |   The btrfs_commit_transaction() caller will do the commit work.
53  * | - Wait for current transaction to be committed by others.
54  * |   Other btrfs_commit_transaction() caller will do the commit work.
55  * |
56  * | At this stage, only btrfs_join_transaction*() variants can attach
57  * | to this running transaction.
58  * | All other variants will wait for current one to finish and attach to
59  * | transaction N+1.
60  * |
61  * | To next stage:
62  * |  Caller is chosen to commit transaction N, and all other trans handle
63  * |  haven been released.
64  * V
65  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66  * |
67  * | The heavy lifting transaction work is started.
68  * | From running delayed refs (modifying extent tree) to creating pending
69  * | snapshots, running qgroups.
70  * | In short, modify supporting trees to reflect modifications of subvolume
71  * | trees.
72  * |
73  * | At this stage, all start_transaction() calls will wait for this
74  * | transaction to finish and attach to transaction N+1.
75  * |
76  * | To next stage:
77  * |  Until all supporting trees are updated.
78  * V
79  * Transaction N [[TRANS_STATE_UNBLOCKED]]
80  * |						    Transaction N+1
81  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
82  * | need to write them back to disk and update	    |
83  * | super blocks.				    |
84  * |						    |
85  * | At this stage, new transaction is allowed to   |
86  * | start.					    |
87  * | All new start_transaction() calls will be	    |
88  * | attached to transid N+1.			    |
89  * |						    |
90  * | To next stage:				    |
91  * |  Until all tree blocks are super blocks are    |
92  * |  written to block devices			    |
93  * V						    |
94  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
95  *   All tree blocks and super blocks are written.  Transaction N+1
96  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
97  *   data structures will be cleaned up.	    | Life goes on
98  */
99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100 	[TRANS_STATE_RUNNING]		= 0U,
101 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
102 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
103 					   __TRANS_ATTACH |
104 					   __TRANS_JOIN |
105 					   __TRANS_JOIN_NOSTART),
106 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
107 					   __TRANS_ATTACH |
108 					   __TRANS_JOIN |
109 					   __TRANS_JOIN_NOLOCK |
110 					   __TRANS_JOIN_NOSTART),
111 	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
112 					   __TRANS_ATTACH |
113 					   __TRANS_JOIN |
114 					   __TRANS_JOIN_NOLOCK |
115 					   __TRANS_JOIN_NOSTART),
116 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
117 					   __TRANS_ATTACH |
118 					   __TRANS_JOIN |
119 					   __TRANS_JOIN_NOLOCK |
120 					   __TRANS_JOIN_NOSTART),
121 };
122 
123 void btrfs_put_transaction(struct btrfs_transaction *transaction)
124 {
125 	WARN_ON(refcount_read(&transaction->use_count) == 0);
126 	if (refcount_dec_and_test(&transaction->use_count)) {
127 		BUG_ON(!list_empty(&transaction->list));
128 		WARN_ON(!RB_EMPTY_ROOT(
129 				&transaction->delayed_refs.href_root.rb_root));
130 		WARN_ON(!RB_EMPTY_ROOT(
131 				&transaction->delayed_refs.dirty_extent_root));
132 		if (transaction->delayed_refs.pending_csums)
133 			btrfs_err(transaction->fs_info,
134 				  "pending csums is %llu",
135 				  transaction->delayed_refs.pending_csums);
136 		/*
137 		 * If any block groups are found in ->deleted_bgs then it's
138 		 * because the transaction was aborted and a commit did not
139 		 * happen (things failed before writing the new superblock
140 		 * and calling btrfs_finish_extent_commit()), so we can not
141 		 * discard the physical locations of the block groups.
142 		 */
143 		while (!list_empty(&transaction->deleted_bgs)) {
144 			struct btrfs_block_group *cache;
145 
146 			cache = list_first_entry(&transaction->deleted_bgs,
147 						 struct btrfs_block_group,
148 						 bg_list);
149 			list_del_init(&cache->bg_list);
150 			btrfs_unfreeze_block_group(cache);
151 			btrfs_put_block_group(cache);
152 		}
153 		WARN_ON(!list_empty(&transaction->dev_update_list));
154 		kfree(transaction);
155 	}
156 }
157 
158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
159 {
160 	struct btrfs_transaction *cur_trans = trans->transaction;
161 	struct btrfs_fs_info *fs_info = trans->fs_info;
162 	struct btrfs_root *root, *tmp;
163 	struct btrfs_caching_control *caching_ctl, *next;
164 
165 	down_write(&fs_info->commit_root_sem);
166 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
167 				 dirty_list) {
168 		list_del_init(&root->dirty_list);
169 		free_extent_buffer(root->commit_root);
170 		root->commit_root = btrfs_root_node(root);
171 		extent_io_tree_release(&root->dirty_log_pages);
172 		btrfs_qgroup_clean_swapped_blocks(root);
173 	}
174 
175 	/* We can free old roots now. */
176 	spin_lock(&cur_trans->dropped_roots_lock);
177 	while (!list_empty(&cur_trans->dropped_roots)) {
178 		root = list_first_entry(&cur_trans->dropped_roots,
179 					struct btrfs_root, root_list);
180 		list_del_init(&root->root_list);
181 		spin_unlock(&cur_trans->dropped_roots_lock);
182 		btrfs_free_log(trans, root);
183 		btrfs_drop_and_free_fs_root(fs_info, root);
184 		spin_lock(&cur_trans->dropped_roots_lock);
185 	}
186 	spin_unlock(&cur_trans->dropped_roots_lock);
187 
188 	/*
189 	 * We have to update the last_byte_to_unpin under the commit_root_sem,
190 	 * at the same time we swap out the commit roots.
191 	 *
192 	 * This is because we must have a real view of the last spot the caching
193 	 * kthreads were while caching.  Consider the following views of the
194 	 * extent tree for a block group
195 	 *
196 	 * commit root
197 	 * +----+----+----+----+----+----+----+
198 	 * |\\\\|    |\\\\|\\\\|    |\\\\|\\\\|
199 	 * +----+----+----+----+----+----+----+
200 	 * 0    1    2    3    4    5    6    7
201 	 *
202 	 * new commit root
203 	 * +----+----+----+----+----+----+----+
204 	 * |    |    |    |\\\\|    |    |\\\\|
205 	 * +----+----+----+----+----+----+----+
206 	 * 0    1    2    3    4    5    6    7
207 	 *
208 	 * If the cache_ctl->progress was at 3, then we are only allowed to
209 	 * unpin [0,1) and [2,3], because the caching thread has already
210 	 * processed those extents.  We are not allowed to unpin [5,6), because
211 	 * the caching thread will re-start it's search from 3, and thus find
212 	 * the hole from [4,6) to add to the free space cache.
213 	 */
214 	spin_lock(&fs_info->block_group_cache_lock);
215 	list_for_each_entry_safe(caching_ctl, next,
216 				 &fs_info->caching_block_groups, list) {
217 		struct btrfs_block_group *cache = caching_ctl->block_group;
218 
219 		if (btrfs_block_group_done(cache)) {
220 			cache->last_byte_to_unpin = (u64)-1;
221 			list_del_init(&caching_ctl->list);
222 			btrfs_put_caching_control(caching_ctl);
223 		} else {
224 			cache->last_byte_to_unpin = caching_ctl->progress;
225 		}
226 	}
227 	spin_unlock(&fs_info->block_group_cache_lock);
228 	up_write(&fs_info->commit_root_sem);
229 }
230 
231 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
232 					 unsigned int type)
233 {
234 	if (type & TRANS_EXTWRITERS)
235 		atomic_inc(&trans->num_extwriters);
236 }
237 
238 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
239 					 unsigned int type)
240 {
241 	if (type & TRANS_EXTWRITERS)
242 		atomic_dec(&trans->num_extwriters);
243 }
244 
245 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
246 					  unsigned int type)
247 {
248 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
249 }
250 
251 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
252 {
253 	return atomic_read(&trans->num_extwriters);
254 }
255 
256 /*
257  * To be called after all the new block groups attached to the transaction
258  * handle have been created (btrfs_create_pending_block_groups()).
259  */
260 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
261 {
262 	struct btrfs_fs_info *fs_info = trans->fs_info;
263 	struct btrfs_transaction *cur_trans = trans->transaction;
264 
265 	if (!trans->chunk_bytes_reserved)
266 		return;
267 
268 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
269 
270 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
271 				trans->chunk_bytes_reserved, NULL);
272 	atomic64_sub(trans->chunk_bytes_reserved, &cur_trans->chunk_bytes_reserved);
273 	cond_wake_up(&cur_trans->chunk_reserve_wait);
274 	trans->chunk_bytes_reserved = 0;
275 }
276 
277 /*
278  * either allocate a new transaction or hop into the existing one
279  */
280 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
281 				     unsigned int type)
282 {
283 	struct btrfs_transaction *cur_trans;
284 
285 	spin_lock(&fs_info->trans_lock);
286 loop:
287 	/* The file system has been taken offline. No new transactions. */
288 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
289 		spin_unlock(&fs_info->trans_lock);
290 		return -EROFS;
291 	}
292 
293 	cur_trans = fs_info->running_transaction;
294 	if (cur_trans) {
295 		if (TRANS_ABORTED(cur_trans)) {
296 			spin_unlock(&fs_info->trans_lock);
297 			return cur_trans->aborted;
298 		}
299 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
300 			spin_unlock(&fs_info->trans_lock);
301 			return -EBUSY;
302 		}
303 		refcount_inc(&cur_trans->use_count);
304 		atomic_inc(&cur_trans->num_writers);
305 		extwriter_counter_inc(cur_trans, type);
306 		spin_unlock(&fs_info->trans_lock);
307 		return 0;
308 	}
309 	spin_unlock(&fs_info->trans_lock);
310 
311 	/*
312 	 * If we are ATTACH, we just want to catch the current transaction,
313 	 * and commit it. If there is no transaction, just return ENOENT.
314 	 */
315 	if (type == TRANS_ATTACH)
316 		return -ENOENT;
317 
318 	/*
319 	 * JOIN_NOLOCK only happens during the transaction commit, so
320 	 * it is impossible that ->running_transaction is NULL
321 	 */
322 	BUG_ON(type == TRANS_JOIN_NOLOCK);
323 
324 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
325 	if (!cur_trans)
326 		return -ENOMEM;
327 
328 	spin_lock(&fs_info->trans_lock);
329 	if (fs_info->running_transaction) {
330 		/*
331 		 * someone started a transaction after we unlocked.  Make sure
332 		 * to redo the checks above
333 		 */
334 		kfree(cur_trans);
335 		goto loop;
336 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
337 		spin_unlock(&fs_info->trans_lock);
338 		kfree(cur_trans);
339 		return -EROFS;
340 	}
341 
342 	cur_trans->fs_info = fs_info;
343 	atomic_set(&cur_trans->pending_ordered, 0);
344 	init_waitqueue_head(&cur_trans->pending_wait);
345 	atomic_set(&cur_trans->num_writers, 1);
346 	extwriter_counter_init(cur_trans, type);
347 	init_waitqueue_head(&cur_trans->writer_wait);
348 	init_waitqueue_head(&cur_trans->commit_wait);
349 	cur_trans->state = TRANS_STATE_RUNNING;
350 	/*
351 	 * One for this trans handle, one so it will live on until we
352 	 * commit the transaction.
353 	 */
354 	refcount_set(&cur_trans->use_count, 2);
355 	cur_trans->flags = 0;
356 	cur_trans->start_time = ktime_get_seconds();
357 
358 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
359 
360 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
361 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
362 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
363 
364 	/*
365 	 * although the tree mod log is per file system and not per transaction,
366 	 * the log must never go across transaction boundaries.
367 	 */
368 	smp_mb();
369 	if (!list_empty(&fs_info->tree_mod_seq_list))
370 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
371 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
372 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
373 	atomic64_set(&fs_info->tree_mod_seq, 0);
374 
375 	spin_lock_init(&cur_trans->delayed_refs.lock);
376 
377 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
378 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
379 	INIT_LIST_HEAD(&cur_trans->switch_commits);
380 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
381 	INIT_LIST_HEAD(&cur_trans->io_bgs);
382 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
383 	mutex_init(&cur_trans->cache_write_mutex);
384 	spin_lock_init(&cur_trans->dirty_bgs_lock);
385 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
386 	spin_lock_init(&cur_trans->dropped_roots_lock);
387 	INIT_LIST_HEAD(&cur_trans->releasing_ebs);
388 	spin_lock_init(&cur_trans->releasing_ebs_lock);
389 	atomic64_set(&cur_trans->chunk_bytes_reserved, 0);
390 	init_waitqueue_head(&cur_trans->chunk_reserve_wait);
391 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
392 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
393 			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
394 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
395 			IO_TREE_FS_PINNED_EXTENTS, NULL);
396 	fs_info->generation++;
397 	cur_trans->transid = fs_info->generation;
398 	fs_info->running_transaction = cur_trans;
399 	cur_trans->aborted = 0;
400 	spin_unlock(&fs_info->trans_lock);
401 
402 	return 0;
403 }
404 
405 /*
406  * This does all the record keeping required to make sure that a shareable root
407  * is properly recorded in a given transaction.  This is required to make sure
408  * the old root from before we joined the transaction is deleted when the
409  * transaction commits.
410  */
411 static int record_root_in_trans(struct btrfs_trans_handle *trans,
412 			       struct btrfs_root *root,
413 			       int force)
414 {
415 	struct btrfs_fs_info *fs_info = root->fs_info;
416 	int ret = 0;
417 
418 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
419 	    root->last_trans < trans->transid) || force) {
420 		WARN_ON(root == fs_info->extent_root);
421 		WARN_ON(!force && root->commit_root != root->node);
422 
423 		/*
424 		 * see below for IN_TRANS_SETUP usage rules
425 		 * we have the reloc mutex held now, so there
426 		 * is only one writer in this function
427 		 */
428 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
429 
430 		/* make sure readers find IN_TRANS_SETUP before
431 		 * they find our root->last_trans update
432 		 */
433 		smp_wmb();
434 
435 		spin_lock(&fs_info->fs_roots_radix_lock);
436 		if (root->last_trans == trans->transid && !force) {
437 			spin_unlock(&fs_info->fs_roots_radix_lock);
438 			return 0;
439 		}
440 		radix_tree_tag_set(&fs_info->fs_roots_radix,
441 				   (unsigned long)root->root_key.objectid,
442 				   BTRFS_ROOT_TRANS_TAG);
443 		spin_unlock(&fs_info->fs_roots_radix_lock);
444 		root->last_trans = trans->transid;
445 
446 		/* this is pretty tricky.  We don't want to
447 		 * take the relocation lock in btrfs_record_root_in_trans
448 		 * unless we're really doing the first setup for this root in
449 		 * this transaction.
450 		 *
451 		 * Normally we'd use root->last_trans as a flag to decide
452 		 * if we want to take the expensive mutex.
453 		 *
454 		 * But, we have to set root->last_trans before we
455 		 * init the relocation root, otherwise, we trip over warnings
456 		 * in ctree.c.  The solution used here is to flag ourselves
457 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
458 		 * fixing up the reloc trees and everyone must wait.
459 		 *
460 		 * When this is zero, they can trust root->last_trans and fly
461 		 * through btrfs_record_root_in_trans without having to take the
462 		 * lock.  smp_wmb() makes sure that all the writes above are
463 		 * done before we pop in the zero below
464 		 */
465 		ret = btrfs_init_reloc_root(trans, root);
466 		smp_mb__before_atomic();
467 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
468 	}
469 	return ret;
470 }
471 
472 
473 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
474 			    struct btrfs_root *root)
475 {
476 	struct btrfs_fs_info *fs_info = root->fs_info;
477 	struct btrfs_transaction *cur_trans = trans->transaction;
478 
479 	/* Add ourselves to the transaction dropped list */
480 	spin_lock(&cur_trans->dropped_roots_lock);
481 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
482 	spin_unlock(&cur_trans->dropped_roots_lock);
483 
484 	/* Make sure we don't try to update the root at commit time */
485 	spin_lock(&fs_info->fs_roots_radix_lock);
486 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
487 			     (unsigned long)root->root_key.objectid,
488 			     BTRFS_ROOT_TRANS_TAG);
489 	spin_unlock(&fs_info->fs_roots_radix_lock);
490 }
491 
492 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
493 			       struct btrfs_root *root)
494 {
495 	struct btrfs_fs_info *fs_info = root->fs_info;
496 	int ret;
497 
498 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
499 		return 0;
500 
501 	/*
502 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
503 	 * and barriers
504 	 */
505 	smp_rmb();
506 	if (root->last_trans == trans->transid &&
507 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
508 		return 0;
509 
510 	mutex_lock(&fs_info->reloc_mutex);
511 	ret = record_root_in_trans(trans, root, 0);
512 	mutex_unlock(&fs_info->reloc_mutex);
513 
514 	return ret;
515 }
516 
517 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
518 {
519 	return (trans->state >= TRANS_STATE_COMMIT_START &&
520 		trans->state < TRANS_STATE_UNBLOCKED &&
521 		!TRANS_ABORTED(trans));
522 }
523 
524 /* wait for commit against the current transaction to become unblocked
525  * when this is done, it is safe to start a new transaction, but the current
526  * transaction might not be fully on disk.
527  */
528 static void wait_current_trans(struct btrfs_fs_info *fs_info)
529 {
530 	struct btrfs_transaction *cur_trans;
531 
532 	spin_lock(&fs_info->trans_lock);
533 	cur_trans = fs_info->running_transaction;
534 	if (cur_trans && is_transaction_blocked(cur_trans)) {
535 		refcount_inc(&cur_trans->use_count);
536 		spin_unlock(&fs_info->trans_lock);
537 
538 		wait_event(fs_info->transaction_wait,
539 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
540 			   TRANS_ABORTED(cur_trans));
541 		btrfs_put_transaction(cur_trans);
542 	} else {
543 		spin_unlock(&fs_info->trans_lock);
544 	}
545 }
546 
547 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
548 {
549 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
550 		return 0;
551 
552 	if (type == TRANS_START)
553 		return 1;
554 
555 	return 0;
556 }
557 
558 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
559 {
560 	struct btrfs_fs_info *fs_info = root->fs_info;
561 
562 	if (!fs_info->reloc_ctl ||
563 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
564 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
565 	    root->reloc_root)
566 		return false;
567 
568 	return true;
569 }
570 
571 static struct btrfs_trans_handle *
572 start_transaction(struct btrfs_root *root, unsigned int num_items,
573 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
574 		  bool enforce_qgroups)
575 {
576 	struct btrfs_fs_info *fs_info = root->fs_info;
577 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
578 	struct btrfs_trans_handle *h;
579 	struct btrfs_transaction *cur_trans;
580 	u64 num_bytes = 0;
581 	u64 qgroup_reserved = 0;
582 	bool reloc_reserved = false;
583 	bool do_chunk_alloc = false;
584 	int ret;
585 
586 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
587 		return ERR_PTR(-EROFS);
588 
589 	if (current->journal_info) {
590 		WARN_ON(type & TRANS_EXTWRITERS);
591 		h = current->journal_info;
592 		refcount_inc(&h->use_count);
593 		WARN_ON(refcount_read(&h->use_count) > 2);
594 		h->orig_rsv = h->block_rsv;
595 		h->block_rsv = NULL;
596 		goto got_it;
597 	}
598 
599 	/*
600 	 * Do the reservation before we join the transaction so we can do all
601 	 * the appropriate flushing if need be.
602 	 */
603 	if (num_items && root != fs_info->chunk_root) {
604 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
605 		u64 delayed_refs_bytes = 0;
606 
607 		qgroup_reserved = num_items * fs_info->nodesize;
608 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
609 				enforce_qgroups);
610 		if (ret)
611 			return ERR_PTR(ret);
612 
613 		/*
614 		 * We want to reserve all the bytes we may need all at once, so
615 		 * we only do 1 enospc flushing cycle per transaction start.  We
616 		 * accomplish this by simply assuming we'll do 2 x num_items
617 		 * worth of delayed refs updates in this trans handle, and
618 		 * refill that amount for whatever is missing in the reserve.
619 		 */
620 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
621 		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
622 		    delayed_refs_rsv->full == 0) {
623 			delayed_refs_bytes = num_bytes;
624 			num_bytes <<= 1;
625 		}
626 
627 		/*
628 		 * Do the reservation for the relocation root creation
629 		 */
630 		if (need_reserve_reloc_root(root)) {
631 			num_bytes += fs_info->nodesize;
632 			reloc_reserved = true;
633 		}
634 
635 		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
636 		if (ret)
637 			goto reserve_fail;
638 		if (delayed_refs_bytes) {
639 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
640 							  delayed_refs_bytes);
641 			num_bytes -= delayed_refs_bytes;
642 		}
643 
644 		if (rsv->space_info->force_alloc)
645 			do_chunk_alloc = true;
646 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
647 		   !delayed_refs_rsv->full) {
648 		/*
649 		 * Some people call with btrfs_start_transaction(root, 0)
650 		 * because they can be throttled, but have some other mechanism
651 		 * for reserving space.  We still want these guys to refill the
652 		 * delayed block_rsv so just add 1 items worth of reservation
653 		 * here.
654 		 */
655 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
656 		if (ret)
657 			goto reserve_fail;
658 	}
659 again:
660 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
661 	if (!h) {
662 		ret = -ENOMEM;
663 		goto alloc_fail;
664 	}
665 
666 	/*
667 	 * If we are JOIN_NOLOCK we're already committing a transaction and
668 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
669 	 * because we're already holding a ref.  We need this because we could
670 	 * have raced in and did an fsync() on a file which can kick a commit
671 	 * and then we deadlock with somebody doing a freeze.
672 	 *
673 	 * If we are ATTACH, it means we just want to catch the current
674 	 * transaction and commit it, so we needn't do sb_start_intwrite().
675 	 */
676 	if (type & __TRANS_FREEZABLE)
677 		sb_start_intwrite(fs_info->sb);
678 
679 	if (may_wait_transaction(fs_info, type))
680 		wait_current_trans(fs_info);
681 
682 	do {
683 		ret = join_transaction(fs_info, type);
684 		if (ret == -EBUSY) {
685 			wait_current_trans(fs_info);
686 			if (unlikely(type == TRANS_ATTACH ||
687 				     type == TRANS_JOIN_NOSTART))
688 				ret = -ENOENT;
689 		}
690 	} while (ret == -EBUSY);
691 
692 	if (ret < 0)
693 		goto join_fail;
694 
695 	cur_trans = fs_info->running_transaction;
696 
697 	h->transid = cur_trans->transid;
698 	h->transaction = cur_trans;
699 	h->root = root;
700 	refcount_set(&h->use_count, 1);
701 	h->fs_info = root->fs_info;
702 
703 	h->type = type;
704 	h->can_flush_pending_bgs = true;
705 	INIT_LIST_HEAD(&h->new_bgs);
706 
707 	smp_mb();
708 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
709 	    may_wait_transaction(fs_info, type)) {
710 		current->journal_info = h;
711 		btrfs_commit_transaction(h);
712 		goto again;
713 	}
714 
715 	if (num_bytes) {
716 		trace_btrfs_space_reservation(fs_info, "transaction",
717 					      h->transid, num_bytes, 1);
718 		h->block_rsv = &fs_info->trans_block_rsv;
719 		h->bytes_reserved = num_bytes;
720 		h->reloc_reserved = reloc_reserved;
721 	}
722 
723 got_it:
724 	if (!current->journal_info)
725 		current->journal_info = h;
726 
727 	/*
728 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
729 	 * ALLOC_FORCE the first run through, and then we won't allocate for
730 	 * anybody else who races in later.  We don't care about the return
731 	 * value here.
732 	 */
733 	if (do_chunk_alloc && num_bytes) {
734 		u64 flags = h->block_rsv->space_info->flags;
735 
736 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
737 				  CHUNK_ALLOC_NO_FORCE);
738 	}
739 
740 	/*
741 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
742 	 * call btrfs_join_transaction() while we're also starting a
743 	 * transaction.
744 	 *
745 	 * Thus it need to be called after current->journal_info initialized,
746 	 * or we can deadlock.
747 	 */
748 	ret = btrfs_record_root_in_trans(h, root);
749 	if (ret) {
750 		/*
751 		 * The transaction handle is fully initialized and linked with
752 		 * other structures so it needs to be ended in case of errors,
753 		 * not just freed.
754 		 */
755 		btrfs_end_transaction(h);
756 		return ERR_PTR(ret);
757 	}
758 
759 	return h;
760 
761 join_fail:
762 	if (type & __TRANS_FREEZABLE)
763 		sb_end_intwrite(fs_info->sb);
764 	kmem_cache_free(btrfs_trans_handle_cachep, h);
765 alloc_fail:
766 	if (num_bytes)
767 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
768 					num_bytes, NULL);
769 reserve_fail:
770 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
771 	return ERR_PTR(ret);
772 }
773 
774 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
775 						   unsigned int num_items)
776 {
777 	return start_transaction(root, num_items, TRANS_START,
778 				 BTRFS_RESERVE_FLUSH_ALL, true);
779 }
780 
781 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
782 					struct btrfs_root *root,
783 					unsigned int num_items)
784 {
785 	return start_transaction(root, num_items, TRANS_START,
786 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
787 }
788 
789 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
790 {
791 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
792 				 true);
793 }
794 
795 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
796 {
797 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
798 				 BTRFS_RESERVE_NO_FLUSH, true);
799 }
800 
801 /*
802  * Similar to regular join but it never starts a transaction when none is
803  * running or after waiting for the current one to finish.
804  */
805 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
806 {
807 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
808 				 BTRFS_RESERVE_NO_FLUSH, true);
809 }
810 
811 /*
812  * btrfs_attach_transaction() - catch the running transaction
813  *
814  * It is used when we want to commit the current the transaction, but
815  * don't want to start a new one.
816  *
817  * Note: If this function return -ENOENT, it just means there is no
818  * running transaction. But it is possible that the inactive transaction
819  * is still in the memory, not fully on disk. If you hope there is no
820  * inactive transaction in the fs when -ENOENT is returned, you should
821  * invoke
822  *     btrfs_attach_transaction_barrier()
823  */
824 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
825 {
826 	return start_transaction(root, 0, TRANS_ATTACH,
827 				 BTRFS_RESERVE_NO_FLUSH, true);
828 }
829 
830 /*
831  * btrfs_attach_transaction_barrier() - catch the running transaction
832  *
833  * It is similar to the above function, the difference is this one
834  * will wait for all the inactive transactions until they fully
835  * complete.
836  */
837 struct btrfs_trans_handle *
838 btrfs_attach_transaction_barrier(struct btrfs_root *root)
839 {
840 	struct btrfs_trans_handle *trans;
841 
842 	trans = start_transaction(root, 0, TRANS_ATTACH,
843 				  BTRFS_RESERVE_NO_FLUSH, true);
844 	if (trans == ERR_PTR(-ENOENT))
845 		btrfs_wait_for_commit(root->fs_info, 0);
846 
847 	return trans;
848 }
849 
850 /* Wait for a transaction commit to reach at least the given state. */
851 static noinline void wait_for_commit(struct btrfs_transaction *commit,
852 				     const enum btrfs_trans_state min_state)
853 {
854 	wait_event(commit->commit_wait, commit->state >= min_state);
855 }
856 
857 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
858 {
859 	struct btrfs_transaction *cur_trans = NULL, *t;
860 	int ret = 0;
861 
862 	if (transid) {
863 		if (transid <= fs_info->last_trans_committed)
864 			goto out;
865 
866 		/* find specified transaction */
867 		spin_lock(&fs_info->trans_lock);
868 		list_for_each_entry(t, &fs_info->trans_list, list) {
869 			if (t->transid == transid) {
870 				cur_trans = t;
871 				refcount_inc(&cur_trans->use_count);
872 				ret = 0;
873 				break;
874 			}
875 			if (t->transid > transid) {
876 				ret = 0;
877 				break;
878 			}
879 		}
880 		spin_unlock(&fs_info->trans_lock);
881 
882 		/*
883 		 * The specified transaction doesn't exist, or we
884 		 * raced with btrfs_commit_transaction
885 		 */
886 		if (!cur_trans) {
887 			if (transid > fs_info->last_trans_committed)
888 				ret = -EINVAL;
889 			goto out;
890 		}
891 	} else {
892 		/* find newest transaction that is committing | committed */
893 		spin_lock(&fs_info->trans_lock);
894 		list_for_each_entry_reverse(t, &fs_info->trans_list,
895 					    list) {
896 			if (t->state >= TRANS_STATE_COMMIT_START) {
897 				if (t->state == TRANS_STATE_COMPLETED)
898 					break;
899 				cur_trans = t;
900 				refcount_inc(&cur_trans->use_count);
901 				break;
902 			}
903 		}
904 		spin_unlock(&fs_info->trans_lock);
905 		if (!cur_trans)
906 			goto out;  /* nothing committing|committed */
907 	}
908 
909 	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
910 	btrfs_put_transaction(cur_trans);
911 out:
912 	return ret;
913 }
914 
915 void btrfs_throttle(struct btrfs_fs_info *fs_info)
916 {
917 	wait_current_trans(fs_info);
918 }
919 
920 static bool should_end_transaction(struct btrfs_trans_handle *trans)
921 {
922 	struct btrfs_fs_info *fs_info = trans->fs_info;
923 
924 	if (btrfs_check_space_for_delayed_refs(fs_info))
925 		return true;
926 
927 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
928 }
929 
930 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
931 {
932 	struct btrfs_transaction *cur_trans = trans->transaction;
933 
934 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
935 	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
936 		return true;
937 
938 	return should_end_transaction(trans);
939 }
940 
941 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
942 
943 {
944 	struct btrfs_fs_info *fs_info = trans->fs_info;
945 
946 	if (!trans->block_rsv) {
947 		ASSERT(!trans->bytes_reserved);
948 		return;
949 	}
950 
951 	if (!trans->bytes_reserved)
952 		return;
953 
954 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
955 	trace_btrfs_space_reservation(fs_info, "transaction",
956 				      trans->transid, trans->bytes_reserved, 0);
957 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
958 				trans->bytes_reserved, NULL);
959 	trans->bytes_reserved = 0;
960 }
961 
962 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
963 				   int throttle)
964 {
965 	struct btrfs_fs_info *info = trans->fs_info;
966 	struct btrfs_transaction *cur_trans = trans->transaction;
967 	int err = 0;
968 
969 	if (refcount_read(&trans->use_count) > 1) {
970 		refcount_dec(&trans->use_count);
971 		trans->block_rsv = trans->orig_rsv;
972 		return 0;
973 	}
974 
975 	btrfs_trans_release_metadata(trans);
976 	trans->block_rsv = NULL;
977 
978 	btrfs_create_pending_block_groups(trans);
979 
980 	btrfs_trans_release_chunk_metadata(trans);
981 
982 	if (trans->type & __TRANS_FREEZABLE)
983 		sb_end_intwrite(info->sb);
984 
985 	WARN_ON(cur_trans != info->running_transaction);
986 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
987 	atomic_dec(&cur_trans->num_writers);
988 	extwriter_counter_dec(cur_trans, trans->type);
989 
990 	cond_wake_up(&cur_trans->writer_wait);
991 	btrfs_put_transaction(cur_trans);
992 
993 	if (current->journal_info == trans)
994 		current->journal_info = NULL;
995 
996 	if (throttle)
997 		btrfs_run_delayed_iputs(info);
998 
999 	if (TRANS_ABORTED(trans) ||
1000 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
1001 		wake_up_process(info->transaction_kthread);
1002 		if (TRANS_ABORTED(trans))
1003 			err = trans->aborted;
1004 		else
1005 			err = -EROFS;
1006 	}
1007 
1008 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1009 	return err;
1010 }
1011 
1012 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1013 {
1014 	return __btrfs_end_transaction(trans, 0);
1015 }
1016 
1017 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1018 {
1019 	return __btrfs_end_transaction(trans, 1);
1020 }
1021 
1022 /*
1023  * when btree blocks are allocated, they have some corresponding bits set for
1024  * them in one of two extent_io trees.  This is used to make sure all of
1025  * those extents are sent to disk but does not wait on them
1026  */
1027 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1028 			       struct extent_io_tree *dirty_pages, int mark)
1029 {
1030 	int err = 0;
1031 	int werr = 0;
1032 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1033 	struct extent_state *cached_state = NULL;
1034 	u64 start = 0;
1035 	u64 end;
1036 
1037 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1038 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1039 				      mark, &cached_state)) {
1040 		bool wait_writeback = false;
1041 
1042 		err = convert_extent_bit(dirty_pages, start, end,
1043 					 EXTENT_NEED_WAIT,
1044 					 mark, &cached_state);
1045 		/*
1046 		 * convert_extent_bit can return -ENOMEM, which is most of the
1047 		 * time a temporary error. So when it happens, ignore the error
1048 		 * and wait for writeback of this range to finish - because we
1049 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1050 		 * to __btrfs_wait_marked_extents() would not know that
1051 		 * writeback for this range started and therefore wouldn't
1052 		 * wait for it to finish - we don't want to commit a
1053 		 * superblock that points to btree nodes/leafs for which
1054 		 * writeback hasn't finished yet (and without errors).
1055 		 * We cleanup any entries left in the io tree when committing
1056 		 * the transaction (through extent_io_tree_release()).
1057 		 */
1058 		if (err == -ENOMEM) {
1059 			err = 0;
1060 			wait_writeback = true;
1061 		}
1062 		if (!err)
1063 			err = filemap_fdatawrite_range(mapping, start, end);
1064 		if (err)
1065 			werr = err;
1066 		else if (wait_writeback)
1067 			werr = filemap_fdatawait_range(mapping, start, end);
1068 		free_extent_state(cached_state);
1069 		cached_state = NULL;
1070 		cond_resched();
1071 		start = end + 1;
1072 	}
1073 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1074 	return werr;
1075 }
1076 
1077 /*
1078  * when btree blocks are allocated, they have some corresponding bits set for
1079  * them in one of two extent_io trees.  This is used to make sure all of
1080  * those extents are on disk for transaction or log commit.  We wait
1081  * on all the pages and clear them from the dirty pages state tree
1082  */
1083 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1084 				       struct extent_io_tree *dirty_pages)
1085 {
1086 	int err = 0;
1087 	int werr = 0;
1088 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1089 	struct extent_state *cached_state = NULL;
1090 	u64 start = 0;
1091 	u64 end;
1092 
1093 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1094 				      EXTENT_NEED_WAIT, &cached_state)) {
1095 		/*
1096 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1097 		 * When committing the transaction, we'll remove any entries
1098 		 * left in the io tree. For a log commit, we don't remove them
1099 		 * after committing the log because the tree can be accessed
1100 		 * concurrently - we do it only at transaction commit time when
1101 		 * it's safe to do it (through extent_io_tree_release()).
1102 		 */
1103 		err = clear_extent_bit(dirty_pages, start, end,
1104 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1105 		if (err == -ENOMEM)
1106 			err = 0;
1107 		if (!err)
1108 			err = filemap_fdatawait_range(mapping, start, end);
1109 		if (err)
1110 			werr = err;
1111 		free_extent_state(cached_state);
1112 		cached_state = NULL;
1113 		cond_resched();
1114 		start = end + 1;
1115 	}
1116 	if (err)
1117 		werr = err;
1118 	return werr;
1119 }
1120 
1121 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1122 		       struct extent_io_tree *dirty_pages)
1123 {
1124 	bool errors = false;
1125 	int err;
1126 
1127 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1128 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1129 		errors = true;
1130 
1131 	if (errors && !err)
1132 		err = -EIO;
1133 	return err;
1134 }
1135 
1136 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1137 {
1138 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1139 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1140 	bool errors = false;
1141 	int err;
1142 
1143 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1144 
1145 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1146 	if ((mark & EXTENT_DIRTY) &&
1147 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1148 		errors = true;
1149 
1150 	if ((mark & EXTENT_NEW) &&
1151 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1152 		errors = true;
1153 
1154 	if (errors && !err)
1155 		err = -EIO;
1156 	return err;
1157 }
1158 
1159 /*
1160  * When btree blocks are allocated the corresponding extents are marked dirty.
1161  * This function ensures such extents are persisted on disk for transaction or
1162  * log commit.
1163  *
1164  * @trans: transaction whose dirty pages we'd like to write
1165  */
1166 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1167 {
1168 	int ret;
1169 	int ret2;
1170 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1171 	struct btrfs_fs_info *fs_info = trans->fs_info;
1172 	struct blk_plug plug;
1173 
1174 	blk_start_plug(&plug);
1175 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1176 	blk_finish_plug(&plug);
1177 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1178 
1179 	extent_io_tree_release(&trans->transaction->dirty_pages);
1180 
1181 	if (ret)
1182 		return ret;
1183 	else if (ret2)
1184 		return ret2;
1185 	else
1186 		return 0;
1187 }
1188 
1189 /*
1190  * this is used to update the root pointer in the tree of tree roots.
1191  *
1192  * But, in the case of the extent allocation tree, updating the root
1193  * pointer may allocate blocks which may change the root of the extent
1194  * allocation tree.
1195  *
1196  * So, this loops and repeats and makes sure the cowonly root didn't
1197  * change while the root pointer was being updated in the metadata.
1198  */
1199 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1200 			       struct btrfs_root *root)
1201 {
1202 	int ret;
1203 	u64 old_root_bytenr;
1204 	u64 old_root_used;
1205 	struct btrfs_fs_info *fs_info = root->fs_info;
1206 	struct btrfs_root *tree_root = fs_info->tree_root;
1207 
1208 	old_root_used = btrfs_root_used(&root->root_item);
1209 
1210 	while (1) {
1211 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1212 		if (old_root_bytenr == root->node->start &&
1213 		    old_root_used == btrfs_root_used(&root->root_item))
1214 			break;
1215 
1216 		btrfs_set_root_node(&root->root_item, root->node);
1217 		ret = btrfs_update_root(trans, tree_root,
1218 					&root->root_key,
1219 					&root->root_item);
1220 		if (ret)
1221 			return ret;
1222 
1223 		old_root_used = btrfs_root_used(&root->root_item);
1224 	}
1225 
1226 	return 0;
1227 }
1228 
1229 /*
1230  * update all the cowonly tree roots on disk
1231  *
1232  * The error handling in this function may not be obvious. Any of the
1233  * failures will cause the file system to go offline. We still need
1234  * to clean up the delayed refs.
1235  */
1236 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1237 {
1238 	struct btrfs_fs_info *fs_info = trans->fs_info;
1239 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1240 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1241 	struct list_head *next;
1242 	struct extent_buffer *eb;
1243 	int ret;
1244 
1245 	eb = btrfs_lock_root_node(fs_info->tree_root);
1246 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1247 			      0, &eb, BTRFS_NESTING_COW);
1248 	btrfs_tree_unlock(eb);
1249 	free_extent_buffer(eb);
1250 
1251 	if (ret)
1252 		return ret;
1253 
1254 	ret = btrfs_run_dev_stats(trans);
1255 	if (ret)
1256 		return ret;
1257 	ret = btrfs_run_dev_replace(trans);
1258 	if (ret)
1259 		return ret;
1260 	ret = btrfs_run_qgroups(trans);
1261 	if (ret)
1262 		return ret;
1263 
1264 	ret = btrfs_setup_space_cache(trans);
1265 	if (ret)
1266 		return ret;
1267 
1268 again:
1269 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1270 		struct btrfs_root *root;
1271 		next = fs_info->dirty_cowonly_roots.next;
1272 		list_del_init(next);
1273 		root = list_entry(next, struct btrfs_root, dirty_list);
1274 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1275 
1276 		if (root != fs_info->extent_root)
1277 			list_add_tail(&root->dirty_list,
1278 				      &trans->transaction->switch_commits);
1279 		ret = update_cowonly_root(trans, root);
1280 		if (ret)
1281 			return ret;
1282 	}
1283 
1284 	/* Now flush any delayed refs generated by updating all of the roots */
1285 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1286 	if (ret)
1287 		return ret;
1288 
1289 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1290 		ret = btrfs_write_dirty_block_groups(trans);
1291 		if (ret)
1292 			return ret;
1293 
1294 		/*
1295 		 * We're writing the dirty block groups, which could generate
1296 		 * delayed refs, which could generate more dirty block groups,
1297 		 * so we want to keep this flushing in this loop to make sure
1298 		 * everything gets run.
1299 		 */
1300 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1301 		if (ret)
1302 			return ret;
1303 	}
1304 
1305 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1306 		goto again;
1307 
1308 	list_add_tail(&fs_info->extent_root->dirty_list,
1309 		      &trans->transaction->switch_commits);
1310 
1311 	/* Update dev-replace pointer once everything is committed */
1312 	fs_info->dev_replace.committed_cursor_left =
1313 		fs_info->dev_replace.cursor_left_last_write_of_item;
1314 
1315 	return 0;
1316 }
1317 
1318 /*
1319  * dead roots are old snapshots that need to be deleted.  This allocates
1320  * a dirty root struct and adds it into the list of dead roots that need to
1321  * be deleted
1322  */
1323 void btrfs_add_dead_root(struct btrfs_root *root)
1324 {
1325 	struct btrfs_fs_info *fs_info = root->fs_info;
1326 
1327 	spin_lock(&fs_info->trans_lock);
1328 	if (list_empty(&root->root_list)) {
1329 		btrfs_grab_root(root);
1330 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1331 	}
1332 	spin_unlock(&fs_info->trans_lock);
1333 }
1334 
1335 /*
1336  * update all the cowonly tree roots on disk
1337  */
1338 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1339 {
1340 	struct btrfs_fs_info *fs_info = trans->fs_info;
1341 	struct btrfs_root *gang[8];
1342 	int i;
1343 	int ret;
1344 
1345 	spin_lock(&fs_info->fs_roots_radix_lock);
1346 	while (1) {
1347 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1348 						 (void **)gang, 0,
1349 						 ARRAY_SIZE(gang),
1350 						 BTRFS_ROOT_TRANS_TAG);
1351 		if (ret == 0)
1352 			break;
1353 		for (i = 0; i < ret; i++) {
1354 			struct btrfs_root *root = gang[i];
1355 			int ret2;
1356 
1357 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1358 					(unsigned long)root->root_key.objectid,
1359 					BTRFS_ROOT_TRANS_TAG);
1360 			spin_unlock(&fs_info->fs_roots_radix_lock);
1361 
1362 			btrfs_free_log(trans, root);
1363 			ret2 = btrfs_update_reloc_root(trans, root);
1364 			if (ret2)
1365 				return ret2;
1366 
1367 			/* see comments in should_cow_block() */
1368 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1369 			smp_mb__after_atomic();
1370 
1371 			if (root->commit_root != root->node) {
1372 				list_add_tail(&root->dirty_list,
1373 					&trans->transaction->switch_commits);
1374 				btrfs_set_root_node(&root->root_item,
1375 						    root->node);
1376 			}
1377 
1378 			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1379 						&root->root_key,
1380 						&root->root_item);
1381 			if (ret2)
1382 				return ret2;
1383 			spin_lock(&fs_info->fs_roots_radix_lock);
1384 			btrfs_qgroup_free_meta_all_pertrans(root);
1385 		}
1386 	}
1387 	spin_unlock(&fs_info->fs_roots_radix_lock);
1388 	return 0;
1389 }
1390 
1391 /*
1392  * defrag a given btree.
1393  * Every leaf in the btree is read and defragged.
1394  */
1395 int btrfs_defrag_root(struct btrfs_root *root)
1396 {
1397 	struct btrfs_fs_info *info = root->fs_info;
1398 	struct btrfs_trans_handle *trans;
1399 	int ret;
1400 
1401 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1402 		return 0;
1403 
1404 	while (1) {
1405 		trans = btrfs_start_transaction(root, 0);
1406 		if (IS_ERR(trans)) {
1407 			ret = PTR_ERR(trans);
1408 			break;
1409 		}
1410 
1411 		ret = btrfs_defrag_leaves(trans, root);
1412 
1413 		btrfs_end_transaction(trans);
1414 		btrfs_btree_balance_dirty(info);
1415 		cond_resched();
1416 
1417 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1418 			break;
1419 
1420 		if (btrfs_defrag_cancelled(info)) {
1421 			btrfs_debug(info, "defrag_root cancelled");
1422 			ret = -EAGAIN;
1423 			break;
1424 		}
1425 	}
1426 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1427 	return ret;
1428 }
1429 
1430 /*
1431  * Do all special snapshot related qgroup dirty hack.
1432  *
1433  * Will do all needed qgroup inherit and dirty hack like switch commit
1434  * roots inside one transaction and write all btree into disk, to make
1435  * qgroup works.
1436  */
1437 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1438 				   struct btrfs_root *src,
1439 				   struct btrfs_root *parent,
1440 				   struct btrfs_qgroup_inherit *inherit,
1441 				   u64 dst_objectid)
1442 {
1443 	struct btrfs_fs_info *fs_info = src->fs_info;
1444 	int ret;
1445 
1446 	/*
1447 	 * Save some performance in the case that qgroups are not
1448 	 * enabled. If this check races with the ioctl, rescan will
1449 	 * kick in anyway.
1450 	 */
1451 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1452 		return 0;
1453 
1454 	/*
1455 	 * Ensure dirty @src will be committed.  Or, after coming
1456 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1457 	 * recorded root will never be updated again, causing an outdated root
1458 	 * item.
1459 	 */
1460 	ret = record_root_in_trans(trans, src, 1);
1461 	if (ret)
1462 		return ret;
1463 
1464 	/*
1465 	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1466 	 * src root, so we must run the delayed refs here.
1467 	 *
1468 	 * However this isn't particularly fool proof, because there's no
1469 	 * synchronization keeping us from changing the tree after this point
1470 	 * before we do the qgroup_inherit, or even from making changes while
1471 	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1472 	 * for now flush the delayed refs to narrow the race window where the
1473 	 * qgroup counters could end up wrong.
1474 	 */
1475 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1476 	if (ret) {
1477 		btrfs_abort_transaction(trans, ret);
1478 		return ret;
1479 	}
1480 
1481 	/*
1482 	 * We are going to commit transaction, see btrfs_commit_transaction()
1483 	 * comment for reason locking tree_log_mutex
1484 	 */
1485 	mutex_lock(&fs_info->tree_log_mutex);
1486 
1487 	ret = commit_fs_roots(trans);
1488 	if (ret)
1489 		goto out;
1490 	ret = btrfs_qgroup_account_extents(trans);
1491 	if (ret < 0)
1492 		goto out;
1493 
1494 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1495 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1496 				   inherit);
1497 	if (ret < 0)
1498 		goto out;
1499 
1500 	/*
1501 	 * Now we do a simplified commit transaction, which will:
1502 	 * 1) commit all subvolume and extent tree
1503 	 *    To ensure all subvolume and extent tree have a valid
1504 	 *    commit_root to accounting later insert_dir_item()
1505 	 * 2) write all btree blocks onto disk
1506 	 *    This is to make sure later btree modification will be cowed
1507 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1508 	 * In this simplified commit, we don't really care about other trees
1509 	 * like chunk and root tree, as they won't affect qgroup.
1510 	 * And we don't write super to avoid half committed status.
1511 	 */
1512 	ret = commit_cowonly_roots(trans);
1513 	if (ret)
1514 		goto out;
1515 	switch_commit_roots(trans);
1516 	ret = btrfs_write_and_wait_transaction(trans);
1517 	if (ret)
1518 		btrfs_handle_fs_error(fs_info, ret,
1519 			"Error while writing out transaction for qgroup");
1520 
1521 out:
1522 	mutex_unlock(&fs_info->tree_log_mutex);
1523 
1524 	/*
1525 	 * Force parent root to be updated, as we recorded it before so its
1526 	 * last_trans == cur_transid.
1527 	 * Or it won't be committed again onto disk after later
1528 	 * insert_dir_item()
1529 	 */
1530 	if (!ret)
1531 		ret = record_root_in_trans(trans, parent, 1);
1532 	return ret;
1533 }
1534 
1535 /*
1536  * new snapshots need to be created at a very specific time in the
1537  * transaction commit.  This does the actual creation.
1538  *
1539  * Note:
1540  * If the error which may affect the commitment of the current transaction
1541  * happens, we should return the error number. If the error which just affect
1542  * the creation of the pending snapshots, just return 0.
1543  */
1544 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1545 				   struct btrfs_pending_snapshot *pending)
1546 {
1547 
1548 	struct btrfs_fs_info *fs_info = trans->fs_info;
1549 	struct btrfs_key key;
1550 	struct btrfs_root_item *new_root_item;
1551 	struct btrfs_root *tree_root = fs_info->tree_root;
1552 	struct btrfs_root *root = pending->root;
1553 	struct btrfs_root *parent_root;
1554 	struct btrfs_block_rsv *rsv;
1555 	struct inode *parent_inode;
1556 	struct btrfs_path *path;
1557 	struct btrfs_dir_item *dir_item;
1558 	struct dentry *dentry;
1559 	struct extent_buffer *tmp;
1560 	struct extent_buffer *old;
1561 	struct timespec64 cur_time;
1562 	int ret = 0;
1563 	u64 to_reserve = 0;
1564 	u64 index = 0;
1565 	u64 objectid;
1566 	u64 root_flags;
1567 
1568 	ASSERT(pending->path);
1569 	path = pending->path;
1570 
1571 	ASSERT(pending->root_item);
1572 	new_root_item = pending->root_item;
1573 
1574 	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1575 	if (pending->error)
1576 		goto no_free_objectid;
1577 
1578 	/*
1579 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1580 	 * accounted by later btrfs_qgroup_inherit().
1581 	 */
1582 	btrfs_set_skip_qgroup(trans, objectid);
1583 
1584 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1585 
1586 	if (to_reserve > 0) {
1587 		pending->error = btrfs_block_rsv_add(root,
1588 						     &pending->block_rsv,
1589 						     to_reserve,
1590 						     BTRFS_RESERVE_NO_FLUSH);
1591 		if (pending->error)
1592 			goto clear_skip_qgroup;
1593 	}
1594 
1595 	key.objectid = objectid;
1596 	key.offset = (u64)-1;
1597 	key.type = BTRFS_ROOT_ITEM_KEY;
1598 
1599 	rsv = trans->block_rsv;
1600 	trans->block_rsv = &pending->block_rsv;
1601 	trans->bytes_reserved = trans->block_rsv->reserved;
1602 	trace_btrfs_space_reservation(fs_info, "transaction",
1603 				      trans->transid,
1604 				      trans->bytes_reserved, 1);
1605 	dentry = pending->dentry;
1606 	parent_inode = pending->dir;
1607 	parent_root = BTRFS_I(parent_inode)->root;
1608 	ret = record_root_in_trans(trans, parent_root, 0);
1609 	if (ret)
1610 		goto fail;
1611 	cur_time = current_time(parent_inode);
1612 
1613 	/*
1614 	 * insert the directory item
1615 	 */
1616 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1617 	BUG_ON(ret); /* -ENOMEM */
1618 
1619 	/* check if there is a file/dir which has the same name. */
1620 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1621 					 btrfs_ino(BTRFS_I(parent_inode)),
1622 					 dentry->d_name.name,
1623 					 dentry->d_name.len, 0);
1624 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1625 		pending->error = -EEXIST;
1626 		goto dir_item_existed;
1627 	} else if (IS_ERR(dir_item)) {
1628 		ret = PTR_ERR(dir_item);
1629 		btrfs_abort_transaction(trans, ret);
1630 		goto fail;
1631 	}
1632 	btrfs_release_path(path);
1633 
1634 	/*
1635 	 * pull in the delayed directory update
1636 	 * and the delayed inode item
1637 	 * otherwise we corrupt the FS during
1638 	 * snapshot
1639 	 */
1640 	ret = btrfs_run_delayed_items(trans);
1641 	if (ret) {	/* Transaction aborted */
1642 		btrfs_abort_transaction(trans, ret);
1643 		goto fail;
1644 	}
1645 
1646 	ret = record_root_in_trans(trans, root, 0);
1647 	if (ret) {
1648 		btrfs_abort_transaction(trans, ret);
1649 		goto fail;
1650 	}
1651 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1652 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1653 	btrfs_check_and_init_root_item(new_root_item);
1654 
1655 	root_flags = btrfs_root_flags(new_root_item);
1656 	if (pending->readonly)
1657 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1658 	else
1659 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1660 	btrfs_set_root_flags(new_root_item, root_flags);
1661 
1662 	btrfs_set_root_generation_v2(new_root_item,
1663 			trans->transid);
1664 	generate_random_guid(new_root_item->uuid);
1665 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1666 			BTRFS_UUID_SIZE);
1667 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1668 		memset(new_root_item->received_uuid, 0,
1669 		       sizeof(new_root_item->received_uuid));
1670 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1671 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1672 		btrfs_set_root_stransid(new_root_item, 0);
1673 		btrfs_set_root_rtransid(new_root_item, 0);
1674 	}
1675 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1676 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1677 	btrfs_set_root_otransid(new_root_item, trans->transid);
1678 
1679 	old = btrfs_lock_root_node(root);
1680 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1681 			      BTRFS_NESTING_COW);
1682 	if (ret) {
1683 		btrfs_tree_unlock(old);
1684 		free_extent_buffer(old);
1685 		btrfs_abort_transaction(trans, ret);
1686 		goto fail;
1687 	}
1688 
1689 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1690 	/* clean up in any case */
1691 	btrfs_tree_unlock(old);
1692 	free_extent_buffer(old);
1693 	if (ret) {
1694 		btrfs_abort_transaction(trans, ret);
1695 		goto fail;
1696 	}
1697 	/* see comments in should_cow_block() */
1698 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1699 	smp_wmb();
1700 
1701 	btrfs_set_root_node(new_root_item, tmp);
1702 	/* record when the snapshot was created in key.offset */
1703 	key.offset = trans->transid;
1704 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1705 	btrfs_tree_unlock(tmp);
1706 	free_extent_buffer(tmp);
1707 	if (ret) {
1708 		btrfs_abort_transaction(trans, ret);
1709 		goto fail;
1710 	}
1711 
1712 	/*
1713 	 * insert root back/forward references
1714 	 */
1715 	ret = btrfs_add_root_ref(trans, objectid,
1716 				 parent_root->root_key.objectid,
1717 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1718 				 dentry->d_name.name, dentry->d_name.len);
1719 	if (ret) {
1720 		btrfs_abort_transaction(trans, ret);
1721 		goto fail;
1722 	}
1723 
1724 	key.offset = (u64)-1;
1725 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1726 	if (IS_ERR(pending->snap)) {
1727 		ret = PTR_ERR(pending->snap);
1728 		pending->snap = NULL;
1729 		btrfs_abort_transaction(trans, ret);
1730 		goto fail;
1731 	}
1732 
1733 	ret = btrfs_reloc_post_snapshot(trans, pending);
1734 	if (ret) {
1735 		btrfs_abort_transaction(trans, ret);
1736 		goto fail;
1737 	}
1738 
1739 	/*
1740 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1741 	 * snapshot hack to do fast snapshot.
1742 	 * To co-operate with that hack, we do hack again.
1743 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1744 	 */
1745 	ret = qgroup_account_snapshot(trans, root, parent_root,
1746 				      pending->inherit, objectid);
1747 	if (ret < 0)
1748 		goto fail;
1749 
1750 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1751 				    dentry->d_name.len, BTRFS_I(parent_inode),
1752 				    &key, BTRFS_FT_DIR, index);
1753 	/* We have check then name at the beginning, so it is impossible. */
1754 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1755 	if (ret) {
1756 		btrfs_abort_transaction(trans, ret);
1757 		goto fail;
1758 	}
1759 
1760 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1761 					 dentry->d_name.len * 2);
1762 	parent_inode->i_mtime = parent_inode->i_ctime =
1763 		current_time(parent_inode);
1764 	ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1765 	if (ret) {
1766 		btrfs_abort_transaction(trans, ret);
1767 		goto fail;
1768 	}
1769 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1770 				  BTRFS_UUID_KEY_SUBVOL,
1771 				  objectid);
1772 	if (ret) {
1773 		btrfs_abort_transaction(trans, ret);
1774 		goto fail;
1775 	}
1776 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1777 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1778 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1779 					  objectid);
1780 		if (ret && ret != -EEXIST) {
1781 			btrfs_abort_transaction(trans, ret);
1782 			goto fail;
1783 		}
1784 	}
1785 
1786 fail:
1787 	pending->error = ret;
1788 dir_item_existed:
1789 	trans->block_rsv = rsv;
1790 	trans->bytes_reserved = 0;
1791 clear_skip_qgroup:
1792 	btrfs_clear_skip_qgroup(trans);
1793 no_free_objectid:
1794 	kfree(new_root_item);
1795 	pending->root_item = NULL;
1796 	btrfs_free_path(path);
1797 	pending->path = NULL;
1798 
1799 	return ret;
1800 }
1801 
1802 /*
1803  * create all the snapshots we've scheduled for creation
1804  */
1805 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1806 {
1807 	struct btrfs_pending_snapshot *pending, *next;
1808 	struct list_head *head = &trans->transaction->pending_snapshots;
1809 	int ret = 0;
1810 
1811 	list_for_each_entry_safe(pending, next, head, list) {
1812 		list_del(&pending->list);
1813 		ret = create_pending_snapshot(trans, pending);
1814 		if (ret)
1815 			break;
1816 	}
1817 	return ret;
1818 }
1819 
1820 static void update_super_roots(struct btrfs_fs_info *fs_info)
1821 {
1822 	struct btrfs_root_item *root_item;
1823 	struct btrfs_super_block *super;
1824 
1825 	super = fs_info->super_copy;
1826 
1827 	root_item = &fs_info->chunk_root->root_item;
1828 	super->chunk_root = root_item->bytenr;
1829 	super->chunk_root_generation = root_item->generation;
1830 	super->chunk_root_level = root_item->level;
1831 
1832 	root_item = &fs_info->tree_root->root_item;
1833 	super->root = root_item->bytenr;
1834 	super->generation = root_item->generation;
1835 	super->root_level = root_item->level;
1836 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1837 		super->cache_generation = root_item->generation;
1838 	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1839 		super->cache_generation = 0;
1840 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1841 		super->uuid_tree_generation = root_item->generation;
1842 }
1843 
1844 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1845 {
1846 	struct btrfs_transaction *trans;
1847 	int ret = 0;
1848 
1849 	spin_lock(&info->trans_lock);
1850 	trans = info->running_transaction;
1851 	if (trans)
1852 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1853 	spin_unlock(&info->trans_lock);
1854 	return ret;
1855 }
1856 
1857 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1858 {
1859 	struct btrfs_transaction *trans;
1860 	int ret = 0;
1861 
1862 	spin_lock(&info->trans_lock);
1863 	trans = info->running_transaction;
1864 	if (trans)
1865 		ret = is_transaction_blocked(trans);
1866 	spin_unlock(&info->trans_lock);
1867 	return ret;
1868 }
1869 
1870 /*
1871  * commit transactions asynchronously. once btrfs_commit_transaction_async
1872  * returns, any subsequent transaction will not be allowed to join.
1873  */
1874 struct btrfs_async_commit {
1875 	struct btrfs_trans_handle *newtrans;
1876 	struct work_struct work;
1877 };
1878 
1879 static void do_async_commit(struct work_struct *work)
1880 {
1881 	struct btrfs_async_commit *ac =
1882 		container_of(work, struct btrfs_async_commit, work);
1883 
1884 	/*
1885 	 * We've got freeze protection passed with the transaction.
1886 	 * Tell lockdep about it.
1887 	 */
1888 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1889 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1890 
1891 	current->journal_info = ac->newtrans;
1892 
1893 	btrfs_commit_transaction(ac->newtrans);
1894 	kfree(ac);
1895 }
1896 
1897 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1898 {
1899 	struct btrfs_fs_info *fs_info = trans->fs_info;
1900 	struct btrfs_async_commit *ac;
1901 	struct btrfs_transaction *cur_trans;
1902 
1903 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1904 	if (!ac)
1905 		return -ENOMEM;
1906 
1907 	INIT_WORK(&ac->work, do_async_commit);
1908 	ac->newtrans = btrfs_join_transaction(trans->root);
1909 	if (IS_ERR(ac->newtrans)) {
1910 		int err = PTR_ERR(ac->newtrans);
1911 		kfree(ac);
1912 		return err;
1913 	}
1914 
1915 	/* take transaction reference */
1916 	cur_trans = trans->transaction;
1917 	refcount_inc(&cur_trans->use_count);
1918 
1919 	btrfs_end_transaction(trans);
1920 
1921 	/*
1922 	 * Tell lockdep we've released the freeze rwsem, since the
1923 	 * async commit thread will be the one to unlock it.
1924 	 */
1925 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1926 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1927 
1928 	schedule_work(&ac->work);
1929 	/*
1930 	 * Wait for the current transaction commit to start and block
1931 	 * subsequent transaction joins
1932 	 */
1933 	wait_event(fs_info->transaction_blocked_wait,
1934 		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
1935 		   TRANS_ABORTED(cur_trans));
1936 	if (current->journal_info == trans)
1937 		current->journal_info = NULL;
1938 
1939 	btrfs_put_transaction(cur_trans);
1940 	return 0;
1941 }
1942 
1943 
1944 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1945 {
1946 	struct btrfs_fs_info *fs_info = trans->fs_info;
1947 	struct btrfs_transaction *cur_trans = trans->transaction;
1948 
1949 	WARN_ON(refcount_read(&trans->use_count) > 1);
1950 
1951 	btrfs_abort_transaction(trans, err);
1952 
1953 	spin_lock(&fs_info->trans_lock);
1954 
1955 	/*
1956 	 * If the transaction is removed from the list, it means this
1957 	 * transaction has been committed successfully, so it is impossible
1958 	 * to call the cleanup function.
1959 	 */
1960 	BUG_ON(list_empty(&cur_trans->list));
1961 
1962 	if (cur_trans == fs_info->running_transaction) {
1963 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1964 		spin_unlock(&fs_info->trans_lock);
1965 		wait_event(cur_trans->writer_wait,
1966 			   atomic_read(&cur_trans->num_writers) == 1);
1967 
1968 		spin_lock(&fs_info->trans_lock);
1969 	}
1970 
1971 	/*
1972 	 * Now that we know no one else is still using the transaction we can
1973 	 * remove the transaction from the list of transactions. This avoids
1974 	 * the transaction kthread from cleaning up the transaction while some
1975 	 * other task is still using it, which could result in a use-after-free
1976 	 * on things like log trees, as it forces the transaction kthread to
1977 	 * wait for this transaction to be cleaned up by us.
1978 	 */
1979 	list_del_init(&cur_trans->list);
1980 
1981 	spin_unlock(&fs_info->trans_lock);
1982 
1983 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1984 
1985 	spin_lock(&fs_info->trans_lock);
1986 	if (cur_trans == fs_info->running_transaction)
1987 		fs_info->running_transaction = NULL;
1988 	spin_unlock(&fs_info->trans_lock);
1989 
1990 	if (trans->type & __TRANS_FREEZABLE)
1991 		sb_end_intwrite(fs_info->sb);
1992 	btrfs_put_transaction(cur_trans);
1993 	btrfs_put_transaction(cur_trans);
1994 
1995 	trace_btrfs_transaction_commit(trans->root);
1996 
1997 	if (current->journal_info == trans)
1998 		current->journal_info = NULL;
1999 	btrfs_scrub_cancel(fs_info);
2000 
2001 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2002 }
2003 
2004 /*
2005  * Release reserved delayed ref space of all pending block groups of the
2006  * transaction and remove them from the list
2007  */
2008 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2009 {
2010        struct btrfs_fs_info *fs_info = trans->fs_info;
2011        struct btrfs_block_group *block_group, *tmp;
2012 
2013        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2014                btrfs_delayed_refs_rsv_release(fs_info, 1);
2015                list_del_init(&block_group->bg_list);
2016        }
2017 }
2018 
2019 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2020 {
2021 	/*
2022 	 * We use writeback_inodes_sb here because if we used
2023 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2024 	 * Currently are holding the fs freeze lock, if we do an async flush
2025 	 * we'll do btrfs_join_transaction() and deadlock because we need to
2026 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2027 	 * from already being in a transaction and our join_transaction doesn't
2028 	 * have to re-take the fs freeze lock.
2029 	 */
2030 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2031 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2032 	return 0;
2033 }
2034 
2035 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2036 {
2037 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2038 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2039 }
2040 
2041 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2042 {
2043 	struct btrfs_fs_info *fs_info = trans->fs_info;
2044 	struct btrfs_transaction *cur_trans = trans->transaction;
2045 	struct btrfs_transaction *prev_trans = NULL;
2046 	int ret;
2047 
2048 	ASSERT(refcount_read(&trans->use_count) == 1);
2049 
2050 	/* Stop the commit early if ->aborted is set */
2051 	if (TRANS_ABORTED(cur_trans)) {
2052 		ret = cur_trans->aborted;
2053 		btrfs_end_transaction(trans);
2054 		return ret;
2055 	}
2056 
2057 	btrfs_trans_release_metadata(trans);
2058 	trans->block_rsv = NULL;
2059 
2060 	/*
2061 	 * We only want one transaction commit doing the flushing so we do not
2062 	 * waste a bunch of time on lock contention on the extent root node.
2063 	 */
2064 	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2065 			      &cur_trans->delayed_refs.flags)) {
2066 		/*
2067 		 * Make a pass through all the delayed refs we have so far.
2068 		 * Any running threads may add more while we are here.
2069 		 */
2070 		ret = btrfs_run_delayed_refs(trans, 0);
2071 		if (ret) {
2072 			btrfs_end_transaction(trans);
2073 			return ret;
2074 		}
2075 	}
2076 
2077 	btrfs_create_pending_block_groups(trans);
2078 
2079 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2080 		int run_it = 0;
2081 
2082 		/* this mutex is also taken before trying to set
2083 		 * block groups readonly.  We need to make sure
2084 		 * that nobody has set a block group readonly
2085 		 * after a extents from that block group have been
2086 		 * allocated for cache files.  btrfs_set_block_group_ro
2087 		 * will wait for the transaction to commit if it
2088 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2089 		 *
2090 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2091 		 * only one process starts all the block group IO.  It wouldn't
2092 		 * hurt to have more than one go through, but there's no
2093 		 * real advantage to it either.
2094 		 */
2095 		mutex_lock(&fs_info->ro_block_group_mutex);
2096 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2097 				      &cur_trans->flags))
2098 			run_it = 1;
2099 		mutex_unlock(&fs_info->ro_block_group_mutex);
2100 
2101 		if (run_it) {
2102 			ret = btrfs_start_dirty_block_groups(trans);
2103 			if (ret) {
2104 				btrfs_end_transaction(trans);
2105 				return ret;
2106 			}
2107 		}
2108 	}
2109 
2110 	spin_lock(&fs_info->trans_lock);
2111 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2112 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2113 
2114 		spin_unlock(&fs_info->trans_lock);
2115 		refcount_inc(&cur_trans->use_count);
2116 
2117 		if (trans->in_fsync)
2118 			want_state = TRANS_STATE_SUPER_COMMITTED;
2119 		ret = btrfs_end_transaction(trans);
2120 		wait_for_commit(cur_trans, want_state);
2121 
2122 		if (TRANS_ABORTED(cur_trans))
2123 			ret = cur_trans->aborted;
2124 
2125 		btrfs_put_transaction(cur_trans);
2126 
2127 		return ret;
2128 	}
2129 
2130 	cur_trans->state = TRANS_STATE_COMMIT_START;
2131 	wake_up(&fs_info->transaction_blocked_wait);
2132 
2133 	if (cur_trans->list.prev != &fs_info->trans_list) {
2134 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2135 
2136 		if (trans->in_fsync)
2137 			want_state = TRANS_STATE_SUPER_COMMITTED;
2138 
2139 		prev_trans = list_entry(cur_trans->list.prev,
2140 					struct btrfs_transaction, list);
2141 		if (prev_trans->state < want_state) {
2142 			refcount_inc(&prev_trans->use_count);
2143 			spin_unlock(&fs_info->trans_lock);
2144 
2145 			wait_for_commit(prev_trans, want_state);
2146 
2147 			ret = READ_ONCE(prev_trans->aborted);
2148 
2149 			btrfs_put_transaction(prev_trans);
2150 			if (ret)
2151 				goto cleanup_transaction;
2152 		} else {
2153 			spin_unlock(&fs_info->trans_lock);
2154 		}
2155 	} else {
2156 		spin_unlock(&fs_info->trans_lock);
2157 		/*
2158 		 * The previous transaction was aborted and was already removed
2159 		 * from the list of transactions at fs_info->trans_list. So we
2160 		 * abort to prevent writing a new superblock that reflects a
2161 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2162 		 */
2163 		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2164 			ret = -EROFS;
2165 			goto cleanup_transaction;
2166 		}
2167 	}
2168 
2169 	extwriter_counter_dec(cur_trans, trans->type);
2170 
2171 	ret = btrfs_start_delalloc_flush(fs_info);
2172 	if (ret)
2173 		goto cleanup_transaction;
2174 
2175 	ret = btrfs_run_delayed_items(trans);
2176 	if (ret)
2177 		goto cleanup_transaction;
2178 
2179 	wait_event(cur_trans->writer_wait,
2180 		   extwriter_counter_read(cur_trans) == 0);
2181 
2182 	/* some pending stuffs might be added after the previous flush. */
2183 	ret = btrfs_run_delayed_items(trans);
2184 	if (ret)
2185 		goto cleanup_transaction;
2186 
2187 	btrfs_wait_delalloc_flush(fs_info);
2188 
2189 	/*
2190 	 * Wait for all ordered extents started by a fast fsync that joined this
2191 	 * transaction. Otherwise if this transaction commits before the ordered
2192 	 * extents complete we lose logged data after a power failure.
2193 	 */
2194 	wait_event(cur_trans->pending_wait,
2195 		   atomic_read(&cur_trans->pending_ordered) == 0);
2196 
2197 	btrfs_scrub_pause(fs_info);
2198 	/*
2199 	 * Ok now we need to make sure to block out any other joins while we
2200 	 * commit the transaction.  We could have started a join before setting
2201 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2202 	 */
2203 	spin_lock(&fs_info->trans_lock);
2204 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2205 	spin_unlock(&fs_info->trans_lock);
2206 	wait_event(cur_trans->writer_wait,
2207 		   atomic_read(&cur_trans->num_writers) == 1);
2208 
2209 	if (TRANS_ABORTED(cur_trans)) {
2210 		ret = cur_trans->aborted;
2211 		goto scrub_continue;
2212 	}
2213 	/*
2214 	 * the reloc mutex makes sure that we stop
2215 	 * the balancing code from coming in and moving
2216 	 * extents around in the middle of the commit
2217 	 */
2218 	mutex_lock(&fs_info->reloc_mutex);
2219 
2220 	/*
2221 	 * We needn't worry about the delayed items because we will
2222 	 * deal with them in create_pending_snapshot(), which is the
2223 	 * core function of the snapshot creation.
2224 	 */
2225 	ret = create_pending_snapshots(trans);
2226 	if (ret)
2227 		goto unlock_reloc;
2228 
2229 	/*
2230 	 * We insert the dir indexes of the snapshots and update the inode
2231 	 * of the snapshots' parents after the snapshot creation, so there
2232 	 * are some delayed items which are not dealt with. Now deal with
2233 	 * them.
2234 	 *
2235 	 * We needn't worry that this operation will corrupt the snapshots,
2236 	 * because all the tree which are snapshoted will be forced to COW
2237 	 * the nodes and leaves.
2238 	 */
2239 	ret = btrfs_run_delayed_items(trans);
2240 	if (ret)
2241 		goto unlock_reloc;
2242 
2243 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2244 	if (ret)
2245 		goto unlock_reloc;
2246 
2247 	/*
2248 	 * make sure none of the code above managed to slip in a
2249 	 * delayed item
2250 	 */
2251 	btrfs_assert_delayed_root_empty(fs_info);
2252 
2253 	WARN_ON(cur_trans != trans->transaction);
2254 
2255 	/* btrfs_commit_tree_roots is responsible for getting the
2256 	 * various roots consistent with each other.  Every pointer
2257 	 * in the tree of tree roots has to point to the most up to date
2258 	 * root for every subvolume and other tree.  So, we have to keep
2259 	 * the tree logging code from jumping in and changing any
2260 	 * of the trees.
2261 	 *
2262 	 * At this point in the commit, there can't be any tree-log
2263 	 * writers, but a little lower down we drop the trans mutex
2264 	 * and let new people in.  By holding the tree_log_mutex
2265 	 * from now until after the super is written, we avoid races
2266 	 * with the tree-log code.
2267 	 */
2268 	mutex_lock(&fs_info->tree_log_mutex);
2269 
2270 	ret = commit_fs_roots(trans);
2271 	if (ret)
2272 		goto unlock_tree_log;
2273 
2274 	/*
2275 	 * Since the transaction is done, we can apply the pending changes
2276 	 * before the next transaction.
2277 	 */
2278 	btrfs_apply_pending_changes(fs_info);
2279 
2280 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2281 	 * safe to free the root of tree log roots
2282 	 */
2283 	btrfs_free_log_root_tree(trans, fs_info);
2284 
2285 	/*
2286 	 * Since fs roots are all committed, we can get a quite accurate
2287 	 * new_roots. So let's do quota accounting.
2288 	 */
2289 	ret = btrfs_qgroup_account_extents(trans);
2290 	if (ret < 0)
2291 		goto unlock_tree_log;
2292 
2293 	ret = commit_cowonly_roots(trans);
2294 	if (ret)
2295 		goto unlock_tree_log;
2296 
2297 	/*
2298 	 * The tasks which save the space cache and inode cache may also
2299 	 * update ->aborted, check it.
2300 	 */
2301 	if (TRANS_ABORTED(cur_trans)) {
2302 		ret = cur_trans->aborted;
2303 		goto unlock_tree_log;
2304 	}
2305 
2306 	cur_trans = fs_info->running_transaction;
2307 
2308 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2309 			    fs_info->tree_root->node);
2310 	list_add_tail(&fs_info->tree_root->dirty_list,
2311 		      &cur_trans->switch_commits);
2312 
2313 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2314 			    fs_info->chunk_root->node);
2315 	list_add_tail(&fs_info->chunk_root->dirty_list,
2316 		      &cur_trans->switch_commits);
2317 
2318 	switch_commit_roots(trans);
2319 
2320 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2321 	ASSERT(list_empty(&cur_trans->io_bgs));
2322 	update_super_roots(fs_info);
2323 
2324 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2325 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2326 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2327 	       sizeof(*fs_info->super_copy));
2328 
2329 	btrfs_commit_device_sizes(cur_trans);
2330 
2331 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2332 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2333 
2334 	btrfs_trans_release_chunk_metadata(trans);
2335 
2336 	spin_lock(&fs_info->trans_lock);
2337 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2338 	fs_info->running_transaction = NULL;
2339 	spin_unlock(&fs_info->trans_lock);
2340 	mutex_unlock(&fs_info->reloc_mutex);
2341 
2342 	wake_up(&fs_info->transaction_wait);
2343 
2344 	ret = btrfs_write_and_wait_transaction(trans);
2345 	if (ret) {
2346 		btrfs_handle_fs_error(fs_info, ret,
2347 				      "Error while writing out transaction");
2348 		/*
2349 		 * reloc_mutex has been unlocked, tree_log_mutex is still held
2350 		 * but we can't jump to unlock_tree_log causing double unlock
2351 		 */
2352 		mutex_unlock(&fs_info->tree_log_mutex);
2353 		goto scrub_continue;
2354 	}
2355 
2356 	/*
2357 	 * At this point, we should have written all the tree blocks allocated
2358 	 * in this transaction. So it's now safe to free the redirtyied extent
2359 	 * buffers.
2360 	 */
2361 	btrfs_free_redirty_list(cur_trans);
2362 
2363 	ret = write_all_supers(fs_info, 0);
2364 	/*
2365 	 * the super is written, we can safely allow the tree-loggers
2366 	 * to go about their business
2367 	 */
2368 	mutex_unlock(&fs_info->tree_log_mutex);
2369 	if (ret)
2370 		goto scrub_continue;
2371 
2372 	/*
2373 	 * We needn't acquire the lock here because there is no other task
2374 	 * which can change it.
2375 	 */
2376 	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2377 	wake_up(&cur_trans->commit_wait);
2378 
2379 	btrfs_finish_extent_commit(trans);
2380 
2381 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2382 		btrfs_clear_space_info_full(fs_info);
2383 
2384 	fs_info->last_trans_committed = cur_trans->transid;
2385 	/*
2386 	 * We needn't acquire the lock here because there is no other task
2387 	 * which can change it.
2388 	 */
2389 	cur_trans->state = TRANS_STATE_COMPLETED;
2390 	wake_up(&cur_trans->commit_wait);
2391 
2392 	spin_lock(&fs_info->trans_lock);
2393 	list_del_init(&cur_trans->list);
2394 	spin_unlock(&fs_info->trans_lock);
2395 
2396 	btrfs_put_transaction(cur_trans);
2397 	btrfs_put_transaction(cur_trans);
2398 
2399 	if (trans->type & __TRANS_FREEZABLE)
2400 		sb_end_intwrite(fs_info->sb);
2401 
2402 	trace_btrfs_transaction_commit(trans->root);
2403 
2404 	btrfs_scrub_continue(fs_info);
2405 
2406 	if (current->journal_info == trans)
2407 		current->journal_info = NULL;
2408 
2409 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2410 
2411 	return ret;
2412 
2413 unlock_tree_log:
2414 	mutex_unlock(&fs_info->tree_log_mutex);
2415 unlock_reloc:
2416 	mutex_unlock(&fs_info->reloc_mutex);
2417 scrub_continue:
2418 	btrfs_scrub_continue(fs_info);
2419 cleanup_transaction:
2420 	btrfs_trans_release_metadata(trans);
2421 	btrfs_cleanup_pending_block_groups(trans);
2422 	btrfs_trans_release_chunk_metadata(trans);
2423 	trans->block_rsv = NULL;
2424 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2425 	if (current->journal_info == trans)
2426 		current->journal_info = NULL;
2427 	cleanup_transaction(trans, ret);
2428 
2429 	return ret;
2430 }
2431 
2432 /*
2433  * return < 0 if error
2434  * 0 if there are no more dead_roots at the time of call
2435  * 1 there are more to be processed, call me again
2436  *
2437  * The return value indicates there are certainly more snapshots to delete, but
2438  * if there comes a new one during processing, it may return 0. We don't mind,
2439  * because btrfs_commit_super will poke cleaner thread and it will process it a
2440  * few seconds later.
2441  */
2442 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2443 {
2444 	int ret;
2445 	struct btrfs_fs_info *fs_info = root->fs_info;
2446 
2447 	spin_lock(&fs_info->trans_lock);
2448 	if (list_empty(&fs_info->dead_roots)) {
2449 		spin_unlock(&fs_info->trans_lock);
2450 		return 0;
2451 	}
2452 	root = list_first_entry(&fs_info->dead_roots,
2453 			struct btrfs_root, root_list);
2454 	list_del_init(&root->root_list);
2455 	spin_unlock(&fs_info->trans_lock);
2456 
2457 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2458 
2459 	btrfs_kill_all_delayed_nodes(root);
2460 
2461 	if (btrfs_header_backref_rev(root->node) <
2462 			BTRFS_MIXED_BACKREF_REV)
2463 		ret = btrfs_drop_snapshot(root, 0, 0);
2464 	else
2465 		ret = btrfs_drop_snapshot(root, 1, 0);
2466 
2467 	btrfs_put_root(root);
2468 	return (ret < 0) ? 0 : 1;
2469 }
2470 
2471 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2472 {
2473 	unsigned long prev;
2474 	unsigned long bit;
2475 
2476 	prev = xchg(&fs_info->pending_changes, 0);
2477 	if (!prev)
2478 		return;
2479 
2480 	bit = 1 << BTRFS_PENDING_COMMIT;
2481 	if (prev & bit)
2482 		btrfs_debug(fs_info, "pending commit done");
2483 	prev &= ~bit;
2484 
2485 	if (prev)
2486 		btrfs_warn(fs_info,
2487 			"unknown pending changes left 0x%lx, ignoring", prev);
2488 }
2489